linux/mm/khugepaged.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/mm.h>
   5#include <linux/sched.h>
   6#include <linux/sched/mm.h>
   7#include <linux/sched/coredump.h>
   8#include <linux/mmu_notifier.h>
   9#include <linux/rmap.h>
  10#include <linux/swap.h>
  11#include <linux/mm_inline.h>
  12#include <linux/kthread.h>
  13#include <linux/khugepaged.h>
  14#include <linux/freezer.h>
  15#include <linux/mman.h>
  16#include <linux/hashtable.h>
  17#include <linux/userfaultfd_k.h>
  18#include <linux/page_idle.h>
  19#include <linux/swapops.h>
  20#include <linux/shmem_fs.h>
  21
  22#include <asm/tlb.h>
  23#include <asm/pgalloc.h>
  24#include "internal.h"
  25
  26enum scan_result {
  27        SCAN_FAIL,
  28        SCAN_SUCCEED,
  29        SCAN_PMD_NULL,
  30        SCAN_EXCEED_NONE_PTE,
  31        SCAN_PTE_NON_PRESENT,
  32        SCAN_PAGE_RO,
  33        SCAN_LACK_REFERENCED_PAGE,
  34        SCAN_PAGE_NULL,
  35        SCAN_SCAN_ABORT,
  36        SCAN_PAGE_COUNT,
  37        SCAN_PAGE_LRU,
  38        SCAN_PAGE_LOCK,
  39        SCAN_PAGE_ANON,
  40        SCAN_PAGE_COMPOUND,
  41        SCAN_ANY_PROCESS,
  42        SCAN_VMA_NULL,
  43        SCAN_VMA_CHECK,
  44        SCAN_ADDRESS_RANGE,
  45        SCAN_SWAP_CACHE_PAGE,
  46        SCAN_DEL_PAGE_LRU,
  47        SCAN_ALLOC_HUGE_PAGE_FAIL,
  48        SCAN_CGROUP_CHARGE_FAIL,
  49        SCAN_EXCEED_SWAP_PTE,
  50        SCAN_TRUNCATED,
  51};
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/huge_memory.h>
  55
  56/* default scan 8*512 pte (or vmas) every 30 second */
  57static unsigned int khugepaged_pages_to_scan __read_mostly;
  58static unsigned int khugepaged_pages_collapsed;
  59static unsigned int khugepaged_full_scans;
  60static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  61/* during fragmentation poll the hugepage allocator once every minute */
  62static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  63static unsigned long khugepaged_sleep_expire;
  64static DEFINE_SPINLOCK(khugepaged_mm_lock);
  65static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  66/*
  67 * default collapse hugepages if there is at least one pte mapped like
  68 * it would have happened if the vma was large enough during page
  69 * fault.
  70 */
  71static unsigned int khugepaged_max_ptes_none __read_mostly;
  72static unsigned int khugepaged_max_ptes_swap __read_mostly;
  73
  74#define MM_SLOTS_HASH_BITS 10
  75static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  76
  77static struct kmem_cache *mm_slot_cache __read_mostly;
  78
  79/**
  80 * struct mm_slot - hash lookup from mm to mm_slot
  81 * @hash: hash collision list
  82 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  83 * @mm: the mm that this information is valid for
  84 */
  85struct mm_slot {
  86        struct hlist_node hash;
  87        struct list_head mm_node;
  88        struct mm_struct *mm;
  89};
  90
  91/**
  92 * struct khugepaged_scan - cursor for scanning
  93 * @mm_head: the head of the mm list to scan
  94 * @mm_slot: the current mm_slot we are scanning
  95 * @address: the next address inside that to be scanned
  96 *
  97 * There is only the one khugepaged_scan instance of this cursor structure.
  98 */
  99struct khugepaged_scan {
 100        struct list_head mm_head;
 101        struct mm_slot *mm_slot;
 102        unsigned long address;
 103};
 104
 105static struct khugepaged_scan khugepaged_scan = {
 106        .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 107};
 108
 109#ifdef CONFIG_SYSFS
 110static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 111                                         struct kobj_attribute *attr,
 112                                         char *buf)
 113{
 114        return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 115}
 116
 117static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 118                                          struct kobj_attribute *attr,
 119                                          const char *buf, size_t count)
 120{
 121        unsigned long msecs;
 122        int err;
 123
 124        err = kstrtoul(buf, 10, &msecs);
 125        if (err || msecs > UINT_MAX)
 126                return -EINVAL;
 127
 128        khugepaged_scan_sleep_millisecs = msecs;
 129        khugepaged_sleep_expire = 0;
 130        wake_up_interruptible(&khugepaged_wait);
 131
 132        return count;
 133}
 134static struct kobj_attribute scan_sleep_millisecs_attr =
 135        __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 136               scan_sleep_millisecs_store);
 137
 138static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 139                                          struct kobj_attribute *attr,
 140                                          char *buf)
 141{
 142        return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 143}
 144
 145static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 146                                           struct kobj_attribute *attr,
 147                                           const char *buf, size_t count)
 148{
 149        unsigned long msecs;
 150        int err;
 151
 152        err = kstrtoul(buf, 10, &msecs);
 153        if (err || msecs > UINT_MAX)
 154                return -EINVAL;
 155
 156        khugepaged_alloc_sleep_millisecs = msecs;
 157        khugepaged_sleep_expire = 0;
 158        wake_up_interruptible(&khugepaged_wait);
 159
 160        return count;
 161}
 162static struct kobj_attribute alloc_sleep_millisecs_attr =
 163        __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 164               alloc_sleep_millisecs_store);
 165
 166static ssize_t pages_to_scan_show(struct kobject *kobj,
 167                                  struct kobj_attribute *attr,
 168                                  char *buf)
 169{
 170        return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 171}
 172static ssize_t pages_to_scan_store(struct kobject *kobj,
 173                                   struct kobj_attribute *attr,
 174                                   const char *buf, size_t count)
 175{
 176        int err;
 177        unsigned long pages;
 178
 179        err = kstrtoul(buf, 10, &pages);
 180        if (err || !pages || pages > UINT_MAX)
 181                return -EINVAL;
 182
 183        khugepaged_pages_to_scan = pages;
 184
 185        return count;
 186}
 187static struct kobj_attribute pages_to_scan_attr =
 188        __ATTR(pages_to_scan, 0644, pages_to_scan_show,
 189               pages_to_scan_store);
 190
 191static ssize_t pages_collapsed_show(struct kobject *kobj,
 192                                    struct kobj_attribute *attr,
 193                                    char *buf)
 194{
 195        return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 196}
 197static struct kobj_attribute pages_collapsed_attr =
 198        __ATTR_RO(pages_collapsed);
 199
 200static ssize_t full_scans_show(struct kobject *kobj,
 201                               struct kobj_attribute *attr,
 202                               char *buf)
 203{
 204        return sprintf(buf, "%u\n", khugepaged_full_scans);
 205}
 206static struct kobj_attribute full_scans_attr =
 207        __ATTR_RO(full_scans);
 208
 209static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 210                                      struct kobj_attribute *attr, char *buf)
 211{
 212        return single_hugepage_flag_show(kobj, attr, buf,
 213                                TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 214}
 215static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 216                                       struct kobj_attribute *attr,
 217                                       const char *buf, size_t count)
 218{
 219        return single_hugepage_flag_store(kobj, attr, buf, count,
 220                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 221}
 222static struct kobj_attribute khugepaged_defrag_attr =
 223        __ATTR(defrag, 0644, khugepaged_defrag_show,
 224               khugepaged_defrag_store);
 225
 226/*
 227 * max_ptes_none controls if khugepaged should collapse hugepages over
 228 * any unmapped ptes in turn potentially increasing the memory
 229 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 230 * reduce the available free memory in the system as it
 231 * runs. Increasing max_ptes_none will instead potentially reduce the
 232 * free memory in the system during the khugepaged scan.
 233 */
 234static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 235                                             struct kobj_attribute *attr,
 236                                             char *buf)
 237{
 238        return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 239}
 240static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 241                                              struct kobj_attribute *attr,
 242                                              const char *buf, size_t count)
 243{
 244        int err;
 245        unsigned long max_ptes_none;
 246
 247        err = kstrtoul(buf, 10, &max_ptes_none);
 248        if (err || max_ptes_none > HPAGE_PMD_NR-1)
 249                return -EINVAL;
 250
 251        khugepaged_max_ptes_none = max_ptes_none;
 252
 253        return count;
 254}
 255static struct kobj_attribute khugepaged_max_ptes_none_attr =
 256        __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 257               khugepaged_max_ptes_none_store);
 258
 259static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
 260                                             struct kobj_attribute *attr,
 261                                             char *buf)
 262{
 263        return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
 264}
 265
 266static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
 267                                              struct kobj_attribute *attr,
 268                                              const char *buf, size_t count)
 269{
 270        int err;
 271        unsigned long max_ptes_swap;
 272
 273        err  = kstrtoul(buf, 10, &max_ptes_swap);
 274        if (err || max_ptes_swap > HPAGE_PMD_NR-1)
 275                return -EINVAL;
 276
 277        khugepaged_max_ptes_swap = max_ptes_swap;
 278
 279        return count;
 280}
 281
 282static struct kobj_attribute khugepaged_max_ptes_swap_attr =
 283        __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
 284               khugepaged_max_ptes_swap_store);
 285
 286static struct attribute *khugepaged_attr[] = {
 287        &khugepaged_defrag_attr.attr,
 288        &khugepaged_max_ptes_none_attr.attr,
 289        &pages_to_scan_attr.attr,
 290        &pages_collapsed_attr.attr,
 291        &full_scans_attr.attr,
 292        &scan_sleep_millisecs_attr.attr,
 293        &alloc_sleep_millisecs_attr.attr,
 294        &khugepaged_max_ptes_swap_attr.attr,
 295        NULL,
 296};
 297
 298struct attribute_group khugepaged_attr_group = {
 299        .attrs = khugepaged_attr,
 300        .name = "khugepaged",
 301};
 302#endif /* CONFIG_SYSFS */
 303
 304#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
 305
 306int hugepage_madvise(struct vm_area_struct *vma,
 307                     unsigned long *vm_flags, int advice)
 308{
 309        switch (advice) {
 310        case MADV_HUGEPAGE:
 311#ifdef CONFIG_S390
 312                /*
 313                 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
 314                 * can't handle this properly after s390_enable_sie, so we simply
 315                 * ignore the madvise to prevent qemu from causing a SIGSEGV.
 316                 */
 317                if (mm_has_pgste(vma->vm_mm))
 318                        return 0;
 319#endif
 320                *vm_flags &= ~VM_NOHUGEPAGE;
 321                *vm_flags |= VM_HUGEPAGE;
 322                /*
 323                 * If the vma become good for khugepaged to scan,
 324                 * register it here without waiting a page fault that
 325                 * may not happen any time soon.
 326                 */
 327                if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
 328                                khugepaged_enter_vma_merge(vma, *vm_flags))
 329                        return -ENOMEM;
 330                break;
 331        case MADV_NOHUGEPAGE:
 332                *vm_flags &= ~VM_HUGEPAGE;
 333                *vm_flags |= VM_NOHUGEPAGE;
 334                /*
 335                 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
 336                 * this vma even if we leave the mm registered in khugepaged if
 337                 * it got registered before VM_NOHUGEPAGE was set.
 338                 */
 339                break;
 340        }
 341
 342        return 0;
 343}
 344
 345int __init khugepaged_init(void)
 346{
 347        mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
 348                                          sizeof(struct mm_slot),
 349                                          __alignof__(struct mm_slot), 0, NULL);
 350        if (!mm_slot_cache)
 351                return -ENOMEM;
 352
 353        khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
 354        khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
 355        khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
 356
 357        return 0;
 358}
 359
 360void __init khugepaged_destroy(void)
 361{
 362        kmem_cache_destroy(mm_slot_cache);
 363}
 364
 365static inline struct mm_slot *alloc_mm_slot(void)
 366{
 367        if (!mm_slot_cache)     /* initialization failed */
 368                return NULL;
 369        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 370}
 371
 372static inline void free_mm_slot(struct mm_slot *mm_slot)
 373{
 374        kmem_cache_free(mm_slot_cache, mm_slot);
 375}
 376
 377static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 378{
 379        struct mm_slot *mm_slot;
 380
 381        hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
 382                if (mm == mm_slot->mm)
 383                        return mm_slot;
 384
 385        return NULL;
 386}
 387
 388static void insert_to_mm_slots_hash(struct mm_struct *mm,
 389                                    struct mm_slot *mm_slot)
 390{
 391        mm_slot->mm = mm;
 392        hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
 393}
 394
 395static inline int khugepaged_test_exit(struct mm_struct *mm)
 396{
 397        return atomic_read(&mm->mm_users) == 0;
 398}
 399
 400int __khugepaged_enter(struct mm_struct *mm)
 401{
 402        struct mm_slot *mm_slot;
 403        int wakeup;
 404
 405        mm_slot = alloc_mm_slot();
 406        if (!mm_slot)
 407                return -ENOMEM;
 408
 409        /* __khugepaged_exit() must not run from under us */
 410        VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
 411        if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
 412                free_mm_slot(mm_slot);
 413                return 0;
 414        }
 415
 416        spin_lock(&khugepaged_mm_lock);
 417        insert_to_mm_slots_hash(mm, mm_slot);
 418        /*
 419         * Insert just behind the scanning cursor, to let the area settle
 420         * down a little.
 421         */
 422        wakeup = list_empty(&khugepaged_scan.mm_head);
 423        list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
 424        spin_unlock(&khugepaged_mm_lock);
 425
 426        mmgrab(mm);
 427        if (wakeup)
 428                wake_up_interruptible(&khugepaged_wait);
 429
 430        return 0;
 431}
 432
 433int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
 434                               unsigned long vm_flags)
 435{
 436        unsigned long hstart, hend;
 437        if (!vma->anon_vma)
 438                /*
 439                 * Not yet faulted in so we will register later in the
 440                 * page fault if needed.
 441                 */
 442                return 0;
 443        if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
 444                /* khugepaged not yet working on file or special mappings */
 445                return 0;
 446        hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 447        hend = vma->vm_end & HPAGE_PMD_MASK;
 448        if (hstart < hend)
 449                return khugepaged_enter(vma, vm_flags);
 450        return 0;
 451}
 452
 453void __khugepaged_exit(struct mm_struct *mm)
 454{
 455        struct mm_slot *mm_slot;
 456        int free = 0;
 457
 458        spin_lock(&khugepaged_mm_lock);
 459        mm_slot = get_mm_slot(mm);
 460        if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
 461                hash_del(&mm_slot->hash);
 462                list_del(&mm_slot->mm_node);
 463                free = 1;
 464        }
 465        spin_unlock(&khugepaged_mm_lock);
 466
 467        if (free) {
 468                clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
 469                free_mm_slot(mm_slot);
 470                mmdrop(mm);
 471        } else if (mm_slot) {
 472                /*
 473                 * This is required to serialize against
 474                 * khugepaged_test_exit() (which is guaranteed to run
 475                 * under mmap sem read mode). Stop here (after we
 476                 * return all pagetables will be destroyed) until
 477                 * khugepaged has finished working on the pagetables
 478                 * under the mmap_sem.
 479                 */
 480                down_write(&mm->mmap_sem);
 481                up_write(&mm->mmap_sem);
 482        }
 483}
 484
 485static void release_pte_page(struct page *page)
 486{
 487        dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
 488        unlock_page(page);
 489        putback_lru_page(page);
 490}
 491
 492static void release_pte_pages(pte_t *pte, pte_t *_pte)
 493{
 494        while (--_pte >= pte) {
 495                pte_t pteval = *_pte;
 496                if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
 497                        release_pte_page(pte_page(pteval));
 498        }
 499}
 500
 501static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
 502                                        unsigned long address,
 503                                        pte_t *pte)
 504{
 505        struct page *page = NULL;
 506        pte_t *_pte;
 507        int none_or_zero = 0, result = 0, referenced = 0;
 508        bool writable = false;
 509
 510        for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
 511             _pte++, address += PAGE_SIZE) {
 512                pte_t pteval = *_pte;
 513                if (pte_none(pteval) || (pte_present(pteval) &&
 514                                is_zero_pfn(pte_pfn(pteval)))) {
 515                        if (!userfaultfd_armed(vma) &&
 516                            ++none_or_zero <= khugepaged_max_ptes_none) {
 517                                continue;
 518                        } else {
 519                                result = SCAN_EXCEED_NONE_PTE;
 520                                goto out;
 521                        }
 522                }
 523                if (!pte_present(pteval)) {
 524                        result = SCAN_PTE_NON_PRESENT;
 525                        goto out;
 526                }
 527                page = vm_normal_page(vma, address, pteval);
 528                if (unlikely(!page)) {
 529                        result = SCAN_PAGE_NULL;
 530                        goto out;
 531                }
 532
 533                /* TODO: teach khugepaged to collapse THP mapped with pte */
 534                if (PageCompound(page)) {
 535                        result = SCAN_PAGE_COMPOUND;
 536                        goto out;
 537                }
 538
 539                VM_BUG_ON_PAGE(!PageAnon(page), page);
 540
 541                /*
 542                 * We can do it before isolate_lru_page because the
 543                 * page can't be freed from under us. NOTE: PG_lock
 544                 * is needed to serialize against split_huge_page
 545                 * when invoked from the VM.
 546                 */
 547                if (!trylock_page(page)) {
 548                        result = SCAN_PAGE_LOCK;
 549                        goto out;
 550                }
 551
 552                /*
 553                 * cannot use mapcount: can't collapse if there's a gup pin.
 554                 * The page must only be referenced by the scanned process
 555                 * and page swap cache.
 556                 */
 557                if (page_count(page) != 1 + PageSwapCache(page)) {
 558                        unlock_page(page);
 559                        result = SCAN_PAGE_COUNT;
 560                        goto out;
 561                }
 562                if (pte_write(pteval)) {
 563                        writable = true;
 564                } else {
 565                        if (PageSwapCache(page) &&
 566                            !reuse_swap_page(page, NULL)) {
 567                                unlock_page(page);
 568                                result = SCAN_SWAP_CACHE_PAGE;
 569                                goto out;
 570                        }
 571                        /*
 572                         * Page is not in the swap cache. It can be collapsed
 573                         * into a THP.
 574                         */
 575                }
 576
 577                /*
 578                 * Isolate the page to avoid collapsing an hugepage
 579                 * currently in use by the VM.
 580                 */
 581                if (isolate_lru_page(page)) {
 582                        unlock_page(page);
 583                        result = SCAN_DEL_PAGE_LRU;
 584                        goto out;
 585                }
 586                inc_node_page_state(page,
 587                                NR_ISOLATED_ANON + page_is_file_cache(page));
 588                VM_BUG_ON_PAGE(!PageLocked(page), page);
 589                VM_BUG_ON_PAGE(PageLRU(page), page);
 590
 591                /* There should be enough young pte to collapse the page */
 592                if (pte_young(pteval) ||
 593                    page_is_young(page) || PageReferenced(page) ||
 594                    mmu_notifier_test_young(vma->vm_mm, address))
 595                        referenced++;
 596        }
 597        if (likely(writable)) {
 598                if (likely(referenced)) {
 599                        result = SCAN_SUCCEED;
 600                        trace_mm_collapse_huge_page_isolate(page, none_or_zero,
 601                                                            referenced, writable, result);
 602                        return 1;
 603                }
 604        } else {
 605                result = SCAN_PAGE_RO;
 606        }
 607
 608out:
 609        release_pte_pages(pte, _pte);
 610        trace_mm_collapse_huge_page_isolate(page, none_or_zero,
 611                                            referenced, writable, result);
 612        return 0;
 613}
 614
 615static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
 616                                      struct vm_area_struct *vma,
 617                                      unsigned long address,
 618                                      spinlock_t *ptl)
 619{
 620        pte_t *_pte;
 621        for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
 622                                _pte++, page++, address += PAGE_SIZE) {
 623                pte_t pteval = *_pte;
 624                struct page *src_page;
 625
 626                if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
 627                        clear_user_highpage(page, address);
 628                        add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
 629                        if (is_zero_pfn(pte_pfn(pteval))) {
 630                                /*
 631                                 * ptl mostly unnecessary.
 632                                 */
 633                                spin_lock(ptl);
 634                                /*
 635                                 * paravirt calls inside pte_clear here are
 636                                 * superfluous.
 637                                 */
 638                                pte_clear(vma->vm_mm, address, _pte);
 639                                spin_unlock(ptl);
 640                        }
 641                } else {
 642                        src_page = pte_page(pteval);
 643                        copy_user_highpage(page, src_page, address, vma);
 644                        VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
 645                        release_pte_page(src_page);
 646                        /*
 647                         * ptl mostly unnecessary, but preempt has to
 648                         * be disabled to update the per-cpu stats
 649                         * inside page_remove_rmap().
 650                         */
 651                        spin_lock(ptl);
 652                        /*
 653                         * paravirt calls inside pte_clear here are
 654                         * superfluous.
 655                         */
 656                        pte_clear(vma->vm_mm, address, _pte);
 657                        page_remove_rmap(src_page, false);
 658                        spin_unlock(ptl);
 659                        free_page_and_swap_cache(src_page);
 660                }
 661        }
 662}
 663
 664static void khugepaged_alloc_sleep(void)
 665{
 666        DEFINE_WAIT(wait);
 667
 668        add_wait_queue(&khugepaged_wait, &wait);
 669        freezable_schedule_timeout_interruptible(
 670                msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
 671        remove_wait_queue(&khugepaged_wait, &wait);
 672}
 673
 674static int khugepaged_node_load[MAX_NUMNODES];
 675
 676static bool khugepaged_scan_abort(int nid)
 677{
 678        int i;
 679
 680        /*
 681         * If node_reclaim_mode is disabled, then no extra effort is made to
 682         * allocate memory locally.
 683         */
 684        if (!node_reclaim_mode)
 685                return false;
 686
 687        /* If there is a count for this node already, it must be acceptable */
 688        if (khugepaged_node_load[nid])
 689                return false;
 690
 691        for (i = 0; i < MAX_NUMNODES; i++) {
 692                if (!khugepaged_node_load[i])
 693                        continue;
 694                if (node_distance(nid, i) > RECLAIM_DISTANCE)
 695                        return true;
 696        }
 697        return false;
 698}
 699
 700/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
 701static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
 702{
 703        return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
 704}
 705
 706#ifdef CONFIG_NUMA
 707static int khugepaged_find_target_node(void)
 708{
 709        static int last_khugepaged_target_node = NUMA_NO_NODE;
 710        int nid, target_node = 0, max_value = 0;
 711
 712        /* find first node with max normal pages hit */
 713        for (nid = 0; nid < MAX_NUMNODES; nid++)
 714                if (khugepaged_node_load[nid] > max_value) {
 715                        max_value = khugepaged_node_load[nid];
 716                        target_node = nid;
 717                }
 718
 719        /* do some balance if several nodes have the same hit record */
 720        if (target_node <= last_khugepaged_target_node)
 721                for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
 722                                nid++)
 723                        if (max_value == khugepaged_node_load[nid]) {
 724                                target_node = nid;
 725                                break;
 726                        }
 727
 728        last_khugepaged_target_node = target_node;
 729        return target_node;
 730}
 731
 732static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 733{
 734        if (IS_ERR(*hpage)) {
 735                if (!*wait)
 736                        return false;
 737
 738                *wait = false;
 739                *hpage = NULL;
 740                khugepaged_alloc_sleep();
 741        } else if (*hpage) {
 742                put_page(*hpage);
 743                *hpage = NULL;
 744        }
 745
 746        return true;
 747}
 748
 749static struct page *
 750khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
 751{
 752        VM_BUG_ON_PAGE(*hpage, *hpage);
 753
 754        *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
 755        if (unlikely(!*hpage)) {
 756                count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
 757                *hpage = ERR_PTR(-ENOMEM);
 758                return NULL;
 759        }
 760
 761        prep_transhuge_page(*hpage);
 762        count_vm_event(THP_COLLAPSE_ALLOC);
 763        return *hpage;
 764}
 765#else
 766static int khugepaged_find_target_node(void)
 767{
 768        return 0;
 769}
 770
 771static inline struct page *alloc_khugepaged_hugepage(void)
 772{
 773        struct page *page;
 774
 775        page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
 776                           HPAGE_PMD_ORDER);
 777        if (page)
 778                prep_transhuge_page(page);
 779        return page;
 780}
 781
 782static struct page *khugepaged_alloc_hugepage(bool *wait)
 783{
 784        struct page *hpage;
 785
 786        do {
 787                hpage = alloc_khugepaged_hugepage();
 788                if (!hpage) {
 789                        count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
 790                        if (!*wait)
 791                                return NULL;
 792
 793                        *wait = false;
 794                        khugepaged_alloc_sleep();
 795                } else
 796                        count_vm_event(THP_COLLAPSE_ALLOC);
 797        } while (unlikely(!hpage) && likely(khugepaged_enabled()));
 798
 799        return hpage;
 800}
 801
 802static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 803{
 804        if (!*hpage)
 805                *hpage = khugepaged_alloc_hugepage(wait);
 806
 807        if (unlikely(!*hpage))
 808                return false;
 809
 810        return true;
 811}
 812
 813static struct page *
 814khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
 815{
 816        VM_BUG_ON(!*hpage);
 817
 818        return  *hpage;
 819}
 820#endif
 821
 822static bool hugepage_vma_check(struct vm_area_struct *vma)
 823{
 824        if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
 825            (vma->vm_flags & VM_NOHUGEPAGE) ||
 826            test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
 827                return false;
 828        if (shmem_file(vma->vm_file)) {
 829                if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
 830                        return false;
 831                return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
 832                                HPAGE_PMD_NR);
 833        }
 834        if (!vma->anon_vma || vma->vm_ops)
 835                return false;
 836        if (is_vma_temporary_stack(vma))
 837                return false;
 838        return !(vma->vm_flags & VM_NO_KHUGEPAGED);
 839}
 840
 841/*
 842 * If mmap_sem temporarily dropped, revalidate vma
 843 * before taking mmap_sem.
 844 * Return 0 if succeeds, otherwise return none-zero
 845 * value (scan code).
 846 */
 847
 848static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
 849                struct vm_area_struct **vmap)
 850{
 851        struct vm_area_struct *vma;
 852        unsigned long hstart, hend;
 853
 854        if (unlikely(khugepaged_test_exit(mm)))
 855                return SCAN_ANY_PROCESS;
 856
 857        *vmap = vma = find_vma(mm, address);
 858        if (!vma)
 859                return SCAN_VMA_NULL;
 860
 861        hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 862        hend = vma->vm_end & HPAGE_PMD_MASK;
 863        if (address < hstart || address + HPAGE_PMD_SIZE > hend)
 864                return SCAN_ADDRESS_RANGE;
 865        if (!hugepage_vma_check(vma))
 866                return SCAN_VMA_CHECK;
 867        return 0;
 868}
 869
 870/*
 871 * Bring missing pages in from swap, to complete THP collapse.
 872 * Only done if khugepaged_scan_pmd believes it is worthwhile.
 873 *
 874 * Called and returns without pte mapped or spinlocks held,
 875 * but with mmap_sem held to protect against vma changes.
 876 */
 877
 878static bool __collapse_huge_page_swapin(struct mm_struct *mm,
 879                                        struct vm_area_struct *vma,
 880                                        unsigned long address, pmd_t *pmd,
 881                                        int referenced)
 882{
 883        int swapped_in = 0, ret = 0;
 884        struct vm_fault vmf = {
 885                .vma = vma,
 886                .address = address,
 887                .flags = FAULT_FLAG_ALLOW_RETRY,
 888                .pmd = pmd,
 889                .pgoff = linear_page_index(vma, address),
 890        };
 891
 892        /* we only decide to swapin, if there is enough young ptes */
 893        if (referenced < HPAGE_PMD_NR/2) {
 894                trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 895                return false;
 896        }
 897        vmf.pte = pte_offset_map(pmd, address);
 898        for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
 899                        vmf.pte++, vmf.address += PAGE_SIZE) {
 900                vmf.orig_pte = *vmf.pte;
 901                if (!is_swap_pte(vmf.orig_pte))
 902                        continue;
 903                swapped_in++;
 904                ret = do_swap_page(&vmf);
 905
 906                /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
 907                if (ret & VM_FAULT_RETRY) {
 908                        down_read(&mm->mmap_sem);
 909                        if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
 910                                /* vma is no longer available, don't continue to swapin */
 911                                trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 912                                return false;
 913                        }
 914                        /* check if the pmd is still valid */
 915                        if (mm_find_pmd(mm, address) != pmd) {
 916                                trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 917                                return false;
 918                        }
 919                }
 920                if (ret & VM_FAULT_ERROR) {
 921                        trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 922                        return false;
 923                }
 924                /* pte is unmapped now, we need to map it */
 925                vmf.pte = pte_offset_map(pmd, vmf.address);
 926        }
 927        vmf.pte--;
 928        pte_unmap(vmf.pte);
 929        trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
 930        return true;
 931}
 932
 933static void collapse_huge_page(struct mm_struct *mm,
 934                                   unsigned long address,
 935                                   struct page **hpage,
 936                                   int node, int referenced)
 937{
 938        pmd_t *pmd, _pmd;
 939        pte_t *pte;
 940        pgtable_t pgtable;
 941        struct page *new_page;
 942        spinlock_t *pmd_ptl, *pte_ptl;
 943        int isolated = 0, result = 0;
 944        struct mem_cgroup *memcg;
 945        struct vm_area_struct *vma;
 946        unsigned long mmun_start;       /* For mmu_notifiers */
 947        unsigned long mmun_end;         /* For mmu_notifiers */
 948        gfp_t gfp;
 949
 950        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 951
 952        /* Only allocate from the target node */
 953        gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
 954
 955        /*
 956         * Before allocating the hugepage, release the mmap_sem read lock.
 957         * The allocation can take potentially a long time if it involves
 958         * sync compaction, and we do not need to hold the mmap_sem during
 959         * that. We will recheck the vma after taking it again in write mode.
 960         */
 961        up_read(&mm->mmap_sem);
 962        new_page = khugepaged_alloc_page(hpage, gfp, node);
 963        if (!new_page) {
 964                result = SCAN_ALLOC_HUGE_PAGE_FAIL;
 965                goto out_nolock;
 966        }
 967
 968        if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
 969                result = SCAN_CGROUP_CHARGE_FAIL;
 970                goto out_nolock;
 971        }
 972
 973        down_read(&mm->mmap_sem);
 974        result = hugepage_vma_revalidate(mm, address, &vma);
 975        if (result) {
 976                mem_cgroup_cancel_charge(new_page, memcg, true);
 977                up_read(&mm->mmap_sem);
 978                goto out_nolock;
 979        }
 980
 981        pmd = mm_find_pmd(mm, address);
 982        if (!pmd) {
 983                result = SCAN_PMD_NULL;
 984                mem_cgroup_cancel_charge(new_page, memcg, true);
 985                up_read(&mm->mmap_sem);
 986                goto out_nolock;
 987        }
 988
 989        /*
 990         * __collapse_huge_page_swapin always returns with mmap_sem locked.
 991         * If it fails, we release mmap_sem and jump out_nolock.
 992         * Continuing to collapse causes inconsistency.
 993         */
 994        if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
 995                mem_cgroup_cancel_charge(new_page, memcg, true);
 996                up_read(&mm->mmap_sem);
 997                goto out_nolock;
 998        }
 999
1000        up_read(&mm->mmap_sem);
1001        /*
1002         * Prevent all access to pagetables with the exception of
1003         * gup_fast later handled by the ptep_clear_flush and the VM
1004         * handled by the anon_vma lock + PG_lock.
1005         */
1006        down_write(&mm->mmap_sem);
1007        result = hugepage_vma_revalidate(mm, address, &vma);
1008        if (result)
1009                goto out;
1010        /* check if the pmd is still valid */
1011        if (mm_find_pmd(mm, address) != pmd)
1012                goto out;
1013
1014        anon_vma_lock_write(vma->anon_vma);
1015
1016        pte = pte_offset_map(pmd, address);
1017        pte_ptl = pte_lockptr(mm, pmd);
1018
1019        mmun_start = address;
1020        mmun_end   = address + HPAGE_PMD_SIZE;
1021        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1022        pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1023        /*
1024         * After this gup_fast can't run anymore. This also removes
1025         * any huge TLB entry from the CPU so we won't allow
1026         * huge and small TLB entries for the same virtual address
1027         * to avoid the risk of CPU bugs in that area.
1028         */
1029        _pmd = pmdp_collapse_flush(vma, address, pmd);
1030        spin_unlock(pmd_ptl);
1031        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1032
1033        spin_lock(pte_ptl);
1034        isolated = __collapse_huge_page_isolate(vma, address, pte);
1035        spin_unlock(pte_ptl);
1036
1037        if (unlikely(!isolated)) {
1038                pte_unmap(pte);
1039                spin_lock(pmd_ptl);
1040                BUG_ON(!pmd_none(*pmd));
1041                /*
1042                 * We can only use set_pmd_at when establishing
1043                 * hugepmds and never for establishing regular pmds that
1044                 * points to regular pagetables. Use pmd_populate for that
1045                 */
1046                pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1047                spin_unlock(pmd_ptl);
1048                anon_vma_unlock_write(vma->anon_vma);
1049                result = SCAN_FAIL;
1050                goto out;
1051        }
1052
1053        /*
1054         * All pages are isolated and locked so anon_vma rmap
1055         * can't run anymore.
1056         */
1057        anon_vma_unlock_write(vma->anon_vma);
1058
1059        __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1060        pte_unmap(pte);
1061        __SetPageUptodate(new_page);
1062        pgtable = pmd_pgtable(_pmd);
1063
1064        _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1065        _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1066
1067        /*
1068         * spin_lock() below is not the equivalent of smp_wmb(), so
1069         * this is needed to avoid the copy_huge_page writes to become
1070         * visible after the set_pmd_at() write.
1071         */
1072        smp_wmb();
1073
1074        spin_lock(pmd_ptl);
1075        BUG_ON(!pmd_none(*pmd));
1076        page_add_new_anon_rmap(new_page, vma, address, true);
1077        mem_cgroup_commit_charge(new_page, memcg, false, true);
1078        lru_cache_add_active_or_unevictable(new_page, vma);
1079        pgtable_trans_huge_deposit(mm, pmd, pgtable);
1080        set_pmd_at(mm, address, pmd, _pmd);
1081        update_mmu_cache_pmd(vma, address, pmd);
1082        spin_unlock(pmd_ptl);
1083
1084        *hpage = NULL;
1085
1086        khugepaged_pages_collapsed++;
1087        result = SCAN_SUCCEED;
1088out_up_write:
1089        up_write(&mm->mmap_sem);
1090out_nolock:
1091        trace_mm_collapse_huge_page(mm, isolated, result);
1092        return;
1093out:
1094        mem_cgroup_cancel_charge(new_page, memcg, true);
1095        goto out_up_write;
1096}
1097
1098static int khugepaged_scan_pmd(struct mm_struct *mm,
1099                               struct vm_area_struct *vma,
1100                               unsigned long address,
1101                               struct page **hpage)
1102{
1103        pmd_t *pmd;
1104        pte_t *pte, *_pte;
1105        int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1106        struct page *page = NULL;
1107        unsigned long _address;
1108        spinlock_t *ptl;
1109        int node = NUMA_NO_NODE, unmapped = 0;
1110        bool writable = false;
1111
1112        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1113
1114        pmd = mm_find_pmd(mm, address);
1115        if (!pmd) {
1116                result = SCAN_PMD_NULL;
1117                goto out;
1118        }
1119
1120        memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1121        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1122        for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1123             _pte++, _address += PAGE_SIZE) {
1124                pte_t pteval = *_pte;
1125                if (is_swap_pte(pteval)) {
1126                        if (++unmapped <= khugepaged_max_ptes_swap) {
1127                                continue;
1128                        } else {
1129                                result = SCAN_EXCEED_SWAP_PTE;
1130                                goto out_unmap;
1131                        }
1132                }
1133                if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1134                        if (!userfaultfd_armed(vma) &&
1135                            ++none_or_zero <= khugepaged_max_ptes_none) {
1136                                continue;
1137                        } else {
1138                                result = SCAN_EXCEED_NONE_PTE;
1139                                goto out_unmap;
1140                        }
1141                }
1142                if (!pte_present(pteval)) {
1143                        result = SCAN_PTE_NON_PRESENT;
1144                        goto out_unmap;
1145                }
1146                if (pte_write(pteval))
1147                        writable = true;
1148
1149                page = vm_normal_page(vma, _address, pteval);
1150                if (unlikely(!page)) {
1151                        result = SCAN_PAGE_NULL;
1152                        goto out_unmap;
1153                }
1154
1155                /* TODO: teach khugepaged to collapse THP mapped with pte */
1156                if (PageCompound(page)) {
1157                        result = SCAN_PAGE_COMPOUND;
1158                        goto out_unmap;
1159                }
1160
1161                /*
1162                 * Record which node the original page is from and save this
1163                 * information to khugepaged_node_load[].
1164                 * Khupaged will allocate hugepage from the node has the max
1165                 * hit record.
1166                 */
1167                node = page_to_nid(page);
1168                if (khugepaged_scan_abort(node)) {
1169                        result = SCAN_SCAN_ABORT;
1170                        goto out_unmap;
1171                }
1172                khugepaged_node_load[node]++;
1173                if (!PageLRU(page)) {
1174                        result = SCAN_PAGE_LRU;
1175                        goto out_unmap;
1176                }
1177                if (PageLocked(page)) {
1178                        result = SCAN_PAGE_LOCK;
1179                        goto out_unmap;
1180                }
1181                if (!PageAnon(page)) {
1182                        result = SCAN_PAGE_ANON;
1183                        goto out_unmap;
1184                }
1185
1186                /*
1187                 * cannot use mapcount: can't collapse if there's a gup pin.
1188                 * The page must only be referenced by the scanned process
1189                 * and page swap cache.
1190                 */
1191                if (page_count(page) != 1 + PageSwapCache(page)) {
1192                        result = SCAN_PAGE_COUNT;
1193                        goto out_unmap;
1194                }
1195                if (pte_young(pteval) ||
1196                    page_is_young(page) || PageReferenced(page) ||
1197                    mmu_notifier_test_young(vma->vm_mm, address))
1198                        referenced++;
1199        }
1200        if (writable) {
1201                if (referenced) {
1202                        result = SCAN_SUCCEED;
1203                        ret = 1;
1204                } else {
1205                        result = SCAN_LACK_REFERENCED_PAGE;
1206                }
1207        } else {
1208                result = SCAN_PAGE_RO;
1209        }
1210out_unmap:
1211        pte_unmap_unlock(pte, ptl);
1212        if (ret) {
1213                node = khugepaged_find_target_node();
1214                /* collapse_huge_page will return with the mmap_sem released */
1215                collapse_huge_page(mm, address, hpage, node, referenced);
1216        }
1217out:
1218        trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1219                                     none_or_zero, result, unmapped);
1220        return ret;
1221}
1222
1223static void collect_mm_slot(struct mm_slot *mm_slot)
1224{
1225        struct mm_struct *mm = mm_slot->mm;
1226
1227        VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1228
1229        if (khugepaged_test_exit(mm)) {
1230                /* free mm_slot */
1231                hash_del(&mm_slot->hash);
1232                list_del(&mm_slot->mm_node);
1233
1234                /*
1235                 * Not strictly needed because the mm exited already.
1236                 *
1237                 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1238                 */
1239
1240                /* khugepaged_mm_lock actually not necessary for the below */
1241                free_mm_slot(mm_slot);
1242                mmdrop(mm);
1243        }
1244}
1245
1246#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1247static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1248{
1249        struct vm_area_struct *vma;
1250        unsigned long addr;
1251        pmd_t *pmd, _pmd;
1252
1253        i_mmap_lock_write(mapping);
1254        vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1255                /* probably overkill */
1256                if (vma->anon_vma)
1257                        continue;
1258                addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1259                if (addr & ~HPAGE_PMD_MASK)
1260                        continue;
1261                if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1262                        continue;
1263                pmd = mm_find_pmd(vma->vm_mm, addr);
1264                if (!pmd)
1265                        continue;
1266                /*
1267                 * We need exclusive mmap_sem to retract page table.
1268                 * If trylock fails we would end up with pte-mapped THP after
1269                 * re-fault. Not ideal, but it's more important to not disturb
1270                 * the system too much.
1271                 */
1272                if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1273                        spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1274                        /* assume page table is clear */
1275                        _pmd = pmdp_collapse_flush(vma, addr, pmd);
1276                        spin_unlock(ptl);
1277                        up_write(&vma->vm_mm->mmap_sem);
1278                        mm_dec_nr_ptes(vma->vm_mm);
1279                        pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1280                }
1281        }
1282        i_mmap_unlock_write(mapping);
1283}
1284
1285/**
1286 * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1287 *
1288 * Basic scheme is simple, details are more complex:
1289 *  - allocate and freeze a new huge page;
1290 *  - scan over radix tree replacing old pages the new one
1291 *    + swap in pages if necessary;
1292 *    + fill in gaps;
1293 *    + keep old pages around in case if rollback is required;
1294 *  - if replacing succeed:
1295 *    + copy data over;
1296 *    + free old pages;
1297 *    + unfreeze huge page;
1298 *  - if replacing failed;
1299 *    + put all pages back and unfreeze them;
1300 *    + restore gaps in the radix-tree;
1301 *    + free huge page;
1302 */
1303static void collapse_shmem(struct mm_struct *mm,
1304                struct address_space *mapping, pgoff_t start,
1305                struct page **hpage, int node)
1306{
1307        gfp_t gfp;
1308        struct page *page, *new_page, *tmp;
1309        struct mem_cgroup *memcg;
1310        pgoff_t index, end = start + HPAGE_PMD_NR;
1311        LIST_HEAD(pagelist);
1312        struct radix_tree_iter iter;
1313        void **slot;
1314        int nr_none = 0, result = SCAN_SUCCEED;
1315
1316        VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1317
1318        /* Only allocate from the target node */
1319        gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1320
1321        new_page = khugepaged_alloc_page(hpage, gfp, node);
1322        if (!new_page) {
1323                result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1324                goto out;
1325        }
1326
1327        if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1328                result = SCAN_CGROUP_CHARGE_FAIL;
1329                goto out;
1330        }
1331
1332        new_page->index = start;
1333        new_page->mapping = mapping;
1334        __SetPageSwapBacked(new_page);
1335        __SetPageLocked(new_page);
1336        BUG_ON(!page_ref_freeze(new_page, 1));
1337
1338
1339        /*
1340         * At this point the new_page is 'frozen' (page_count() is zero), locked
1341         * and not up-to-date. It's safe to insert it into radix tree, because
1342         * nobody would be able to map it or use it in other way until we
1343         * unfreeze it.
1344         */
1345
1346        index = start;
1347        xa_lock_irq(&mapping->i_pages);
1348        radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1349                int n = min(iter.index, end) - index;
1350
1351                /*
1352                 * Handle holes in the radix tree: charge it from shmem and
1353                 * insert relevant subpage of new_page into the radix-tree.
1354                 */
1355                if (n && !shmem_charge(mapping->host, n)) {
1356                        result = SCAN_FAIL;
1357                        break;
1358                }
1359                nr_none += n;
1360                for (; index < min(iter.index, end); index++) {
1361                        radix_tree_insert(&mapping->i_pages, index,
1362                                        new_page + (index % HPAGE_PMD_NR));
1363                }
1364
1365                /* We are done. */
1366                if (index >= end)
1367                        break;
1368
1369                page = radix_tree_deref_slot_protected(slot,
1370                                &mapping->i_pages.xa_lock);
1371                if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1372                        xa_unlock_irq(&mapping->i_pages);
1373                        /* swap in or instantiate fallocated page */
1374                        if (shmem_getpage(mapping->host, index, &page,
1375                                                SGP_NOHUGE)) {
1376                                result = SCAN_FAIL;
1377                                goto tree_unlocked;
1378                        }
1379                        xa_lock_irq(&mapping->i_pages);
1380                } else if (trylock_page(page)) {
1381                        get_page(page);
1382                } else {
1383                        result = SCAN_PAGE_LOCK;
1384                        break;
1385                }
1386
1387                /*
1388                 * The page must be locked, so we can drop the i_pages lock
1389                 * without racing with truncate.
1390                 */
1391                VM_BUG_ON_PAGE(!PageLocked(page), page);
1392                VM_BUG_ON_PAGE(!PageUptodate(page), page);
1393                VM_BUG_ON_PAGE(PageTransCompound(page), page);
1394
1395                if (page_mapping(page) != mapping) {
1396                        result = SCAN_TRUNCATED;
1397                        goto out_unlock;
1398                }
1399                xa_unlock_irq(&mapping->i_pages);
1400
1401                if (isolate_lru_page(page)) {
1402                        result = SCAN_DEL_PAGE_LRU;
1403                        goto out_isolate_failed;
1404                }
1405
1406                if (page_mapped(page))
1407                        unmap_mapping_pages(mapping, index, 1, false);
1408
1409                xa_lock_irq(&mapping->i_pages);
1410
1411                slot = radix_tree_lookup_slot(&mapping->i_pages, index);
1412                VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
1413                                        &mapping->i_pages.xa_lock), page);
1414                VM_BUG_ON_PAGE(page_mapped(page), page);
1415
1416                /*
1417                 * The page is expected to have page_count() == 3:
1418                 *  - we hold a pin on it;
1419                 *  - one reference from radix tree;
1420                 *  - one from isolate_lru_page;
1421                 */
1422                if (!page_ref_freeze(page, 3)) {
1423                        result = SCAN_PAGE_COUNT;
1424                        goto out_lru;
1425                }
1426
1427                /*
1428                 * Add the page to the list to be able to undo the collapse if
1429                 * something go wrong.
1430                 */
1431                list_add_tail(&page->lru, &pagelist);
1432
1433                /* Finally, replace with the new page. */
1434                radix_tree_replace_slot(&mapping->i_pages, slot,
1435                                new_page + (index % HPAGE_PMD_NR));
1436
1437                slot = radix_tree_iter_resume(slot, &iter);
1438                index++;
1439                continue;
1440out_lru:
1441                xa_unlock_irq(&mapping->i_pages);
1442                putback_lru_page(page);
1443out_isolate_failed:
1444                unlock_page(page);
1445                put_page(page);
1446                goto tree_unlocked;
1447out_unlock:
1448                unlock_page(page);
1449                put_page(page);
1450                break;
1451        }
1452
1453        /*
1454         * Handle hole in radix tree at the end of the range.
1455         * This code only triggers if there's nothing in radix tree
1456         * beyond 'end'.
1457         */
1458        if (result == SCAN_SUCCEED && index < end) {
1459                int n = end - index;
1460
1461                if (!shmem_charge(mapping->host, n)) {
1462                        result = SCAN_FAIL;
1463                        goto tree_locked;
1464                }
1465
1466                for (; index < end; index++) {
1467                        radix_tree_insert(&mapping->i_pages, index,
1468                                        new_page + (index % HPAGE_PMD_NR));
1469                }
1470                nr_none += n;
1471        }
1472
1473tree_locked:
1474        xa_unlock_irq(&mapping->i_pages);
1475tree_unlocked:
1476
1477        if (result == SCAN_SUCCEED) {
1478                unsigned long flags;
1479                struct zone *zone = page_zone(new_page);
1480
1481                /*
1482                 * Replacing old pages with new one has succeed, now we need to
1483                 * copy the content and free old pages.
1484                 */
1485                list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1486                        copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1487                                        page);
1488                        list_del(&page->lru);
1489                        unlock_page(page);
1490                        page_ref_unfreeze(page, 1);
1491                        page->mapping = NULL;
1492                        ClearPageActive(page);
1493                        ClearPageUnevictable(page);
1494                        put_page(page);
1495                }
1496
1497                local_irq_save(flags);
1498                __inc_node_page_state(new_page, NR_SHMEM_THPS);
1499                if (nr_none) {
1500                        __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1501                        __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1502                }
1503                local_irq_restore(flags);
1504
1505                /*
1506                 * Remove pte page tables, so we can re-faulti
1507                 * the page as huge.
1508                 */
1509                retract_page_tables(mapping, start);
1510
1511                /* Everything is ready, let's unfreeze the new_page */
1512                set_page_dirty(new_page);
1513                SetPageUptodate(new_page);
1514                page_ref_unfreeze(new_page, HPAGE_PMD_NR);
1515                mem_cgroup_commit_charge(new_page, memcg, false, true);
1516                lru_cache_add_anon(new_page);
1517                unlock_page(new_page);
1518
1519                *hpage = NULL;
1520        } else {
1521                /* Something went wrong: rollback changes to the radix-tree */
1522                shmem_uncharge(mapping->host, nr_none);
1523                xa_lock_irq(&mapping->i_pages);
1524                radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1525                        if (iter.index >= end)
1526                                break;
1527                        page = list_first_entry_or_null(&pagelist,
1528                                        struct page, lru);
1529                        if (!page || iter.index < page->index) {
1530                                if (!nr_none)
1531                                        break;
1532                                nr_none--;
1533                                /* Put holes back where they were */
1534                                radix_tree_delete(&mapping->i_pages, iter.index);
1535                                continue;
1536                        }
1537
1538                        VM_BUG_ON_PAGE(page->index != iter.index, page);
1539
1540                        /* Unfreeze the page. */
1541                        list_del(&page->lru);
1542                        page_ref_unfreeze(page, 2);
1543                        radix_tree_replace_slot(&mapping->i_pages, slot, page);
1544                        slot = radix_tree_iter_resume(slot, &iter);
1545                        xa_unlock_irq(&mapping->i_pages);
1546                        putback_lru_page(page);
1547                        unlock_page(page);
1548                        xa_lock_irq(&mapping->i_pages);
1549                }
1550                VM_BUG_ON(nr_none);
1551                xa_unlock_irq(&mapping->i_pages);
1552
1553                /* Unfreeze new_page, caller would take care about freeing it */
1554                page_ref_unfreeze(new_page, 1);
1555                mem_cgroup_cancel_charge(new_page, memcg, true);
1556                unlock_page(new_page);
1557                new_page->mapping = NULL;
1558        }
1559out:
1560        VM_BUG_ON(!list_empty(&pagelist));
1561        /* TODO: tracepoints */
1562}
1563
1564static void khugepaged_scan_shmem(struct mm_struct *mm,
1565                struct address_space *mapping,
1566                pgoff_t start, struct page **hpage)
1567{
1568        struct page *page = NULL;
1569        struct radix_tree_iter iter;
1570        void **slot;
1571        int present, swap;
1572        int node = NUMA_NO_NODE;
1573        int result = SCAN_SUCCEED;
1574
1575        present = 0;
1576        swap = 0;
1577        memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1578        rcu_read_lock();
1579        radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1580                if (iter.index >= start + HPAGE_PMD_NR)
1581                        break;
1582
1583                page = radix_tree_deref_slot(slot);
1584                if (radix_tree_deref_retry(page)) {
1585                        slot = radix_tree_iter_retry(&iter);
1586                        continue;
1587                }
1588
1589                if (radix_tree_exception(page)) {
1590                        if (++swap > khugepaged_max_ptes_swap) {
1591                                result = SCAN_EXCEED_SWAP_PTE;
1592                                break;
1593                        }
1594                        continue;
1595                }
1596
1597                if (PageTransCompound(page)) {
1598                        result = SCAN_PAGE_COMPOUND;
1599                        break;
1600                }
1601
1602                node = page_to_nid(page);
1603                if (khugepaged_scan_abort(node)) {
1604                        result = SCAN_SCAN_ABORT;
1605                        break;
1606                }
1607                khugepaged_node_load[node]++;
1608
1609                if (!PageLRU(page)) {
1610                        result = SCAN_PAGE_LRU;
1611                        break;
1612                }
1613
1614                if (page_count(page) != 1 + page_mapcount(page)) {
1615                        result = SCAN_PAGE_COUNT;
1616                        break;
1617                }
1618
1619                /*
1620                 * We probably should check if the page is referenced here, but
1621                 * nobody would transfer pte_young() to PageReferenced() for us.
1622                 * And rmap walk here is just too costly...
1623                 */
1624
1625                present++;
1626
1627                if (need_resched()) {
1628                        slot = radix_tree_iter_resume(slot, &iter);
1629                        cond_resched_rcu();
1630                }
1631        }
1632        rcu_read_unlock();
1633
1634        if (result == SCAN_SUCCEED) {
1635                if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1636                        result = SCAN_EXCEED_NONE_PTE;
1637                } else {
1638                        node = khugepaged_find_target_node();
1639                        collapse_shmem(mm, mapping, start, hpage, node);
1640                }
1641        }
1642
1643        /* TODO: tracepoints */
1644}
1645#else
1646static void khugepaged_scan_shmem(struct mm_struct *mm,
1647                struct address_space *mapping,
1648                pgoff_t start, struct page **hpage)
1649{
1650        BUILD_BUG();
1651}
1652#endif
1653
1654static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1655                                            struct page **hpage)
1656        __releases(&khugepaged_mm_lock)
1657        __acquires(&khugepaged_mm_lock)
1658{
1659        struct mm_slot *mm_slot;
1660        struct mm_struct *mm;
1661        struct vm_area_struct *vma;
1662        int progress = 0;
1663
1664        VM_BUG_ON(!pages);
1665        VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1666
1667        if (khugepaged_scan.mm_slot)
1668                mm_slot = khugepaged_scan.mm_slot;
1669        else {
1670                mm_slot = list_entry(khugepaged_scan.mm_head.next,
1671                                     struct mm_slot, mm_node);
1672                khugepaged_scan.address = 0;
1673                khugepaged_scan.mm_slot = mm_slot;
1674        }
1675        spin_unlock(&khugepaged_mm_lock);
1676
1677        mm = mm_slot->mm;
1678        /*
1679         * Don't wait for semaphore (to avoid long wait times).  Just move to
1680         * the next mm on the list.
1681         */
1682        vma = NULL;
1683        if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1684                goto breakouterloop_mmap_sem;
1685        if (likely(!khugepaged_test_exit(mm)))
1686                vma = find_vma(mm, khugepaged_scan.address);
1687
1688        progress++;
1689        for (; vma; vma = vma->vm_next) {
1690                unsigned long hstart, hend;
1691
1692                cond_resched();
1693                if (unlikely(khugepaged_test_exit(mm))) {
1694                        progress++;
1695                        break;
1696                }
1697                if (!hugepage_vma_check(vma)) {
1698skip:
1699                        progress++;
1700                        continue;
1701                }
1702                hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1703                hend = vma->vm_end & HPAGE_PMD_MASK;
1704                if (hstart >= hend)
1705                        goto skip;
1706                if (khugepaged_scan.address > hend)
1707                        goto skip;
1708                if (khugepaged_scan.address < hstart)
1709                        khugepaged_scan.address = hstart;
1710                VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1711
1712                while (khugepaged_scan.address < hend) {
1713                        int ret;
1714                        cond_resched();
1715                        if (unlikely(khugepaged_test_exit(mm)))
1716                                goto breakouterloop;
1717
1718                        VM_BUG_ON(khugepaged_scan.address < hstart ||
1719                                  khugepaged_scan.address + HPAGE_PMD_SIZE >
1720                                  hend);
1721                        if (shmem_file(vma->vm_file)) {
1722                                struct file *file;
1723                                pgoff_t pgoff = linear_page_index(vma,
1724                                                khugepaged_scan.address);
1725                                if (!shmem_huge_enabled(vma))
1726                                        goto skip;
1727                                file = get_file(vma->vm_file);
1728                                up_read(&mm->mmap_sem);
1729                                ret = 1;
1730                                khugepaged_scan_shmem(mm, file->f_mapping,
1731                                                pgoff, hpage);
1732                                fput(file);
1733                        } else {
1734                                ret = khugepaged_scan_pmd(mm, vma,
1735                                                khugepaged_scan.address,
1736                                                hpage);
1737                        }
1738                        /* move to next address */
1739                        khugepaged_scan.address += HPAGE_PMD_SIZE;
1740                        progress += HPAGE_PMD_NR;
1741                        if (ret)
1742                                /* we released mmap_sem so break loop */
1743                                goto breakouterloop_mmap_sem;
1744                        if (progress >= pages)
1745                                goto breakouterloop;
1746                }
1747        }
1748breakouterloop:
1749        up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1750breakouterloop_mmap_sem:
1751
1752        spin_lock(&khugepaged_mm_lock);
1753        VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1754        /*
1755         * Release the current mm_slot if this mm is about to die, or
1756         * if we scanned all vmas of this mm.
1757         */
1758        if (khugepaged_test_exit(mm) || !vma) {
1759                /*
1760                 * Make sure that if mm_users is reaching zero while
1761                 * khugepaged runs here, khugepaged_exit will find
1762                 * mm_slot not pointing to the exiting mm.
1763                 */
1764                if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1765                        khugepaged_scan.mm_slot = list_entry(
1766                                mm_slot->mm_node.next,
1767                                struct mm_slot, mm_node);
1768                        khugepaged_scan.address = 0;
1769                } else {
1770                        khugepaged_scan.mm_slot = NULL;
1771                        khugepaged_full_scans++;
1772                }
1773
1774                collect_mm_slot(mm_slot);
1775        }
1776
1777        return progress;
1778}
1779
1780static int khugepaged_has_work(void)
1781{
1782        return !list_empty(&khugepaged_scan.mm_head) &&
1783                khugepaged_enabled();
1784}
1785
1786static int khugepaged_wait_event(void)
1787{
1788        return !list_empty(&khugepaged_scan.mm_head) ||
1789                kthread_should_stop();
1790}
1791
1792static void khugepaged_do_scan(void)
1793{
1794        struct page *hpage = NULL;
1795        unsigned int progress = 0, pass_through_head = 0;
1796        unsigned int pages = khugepaged_pages_to_scan;
1797        bool wait = true;
1798
1799        barrier(); /* write khugepaged_pages_to_scan to local stack */
1800
1801        while (progress < pages) {
1802                if (!khugepaged_prealloc_page(&hpage, &wait))
1803                        break;
1804
1805                cond_resched();
1806
1807                if (unlikely(kthread_should_stop() || try_to_freeze()))
1808                        break;
1809
1810                spin_lock(&khugepaged_mm_lock);
1811                if (!khugepaged_scan.mm_slot)
1812                        pass_through_head++;
1813                if (khugepaged_has_work() &&
1814                    pass_through_head < 2)
1815                        progress += khugepaged_scan_mm_slot(pages - progress,
1816                                                            &hpage);
1817                else
1818                        progress = pages;
1819                spin_unlock(&khugepaged_mm_lock);
1820        }
1821
1822        if (!IS_ERR_OR_NULL(hpage))
1823                put_page(hpage);
1824}
1825
1826static bool khugepaged_should_wakeup(void)
1827{
1828        return kthread_should_stop() ||
1829               time_after_eq(jiffies, khugepaged_sleep_expire);
1830}
1831
1832static void khugepaged_wait_work(void)
1833{
1834        if (khugepaged_has_work()) {
1835                const unsigned long scan_sleep_jiffies =
1836                        msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1837
1838                if (!scan_sleep_jiffies)
1839                        return;
1840
1841                khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1842                wait_event_freezable_timeout(khugepaged_wait,
1843                                             khugepaged_should_wakeup(),
1844                                             scan_sleep_jiffies);
1845                return;
1846        }
1847
1848        if (khugepaged_enabled())
1849                wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1850}
1851
1852static int khugepaged(void *none)
1853{
1854        struct mm_slot *mm_slot;
1855
1856        set_freezable();
1857        set_user_nice(current, MAX_NICE);
1858
1859        while (!kthread_should_stop()) {
1860                khugepaged_do_scan();
1861                khugepaged_wait_work();
1862        }
1863
1864        spin_lock(&khugepaged_mm_lock);
1865        mm_slot = khugepaged_scan.mm_slot;
1866        khugepaged_scan.mm_slot = NULL;
1867        if (mm_slot)
1868                collect_mm_slot(mm_slot);
1869        spin_unlock(&khugepaged_mm_lock);
1870        return 0;
1871}
1872
1873static void set_recommended_min_free_kbytes(void)
1874{
1875        struct zone *zone;
1876        int nr_zones = 0;
1877        unsigned long recommended_min;
1878
1879        for_each_populated_zone(zone) {
1880                /*
1881                 * We don't need to worry about fragmentation of
1882                 * ZONE_MOVABLE since it only has movable pages.
1883                 */
1884                if (zone_idx(zone) > gfp_zone(GFP_USER))
1885                        continue;
1886
1887                nr_zones++;
1888        }
1889
1890        /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1891        recommended_min = pageblock_nr_pages * nr_zones * 2;
1892
1893        /*
1894         * Make sure that on average at least two pageblocks are almost free
1895         * of another type, one for a migratetype to fall back to and a
1896         * second to avoid subsequent fallbacks of other types There are 3
1897         * MIGRATE_TYPES we care about.
1898         */
1899        recommended_min += pageblock_nr_pages * nr_zones *
1900                           MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1901
1902        /* don't ever allow to reserve more than 5% of the lowmem */
1903        recommended_min = min(recommended_min,
1904                              (unsigned long) nr_free_buffer_pages() / 20);
1905        recommended_min <<= (PAGE_SHIFT-10);
1906
1907        if (recommended_min > min_free_kbytes) {
1908                if (user_min_free_kbytes >= 0)
1909                        pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1910                                min_free_kbytes, recommended_min);
1911
1912                min_free_kbytes = recommended_min;
1913        }
1914        setup_per_zone_wmarks();
1915}
1916
1917int start_stop_khugepaged(void)
1918{
1919        static struct task_struct *khugepaged_thread __read_mostly;
1920        static DEFINE_MUTEX(khugepaged_mutex);
1921        int err = 0;
1922
1923        mutex_lock(&khugepaged_mutex);
1924        if (khugepaged_enabled()) {
1925                if (!khugepaged_thread)
1926                        khugepaged_thread = kthread_run(khugepaged, NULL,
1927                                                        "khugepaged");
1928                if (IS_ERR(khugepaged_thread)) {
1929                        pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1930                        err = PTR_ERR(khugepaged_thread);
1931                        khugepaged_thread = NULL;
1932                        goto fail;
1933                }
1934
1935                if (!list_empty(&khugepaged_scan.mm_head))
1936                        wake_up_interruptible(&khugepaged_wait);
1937
1938                set_recommended_min_free_kbytes();
1939        } else if (khugepaged_thread) {
1940                kthread_stop(khugepaged_thread);
1941                khugepaged_thread = NULL;
1942        }
1943fail:
1944        mutex_unlock(&khugepaged_mutex);
1945        return err;
1946}
1947