linux/mm/memory-failure.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008, 2009 Intel Corporation
   3 * Authors: Andi Kleen, Fengguang Wu
   4 *
   5 * This software may be redistributed and/or modified under the terms of
   6 * the GNU General Public License ("GPL") version 2 only as published by the
   7 * Free Software Foundation.
   8 *
   9 * High level machine check handler. Handles pages reported by the
  10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11 * failure.
  12 * 
  13 * In addition there is a "soft offline" entry point that allows stop using
  14 * not-yet-corrupted-by-suspicious pages without killing anything.
  15 *
  16 * Handles page cache pages in various states.  The tricky part
  17 * here is that we can access any page asynchronously in respect to 
  18 * other VM users, because memory failures could happen anytime and 
  19 * anywhere. This could violate some of their assumptions. This is why 
  20 * this code has to be extremely careful. Generally it tries to use 
  21 * normal locking rules, as in get the standard locks, even if that means 
  22 * the error handling takes potentially a long time.
  23 *
  24 * It can be very tempting to add handling for obscure cases here.
  25 * In general any code for handling new cases should only be added iff:
  26 * - You know how to test it.
  27 * - You have a test that can be added to mce-test
  28 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  29 * - The case actually shows up as a frequent (top 10) page state in
  30 *   tools/vm/page-types when running a real workload.
  31 * 
  32 * There are several operations here with exponential complexity because
  33 * of unsuitable VM data structures. For example the operation to map back 
  34 * from RMAP chains to processes has to walk the complete process list and 
  35 * has non linear complexity with the number. But since memory corruptions
  36 * are rare we hope to get away with this. This avoids impacting the core 
  37 * VM.
  38 */
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/page-flags.h>
  42#include <linux/kernel-page-flags.h>
  43#include <linux/sched/signal.h>
  44#include <linux/sched/task.h>
  45#include <linux/ksm.h>
  46#include <linux/rmap.h>
  47#include <linux/export.h>
  48#include <linux/pagemap.h>
  49#include <linux/swap.h>
  50#include <linux/backing-dev.h>
  51#include <linux/migrate.h>
  52#include <linux/suspend.h>
  53#include <linux/slab.h>
  54#include <linux/swapops.h>
  55#include <linux/hugetlb.h>
  56#include <linux/memory_hotplug.h>
  57#include <linux/mm_inline.h>
  58#include <linux/kfifo.h>
  59#include <linux/ratelimit.h>
  60#include "internal.h"
  61#include "ras/ras_event.h"
  62
  63int sysctl_memory_failure_early_kill __read_mostly = 0;
  64
  65int sysctl_memory_failure_recovery __read_mostly = 1;
  66
  67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  68
  69#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  70
  71u32 hwpoison_filter_enable = 0;
  72u32 hwpoison_filter_dev_major = ~0U;
  73u32 hwpoison_filter_dev_minor = ~0U;
  74u64 hwpoison_filter_flags_mask;
  75u64 hwpoison_filter_flags_value;
  76EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  81
  82static int hwpoison_filter_dev(struct page *p)
  83{
  84        struct address_space *mapping;
  85        dev_t dev;
  86
  87        if (hwpoison_filter_dev_major == ~0U &&
  88            hwpoison_filter_dev_minor == ~0U)
  89                return 0;
  90
  91        /*
  92         * page_mapping() does not accept slab pages.
  93         */
  94        if (PageSlab(p))
  95                return -EINVAL;
  96
  97        mapping = page_mapping(p);
  98        if (mapping == NULL || mapping->host == NULL)
  99                return -EINVAL;
 100
 101        dev = mapping->host->i_sb->s_dev;
 102        if (hwpoison_filter_dev_major != ~0U &&
 103            hwpoison_filter_dev_major != MAJOR(dev))
 104                return -EINVAL;
 105        if (hwpoison_filter_dev_minor != ~0U &&
 106            hwpoison_filter_dev_minor != MINOR(dev))
 107                return -EINVAL;
 108
 109        return 0;
 110}
 111
 112static int hwpoison_filter_flags(struct page *p)
 113{
 114        if (!hwpoison_filter_flags_mask)
 115                return 0;
 116
 117        if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 118                                    hwpoison_filter_flags_value)
 119                return 0;
 120        else
 121                return -EINVAL;
 122}
 123
 124/*
 125 * This allows stress tests to limit test scope to a collection of tasks
 126 * by putting them under some memcg. This prevents killing unrelated/important
 127 * processes such as /sbin/init. Note that the target task may share clean
 128 * pages with init (eg. libc text), which is harmless. If the target task
 129 * share _dirty_ pages with another task B, the test scheme must make sure B
 130 * is also included in the memcg. At last, due to race conditions this filter
 131 * can only guarantee that the page either belongs to the memcg tasks, or is
 132 * a freed page.
 133 */
 134#ifdef CONFIG_MEMCG
 135u64 hwpoison_filter_memcg;
 136EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 137static int hwpoison_filter_task(struct page *p)
 138{
 139        if (!hwpoison_filter_memcg)
 140                return 0;
 141
 142        if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 143                return -EINVAL;
 144
 145        return 0;
 146}
 147#else
 148static int hwpoison_filter_task(struct page *p) { return 0; }
 149#endif
 150
 151int hwpoison_filter(struct page *p)
 152{
 153        if (!hwpoison_filter_enable)
 154                return 0;
 155
 156        if (hwpoison_filter_dev(p))
 157                return -EINVAL;
 158
 159        if (hwpoison_filter_flags(p))
 160                return -EINVAL;
 161
 162        if (hwpoison_filter_task(p))
 163                return -EINVAL;
 164
 165        return 0;
 166}
 167#else
 168int hwpoison_filter(struct page *p)
 169{
 170        return 0;
 171}
 172#endif
 173
 174EXPORT_SYMBOL_GPL(hwpoison_filter);
 175
 176/*
 177 * Send all the processes who have the page mapped a signal.
 178 * ``action optional'' if they are not immediately affected by the error
 179 * ``action required'' if error happened in current execution context
 180 */
 181static int kill_proc(struct task_struct *t, unsigned long addr,
 182                        unsigned long pfn, struct page *page, int flags)
 183{
 184        short addr_lsb;
 185        int ret;
 186
 187        pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
 188                pfn, t->comm, t->pid);
 189        addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
 190
 191        if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
 192                ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr,
 193                                       addr_lsb, current);
 194        } else {
 195                /*
 196                 * Don't use force here, it's convenient if the signal
 197                 * can be temporarily blocked.
 198                 * This could cause a loop when the user sets SIGBUS
 199                 * to SIG_IGN, but hopefully no one will do that?
 200                 */
 201                ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)addr,
 202                                      addr_lsb, t);  /* synchronous? */
 203        }
 204        if (ret < 0)
 205                pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
 206                        t->comm, t->pid, ret);
 207        return ret;
 208}
 209
 210/*
 211 * When a unknown page type is encountered drain as many buffers as possible
 212 * in the hope to turn the page into a LRU or free page, which we can handle.
 213 */
 214void shake_page(struct page *p, int access)
 215{
 216        if (PageHuge(p))
 217                return;
 218
 219        if (!PageSlab(p)) {
 220                lru_add_drain_all();
 221                if (PageLRU(p))
 222                        return;
 223                drain_all_pages(page_zone(p));
 224                if (PageLRU(p) || is_free_buddy_page(p))
 225                        return;
 226        }
 227
 228        /*
 229         * Only call shrink_node_slabs here (which would also shrink
 230         * other caches) if access is not potentially fatal.
 231         */
 232        if (access)
 233                drop_slab_node(page_to_nid(p));
 234}
 235EXPORT_SYMBOL_GPL(shake_page);
 236
 237/*
 238 * Kill all processes that have a poisoned page mapped and then isolate
 239 * the page.
 240 *
 241 * General strategy:
 242 * Find all processes having the page mapped and kill them.
 243 * But we keep a page reference around so that the page is not
 244 * actually freed yet.
 245 * Then stash the page away
 246 *
 247 * There's no convenient way to get back to mapped processes
 248 * from the VMAs. So do a brute-force search over all
 249 * running processes.
 250 *
 251 * Remember that machine checks are not common (or rather
 252 * if they are common you have other problems), so this shouldn't
 253 * be a performance issue.
 254 *
 255 * Also there are some races possible while we get from the
 256 * error detection to actually handle it.
 257 */
 258
 259struct to_kill {
 260        struct list_head nd;
 261        struct task_struct *tsk;
 262        unsigned long addr;
 263        char addr_valid;
 264};
 265
 266/*
 267 * Failure handling: if we can't find or can't kill a process there's
 268 * not much we can do.  We just print a message and ignore otherwise.
 269 */
 270
 271/*
 272 * Schedule a process for later kill.
 273 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 274 * TBD would GFP_NOIO be enough?
 275 */
 276static void add_to_kill(struct task_struct *tsk, struct page *p,
 277                       struct vm_area_struct *vma,
 278                       struct list_head *to_kill,
 279                       struct to_kill **tkc)
 280{
 281        struct to_kill *tk;
 282
 283        if (*tkc) {
 284                tk = *tkc;
 285                *tkc = NULL;
 286        } else {
 287                tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 288                if (!tk) {
 289                        pr_err("Memory failure: Out of memory while machine check handling\n");
 290                        return;
 291                }
 292        }
 293        tk->addr = page_address_in_vma(p, vma);
 294        tk->addr_valid = 1;
 295
 296        /*
 297         * In theory we don't have to kill when the page was
 298         * munmaped. But it could be also a mremap. Since that's
 299         * likely very rare kill anyways just out of paranoia, but use
 300         * a SIGKILL because the error is not contained anymore.
 301         */
 302        if (tk->addr == -EFAULT) {
 303                pr_info("Memory failure: Unable to find user space address %lx in %s\n",
 304                        page_to_pfn(p), tsk->comm);
 305                tk->addr_valid = 0;
 306        }
 307        get_task_struct(tsk);
 308        tk->tsk = tsk;
 309        list_add_tail(&tk->nd, to_kill);
 310}
 311
 312/*
 313 * Kill the processes that have been collected earlier.
 314 *
 315 * Only do anything when DOIT is set, otherwise just free the list
 316 * (this is used for clean pages which do not need killing)
 317 * Also when FAIL is set do a force kill because something went
 318 * wrong earlier.
 319 */
 320static void kill_procs(struct list_head *to_kill, int forcekill,
 321                          bool fail, struct page *page, unsigned long pfn,
 322                          int flags)
 323{
 324        struct to_kill *tk, *next;
 325
 326        list_for_each_entry_safe (tk, next, to_kill, nd) {
 327                if (forcekill) {
 328                        /*
 329                         * In case something went wrong with munmapping
 330                         * make sure the process doesn't catch the
 331                         * signal and then access the memory. Just kill it.
 332                         */
 333                        if (fail || tk->addr_valid == 0) {
 334                                pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 335                                       pfn, tk->tsk->comm, tk->tsk->pid);
 336                                force_sig(SIGKILL, tk->tsk);
 337                        }
 338
 339                        /*
 340                         * In theory the process could have mapped
 341                         * something else on the address in-between. We could
 342                         * check for that, but we need to tell the
 343                         * process anyways.
 344                         */
 345                        else if (kill_proc(tk->tsk, tk->addr,
 346                                              pfn, page, flags) < 0)
 347                                pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
 348                                       pfn, tk->tsk->comm, tk->tsk->pid);
 349                }
 350                put_task_struct(tk->tsk);
 351                kfree(tk);
 352        }
 353}
 354
 355/*
 356 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 357 * on behalf of the thread group. Return task_struct of the (first found)
 358 * dedicated thread if found, and return NULL otherwise.
 359 *
 360 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 361 * have to call rcu_read_lock/unlock() in this function.
 362 */
 363static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 364{
 365        struct task_struct *t;
 366
 367        for_each_thread(tsk, t)
 368                if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
 369                        return t;
 370        return NULL;
 371}
 372
 373/*
 374 * Determine whether a given process is "early kill" process which expects
 375 * to be signaled when some page under the process is hwpoisoned.
 376 * Return task_struct of the dedicated thread (main thread unless explicitly
 377 * specified) if the process is "early kill," and otherwise returns NULL.
 378 */
 379static struct task_struct *task_early_kill(struct task_struct *tsk,
 380                                           int force_early)
 381{
 382        struct task_struct *t;
 383        if (!tsk->mm)
 384                return NULL;
 385        if (force_early)
 386                return tsk;
 387        t = find_early_kill_thread(tsk);
 388        if (t)
 389                return t;
 390        if (sysctl_memory_failure_early_kill)
 391                return tsk;
 392        return NULL;
 393}
 394
 395/*
 396 * Collect processes when the error hit an anonymous page.
 397 */
 398static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 399                              struct to_kill **tkc, int force_early)
 400{
 401        struct vm_area_struct *vma;
 402        struct task_struct *tsk;
 403        struct anon_vma *av;
 404        pgoff_t pgoff;
 405
 406        av = page_lock_anon_vma_read(page);
 407        if (av == NULL) /* Not actually mapped anymore */
 408                return;
 409
 410        pgoff = page_to_pgoff(page);
 411        read_lock(&tasklist_lock);
 412        for_each_process (tsk) {
 413                struct anon_vma_chain *vmac;
 414                struct task_struct *t = task_early_kill(tsk, force_early);
 415
 416                if (!t)
 417                        continue;
 418                anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 419                                               pgoff, pgoff) {
 420                        vma = vmac->vma;
 421                        if (!page_mapped_in_vma(page, vma))
 422                                continue;
 423                        if (vma->vm_mm == t->mm)
 424                                add_to_kill(t, page, vma, to_kill, tkc);
 425                }
 426        }
 427        read_unlock(&tasklist_lock);
 428        page_unlock_anon_vma_read(av);
 429}
 430
 431/*
 432 * Collect processes when the error hit a file mapped page.
 433 */
 434static void collect_procs_file(struct page *page, struct list_head *to_kill,
 435                              struct to_kill **tkc, int force_early)
 436{
 437        struct vm_area_struct *vma;
 438        struct task_struct *tsk;
 439        struct address_space *mapping = page->mapping;
 440
 441        i_mmap_lock_read(mapping);
 442        read_lock(&tasklist_lock);
 443        for_each_process(tsk) {
 444                pgoff_t pgoff = page_to_pgoff(page);
 445                struct task_struct *t = task_early_kill(tsk, force_early);
 446
 447                if (!t)
 448                        continue;
 449                vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 450                                      pgoff) {
 451                        /*
 452                         * Send early kill signal to tasks where a vma covers
 453                         * the page but the corrupted page is not necessarily
 454                         * mapped it in its pte.
 455                         * Assume applications who requested early kill want
 456                         * to be informed of all such data corruptions.
 457                         */
 458                        if (vma->vm_mm == t->mm)
 459                                add_to_kill(t, page, vma, to_kill, tkc);
 460                }
 461        }
 462        read_unlock(&tasklist_lock);
 463        i_mmap_unlock_read(mapping);
 464}
 465
 466/*
 467 * Collect the processes who have the corrupted page mapped to kill.
 468 * This is done in two steps for locking reasons.
 469 * First preallocate one tokill structure outside the spin locks,
 470 * so that we can kill at least one process reasonably reliable.
 471 */
 472static void collect_procs(struct page *page, struct list_head *tokill,
 473                                int force_early)
 474{
 475        struct to_kill *tk;
 476
 477        if (!page->mapping)
 478                return;
 479
 480        tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
 481        if (!tk)
 482                return;
 483        if (PageAnon(page))
 484                collect_procs_anon(page, tokill, &tk, force_early);
 485        else
 486                collect_procs_file(page, tokill, &tk, force_early);
 487        kfree(tk);
 488}
 489
 490static const char *action_name[] = {
 491        [MF_IGNORED] = "Ignored",
 492        [MF_FAILED] = "Failed",
 493        [MF_DELAYED] = "Delayed",
 494        [MF_RECOVERED] = "Recovered",
 495};
 496
 497static const char * const action_page_types[] = {
 498        [MF_MSG_KERNEL]                 = "reserved kernel page",
 499        [MF_MSG_KERNEL_HIGH_ORDER]      = "high-order kernel page",
 500        [MF_MSG_SLAB]                   = "kernel slab page",
 501        [MF_MSG_DIFFERENT_COMPOUND]     = "different compound page after locking",
 502        [MF_MSG_POISONED_HUGE]          = "huge page already hardware poisoned",
 503        [MF_MSG_HUGE]                   = "huge page",
 504        [MF_MSG_FREE_HUGE]              = "free huge page",
 505        [MF_MSG_NON_PMD_HUGE]           = "non-pmd-sized huge page",
 506        [MF_MSG_UNMAP_FAILED]           = "unmapping failed page",
 507        [MF_MSG_DIRTY_SWAPCACHE]        = "dirty swapcache page",
 508        [MF_MSG_CLEAN_SWAPCACHE]        = "clean swapcache page",
 509        [MF_MSG_DIRTY_MLOCKED_LRU]      = "dirty mlocked LRU page",
 510        [MF_MSG_CLEAN_MLOCKED_LRU]      = "clean mlocked LRU page",
 511        [MF_MSG_DIRTY_UNEVICTABLE_LRU]  = "dirty unevictable LRU page",
 512        [MF_MSG_CLEAN_UNEVICTABLE_LRU]  = "clean unevictable LRU page",
 513        [MF_MSG_DIRTY_LRU]              = "dirty LRU page",
 514        [MF_MSG_CLEAN_LRU]              = "clean LRU page",
 515        [MF_MSG_TRUNCATED_LRU]          = "already truncated LRU page",
 516        [MF_MSG_BUDDY]                  = "free buddy page",
 517        [MF_MSG_BUDDY_2ND]              = "free buddy page (2nd try)",
 518        [MF_MSG_UNKNOWN]                = "unknown page",
 519};
 520
 521/*
 522 * XXX: It is possible that a page is isolated from LRU cache,
 523 * and then kept in swap cache or failed to remove from page cache.
 524 * The page count will stop it from being freed by unpoison.
 525 * Stress tests should be aware of this memory leak problem.
 526 */
 527static int delete_from_lru_cache(struct page *p)
 528{
 529        if (!isolate_lru_page(p)) {
 530                /*
 531                 * Clear sensible page flags, so that the buddy system won't
 532                 * complain when the page is unpoison-and-freed.
 533                 */
 534                ClearPageActive(p);
 535                ClearPageUnevictable(p);
 536
 537                /*
 538                 * Poisoned page might never drop its ref count to 0 so we have
 539                 * to uncharge it manually from its memcg.
 540                 */
 541                mem_cgroup_uncharge(p);
 542
 543                /*
 544                 * drop the page count elevated by isolate_lru_page()
 545                 */
 546                put_page(p);
 547                return 0;
 548        }
 549        return -EIO;
 550}
 551
 552static int truncate_error_page(struct page *p, unsigned long pfn,
 553                                struct address_space *mapping)
 554{
 555        int ret = MF_FAILED;
 556
 557        if (mapping->a_ops->error_remove_page) {
 558                int err = mapping->a_ops->error_remove_page(mapping, p);
 559
 560                if (err != 0) {
 561                        pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
 562                                pfn, err);
 563                } else if (page_has_private(p) &&
 564                           !try_to_release_page(p, GFP_NOIO)) {
 565                        pr_info("Memory failure: %#lx: failed to release buffers\n",
 566                                pfn);
 567                } else {
 568                        ret = MF_RECOVERED;
 569                }
 570        } else {
 571                /*
 572                 * If the file system doesn't support it just invalidate
 573                 * This fails on dirty or anything with private pages
 574                 */
 575                if (invalidate_inode_page(p))
 576                        ret = MF_RECOVERED;
 577                else
 578                        pr_info("Memory failure: %#lx: Failed to invalidate\n",
 579                                pfn);
 580        }
 581
 582        return ret;
 583}
 584
 585/*
 586 * Error hit kernel page.
 587 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 588 * could be more sophisticated.
 589 */
 590static int me_kernel(struct page *p, unsigned long pfn)
 591{
 592        return MF_IGNORED;
 593}
 594
 595/*
 596 * Page in unknown state. Do nothing.
 597 */
 598static int me_unknown(struct page *p, unsigned long pfn)
 599{
 600        pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
 601        return MF_FAILED;
 602}
 603
 604/*
 605 * Clean (or cleaned) page cache page.
 606 */
 607static int me_pagecache_clean(struct page *p, unsigned long pfn)
 608{
 609        struct address_space *mapping;
 610
 611        delete_from_lru_cache(p);
 612
 613        /*
 614         * For anonymous pages we're done the only reference left
 615         * should be the one m_f() holds.
 616         */
 617        if (PageAnon(p))
 618                return MF_RECOVERED;
 619
 620        /*
 621         * Now truncate the page in the page cache. This is really
 622         * more like a "temporary hole punch"
 623         * Don't do this for block devices when someone else
 624         * has a reference, because it could be file system metadata
 625         * and that's not safe to truncate.
 626         */
 627        mapping = page_mapping(p);
 628        if (!mapping) {
 629                /*
 630                 * Page has been teared down in the meanwhile
 631                 */
 632                return MF_FAILED;
 633        }
 634
 635        /*
 636         * Truncation is a bit tricky. Enable it per file system for now.
 637         *
 638         * Open: to take i_mutex or not for this? Right now we don't.
 639         */
 640        return truncate_error_page(p, pfn, mapping);
 641}
 642
 643/*
 644 * Dirty pagecache page
 645 * Issues: when the error hit a hole page the error is not properly
 646 * propagated.
 647 */
 648static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 649{
 650        struct address_space *mapping = page_mapping(p);
 651
 652        SetPageError(p);
 653        /* TBD: print more information about the file. */
 654        if (mapping) {
 655                /*
 656                 * IO error will be reported by write(), fsync(), etc.
 657                 * who check the mapping.
 658                 * This way the application knows that something went
 659                 * wrong with its dirty file data.
 660                 *
 661                 * There's one open issue:
 662                 *
 663                 * The EIO will be only reported on the next IO
 664                 * operation and then cleared through the IO map.
 665                 * Normally Linux has two mechanisms to pass IO error
 666                 * first through the AS_EIO flag in the address space
 667                 * and then through the PageError flag in the page.
 668                 * Since we drop pages on memory failure handling the
 669                 * only mechanism open to use is through AS_AIO.
 670                 *
 671                 * This has the disadvantage that it gets cleared on
 672                 * the first operation that returns an error, while
 673                 * the PageError bit is more sticky and only cleared
 674                 * when the page is reread or dropped.  If an
 675                 * application assumes it will always get error on
 676                 * fsync, but does other operations on the fd before
 677                 * and the page is dropped between then the error
 678                 * will not be properly reported.
 679                 *
 680                 * This can already happen even without hwpoisoned
 681                 * pages: first on metadata IO errors (which only
 682                 * report through AS_EIO) or when the page is dropped
 683                 * at the wrong time.
 684                 *
 685                 * So right now we assume that the application DTRT on
 686                 * the first EIO, but we're not worse than other parts
 687                 * of the kernel.
 688                 */
 689                mapping_set_error(mapping, -EIO);
 690        }
 691
 692        return me_pagecache_clean(p, pfn);
 693}
 694
 695/*
 696 * Clean and dirty swap cache.
 697 *
 698 * Dirty swap cache page is tricky to handle. The page could live both in page
 699 * cache and swap cache(ie. page is freshly swapped in). So it could be
 700 * referenced concurrently by 2 types of PTEs:
 701 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 702 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 703 * and then
 704 *      - clear dirty bit to prevent IO
 705 *      - remove from LRU
 706 *      - but keep in the swap cache, so that when we return to it on
 707 *        a later page fault, we know the application is accessing
 708 *        corrupted data and shall be killed (we installed simple
 709 *        interception code in do_swap_page to catch it).
 710 *
 711 * Clean swap cache pages can be directly isolated. A later page fault will
 712 * bring in the known good data from disk.
 713 */
 714static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 715{
 716        ClearPageDirty(p);
 717        /* Trigger EIO in shmem: */
 718        ClearPageUptodate(p);
 719
 720        if (!delete_from_lru_cache(p))
 721                return MF_DELAYED;
 722        else
 723                return MF_FAILED;
 724}
 725
 726static int me_swapcache_clean(struct page *p, unsigned long pfn)
 727{
 728        delete_from_swap_cache(p);
 729
 730        if (!delete_from_lru_cache(p))
 731                return MF_RECOVERED;
 732        else
 733                return MF_FAILED;
 734}
 735
 736/*
 737 * Huge pages. Needs work.
 738 * Issues:
 739 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 740 *   To narrow down kill region to one page, we need to break up pmd.
 741 */
 742static int me_huge_page(struct page *p, unsigned long pfn)
 743{
 744        int res = 0;
 745        struct page *hpage = compound_head(p);
 746        struct address_space *mapping;
 747
 748        if (!PageHuge(hpage))
 749                return MF_DELAYED;
 750
 751        mapping = page_mapping(hpage);
 752        if (mapping) {
 753                res = truncate_error_page(hpage, pfn, mapping);
 754        } else {
 755                unlock_page(hpage);
 756                /*
 757                 * migration entry prevents later access on error anonymous
 758                 * hugepage, so we can free and dissolve it into buddy to
 759                 * save healthy subpages.
 760                 */
 761                if (PageAnon(hpage))
 762                        put_page(hpage);
 763                dissolve_free_huge_page(p);
 764                res = MF_RECOVERED;
 765                lock_page(hpage);
 766        }
 767
 768        return res;
 769}
 770
 771/*
 772 * Various page states we can handle.
 773 *
 774 * A page state is defined by its current page->flags bits.
 775 * The table matches them in order and calls the right handler.
 776 *
 777 * This is quite tricky because we can access page at any time
 778 * in its live cycle, so all accesses have to be extremely careful.
 779 *
 780 * This is not complete. More states could be added.
 781 * For any missing state don't attempt recovery.
 782 */
 783
 784#define dirty           (1UL << PG_dirty)
 785#define sc              ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
 786#define unevict         (1UL << PG_unevictable)
 787#define mlock           (1UL << PG_mlocked)
 788#define writeback       (1UL << PG_writeback)
 789#define lru             (1UL << PG_lru)
 790#define head            (1UL << PG_head)
 791#define slab            (1UL << PG_slab)
 792#define reserved        (1UL << PG_reserved)
 793
 794static struct page_state {
 795        unsigned long mask;
 796        unsigned long res;
 797        enum mf_action_page_type type;
 798        int (*action)(struct page *p, unsigned long pfn);
 799} error_states[] = {
 800        { reserved,     reserved,       MF_MSG_KERNEL,  me_kernel },
 801        /*
 802         * free pages are specially detected outside this table:
 803         * PG_buddy pages only make a small fraction of all free pages.
 804         */
 805
 806        /*
 807         * Could in theory check if slab page is free or if we can drop
 808         * currently unused objects without touching them. But just
 809         * treat it as standard kernel for now.
 810         */
 811        { slab,         slab,           MF_MSG_SLAB,    me_kernel },
 812
 813        { head,         head,           MF_MSG_HUGE,            me_huge_page },
 814
 815        { sc|dirty,     sc|dirty,       MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
 816        { sc|dirty,     sc,             MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
 817
 818        { mlock|dirty,  mlock|dirty,    MF_MSG_DIRTY_MLOCKED_LRU,       me_pagecache_dirty },
 819        { mlock|dirty,  mlock,          MF_MSG_CLEAN_MLOCKED_LRU,       me_pagecache_clean },
 820
 821        { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU,   me_pagecache_dirty },
 822        { unevict|dirty, unevict,       MF_MSG_CLEAN_UNEVICTABLE_LRU,   me_pagecache_clean },
 823
 824        { lru|dirty,    lru|dirty,      MF_MSG_DIRTY_LRU,       me_pagecache_dirty },
 825        { lru|dirty,    lru,            MF_MSG_CLEAN_LRU,       me_pagecache_clean },
 826
 827        /*
 828         * Catchall entry: must be at end.
 829         */
 830        { 0,            0,              MF_MSG_UNKNOWN, me_unknown },
 831};
 832
 833#undef dirty
 834#undef sc
 835#undef unevict
 836#undef mlock
 837#undef writeback
 838#undef lru
 839#undef head
 840#undef slab
 841#undef reserved
 842
 843/*
 844 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 845 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 846 */
 847static void action_result(unsigned long pfn, enum mf_action_page_type type,
 848                          enum mf_result result)
 849{
 850        trace_memory_failure_event(pfn, type, result);
 851
 852        pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
 853                pfn, action_page_types[type], action_name[result]);
 854}
 855
 856static int page_action(struct page_state *ps, struct page *p,
 857                        unsigned long pfn)
 858{
 859        int result;
 860        int count;
 861
 862        result = ps->action(p, pfn);
 863
 864        count = page_count(p) - 1;
 865        if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
 866                count--;
 867        if (count > 0) {
 868                pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
 869                       pfn, action_page_types[ps->type], count);
 870                result = MF_FAILED;
 871        }
 872        action_result(pfn, ps->type, result);
 873
 874        /* Could do more checks here if page looks ok */
 875        /*
 876         * Could adjust zone counters here to correct for the missing page.
 877         */
 878
 879        return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
 880}
 881
 882/**
 883 * get_hwpoison_page() - Get refcount for memory error handling:
 884 * @page:       raw error page (hit by memory error)
 885 *
 886 * Return: return 0 if failed to grab the refcount, otherwise true (some
 887 * non-zero value.)
 888 */
 889int get_hwpoison_page(struct page *page)
 890{
 891        struct page *head = compound_head(page);
 892
 893        if (!PageHuge(head) && PageTransHuge(head)) {
 894                /*
 895                 * Non anonymous thp exists only in allocation/free time. We
 896                 * can't handle such a case correctly, so let's give it up.
 897                 * This should be better than triggering BUG_ON when kernel
 898                 * tries to touch the "partially handled" page.
 899                 */
 900                if (!PageAnon(head)) {
 901                        pr_err("Memory failure: %#lx: non anonymous thp\n",
 902                                page_to_pfn(page));
 903                        return 0;
 904                }
 905        }
 906
 907        if (get_page_unless_zero(head)) {
 908                if (head == compound_head(page))
 909                        return 1;
 910
 911                pr_info("Memory failure: %#lx cannot catch tail\n",
 912                        page_to_pfn(page));
 913                put_page(head);
 914        }
 915
 916        return 0;
 917}
 918EXPORT_SYMBOL_GPL(get_hwpoison_page);
 919
 920/*
 921 * Do all that is necessary to remove user space mappings. Unmap
 922 * the pages and send SIGBUS to the processes if the data was dirty.
 923 */
 924static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
 925                                  int flags, struct page **hpagep)
 926{
 927        enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
 928        struct address_space *mapping;
 929        LIST_HEAD(tokill);
 930        bool unmap_success;
 931        int kill = 1, forcekill;
 932        struct page *hpage = *hpagep;
 933        bool mlocked = PageMlocked(hpage);
 934
 935        /*
 936         * Here we are interested only in user-mapped pages, so skip any
 937         * other types of pages.
 938         */
 939        if (PageReserved(p) || PageSlab(p))
 940                return true;
 941        if (!(PageLRU(hpage) || PageHuge(p)))
 942                return true;
 943
 944        /*
 945         * This check implies we don't kill processes if their pages
 946         * are in the swap cache early. Those are always late kills.
 947         */
 948        if (!page_mapped(hpage))
 949                return true;
 950
 951        if (PageKsm(p)) {
 952                pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
 953                return false;
 954        }
 955
 956        if (PageSwapCache(p)) {
 957                pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
 958                        pfn);
 959                ttu |= TTU_IGNORE_HWPOISON;
 960        }
 961
 962        /*
 963         * Propagate the dirty bit from PTEs to struct page first, because we
 964         * need this to decide if we should kill or just drop the page.
 965         * XXX: the dirty test could be racy: set_page_dirty() may not always
 966         * be called inside page lock (it's recommended but not enforced).
 967         */
 968        mapping = page_mapping(hpage);
 969        if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
 970            mapping_cap_writeback_dirty(mapping)) {
 971                if (page_mkclean(hpage)) {
 972                        SetPageDirty(hpage);
 973                } else {
 974                        kill = 0;
 975                        ttu |= TTU_IGNORE_HWPOISON;
 976                        pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
 977                                pfn);
 978                }
 979        }
 980
 981        /*
 982         * First collect all the processes that have the page
 983         * mapped in dirty form.  This has to be done before try_to_unmap,
 984         * because ttu takes the rmap data structures down.
 985         *
 986         * Error handling: We ignore errors here because
 987         * there's nothing that can be done.
 988         */
 989        if (kill)
 990                collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
 991
 992        unmap_success = try_to_unmap(hpage, ttu);
 993        if (!unmap_success)
 994                pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
 995                       pfn, page_mapcount(hpage));
 996
 997        /*
 998         * try_to_unmap() might put mlocked page in lru cache, so call
 999         * shake_page() again to ensure that it's flushed.
1000         */
1001        if (mlocked)
1002                shake_page(hpage, 0);
1003
1004        /*
1005         * Now that the dirty bit has been propagated to the
1006         * struct page and all unmaps done we can decide if
1007         * killing is needed or not.  Only kill when the page
1008         * was dirty or the process is not restartable,
1009         * otherwise the tokill list is merely
1010         * freed.  When there was a problem unmapping earlier
1011         * use a more force-full uncatchable kill to prevent
1012         * any accesses to the poisoned memory.
1013         */
1014        forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1015        kill_procs(&tokill, forcekill, !unmap_success, p, pfn, flags);
1016
1017        return unmap_success;
1018}
1019
1020static int identify_page_state(unsigned long pfn, struct page *p,
1021                                unsigned long page_flags)
1022{
1023        struct page_state *ps;
1024
1025        /*
1026         * The first check uses the current page flags which may not have any
1027         * relevant information. The second check with the saved page flags is
1028         * carried out only if the first check can't determine the page status.
1029         */
1030        for (ps = error_states;; ps++)
1031                if ((p->flags & ps->mask) == ps->res)
1032                        break;
1033
1034        page_flags |= (p->flags & (1UL << PG_dirty));
1035
1036        if (!ps->mask)
1037                for (ps = error_states;; ps++)
1038                        if ((page_flags & ps->mask) == ps->res)
1039                                break;
1040        return page_action(ps, p, pfn);
1041}
1042
1043static int memory_failure_hugetlb(unsigned long pfn, int flags)
1044{
1045        struct page *p = pfn_to_page(pfn);
1046        struct page *head = compound_head(p);
1047        int res;
1048        unsigned long page_flags;
1049
1050        if (TestSetPageHWPoison(head)) {
1051                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1052                       pfn);
1053                return 0;
1054        }
1055
1056        num_poisoned_pages_inc();
1057
1058        if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1059                /*
1060                 * Check "filter hit" and "race with other subpage."
1061                 */
1062                lock_page(head);
1063                if (PageHWPoison(head)) {
1064                        if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1065                            || (p != head && TestSetPageHWPoison(head))) {
1066                                num_poisoned_pages_dec();
1067                                unlock_page(head);
1068                                return 0;
1069                        }
1070                }
1071                unlock_page(head);
1072                dissolve_free_huge_page(p);
1073                action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1074                return 0;
1075        }
1076
1077        lock_page(head);
1078        page_flags = head->flags;
1079
1080        if (!PageHWPoison(head)) {
1081                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1082                num_poisoned_pages_dec();
1083                unlock_page(head);
1084                put_hwpoison_page(head);
1085                return 0;
1086        }
1087
1088        /*
1089         * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1090         * simply disable it. In order to make it work properly, we need
1091         * make sure that:
1092         *  - conversion of a pud that maps an error hugetlb into hwpoison
1093         *    entry properly works, and
1094         *  - other mm code walking over page table is aware of pud-aligned
1095         *    hwpoison entries.
1096         */
1097        if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1098                action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1099                res = -EBUSY;
1100                goto out;
1101        }
1102
1103        if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1104                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1105                res = -EBUSY;
1106                goto out;
1107        }
1108
1109        res = identify_page_state(pfn, p, page_flags);
1110out:
1111        unlock_page(head);
1112        return res;
1113}
1114
1115/**
1116 * memory_failure - Handle memory failure of a page.
1117 * @pfn: Page Number of the corrupted page
1118 * @flags: fine tune action taken
1119 *
1120 * This function is called by the low level machine check code
1121 * of an architecture when it detects hardware memory corruption
1122 * of a page. It tries its best to recover, which includes
1123 * dropping pages, killing processes etc.
1124 *
1125 * The function is primarily of use for corruptions that
1126 * happen outside the current execution context (e.g. when
1127 * detected by a background scrubber)
1128 *
1129 * Must run in process context (e.g. a work queue) with interrupts
1130 * enabled and no spinlocks hold.
1131 */
1132int memory_failure(unsigned long pfn, int flags)
1133{
1134        struct page *p;
1135        struct page *hpage;
1136        struct page *orig_head;
1137        int res;
1138        unsigned long page_flags;
1139
1140        if (!sysctl_memory_failure_recovery)
1141                panic("Memory failure on page %lx", pfn);
1142
1143        if (!pfn_valid(pfn)) {
1144                pr_err("Memory failure: %#lx: memory outside kernel control\n",
1145                        pfn);
1146                return -ENXIO;
1147        }
1148
1149        p = pfn_to_page(pfn);
1150        if (PageHuge(p))
1151                return memory_failure_hugetlb(pfn, flags);
1152        if (TestSetPageHWPoison(p)) {
1153                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1154                        pfn);
1155                return 0;
1156        }
1157
1158        orig_head = hpage = compound_head(p);
1159        num_poisoned_pages_inc();
1160
1161        /*
1162         * We need/can do nothing about count=0 pages.
1163         * 1) it's a free page, and therefore in safe hand:
1164         *    prep_new_page() will be the gate keeper.
1165         * 2) it's part of a non-compound high order page.
1166         *    Implies some kernel user: cannot stop them from
1167         *    R/W the page; let's pray that the page has been
1168         *    used and will be freed some time later.
1169         * In fact it's dangerous to directly bump up page count from 0,
1170         * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1171         */
1172        if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1173                if (is_free_buddy_page(p)) {
1174                        action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1175                        return 0;
1176                } else {
1177                        action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1178                        return -EBUSY;
1179                }
1180        }
1181
1182        if (PageTransHuge(hpage)) {
1183                lock_page(p);
1184                if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1185                        unlock_page(p);
1186                        if (!PageAnon(p))
1187                                pr_err("Memory failure: %#lx: non anonymous thp\n",
1188                                        pfn);
1189                        else
1190                                pr_err("Memory failure: %#lx: thp split failed\n",
1191                                        pfn);
1192                        if (TestClearPageHWPoison(p))
1193                                num_poisoned_pages_dec();
1194                        put_hwpoison_page(p);
1195                        return -EBUSY;
1196                }
1197                unlock_page(p);
1198                VM_BUG_ON_PAGE(!page_count(p), p);
1199                hpage = compound_head(p);
1200        }
1201
1202        /*
1203         * We ignore non-LRU pages for good reasons.
1204         * - PG_locked is only well defined for LRU pages and a few others
1205         * - to avoid races with __SetPageLocked()
1206         * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1207         * The check (unnecessarily) ignores LRU pages being isolated and
1208         * walked by the page reclaim code, however that's not a big loss.
1209         */
1210        shake_page(p, 0);
1211        /* shake_page could have turned it free. */
1212        if (!PageLRU(p) && is_free_buddy_page(p)) {
1213                if (flags & MF_COUNT_INCREASED)
1214                        action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1215                else
1216                        action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1217                return 0;
1218        }
1219
1220        lock_page(p);
1221
1222        /*
1223         * The page could have changed compound pages during the locking.
1224         * If this happens just bail out.
1225         */
1226        if (PageCompound(p) && compound_head(p) != orig_head) {
1227                action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1228                res = -EBUSY;
1229                goto out;
1230        }
1231
1232        /*
1233         * We use page flags to determine what action should be taken, but
1234         * the flags can be modified by the error containment action.  One
1235         * example is an mlocked page, where PG_mlocked is cleared by
1236         * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1237         * correctly, we save a copy of the page flags at this time.
1238         */
1239        if (PageHuge(p))
1240                page_flags = hpage->flags;
1241        else
1242                page_flags = p->flags;
1243
1244        /*
1245         * unpoison always clear PG_hwpoison inside page lock
1246         */
1247        if (!PageHWPoison(p)) {
1248                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1249                num_poisoned_pages_dec();
1250                unlock_page(p);
1251                put_hwpoison_page(p);
1252                return 0;
1253        }
1254        if (hwpoison_filter(p)) {
1255                if (TestClearPageHWPoison(p))
1256                        num_poisoned_pages_dec();
1257                unlock_page(p);
1258                put_hwpoison_page(p);
1259                return 0;
1260        }
1261
1262        if (!PageTransTail(p) && !PageLRU(p))
1263                goto identify_page_state;
1264
1265        /*
1266         * It's very difficult to mess with pages currently under IO
1267         * and in many cases impossible, so we just avoid it here.
1268         */
1269        wait_on_page_writeback(p);
1270
1271        /*
1272         * Now take care of user space mappings.
1273         * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1274         *
1275         * When the raw error page is thp tail page, hpage points to the raw
1276         * page after thp split.
1277         */
1278        if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1279                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1280                res = -EBUSY;
1281                goto out;
1282        }
1283
1284        /*
1285         * Torn down by someone else?
1286         */
1287        if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1288                action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1289                res = -EBUSY;
1290                goto out;
1291        }
1292
1293identify_page_state:
1294        res = identify_page_state(pfn, p, page_flags);
1295out:
1296        unlock_page(p);
1297        return res;
1298}
1299EXPORT_SYMBOL_GPL(memory_failure);
1300
1301#define MEMORY_FAILURE_FIFO_ORDER       4
1302#define MEMORY_FAILURE_FIFO_SIZE        (1 << MEMORY_FAILURE_FIFO_ORDER)
1303
1304struct memory_failure_entry {
1305        unsigned long pfn;
1306        int flags;
1307};
1308
1309struct memory_failure_cpu {
1310        DECLARE_KFIFO(fifo, struct memory_failure_entry,
1311                      MEMORY_FAILURE_FIFO_SIZE);
1312        spinlock_t lock;
1313        struct work_struct work;
1314};
1315
1316static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1317
1318/**
1319 * memory_failure_queue - Schedule handling memory failure of a page.
1320 * @pfn: Page Number of the corrupted page
1321 * @flags: Flags for memory failure handling
1322 *
1323 * This function is called by the low level hardware error handler
1324 * when it detects hardware memory corruption of a page. It schedules
1325 * the recovering of error page, including dropping pages, killing
1326 * processes etc.
1327 *
1328 * The function is primarily of use for corruptions that
1329 * happen outside the current execution context (e.g. when
1330 * detected by a background scrubber)
1331 *
1332 * Can run in IRQ context.
1333 */
1334void memory_failure_queue(unsigned long pfn, int flags)
1335{
1336        struct memory_failure_cpu *mf_cpu;
1337        unsigned long proc_flags;
1338        struct memory_failure_entry entry = {
1339                .pfn =          pfn,
1340                .flags =        flags,
1341        };
1342
1343        mf_cpu = &get_cpu_var(memory_failure_cpu);
1344        spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1345        if (kfifo_put(&mf_cpu->fifo, entry))
1346                schedule_work_on(smp_processor_id(), &mf_cpu->work);
1347        else
1348                pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1349                       pfn);
1350        spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1351        put_cpu_var(memory_failure_cpu);
1352}
1353EXPORT_SYMBOL_GPL(memory_failure_queue);
1354
1355static void memory_failure_work_func(struct work_struct *work)
1356{
1357        struct memory_failure_cpu *mf_cpu;
1358        struct memory_failure_entry entry = { 0, };
1359        unsigned long proc_flags;
1360        int gotten;
1361
1362        mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1363        for (;;) {
1364                spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1365                gotten = kfifo_get(&mf_cpu->fifo, &entry);
1366                spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1367                if (!gotten)
1368                        break;
1369                if (entry.flags & MF_SOFT_OFFLINE)
1370                        soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1371                else
1372                        memory_failure(entry.pfn, entry.flags);
1373        }
1374}
1375
1376static int __init memory_failure_init(void)
1377{
1378        struct memory_failure_cpu *mf_cpu;
1379        int cpu;
1380
1381        for_each_possible_cpu(cpu) {
1382                mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1383                spin_lock_init(&mf_cpu->lock);
1384                INIT_KFIFO(mf_cpu->fifo);
1385                INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1386        }
1387
1388        return 0;
1389}
1390core_initcall(memory_failure_init);
1391
1392#define unpoison_pr_info(fmt, pfn, rs)                  \
1393({                                                      \
1394        if (__ratelimit(rs))                            \
1395                pr_info(fmt, pfn);                      \
1396})
1397
1398/**
1399 * unpoison_memory - Unpoison a previously poisoned page
1400 * @pfn: Page number of the to be unpoisoned page
1401 *
1402 * Software-unpoison a page that has been poisoned by
1403 * memory_failure() earlier.
1404 *
1405 * This is only done on the software-level, so it only works
1406 * for linux injected failures, not real hardware failures
1407 *
1408 * Returns 0 for success, otherwise -errno.
1409 */
1410int unpoison_memory(unsigned long pfn)
1411{
1412        struct page *page;
1413        struct page *p;
1414        int freeit = 0;
1415        static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1416                                        DEFAULT_RATELIMIT_BURST);
1417
1418        if (!pfn_valid(pfn))
1419                return -ENXIO;
1420
1421        p = pfn_to_page(pfn);
1422        page = compound_head(p);
1423
1424        if (!PageHWPoison(p)) {
1425                unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1426                                 pfn, &unpoison_rs);
1427                return 0;
1428        }
1429
1430        if (page_count(page) > 1) {
1431                unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1432                                 pfn, &unpoison_rs);
1433                return 0;
1434        }
1435
1436        if (page_mapped(page)) {
1437                unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1438                                 pfn, &unpoison_rs);
1439                return 0;
1440        }
1441
1442        if (page_mapping(page)) {
1443                unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1444                                 pfn, &unpoison_rs);
1445                return 0;
1446        }
1447
1448        /*
1449         * unpoison_memory() can encounter thp only when the thp is being
1450         * worked by memory_failure() and the page lock is not held yet.
1451         * In such case, we yield to memory_failure() and make unpoison fail.
1452         */
1453        if (!PageHuge(page) && PageTransHuge(page)) {
1454                unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1455                                 pfn, &unpoison_rs);
1456                return 0;
1457        }
1458
1459        if (!get_hwpoison_page(p)) {
1460                if (TestClearPageHWPoison(p))
1461                        num_poisoned_pages_dec();
1462                unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1463                                 pfn, &unpoison_rs);
1464                return 0;
1465        }
1466
1467        lock_page(page);
1468        /*
1469         * This test is racy because PG_hwpoison is set outside of page lock.
1470         * That's acceptable because that won't trigger kernel panic. Instead,
1471         * the PG_hwpoison page will be caught and isolated on the entrance to
1472         * the free buddy page pool.
1473         */
1474        if (TestClearPageHWPoison(page)) {
1475                unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1476                                 pfn, &unpoison_rs);
1477                num_poisoned_pages_dec();
1478                freeit = 1;
1479        }
1480        unlock_page(page);
1481
1482        put_hwpoison_page(page);
1483        if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1484                put_hwpoison_page(page);
1485
1486        return 0;
1487}
1488EXPORT_SYMBOL(unpoison_memory);
1489
1490static struct page *new_page(struct page *p, unsigned long private)
1491{
1492        int nid = page_to_nid(p);
1493
1494        return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1495}
1496
1497/*
1498 * Safely get reference count of an arbitrary page.
1499 * Returns 0 for a free page, -EIO for a zero refcount page
1500 * that is not free, and 1 for any other page type.
1501 * For 1 the page is returned with increased page count, otherwise not.
1502 */
1503static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1504{
1505        int ret;
1506
1507        if (flags & MF_COUNT_INCREASED)
1508                return 1;
1509
1510        /*
1511         * When the target page is a free hugepage, just remove it
1512         * from free hugepage list.
1513         */
1514        if (!get_hwpoison_page(p)) {
1515                if (PageHuge(p)) {
1516                        pr_info("%s: %#lx free huge page\n", __func__, pfn);
1517                        ret = 0;
1518                } else if (is_free_buddy_page(p)) {
1519                        pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1520                        ret = 0;
1521                } else {
1522                        pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1523                                __func__, pfn, p->flags);
1524                        ret = -EIO;
1525                }
1526        } else {
1527                /* Not a free page */
1528                ret = 1;
1529        }
1530        return ret;
1531}
1532
1533static int get_any_page(struct page *page, unsigned long pfn, int flags)
1534{
1535        int ret = __get_any_page(page, pfn, flags);
1536
1537        if (ret == 1 && !PageHuge(page) &&
1538            !PageLRU(page) && !__PageMovable(page)) {
1539                /*
1540                 * Try to free it.
1541                 */
1542                put_hwpoison_page(page);
1543                shake_page(page, 1);
1544
1545                /*
1546                 * Did it turn free?
1547                 */
1548                ret = __get_any_page(page, pfn, 0);
1549                if (ret == 1 && !PageLRU(page)) {
1550                        /* Drop page reference which is from __get_any_page() */
1551                        put_hwpoison_page(page);
1552                        pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1553                                pfn, page->flags, &page->flags);
1554                        return -EIO;
1555                }
1556        }
1557        return ret;
1558}
1559
1560static int soft_offline_huge_page(struct page *page, int flags)
1561{
1562        int ret;
1563        unsigned long pfn = page_to_pfn(page);
1564        struct page *hpage = compound_head(page);
1565        LIST_HEAD(pagelist);
1566
1567        /*
1568         * This double-check of PageHWPoison is to avoid the race with
1569         * memory_failure(). See also comment in __soft_offline_page().
1570         */
1571        lock_page(hpage);
1572        if (PageHWPoison(hpage)) {
1573                unlock_page(hpage);
1574                put_hwpoison_page(hpage);
1575                pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1576                return -EBUSY;
1577        }
1578        unlock_page(hpage);
1579
1580        ret = isolate_huge_page(hpage, &pagelist);
1581        /*
1582         * get_any_page() and isolate_huge_page() takes a refcount each,
1583         * so need to drop one here.
1584         */
1585        put_hwpoison_page(hpage);
1586        if (!ret) {
1587                pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1588                return -EBUSY;
1589        }
1590
1591        ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1592                                MIGRATE_SYNC, MR_MEMORY_FAILURE);
1593        if (ret) {
1594                pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1595                        pfn, ret, page->flags, &page->flags);
1596                if (!list_empty(&pagelist))
1597                        putback_movable_pages(&pagelist);
1598                if (ret > 0)
1599                        ret = -EIO;
1600        } else {
1601                if (PageHuge(page))
1602                        dissolve_free_huge_page(page);
1603        }
1604        return ret;
1605}
1606
1607static int __soft_offline_page(struct page *page, int flags)
1608{
1609        int ret;
1610        unsigned long pfn = page_to_pfn(page);
1611
1612        /*
1613         * Check PageHWPoison again inside page lock because PageHWPoison
1614         * is set by memory_failure() outside page lock. Note that
1615         * memory_failure() also double-checks PageHWPoison inside page lock,
1616         * so there's no race between soft_offline_page() and memory_failure().
1617         */
1618        lock_page(page);
1619        wait_on_page_writeback(page);
1620        if (PageHWPoison(page)) {
1621                unlock_page(page);
1622                put_hwpoison_page(page);
1623                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1624                return -EBUSY;
1625        }
1626        /*
1627         * Try to invalidate first. This should work for
1628         * non dirty unmapped page cache pages.
1629         */
1630        ret = invalidate_inode_page(page);
1631        unlock_page(page);
1632        /*
1633         * RED-PEN would be better to keep it isolated here, but we
1634         * would need to fix isolation locking first.
1635         */
1636        if (ret == 1) {
1637                put_hwpoison_page(page);
1638                pr_info("soft_offline: %#lx: invalidated\n", pfn);
1639                SetPageHWPoison(page);
1640                num_poisoned_pages_inc();
1641                return 0;
1642        }
1643
1644        /*
1645         * Simple invalidation didn't work.
1646         * Try to migrate to a new page instead. migrate.c
1647         * handles a large number of cases for us.
1648         */
1649        if (PageLRU(page))
1650                ret = isolate_lru_page(page);
1651        else
1652                ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1653        /*
1654         * Drop page reference which is came from get_any_page()
1655         * successful isolate_lru_page() already took another one.
1656         */
1657        put_hwpoison_page(page);
1658        if (!ret) {
1659                LIST_HEAD(pagelist);
1660                /*
1661                 * After isolated lru page, the PageLRU will be cleared,
1662                 * so use !__PageMovable instead for LRU page's mapping
1663                 * cannot have PAGE_MAPPING_MOVABLE.
1664                 */
1665                if (!__PageMovable(page))
1666                        inc_node_page_state(page, NR_ISOLATED_ANON +
1667                                                page_is_file_cache(page));
1668                list_add(&page->lru, &pagelist);
1669                ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1670                                        MIGRATE_SYNC, MR_MEMORY_FAILURE);
1671                if (ret) {
1672                        if (!list_empty(&pagelist))
1673                                putback_movable_pages(&pagelist);
1674
1675                        pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1676                                pfn, ret, page->flags, &page->flags);
1677                        if (ret > 0)
1678                                ret = -EIO;
1679                }
1680        } else {
1681                pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1682                        pfn, ret, page_count(page), page->flags, &page->flags);
1683        }
1684        return ret;
1685}
1686
1687static int soft_offline_in_use_page(struct page *page, int flags)
1688{
1689        int ret;
1690        struct page *hpage = compound_head(page);
1691
1692        if (!PageHuge(page) && PageTransHuge(hpage)) {
1693                lock_page(hpage);
1694                if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1695                        unlock_page(hpage);
1696                        if (!PageAnon(hpage))
1697                                pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1698                        else
1699                                pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1700                        put_hwpoison_page(hpage);
1701                        return -EBUSY;
1702                }
1703                unlock_page(hpage);
1704                get_hwpoison_page(page);
1705                put_hwpoison_page(hpage);
1706        }
1707
1708        if (PageHuge(page))
1709                ret = soft_offline_huge_page(page, flags);
1710        else
1711                ret = __soft_offline_page(page, flags);
1712
1713        return ret;
1714}
1715
1716static void soft_offline_free_page(struct page *page)
1717{
1718        struct page *head = compound_head(page);
1719
1720        if (!TestSetPageHWPoison(head)) {
1721                num_poisoned_pages_inc();
1722                if (PageHuge(head))
1723                        dissolve_free_huge_page(page);
1724        }
1725}
1726
1727/**
1728 * soft_offline_page - Soft offline a page.
1729 * @page: page to offline
1730 * @flags: flags. Same as memory_failure().
1731 *
1732 * Returns 0 on success, otherwise negated errno.
1733 *
1734 * Soft offline a page, by migration or invalidation,
1735 * without killing anything. This is for the case when
1736 * a page is not corrupted yet (so it's still valid to access),
1737 * but has had a number of corrected errors and is better taken
1738 * out.
1739 *
1740 * The actual policy on when to do that is maintained by
1741 * user space.
1742 *
1743 * This should never impact any application or cause data loss,
1744 * however it might take some time.
1745 *
1746 * This is not a 100% solution for all memory, but tries to be
1747 * ``good enough'' for the majority of memory.
1748 */
1749int soft_offline_page(struct page *page, int flags)
1750{
1751        int ret;
1752        unsigned long pfn = page_to_pfn(page);
1753
1754        if (PageHWPoison(page)) {
1755                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1756                if (flags & MF_COUNT_INCREASED)
1757                        put_hwpoison_page(page);
1758                return -EBUSY;
1759        }
1760
1761        get_online_mems();
1762        ret = get_any_page(page, pfn, flags);
1763        put_online_mems();
1764
1765        if (ret > 0)
1766                ret = soft_offline_in_use_page(page, flags);
1767        else if (ret == 0)
1768                soft_offline_free_page(page);
1769
1770        return ret;
1771}
1772