linux/mm/hugetlb.c
<<
>>
Prefs
   1/*
   2 * Generic hugetlb support.
   3 * (C) Nadia Yvette Chambers, April 2004
   4 */
   5#include <linux/list.h>
   6#include <linux/init.h>
   7#include <linux/mm.h>
   8#include <linux/seq_file.h>
   9#include <linux/sysctl.h>
  10#include <linux/highmem.h>
  11#include <linux/mmu_notifier.h>
  12#include <linux/nodemask.h>
  13#include <linux/pagemap.h>
  14#include <linux/mempolicy.h>
  15#include <linux/compiler.h>
  16#include <linux/cpuset.h>
  17#include <linux/mutex.h>
  18#include <linux/bootmem.h>
  19#include <linux/sysfs.h>
  20#include <linux/slab.h>
  21#include <linux/mmdebug.h>
  22#include <linux/sched/signal.h>
  23#include <linux/rmap.h>
  24#include <linux/string_helpers.h>
  25#include <linux/swap.h>
  26#include <linux/swapops.h>
  27#include <linux/jhash.h>
  28
  29#include <asm/page.h>
  30#include <asm/pgtable.h>
  31#include <asm/tlb.h>
  32
  33#include <linux/io.h>
  34#include <linux/hugetlb.h>
  35#include <linux/hugetlb_cgroup.h>
  36#include <linux/node.h>
  37#include <linux/userfaultfd_k.h>
  38#include <linux/page_owner.h>
  39#include "internal.h"
  40
  41int hugetlb_max_hstate __read_mostly;
  42unsigned int default_hstate_idx;
  43struct hstate hstates[HUGE_MAX_HSTATE];
  44/*
  45 * Minimum page order among possible hugepage sizes, set to a proper value
  46 * at boot time.
  47 */
  48static unsigned int minimum_order __read_mostly = UINT_MAX;
  49
  50__initdata LIST_HEAD(huge_boot_pages);
  51
  52/* for command line parsing */
  53static struct hstate * __initdata parsed_hstate;
  54static unsigned long __initdata default_hstate_max_huge_pages;
  55static unsigned long __initdata default_hstate_size;
  56static bool __initdata parsed_valid_hugepagesz = true;
  57
  58/*
  59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  60 * free_huge_pages, and surplus_huge_pages.
  61 */
  62DEFINE_SPINLOCK(hugetlb_lock);
  63
  64/*
  65 * Serializes faults on the same logical page.  This is used to
  66 * prevent spurious OOMs when the hugepage pool is fully utilized.
  67 */
  68static int num_fault_mutexes;
  69struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  70
  71/* Forward declaration */
  72static int hugetlb_acct_memory(struct hstate *h, long delta);
  73
  74static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  75{
  76        bool free = (spool->count == 0) && (spool->used_hpages == 0);
  77
  78        spin_unlock(&spool->lock);
  79
  80        /* If no pages are used, and no other handles to the subpool
  81         * remain, give up any reservations mased on minimum size and
  82         * free the subpool */
  83        if (free) {
  84                if (spool->min_hpages != -1)
  85                        hugetlb_acct_memory(spool->hstate,
  86                                                -spool->min_hpages);
  87                kfree(spool);
  88        }
  89}
  90
  91struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  92                                                long min_hpages)
  93{
  94        struct hugepage_subpool *spool;
  95
  96        spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  97        if (!spool)
  98                return NULL;
  99
 100        spin_lock_init(&spool->lock);
 101        spool->count = 1;
 102        spool->max_hpages = max_hpages;
 103        spool->hstate = h;
 104        spool->min_hpages = min_hpages;
 105
 106        if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 107                kfree(spool);
 108                return NULL;
 109        }
 110        spool->rsv_hpages = min_hpages;
 111
 112        return spool;
 113}
 114
 115void hugepage_put_subpool(struct hugepage_subpool *spool)
 116{
 117        spin_lock(&spool->lock);
 118        BUG_ON(!spool->count);
 119        spool->count--;
 120        unlock_or_release_subpool(spool);
 121}
 122
 123/*
 124 * Subpool accounting for allocating and reserving pages.
 125 * Return -ENOMEM if there are not enough resources to satisfy the
 126 * the request.  Otherwise, return the number of pages by which the
 127 * global pools must be adjusted (upward).  The returned value may
 128 * only be different than the passed value (delta) in the case where
 129 * a subpool minimum size must be manitained.
 130 */
 131static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 132                                      long delta)
 133{
 134        long ret = delta;
 135
 136        if (!spool)
 137                return ret;
 138
 139        spin_lock(&spool->lock);
 140
 141        if (spool->max_hpages != -1) {          /* maximum size accounting */
 142                if ((spool->used_hpages + delta) <= spool->max_hpages)
 143                        spool->used_hpages += delta;
 144                else {
 145                        ret = -ENOMEM;
 146                        goto unlock_ret;
 147                }
 148        }
 149
 150        /* minimum size accounting */
 151        if (spool->min_hpages != -1 && spool->rsv_hpages) {
 152                if (delta > spool->rsv_hpages) {
 153                        /*
 154                         * Asking for more reserves than those already taken on
 155                         * behalf of subpool.  Return difference.
 156                         */
 157                        ret = delta - spool->rsv_hpages;
 158                        spool->rsv_hpages = 0;
 159                } else {
 160                        ret = 0;        /* reserves already accounted for */
 161                        spool->rsv_hpages -= delta;
 162                }
 163        }
 164
 165unlock_ret:
 166        spin_unlock(&spool->lock);
 167        return ret;
 168}
 169
 170/*
 171 * Subpool accounting for freeing and unreserving pages.
 172 * Return the number of global page reservations that must be dropped.
 173 * The return value may only be different than the passed value (delta)
 174 * in the case where a subpool minimum size must be maintained.
 175 */
 176static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 177                                       long delta)
 178{
 179        long ret = delta;
 180
 181        if (!spool)
 182                return delta;
 183
 184        spin_lock(&spool->lock);
 185
 186        if (spool->max_hpages != -1)            /* maximum size accounting */
 187                spool->used_hpages -= delta;
 188
 189         /* minimum size accounting */
 190        if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 191                if (spool->rsv_hpages + delta <= spool->min_hpages)
 192                        ret = 0;
 193                else
 194                        ret = spool->rsv_hpages + delta - spool->min_hpages;
 195
 196                spool->rsv_hpages += delta;
 197                if (spool->rsv_hpages > spool->min_hpages)
 198                        spool->rsv_hpages = spool->min_hpages;
 199        }
 200
 201        /*
 202         * If hugetlbfs_put_super couldn't free spool due to an outstanding
 203         * quota reference, free it now.
 204         */
 205        unlock_or_release_subpool(spool);
 206
 207        return ret;
 208}
 209
 210static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 211{
 212        return HUGETLBFS_SB(inode->i_sb)->spool;
 213}
 214
 215static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 216{
 217        return subpool_inode(file_inode(vma->vm_file));
 218}
 219
 220/*
 221 * Region tracking -- allows tracking of reservations and instantiated pages
 222 *                    across the pages in a mapping.
 223 *
 224 * The region data structures are embedded into a resv_map and protected
 225 * by a resv_map's lock.  The set of regions within the resv_map represent
 226 * reservations for huge pages, or huge pages that have already been
 227 * instantiated within the map.  The from and to elements are huge page
 228 * indicies into the associated mapping.  from indicates the starting index
 229 * of the region.  to represents the first index past the end of  the region.
 230 *
 231 * For example, a file region structure with from == 0 and to == 4 represents
 232 * four huge pages in a mapping.  It is important to note that the to element
 233 * represents the first element past the end of the region. This is used in
 234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 235 *
 236 * Interval notation of the form [from, to) will be used to indicate that
 237 * the endpoint from is inclusive and to is exclusive.
 238 */
 239struct file_region {
 240        struct list_head link;
 241        long from;
 242        long to;
 243};
 244
 245/*
 246 * Add the huge page range represented by [f, t) to the reserve
 247 * map.  In the normal case, existing regions will be expanded
 248 * to accommodate the specified range.  Sufficient regions should
 249 * exist for expansion due to the previous call to region_chg
 250 * with the same range.  However, it is possible that region_del
 251 * could have been called after region_chg and modifed the map
 252 * in such a way that no region exists to be expanded.  In this
 253 * case, pull a region descriptor from the cache associated with
 254 * the map and use that for the new range.
 255 *
 256 * Return the number of new huge pages added to the map.  This
 257 * number is greater than or equal to zero.
 258 */
 259static long region_add(struct resv_map *resv, long f, long t)
 260{
 261        struct list_head *head = &resv->regions;
 262        struct file_region *rg, *nrg, *trg;
 263        long add = 0;
 264
 265        spin_lock(&resv->lock);
 266        /* Locate the region we are either in or before. */
 267        list_for_each_entry(rg, head, link)
 268                if (f <= rg->to)
 269                        break;
 270
 271        /*
 272         * If no region exists which can be expanded to include the
 273         * specified range, the list must have been modified by an
 274         * interleving call to region_del().  Pull a region descriptor
 275         * from the cache and use it for this range.
 276         */
 277        if (&rg->link == head || t < rg->from) {
 278                VM_BUG_ON(resv->region_cache_count <= 0);
 279
 280                resv->region_cache_count--;
 281                nrg = list_first_entry(&resv->region_cache, struct file_region,
 282                                        link);
 283                list_del(&nrg->link);
 284
 285                nrg->from = f;
 286                nrg->to = t;
 287                list_add(&nrg->link, rg->link.prev);
 288
 289                add += t - f;
 290                goto out_locked;
 291        }
 292
 293        /* Round our left edge to the current segment if it encloses us. */
 294        if (f > rg->from)
 295                f = rg->from;
 296
 297        /* Check for and consume any regions we now overlap with. */
 298        nrg = rg;
 299        list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 300                if (&rg->link == head)
 301                        break;
 302                if (rg->from > t)
 303                        break;
 304
 305                /* If this area reaches higher then extend our area to
 306                 * include it completely.  If this is not the first area
 307                 * which we intend to reuse, free it. */
 308                if (rg->to > t)
 309                        t = rg->to;
 310                if (rg != nrg) {
 311                        /* Decrement return value by the deleted range.
 312                         * Another range will span this area so that by
 313                         * end of routine add will be >= zero
 314                         */
 315                        add -= (rg->to - rg->from);
 316                        list_del(&rg->link);
 317                        kfree(rg);
 318                }
 319        }
 320
 321        add += (nrg->from - f);         /* Added to beginning of region */
 322        nrg->from = f;
 323        add += t - nrg->to;             /* Added to end of region */
 324        nrg->to = t;
 325
 326out_locked:
 327        resv->adds_in_progress--;
 328        spin_unlock(&resv->lock);
 329        VM_BUG_ON(add < 0);
 330        return add;
 331}
 332
 333/*
 334 * Examine the existing reserve map and determine how many
 335 * huge pages in the specified range [f, t) are NOT currently
 336 * represented.  This routine is called before a subsequent
 337 * call to region_add that will actually modify the reserve
 338 * map to add the specified range [f, t).  region_chg does
 339 * not change the number of huge pages represented by the
 340 * map.  However, if the existing regions in the map can not
 341 * be expanded to represent the new range, a new file_region
 342 * structure is added to the map as a placeholder.  This is
 343 * so that the subsequent region_add call will have all the
 344 * regions it needs and will not fail.
 345 *
 346 * Upon entry, region_chg will also examine the cache of region descriptors
 347 * associated with the map.  If there are not enough descriptors cached, one
 348 * will be allocated for the in progress add operation.
 349 *
 350 * Returns the number of huge pages that need to be added to the existing
 351 * reservation map for the range [f, t).  This number is greater or equal to
 352 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 353 * is needed and can not be allocated.
 354 */
 355static long region_chg(struct resv_map *resv, long f, long t)
 356{
 357        struct list_head *head = &resv->regions;
 358        struct file_region *rg, *nrg = NULL;
 359        long chg = 0;
 360
 361retry:
 362        spin_lock(&resv->lock);
 363retry_locked:
 364        resv->adds_in_progress++;
 365
 366        /*
 367         * Check for sufficient descriptors in the cache to accommodate
 368         * the number of in progress add operations.
 369         */
 370        if (resv->adds_in_progress > resv->region_cache_count) {
 371                struct file_region *trg;
 372
 373                VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 374                /* Must drop lock to allocate a new descriptor. */
 375                resv->adds_in_progress--;
 376                spin_unlock(&resv->lock);
 377
 378                trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 379                if (!trg) {
 380                        kfree(nrg);
 381                        return -ENOMEM;
 382                }
 383
 384                spin_lock(&resv->lock);
 385                list_add(&trg->link, &resv->region_cache);
 386                resv->region_cache_count++;
 387                goto retry_locked;
 388        }
 389
 390        /* Locate the region we are before or in. */
 391        list_for_each_entry(rg, head, link)
 392                if (f <= rg->to)
 393                        break;
 394
 395        /* If we are below the current region then a new region is required.
 396         * Subtle, allocate a new region at the position but make it zero
 397         * size such that we can guarantee to record the reservation. */
 398        if (&rg->link == head || t < rg->from) {
 399                if (!nrg) {
 400                        resv->adds_in_progress--;
 401                        spin_unlock(&resv->lock);
 402                        nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 403                        if (!nrg)
 404                                return -ENOMEM;
 405
 406                        nrg->from = f;
 407                        nrg->to   = f;
 408                        INIT_LIST_HEAD(&nrg->link);
 409                        goto retry;
 410                }
 411
 412                list_add(&nrg->link, rg->link.prev);
 413                chg = t - f;
 414                goto out_nrg;
 415        }
 416
 417        /* Round our left edge to the current segment if it encloses us. */
 418        if (f > rg->from)
 419                f = rg->from;
 420        chg = t - f;
 421
 422        /* Check for and consume any regions we now overlap with. */
 423        list_for_each_entry(rg, rg->link.prev, link) {
 424                if (&rg->link == head)
 425                        break;
 426                if (rg->from > t)
 427                        goto out;
 428
 429                /* We overlap with this area, if it extends further than
 430                 * us then we must extend ourselves.  Account for its
 431                 * existing reservation. */
 432                if (rg->to > t) {
 433                        chg += rg->to - t;
 434                        t = rg->to;
 435                }
 436                chg -= rg->to - rg->from;
 437        }
 438
 439out:
 440        spin_unlock(&resv->lock);
 441        /*  We already know we raced and no longer need the new region */
 442        kfree(nrg);
 443        return chg;
 444out_nrg:
 445        spin_unlock(&resv->lock);
 446        return chg;
 447}
 448
 449/*
 450 * Abort the in progress add operation.  The adds_in_progress field
 451 * of the resv_map keeps track of the operations in progress between
 452 * calls to region_chg and region_add.  Operations are sometimes
 453 * aborted after the call to region_chg.  In such cases, region_abort
 454 * is called to decrement the adds_in_progress counter.
 455 *
 456 * NOTE: The range arguments [f, t) are not needed or used in this
 457 * routine.  They are kept to make reading the calling code easier as
 458 * arguments will match the associated region_chg call.
 459 */
 460static void region_abort(struct resv_map *resv, long f, long t)
 461{
 462        spin_lock(&resv->lock);
 463        VM_BUG_ON(!resv->region_cache_count);
 464        resv->adds_in_progress--;
 465        spin_unlock(&resv->lock);
 466}
 467
 468/*
 469 * Delete the specified range [f, t) from the reserve map.  If the
 470 * t parameter is LONG_MAX, this indicates that ALL regions after f
 471 * should be deleted.  Locate the regions which intersect [f, t)
 472 * and either trim, delete or split the existing regions.
 473 *
 474 * Returns the number of huge pages deleted from the reserve map.
 475 * In the normal case, the return value is zero or more.  In the
 476 * case where a region must be split, a new region descriptor must
 477 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 478 * NOTE: If the parameter t == LONG_MAX, then we will never split
 479 * a region and possibly return -ENOMEM.  Callers specifying
 480 * t == LONG_MAX do not need to check for -ENOMEM error.
 481 */
 482static long region_del(struct resv_map *resv, long f, long t)
 483{
 484        struct list_head *head = &resv->regions;
 485        struct file_region *rg, *trg;
 486        struct file_region *nrg = NULL;
 487        long del = 0;
 488
 489retry:
 490        spin_lock(&resv->lock);
 491        list_for_each_entry_safe(rg, trg, head, link) {
 492                /*
 493                 * Skip regions before the range to be deleted.  file_region
 494                 * ranges are normally of the form [from, to).  However, there
 495                 * may be a "placeholder" entry in the map which is of the form
 496                 * (from, to) with from == to.  Check for placeholder entries
 497                 * at the beginning of the range to be deleted.
 498                 */
 499                if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 500                        continue;
 501
 502                if (rg->from >= t)
 503                        break;
 504
 505                if (f > rg->from && t < rg->to) { /* Must split region */
 506                        /*
 507                         * Check for an entry in the cache before dropping
 508                         * lock and attempting allocation.
 509                         */
 510                        if (!nrg &&
 511                            resv->region_cache_count > resv->adds_in_progress) {
 512                                nrg = list_first_entry(&resv->region_cache,
 513                                                        struct file_region,
 514                                                        link);
 515                                list_del(&nrg->link);
 516                                resv->region_cache_count--;
 517                        }
 518
 519                        if (!nrg) {
 520                                spin_unlock(&resv->lock);
 521                                nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 522                                if (!nrg)
 523                                        return -ENOMEM;
 524                                goto retry;
 525                        }
 526
 527                        del += t - f;
 528
 529                        /* New entry for end of split region */
 530                        nrg->from = t;
 531                        nrg->to = rg->to;
 532                        INIT_LIST_HEAD(&nrg->link);
 533
 534                        /* Original entry is trimmed */
 535                        rg->to = f;
 536
 537                        list_add(&nrg->link, &rg->link);
 538                        nrg = NULL;
 539                        break;
 540                }
 541
 542                if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 543                        del += rg->to - rg->from;
 544                        list_del(&rg->link);
 545                        kfree(rg);
 546                        continue;
 547                }
 548
 549                if (f <= rg->from) {    /* Trim beginning of region */
 550                        del += t - rg->from;
 551                        rg->from = t;
 552                } else {                /* Trim end of region */
 553                        del += rg->to - f;
 554                        rg->to = f;
 555                }
 556        }
 557
 558        spin_unlock(&resv->lock);
 559        kfree(nrg);
 560        return del;
 561}
 562
 563/*
 564 * A rare out of memory error was encountered which prevented removal of
 565 * the reserve map region for a page.  The huge page itself was free'ed
 566 * and removed from the page cache.  This routine will adjust the subpool
 567 * usage count, and the global reserve count if needed.  By incrementing
 568 * these counts, the reserve map entry which could not be deleted will
 569 * appear as a "reserved" entry instead of simply dangling with incorrect
 570 * counts.
 571 */
 572void hugetlb_fix_reserve_counts(struct inode *inode)
 573{
 574        struct hugepage_subpool *spool = subpool_inode(inode);
 575        long rsv_adjust;
 576
 577        rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 578        if (rsv_adjust) {
 579                struct hstate *h = hstate_inode(inode);
 580
 581                hugetlb_acct_memory(h, 1);
 582        }
 583}
 584
 585/*
 586 * Count and return the number of huge pages in the reserve map
 587 * that intersect with the range [f, t).
 588 */
 589static long region_count(struct resv_map *resv, long f, long t)
 590{
 591        struct list_head *head = &resv->regions;
 592        struct file_region *rg;
 593        long chg = 0;
 594
 595        spin_lock(&resv->lock);
 596        /* Locate each segment we overlap with, and count that overlap. */
 597        list_for_each_entry(rg, head, link) {
 598                long seg_from;
 599                long seg_to;
 600
 601                if (rg->to <= f)
 602                        continue;
 603                if (rg->from >= t)
 604                        break;
 605
 606                seg_from = max(rg->from, f);
 607                seg_to = min(rg->to, t);
 608
 609                chg += seg_to - seg_from;
 610        }
 611        spin_unlock(&resv->lock);
 612
 613        return chg;
 614}
 615
 616/*
 617 * Convert the address within this vma to the page offset within
 618 * the mapping, in pagecache page units; huge pages here.
 619 */
 620static pgoff_t vma_hugecache_offset(struct hstate *h,
 621                        struct vm_area_struct *vma, unsigned long address)
 622{
 623        return ((address - vma->vm_start) >> huge_page_shift(h)) +
 624                        (vma->vm_pgoff >> huge_page_order(h));
 625}
 626
 627pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 628                                     unsigned long address)
 629{
 630        return vma_hugecache_offset(hstate_vma(vma), vma, address);
 631}
 632EXPORT_SYMBOL_GPL(linear_hugepage_index);
 633
 634/*
 635 * Return the size of the pages allocated when backing a VMA. In the majority
 636 * cases this will be same size as used by the page table entries.
 637 */
 638unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 639{
 640        if (vma->vm_ops && vma->vm_ops->pagesize)
 641                return vma->vm_ops->pagesize(vma);
 642        return PAGE_SIZE;
 643}
 644EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 645
 646/*
 647 * Return the page size being used by the MMU to back a VMA. In the majority
 648 * of cases, the page size used by the kernel matches the MMU size. On
 649 * architectures where it differs, an architecture-specific 'strong'
 650 * version of this symbol is required.
 651 */
 652__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 653{
 654        return vma_kernel_pagesize(vma);
 655}
 656
 657/*
 658 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 659 * bits of the reservation map pointer, which are always clear due to
 660 * alignment.
 661 */
 662#define HPAGE_RESV_OWNER    (1UL << 0)
 663#define HPAGE_RESV_UNMAPPED (1UL << 1)
 664#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 665
 666/*
 667 * These helpers are used to track how many pages are reserved for
 668 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 669 * is guaranteed to have their future faults succeed.
 670 *
 671 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 672 * the reserve counters are updated with the hugetlb_lock held. It is safe
 673 * to reset the VMA at fork() time as it is not in use yet and there is no
 674 * chance of the global counters getting corrupted as a result of the values.
 675 *
 676 * The private mapping reservation is represented in a subtly different
 677 * manner to a shared mapping.  A shared mapping has a region map associated
 678 * with the underlying file, this region map represents the backing file
 679 * pages which have ever had a reservation assigned which this persists even
 680 * after the page is instantiated.  A private mapping has a region map
 681 * associated with the original mmap which is attached to all VMAs which
 682 * reference it, this region map represents those offsets which have consumed
 683 * reservation ie. where pages have been instantiated.
 684 */
 685static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 686{
 687        return (unsigned long)vma->vm_private_data;
 688}
 689
 690static void set_vma_private_data(struct vm_area_struct *vma,
 691                                                        unsigned long value)
 692{
 693        vma->vm_private_data = (void *)value;
 694}
 695
 696struct resv_map *resv_map_alloc(void)
 697{
 698        struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 699        struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 700
 701        if (!resv_map || !rg) {
 702                kfree(resv_map);
 703                kfree(rg);
 704                return NULL;
 705        }
 706
 707        kref_init(&resv_map->refs);
 708        spin_lock_init(&resv_map->lock);
 709        INIT_LIST_HEAD(&resv_map->regions);
 710
 711        resv_map->adds_in_progress = 0;
 712
 713        INIT_LIST_HEAD(&resv_map->region_cache);
 714        list_add(&rg->link, &resv_map->region_cache);
 715        resv_map->region_cache_count = 1;
 716
 717        return resv_map;
 718}
 719
 720void resv_map_release(struct kref *ref)
 721{
 722        struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 723        struct list_head *head = &resv_map->region_cache;
 724        struct file_region *rg, *trg;
 725
 726        /* Clear out any active regions before we release the map. */
 727        region_del(resv_map, 0, LONG_MAX);
 728
 729        /* ... and any entries left in the cache */
 730        list_for_each_entry_safe(rg, trg, head, link) {
 731                list_del(&rg->link);
 732                kfree(rg);
 733        }
 734
 735        VM_BUG_ON(resv_map->adds_in_progress);
 736
 737        kfree(resv_map);
 738}
 739
 740static inline struct resv_map *inode_resv_map(struct inode *inode)
 741{
 742        return inode->i_mapping->private_data;
 743}
 744
 745static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 746{
 747        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 748        if (vma->vm_flags & VM_MAYSHARE) {
 749                struct address_space *mapping = vma->vm_file->f_mapping;
 750                struct inode *inode = mapping->host;
 751
 752                return inode_resv_map(inode);
 753
 754        } else {
 755                return (struct resv_map *)(get_vma_private_data(vma) &
 756                                                        ~HPAGE_RESV_MASK);
 757        }
 758}
 759
 760static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 761{
 762        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 763        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 764
 765        set_vma_private_data(vma, (get_vma_private_data(vma) &
 766                                HPAGE_RESV_MASK) | (unsigned long)map);
 767}
 768
 769static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 770{
 771        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 772        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 773
 774        set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 775}
 776
 777static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 778{
 779        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 780
 781        return (get_vma_private_data(vma) & flag) != 0;
 782}
 783
 784/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 785void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 786{
 787        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 788        if (!(vma->vm_flags & VM_MAYSHARE))
 789                vma->vm_private_data = (void *)0;
 790}
 791
 792/* Returns true if the VMA has associated reserve pages */
 793static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 794{
 795        if (vma->vm_flags & VM_NORESERVE) {
 796                /*
 797                 * This address is already reserved by other process(chg == 0),
 798                 * so, we should decrement reserved count. Without decrementing,
 799                 * reserve count remains after releasing inode, because this
 800                 * allocated page will go into page cache and is regarded as
 801                 * coming from reserved pool in releasing step.  Currently, we
 802                 * don't have any other solution to deal with this situation
 803                 * properly, so add work-around here.
 804                 */
 805                if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 806                        return true;
 807                else
 808                        return false;
 809        }
 810
 811        /* Shared mappings always use reserves */
 812        if (vma->vm_flags & VM_MAYSHARE) {
 813                /*
 814                 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 815                 * be a region map for all pages.  The only situation where
 816                 * there is no region map is if a hole was punched via
 817                 * fallocate.  In this case, there really are no reverves to
 818                 * use.  This situation is indicated if chg != 0.
 819                 */
 820                if (chg)
 821                        return false;
 822                else
 823                        return true;
 824        }
 825
 826        /*
 827         * Only the process that called mmap() has reserves for
 828         * private mappings.
 829         */
 830        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 831                /*
 832                 * Like the shared case above, a hole punch or truncate
 833                 * could have been performed on the private mapping.
 834                 * Examine the value of chg to determine if reserves
 835                 * actually exist or were previously consumed.
 836                 * Very Subtle - The value of chg comes from a previous
 837                 * call to vma_needs_reserves().  The reserve map for
 838                 * private mappings has different (opposite) semantics
 839                 * than that of shared mappings.  vma_needs_reserves()
 840                 * has already taken this difference in semantics into
 841                 * account.  Therefore, the meaning of chg is the same
 842                 * as in the shared case above.  Code could easily be
 843                 * combined, but keeping it separate draws attention to
 844                 * subtle differences.
 845                 */
 846                if (chg)
 847                        return false;
 848                else
 849                        return true;
 850        }
 851
 852        return false;
 853}
 854
 855static void enqueue_huge_page(struct hstate *h, struct page *page)
 856{
 857        int nid = page_to_nid(page);
 858        list_move(&page->lru, &h->hugepage_freelists[nid]);
 859        h->free_huge_pages++;
 860        h->free_huge_pages_node[nid]++;
 861}
 862
 863static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
 864{
 865        struct page *page;
 866
 867        list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 868                if (!PageHWPoison(page))
 869                        break;
 870        /*
 871         * if 'non-isolated free hugepage' not found on the list,
 872         * the allocation fails.
 873         */
 874        if (&h->hugepage_freelists[nid] == &page->lru)
 875                return NULL;
 876        list_move(&page->lru, &h->hugepage_activelist);
 877        set_page_refcounted(page);
 878        h->free_huge_pages--;
 879        h->free_huge_pages_node[nid]--;
 880        return page;
 881}
 882
 883static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
 884                nodemask_t *nmask)
 885{
 886        unsigned int cpuset_mems_cookie;
 887        struct zonelist *zonelist;
 888        struct zone *zone;
 889        struct zoneref *z;
 890        int node = -1;
 891
 892        zonelist = node_zonelist(nid, gfp_mask);
 893
 894retry_cpuset:
 895        cpuset_mems_cookie = read_mems_allowed_begin();
 896        for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
 897                struct page *page;
 898
 899                if (!cpuset_zone_allowed(zone, gfp_mask))
 900                        continue;
 901                /*
 902                 * no need to ask again on the same node. Pool is node rather than
 903                 * zone aware
 904                 */
 905                if (zone_to_nid(zone) == node)
 906                        continue;
 907                node = zone_to_nid(zone);
 908
 909                page = dequeue_huge_page_node_exact(h, node);
 910                if (page)
 911                        return page;
 912        }
 913        if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
 914                goto retry_cpuset;
 915
 916        return NULL;
 917}
 918
 919/* Movability of hugepages depends on migration support. */
 920static inline gfp_t htlb_alloc_mask(struct hstate *h)
 921{
 922        if (hugepage_migration_supported(h))
 923                return GFP_HIGHUSER_MOVABLE;
 924        else
 925                return GFP_HIGHUSER;
 926}
 927
 928static struct page *dequeue_huge_page_vma(struct hstate *h,
 929                                struct vm_area_struct *vma,
 930                                unsigned long address, int avoid_reserve,
 931                                long chg)
 932{
 933        struct page *page;
 934        struct mempolicy *mpol;
 935        gfp_t gfp_mask;
 936        nodemask_t *nodemask;
 937        int nid;
 938
 939        /*
 940         * A child process with MAP_PRIVATE mappings created by their parent
 941         * have no page reserves. This check ensures that reservations are
 942         * not "stolen". The child may still get SIGKILLed
 943         */
 944        if (!vma_has_reserves(vma, chg) &&
 945                        h->free_huge_pages - h->resv_huge_pages == 0)
 946                goto err;
 947
 948        /* If reserves cannot be used, ensure enough pages are in the pool */
 949        if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 950                goto err;
 951
 952        gfp_mask = htlb_alloc_mask(h);
 953        nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
 954        page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
 955        if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
 956                SetPagePrivate(page);
 957                h->resv_huge_pages--;
 958        }
 959
 960        mpol_cond_put(mpol);
 961        return page;
 962
 963err:
 964        return NULL;
 965}
 966
 967/*
 968 * common helper functions for hstate_next_node_to_{alloc|free}.
 969 * We may have allocated or freed a huge page based on a different
 970 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 971 * be outside of *nodes_allowed.  Ensure that we use an allowed
 972 * node for alloc or free.
 973 */
 974static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 975{
 976        nid = next_node_in(nid, *nodes_allowed);
 977        VM_BUG_ON(nid >= MAX_NUMNODES);
 978
 979        return nid;
 980}
 981
 982static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 983{
 984        if (!node_isset(nid, *nodes_allowed))
 985                nid = next_node_allowed(nid, nodes_allowed);
 986        return nid;
 987}
 988
 989/*
 990 * returns the previously saved node ["this node"] from which to
 991 * allocate a persistent huge page for the pool and advance the
 992 * next node from which to allocate, handling wrap at end of node
 993 * mask.
 994 */
 995static int hstate_next_node_to_alloc(struct hstate *h,
 996                                        nodemask_t *nodes_allowed)
 997{
 998        int nid;
 999
1000        VM_BUG_ON(!nodes_allowed);
1001
1002        nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1003        h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1004
1005        return nid;
1006}
1007
1008/*
1009 * helper for free_pool_huge_page() - return the previously saved
1010 * node ["this node"] from which to free a huge page.  Advance the
1011 * next node id whether or not we find a free huge page to free so
1012 * that the next attempt to free addresses the next node.
1013 */
1014static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1015{
1016        int nid;
1017
1018        VM_BUG_ON(!nodes_allowed);
1019
1020        nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1021        h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1022
1023        return nid;
1024}
1025
1026#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1027        for (nr_nodes = nodes_weight(*mask);                            \
1028                nr_nodes > 0 &&                                         \
1029                ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1030                nr_nodes--)
1031
1032#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1033        for (nr_nodes = nodes_weight(*mask);                            \
1034                nr_nodes > 0 &&                                         \
1035                ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1036                nr_nodes--)
1037
1038#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1039static void destroy_compound_gigantic_page(struct page *page,
1040                                        unsigned int order)
1041{
1042        int i;
1043        int nr_pages = 1 << order;
1044        struct page *p = page + 1;
1045
1046        atomic_set(compound_mapcount_ptr(page), 0);
1047        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1048                clear_compound_head(p);
1049                set_page_refcounted(p);
1050        }
1051
1052        set_compound_order(page, 0);
1053        __ClearPageHead(page);
1054}
1055
1056static void free_gigantic_page(struct page *page, unsigned int order)
1057{
1058        free_contig_range(page_to_pfn(page), 1 << order);
1059}
1060
1061static int __alloc_gigantic_page(unsigned long start_pfn,
1062                                unsigned long nr_pages, gfp_t gfp_mask)
1063{
1064        unsigned long end_pfn = start_pfn + nr_pages;
1065        return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1066                                  gfp_mask);
1067}
1068
1069static bool pfn_range_valid_gigantic(struct zone *z,
1070                        unsigned long start_pfn, unsigned long nr_pages)
1071{
1072        unsigned long i, end_pfn = start_pfn + nr_pages;
1073        struct page *page;
1074
1075        for (i = start_pfn; i < end_pfn; i++) {
1076                if (!pfn_valid(i))
1077                        return false;
1078
1079                page = pfn_to_page(i);
1080
1081                if (page_zone(page) != z)
1082                        return false;
1083
1084                if (PageReserved(page))
1085                        return false;
1086
1087                if (page_count(page) > 0)
1088                        return false;
1089
1090                if (PageHuge(page))
1091                        return false;
1092        }
1093
1094        return true;
1095}
1096
1097static bool zone_spans_last_pfn(const struct zone *zone,
1098                        unsigned long start_pfn, unsigned long nr_pages)
1099{
1100        unsigned long last_pfn = start_pfn + nr_pages - 1;
1101        return zone_spans_pfn(zone, last_pfn);
1102}
1103
1104static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1105                int nid, nodemask_t *nodemask)
1106{
1107        unsigned int order = huge_page_order(h);
1108        unsigned long nr_pages = 1 << order;
1109        unsigned long ret, pfn, flags;
1110        struct zonelist *zonelist;
1111        struct zone *zone;
1112        struct zoneref *z;
1113
1114        zonelist = node_zonelist(nid, gfp_mask);
1115        for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1116                spin_lock_irqsave(&zone->lock, flags);
1117
1118                pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1119                while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1120                        if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1121                                /*
1122                                 * We release the zone lock here because
1123                                 * alloc_contig_range() will also lock the zone
1124                                 * at some point. If there's an allocation
1125                                 * spinning on this lock, it may win the race
1126                                 * and cause alloc_contig_range() to fail...
1127                                 */
1128                                spin_unlock_irqrestore(&zone->lock, flags);
1129                                ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1130                                if (!ret)
1131                                        return pfn_to_page(pfn);
1132                                spin_lock_irqsave(&zone->lock, flags);
1133                        }
1134                        pfn += nr_pages;
1135                }
1136
1137                spin_unlock_irqrestore(&zone->lock, flags);
1138        }
1139
1140        return NULL;
1141}
1142
1143static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1144static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1145
1146#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1147static inline bool gigantic_page_supported(void) { return false; }
1148static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1149                int nid, nodemask_t *nodemask) { return NULL; }
1150static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1151static inline void destroy_compound_gigantic_page(struct page *page,
1152                                                unsigned int order) { }
1153#endif
1154
1155static void update_and_free_page(struct hstate *h, struct page *page)
1156{
1157        int i;
1158
1159        if (hstate_is_gigantic(h) && !gigantic_page_supported())
1160                return;
1161
1162        h->nr_huge_pages--;
1163        h->nr_huge_pages_node[page_to_nid(page)]--;
1164        for (i = 0; i < pages_per_huge_page(h); i++) {
1165                page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1166                                1 << PG_referenced | 1 << PG_dirty |
1167                                1 << PG_active | 1 << PG_private |
1168                                1 << PG_writeback);
1169        }
1170        VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1171        set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1172        set_page_refcounted(page);
1173        if (hstate_is_gigantic(h)) {
1174                destroy_compound_gigantic_page(page, huge_page_order(h));
1175                free_gigantic_page(page, huge_page_order(h));
1176        } else {
1177                __free_pages(page, huge_page_order(h));
1178        }
1179}
1180
1181struct hstate *size_to_hstate(unsigned long size)
1182{
1183        struct hstate *h;
1184
1185        for_each_hstate(h) {
1186                if (huge_page_size(h) == size)
1187                        return h;
1188        }
1189        return NULL;
1190}
1191
1192/*
1193 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1194 * to hstate->hugepage_activelist.)
1195 *
1196 * This function can be called for tail pages, but never returns true for them.
1197 */
1198bool page_huge_active(struct page *page)
1199{
1200        VM_BUG_ON_PAGE(!PageHuge(page), page);
1201        return PageHead(page) && PagePrivate(&page[1]);
1202}
1203
1204/* never called for tail page */
1205static void set_page_huge_active(struct page *page)
1206{
1207        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1208        SetPagePrivate(&page[1]);
1209}
1210
1211static void clear_page_huge_active(struct page *page)
1212{
1213        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214        ClearPagePrivate(&page[1]);
1215}
1216
1217/*
1218 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1219 * code
1220 */
1221static inline bool PageHugeTemporary(struct page *page)
1222{
1223        if (!PageHuge(page))
1224                return false;
1225
1226        return (unsigned long)page[2].mapping == -1U;
1227}
1228
1229static inline void SetPageHugeTemporary(struct page *page)
1230{
1231        page[2].mapping = (void *)-1U;
1232}
1233
1234static inline void ClearPageHugeTemporary(struct page *page)
1235{
1236        page[2].mapping = NULL;
1237}
1238
1239void free_huge_page(struct page *page)
1240{
1241        /*
1242         * Can't pass hstate in here because it is called from the
1243         * compound page destructor.
1244         */
1245        struct hstate *h = page_hstate(page);
1246        int nid = page_to_nid(page);
1247        struct hugepage_subpool *spool =
1248                (struct hugepage_subpool *)page_private(page);
1249        bool restore_reserve;
1250
1251        set_page_private(page, 0);
1252        page->mapping = NULL;
1253        VM_BUG_ON_PAGE(page_count(page), page);
1254        VM_BUG_ON_PAGE(page_mapcount(page), page);
1255        restore_reserve = PagePrivate(page);
1256        ClearPagePrivate(page);
1257
1258        /*
1259         * A return code of zero implies that the subpool will be under its
1260         * minimum size if the reservation is not restored after page is free.
1261         * Therefore, force restore_reserve operation.
1262         */
1263        if (hugepage_subpool_put_pages(spool, 1) == 0)
1264                restore_reserve = true;
1265
1266        spin_lock(&hugetlb_lock);
1267        clear_page_huge_active(page);
1268        hugetlb_cgroup_uncharge_page(hstate_index(h),
1269                                     pages_per_huge_page(h), page);
1270        if (restore_reserve)
1271                h->resv_huge_pages++;
1272
1273        if (PageHugeTemporary(page)) {
1274                list_del(&page->lru);
1275                ClearPageHugeTemporary(page);
1276                update_and_free_page(h, page);
1277        } else if (h->surplus_huge_pages_node[nid]) {
1278                /* remove the page from active list */
1279                list_del(&page->lru);
1280                update_and_free_page(h, page);
1281                h->surplus_huge_pages--;
1282                h->surplus_huge_pages_node[nid]--;
1283        } else {
1284                arch_clear_hugepage_flags(page);
1285                enqueue_huge_page(h, page);
1286        }
1287        spin_unlock(&hugetlb_lock);
1288}
1289
1290static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1291{
1292        INIT_LIST_HEAD(&page->lru);
1293        set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1294        spin_lock(&hugetlb_lock);
1295        set_hugetlb_cgroup(page, NULL);
1296        h->nr_huge_pages++;
1297        h->nr_huge_pages_node[nid]++;
1298        spin_unlock(&hugetlb_lock);
1299}
1300
1301static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1302{
1303        int i;
1304        int nr_pages = 1 << order;
1305        struct page *p = page + 1;
1306
1307        /* we rely on prep_new_huge_page to set the destructor */
1308        set_compound_order(page, order);
1309        __ClearPageReserved(page);
1310        __SetPageHead(page);
1311        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1312                /*
1313                 * For gigantic hugepages allocated through bootmem at
1314                 * boot, it's safer to be consistent with the not-gigantic
1315                 * hugepages and clear the PG_reserved bit from all tail pages
1316                 * too.  Otherwse drivers using get_user_pages() to access tail
1317                 * pages may get the reference counting wrong if they see
1318                 * PG_reserved set on a tail page (despite the head page not
1319                 * having PG_reserved set).  Enforcing this consistency between
1320                 * head and tail pages allows drivers to optimize away a check
1321                 * on the head page when they need know if put_page() is needed
1322                 * after get_user_pages().
1323                 */
1324                __ClearPageReserved(p);
1325                set_page_count(p, 0);
1326                set_compound_head(p, page);
1327        }
1328        atomic_set(compound_mapcount_ptr(page), -1);
1329}
1330
1331/*
1332 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1333 * transparent huge pages.  See the PageTransHuge() documentation for more
1334 * details.
1335 */
1336int PageHuge(struct page *page)
1337{
1338        if (!PageCompound(page))
1339                return 0;
1340
1341        page = compound_head(page);
1342        return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1343}
1344EXPORT_SYMBOL_GPL(PageHuge);
1345
1346/*
1347 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1348 * normal or transparent huge pages.
1349 */
1350int PageHeadHuge(struct page *page_head)
1351{
1352        if (!PageHead(page_head))
1353                return 0;
1354
1355        return get_compound_page_dtor(page_head) == free_huge_page;
1356}
1357
1358pgoff_t __basepage_index(struct page *page)
1359{
1360        struct page *page_head = compound_head(page);
1361        pgoff_t index = page_index(page_head);
1362        unsigned long compound_idx;
1363
1364        if (!PageHuge(page_head))
1365                return page_index(page);
1366
1367        if (compound_order(page_head) >= MAX_ORDER)
1368                compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1369        else
1370                compound_idx = page - page_head;
1371
1372        return (index << compound_order(page_head)) + compound_idx;
1373}
1374
1375static struct page *alloc_buddy_huge_page(struct hstate *h,
1376                gfp_t gfp_mask, int nid, nodemask_t *nmask)
1377{
1378        int order = huge_page_order(h);
1379        struct page *page;
1380
1381        gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1382        if (nid == NUMA_NO_NODE)
1383                nid = numa_mem_id();
1384        page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1385        if (page)
1386                __count_vm_event(HTLB_BUDDY_PGALLOC);
1387        else
1388                __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1389
1390        return page;
1391}
1392
1393/*
1394 * Common helper to allocate a fresh hugetlb page. All specific allocators
1395 * should use this function to get new hugetlb pages
1396 */
1397static struct page *alloc_fresh_huge_page(struct hstate *h,
1398                gfp_t gfp_mask, int nid, nodemask_t *nmask)
1399{
1400        struct page *page;
1401
1402        if (hstate_is_gigantic(h))
1403                page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1404        else
1405                page = alloc_buddy_huge_page(h, gfp_mask,
1406                                nid, nmask);
1407        if (!page)
1408                return NULL;
1409
1410        if (hstate_is_gigantic(h))
1411                prep_compound_gigantic_page(page, huge_page_order(h));
1412        prep_new_huge_page(h, page, page_to_nid(page));
1413
1414        return page;
1415}
1416
1417/*
1418 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1419 * manner.
1420 */
1421static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1422{
1423        struct page *page;
1424        int nr_nodes, node;
1425        gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1426
1427        for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1428                page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1429                if (page)
1430                        break;
1431        }
1432
1433        if (!page)
1434                return 0;
1435
1436        put_page(page); /* free it into the hugepage allocator */
1437
1438        return 1;
1439}
1440
1441/*
1442 * Free huge page from pool from next node to free.
1443 * Attempt to keep persistent huge pages more or less
1444 * balanced over allowed nodes.
1445 * Called with hugetlb_lock locked.
1446 */
1447static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1448                                                         bool acct_surplus)
1449{
1450        int nr_nodes, node;
1451        int ret = 0;
1452
1453        for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1454                /*
1455                 * If we're returning unused surplus pages, only examine
1456                 * nodes with surplus pages.
1457                 */
1458                if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1459                    !list_empty(&h->hugepage_freelists[node])) {
1460                        struct page *page =
1461                                list_entry(h->hugepage_freelists[node].next,
1462                                          struct page, lru);
1463                        list_del(&page->lru);
1464                        h->free_huge_pages--;
1465                        h->free_huge_pages_node[node]--;
1466                        if (acct_surplus) {
1467                                h->surplus_huge_pages--;
1468                                h->surplus_huge_pages_node[node]--;
1469                        }
1470                        update_and_free_page(h, page);
1471                        ret = 1;
1472                        break;
1473                }
1474        }
1475
1476        return ret;
1477}
1478
1479/*
1480 * Dissolve a given free hugepage into free buddy pages. This function does
1481 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1482 * number of free hugepages would be reduced below the number of reserved
1483 * hugepages.
1484 */
1485int dissolve_free_huge_page(struct page *page)
1486{
1487        int rc = 0;
1488
1489        spin_lock(&hugetlb_lock);
1490        if (PageHuge(page) && !page_count(page)) {
1491                struct page *head = compound_head(page);
1492                struct hstate *h = page_hstate(head);
1493                int nid = page_to_nid(head);
1494                if (h->free_huge_pages - h->resv_huge_pages == 0) {
1495                        rc = -EBUSY;
1496                        goto out;
1497                }
1498                /*
1499                 * Move PageHWPoison flag from head page to the raw error page,
1500                 * which makes any subpages rather than the error page reusable.
1501                 */
1502                if (PageHWPoison(head) && page != head) {
1503                        SetPageHWPoison(page);
1504                        ClearPageHWPoison(head);
1505                }
1506                list_del(&head->lru);
1507                h->free_huge_pages--;
1508                h->free_huge_pages_node[nid]--;
1509                h->max_huge_pages--;
1510                update_and_free_page(h, head);
1511        }
1512out:
1513        spin_unlock(&hugetlb_lock);
1514        return rc;
1515}
1516
1517/*
1518 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1519 * make specified memory blocks removable from the system.
1520 * Note that this will dissolve a free gigantic hugepage completely, if any
1521 * part of it lies within the given range.
1522 * Also note that if dissolve_free_huge_page() returns with an error, all
1523 * free hugepages that were dissolved before that error are lost.
1524 */
1525int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1526{
1527        unsigned long pfn;
1528        struct page *page;
1529        int rc = 0;
1530
1531        if (!hugepages_supported())
1532                return rc;
1533
1534        for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1535                page = pfn_to_page(pfn);
1536                if (PageHuge(page) && !page_count(page)) {
1537                        rc = dissolve_free_huge_page(page);
1538                        if (rc)
1539                                break;
1540                }
1541        }
1542
1543        return rc;
1544}
1545
1546/*
1547 * Allocates a fresh surplus page from the page allocator.
1548 */
1549static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1550                int nid, nodemask_t *nmask)
1551{
1552        struct page *page = NULL;
1553
1554        if (hstate_is_gigantic(h))
1555                return NULL;
1556
1557        spin_lock(&hugetlb_lock);
1558        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1559                goto out_unlock;
1560        spin_unlock(&hugetlb_lock);
1561
1562        page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1563        if (!page)
1564                return NULL;
1565
1566        spin_lock(&hugetlb_lock);
1567        /*
1568         * We could have raced with the pool size change.
1569         * Double check that and simply deallocate the new page
1570         * if we would end up overcommiting the surpluses. Abuse
1571         * temporary page to workaround the nasty free_huge_page
1572         * codeflow
1573         */
1574        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1575                SetPageHugeTemporary(page);
1576                put_page(page);
1577                page = NULL;
1578        } else {
1579                h->surplus_huge_pages++;
1580                h->surplus_huge_pages_node[page_to_nid(page)]++;
1581        }
1582
1583out_unlock:
1584        spin_unlock(&hugetlb_lock);
1585
1586        return page;
1587}
1588
1589static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1590                int nid, nodemask_t *nmask)
1591{
1592        struct page *page;
1593
1594        if (hstate_is_gigantic(h))
1595                return NULL;
1596
1597        page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1598        if (!page)
1599                return NULL;
1600
1601        /*
1602         * We do not account these pages as surplus because they are only
1603         * temporary and will be released properly on the last reference
1604         */
1605        SetPageHugeTemporary(page);
1606
1607        return page;
1608}
1609
1610/*
1611 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1612 */
1613static
1614struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1615                struct vm_area_struct *vma, unsigned long addr)
1616{
1617        struct page *page;
1618        struct mempolicy *mpol;
1619        gfp_t gfp_mask = htlb_alloc_mask(h);
1620        int nid;
1621        nodemask_t *nodemask;
1622
1623        nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1624        page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1625        mpol_cond_put(mpol);
1626
1627        return page;
1628}
1629
1630/* page migration callback function */
1631struct page *alloc_huge_page_node(struct hstate *h, int nid)
1632{
1633        gfp_t gfp_mask = htlb_alloc_mask(h);
1634        struct page *page = NULL;
1635
1636        if (nid != NUMA_NO_NODE)
1637                gfp_mask |= __GFP_THISNODE;
1638
1639        spin_lock(&hugetlb_lock);
1640        if (h->free_huge_pages - h->resv_huge_pages > 0)
1641                page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1642        spin_unlock(&hugetlb_lock);
1643
1644        if (!page)
1645                page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1646
1647        return page;
1648}
1649
1650/* page migration callback function */
1651struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1652                nodemask_t *nmask)
1653{
1654        gfp_t gfp_mask = htlb_alloc_mask(h);
1655
1656        spin_lock(&hugetlb_lock);
1657        if (h->free_huge_pages - h->resv_huge_pages > 0) {
1658                struct page *page;
1659
1660                page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1661                if (page) {
1662                        spin_unlock(&hugetlb_lock);
1663                        return page;
1664                }
1665        }
1666        spin_unlock(&hugetlb_lock);
1667
1668        return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1669}
1670
1671/* mempolicy aware migration callback */
1672struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1673                unsigned long address)
1674{
1675        struct mempolicy *mpol;
1676        nodemask_t *nodemask;
1677        struct page *page;
1678        gfp_t gfp_mask;
1679        int node;
1680
1681        gfp_mask = htlb_alloc_mask(h);
1682        node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1683        page = alloc_huge_page_nodemask(h, node, nodemask);
1684        mpol_cond_put(mpol);
1685
1686        return page;
1687}
1688
1689/*
1690 * Increase the hugetlb pool such that it can accommodate a reservation
1691 * of size 'delta'.
1692 */
1693static int gather_surplus_pages(struct hstate *h, int delta)
1694{
1695        struct list_head surplus_list;
1696        struct page *page, *tmp;
1697        int ret, i;
1698        int needed, allocated;
1699        bool alloc_ok = true;
1700
1701        needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1702        if (needed <= 0) {
1703                h->resv_huge_pages += delta;
1704                return 0;
1705        }
1706
1707        allocated = 0;
1708        INIT_LIST_HEAD(&surplus_list);
1709
1710        ret = -ENOMEM;
1711retry:
1712        spin_unlock(&hugetlb_lock);
1713        for (i = 0; i < needed; i++) {
1714                page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1715                                NUMA_NO_NODE, NULL);
1716                if (!page) {
1717                        alloc_ok = false;
1718                        break;
1719                }
1720                list_add(&page->lru, &surplus_list);
1721                cond_resched();
1722        }
1723        allocated += i;
1724
1725        /*
1726         * After retaking hugetlb_lock, we need to recalculate 'needed'
1727         * because either resv_huge_pages or free_huge_pages may have changed.
1728         */
1729        spin_lock(&hugetlb_lock);
1730        needed = (h->resv_huge_pages + delta) -
1731                        (h->free_huge_pages + allocated);
1732        if (needed > 0) {
1733                if (alloc_ok)
1734                        goto retry;
1735                /*
1736                 * We were not able to allocate enough pages to
1737                 * satisfy the entire reservation so we free what
1738                 * we've allocated so far.
1739                 */
1740                goto free;
1741        }
1742        /*
1743         * The surplus_list now contains _at_least_ the number of extra pages
1744         * needed to accommodate the reservation.  Add the appropriate number
1745         * of pages to the hugetlb pool and free the extras back to the buddy
1746         * allocator.  Commit the entire reservation here to prevent another
1747         * process from stealing the pages as they are added to the pool but
1748         * before they are reserved.
1749         */
1750        needed += allocated;
1751        h->resv_huge_pages += delta;
1752        ret = 0;
1753
1754        /* Free the needed pages to the hugetlb pool */
1755        list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1756                if ((--needed) < 0)
1757                        break;
1758                /*
1759                 * This page is now managed by the hugetlb allocator and has
1760                 * no users -- drop the buddy allocator's reference.
1761                 */
1762                put_page_testzero(page);
1763                VM_BUG_ON_PAGE(page_count(page), page);
1764                enqueue_huge_page(h, page);
1765        }
1766free:
1767        spin_unlock(&hugetlb_lock);
1768
1769        /* Free unnecessary surplus pages to the buddy allocator */
1770        list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1771                put_page(page);
1772        spin_lock(&hugetlb_lock);
1773
1774        return ret;
1775}
1776
1777/*
1778 * This routine has two main purposes:
1779 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1780 *    in unused_resv_pages.  This corresponds to the prior adjustments made
1781 *    to the associated reservation map.
1782 * 2) Free any unused surplus pages that may have been allocated to satisfy
1783 *    the reservation.  As many as unused_resv_pages may be freed.
1784 *
1785 * Called with hugetlb_lock held.  However, the lock could be dropped (and
1786 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1787 * we must make sure nobody else can claim pages we are in the process of
1788 * freeing.  Do this by ensuring resv_huge_page always is greater than the
1789 * number of huge pages we plan to free when dropping the lock.
1790 */
1791static void return_unused_surplus_pages(struct hstate *h,
1792                                        unsigned long unused_resv_pages)
1793{
1794        unsigned long nr_pages;
1795
1796        /* Cannot return gigantic pages currently */
1797        if (hstate_is_gigantic(h))
1798                goto out;
1799
1800        /*
1801         * Part (or even all) of the reservation could have been backed
1802         * by pre-allocated pages. Only free surplus pages.
1803         */
1804        nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1805
1806        /*
1807         * We want to release as many surplus pages as possible, spread
1808         * evenly across all nodes with memory. Iterate across these nodes
1809         * until we can no longer free unreserved surplus pages. This occurs
1810         * when the nodes with surplus pages have no free pages.
1811         * free_pool_huge_page() will balance the the freed pages across the
1812         * on-line nodes with memory and will handle the hstate accounting.
1813         *
1814         * Note that we decrement resv_huge_pages as we free the pages.  If
1815         * we drop the lock, resv_huge_pages will still be sufficiently large
1816         * to cover subsequent pages we may free.
1817         */
1818        while (nr_pages--) {
1819                h->resv_huge_pages--;
1820                unused_resv_pages--;
1821                if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1822                        goto out;
1823                cond_resched_lock(&hugetlb_lock);
1824        }
1825
1826out:
1827        /* Fully uncommit the reservation */
1828        h->resv_huge_pages -= unused_resv_pages;
1829}
1830
1831
1832/*
1833 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1834 * are used by the huge page allocation routines to manage reservations.
1835 *
1836 * vma_needs_reservation is called to determine if the huge page at addr
1837 * within the vma has an associated reservation.  If a reservation is
1838 * needed, the value 1 is returned.  The caller is then responsible for
1839 * managing the global reservation and subpool usage counts.  After
1840 * the huge page has been allocated, vma_commit_reservation is called
1841 * to add the page to the reservation map.  If the page allocation fails,
1842 * the reservation must be ended instead of committed.  vma_end_reservation
1843 * is called in such cases.
1844 *
1845 * In the normal case, vma_commit_reservation returns the same value
1846 * as the preceding vma_needs_reservation call.  The only time this
1847 * is not the case is if a reserve map was changed between calls.  It
1848 * is the responsibility of the caller to notice the difference and
1849 * take appropriate action.
1850 *
1851 * vma_add_reservation is used in error paths where a reservation must
1852 * be restored when a newly allocated huge page must be freed.  It is
1853 * to be called after calling vma_needs_reservation to determine if a
1854 * reservation exists.
1855 */
1856enum vma_resv_mode {
1857        VMA_NEEDS_RESV,
1858        VMA_COMMIT_RESV,
1859        VMA_END_RESV,
1860        VMA_ADD_RESV,
1861};
1862static long __vma_reservation_common(struct hstate *h,
1863                                struct vm_area_struct *vma, unsigned long addr,
1864                                enum vma_resv_mode mode)
1865{
1866        struct resv_map *resv;
1867        pgoff_t idx;
1868        long ret;
1869
1870        resv = vma_resv_map(vma);
1871        if (!resv)
1872                return 1;
1873
1874        idx = vma_hugecache_offset(h, vma, addr);
1875        switch (mode) {
1876        case VMA_NEEDS_RESV:
1877                ret = region_chg(resv, idx, idx + 1);
1878                break;
1879        case VMA_COMMIT_RESV:
1880                ret = region_add(resv, idx, idx + 1);
1881                break;
1882        case VMA_END_RESV:
1883                region_abort(resv, idx, idx + 1);
1884                ret = 0;
1885                break;
1886        case VMA_ADD_RESV:
1887                if (vma->vm_flags & VM_MAYSHARE)
1888                        ret = region_add(resv, idx, idx + 1);
1889                else {
1890                        region_abort(resv, idx, idx + 1);
1891                        ret = region_del(resv, idx, idx + 1);
1892                }
1893                break;
1894        default:
1895                BUG();
1896        }
1897
1898        if (vma->vm_flags & VM_MAYSHARE)
1899                return ret;
1900        else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1901                /*
1902                 * In most cases, reserves always exist for private mappings.
1903                 * However, a file associated with mapping could have been
1904                 * hole punched or truncated after reserves were consumed.
1905                 * As subsequent fault on such a range will not use reserves.
1906                 * Subtle - The reserve map for private mappings has the
1907                 * opposite meaning than that of shared mappings.  If NO
1908                 * entry is in the reserve map, it means a reservation exists.
1909                 * If an entry exists in the reserve map, it means the
1910                 * reservation has already been consumed.  As a result, the
1911                 * return value of this routine is the opposite of the
1912                 * value returned from reserve map manipulation routines above.
1913                 */
1914                if (ret)
1915                        return 0;
1916                else
1917                        return 1;
1918        }
1919        else
1920                return ret < 0 ? ret : 0;
1921}
1922
1923static long vma_needs_reservation(struct hstate *h,
1924                        struct vm_area_struct *vma, unsigned long addr)
1925{
1926        return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1927}
1928
1929static long vma_commit_reservation(struct hstate *h,
1930                        struct vm_area_struct *vma, unsigned long addr)
1931{
1932        return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1933}
1934
1935static void vma_end_reservation(struct hstate *h,
1936                        struct vm_area_struct *vma, unsigned long addr)
1937{
1938        (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1939}
1940
1941static long vma_add_reservation(struct hstate *h,
1942                        struct vm_area_struct *vma, unsigned long addr)
1943{
1944        return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1945}
1946
1947/*
1948 * This routine is called to restore a reservation on error paths.  In the
1949 * specific error paths, a huge page was allocated (via alloc_huge_page)
1950 * and is about to be freed.  If a reservation for the page existed,
1951 * alloc_huge_page would have consumed the reservation and set PagePrivate
1952 * in the newly allocated page.  When the page is freed via free_huge_page,
1953 * the global reservation count will be incremented if PagePrivate is set.
1954 * However, free_huge_page can not adjust the reserve map.  Adjust the
1955 * reserve map here to be consistent with global reserve count adjustments
1956 * to be made by free_huge_page.
1957 */
1958static void restore_reserve_on_error(struct hstate *h,
1959                        struct vm_area_struct *vma, unsigned long address,
1960                        struct page *page)
1961{
1962        if (unlikely(PagePrivate(page))) {
1963                long rc = vma_needs_reservation(h, vma, address);
1964
1965                if (unlikely(rc < 0)) {
1966                        /*
1967                         * Rare out of memory condition in reserve map
1968                         * manipulation.  Clear PagePrivate so that
1969                         * global reserve count will not be incremented
1970                         * by free_huge_page.  This will make it appear
1971                         * as though the reservation for this page was
1972                         * consumed.  This may prevent the task from
1973                         * faulting in the page at a later time.  This
1974                         * is better than inconsistent global huge page
1975                         * accounting of reserve counts.
1976                         */
1977                        ClearPagePrivate(page);
1978                } else if (rc) {
1979                        rc = vma_add_reservation(h, vma, address);
1980                        if (unlikely(rc < 0))
1981                                /*
1982                                 * See above comment about rare out of
1983                                 * memory condition.
1984                                 */
1985                                ClearPagePrivate(page);
1986                } else
1987                        vma_end_reservation(h, vma, address);
1988        }
1989}
1990
1991struct page *alloc_huge_page(struct vm_area_struct *vma,
1992                                    unsigned long addr, int avoid_reserve)
1993{
1994        struct hugepage_subpool *spool = subpool_vma(vma);
1995        struct hstate *h = hstate_vma(vma);
1996        struct page *page;
1997        long map_chg, map_commit;
1998        long gbl_chg;
1999        int ret, idx;
2000        struct hugetlb_cgroup *h_cg;
2001
2002        idx = hstate_index(h);
2003        /*
2004         * Examine the region/reserve map to determine if the process
2005         * has a reservation for the page to be allocated.  A return
2006         * code of zero indicates a reservation exists (no change).
2007         */
2008        map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2009        if (map_chg < 0)
2010                return ERR_PTR(-ENOMEM);
2011
2012        /*
2013         * Processes that did not create the mapping will have no
2014         * reserves as indicated by the region/reserve map. Check
2015         * that the allocation will not exceed the subpool limit.
2016         * Allocations for MAP_NORESERVE mappings also need to be
2017         * checked against any subpool limit.
2018         */
2019        if (map_chg || avoid_reserve) {
2020                gbl_chg = hugepage_subpool_get_pages(spool, 1);
2021                if (gbl_chg < 0) {
2022                        vma_end_reservation(h, vma, addr);
2023                        return ERR_PTR(-ENOSPC);
2024                }
2025
2026                /*
2027                 * Even though there was no reservation in the region/reserve
2028                 * map, there could be reservations associated with the
2029                 * subpool that can be used.  This would be indicated if the
2030                 * return value of hugepage_subpool_get_pages() is zero.
2031                 * However, if avoid_reserve is specified we still avoid even
2032                 * the subpool reservations.
2033                 */
2034                if (avoid_reserve)
2035                        gbl_chg = 1;
2036        }
2037
2038        ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2039        if (ret)
2040                goto out_subpool_put;
2041
2042        spin_lock(&hugetlb_lock);
2043        /*
2044         * glb_chg is passed to indicate whether or not a page must be taken
2045         * from the global free pool (global change).  gbl_chg == 0 indicates
2046         * a reservation exists for the allocation.
2047         */
2048        page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2049        if (!page) {
2050                spin_unlock(&hugetlb_lock);
2051                page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2052                if (!page)
2053                        goto out_uncharge_cgroup;
2054                if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2055                        SetPagePrivate(page);
2056                        h->resv_huge_pages--;
2057                }
2058                spin_lock(&hugetlb_lock);
2059                list_move(&page->lru, &h->hugepage_activelist);
2060                /* Fall through */
2061        }
2062        hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2063        spin_unlock(&hugetlb_lock);
2064
2065        set_page_private(page, (unsigned long)spool);
2066
2067        map_commit = vma_commit_reservation(h, vma, addr);
2068        if (unlikely(map_chg > map_commit)) {
2069                /*
2070                 * The page was added to the reservation map between
2071                 * vma_needs_reservation and vma_commit_reservation.
2072                 * This indicates a race with hugetlb_reserve_pages.
2073                 * Adjust for the subpool count incremented above AND
2074                 * in hugetlb_reserve_pages for the same page.  Also,
2075                 * the reservation count added in hugetlb_reserve_pages
2076                 * no longer applies.
2077                 */
2078                long rsv_adjust;
2079
2080                rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2081                hugetlb_acct_memory(h, -rsv_adjust);
2082        }
2083        return page;
2084
2085out_uncharge_cgroup:
2086        hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2087out_subpool_put:
2088        if (map_chg || avoid_reserve)
2089                hugepage_subpool_put_pages(spool, 1);
2090        vma_end_reservation(h, vma, addr);
2091        return ERR_PTR(-ENOSPC);
2092}
2093
2094int alloc_bootmem_huge_page(struct hstate *h)
2095        __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2096int __alloc_bootmem_huge_page(struct hstate *h)
2097{
2098        struct huge_bootmem_page *m;
2099        int nr_nodes, node;
2100
2101        for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2102                void *addr;
2103
2104                addr = memblock_virt_alloc_try_nid_nopanic(
2105                                huge_page_size(h), huge_page_size(h),
2106                                0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2107                if (addr) {
2108                        /*
2109                         * Use the beginning of the huge page to store the
2110                         * huge_bootmem_page struct (until gather_bootmem
2111                         * puts them into the mem_map).
2112                         */
2113                        m = addr;
2114                        goto found;
2115                }
2116        }
2117        return 0;
2118
2119found:
2120        BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2121        /* Put them into a private list first because mem_map is not up yet */
2122        list_add(&m->list, &huge_boot_pages);
2123        m->hstate = h;
2124        return 1;
2125}
2126
2127static void __init prep_compound_huge_page(struct page *page,
2128                unsigned int order)
2129{
2130        if (unlikely(order > (MAX_ORDER - 1)))
2131                prep_compound_gigantic_page(page, order);
2132        else
2133                prep_compound_page(page, order);
2134}
2135
2136/* Put bootmem huge pages into the standard lists after mem_map is up */
2137static void __init gather_bootmem_prealloc(void)
2138{
2139        struct huge_bootmem_page *m;
2140
2141        list_for_each_entry(m, &huge_boot_pages, list) {
2142                struct hstate *h = m->hstate;
2143                struct page *page;
2144
2145#ifdef CONFIG_HIGHMEM
2146                page = pfn_to_page(m->phys >> PAGE_SHIFT);
2147                memblock_free_late(__pa(m),
2148                                   sizeof(struct huge_bootmem_page));
2149#else
2150                page = virt_to_page(m);
2151#endif
2152                WARN_ON(page_count(page) != 1);
2153                prep_compound_huge_page(page, h->order);
2154                WARN_ON(PageReserved(page));
2155                prep_new_huge_page(h, page, page_to_nid(page));
2156                put_page(page); /* free it into the hugepage allocator */
2157
2158                /*
2159                 * If we had gigantic hugepages allocated at boot time, we need
2160                 * to restore the 'stolen' pages to totalram_pages in order to
2161                 * fix confusing memory reports from free(1) and another
2162                 * side-effects, like CommitLimit going negative.
2163                 */
2164                if (hstate_is_gigantic(h))
2165                        adjust_managed_page_count(page, 1 << h->order);
2166        }
2167}
2168
2169static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2170{
2171        unsigned long i;
2172
2173        for (i = 0; i < h->max_huge_pages; ++i) {
2174                if (hstate_is_gigantic(h)) {
2175                        if (!alloc_bootmem_huge_page(h))
2176                                break;
2177                } else if (!alloc_pool_huge_page(h,
2178                                         &node_states[N_MEMORY]))
2179                        break;
2180                cond_resched();
2181        }
2182        if (i < h->max_huge_pages) {
2183                char buf[32];
2184
2185                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2186                pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2187                        h->max_huge_pages, buf, i);
2188                h->max_huge_pages = i;
2189        }
2190}
2191
2192static void __init hugetlb_init_hstates(void)
2193{
2194        struct hstate *h;
2195
2196        for_each_hstate(h) {
2197                if (minimum_order > huge_page_order(h))
2198                        minimum_order = huge_page_order(h);
2199
2200                /* oversize hugepages were init'ed in early boot */
2201                if (!hstate_is_gigantic(h))
2202                        hugetlb_hstate_alloc_pages(h);
2203        }
2204        VM_BUG_ON(minimum_order == UINT_MAX);
2205}
2206
2207static void __init report_hugepages(void)
2208{
2209        struct hstate *h;
2210
2211        for_each_hstate(h) {
2212                char buf[32];
2213
2214                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2215                pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2216                        buf, h->free_huge_pages);
2217        }
2218}
2219
2220#ifdef CONFIG_HIGHMEM
2221static void try_to_free_low(struct hstate *h, unsigned long count,
2222                                                nodemask_t *nodes_allowed)
2223{
2224        int i;
2225
2226        if (hstate_is_gigantic(h))
2227                return;
2228
2229        for_each_node_mask(i, *nodes_allowed) {
2230                struct page *page, *next;
2231                struct list_head *freel = &h->hugepage_freelists[i];
2232                list_for_each_entry_safe(page, next, freel, lru) {
2233                        if (count >= h->nr_huge_pages)
2234                                return;
2235                        if (PageHighMem(page))
2236                                continue;
2237                        list_del(&page->lru);
2238                        update_and_free_page(h, page);
2239                        h->free_huge_pages--;
2240                        h->free_huge_pages_node[page_to_nid(page)]--;
2241                }
2242        }
2243}
2244#else
2245static inline void try_to_free_low(struct hstate *h, unsigned long count,
2246                                                nodemask_t *nodes_allowed)
2247{
2248}
2249#endif
2250
2251/*
2252 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2253 * balanced by operating on them in a round-robin fashion.
2254 * Returns 1 if an adjustment was made.
2255 */
2256static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2257                                int delta)
2258{
2259        int nr_nodes, node;
2260
2261        VM_BUG_ON(delta != -1 && delta != 1);
2262
2263        if (delta < 0) {
2264                for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2265                        if (h->surplus_huge_pages_node[node])
2266                                goto found;
2267                }
2268        } else {
2269                for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2270                        if (h->surplus_huge_pages_node[node] <
2271                                        h->nr_huge_pages_node[node])
2272                                goto found;
2273                }
2274        }
2275        return 0;
2276
2277found:
2278        h->surplus_huge_pages += delta;
2279        h->surplus_huge_pages_node[node] += delta;
2280        return 1;
2281}
2282
2283#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2284static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2285                                                nodemask_t *nodes_allowed)
2286{
2287        unsigned long min_count, ret;
2288
2289        if (hstate_is_gigantic(h) && !gigantic_page_supported())
2290                return h->max_huge_pages;
2291
2292        /*
2293         * Increase the pool size
2294         * First take pages out of surplus state.  Then make up the
2295         * remaining difference by allocating fresh huge pages.
2296         *
2297         * We might race with alloc_surplus_huge_page() here and be unable
2298         * to convert a surplus huge page to a normal huge page. That is
2299         * not critical, though, it just means the overall size of the
2300         * pool might be one hugepage larger than it needs to be, but
2301         * within all the constraints specified by the sysctls.
2302         */
2303        spin_lock(&hugetlb_lock);
2304        while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2305                if (!adjust_pool_surplus(h, nodes_allowed, -1))
2306                        break;
2307        }
2308
2309        while (count > persistent_huge_pages(h)) {
2310                /*
2311                 * If this allocation races such that we no longer need the
2312                 * page, free_huge_page will handle it by freeing the page
2313                 * and reducing the surplus.
2314                 */
2315                spin_unlock(&hugetlb_lock);
2316
2317                /* yield cpu to avoid soft lockup */
2318                cond_resched();
2319
2320                ret = alloc_pool_huge_page(h, nodes_allowed);
2321                spin_lock(&hugetlb_lock);
2322                if (!ret)
2323                        goto out;
2324
2325                /* Bail for signals. Probably ctrl-c from user */
2326                if (signal_pending(current))
2327                        goto out;
2328        }
2329
2330        /*
2331         * Decrease the pool size
2332         * First return free pages to the buddy allocator (being careful
2333         * to keep enough around to satisfy reservations).  Then place
2334         * pages into surplus state as needed so the pool will shrink
2335         * to the desired size as pages become free.
2336         *
2337         * By placing pages into the surplus state independent of the
2338         * overcommit value, we are allowing the surplus pool size to
2339         * exceed overcommit. There are few sane options here. Since
2340         * alloc_surplus_huge_page() is checking the global counter,
2341         * though, we'll note that we're not allowed to exceed surplus
2342         * and won't grow the pool anywhere else. Not until one of the
2343         * sysctls are changed, or the surplus pages go out of use.
2344         */
2345        min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2346        min_count = max(count, min_count);
2347        try_to_free_low(h, min_count, nodes_allowed);
2348        while (min_count < persistent_huge_pages(h)) {
2349                if (!free_pool_huge_page(h, nodes_allowed, 0))
2350                        break;
2351                cond_resched_lock(&hugetlb_lock);
2352        }
2353        while (count < persistent_huge_pages(h)) {
2354                if (!adjust_pool_surplus(h, nodes_allowed, 1))
2355                        break;
2356        }
2357out:
2358        ret = persistent_huge_pages(h);
2359        spin_unlock(&hugetlb_lock);
2360        return ret;
2361}
2362
2363#define HSTATE_ATTR_RO(_name) \
2364        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2365
2366#define HSTATE_ATTR(_name) \
2367        static struct kobj_attribute _name##_attr = \
2368                __ATTR(_name, 0644, _name##_show, _name##_store)
2369
2370static struct kobject *hugepages_kobj;
2371static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2372
2373static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2374
2375static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2376{
2377        int i;
2378
2379        for (i = 0; i < HUGE_MAX_HSTATE; i++)
2380                if (hstate_kobjs[i] == kobj) {
2381                        if (nidp)
2382                                *nidp = NUMA_NO_NODE;
2383                        return &hstates[i];
2384                }
2385
2386        return kobj_to_node_hstate(kobj, nidp);
2387}
2388
2389static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2390                                        struct kobj_attribute *attr, char *buf)
2391{
2392        struct hstate *h;
2393        unsigned long nr_huge_pages;
2394        int nid;
2395
2396        h = kobj_to_hstate(kobj, &nid);
2397        if (nid == NUMA_NO_NODE)
2398                nr_huge_pages = h->nr_huge_pages;
2399        else
2400                nr_huge_pages = h->nr_huge_pages_node[nid];
2401
2402        return sprintf(buf, "%lu\n", nr_huge_pages);
2403}
2404
2405static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2406                                           struct hstate *h, int nid,
2407                                           unsigned long count, size_t len)
2408{
2409        int err;
2410        NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2411
2412        if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2413                err = -EINVAL;
2414                goto out;
2415        }
2416
2417        if (nid == NUMA_NO_NODE) {
2418                /*
2419                 * global hstate attribute
2420                 */
2421                if (!(obey_mempolicy &&
2422                                init_nodemask_of_mempolicy(nodes_allowed))) {
2423                        NODEMASK_FREE(nodes_allowed);
2424                        nodes_allowed = &node_states[N_MEMORY];
2425                }
2426        } else if (nodes_allowed) {
2427                /*
2428                 * per node hstate attribute: adjust count to global,
2429                 * but restrict alloc/free to the specified node.
2430                 */
2431                count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2432                init_nodemask_of_node(nodes_allowed, nid);
2433        } else
2434                nodes_allowed = &node_states[N_MEMORY];
2435
2436        h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2437
2438        if (nodes_allowed != &node_states[N_MEMORY])
2439                NODEMASK_FREE(nodes_allowed);
2440
2441        return len;
2442out:
2443        NODEMASK_FREE(nodes_allowed);
2444        return err;
2445}
2446
2447static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2448                                         struct kobject *kobj, const char *buf,
2449                                         size_t len)
2450{
2451        struct hstate *h;
2452        unsigned long count;
2453        int nid;
2454        int err;
2455
2456        err = kstrtoul(buf, 10, &count);
2457        if (err)
2458                return err;
2459
2460        h = kobj_to_hstate(kobj, &nid);
2461        return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2462}
2463
2464static ssize_t nr_hugepages_show(struct kobject *kobj,
2465                                       struct kobj_attribute *attr, char *buf)
2466{
2467        return nr_hugepages_show_common(kobj, attr, buf);
2468}
2469
2470static ssize_t nr_hugepages_store(struct kobject *kobj,
2471               struct kobj_attribute *attr, const char *buf, size_t len)
2472{
2473        return nr_hugepages_store_common(false, kobj, buf, len);
2474}
2475HSTATE_ATTR(nr_hugepages);
2476
2477#ifdef CONFIG_NUMA
2478
2479/*
2480 * hstate attribute for optionally mempolicy-based constraint on persistent
2481 * huge page alloc/free.
2482 */
2483static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2484                                       struct kobj_attribute *attr, char *buf)
2485{
2486        return nr_hugepages_show_common(kobj, attr, buf);
2487}
2488
2489static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2490               struct kobj_attribute *attr, const char *buf, size_t len)
2491{
2492        return nr_hugepages_store_common(true, kobj, buf, len);
2493}
2494HSTATE_ATTR(nr_hugepages_mempolicy);
2495#endif
2496
2497
2498static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2499                                        struct kobj_attribute *attr, char *buf)
2500{
2501        struct hstate *h = kobj_to_hstate(kobj, NULL);
2502        return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2503}
2504
2505static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2506                struct kobj_attribute *attr, const char *buf, size_t count)
2507{
2508        int err;
2509        unsigned long input;
2510        struct hstate *h = kobj_to_hstate(kobj, NULL);
2511
2512        if (hstate_is_gigantic(h))
2513                return -EINVAL;
2514
2515        err = kstrtoul(buf, 10, &input);
2516        if (err)
2517                return err;
2518
2519        spin_lock(&hugetlb_lock);
2520        h->nr_overcommit_huge_pages = input;
2521        spin_unlock(&hugetlb_lock);
2522
2523        return count;
2524}
2525HSTATE_ATTR(nr_overcommit_hugepages);
2526
2527static ssize_t free_hugepages_show(struct kobject *kobj,
2528                                        struct kobj_attribute *attr, char *buf)
2529{
2530        struct hstate *h;
2531        unsigned long free_huge_pages;
2532        int nid;
2533
2534        h = kobj_to_hstate(kobj, &nid);
2535        if (nid == NUMA_NO_NODE)
2536                free_huge_pages = h->free_huge_pages;
2537        else
2538                free_huge_pages = h->free_huge_pages_node[nid];
2539
2540        return sprintf(buf, "%lu\n", free_huge_pages);
2541}
2542HSTATE_ATTR_RO(free_hugepages);
2543
2544static ssize_t resv_hugepages_show(struct kobject *kobj,
2545                                        struct kobj_attribute *attr, char *buf)
2546{
2547        struct hstate *h = kobj_to_hstate(kobj, NULL);
2548        return sprintf(buf, "%lu\n", h->resv_huge_pages);
2549}
2550HSTATE_ATTR_RO(resv_hugepages);
2551
2552static ssize_t surplus_hugepages_show(struct kobject *kobj,
2553                                        struct kobj_attribute *attr, char *buf)
2554{
2555        struct hstate *h;
2556        unsigned long surplus_huge_pages;
2557        int nid;
2558
2559        h = kobj_to_hstate(kobj, &nid);
2560        if (nid == NUMA_NO_NODE)
2561                surplus_huge_pages = h->surplus_huge_pages;
2562        else
2563                surplus_huge_pages = h->surplus_huge_pages_node[nid];
2564
2565        return sprintf(buf, "%lu\n", surplus_huge_pages);
2566}
2567HSTATE_ATTR_RO(surplus_hugepages);
2568
2569static struct attribute *hstate_attrs[] = {
2570        &nr_hugepages_attr.attr,
2571        &nr_overcommit_hugepages_attr.attr,
2572        &free_hugepages_attr.attr,
2573        &resv_hugepages_attr.attr,
2574        &surplus_hugepages_attr.attr,
2575#ifdef CONFIG_NUMA
2576        &nr_hugepages_mempolicy_attr.attr,
2577#endif
2578        NULL,
2579};
2580
2581static const struct attribute_group hstate_attr_group = {
2582        .attrs = hstate_attrs,
2583};
2584
2585static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2586                                    struct kobject **hstate_kobjs,
2587                                    const struct attribute_group *hstate_attr_group)
2588{
2589        int retval;
2590        int hi = hstate_index(h);
2591
2592        hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2593        if (!hstate_kobjs[hi])
2594                return -ENOMEM;
2595
2596        retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2597        if (retval)
2598                kobject_put(hstate_kobjs[hi]);
2599
2600        return retval;
2601}
2602
2603static void __init hugetlb_sysfs_init(void)
2604{
2605        struct hstate *h;
2606        int err;
2607
2608        hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2609        if (!hugepages_kobj)
2610                return;
2611
2612        for_each_hstate(h) {
2613                err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2614                                         hstate_kobjs, &hstate_attr_group);
2615                if (err)
2616                        pr_err("Hugetlb: Unable to add hstate %s", h->name);
2617        }
2618}
2619
2620#ifdef CONFIG_NUMA
2621
2622/*
2623 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2624 * with node devices in node_devices[] using a parallel array.  The array
2625 * index of a node device or _hstate == node id.
2626 * This is here to avoid any static dependency of the node device driver, in
2627 * the base kernel, on the hugetlb module.
2628 */
2629struct node_hstate {
2630        struct kobject          *hugepages_kobj;
2631        struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2632};
2633static struct node_hstate node_hstates[MAX_NUMNODES];
2634
2635/*
2636 * A subset of global hstate attributes for node devices
2637 */
2638static struct attribute *per_node_hstate_attrs[] = {
2639        &nr_hugepages_attr.attr,
2640        &free_hugepages_attr.attr,
2641        &surplus_hugepages_attr.attr,
2642        NULL,
2643};
2644
2645static const struct attribute_group per_node_hstate_attr_group = {
2646        .attrs = per_node_hstate_attrs,
2647};
2648
2649/*
2650 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2651 * Returns node id via non-NULL nidp.
2652 */
2653static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2654{
2655        int nid;
2656
2657        for (nid = 0; nid < nr_node_ids; nid++) {
2658                struct node_hstate *nhs = &node_hstates[nid];
2659                int i;
2660                for (i = 0; i < HUGE_MAX_HSTATE; i++)
2661                        if (nhs->hstate_kobjs[i] == kobj) {
2662                                if (nidp)
2663                                        *nidp = nid;
2664                                return &hstates[i];
2665                        }
2666        }
2667
2668        BUG();
2669        return NULL;
2670}
2671
2672/*
2673 * Unregister hstate attributes from a single node device.
2674 * No-op if no hstate attributes attached.
2675 */
2676static void hugetlb_unregister_node(struct node *node)
2677{
2678        struct hstate *h;
2679        struct node_hstate *nhs = &node_hstates[node->dev.id];
2680
2681        if (!nhs->hugepages_kobj)
2682                return;         /* no hstate attributes */
2683
2684        for_each_hstate(h) {
2685                int idx = hstate_index(h);
2686                if (nhs->hstate_kobjs[idx]) {
2687                        kobject_put(nhs->hstate_kobjs[idx]);
2688                        nhs->hstate_kobjs[idx] = NULL;
2689                }
2690        }
2691
2692        kobject_put(nhs->hugepages_kobj);
2693        nhs->hugepages_kobj = NULL;
2694}
2695
2696
2697/*
2698 * Register hstate attributes for a single node device.
2699 * No-op if attributes already registered.
2700 */
2701static void hugetlb_register_node(struct node *node)
2702{
2703        struct hstate *h;
2704        struct node_hstate *nhs = &node_hstates[node->dev.id];
2705        int err;
2706
2707        if (nhs->hugepages_kobj)
2708                return;         /* already allocated */
2709
2710        nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2711                                                        &node->dev.kobj);
2712        if (!nhs->hugepages_kobj)
2713                return;
2714
2715        for_each_hstate(h) {
2716                err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2717                                                nhs->hstate_kobjs,
2718                                                &per_node_hstate_attr_group);
2719                if (err) {
2720                        pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2721                                h->name, node->dev.id);
2722                        hugetlb_unregister_node(node);
2723                        break;
2724                }
2725        }
2726}
2727
2728/*
2729 * hugetlb init time:  register hstate attributes for all registered node
2730 * devices of nodes that have memory.  All on-line nodes should have
2731 * registered their associated device by this time.
2732 */
2733static void __init hugetlb_register_all_nodes(void)
2734{
2735        int nid;
2736
2737        for_each_node_state(nid, N_MEMORY) {
2738                struct node *node = node_devices[nid];
2739                if (node->dev.id == nid)
2740                        hugetlb_register_node(node);
2741        }
2742
2743        /*
2744         * Let the node device driver know we're here so it can
2745         * [un]register hstate attributes on node hotplug.
2746         */
2747        register_hugetlbfs_with_node(hugetlb_register_node,
2748                                     hugetlb_unregister_node);
2749}
2750#else   /* !CONFIG_NUMA */
2751
2752static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2753{
2754        BUG();
2755        if (nidp)
2756                *nidp = -1;
2757        return NULL;
2758}
2759
2760static void hugetlb_register_all_nodes(void) { }
2761
2762#endif
2763
2764static int __init hugetlb_init(void)
2765{
2766        int i;
2767
2768        if (!hugepages_supported())
2769                return 0;
2770
2771        if (!size_to_hstate(default_hstate_size)) {
2772                if (default_hstate_size != 0) {
2773                        pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2774                               default_hstate_size, HPAGE_SIZE);
2775                }
2776
2777                default_hstate_size = HPAGE_SIZE;
2778                if (!size_to_hstate(default_hstate_size))
2779                        hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2780        }
2781        default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2782        if (default_hstate_max_huge_pages) {
2783                if (!default_hstate.max_huge_pages)
2784                        default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2785        }
2786
2787        hugetlb_init_hstates();
2788        gather_bootmem_prealloc();
2789        report_hugepages();
2790
2791        hugetlb_sysfs_init();
2792        hugetlb_register_all_nodes();
2793        hugetlb_cgroup_file_init();
2794
2795#ifdef CONFIG_SMP
2796        num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2797#else
2798        num_fault_mutexes = 1;
2799#endif
2800        hugetlb_fault_mutex_table =
2801                kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2802        BUG_ON(!hugetlb_fault_mutex_table);
2803
2804        for (i = 0; i < num_fault_mutexes; i++)
2805                mutex_init(&hugetlb_fault_mutex_table[i]);
2806        return 0;
2807}
2808subsys_initcall(hugetlb_init);
2809
2810/* Should be called on processing a hugepagesz=... option */
2811void __init hugetlb_bad_size(void)
2812{
2813        parsed_valid_hugepagesz = false;
2814}
2815
2816void __init hugetlb_add_hstate(unsigned int order)
2817{
2818        struct hstate *h;
2819        unsigned long i;
2820
2821        if (size_to_hstate(PAGE_SIZE << order)) {
2822                pr_warn("hugepagesz= specified twice, ignoring\n");
2823                return;
2824        }
2825        BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2826        BUG_ON(order == 0);
2827        h = &hstates[hugetlb_max_hstate++];
2828        h->order = order;
2829        h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2830        h->nr_huge_pages = 0;
2831        h->free_huge_pages = 0;
2832        for (i = 0; i < MAX_NUMNODES; ++i)
2833                INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2834        INIT_LIST_HEAD(&h->hugepage_activelist);
2835        h->next_nid_to_alloc = first_memory_node;
2836        h->next_nid_to_free = first_memory_node;
2837        snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2838                                        huge_page_size(h)/1024);
2839
2840        parsed_hstate = h;
2841}
2842
2843static int __init hugetlb_nrpages_setup(char *s)
2844{
2845        unsigned long *mhp;
2846        static unsigned long *last_mhp;
2847
2848        if (!parsed_valid_hugepagesz) {
2849                pr_warn("hugepages = %s preceded by "
2850                        "an unsupported hugepagesz, ignoring\n", s);
2851                parsed_valid_hugepagesz = true;
2852                return 1;
2853        }
2854        /*
2855         * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2856         * so this hugepages= parameter goes to the "default hstate".
2857         */
2858        else if (!hugetlb_max_hstate)
2859                mhp = &default_hstate_max_huge_pages;
2860        else
2861                mhp = &parsed_hstate->max_huge_pages;
2862
2863        if (mhp == last_mhp) {
2864                pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2865                return 1;
2866        }
2867
2868        if (sscanf(s, "%lu", mhp) <= 0)
2869                *mhp = 0;
2870
2871        /*
2872         * Global state is always initialized later in hugetlb_init.
2873         * But we need to allocate >= MAX_ORDER hstates here early to still
2874         * use the bootmem allocator.
2875         */
2876        if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2877                hugetlb_hstate_alloc_pages(parsed_hstate);
2878
2879        last_mhp = mhp;
2880
2881        return 1;
2882}
2883__setup("hugepages=", hugetlb_nrpages_setup);
2884
2885static int __init hugetlb_default_setup(char *s)
2886{
2887        default_hstate_size = memparse(s, &s);
2888        return 1;
2889}
2890__setup("default_hugepagesz=", hugetlb_default_setup);
2891
2892static unsigned int cpuset_mems_nr(unsigned int *array)
2893{
2894        int node;
2895        unsigned int nr = 0;
2896
2897        for_each_node_mask(node, cpuset_current_mems_allowed)
2898                nr += array[node];
2899
2900        return nr;
2901}
2902
2903#ifdef CONFIG_SYSCTL
2904static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2905                         struct ctl_table *table, int write,
2906                         void __user *buffer, size_t *length, loff_t *ppos)
2907{
2908        struct hstate *h = &default_hstate;
2909        unsigned long tmp = h->max_huge_pages;
2910        int ret;
2911
2912        if (!hugepages_supported())
2913                return -EOPNOTSUPP;
2914
2915        table->data = &tmp;
2916        table->maxlen = sizeof(unsigned long);
2917        ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2918        if (ret)
2919                goto out;
2920
2921        if (write)
2922                ret = __nr_hugepages_store_common(obey_mempolicy, h,
2923                                                  NUMA_NO_NODE, tmp, *length);
2924out:
2925        return ret;
2926}
2927
2928int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2929                          void __user *buffer, size_t *length, loff_t *ppos)
2930{
2931
2932        return hugetlb_sysctl_handler_common(false, table, write,
2933                                                        buffer, length, ppos);
2934}
2935
2936#ifdef CONFIG_NUMA
2937int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2938                          void __user *buffer, size_t *length, loff_t *ppos)
2939{
2940        return hugetlb_sysctl_handler_common(true, table, write,
2941                                                        buffer, length, ppos);
2942}
2943#endif /* CONFIG_NUMA */
2944
2945int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2946                        void __user *buffer,
2947                        size_t *length, loff_t *ppos)
2948{
2949        struct hstate *h = &default_hstate;
2950        unsigned long tmp;
2951        int ret;
2952
2953        if (!hugepages_supported())
2954                return -EOPNOTSUPP;
2955
2956        tmp = h->nr_overcommit_huge_pages;
2957
2958        if (write && hstate_is_gigantic(h))
2959                return -EINVAL;
2960
2961        table->data = &tmp;
2962        table->maxlen = sizeof(unsigned long);
2963        ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2964        if (ret)
2965                goto out;
2966
2967        if (write) {
2968                spin_lock(&hugetlb_lock);
2969                h->nr_overcommit_huge_pages = tmp;
2970                spin_unlock(&hugetlb_lock);
2971        }
2972out:
2973        return ret;
2974}
2975
2976#endif /* CONFIG_SYSCTL */
2977
2978void hugetlb_report_meminfo(struct seq_file *m)
2979{
2980        struct hstate *h;
2981        unsigned long total = 0;
2982
2983        if (!hugepages_supported())
2984                return;
2985
2986        for_each_hstate(h) {
2987                unsigned long count = h->nr_huge_pages;
2988
2989                total += (PAGE_SIZE << huge_page_order(h)) * count;
2990
2991                if (h == &default_hstate)
2992                        seq_printf(m,
2993                                   "HugePages_Total:   %5lu\n"
2994                                   "HugePages_Free:    %5lu\n"
2995                                   "HugePages_Rsvd:    %5lu\n"
2996                                   "HugePages_Surp:    %5lu\n"
2997                                   "Hugepagesize:   %8lu kB\n",
2998                                   count,
2999                                   h->free_huge_pages,
3000                                   h->resv_huge_pages,
3001                                   h->surplus_huge_pages,
3002                                   (PAGE_SIZE << huge_page_order(h)) / 1024);
3003        }
3004
3005        seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3006}
3007
3008int hugetlb_report_node_meminfo(int nid, char *buf)
3009{
3010        struct hstate *h = &default_hstate;
3011        if (!hugepages_supported())
3012                return 0;
3013        return sprintf(buf,
3014                "Node %d HugePages_Total: %5u\n"
3015                "Node %d HugePages_Free:  %5u\n"
3016                "Node %d HugePages_Surp:  %5u\n",
3017                nid, h->nr_huge_pages_node[nid],
3018                nid, h->free_huge_pages_node[nid],
3019                nid, h->surplus_huge_pages_node[nid]);
3020}
3021
3022void hugetlb_show_meminfo(void)
3023{
3024        struct hstate *h;
3025        int nid;
3026
3027        if (!hugepages_supported())
3028                return;
3029
3030        for_each_node_state(nid, N_MEMORY)
3031                for_each_hstate(h)
3032                        pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3033                                nid,
3034                                h->nr_huge_pages_node[nid],
3035                                h->free_huge_pages_node[nid],
3036                                h->surplus_huge_pages_node[nid],
3037                                1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3038}
3039
3040void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3041{
3042        seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3043                   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3044}
3045
3046/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3047unsigned long hugetlb_total_pages(void)
3048{
3049        struct hstate *h;
3050        unsigned long nr_total_pages = 0;
3051
3052        for_each_hstate(h)
3053                nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3054        return nr_total_pages;
3055}
3056
3057static int hugetlb_acct_memory(struct hstate *h, long delta)
3058{
3059        int ret = -ENOMEM;
3060
3061        spin_lock(&hugetlb_lock);
3062        /*
3063         * When cpuset is configured, it breaks the strict hugetlb page
3064         * reservation as the accounting is done on a global variable. Such
3065         * reservation is completely rubbish in the presence of cpuset because
3066         * the reservation is not checked against page availability for the
3067         * current cpuset. Application can still potentially OOM'ed by kernel
3068         * with lack of free htlb page in cpuset that the task is in.
3069         * Attempt to enforce strict accounting with cpuset is almost
3070         * impossible (or too ugly) because cpuset is too fluid that
3071         * task or memory node can be dynamically moved between cpusets.
3072         *
3073         * The change of semantics for shared hugetlb mapping with cpuset is
3074         * undesirable. However, in order to preserve some of the semantics,
3075         * we fall back to check against current free page availability as
3076         * a best attempt and hopefully to minimize the impact of changing
3077         * semantics that cpuset has.
3078         */
3079        if (delta > 0) {
3080                if (gather_surplus_pages(h, delta) < 0)
3081                        goto out;
3082
3083                if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3084                        return_unused_surplus_pages(h, delta);
3085                        goto out;
3086                }
3087        }
3088
3089        ret = 0;
3090        if (delta < 0)
3091                return_unused_surplus_pages(h, (unsigned long) -delta);
3092
3093out:
3094        spin_unlock(&hugetlb_lock);
3095        return ret;
3096}
3097
3098static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3099{
3100        struct resv_map *resv = vma_resv_map(vma);
3101
3102        /*
3103         * This new VMA should share its siblings reservation map if present.
3104         * The VMA will only ever have a valid reservation map pointer where
3105         * it is being copied for another still existing VMA.  As that VMA
3106         * has a reference to the reservation map it cannot disappear until
3107         * after this open call completes.  It is therefore safe to take a
3108         * new reference here without additional locking.
3109         */
3110        if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3111                kref_get(&resv->refs);
3112}
3113
3114static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3115{
3116        struct hstate *h = hstate_vma(vma);
3117        struct resv_map *resv = vma_resv_map(vma);
3118        struct hugepage_subpool *spool = subpool_vma(vma);
3119        unsigned long reserve, start, end;
3120        long gbl_reserve;
3121
3122        if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3123                return;
3124
3125        start = vma_hugecache_offset(h, vma, vma->vm_start);
3126        end = vma_hugecache_offset(h, vma, vma->vm_end);
3127
3128        reserve = (end - start) - region_count(resv, start, end);
3129
3130        kref_put(&resv->refs, resv_map_release);
3131
3132        if (reserve) {
3133                /*
3134                 * Decrement reserve counts.  The global reserve count may be
3135                 * adjusted if the subpool has a minimum size.
3136                 */
3137                gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3138                hugetlb_acct_memory(h, -gbl_reserve);
3139        }
3140}
3141
3142static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3143{
3144        if (addr & ~(huge_page_mask(hstate_vma(vma))))
3145                return -EINVAL;
3146        return 0;
3147}
3148
3149static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3150{
3151        struct hstate *hstate = hstate_vma(vma);
3152
3153        return 1UL << huge_page_shift(hstate);
3154}
3155
3156/*
3157 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3158 * handle_mm_fault() to try to instantiate regular-sized pages in the
3159 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3160 * this far.
3161 */
3162static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3163{
3164        BUG();
3165        return 0;
3166}
3167
3168const struct vm_operations_struct hugetlb_vm_ops = {
3169        .fault = hugetlb_vm_op_fault,
3170        .open = hugetlb_vm_op_open,
3171        .close = hugetlb_vm_op_close,
3172        .split = hugetlb_vm_op_split,
3173        .pagesize = hugetlb_vm_op_pagesize,
3174};
3175
3176static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3177                                int writable)
3178{
3179        pte_t entry;
3180
3181        if (writable) {
3182                entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3183                                         vma->vm_page_prot)));
3184        } else {
3185                entry = huge_pte_wrprotect(mk_huge_pte(page,
3186                                           vma->vm_page_prot));
3187        }
3188        entry = pte_mkyoung(entry);
3189        entry = pte_mkhuge(entry);
3190        entry = arch_make_huge_pte(entry, vma, page, writable);
3191
3192        return entry;
3193}
3194
3195static void set_huge_ptep_writable(struct vm_area_struct *vma,
3196                                   unsigned long address, pte_t *ptep)
3197{
3198        pte_t entry;
3199
3200        entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3201        if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3202                update_mmu_cache(vma, address, ptep);
3203}
3204
3205bool is_hugetlb_entry_migration(pte_t pte)
3206{
3207        swp_entry_t swp;
3208
3209        if (huge_pte_none(pte) || pte_present(pte))
3210                return false;
3211        swp = pte_to_swp_entry(pte);
3212        if (non_swap_entry(swp) && is_migration_entry(swp))
3213                return true;
3214        else
3215                return false;
3216}
3217
3218static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3219{
3220        swp_entry_t swp;
3221
3222        if (huge_pte_none(pte) || pte_present(pte))
3223                return 0;
3224        swp = pte_to_swp_entry(pte);
3225        if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3226                return 1;
3227        else
3228                return 0;
3229}
3230
3231int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3232                            struct vm_area_struct *vma)
3233{
3234        pte_t *src_pte, *dst_pte, entry;
3235        struct page *ptepage;
3236        unsigned long addr;
3237        int cow;
3238        struct hstate *h = hstate_vma(vma);
3239        unsigned long sz = huge_page_size(h);
3240        unsigned long mmun_start;       /* For mmu_notifiers */
3241        unsigned long mmun_end;         /* For mmu_notifiers */
3242        int ret = 0;
3243
3244        cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3245
3246        mmun_start = vma->vm_start;
3247        mmun_end = vma->vm_end;
3248        if (cow)
3249                mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3250
3251        for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3252                spinlock_t *src_ptl, *dst_ptl;
3253                src_pte = huge_pte_offset(src, addr, sz);
3254                if (!src_pte)
3255                        continue;
3256                dst_pte = huge_pte_alloc(dst, addr, sz);
3257                if (!dst_pte) {
3258                        ret = -ENOMEM;
3259                        break;
3260                }
3261
3262                /* If the pagetables are shared don't copy or take references */
3263                if (dst_pte == src_pte)
3264                        continue;
3265
3266                dst_ptl = huge_pte_lock(h, dst, dst_pte);
3267                src_ptl = huge_pte_lockptr(h, src, src_pte);
3268                spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3269                entry = huge_ptep_get(src_pte);
3270                if (huge_pte_none(entry)) { /* skip none entry */
3271                        ;
3272                } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3273                                    is_hugetlb_entry_hwpoisoned(entry))) {
3274                        swp_entry_t swp_entry = pte_to_swp_entry(entry);
3275
3276                        if (is_write_migration_entry(swp_entry) && cow) {
3277                                /*
3278                                 * COW mappings require pages in both
3279                                 * parent and child to be set to read.
3280                                 */
3281                                make_migration_entry_read(&swp_entry);
3282                                entry = swp_entry_to_pte(swp_entry);
3283                                set_huge_swap_pte_at(src, addr, src_pte,
3284                                                     entry, sz);
3285                        }
3286                        set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3287                } else {
3288                        if (cow) {
3289                                /*
3290                                 * No need to notify as we are downgrading page
3291                                 * table protection not changing it to point
3292                                 * to a new page.
3293                                 *
3294                                 * See Documentation/vm/mmu_notifier.txt
3295                                 */
3296                                huge_ptep_set_wrprotect(src, addr, src_pte);
3297                        }
3298                        entry = huge_ptep_get(src_pte);
3299                        ptepage = pte_page(entry);
3300                        get_page(ptepage);
3301                        page_dup_rmap(ptepage, true);
3302                        set_huge_pte_at(dst, addr, dst_pte, entry);
3303                        hugetlb_count_add(pages_per_huge_page(h), dst);
3304                }
3305                spin_unlock(src_ptl);
3306                spin_unlock(dst_ptl);
3307        }
3308
3309        if (cow)
3310                mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3311
3312        return ret;
3313}
3314
3315void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3316                            unsigned long start, unsigned long end,
3317                            struct page *ref_page)
3318{
3319        struct mm_struct *mm = vma->vm_mm;
3320        unsigned long address;
3321        pte_t *ptep;
3322        pte_t pte;
3323        spinlock_t *ptl;
3324        struct page *page;
3325        struct hstate *h = hstate_vma(vma);
3326        unsigned long sz = huge_page_size(h);
3327        const unsigned long mmun_start = start; /* For mmu_notifiers */
3328        const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3329
3330        WARN_ON(!is_vm_hugetlb_page(vma));
3331        BUG_ON(start & ~huge_page_mask(h));
3332        BUG_ON(end & ~huge_page_mask(h));
3333
3334        /*
3335         * This is a hugetlb vma, all the pte entries should point
3336         * to huge page.
3337         */
3338        tlb_remove_check_page_size_change(tlb, sz);
3339        tlb_start_vma(tlb, vma);
3340        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3341        address = start;
3342        for (; address < end; address += sz) {
3343                ptep = huge_pte_offset(mm, address, sz);
3344                if (!ptep)
3345                        continue;
3346
3347                ptl = huge_pte_lock(h, mm, ptep);
3348                if (huge_pmd_unshare(mm, &address, ptep)) {
3349                        spin_unlock(ptl);
3350                        continue;
3351                }
3352
3353                pte = huge_ptep_get(ptep);
3354                if (huge_pte_none(pte)) {
3355                        spin_unlock(ptl);
3356                        continue;
3357                }
3358
3359                /*
3360                 * Migrating hugepage or HWPoisoned hugepage is already
3361                 * unmapped and its refcount is dropped, so just clear pte here.
3362                 */
3363                if (unlikely(!pte_present(pte))) {
3364                        huge_pte_clear(mm, address, ptep, sz);
3365                        spin_unlock(ptl);
3366                        continue;
3367                }
3368
3369                page = pte_page(pte);
3370                /*
3371                 * If a reference page is supplied, it is because a specific
3372                 * page is being unmapped, not a range. Ensure the page we
3373                 * are about to unmap is the actual page of interest.
3374                 */
3375                if (ref_page) {
3376                        if (page != ref_page) {
3377                                spin_unlock(ptl);
3378                                continue;
3379                        }
3380                        /*
3381                         * Mark the VMA as having unmapped its page so that
3382                         * future faults in this VMA will fail rather than
3383                         * looking like data was lost
3384                         */
3385                        set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3386                }
3387
3388                pte = huge_ptep_get_and_clear(mm, address, ptep);
3389                tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3390                if (huge_pte_dirty(pte))
3391                        set_page_dirty(page);
3392
3393                hugetlb_count_sub(pages_per_huge_page(h), mm);
3394                page_remove_rmap(page, true);
3395
3396                spin_unlock(ptl);
3397                tlb_remove_page_size(tlb, page, huge_page_size(h));
3398                /*
3399                 * Bail out after unmapping reference page if supplied
3400                 */
3401                if (ref_page)
3402                        break;
3403        }
3404        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3405        tlb_end_vma(tlb, vma);
3406}
3407
3408void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3409                          struct vm_area_struct *vma, unsigned long start,
3410                          unsigned long end, struct page *ref_page)
3411{
3412        __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3413
3414        /*
3415         * Clear this flag so that x86's huge_pmd_share page_table_shareable
3416         * test will fail on a vma being torn down, and not grab a page table
3417         * on its way out.  We're lucky that the flag has such an appropriate
3418         * name, and can in fact be safely cleared here. We could clear it
3419         * before the __unmap_hugepage_range above, but all that's necessary
3420         * is to clear it before releasing the i_mmap_rwsem. This works
3421         * because in the context this is called, the VMA is about to be
3422         * destroyed and the i_mmap_rwsem is held.
3423         */
3424        vma->vm_flags &= ~VM_MAYSHARE;
3425}
3426
3427void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3428                          unsigned long end, struct page *ref_page)
3429{
3430        struct mm_struct *mm;
3431        struct mmu_gather tlb;
3432
3433        mm = vma->vm_mm;
3434
3435        tlb_gather_mmu(&tlb, mm, start, end);
3436        __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3437        tlb_finish_mmu(&tlb, start, end);
3438}
3439
3440/*
3441 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3442 * mappping it owns the reserve page for. The intention is to unmap the page
3443 * from other VMAs and let the children be SIGKILLed if they are faulting the
3444 * same region.
3445 */
3446static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3447                              struct page *page, unsigned long address)
3448{
3449        struct hstate *h = hstate_vma(vma);
3450        struct vm_area_struct *iter_vma;
3451        struct address_space *mapping;
3452        pgoff_t pgoff;
3453
3454        /*
3455         * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3456         * from page cache lookup which is in HPAGE_SIZE units.
3457         */
3458        address = address & huge_page_mask(h);
3459        pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3460                        vma->vm_pgoff;
3461        mapping = vma->vm_file->f_mapping;
3462
3463        /*
3464         * Take the mapping lock for the duration of the table walk. As
3465         * this mapping should be shared between all the VMAs,
3466         * __unmap_hugepage_range() is called as the lock is already held
3467         */
3468        i_mmap_lock_write(mapping);
3469        vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3470                /* Do not unmap the current VMA */
3471                if (iter_vma == vma)
3472                        continue;
3473
3474                /*
3475                 * Shared VMAs have their own reserves and do not affect
3476                 * MAP_PRIVATE accounting but it is possible that a shared
3477                 * VMA is using the same page so check and skip such VMAs.
3478                 */
3479                if (iter_vma->vm_flags & VM_MAYSHARE)
3480                        continue;
3481
3482                /*
3483                 * Unmap the page from other VMAs without their own reserves.
3484                 * They get marked to be SIGKILLed if they fault in these
3485                 * areas. This is because a future no-page fault on this VMA
3486                 * could insert a zeroed page instead of the data existing
3487                 * from the time of fork. This would look like data corruption
3488                 */
3489                if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3490                        unmap_hugepage_range(iter_vma, address,
3491                                             address + huge_page_size(h), page);
3492        }
3493        i_mmap_unlock_write(mapping);
3494}
3495
3496/*
3497 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3498 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3499 * cannot race with other handlers or page migration.
3500 * Keep the pte_same checks anyway to make transition from the mutex easier.
3501 */
3502static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3503                       unsigned long address, pte_t *ptep,
3504                       struct page *pagecache_page, spinlock_t *ptl)
3505{
3506        pte_t pte;
3507        struct hstate *h = hstate_vma(vma);
3508        struct page *old_page, *new_page;
3509        int ret = 0, outside_reserve = 0;
3510        unsigned long mmun_start;       /* For mmu_notifiers */
3511        unsigned long mmun_end;         /* For mmu_notifiers */
3512
3513        pte = huge_ptep_get(ptep);
3514        old_page = pte_page(pte);
3515
3516retry_avoidcopy:
3517        /* If no-one else is actually using this page, avoid the copy
3518         * and just make the page writable */
3519        if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3520                page_move_anon_rmap(old_page, vma);
3521                set_huge_ptep_writable(vma, address, ptep);
3522                return 0;
3523        }
3524
3525        /*
3526         * If the process that created a MAP_PRIVATE mapping is about to
3527         * perform a COW due to a shared page count, attempt to satisfy
3528         * the allocation without using the existing reserves. The pagecache
3529         * page is used to determine if the reserve at this address was
3530         * consumed or not. If reserves were used, a partial faulted mapping
3531         * at the time of fork() could consume its reserves on COW instead
3532         * of the full address range.
3533         */
3534        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3535                        old_page != pagecache_page)
3536                outside_reserve = 1;
3537
3538        get_page(old_page);
3539
3540        /*
3541         * Drop page table lock as buddy allocator may be called. It will
3542         * be acquired again before returning to the caller, as expected.
3543         */
3544        spin_unlock(ptl);
3545        new_page = alloc_huge_page(vma, address, outside_reserve);
3546
3547        if (IS_ERR(new_page)) {
3548                /*
3549                 * If a process owning a MAP_PRIVATE mapping fails to COW,
3550                 * it is due to references held by a child and an insufficient
3551                 * huge page pool. To guarantee the original mappers
3552                 * reliability, unmap the page from child processes. The child
3553                 * may get SIGKILLed if it later faults.
3554                 */
3555                if (outside_reserve) {
3556                        put_page(old_page);
3557                        BUG_ON(huge_pte_none(pte));
3558                        unmap_ref_private(mm, vma, old_page, address);
3559                        BUG_ON(huge_pte_none(pte));
3560                        spin_lock(ptl);
3561                        ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3562                                               huge_page_size(h));
3563                        if (likely(ptep &&
3564                                   pte_same(huge_ptep_get(ptep), pte)))
3565                                goto retry_avoidcopy;
3566                        /*
3567                         * race occurs while re-acquiring page table
3568                         * lock, and our job is done.
3569                         */
3570                        return 0;
3571                }
3572
3573                ret = (PTR_ERR(new_page) == -ENOMEM) ?
3574                        VM_FAULT_OOM : VM_FAULT_SIGBUS;
3575                goto out_release_old;
3576        }
3577
3578        /*
3579         * When the original hugepage is shared one, it does not have
3580         * anon_vma prepared.
3581         */
3582        if (unlikely(anon_vma_prepare(vma))) {
3583                ret = VM_FAULT_OOM;
3584                goto out_release_all;
3585        }
3586
3587        copy_user_huge_page(new_page, old_page, address, vma,
3588                            pages_per_huge_page(h));
3589        __SetPageUptodate(new_page);
3590        set_page_huge_active(new_page);
3591
3592        mmun_start = address & huge_page_mask(h);
3593        mmun_end = mmun_start + huge_page_size(h);
3594        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3595
3596        /*
3597         * Retake the page table lock to check for racing updates
3598         * before the page tables are altered
3599         */
3600        spin_lock(ptl);
3601        ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3602                               huge_page_size(h));
3603        if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3604                ClearPagePrivate(new_page);
3605
3606                /* Break COW */
3607                huge_ptep_clear_flush(vma, address, ptep);
3608                mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3609                set_huge_pte_at(mm, address, ptep,
3610                                make_huge_pte(vma, new_page, 1));
3611                page_remove_rmap(old_page, true);
3612                hugepage_add_new_anon_rmap(new_page, vma, address);
3613                /* Make the old page be freed below */
3614                new_page = old_page;
3615        }
3616        spin_unlock(ptl);
3617        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3618out_release_all:
3619        restore_reserve_on_error(h, vma, address, new_page);
3620        put_page(new_page);
3621out_release_old:
3622        put_page(old_page);
3623
3624        spin_lock(ptl); /* Caller expects lock to be held */
3625        return ret;
3626}
3627
3628/* Return the pagecache page at a given address within a VMA */
3629static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3630                        struct vm_area_struct *vma, unsigned long address)
3631{
3632        struct address_space *mapping;
3633        pgoff_t idx;
3634
3635        mapping = vma->vm_file->f_mapping;
3636        idx = vma_hugecache_offset(h, vma, address);
3637
3638        return find_lock_page(mapping, idx);
3639}
3640
3641/*
3642 * Return whether there is a pagecache page to back given address within VMA.
3643 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3644 */
3645static bool hugetlbfs_pagecache_present(struct hstate *h,
3646                        struct vm_area_struct *vma, unsigned long address)
3647{
3648        struct address_space *mapping;
3649        pgoff_t idx;
3650        struct page *page;
3651
3652        mapping = vma->vm_file->f_mapping;
3653        idx = vma_hugecache_offset(h, vma, address);
3654
3655        page = find_get_page(mapping, idx);
3656        if (page)
3657                put_page(page);
3658        return page != NULL;
3659}
3660
3661int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3662                           pgoff_t idx)
3663{
3664        struct inode *inode = mapping->host;
3665        struct hstate *h = hstate_inode(inode);
3666        int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3667
3668        if (err)
3669                return err;
3670        ClearPagePrivate(page);
3671
3672        spin_lock(&inode->i_lock);
3673        inode->i_blocks += blocks_per_huge_page(h);
3674        spin_unlock(&inode->i_lock);
3675        return 0;
3676}
3677
3678static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3679                           struct address_space *mapping, pgoff_t idx,
3680                           unsigned long address, pte_t *ptep, unsigned int flags)
3681{
3682        struct hstate *h = hstate_vma(vma);
3683        int ret = VM_FAULT_SIGBUS;
3684        int anon_rmap = 0;
3685        unsigned long size;
3686        struct page *page;
3687        pte_t new_pte;
3688        spinlock_t *ptl;
3689
3690        /*
3691         * Currently, we are forced to kill the process in the event the
3692         * original mapper has unmapped pages from the child due to a failed
3693         * COW. Warn that such a situation has occurred as it may not be obvious
3694         */
3695        if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3696                pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3697                           current->pid);
3698                return ret;
3699        }
3700
3701        /*
3702         * Use page lock to guard against racing truncation
3703         * before we get page_table_lock.
3704         */
3705retry:
3706        page = find_lock_page(mapping, idx);
3707        if (!page) {
3708                size = i_size_read(mapping->host) >> huge_page_shift(h);
3709                if (idx >= size)
3710                        goto out;
3711
3712                /*
3713                 * Check for page in userfault range
3714                 */
3715                if (userfaultfd_missing(vma)) {
3716                        u32 hash;
3717                        struct vm_fault vmf = {
3718                                .vma = vma,
3719                                .address = address,
3720                                .flags = flags,
3721                                /*
3722                                 * Hard to debug if it ends up being
3723                                 * used by a callee that assumes
3724                                 * something about the other
3725                                 * uninitialized fields... same as in
3726                                 * memory.c
3727                                 */
3728                        };
3729
3730                        /*
3731                         * hugetlb_fault_mutex must be dropped before
3732                         * handling userfault.  Reacquire after handling
3733                         * fault to make calling code simpler.
3734                         */
3735                        hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3736                                                        idx, address);
3737                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3738                        ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3739                        mutex_lock(&hugetlb_fault_mutex_table[hash]);
3740                        goto out;
3741                }
3742
3743                page = alloc_huge_page(vma, address, 0);
3744                if (IS_ERR(page)) {
3745                        ret = PTR_ERR(page);
3746                        if (ret == -ENOMEM)
3747                                ret = VM_FAULT_OOM;
3748                        else
3749                                ret = VM_FAULT_SIGBUS;
3750                        goto out;
3751                }
3752                clear_huge_page(page, address, pages_per_huge_page(h));
3753                __SetPageUptodate(page);
3754                set_page_huge_active(page);
3755
3756                if (vma->vm_flags & VM_MAYSHARE) {
3757                        int err = huge_add_to_page_cache(page, mapping, idx);
3758                        if (err) {
3759                                put_page(page);
3760                                if (err == -EEXIST)
3761                                        goto retry;
3762                                goto out;
3763                        }
3764                } else {
3765                        lock_page(page);
3766                        if (unlikely(anon_vma_prepare(vma))) {
3767                                ret = VM_FAULT_OOM;
3768                                goto backout_unlocked;
3769                        }
3770                        anon_rmap = 1;
3771                }
3772        } else {
3773                /*
3774                 * If memory error occurs between mmap() and fault, some process
3775                 * don't have hwpoisoned swap entry for errored virtual address.
3776                 * So we need to block hugepage fault by PG_hwpoison bit check.
3777                 */
3778                if (unlikely(PageHWPoison(page))) {
3779                        ret = VM_FAULT_HWPOISON |
3780                                VM_FAULT_SET_HINDEX(hstate_index(h));
3781                        goto backout_unlocked;
3782                }
3783        }
3784
3785        /*
3786         * If we are going to COW a private mapping later, we examine the
3787         * pending reservations for this page now. This will ensure that
3788         * any allocations necessary to record that reservation occur outside
3789         * the spinlock.
3790         */
3791        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3792                if (vma_needs_reservation(h, vma, address) < 0) {
3793                        ret = VM_FAULT_OOM;
3794                        goto backout_unlocked;
3795                }
3796                /* Just decrements count, does not deallocate */
3797                vma_end_reservation(h, vma, address);
3798        }
3799
3800        ptl = huge_pte_lock(h, mm, ptep);
3801        size = i_size_read(mapping->host) >> huge_page_shift(h);
3802        if (idx >= size)
3803                goto backout;
3804
3805        ret = 0;
3806        if (!huge_pte_none(huge_ptep_get(ptep)))
3807                goto backout;
3808
3809        if (anon_rmap) {
3810                ClearPagePrivate(page);
3811                hugepage_add_new_anon_rmap(page, vma, address);
3812        } else
3813                page_dup_rmap(page, true);
3814        new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3815                                && (vma->vm_flags & VM_SHARED)));
3816        set_huge_pte_at(mm, address, ptep, new_pte);
3817
3818        hugetlb_count_add(pages_per_huge_page(h), mm);
3819        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3820                /* Optimization, do the COW without a second fault */
3821                ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3822        }
3823
3824        spin_unlock(ptl);
3825        unlock_page(page);
3826out:
3827        return ret;
3828
3829backout:
3830        spin_unlock(ptl);
3831backout_unlocked:
3832        unlock_page(page);
3833        restore_reserve_on_error(h, vma, address, page);
3834        put_page(page);
3835        goto out;
3836}
3837
3838#ifdef CONFIG_SMP
3839u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3840                            struct vm_area_struct *vma,
3841                            struct address_space *mapping,
3842                            pgoff_t idx, unsigned long address)
3843{
3844        unsigned long key[2];
3845        u32 hash;
3846
3847        if (vma->vm_flags & VM_SHARED) {
3848                key[0] = (unsigned long) mapping;
3849                key[1] = idx;
3850        } else {
3851                key[0] = (unsigned long) mm;
3852                key[1] = address >> huge_page_shift(h);
3853        }
3854
3855        hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3856
3857        return hash & (num_fault_mutexes - 1);
3858}
3859#else
3860/*
3861 * For uniprocesor systems we always use a single mutex, so just
3862 * return 0 and avoid the hashing overhead.
3863 */
3864u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3865                            struct vm_area_struct *vma,
3866                            struct address_space *mapping,
3867                            pgoff_t idx, unsigned long address)
3868{
3869        return 0;
3870}
3871#endif
3872
3873int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3874                        unsigned long address, unsigned int flags)
3875{
3876        pte_t *ptep, entry;
3877        spinlock_t *ptl;
3878        int ret;
3879        u32 hash;
3880        pgoff_t idx;
3881        struct page *page = NULL;
3882        struct page *pagecache_page = NULL;
3883        struct hstate *h = hstate_vma(vma);
3884        struct address_space *mapping;
3885        int need_wait_lock = 0;
3886
3887        address &= huge_page_mask(h);
3888
3889        ptep = huge_pte_offset(mm, address, huge_page_size(h));
3890        if (ptep) {
3891                entry = huge_ptep_get(ptep);
3892                if (unlikely(is_hugetlb_entry_migration(entry))) {
3893                        migration_entry_wait_huge(vma, mm, ptep);
3894                        return 0;
3895                } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3896                        return VM_FAULT_HWPOISON_LARGE |
3897                                VM_FAULT_SET_HINDEX(hstate_index(h));
3898        } else {
3899                ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3900                if (!ptep)
3901                        return VM_FAULT_OOM;
3902        }
3903
3904        mapping = vma->vm_file->f_mapping;
3905        idx = vma_hugecache_offset(h, vma, address);
3906
3907        /*
3908         * Serialize hugepage allocation and instantiation, so that we don't
3909         * get spurious allocation failures if two CPUs race to instantiate
3910         * the same page in the page cache.
3911         */
3912        hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3913        mutex_lock(&hugetlb_fault_mutex_table[hash]);
3914
3915        entry = huge_ptep_get(ptep);
3916        if (huge_pte_none(entry)) {
3917                ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3918                goto out_mutex;
3919        }
3920
3921        ret = 0;
3922
3923        /*
3924         * entry could be a migration/hwpoison entry at this point, so this
3925         * check prevents the kernel from going below assuming that we have
3926         * a active hugepage in pagecache. This goto expects the 2nd page fault,
3927         * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3928         * handle it.
3929         */
3930        if (!pte_present(entry))
3931                goto out_mutex;
3932
3933        /*
3934         * If we are going to COW the mapping later, we examine the pending
3935         * reservations for this page now. This will ensure that any
3936         * allocations necessary to record that reservation occur outside the
3937         * spinlock. For private mappings, we also lookup the pagecache
3938         * page now as it is used to determine if a reservation has been
3939         * consumed.
3940         */
3941        if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3942                if (vma_needs_reservation(h, vma, address) < 0) {
3943                        ret = VM_FAULT_OOM;
3944                        goto out_mutex;
3945                }
3946                /* Just decrements count, does not deallocate */
3947                vma_end_reservation(h, vma, address);
3948
3949                if (!(vma->vm_flags & VM_MAYSHARE))
3950                        pagecache_page = hugetlbfs_pagecache_page(h,
3951                                                                vma, address);
3952        }
3953
3954        ptl = huge_pte_lock(h, mm, ptep);
3955
3956        /* Check for a racing update before calling hugetlb_cow */
3957        if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3958                goto out_ptl;
3959
3960        /*
3961         * hugetlb_cow() requires page locks of pte_page(entry) and
3962         * pagecache_page, so here we need take the former one
3963         * when page != pagecache_page or !pagecache_page.
3964         */
3965        page = pte_page(entry);
3966        if (page != pagecache_page)
3967                if (!trylock_page(page)) {
3968                        need_wait_lock = 1;
3969                        goto out_ptl;
3970                }
3971
3972        get_page(page);
3973
3974        if (flags & FAULT_FLAG_WRITE) {
3975                if (!huge_pte_write(entry)) {
3976                        ret = hugetlb_cow(mm, vma, address, ptep,
3977                                          pagecache_page, ptl);
3978                        goto out_put_page;
3979                }
3980                entry = huge_pte_mkdirty(entry);
3981        }
3982        entry = pte_mkyoung(entry);
3983        if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3984                                                flags & FAULT_FLAG_WRITE))
3985                update_mmu_cache(vma, address, ptep);
3986out_put_page:
3987        if (page != pagecache_page)
3988                unlock_page(page);
3989        put_page(page);
3990out_ptl:
3991        spin_unlock(ptl);
3992
3993        if (pagecache_page) {
3994                unlock_page(pagecache_page);
3995                put_page(pagecache_page);
3996        }
3997out_mutex:
3998        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3999        /*
4000         * Generally it's safe to hold refcount during waiting page lock. But
4001         * here we just wait to defer the next page fault to avoid busy loop and
4002         * the page is not used after unlocked before returning from the current
4003         * page fault. So we are safe from accessing freed page, even if we wait
4004         * here without taking refcount.
4005         */
4006        if (need_wait_lock)
4007                wait_on_page_locked(page);
4008        return ret;
4009}
4010
4011/*
4012 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4013 * modifications for huge pages.
4014 */
4015int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4016                            pte_t *dst_pte,
4017                            struct vm_area_struct *dst_vma,
4018                            unsigned long dst_addr,
4019                            unsigned long src_addr,
4020                            struct page **pagep)
4021{
4022        struct address_space *mapping;
4023        pgoff_t idx;
4024        unsigned long size;
4025        int vm_shared = dst_vma->vm_flags & VM_SHARED;
4026        struct hstate *h = hstate_vma(dst_vma);
4027        pte_t _dst_pte;
4028        spinlock_t *ptl;
4029        int ret;
4030        struct page *page;
4031
4032        if (!*pagep) {
4033                ret = -ENOMEM;
4034                page = alloc_huge_page(dst_vma, dst_addr, 0);
4035                if (IS_ERR(page))
4036                        goto out;
4037
4038                ret = copy_huge_page_from_user(page,
4039                                                (const void __user *) src_addr,
4040                                                pages_per_huge_page(h), false);
4041
4042                /* fallback to copy_from_user outside mmap_sem */
4043                if (unlikely(ret)) {
4044                        ret = -EFAULT;
4045                        *pagep = page;
4046                        /* don't free the page */
4047                        goto out;
4048                }
4049        } else {
4050                page = *pagep;
4051                *pagep = NULL;
4052        }
4053
4054        /*
4055         * The memory barrier inside __SetPageUptodate makes sure that
4056         * preceding stores to the page contents become visible before
4057         * the set_pte_at() write.
4058         */
4059        __SetPageUptodate(page);
4060        set_page_huge_active(page);
4061
4062        mapping = dst_vma->vm_file->f_mapping;
4063        idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4064
4065        /*
4066         * If shared, add to page cache
4067         */
4068        if (vm_shared) {
4069                size = i_size_read(mapping->host) >> huge_page_shift(h);
4070                ret = -EFAULT;
4071                if (idx >= size)
4072                        goto out_release_nounlock;
4073
4074                /*
4075                 * Serialization between remove_inode_hugepages() and
4076                 * huge_add_to_page_cache() below happens through the
4077                 * hugetlb_fault_mutex_table that here must be hold by
4078                 * the caller.
4079                 */
4080                ret = huge_add_to_page_cache(page, mapping, idx);
4081                if (ret)
4082                        goto out_release_nounlock;
4083        }
4084
4085        ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4086        spin_lock(ptl);
4087
4088        /*
4089         * Recheck the i_size after holding PT lock to make sure not
4090         * to leave any page mapped (as page_mapped()) beyond the end
4091         * of the i_size (remove_inode_hugepages() is strict about
4092         * enforcing that). If we bail out here, we'll also leave a
4093         * page in the radix tree in the vm_shared case beyond the end
4094         * of the i_size, but remove_inode_hugepages() will take care
4095         * of it as soon as we drop the hugetlb_fault_mutex_table.
4096         */
4097        size = i_size_read(mapping->host) >> huge_page_shift(h);
4098        ret = -EFAULT;
4099        if (idx >= size)
4100                goto out_release_unlock;
4101
4102        ret = -EEXIST;
4103        if (!huge_pte_none(huge_ptep_get(dst_pte)))
4104                goto out_release_unlock;
4105
4106        if (vm_shared) {
4107                page_dup_rmap(page, true);
4108        } else {
4109                ClearPagePrivate(page);
4110                hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4111        }
4112
4113        _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4114        if (dst_vma->vm_flags & VM_WRITE)
4115                _dst_pte = huge_pte_mkdirty(_dst_pte);
4116        _dst_pte = pte_mkyoung(_dst_pte);
4117
4118        set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4119
4120        (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4121                                        dst_vma->vm_flags & VM_WRITE);
4122        hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4123
4124        /* No need to invalidate - it was non-present before */
4125        update_mmu_cache(dst_vma, dst_addr, dst_pte);
4126
4127        spin_unlock(ptl);
4128        if (vm_shared)
4129                unlock_page(page);
4130        ret = 0;
4131out:
4132        return ret;
4133out_release_unlock:
4134        spin_unlock(ptl);
4135        if (vm_shared)
4136                unlock_page(page);
4137out_release_nounlock:
4138        put_page(page);
4139        goto out;
4140}
4141
4142long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4143                         struct page **pages, struct vm_area_struct **vmas,
4144                         unsigned long *position, unsigned long *nr_pages,
4145                         long i, unsigned int flags, int *nonblocking)
4146{
4147        unsigned long pfn_offset;
4148        unsigned long vaddr = *position;
4149        unsigned long remainder = *nr_pages;
4150        struct hstate *h = hstate_vma(vma);
4151        int err = -EFAULT;
4152
4153        while (vaddr < vma->vm_end && remainder) {
4154                pte_t *pte;
4155                spinlock_t *ptl = NULL;
4156                int absent;
4157                struct page *page;
4158
4159                /*
4160                 * If we have a pending SIGKILL, don't keep faulting pages and
4161                 * potentially allocating memory.
4162                 */
4163                if (unlikely(fatal_signal_pending(current))) {
4164                        remainder = 0;
4165                        break;
4166                }
4167
4168                /*
4169                 * Some archs (sparc64, sh*) have multiple pte_ts to
4170                 * each hugepage.  We have to make sure we get the
4171                 * first, for the page indexing below to work.
4172                 *
4173                 * Note that page table lock is not held when pte is null.
4174                 */
4175                pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4176                                      huge_page_size(h));
4177                if (pte)
4178                        ptl = huge_pte_lock(h, mm, pte);
4179                absent = !pte || huge_pte_none(huge_ptep_get(pte));
4180
4181                /*
4182                 * When coredumping, it suits get_dump_page if we just return
4183                 * an error where there's an empty slot with no huge pagecache
4184                 * to back it.  This way, we avoid allocating a hugepage, and
4185                 * the sparse dumpfile avoids allocating disk blocks, but its
4186                 * huge holes still show up with zeroes where they need to be.
4187                 */
4188                if (absent && (flags & FOLL_DUMP) &&
4189                    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4190                        if (pte)
4191                                spin_unlock(ptl);
4192                        remainder = 0;
4193                        break;
4194                }
4195
4196                /*
4197                 * We need call hugetlb_fault for both hugepages under migration
4198                 * (in which case hugetlb_fault waits for the migration,) and
4199                 * hwpoisoned hugepages (in which case we need to prevent the
4200                 * caller from accessing to them.) In order to do this, we use
4201                 * here is_swap_pte instead of is_hugetlb_entry_migration and
4202                 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4203                 * both cases, and because we can't follow correct pages
4204                 * directly from any kind of swap entries.
4205                 */
4206                if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4207                    ((flags & FOLL_WRITE) &&
4208                      !huge_pte_write(huge_ptep_get(pte)))) {
4209                        int ret;
4210                        unsigned int fault_flags = 0;
4211
4212                        if (pte)
4213                                spin_unlock(ptl);
4214                        if (flags & FOLL_WRITE)
4215                                fault_flags |= FAULT_FLAG_WRITE;
4216                        if (nonblocking)
4217                                fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4218                        if (flags & FOLL_NOWAIT)
4219                                fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4220                                        FAULT_FLAG_RETRY_NOWAIT;
4221                        if (flags & FOLL_TRIED) {
4222                                VM_WARN_ON_ONCE(fault_flags &
4223                                                FAULT_FLAG_ALLOW_RETRY);
4224                                fault_flags |= FAULT_FLAG_TRIED;
4225                        }
4226                        ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4227                        if (ret & VM_FAULT_ERROR) {
4228                                err = vm_fault_to_errno(ret, flags);
4229                                remainder = 0;
4230                                break;
4231                        }
4232                        if (ret & VM_FAULT_RETRY) {
4233                                if (nonblocking)
4234                                        *nonblocking = 0;
4235                                *nr_pages = 0;
4236                                /*
4237                                 * VM_FAULT_RETRY must not return an
4238                                 * error, it will return zero
4239                                 * instead.
4240                                 *
4241                                 * No need to update "position" as the
4242                                 * caller will not check it after
4243                                 * *nr_pages is set to 0.
4244                                 */
4245                                return i;
4246                        }
4247                        continue;
4248                }
4249
4250                pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4251                page = pte_page(huge_ptep_get(pte));
4252same_page:
4253                if (pages) {
4254                        pages[i] = mem_map_offset(page, pfn_offset);
4255                        get_page(pages[i]);
4256                }
4257
4258                if (vmas)
4259                        vmas[i] = vma;
4260
4261                vaddr += PAGE_SIZE;
4262                ++pfn_offset;
4263                --remainder;
4264                ++i;
4265                if (vaddr < vma->vm_end && remainder &&
4266                                pfn_offset < pages_per_huge_page(h)) {
4267                        /*
4268                         * We use pfn_offset to avoid touching the pageframes
4269                         * of this compound page.
4270                         */
4271                        goto same_page;
4272                }
4273                spin_unlock(ptl);
4274        }
4275        *nr_pages = remainder;
4276        /*
4277         * setting position is actually required only if remainder is
4278         * not zero but it's faster not to add a "if (remainder)"
4279         * branch.
4280         */
4281        *position = vaddr;
4282
4283        return i ? i : err;
4284}
4285
4286#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4287/*
4288 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4289 * implement this.
4290 */
4291#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4292#endif
4293
4294unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4295                unsigned long address, unsigned long end, pgprot_t newprot)
4296{
4297        struct mm_struct *mm = vma->vm_mm;
4298        unsigned long start = address;
4299        pte_t *ptep;
4300        pte_t pte;
4301        struct hstate *h = hstate_vma(vma);
4302        unsigned long pages = 0;
4303
4304        BUG_ON(address >= end);
4305        flush_cache_range(vma, address, end);
4306
4307        mmu_notifier_invalidate_range_start(mm, start, end);
4308        i_mmap_lock_write(vma->vm_file->f_mapping);
4309        for (; address < end; address += huge_page_size(h)) {
4310                spinlock_t *ptl;
4311                ptep = huge_pte_offset(mm, address, huge_page_size(h));
4312                if (!ptep)
4313                        continue;
4314                ptl = huge_pte_lock(h, mm, ptep);
4315                if (huge_pmd_unshare(mm, &address, ptep)) {
4316                        pages++;
4317                        spin_unlock(ptl);
4318                        continue;
4319                }
4320                pte = huge_ptep_get(ptep);
4321                if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4322                        spin_unlock(ptl);
4323                        continue;
4324                }
4325                if (unlikely(is_hugetlb_entry_migration(pte))) {
4326                        swp_entry_t entry = pte_to_swp_entry(pte);
4327
4328                        if (is_write_migration_entry(entry)) {
4329                                pte_t newpte;
4330
4331                                make_migration_entry_read(&entry);
4332                                newpte = swp_entry_to_pte(entry);
4333                                set_huge_swap_pte_at(mm, address, ptep,
4334                                                     newpte, huge_page_size(h));
4335                                pages++;
4336                        }
4337                        spin_unlock(ptl);
4338                        continue;
4339                }
4340                if (!huge_pte_none(pte)) {
4341                        pte = huge_ptep_get_and_clear(mm, address, ptep);
4342                        pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4343                        pte = arch_make_huge_pte(pte, vma, NULL, 0);
4344                        set_huge_pte_at(mm, address, ptep, pte);
4345                        pages++;
4346                }
4347                spin_unlock(ptl);
4348        }
4349        /*
4350         * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4351         * may have cleared our pud entry and done put_page on the page table:
4352         * once we release i_mmap_rwsem, another task can do the final put_page
4353         * and that page table be reused and filled with junk.
4354         */
4355        flush_hugetlb_tlb_range(vma, start, end);
4356        /*
4357         * No need to call mmu_notifier_invalidate_range() we are downgrading
4358         * page table protection not changing it to point to a new page.
4359         *
4360         * See Documentation/vm/mmu_notifier.txt
4361         */
4362        i_mmap_unlock_write(vma->vm_file->f_mapping);
4363        mmu_notifier_invalidate_range_end(mm, start, end);
4364
4365        return pages << h->order;
4366}
4367
4368int hugetlb_reserve_pages(struct inode *inode,
4369                                        long from, long to,
4370                                        struct vm_area_struct *vma,
4371                                        vm_flags_t vm_flags)
4372{
4373        long ret, chg;
4374        struct hstate *h = hstate_inode(inode);
4375        struct hugepage_subpool *spool = subpool_inode(inode);
4376        struct resv_map *resv_map;
4377        long gbl_reserve;
4378
4379        /* This should never happen */
4380        if (from > to) {
4381                VM_WARN(1, "%s called with a negative range\n", __func__);
4382                return -EINVAL;
4383        }
4384
4385        /*
4386         * Only apply hugepage reservation if asked. At fault time, an
4387         * attempt will be made for VM_NORESERVE to allocate a page
4388         * without using reserves
4389         */
4390        if (vm_flags & VM_NORESERVE)
4391                return 0;
4392
4393        /*
4394         * Shared mappings base their reservation on the number of pages that
4395         * are already allocated on behalf of the file. Private mappings need
4396         * to reserve the full area even if read-only as mprotect() may be
4397         * called to make the mapping read-write. Assume !vma is a shm mapping
4398         */
4399        if (!vma || vma->vm_flags & VM_MAYSHARE) {
4400                resv_map = inode_resv_map(inode);
4401
4402                chg = region_chg(resv_map, from, to);
4403
4404        } else {
4405                resv_map = resv_map_alloc();
4406                if (!resv_map)
4407                        return -ENOMEM;
4408
4409                chg = to - from;
4410
4411                set_vma_resv_map(vma, resv_map);
4412                set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4413        }
4414
4415        if (chg < 0) {
4416                ret = chg;
4417                goto out_err;
4418        }
4419
4420        /*
4421         * There must be enough pages in the subpool for the mapping. If
4422         * the subpool has a minimum size, there may be some global
4423         * reservations already in place (gbl_reserve).
4424         */
4425        gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4426        if (gbl_reserve < 0) {
4427                ret = -ENOSPC;
4428                goto out_err;
4429        }
4430
4431        /*
4432         * Check enough hugepages are available for the reservation.
4433         * Hand the pages back to the subpool if there are not
4434         */
4435        ret = hugetlb_acct_memory(h, gbl_reserve);
4436        if (ret < 0) {
4437                /* put back original number of pages, chg */
4438                (void)hugepage_subpool_put_pages(spool, chg);
4439                goto out_err;
4440        }
4441
4442        /*
4443         * Account for the reservations made. Shared mappings record regions
4444         * that have reservations as they are shared by multiple VMAs.
4445         * When the last VMA disappears, the region map says how much
4446         * the reservation was and the page cache tells how much of
4447         * the reservation was consumed. Private mappings are per-VMA and
4448         * only the consumed reservations are tracked. When the VMA
4449         * disappears, the original reservation is the VMA size and the
4450         * consumed reservations are stored in the map. Hence, nothing
4451         * else has to be done for private mappings here
4452         */
4453        if (!vma || vma->vm_flags & VM_MAYSHARE) {
4454                long add = region_add(resv_map, from, to);
4455
4456                if (unlikely(chg > add)) {
4457                        /*
4458                         * pages in this range were added to the reserve
4459                         * map between region_chg and region_add.  This
4460                         * indicates a race with alloc_huge_page.  Adjust
4461                         * the subpool and reserve counts modified above
4462                         * based on the difference.
4463                         */
4464                        long rsv_adjust;
4465
4466                        rsv_adjust = hugepage_subpool_put_pages(spool,
4467                                                                chg - add);
4468                        hugetlb_acct_memory(h, -rsv_adjust);
4469                }
4470        }
4471        return 0;
4472out_err:
4473        if (!vma || vma->vm_flags & VM_MAYSHARE)
4474                /* Don't call region_abort if region_chg failed */
4475                if (chg >= 0)
4476                        region_abort(resv_map, from, to);
4477        if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4478                kref_put(&resv_map->refs, resv_map_release);
4479        return ret;
4480}
4481
4482long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4483                                                                long freed)
4484{
4485        struct hstate *h = hstate_inode(inode);
4486        struct resv_map *resv_map = inode_resv_map(inode);
4487        long chg = 0;
4488        struct hugepage_subpool *spool = subpool_inode(inode);
4489        long gbl_reserve;
4490
4491        if (resv_map) {
4492                chg = region_del(resv_map, start, end);
4493                /*
4494                 * region_del() can fail in the rare case where a region
4495                 * must be split and another region descriptor can not be
4496                 * allocated.  If end == LONG_MAX, it will not fail.
4497                 */
4498                if (chg < 0)
4499                        return chg;
4500        }
4501
4502        spin_lock(&inode->i_lock);
4503        inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4504        spin_unlock(&inode->i_lock);
4505
4506        /*
4507         * If the subpool has a minimum size, the number of global
4508         * reservations to be released may be adjusted.
4509         */
4510        gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4511        hugetlb_acct_memory(h, -gbl_reserve);
4512
4513        return 0;
4514}
4515
4516#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4517static unsigned long page_table_shareable(struct vm_area_struct *svma,
4518                                struct vm_area_struct *vma,
4519                                unsigned long addr, pgoff_t idx)
4520{
4521        unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4522                                svma->vm_start;
4523        unsigned long sbase = saddr & PUD_MASK;
4524        unsigned long s_end = sbase + PUD_SIZE;
4525
4526        /* Allow segments to share if only one is marked locked */
4527        unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4528        unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4529
4530        /*
4531         * match the virtual addresses, permission and the alignment of the
4532         * page table page.
4533         */
4534        if (pmd_index(addr) != pmd_index(saddr) ||
4535            vm_flags != svm_flags ||
4536            sbase < svma->vm_start || svma->vm_end < s_end)
4537                return 0;
4538
4539        return saddr;
4540}
4541
4542static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4543{
4544        unsigned long base = addr & PUD_MASK;
4545        unsigned long end = base + PUD_SIZE;
4546
4547        /*
4548         * check on proper vm_flags and page table alignment
4549         */
4550        if (vma->vm_flags & VM_MAYSHARE &&
4551            vma->vm_start <= base && end <= vma->vm_end)
4552                return true;
4553        return false;
4554}
4555
4556/*
4557 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4558 * and returns the corresponding pte. While this is not necessary for the
4559 * !shared pmd case because we can allocate the pmd later as well, it makes the
4560 * code much cleaner. pmd allocation is essential for the shared case because
4561 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4562 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4563 * bad pmd for sharing.
4564 */
4565pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4566{
4567        struct vm_area_struct *vma = find_vma(mm, addr);
4568        struct address_space *mapping = vma->vm_file->f_mapping;
4569        pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4570                        vma->vm_pgoff;
4571        struct vm_area_struct *svma;
4572        unsigned long saddr;
4573        pte_t *spte = NULL;
4574        pte_t *pte;
4575        spinlock_t *ptl;
4576
4577        if (!vma_shareable(vma, addr))
4578                return (pte_t *)pmd_alloc(mm, pud, addr);
4579
4580        i_mmap_lock_write(mapping);
4581        vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4582                if (svma == vma)
4583                        continue;
4584
4585                saddr = page_table_shareable(svma, vma, addr, idx);
4586                if (saddr) {
4587                        spte = huge_pte_offset(svma->vm_mm, saddr,
4588                                               vma_mmu_pagesize(svma));
4589                        if (spte) {
4590                                get_page(virt_to_page(spte));
4591                                break;
4592                        }
4593                }
4594        }
4595
4596        if (!spte)
4597                goto out;
4598
4599        ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4600        if (pud_none(*pud)) {
4601                pud_populate(mm, pud,
4602                                (pmd_t *)((unsigned long)spte & PAGE_MASK));
4603                mm_inc_nr_pmds(mm);
4604        } else {
4605                put_page(virt_to_page(spte));
4606        }
4607        spin_unlock(ptl);
4608out:
4609        pte = (pte_t *)pmd_alloc(mm, pud, addr);
4610        i_mmap_unlock_write(mapping);
4611        return pte;
4612}
4613
4614/*
4615 * unmap huge page backed by shared pte.
4616 *
4617 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4618 * indicated by page_count > 1, unmap is achieved by clearing pud and
4619 * decrementing the ref count. If count == 1, the pte page is not shared.
4620 *
4621 * called with page table lock held.
4622 *
4623 * returns: 1 successfully unmapped a shared pte page
4624 *          0 the underlying pte page is not shared, or it is the last user
4625 */
4626int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4627{
4628        pgd_t *pgd = pgd_offset(mm, *addr);
4629        p4d_t *p4d = p4d_offset(pgd, *addr);
4630        pud_t *pud = pud_offset(p4d, *addr);
4631
4632        BUG_ON(page_count(virt_to_page(ptep)) == 0);
4633        if (page_count(virt_to_page(ptep)) == 1)
4634                return 0;
4635
4636        pud_clear(pud);
4637        put_page(virt_to_page(ptep));
4638        mm_dec_nr_pmds(mm);
4639        *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4640        return 1;
4641}
4642#define want_pmd_share()        (1)
4643#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4644pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4645{
4646        return NULL;
4647}
4648
4649int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4650{
4651        return 0;
4652}
4653#define want_pmd_share()        (0)
4654#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4655
4656#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4657pte_t *huge_pte_alloc(struct mm_struct *mm,
4658                        unsigned long addr, unsigned long sz)
4659{
4660        pgd_t *pgd;
4661        p4d_t *p4d;
4662        pud_t *pud;
4663        pte_t *pte = NULL;
4664
4665        pgd = pgd_offset(mm, addr);
4666        p4d = p4d_alloc(mm, pgd, addr);
4667        if (!p4d)
4668                return NULL;
4669        pud = pud_alloc(mm, p4d, addr);
4670        if (pud) {
4671                if (sz == PUD_SIZE) {
4672                        pte = (pte_t *)pud;
4673                } else {
4674                        BUG_ON(sz != PMD_SIZE);
4675                        if (want_pmd_share() && pud_none(*pud))
4676                                pte = huge_pmd_share(mm, addr, pud);
4677                        else
4678                                pte = (pte_t *)pmd_alloc(mm, pud, addr);
4679                }
4680        }
4681        BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4682
4683        return pte;
4684}
4685
4686/*
4687 * huge_pte_offset() - Walk the page table to resolve the hugepage
4688 * entry at address @addr
4689 *
4690 * Return: Pointer to page table or swap entry (PUD or PMD) for
4691 * address @addr, or NULL if a p*d_none() entry is encountered and the
4692 * size @sz doesn't match the hugepage size at this level of the page
4693 * table.
4694 */
4695pte_t *huge_pte_offset(struct mm_struct *mm,
4696                       unsigned long addr, unsigned long sz)
4697{
4698        pgd_t *pgd;
4699        p4d_t *p4d;
4700        pud_t *pud;
4701        pmd_t *pmd;
4702
4703        pgd = pgd_offset(mm, addr);
4704        if (!pgd_present(*pgd))
4705                return NULL;
4706        p4d = p4d_offset(pgd, addr);
4707        if (!p4d_present(*p4d))
4708                return NULL;
4709
4710        pud = pud_offset(p4d, addr);
4711        if (sz != PUD_SIZE && pud_none(*pud))
4712                return NULL;
4713        /* hugepage or swap? */
4714        if (pud_huge(*pud) || !pud_present(*pud))
4715                return (pte_t *)pud;
4716
4717        pmd = pmd_offset(pud, addr);
4718        if (sz != PMD_SIZE && pmd_none(*pmd))
4719                return NULL;
4720        /* hugepage or swap? */
4721        if (pmd_huge(*pmd) || !pmd_present(*pmd))
4722                return (pte_t *)pmd;
4723
4724        return NULL;
4725}
4726
4727#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4728
4729/*
4730 * These functions are overwritable if your architecture needs its own
4731 * behavior.
4732 */
4733struct page * __weak
4734follow_huge_addr(struct mm_struct *mm, unsigned long address,
4735                              int write)
4736{
4737        return ERR_PTR(-EINVAL);
4738}
4739
4740struct page * __weak
4741follow_huge_pd(struct vm_area_struct *vma,
4742               unsigned long address, hugepd_t hpd, int flags, int pdshift)
4743{
4744        WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4745        return NULL;
4746}
4747
4748struct page * __weak
4749follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4750                pmd_t *pmd, int flags)
4751{
4752        struct page *page = NULL;
4753        spinlock_t *ptl;
4754        pte_t pte;
4755retry:
4756        ptl = pmd_lockptr(mm, pmd);
4757        spin_lock(ptl);
4758        /*
4759         * make sure that the address range covered by this pmd is not
4760         * unmapped from other threads.
4761         */
4762        if (!pmd_huge(*pmd))
4763                goto out;
4764        pte = huge_ptep_get((pte_t *)pmd);
4765        if (pte_present(pte)) {
4766                page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4767                if (flags & FOLL_GET)
4768                        get_page(page);
4769        } else {
4770                if (is_hugetlb_entry_migration(pte)) {
4771                        spin_unlock(ptl);
4772                        __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4773                        goto retry;
4774                }
4775                /*
4776                 * hwpoisoned entry is treated as no_page_table in
4777                 * follow_page_mask().
4778                 */
4779        }
4780out:
4781        spin_unlock(ptl);
4782        return page;
4783}
4784
4785struct page * __weak
4786follow_huge_pud(struct mm_struct *mm, unsigned long address,
4787                pud_t *pud, int flags)
4788{
4789        if (flags & FOLL_GET)
4790                return NULL;
4791
4792        return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4793}
4794
4795struct page * __weak
4796follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4797{
4798        if (flags & FOLL_GET)
4799                return NULL;
4800
4801        return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4802}
4803
4804bool isolate_huge_page(struct page *page, struct list_head *list)
4805{
4806        bool ret = true;
4807
4808        VM_BUG_ON_PAGE(!PageHead(page), page);
4809        spin_lock(&hugetlb_lock);
4810        if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4811                ret = false;
4812                goto unlock;
4813        }
4814        clear_page_huge_active(page);
4815        list_move_tail(&page->lru, list);
4816unlock:
4817        spin_unlock(&hugetlb_lock);
4818        return ret;
4819}
4820
4821void putback_active_hugepage(struct page *page)
4822{
4823        VM_BUG_ON_PAGE(!PageHead(page), page);
4824        spin_lock(&hugetlb_lock);
4825        set_page_huge_active(page);
4826        list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4827        spin_unlock(&hugetlb_lock);
4828        put_page(page);
4829}
4830
4831void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4832{
4833        struct hstate *h = page_hstate(oldpage);
4834
4835        hugetlb_cgroup_migrate(oldpage, newpage);
4836        set_page_owner_migrate_reason(newpage, reason);
4837
4838        /*
4839         * transfer temporary state of the new huge page. This is
4840         * reverse to other transitions because the newpage is going to
4841         * be final while the old one will be freed so it takes over
4842         * the temporary status.
4843         *
4844         * Also note that we have to transfer the per-node surplus state
4845         * here as well otherwise the global surplus count will not match
4846         * the per-node's.
4847         */
4848        if (PageHugeTemporary(newpage)) {
4849                int old_nid = page_to_nid(oldpage);
4850                int new_nid = page_to_nid(newpage);
4851
4852                SetPageHugeTemporary(oldpage);
4853                ClearPageHugeTemporary(newpage);
4854
4855                spin_lock(&hugetlb_lock);
4856                if (h->surplus_huge_pages_node[old_nid]) {
4857                        h->surplus_huge_pages_node[old_nid]--;
4858                        h->surplus_huge_pages_node[new_nid]++;
4859                }
4860                spin_unlock(&hugetlb_lock);
4861        }
4862}
4863