linux/mm/hmm.c
<<
>>
Prefs
   1/*
   2 * Copyright 2013 Red Hat Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * Authors: Jérôme Glisse <jglisse@redhat.com>
  15 */
  16/*
  17 * Refer to include/linux/hmm.h for information about heterogeneous memory
  18 * management or HMM for short.
  19 */
  20#include <linux/mm.h>
  21#include <linux/hmm.h>
  22#include <linux/init.h>
  23#include <linux/rmap.h>
  24#include <linux/swap.h>
  25#include <linux/slab.h>
  26#include <linux/sched.h>
  27#include <linux/mmzone.h>
  28#include <linux/pagemap.h>
  29#include <linux/swapops.h>
  30#include <linux/hugetlb.h>
  31#include <linux/memremap.h>
  32#include <linux/jump_label.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/memory_hotplug.h>
  35
  36#define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
  37
  38#if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
  39/*
  40 * Device private memory see HMM (Documentation/vm/hmm.txt) or hmm.h
  41 */
  42DEFINE_STATIC_KEY_FALSE(device_private_key);
  43EXPORT_SYMBOL(device_private_key);
  44#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
  45
  46
  47#if IS_ENABLED(CONFIG_HMM_MIRROR)
  48static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
  49
  50/*
  51 * struct hmm - HMM per mm struct
  52 *
  53 * @mm: mm struct this HMM struct is bound to
  54 * @lock: lock protecting ranges list
  55 * @sequence: we track updates to the CPU page table with a sequence number
  56 * @ranges: list of range being snapshotted
  57 * @mirrors: list of mirrors for this mm
  58 * @mmu_notifier: mmu notifier to track updates to CPU page table
  59 * @mirrors_sem: read/write semaphore protecting the mirrors list
  60 */
  61struct hmm {
  62        struct mm_struct        *mm;
  63        spinlock_t              lock;
  64        atomic_t                sequence;
  65        struct list_head        ranges;
  66        struct list_head        mirrors;
  67        struct mmu_notifier     mmu_notifier;
  68        struct rw_semaphore     mirrors_sem;
  69};
  70
  71/*
  72 * hmm_register - register HMM against an mm (HMM internal)
  73 *
  74 * @mm: mm struct to attach to
  75 *
  76 * This is not intended to be used directly by device drivers. It allocates an
  77 * HMM struct if mm does not have one, and initializes it.
  78 */
  79static struct hmm *hmm_register(struct mm_struct *mm)
  80{
  81        struct hmm *hmm = READ_ONCE(mm->hmm);
  82        bool cleanup = false;
  83
  84        /*
  85         * The hmm struct can only be freed once the mm_struct goes away,
  86         * hence we should always have pre-allocated an new hmm struct
  87         * above.
  88         */
  89        if (hmm)
  90                return hmm;
  91
  92        hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
  93        if (!hmm)
  94                return NULL;
  95        INIT_LIST_HEAD(&hmm->mirrors);
  96        init_rwsem(&hmm->mirrors_sem);
  97        atomic_set(&hmm->sequence, 0);
  98        hmm->mmu_notifier.ops = NULL;
  99        INIT_LIST_HEAD(&hmm->ranges);
 100        spin_lock_init(&hmm->lock);
 101        hmm->mm = mm;
 102
 103        /*
 104         * We should only get here if hold the mmap_sem in write mode ie on
 105         * registration of first mirror through hmm_mirror_register()
 106         */
 107        hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
 108        if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
 109                kfree(hmm);
 110                return NULL;
 111        }
 112
 113        spin_lock(&mm->page_table_lock);
 114        if (!mm->hmm)
 115                mm->hmm = hmm;
 116        else
 117                cleanup = true;
 118        spin_unlock(&mm->page_table_lock);
 119
 120        if (cleanup) {
 121                mmu_notifier_unregister(&hmm->mmu_notifier, mm);
 122                kfree(hmm);
 123        }
 124
 125        return mm->hmm;
 126}
 127
 128void hmm_mm_destroy(struct mm_struct *mm)
 129{
 130        kfree(mm->hmm);
 131}
 132
 133static void hmm_invalidate_range(struct hmm *hmm,
 134                                 enum hmm_update_type action,
 135                                 unsigned long start,
 136                                 unsigned long end)
 137{
 138        struct hmm_mirror *mirror;
 139        struct hmm_range *range;
 140
 141        spin_lock(&hmm->lock);
 142        list_for_each_entry(range, &hmm->ranges, list) {
 143                unsigned long addr, idx, npages;
 144
 145                if (end < range->start || start >= range->end)
 146                        continue;
 147
 148                range->valid = false;
 149                addr = max(start, range->start);
 150                idx = (addr - range->start) >> PAGE_SHIFT;
 151                npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
 152                memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
 153        }
 154        spin_unlock(&hmm->lock);
 155
 156        down_read(&hmm->mirrors_sem);
 157        list_for_each_entry(mirror, &hmm->mirrors, list)
 158                mirror->ops->sync_cpu_device_pagetables(mirror, action,
 159                                                        start, end);
 160        up_read(&hmm->mirrors_sem);
 161}
 162
 163static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
 164{
 165        struct hmm_mirror *mirror;
 166        struct hmm *hmm = mm->hmm;
 167
 168        down_write(&hmm->mirrors_sem);
 169        mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
 170                                          list);
 171        while (mirror) {
 172                list_del_init(&mirror->list);
 173                if (mirror->ops->release) {
 174                        /*
 175                         * Drop mirrors_sem so callback can wait on any pending
 176                         * work that might itself trigger mmu_notifier callback
 177                         * and thus would deadlock with us.
 178                         */
 179                        up_write(&hmm->mirrors_sem);
 180                        mirror->ops->release(mirror);
 181                        down_write(&hmm->mirrors_sem);
 182                }
 183                mirror = list_first_entry_or_null(&hmm->mirrors,
 184                                                  struct hmm_mirror, list);
 185        }
 186        up_write(&hmm->mirrors_sem);
 187}
 188
 189static void hmm_invalidate_range_start(struct mmu_notifier *mn,
 190                                       struct mm_struct *mm,
 191                                       unsigned long start,
 192                                       unsigned long end)
 193{
 194        struct hmm *hmm = mm->hmm;
 195
 196        VM_BUG_ON(!hmm);
 197
 198        atomic_inc(&hmm->sequence);
 199}
 200
 201static void hmm_invalidate_range_end(struct mmu_notifier *mn,
 202                                     struct mm_struct *mm,
 203                                     unsigned long start,
 204                                     unsigned long end)
 205{
 206        struct hmm *hmm = mm->hmm;
 207
 208        VM_BUG_ON(!hmm);
 209
 210        hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
 211}
 212
 213static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
 214        .release                = hmm_release,
 215        .invalidate_range_start = hmm_invalidate_range_start,
 216        .invalidate_range_end   = hmm_invalidate_range_end,
 217};
 218
 219/*
 220 * hmm_mirror_register() - register a mirror against an mm
 221 *
 222 * @mirror: new mirror struct to register
 223 * @mm: mm to register against
 224 *
 225 * To start mirroring a process address space, the device driver must register
 226 * an HMM mirror struct.
 227 *
 228 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
 229 */
 230int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
 231{
 232        /* Sanity check */
 233        if (!mm || !mirror || !mirror->ops)
 234                return -EINVAL;
 235
 236again:
 237        mirror->hmm = hmm_register(mm);
 238        if (!mirror->hmm)
 239                return -ENOMEM;
 240
 241        down_write(&mirror->hmm->mirrors_sem);
 242        if (mirror->hmm->mm == NULL) {
 243                /*
 244                 * A racing hmm_mirror_unregister() is about to destroy the hmm
 245                 * struct. Try again to allocate a new one.
 246                 */
 247                up_write(&mirror->hmm->mirrors_sem);
 248                mirror->hmm = NULL;
 249                goto again;
 250        } else {
 251                list_add(&mirror->list, &mirror->hmm->mirrors);
 252                up_write(&mirror->hmm->mirrors_sem);
 253        }
 254
 255        return 0;
 256}
 257EXPORT_SYMBOL(hmm_mirror_register);
 258
 259/*
 260 * hmm_mirror_unregister() - unregister a mirror
 261 *
 262 * @mirror: new mirror struct to register
 263 *
 264 * Stop mirroring a process address space, and cleanup.
 265 */
 266void hmm_mirror_unregister(struct hmm_mirror *mirror)
 267{
 268        bool should_unregister = false;
 269        struct mm_struct *mm;
 270        struct hmm *hmm;
 271
 272        if (mirror->hmm == NULL)
 273                return;
 274
 275        hmm = mirror->hmm;
 276        down_write(&hmm->mirrors_sem);
 277        list_del_init(&mirror->list);
 278        should_unregister = list_empty(&hmm->mirrors);
 279        mirror->hmm = NULL;
 280        mm = hmm->mm;
 281        hmm->mm = NULL;
 282        up_write(&hmm->mirrors_sem);
 283
 284        if (!should_unregister || mm == NULL)
 285                return;
 286
 287        spin_lock(&mm->page_table_lock);
 288        if (mm->hmm == hmm)
 289                mm->hmm = NULL;
 290        spin_unlock(&mm->page_table_lock);
 291
 292        mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
 293        kfree(hmm);
 294}
 295EXPORT_SYMBOL(hmm_mirror_unregister);
 296
 297struct hmm_vma_walk {
 298        struct hmm_range        *range;
 299        unsigned long           last;
 300        bool                    fault;
 301        bool                    block;
 302};
 303
 304static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
 305                            bool write_fault, uint64_t *pfn)
 306{
 307        unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
 308        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 309        struct hmm_range *range = hmm_vma_walk->range;
 310        struct vm_area_struct *vma = walk->vma;
 311        int r;
 312
 313        flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
 314        flags |= write_fault ? FAULT_FLAG_WRITE : 0;
 315        r = handle_mm_fault(vma, addr, flags);
 316        if (r & VM_FAULT_RETRY)
 317                return -EBUSY;
 318        if (r & VM_FAULT_ERROR) {
 319                *pfn = range->values[HMM_PFN_ERROR];
 320                return -EFAULT;
 321        }
 322
 323        return -EAGAIN;
 324}
 325
 326static int hmm_pfns_bad(unsigned long addr,
 327                        unsigned long end,
 328                        struct mm_walk *walk)
 329{
 330        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 331        struct hmm_range *range = hmm_vma_walk->range;
 332        uint64_t *pfns = range->pfns;
 333        unsigned long i;
 334
 335        i = (addr - range->start) >> PAGE_SHIFT;
 336        for (; addr < end; addr += PAGE_SIZE, i++)
 337                pfns[i] = range->values[HMM_PFN_ERROR];
 338
 339        return 0;
 340}
 341
 342/*
 343 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
 344 * @start: range virtual start address (inclusive)
 345 * @end: range virtual end address (exclusive)
 346 * @fault: should we fault or not ?
 347 * @write_fault: write fault ?
 348 * @walk: mm_walk structure
 349 * Returns: 0 on success, -EAGAIN after page fault, or page fault error
 350 *
 351 * This function will be called whenever pmd_none() or pte_none() returns true,
 352 * or whenever there is no page directory covering the virtual address range.
 353 */
 354static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
 355                              bool fault, bool write_fault,
 356                              struct mm_walk *walk)
 357{
 358        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 359        struct hmm_range *range = hmm_vma_walk->range;
 360        uint64_t *pfns = range->pfns;
 361        unsigned long i;
 362
 363        hmm_vma_walk->last = addr;
 364        i = (addr - range->start) >> PAGE_SHIFT;
 365        for (; addr < end; addr += PAGE_SIZE, i++) {
 366                pfns[i] = range->values[HMM_PFN_NONE];
 367                if (fault || write_fault) {
 368                        int ret;
 369
 370                        ret = hmm_vma_do_fault(walk, addr, write_fault,
 371                                               &pfns[i]);
 372                        if (ret != -EAGAIN)
 373                                return ret;
 374                }
 375        }
 376
 377        return (fault || write_fault) ? -EAGAIN : 0;
 378}
 379
 380static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
 381                                      uint64_t pfns, uint64_t cpu_flags,
 382                                      bool *fault, bool *write_fault)
 383{
 384        struct hmm_range *range = hmm_vma_walk->range;
 385
 386        *fault = *write_fault = false;
 387        if (!hmm_vma_walk->fault)
 388                return;
 389
 390        /* We aren't ask to do anything ... */
 391        if (!(pfns & range->flags[HMM_PFN_VALID]))
 392                return;
 393        /* If this is device memory than only fault if explicitly requested */
 394        if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
 395                /* Do we fault on device memory ? */
 396                if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
 397                        *write_fault = pfns & range->flags[HMM_PFN_WRITE];
 398                        *fault = true;
 399                }
 400                return;
 401        }
 402
 403        /* If CPU page table is not valid then we need to fault */
 404        *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
 405        /* Need to write fault ? */
 406        if ((pfns & range->flags[HMM_PFN_WRITE]) &&
 407            !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
 408                *write_fault = true;
 409                *fault = true;
 410        }
 411}
 412
 413static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
 414                                 const uint64_t *pfns, unsigned long npages,
 415                                 uint64_t cpu_flags, bool *fault,
 416                                 bool *write_fault)
 417{
 418        unsigned long i;
 419
 420        if (!hmm_vma_walk->fault) {
 421                *fault = *write_fault = false;
 422                return;
 423        }
 424
 425        for (i = 0; i < npages; ++i) {
 426                hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
 427                                   fault, write_fault);
 428                if ((*fault) || (*write_fault))
 429                        return;
 430        }
 431}
 432
 433static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
 434                             struct mm_walk *walk)
 435{
 436        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 437        struct hmm_range *range = hmm_vma_walk->range;
 438        bool fault, write_fault;
 439        unsigned long i, npages;
 440        uint64_t *pfns;
 441
 442        i = (addr - range->start) >> PAGE_SHIFT;
 443        npages = (end - addr) >> PAGE_SHIFT;
 444        pfns = &range->pfns[i];
 445        hmm_range_need_fault(hmm_vma_walk, pfns, npages,
 446                             0, &fault, &write_fault);
 447        return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 448}
 449
 450static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
 451{
 452        if (pmd_protnone(pmd))
 453                return 0;
 454        return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
 455                                range->flags[HMM_PFN_WRITE] :
 456                                range->flags[HMM_PFN_VALID];
 457}
 458
 459static int hmm_vma_handle_pmd(struct mm_walk *walk,
 460                              unsigned long addr,
 461                              unsigned long end,
 462                              uint64_t *pfns,
 463                              pmd_t pmd)
 464{
 465        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 466        struct hmm_range *range = hmm_vma_walk->range;
 467        unsigned long pfn, npages, i;
 468        bool fault, write_fault;
 469        uint64_t cpu_flags;
 470
 471        npages = (end - addr) >> PAGE_SHIFT;
 472        cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
 473        hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
 474                             &fault, &write_fault);
 475
 476        if (pmd_protnone(pmd) || fault || write_fault)
 477                return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 478
 479        pfn = pmd_pfn(pmd) + pte_index(addr);
 480        for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
 481                pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
 482        hmm_vma_walk->last = end;
 483        return 0;
 484}
 485
 486static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
 487{
 488        if (pte_none(pte) || !pte_present(pte))
 489                return 0;
 490        return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
 491                                range->flags[HMM_PFN_WRITE] :
 492                                range->flags[HMM_PFN_VALID];
 493}
 494
 495static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
 496                              unsigned long end, pmd_t *pmdp, pte_t *ptep,
 497                              uint64_t *pfn)
 498{
 499        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 500        struct hmm_range *range = hmm_vma_walk->range;
 501        struct vm_area_struct *vma = walk->vma;
 502        bool fault, write_fault;
 503        uint64_t cpu_flags;
 504        pte_t pte = *ptep;
 505        uint64_t orig_pfn = *pfn;
 506
 507        *pfn = range->values[HMM_PFN_NONE];
 508        cpu_flags = pte_to_hmm_pfn_flags(range, pte);
 509        hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
 510                           &fault, &write_fault);
 511
 512        if (pte_none(pte)) {
 513                if (fault || write_fault)
 514                        goto fault;
 515                return 0;
 516        }
 517
 518        if (!pte_present(pte)) {
 519                swp_entry_t entry = pte_to_swp_entry(pte);
 520
 521                if (!non_swap_entry(entry)) {
 522                        if (fault || write_fault)
 523                                goto fault;
 524                        return 0;
 525                }
 526
 527                /*
 528                 * This is a special swap entry, ignore migration, use
 529                 * device and report anything else as error.
 530                 */
 531                if (is_device_private_entry(entry)) {
 532                        cpu_flags = range->flags[HMM_PFN_VALID] |
 533                                range->flags[HMM_PFN_DEVICE_PRIVATE];
 534                        cpu_flags |= is_write_device_private_entry(entry) ?
 535                                range->flags[HMM_PFN_WRITE] : 0;
 536                        hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
 537                                           &fault, &write_fault);
 538                        if (fault || write_fault)
 539                                goto fault;
 540                        *pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
 541                        *pfn |= cpu_flags;
 542                        return 0;
 543                }
 544
 545                if (is_migration_entry(entry)) {
 546                        if (fault || write_fault) {
 547                                pte_unmap(ptep);
 548                                hmm_vma_walk->last = addr;
 549                                migration_entry_wait(vma->vm_mm,
 550                                                     pmdp, addr);
 551                                return -EAGAIN;
 552                        }
 553                        return 0;
 554                }
 555
 556                /* Report error for everything else */
 557                *pfn = range->values[HMM_PFN_ERROR];
 558                return -EFAULT;
 559        }
 560
 561        if (fault || write_fault)
 562                goto fault;
 563
 564        *pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
 565        return 0;
 566
 567fault:
 568        pte_unmap(ptep);
 569        /* Fault any virtual address we were asked to fault */
 570        return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 571}
 572
 573static int hmm_vma_walk_pmd(pmd_t *pmdp,
 574                            unsigned long start,
 575                            unsigned long end,
 576                            struct mm_walk *walk)
 577{
 578        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 579        struct hmm_range *range = hmm_vma_walk->range;
 580        uint64_t *pfns = range->pfns;
 581        unsigned long addr = start, i;
 582        pte_t *ptep;
 583
 584        i = (addr - range->start) >> PAGE_SHIFT;
 585
 586again:
 587        if (pmd_none(*pmdp))
 588                return hmm_vma_walk_hole(start, end, walk);
 589
 590        if (pmd_huge(*pmdp) && (range->vma->vm_flags & VM_HUGETLB))
 591                return hmm_pfns_bad(start, end, walk);
 592
 593        if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
 594                pmd_t pmd;
 595
 596                /*
 597                 * No need to take pmd_lock here, even if some other threads
 598                 * is splitting the huge pmd we will get that event through
 599                 * mmu_notifier callback.
 600                 *
 601                 * So just read pmd value and check again its a transparent
 602                 * huge or device mapping one and compute corresponding pfn
 603                 * values.
 604                 */
 605                pmd = pmd_read_atomic(pmdp);
 606                barrier();
 607                if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
 608                        goto again;
 609
 610                return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
 611        }
 612
 613        if (pmd_bad(*pmdp))
 614                return hmm_pfns_bad(start, end, walk);
 615
 616        ptep = pte_offset_map(pmdp, addr);
 617        for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
 618                int r;
 619
 620                r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
 621                if (r) {
 622                        /* hmm_vma_handle_pte() did unmap pte directory */
 623                        hmm_vma_walk->last = addr;
 624                        return r;
 625                }
 626        }
 627        pte_unmap(ptep - 1);
 628
 629        hmm_vma_walk->last = addr;
 630        return 0;
 631}
 632
 633static void hmm_pfns_clear(struct hmm_range *range,
 634                           uint64_t *pfns,
 635                           unsigned long addr,
 636                           unsigned long end)
 637{
 638        for (; addr < end; addr += PAGE_SIZE, pfns++)
 639                *pfns = range->values[HMM_PFN_NONE];
 640}
 641
 642static void hmm_pfns_special(struct hmm_range *range)
 643{
 644        unsigned long addr = range->start, i = 0;
 645
 646        for (; addr < range->end; addr += PAGE_SIZE, i++)
 647                range->pfns[i] = range->values[HMM_PFN_SPECIAL];
 648}
 649
 650/*
 651 * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
 652 * @range: range being snapshotted
 653 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
 654 *          vma permission, 0 success
 655 *
 656 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
 657 * validity is tracked by range struct. See hmm_vma_range_done() for further
 658 * information.
 659 *
 660 * The range struct is initialized here. It tracks the CPU page table, but only
 661 * if the function returns success (0), in which case the caller must then call
 662 * hmm_vma_range_done() to stop CPU page table update tracking on this range.
 663 *
 664 * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
 665 * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
 666 */
 667int hmm_vma_get_pfns(struct hmm_range *range)
 668{
 669        struct vm_area_struct *vma = range->vma;
 670        struct hmm_vma_walk hmm_vma_walk;
 671        struct mm_walk mm_walk;
 672        struct hmm *hmm;
 673
 674        /* Sanity check, this really should not happen ! */
 675        if (range->start < vma->vm_start || range->start >= vma->vm_end)
 676                return -EINVAL;
 677        if (range->end < vma->vm_start || range->end > vma->vm_end)
 678                return -EINVAL;
 679
 680        hmm = hmm_register(vma->vm_mm);
 681        if (!hmm)
 682                return -ENOMEM;
 683        /* Caller must have registered a mirror, via hmm_mirror_register() ! */
 684        if (!hmm->mmu_notifier.ops)
 685                return -EINVAL;
 686
 687        /* FIXME support hugetlb fs */
 688        if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
 689                hmm_pfns_special(range);
 690                return -EINVAL;
 691        }
 692
 693        if (!(vma->vm_flags & VM_READ)) {
 694                /*
 695                 * If vma do not allow read access, then assume that it does
 696                 * not allow write access, either. Architecture that allow
 697                 * write without read access are not supported by HMM, because
 698                 * operations such has atomic access would not work.
 699                 */
 700                hmm_pfns_clear(range, range->pfns, range->start, range->end);
 701                return -EPERM;
 702        }
 703
 704        /* Initialize range to track CPU page table update */
 705        spin_lock(&hmm->lock);
 706        range->valid = true;
 707        list_add_rcu(&range->list, &hmm->ranges);
 708        spin_unlock(&hmm->lock);
 709
 710        hmm_vma_walk.fault = false;
 711        hmm_vma_walk.range = range;
 712        mm_walk.private = &hmm_vma_walk;
 713
 714        mm_walk.vma = vma;
 715        mm_walk.mm = vma->vm_mm;
 716        mm_walk.pte_entry = NULL;
 717        mm_walk.test_walk = NULL;
 718        mm_walk.hugetlb_entry = NULL;
 719        mm_walk.pmd_entry = hmm_vma_walk_pmd;
 720        mm_walk.pte_hole = hmm_vma_walk_hole;
 721
 722        walk_page_range(range->start, range->end, &mm_walk);
 723        return 0;
 724}
 725EXPORT_SYMBOL(hmm_vma_get_pfns);
 726
 727/*
 728 * hmm_vma_range_done() - stop tracking change to CPU page table over a range
 729 * @range: range being tracked
 730 * Returns: false if range data has been invalidated, true otherwise
 731 *
 732 * Range struct is used to track updates to the CPU page table after a call to
 733 * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
 734 * using the data,  or wants to lock updates to the data it got from those
 735 * functions, it must call the hmm_vma_range_done() function, which will then
 736 * stop tracking CPU page table updates.
 737 *
 738 * Note that device driver must still implement general CPU page table update
 739 * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
 740 * the mmu_notifier API directly.
 741 *
 742 * CPU page table update tracking done through hmm_range is only temporary and
 743 * to be used while trying to duplicate CPU page table contents for a range of
 744 * virtual addresses.
 745 *
 746 * There are two ways to use this :
 747 * again:
 748 *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
 749 *   trans = device_build_page_table_update_transaction(pfns);
 750 *   device_page_table_lock();
 751 *   if (!hmm_vma_range_done(range)) {
 752 *     device_page_table_unlock();
 753 *     goto again;
 754 *   }
 755 *   device_commit_transaction(trans);
 756 *   device_page_table_unlock();
 757 *
 758 * Or:
 759 *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
 760 *   device_page_table_lock();
 761 *   hmm_vma_range_done(range);
 762 *   device_update_page_table(range->pfns);
 763 *   device_page_table_unlock();
 764 */
 765bool hmm_vma_range_done(struct hmm_range *range)
 766{
 767        unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
 768        struct hmm *hmm;
 769
 770        if (range->end <= range->start) {
 771                BUG();
 772                return false;
 773        }
 774
 775        hmm = hmm_register(range->vma->vm_mm);
 776        if (!hmm) {
 777                memset(range->pfns, 0, sizeof(*range->pfns) * npages);
 778                return false;
 779        }
 780
 781        spin_lock(&hmm->lock);
 782        list_del_rcu(&range->list);
 783        spin_unlock(&hmm->lock);
 784
 785        return range->valid;
 786}
 787EXPORT_SYMBOL(hmm_vma_range_done);
 788
 789/*
 790 * hmm_vma_fault() - try to fault some address in a virtual address range
 791 * @range: range being faulted
 792 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
 793 * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
 794 *
 795 * This is similar to a regular CPU page fault except that it will not trigger
 796 * any memory migration if the memory being faulted is not accessible by CPUs.
 797 *
 798 * On error, for one virtual address in the range, the function will mark the
 799 * corresponding HMM pfn entry with an error flag.
 800 *
 801 * Expected use pattern:
 802 * retry:
 803 *   down_read(&mm->mmap_sem);
 804 *   // Find vma and address device wants to fault, initialize hmm_pfn_t
 805 *   // array accordingly
 806 *   ret = hmm_vma_fault(range, write, block);
 807 *   switch (ret) {
 808 *   case -EAGAIN:
 809 *     hmm_vma_range_done(range);
 810 *     // You might want to rate limit or yield to play nicely, you may
 811 *     // also commit any valid pfn in the array assuming that you are
 812 *     // getting true from hmm_vma_range_monitor_end()
 813 *     goto retry;
 814 *   case 0:
 815 *     break;
 816 *   case -ENOMEM:
 817 *   case -EINVAL:
 818 *   case -EPERM:
 819 *   default:
 820 *     // Handle error !
 821 *     up_read(&mm->mmap_sem)
 822 *     return;
 823 *   }
 824 *   // Take device driver lock that serialize device page table update
 825 *   driver_lock_device_page_table_update();
 826 *   hmm_vma_range_done(range);
 827 *   // Commit pfns we got from hmm_vma_fault()
 828 *   driver_unlock_device_page_table_update();
 829 *   up_read(&mm->mmap_sem)
 830 *
 831 * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
 832 * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
 833 *
 834 * YOU HAVE BEEN WARNED !
 835 */
 836int hmm_vma_fault(struct hmm_range *range, bool block)
 837{
 838        struct vm_area_struct *vma = range->vma;
 839        unsigned long start = range->start;
 840        struct hmm_vma_walk hmm_vma_walk;
 841        struct mm_walk mm_walk;
 842        struct hmm *hmm;
 843        int ret;
 844
 845        /* Sanity check, this really should not happen ! */
 846        if (range->start < vma->vm_start || range->start >= vma->vm_end)
 847                return -EINVAL;
 848        if (range->end < vma->vm_start || range->end > vma->vm_end)
 849                return -EINVAL;
 850
 851        hmm = hmm_register(vma->vm_mm);
 852        if (!hmm) {
 853                hmm_pfns_clear(range, range->pfns, range->start, range->end);
 854                return -ENOMEM;
 855        }
 856        /* Caller must have registered a mirror using hmm_mirror_register() */
 857        if (!hmm->mmu_notifier.ops)
 858                return -EINVAL;
 859
 860        /* FIXME support hugetlb fs */
 861        if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
 862                hmm_pfns_special(range);
 863                return -EINVAL;
 864        }
 865
 866        if (!(vma->vm_flags & VM_READ)) {
 867                /*
 868                 * If vma do not allow read access, then assume that it does
 869                 * not allow write access, either. Architecture that allow
 870                 * write without read access are not supported by HMM, because
 871                 * operations such has atomic access would not work.
 872                 */
 873                hmm_pfns_clear(range, range->pfns, range->start, range->end);
 874                return -EPERM;
 875        }
 876
 877        /* Initialize range to track CPU page table update */
 878        spin_lock(&hmm->lock);
 879        range->valid = true;
 880        list_add_rcu(&range->list, &hmm->ranges);
 881        spin_unlock(&hmm->lock);
 882
 883        hmm_vma_walk.fault = true;
 884        hmm_vma_walk.block = block;
 885        hmm_vma_walk.range = range;
 886        mm_walk.private = &hmm_vma_walk;
 887        hmm_vma_walk.last = range->start;
 888
 889        mm_walk.vma = vma;
 890        mm_walk.mm = vma->vm_mm;
 891        mm_walk.pte_entry = NULL;
 892        mm_walk.test_walk = NULL;
 893        mm_walk.hugetlb_entry = NULL;
 894        mm_walk.pmd_entry = hmm_vma_walk_pmd;
 895        mm_walk.pte_hole = hmm_vma_walk_hole;
 896
 897        do {
 898                ret = walk_page_range(start, range->end, &mm_walk);
 899                start = hmm_vma_walk.last;
 900        } while (ret == -EAGAIN);
 901
 902        if (ret) {
 903                unsigned long i;
 904
 905                i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
 906                hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
 907                               range->end);
 908                hmm_vma_range_done(range);
 909        }
 910        return ret;
 911}
 912EXPORT_SYMBOL(hmm_vma_fault);
 913#endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
 914
 915
 916#if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
 917struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
 918                                       unsigned long addr)
 919{
 920        struct page *page;
 921
 922        page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
 923        if (!page)
 924                return NULL;
 925        lock_page(page);
 926        return page;
 927}
 928EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
 929
 930
 931static void hmm_devmem_ref_release(struct percpu_ref *ref)
 932{
 933        struct hmm_devmem *devmem;
 934
 935        devmem = container_of(ref, struct hmm_devmem, ref);
 936        complete(&devmem->completion);
 937}
 938
 939static void hmm_devmem_ref_exit(void *data)
 940{
 941        struct percpu_ref *ref = data;
 942        struct hmm_devmem *devmem;
 943
 944        devmem = container_of(ref, struct hmm_devmem, ref);
 945        percpu_ref_exit(ref);
 946        devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
 947}
 948
 949static void hmm_devmem_ref_kill(void *data)
 950{
 951        struct percpu_ref *ref = data;
 952        struct hmm_devmem *devmem;
 953
 954        devmem = container_of(ref, struct hmm_devmem, ref);
 955        percpu_ref_kill(ref);
 956        wait_for_completion(&devmem->completion);
 957        devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
 958}
 959
 960static int hmm_devmem_fault(struct vm_area_struct *vma,
 961                            unsigned long addr,
 962                            const struct page *page,
 963                            unsigned int flags,
 964                            pmd_t *pmdp)
 965{
 966        struct hmm_devmem *devmem = page->pgmap->data;
 967
 968        return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
 969}
 970
 971static void hmm_devmem_free(struct page *page, void *data)
 972{
 973        struct hmm_devmem *devmem = data;
 974
 975        devmem->ops->free(devmem, page);
 976}
 977
 978static DEFINE_MUTEX(hmm_devmem_lock);
 979static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
 980
 981static void hmm_devmem_radix_release(struct resource *resource)
 982{
 983        resource_size_t key, align_start, align_size;
 984
 985        align_start = resource->start & ~(PA_SECTION_SIZE - 1);
 986        align_size = ALIGN(resource_size(resource), PA_SECTION_SIZE);
 987
 988        mutex_lock(&hmm_devmem_lock);
 989        for (key = resource->start;
 990             key <= resource->end;
 991             key += PA_SECTION_SIZE)
 992                radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
 993        mutex_unlock(&hmm_devmem_lock);
 994}
 995
 996static void hmm_devmem_release(struct device *dev, void *data)
 997{
 998        struct hmm_devmem *devmem = data;
 999        struct resource *resource = devmem->resource;
1000        unsigned long start_pfn, npages;
1001        struct zone *zone;
1002        struct page *page;
1003
1004        if (percpu_ref_tryget_live(&devmem->ref)) {
1005                dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
1006                percpu_ref_put(&devmem->ref);
1007        }
1008
1009        /* pages are dead and unused, undo the arch mapping */
1010        start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
1011        npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
1012
1013        page = pfn_to_page(start_pfn);
1014        zone = page_zone(page);
1015
1016        mem_hotplug_begin();
1017        if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
1018                __remove_pages(zone, start_pfn, npages, NULL);
1019        else
1020                arch_remove_memory(start_pfn << PAGE_SHIFT,
1021                                   npages << PAGE_SHIFT, NULL);
1022        mem_hotplug_done();
1023
1024        hmm_devmem_radix_release(resource);
1025}
1026
1027static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
1028{
1029        resource_size_t key, align_start, align_size, align_end;
1030        struct device *device = devmem->device;
1031        int ret, nid, is_ram;
1032        unsigned long pfn;
1033
1034        align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
1035        align_size = ALIGN(devmem->resource->start +
1036                           resource_size(devmem->resource),
1037                           PA_SECTION_SIZE) - align_start;
1038
1039        is_ram = region_intersects(align_start, align_size,
1040                                   IORESOURCE_SYSTEM_RAM,
1041                                   IORES_DESC_NONE);
1042        if (is_ram == REGION_MIXED) {
1043                WARN_ONCE(1, "%s attempted on mixed region %pr\n",
1044                                __func__, devmem->resource);
1045                return -ENXIO;
1046        }
1047        if (is_ram == REGION_INTERSECTS)
1048                return -ENXIO;
1049
1050        if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
1051                devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1052        else
1053                devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1054
1055        devmem->pagemap.res = *devmem->resource;
1056        devmem->pagemap.page_fault = hmm_devmem_fault;
1057        devmem->pagemap.page_free = hmm_devmem_free;
1058        devmem->pagemap.dev = devmem->device;
1059        devmem->pagemap.ref = &devmem->ref;
1060        devmem->pagemap.data = devmem;
1061
1062        mutex_lock(&hmm_devmem_lock);
1063        align_end = align_start + align_size - 1;
1064        for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
1065                struct hmm_devmem *dup;
1066
1067                dup = radix_tree_lookup(&hmm_devmem_radix,
1068                                        key >> PA_SECTION_SHIFT);
1069                if (dup) {
1070                        dev_err(device, "%s: collides with mapping for %s\n",
1071                                __func__, dev_name(dup->device));
1072                        mutex_unlock(&hmm_devmem_lock);
1073                        ret = -EBUSY;
1074                        goto error;
1075                }
1076                ret = radix_tree_insert(&hmm_devmem_radix,
1077                                        key >> PA_SECTION_SHIFT,
1078                                        devmem);
1079                if (ret) {
1080                        dev_err(device, "%s: failed: %d\n", __func__, ret);
1081                        mutex_unlock(&hmm_devmem_lock);
1082                        goto error_radix;
1083                }
1084        }
1085        mutex_unlock(&hmm_devmem_lock);
1086
1087        nid = dev_to_node(device);
1088        if (nid < 0)
1089                nid = numa_mem_id();
1090
1091        mem_hotplug_begin();
1092        /*
1093         * For device private memory we call add_pages() as we only need to
1094         * allocate and initialize struct page for the device memory. More-
1095         * over the device memory is un-accessible thus we do not want to
1096         * create a linear mapping for the memory like arch_add_memory()
1097         * would do.
1098         *
1099         * For device public memory, which is accesible by the CPU, we do
1100         * want the linear mapping and thus use arch_add_memory().
1101         */
1102        if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
1103                ret = arch_add_memory(nid, align_start, align_size, NULL,
1104                                false);
1105        else
1106                ret = add_pages(nid, align_start >> PAGE_SHIFT,
1107                                align_size >> PAGE_SHIFT, NULL, false);
1108        if (ret) {
1109                mem_hotplug_done();
1110                goto error_add_memory;
1111        }
1112        move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1113                                align_start >> PAGE_SHIFT,
1114                                align_size >> PAGE_SHIFT, NULL);
1115        mem_hotplug_done();
1116
1117        for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
1118                struct page *page = pfn_to_page(pfn);
1119
1120                page->pgmap = &devmem->pagemap;
1121        }
1122        return 0;
1123
1124error_add_memory:
1125        untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
1126error_radix:
1127        hmm_devmem_radix_release(devmem->resource);
1128error:
1129        return ret;
1130}
1131
1132static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
1133{
1134        struct hmm_devmem *devmem = data;
1135
1136        return devmem->resource == match_data;
1137}
1138
1139static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
1140{
1141        devres_release(devmem->device, &hmm_devmem_release,
1142                       &hmm_devmem_match, devmem->resource);
1143}
1144
1145/*
1146 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1147 *
1148 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1149 * @device: device struct to bind the resource too
1150 * @size: size in bytes of the device memory to add
1151 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1152 *
1153 * This function first finds an empty range of physical address big enough to
1154 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1155 * in turn allocates struct pages. It does not do anything beyond that; all
1156 * events affecting the memory will go through the various callbacks provided
1157 * by hmm_devmem_ops struct.
1158 *
1159 * Device driver should call this function during device initialization and
1160 * is then responsible of memory management. HMM only provides helpers.
1161 */
1162struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1163                                  struct device *device,
1164                                  unsigned long size)
1165{
1166        struct hmm_devmem *devmem;
1167        resource_size_t addr;
1168        int ret;
1169
1170        static_branch_enable(&device_private_key);
1171
1172        devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1173                                   GFP_KERNEL, dev_to_node(device));
1174        if (!devmem)
1175                return ERR_PTR(-ENOMEM);
1176
1177        init_completion(&devmem->completion);
1178        devmem->pfn_first = -1UL;
1179        devmem->pfn_last = -1UL;
1180        devmem->resource = NULL;
1181        devmem->device = device;
1182        devmem->ops = ops;
1183
1184        ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1185                              0, GFP_KERNEL);
1186        if (ret)
1187                goto error_percpu_ref;
1188
1189        ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1190        if (ret)
1191                goto error_devm_add_action;
1192
1193        size = ALIGN(size, PA_SECTION_SIZE);
1194        addr = min((unsigned long)iomem_resource.end,
1195                   (1UL << MAX_PHYSMEM_BITS) - 1);
1196        addr = addr - size + 1UL;
1197
1198        /*
1199         * FIXME add a new helper to quickly walk resource tree and find free
1200         * range
1201         *
1202         * FIXME what about ioport_resource resource ?
1203         */
1204        for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1205                ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1206                if (ret != REGION_DISJOINT)
1207                        continue;
1208
1209                devmem->resource = devm_request_mem_region(device, addr, size,
1210                                                           dev_name(device));
1211                if (!devmem->resource) {
1212                        ret = -ENOMEM;
1213                        goto error_no_resource;
1214                }
1215                break;
1216        }
1217        if (!devmem->resource) {
1218                ret = -ERANGE;
1219                goto error_no_resource;
1220        }
1221
1222        devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1223        devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1224        devmem->pfn_last = devmem->pfn_first +
1225                           (resource_size(devmem->resource) >> PAGE_SHIFT);
1226
1227        ret = hmm_devmem_pages_create(devmem);
1228        if (ret)
1229                goto error_pages;
1230
1231        devres_add(device, devmem);
1232
1233        ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1234        if (ret) {
1235                hmm_devmem_remove(devmem);
1236                return ERR_PTR(ret);
1237        }
1238
1239        return devmem;
1240
1241error_pages:
1242        devm_release_mem_region(device, devmem->resource->start,
1243                                resource_size(devmem->resource));
1244error_no_resource:
1245error_devm_add_action:
1246        hmm_devmem_ref_kill(&devmem->ref);
1247        hmm_devmem_ref_exit(&devmem->ref);
1248error_percpu_ref:
1249        devres_free(devmem);
1250        return ERR_PTR(ret);
1251}
1252EXPORT_SYMBOL(hmm_devmem_add);
1253
1254struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1255                                           struct device *device,
1256                                           struct resource *res)
1257{
1258        struct hmm_devmem *devmem;
1259        int ret;
1260
1261        if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1262                return ERR_PTR(-EINVAL);
1263
1264        static_branch_enable(&device_private_key);
1265
1266        devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1267                                   GFP_KERNEL, dev_to_node(device));
1268        if (!devmem)
1269                return ERR_PTR(-ENOMEM);
1270
1271        init_completion(&devmem->completion);
1272        devmem->pfn_first = -1UL;
1273        devmem->pfn_last = -1UL;
1274        devmem->resource = res;
1275        devmem->device = device;
1276        devmem->ops = ops;
1277
1278        ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1279                              0, GFP_KERNEL);
1280        if (ret)
1281                goto error_percpu_ref;
1282
1283        ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1284        if (ret)
1285                goto error_devm_add_action;
1286
1287
1288        devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1289        devmem->pfn_last = devmem->pfn_first +
1290                           (resource_size(devmem->resource) >> PAGE_SHIFT);
1291
1292        ret = hmm_devmem_pages_create(devmem);
1293        if (ret)
1294                goto error_devm_add_action;
1295
1296        devres_add(device, devmem);
1297
1298        ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1299        if (ret) {
1300                hmm_devmem_remove(devmem);
1301                return ERR_PTR(ret);
1302        }
1303
1304        return devmem;
1305
1306error_devm_add_action:
1307        hmm_devmem_ref_kill(&devmem->ref);
1308        hmm_devmem_ref_exit(&devmem->ref);
1309error_percpu_ref:
1310        devres_free(devmem);
1311        return ERR_PTR(ret);
1312}
1313EXPORT_SYMBOL(hmm_devmem_add_resource);
1314
1315/*
1316 * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1317 *
1318 * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1319 *
1320 * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1321 * of the device driver. It will free struct page and remove the resource that
1322 * reserved the physical address range for this device memory.
1323 */
1324void hmm_devmem_remove(struct hmm_devmem *devmem)
1325{
1326        resource_size_t start, size;
1327        struct device *device;
1328        bool cdm = false;
1329
1330        if (!devmem)
1331                return;
1332
1333        device = devmem->device;
1334        start = devmem->resource->start;
1335        size = resource_size(devmem->resource);
1336
1337        cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1338        hmm_devmem_ref_kill(&devmem->ref);
1339        hmm_devmem_ref_exit(&devmem->ref);
1340        hmm_devmem_pages_remove(devmem);
1341
1342        if (!cdm)
1343                devm_release_mem_region(device, start, size);
1344}
1345EXPORT_SYMBOL(hmm_devmem_remove);
1346
1347/*
1348 * A device driver that wants to handle multiple devices memory through a
1349 * single fake device can use hmm_device to do so. This is purely a helper
1350 * and it is not needed to make use of any HMM functionality.
1351 */
1352#define HMM_DEVICE_MAX 256
1353
1354static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1355static DEFINE_SPINLOCK(hmm_device_lock);
1356static struct class *hmm_device_class;
1357static dev_t hmm_device_devt;
1358
1359static void hmm_device_release(struct device *device)
1360{
1361        struct hmm_device *hmm_device;
1362
1363        hmm_device = container_of(device, struct hmm_device, device);
1364        spin_lock(&hmm_device_lock);
1365        clear_bit(hmm_device->minor, hmm_device_mask);
1366        spin_unlock(&hmm_device_lock);
1367
1368        kfree(hmm_device);
1369}
1370
1371struct hmm_device *hmm_device_new(void *drvdata)
1372{
1373        struct hmm_device *hmm_device;
1374
1375        hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1376        if (!hmm_device)
1377                return ERR_PTR(-ENOMEM);
1378
1379        spin_lock(&hmm_device_lock);
1380        hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1381        if (hmm_device->minor >= HMM_DEVICE_MAX) {
1382                spin_unlock(&hmm_device_lock);
1383                kfree(hmm_device);
1384                return ERR_PTR(-EBUSY);
1385        }
1386        set_bit(hmm_device->minor, hmm_device_mask);
1387        spin_unlock(&hmm_device_lock);
1388
1389        dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1390        hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1391                                        hmm_device->minor);
1392        hmm_device->device.release = hmm_device_release;
1393        dev_set_drvdata(&hmm_device->device, drvdata);
1394        hmm_device->device.class = hmm_device_class;
1395        device_initialize(&hmm_device->device);
1396
1397        return hmm_device;
1398}
1399EXPORT_SYMBOL(hmm_device_new);
1400
1401void hmm_device_put(struct hmm_device *hmm_device)
1402{
1403        put_device(&hmm_device->device);
1404}
1405EXPORT_SYMBOL(hmm_device_put);
1406
1407static int __init hmm_init(void)
1408{
1409        int ret;
1410
1411        ret = alloc_chrdev_region(&hmm_device_devt, 0,
1412                                  HMM_DEVICE_MAX,
1413                                  "hmm_device");
1414        if (ret)
1415                return ret;
1416
1417        hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1418        if (IS_ERR(hmm_device_class)) {
1419                unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1420                return PTR_ERR(hmm_device_class);
1421        }
1422        return 0;
1423}
1424
1425device_initcall(hmm_init);
1426#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
1427