linux/mm/memory.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *              Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *              (Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/sched/mm.h>
  44#include <linux/sched/coredump.h>
  45#include <linux/sched/numa_balancing.h>
  46#include <linux/sched/task.h>
  47#include <linux/hugetlb.h>
  48#include <linux/mman.h>
  49#include <linux/swap.h>
  50#include <linux/highmem.h>
  51#include <linux/pagemap.h>
  52#include <linux/memremap.h>
  53#include <linux/ksm.h>
  54#include <linux/rmap.h>
  55#include <linux/export.h>
  56#include <linux/delayacct.h>
  57#include <linux/init.h>
  58#include <linux/pfn_t.h>
  59#include <linux/writeback.h>
  60#include <linux/memcontrol.h>
  61#include <linux/mmu_notifier.h>
  62#include <linux/swapops.h>
  63#include <linux/elf.h>
  64#include <linux/gfp.h>
  65#include <linux/migrate.h>
  66#include <linux/string.h>
  67#include <linux/dma-debug.h>
  68#include <linux/debugfs.h>
  69#include <linux/userfaultfd_k.h>
  70#include <linux/dax.h>
  71#include <linux/oom.h>
  72
  73#include <asm/io.h>
  74#include <asm/mmu_context.h>
  75#include <asm/pgalloc.h>
  76#include <linux/uaccess.h>
  77#include <asm/tlb.h>
  78#include <asm/tlbflush.h>
  79#include <asm/pgtable.h>
  80
  81#include "internal.h"
  82
  83#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
  84#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  85#endif
  86
  87#ifndef CONFIG_NEED_MULTIPLE_NODES
  88/* use the per-pgdat data instead for discontigmem - mbligh */
  89unsigned long max_mapnr;
  90EXPORT_SYMBOL(max_mapnr);
  91
  92struct page *mem_map;
  93EXPORT_SYMBOL(mem_map);
  94#endif
  95
  96/*
  97 * A number of key systems in x86 including ioremap() rely on the assumption
  98 * that high_memory defines the upper bound on direct map memory, then end
  99 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 101 * and ZONE_HIGHMEM.
 102 */
 103void *high_memory;
 104EXPORT_SYMBOL(high_memory);
 105
 106/*
 107 * Randomize the address space (stacks, mmaps, brk, etc.).
 108 *
 109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 110 *   as ancient (libc5 based) binaries can segfault. )
 111 */
 112int randomize_va_space __read_mostly =
 113#ifdef CONFIG_COMPAT_BRK
 114                                        1;
 115#else
 116                                        2;
 117#endif
 118
 119static int __init disable_randmaps(char *s)
 120{
 121        randomize_va_space = 0;
 122        return 1;
 123}
 124__setup("norandmaps", disable_randmaps);
 125
 126unsigned long zero_pfn __read_mostly;
 127EXPORT_SYMBOL(zero_pfn);
 128
 129unsigned long highest_memmap_pfn __read_mostly;
 130
 131/*
 132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 133 */
 134static int __init init_zero_pfn(void)
 135{
 136        zero_pfn = page_to_pfn(ZERO_PAGE(0));
 137        return 0;
 138}
 139core_initcall(init_zero_pfn);
 140
 141
 142#if defined(SPLIT_RSS_COUNTING)
 143
 144void sync_mm_rss(struct mm_struct *mm)
 145{
 146        int i;
 147
 148        for (i = 0; i < NR_MM_COUNTERS; i++) {
 149                if (current->rss_stat.count[i]) {
 150                        add_mm_counter(mm, i, current->rss_stat.count[i]);
 151                        current->rss_stat.count[i] = 0;
 152                }
 153        }
 154        current->rss_stat.events = 0;
 155}
 156
 157static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 158{
 159        struct task_struct *task = current;
 160
 161        if (likely(task->mm == mm))
 162                task->rss_stat.count[member] += val;
 163        else
 164                add_mm_counter(mm, member, val);
 165}
 166#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 167#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 168
 169/* sync counter once per 64 page faults */
 170#define TASK_RSS_EVENTS_THRESH  (64)
 171static void check_sync_rss_stat(struct task_struct *task)
 172{
 173        if (unlikely(task != current))
 174                return;
 175        if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 176                sync_mm_rss(task->mm);
 177}
 178#else /* SPLIT_RSS_COUNTING */
 179
 180#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 181#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 182
 183static void check_sync_rss_stat(struct task_struct *task)
 184{
 185}
 186
 187#endif /* SPLIT_RSS_COUNTING */
 188
 189#ifdef HAVE_GENERIC_MMU_GATHER
 190
 191static bool tlb_next_batch(struct mmu_gather *tlb)
 192{
 193        struct mmu_gather_batch *batch;
 194
 195        batch = tlb->active;
 196        if (batch->next) {
 197                tlb->active = batch->next;
 198                return true;
 199        }
 200
 201        if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 202                return false;
 203
 204        batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 205        if (!batch)
 206                return false;
 207
 208        tlb->batch_count++;
 209        batch->next = NULL;
 210        batch->nr   = 0;
 211        batch->max  = MAX_GATHER_BATCH;
 212
 213        tlb->active->next = batch;
 214        tlb->active = batch;
 215
 216        return true;
 217}
 218
 219void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
 220                                unsigned long start, unsigned long end)
 221{
 222        tlb->mm = mm;
 223
 224        /* Is it from 0 to ~0? */
 225        tlb->fullmm     = !(start | (end+1));
 226        tlb->need_flush_all = 0;
 227        tlb->local.next = NULL;
 228        tlb->local.nr   = 0;
 229        tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 230        tlb->active     = &tlb->local;
 231        tlb->batch_count = 0;
 232
 233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 234        tlb->batch = NULL;
 235#endif
 236        tlb->page_size = 0;
 237
 238        __tlb_reset_range(tlb);
 239}
 240
 241static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
 242{
 243        if (!tlb->end)
 244                return;
 245
 246        tlb_flush(tlb);
 247        mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
 248#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 249        tlb_table_flush(tlb);
 250#endif
 251        __tlb_reset_range(tlb);
 252}
 253
 254static void tlb_flush_mmu_free(struct mmu_gather *tlb)
 255{
 256        struct mmu_gather_batch *batch;
 257
 258        for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
 259                free_pages_and_swap_cache(batch->pages, batch->nr);
 260                batch->nr = 0;
 261        }
 262        tlb->active = &tlb->local;
 263}
 264
 265void tlb_flush_mmu(struct mmu_gather *tlb)
 266{
 267        tlb_flush_mmu_tlbonly(tlb);
 268        tlb_flush_mmu_free(tlb);
 269}
 270
 271/* tlb_finish_mmu
 272 *      Called at the end of the shootdown operation to free up any resources
 273 *      that were required.
 274 */
 275void arch_tlb_finish_mmu(struct mmu_gather *tlb,
 276                unsigned long start, unsigned long end, bool force)
 277{
 278        struct mmu_gather_batch *batch, *next;
 279
 280        if (force)
 281                __tlb_adjust_range(tlb, start, end - start);
 282
 283        tlb_flush_mmu(tlb);
 284
 285        /* keep the page table cache within bounds */
 286        check_pgt_cache();
 287
 288        for (batch = tlb->local.next; batch; batch = next) {
 289                next = batch->next;
 290                free_pages((unsigned long)batch, 0);
 291        }
 292        tlb->local.next = NULL;
 293}
 294
 295/* __tlb_remove_page
 296 *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 297 *      handling the additional races in SMP caused by other CPUs caching valid
 298 *      mappings in their TLBs. Returns the number of free page slots left.
 299 *      When out of page slots we must call tlb_flush_mmu().
 300 *returns true if the caller should flush.
 301 */
 302bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
 303{
 304        struct mmu_gather_batch *batch;
 305
 306        VM_BUG_ON(!tlb->end);
 307        VM_WARN_ON(tlb->page_size != page_size);
 308
 309        batch = tlb->active;
 310        /*
 311         * Add the page and check if we are full. If so
 312         * force a flush.
 313         */
 314        batch->pages[batch->nr++] = page;
 315        if (batch->nr == batch->max) {
 316                if (!tlb_next_batch(tlb))
 317                        return true;
 318                batch = tlb->active;
 319        }
 320        VM_BUG_ON_PAGE(batch->nr > batch->max, page);
 321
 322        return false;
 323}
 324
 325#endif /* HAVE_GENERIC_MMU_GATHER */
 326
 327#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 328
 329/*
 330 * See the comment near struct mmu_table_batch.
 331 */
 332
 333static void tlb_remove_table_smp_sync(void *arg)
 334{
 335        /* Simply deliver the interrupt */
 336}
 337
 338static void tlb_remove_table_one(void *table)
 339{
 340        /*
 341         * This isn't an RCU grace period and hence the page-tables cannot be
 342         * assumed to be actually RCU-freed.
 343         *
 344         * It is however sufficient for software page-table walkers that rely on
 345         * IRQ disabling. See the comment near struct mmu_table_batch.
 346         */
 347        smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 348        __tlb_remove_table(table);
 349}
 350
 351static void tlb_remove_table_rcu(struct rcu_head *head)
 352{
 353        struct mmu_table_batch *batch;
 354        int i;
 355
 356        batch = container_of(head, struct mmu_table_batch, rcu);
 357
 358        for (i = 0; i < batch->nr; i++)
 359                __tlb_remove_table(batch->tables[i]);
 360
 361        free_page((unsigned long)batch);
 362}
 363
 364void tlb_table_flush(struct mmu_gather *tlb)
 365{
 366        struct mmu_table_batch **batch = &tlb->batch;
 367
 368        if (*batch) {
 369                call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 370                *batch = NULL;
 371        }
 372}
 373
 374void tlb_remove_table(struct mmu_gather *tlb, void *table)
 375{
 376        struct mmu_table_batch **batch = &tlb->batch;
 377
 378        /*
 379         * When there's less then two users of this mm there cannot be a
 380         * concurrent page-table walk.
 381         */
 382        if (atomic_read(&tlb->mm->mm_users) < 2) {
 383                __tlb_remove_table(table);
 384                return;
 385        }
 386
 387        if (*batch == NULL) {
 388                *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 389                if (*batch == NULL) {
 390                        tlb_remove_table_one(table);
 391                        return;
 392                }
 393                (*batch)->nr = 0;
 394        }
 395        (*batch)->tables[(*batch)->nr++] = table;
 396        if ((*batch)->nr == MAX_TABLE_BATCH)
 397                tlb_table_flush(tlb);
 398}
 399
 400#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 401
 402/**
 403 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
 404 * @tlb: the mmu_gather structure to initialize
 405 * @mm: the mm_struct of the target address space
 406 * @start: start of the region that will be removed from the page-table
 407 * @end: end of the region that will be removed from the page-table
 408 *
 409 * Called to initialize an (on-stack) mmu_gather structure for page-table
 410 * tear-down from @mm. The @start and @end are set to 0 and -1
 411 * respectively when @mm is without users and we're going to destroy
 412 * the full address space (exit/execve).
 413 */
 414void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
 415                        unsigned long start, unsigned long end)
 416{
 417        arch_tlb_gather_mmu(tlb, mm, start, end);
 418        inc_tlb_flush_pending(tlb->mm);
 419}
 420
 421void tlb_finish_mmu(struct mmu_gather *tlb,
 422                unsigned long start, unsigned long end)
 423{
 424        /*
 425         * If there are parallel threads are doing PTE changes on same range
 426         * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
 427         * flush by batching, a thread has stable TLB entry can fail to flush
 428         * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
 429         * forcefully if we detect parallel PTE batching threads.
 430         */
 431        bool force = mm_tlb_flush_nested(tlb->mm);
 432
 433        arch_tlb_finish_mmu(tlb, start, end, force);
 434        dec_tlb_flush_pending(tlb->mm);
 435}
 436
 437/*
 438 * Note: this doesn't free the actual pages themselves. That
 439 * has been handled earlier when unmapping all the memory regions.
 440 */
 441static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 442                           unsigned long addr)
 443{
 444        pgtable_t token = pmd_pgtable(*pmd);
 445        pmd_clear(pmd);
 446        pte_free_tlb(tlb, token, addr);
 447        mm_dec_nr_ptes(tlb->mm);
 448}
 449
 450static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 451                                unsigned long addr, unsigned long end,
 452                                unsigned long floor, unsigned long ceiling)
 453{
 454        pmd_t *pmd;
 455        unsigned long next;
 456        unsigned long start;
 457
 458        start = addr;
 459        pmd = pmd_offset(pud, addr);
 460        do {
 461                next = pmd_addr_end(addr, end);
 462                if (pmd_none_or_clear_bad(pmd))
 463                        continue;
 464                free_pte_range(tlb, pmd, addr);
 465        } while (pmd++, addr = next, addr != end);
 466
 467        start &= PUD_MASK;
 468        if (start < floor)
 469                return;
 470        if (ceiling) {
 471                ceiling &= PUD_MASK;
 472                if (!ceiling)
 473                        return;
 474        }
 475        if (end - 1 > ceiling - 1)
 476                return;
 477
 478        pmd = pmd_offset(pud, start);
 479        pud_clear(pud);
 480        pmd_free_tlb(tlb, pmd, start);
 481        mm_dec_nr_pmds(tlb->mm);
 482}
 483
 484static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 485                                unsigned long addr, unsigned long end,
 486                                unsigned long floor, unsigned long ceiling)
 487{
 488        pud_t *pud;
 489        unsigned long next;
 490        unsigned long start;
 491
 492        start = addr;
 493        pud = pud_offset(p4d, addr);
 494        do {
 495                next = pud_addr_end(addr, end);
 496                if (pud_none_or_clear_bad(pud))
 497                        continue;
 498                free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 499        } while (pud++, addr = next, addr != end);
 500
 501        start &= P4D_MASK;
 502        if (start < floor)
 503                return;
 504        if (ceiling) {
 505                ceiling &= P4D_MASK;
 506                if (!ceiling)
 507                        return;
 508        }
 509        if (end - 1 > ceiling - 1)
 510                return;
 511
 512        pud = pud_offset(p4d, start);
 513        p4d_clear(p4d);
 514        pud_free_tlb(tlb, pud, start);
 515        mm_dec_nr_puds(tlb->mm);
 516}
 517
 518static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 519                                unsigned long addr, unsigned long end,
 520                                unsigned long floor, unsigned long ceiling)
 521{
 522        p4d_t *p4d;
 523        unsigned long next;
 524        unsigned long start;
 525
 526        start = addr;
 527        p4d = p4d_offset(pgd, addr);
 528        do {
 529                next = p4d_addr_end(addr, end);
 530                if (p4d_none_or_clear_bad(p4d))
 531                        continue;
 532                free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 533        } while (p4d++, addr = next, addr != end);
 534
 535        start &= PGDIR_MASK;
 536        if (start < floor)
 537                return;
 538        if (ceiling) {
 539                ceiling &= PGDIR_MASK;
 540                if (!ceiling)
 541                        return;
 542        }
 543        if (end - 1 > ceiling - 1)
 544                return;
 545
 546        p4d = p4d_offset(pgd, start);
 547        pgd_clear(pgd);
 548        p4d_free_tlb(tlb, p4d, start);
 549}
 550
 551/*
 552 * This function frees user-level page tables of a process.
 553 */
 554void free_pgd_range(struct mmu_gather *tlb,
 555                        unsigned long addr, unsigned long end,
 556                        unsigned long floor, unsigned long ceiling)
 557{
 558        pgd_t *pgd;
 559        unsigned long next;
 560
 561        /*
 562         * The next few lines have given us lots of grief...
 563         *
 564         * Why are we testing PMD* at this top level?  Because often
 565         * there will be no work to do at all, and we'd prefer not to
 566         * go all the way down to the bottom just to discover that.
 567         *
 568         * Why all these "- 1"s?  Because 0 represents both the bottom
 569         * of the address space and the top of it (using -1 for the
 570         * top wouldn't help much: the masks would do the wrong thing).
 571         * The rule is that addr 0 and floor 0 refer to the bottom of
 572         * the address space, but end 0 and ceiling 0 refer to the top
 573         * Comparisons need to use "end - 1" and "ceiling - 1" (though
 574         * that end 0 case should be mythical).
 575         *
 576         * Wherever addr is brought up or ceiling brought down, we must
 577         * be careful to reject "the opposite 0" before it confuses the
 578         * subsequent tests.  But what about where end is brought down
 579         * by PMD_SIZE below? no, end can't go down to 0 there.
 580         *
 581         * Whereas we round start (addr) and ceiling down, by different
 582         * masks at different levels, in order to test whether a table
 583         * now has no other vmas using it, so can be freed, we don't
 584         * bother to round floor or end up - the tests don't need that.
 585         */
 586
 587        addr &= PMD_MASK;
 588        if (addr < floor) {
 589                addr += PMD_SIZE;
 590                if (!addr)
 591                        return;
 592        }
 593        if (ceiling) {
 594                ceiling &= PMD_MASK;
 595                if (!ceiling)
 596                        return;
 597        }
 598        if (end - 1 > ceiling - 1)
 599                end -= PMD_SIZE;
 600        if (addr > end - 1)
 601                return;
 602        /*
 603         * We add page table cache pages with PAGE_SIZE,
 604         * (see pte_free_tlb()), flush the tlb if we need
 605         */
 606        tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
 607        pgd = pgd_offset(tlb->mm, addr);
 608        do {
 609                next = pgd_addr_end(addr, end);
 610                if (pgd_none_or_clear_bad(pgd))
 611                        continue;
 612                free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 613        } while (pgd++, addr = next, addr != end);
 614}
 615
 616void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 617                unsigned long floor, unsigned long ceiling)
 618{
 619        while (vma) {
 620                struct vm_area_struct *next = vma->vm_next;
 621                unsigned long addr = vma->vm_start;
 622
 623                /*
 624                 * Hide vma from rmap and truncate_pagecache before freeing
 625                 * pgtables
 626                 */
 627                unlink_anon_vmas(vma);
 628                unlink_file_vma(vma);
 629
 630                if (is_vm_hugetlb_page(vma)) {
 631                        hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 632                                floor, next ? next->vm_start : ceiling);
 633                } else {
 634                        /*
 635                         * Optimization: gather nearby vmas into one call down
 636                         */
 637                        while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 638                               && !is_vm_hugetlb_page(next)) {
 639                                vma = next;
 640                                next = vma->vm_next;
 641                                unlink_anon_vmas(vma);
 642                                unlink_file_vma(vma);
 643                        }
 644                        free_pgd_range(tlb, addr, vma->vm_end,
 645                                floor, next ? next->vm_start : ceiling);
 646                }
 647                vma = next;
 648        }
 649}
 650
 651int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
 652{
 653        spinlock_t *ptl;
 654        pgtable_t new = pte_alloc_one(mm, address);
 655        if (!new)
 656                return -ENOMEM;
 657
 658        /*
 659         * Ensure all pte setup (eg. pte page lock and page clearing) are
 660         * visible before the pte is made visible to other CPUs by being
 661         * put into page tables.
 662         *
 663         * The other side of the story is the pointer chasing in the page
 664         * table walking code (when walking the page table without locking;
 665         * ie. most of the time). Fortunately, these data accesses consist
 666         * of a chain of data-dependent loads, meaning most CPUs (alpha
 667         * being the notable exception) will already guarantee loads are
 668         * seen in-order. See the alpha page table accessors for the
 669         * smp_read_barrier_depends() barriers in page table walking code.
 670         */
 671        smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 672
 673        ptl = pmd_lock(mm, pmd);
 674        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 675                mm_inc_nr_ptes(mm);
 676                pmd_populate(mm, pmd, new);
 677                new = NULL;
 678        }
 679        spin_unlock(ptl);
 680        if (new)
 681                pte_free(mm, new);
 682        return 0;
 683}
 684
 685int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 686{
 687        pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 688        if (!new)
 689                return -ENOMEM;
 690
 691        smp_wmb(); /* See comment in __pte_alloc */
 692
 693        spin_lock(&init_mm.page_table_lock);
 694        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 695                pmd_populate_kernel(&init_mm, pmd, new);
 696                new = NULL;
 697        }
 698        spin_unlock(&init_mm.page_table_lock);
 699        if (new)
 700                pte_free_kernel(&init_mm, new);
 701        return 0;
 702}
 703
 704static inline void init_rss_vec(int *rss)
 705{
 706        memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 707}
 708
 709static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 710{
 711        int i;
 712
 713        if (current->mm == mm)
 714                sync_mm_rss(mm);
 715        for (i = 0; i < NR_MM_COUNTERS; i++)
 716                if (rss[i])
 717                        add_mm_counter(mm, i, rss[i]);
 718}
 719
 720/*
 721 * This function is called to print an error when a bad pte
 722 * is found. For example, we might have a PFN-mapped pte in
 723 * a region that doesn't allow it.
 724 *
 725 * The calling function must still handle the error.
 726 */
 727static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 728                          pte_t pte, struct page *page)
 729{
 730        pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 731        p4d_t *p4d = p4d_offset(pgd, addr);
 732        pud_t *pud = pud_offset(p4d, addr);
 733        pmd_t *pmd = pmd_offset(pud, addr);
 734        struct address_space *mapping;
 735        pgoff_t index;
 736        static unsigned long resume;
 737        static unsigned long nr_shown;
 738        static unsigned long nr_unshown;
 739
 740        /*
 741         * Allow a burst of 60 reports, then keep quiet for that minute;
 742         * or allow a steady drip of one report per second.
 743         */
 744        if (nr_shown == 60) {
 745                if (time_before(jiffies, resume)) {
 746                        nr_unshown++;
 747                        return;
 748                }
 749                if (nr_unshown) {
 750                        pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 751                                 nr_unshown);
 752                        nr_unshown = 0;
 753                }
 754                nr_shown = 0;
 755        }
 756        if (nr_shown++ == 0)
 757                resume = jiffies + 60 * HZ;
 758
 759        mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 760        index = linear_page_index(vma, addr);
 761
 762        pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 763                 current->comm,
 764                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 765        if (page)
 766                dump_page(page, "bad pte");
 767        pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 768                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 769        pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
 770                 vma->vm_file,
 771                 vma->vm_ops ? vma->vm_ops->fault : NULL,
 772                 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 773                 mapping ? mapping->a_ops->readpage : NULL);
 774        dump_stack();
 775        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 776}
 777
 778/*
 779 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 780 *
 781 * "Special" mappings do not wish to be associated with a "struct page" (either
 782 * it doesn't exist, or it exists but they don't want to touch it). In this
 783 * case, NULL is returned here. "Normal" mappings do have a struct page.
 784 *
 785 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 786 * pte bit, in which case this function is trivial. Secondly, an architecture
 787 * may not have a spare pte bit, which requires a more complicated scheme,
 788 * described below.
 789 *
 790 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 791 * special mapping (even if there are underlying and valid "struct pages").
 792 * COWed pages of a VM_PFNMAP are always normal.
 793 *
 794 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 795 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 796 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 797 * mapping will always honor the rule
 798 *
 799 *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 800 *
 801 * And for normal mappings this is false.
 802 *
 803 * This restricts such mappings to be a linear translation from virtual address
 804 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 805 * as the vma is not a COW mapping; in that case, we know that all ptes are
 806 * special (because none can have been COWed).
 807 *
 808 *
 809 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 810 *
 811 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 812 * page" backing, however the difference is that _all_ pages with a struct
 813 * page (that is, those where pfn_valid is true) are refcounted and considered
 814 * normal pages by the VM. The disadvantage is that pages are refcounted
 815 * (which can be slower and simply not an option for some PFNMAP users). The
 816 * advantage is that we don't have to follow the strict linearity rule of
 817 * PFNMAP mappings in order to support COWable mappings.
 818 *
 819 */
 820#ifdef __HAVE_ARCH_PTE_SPECIAL
 821# define HAVE_PTE_SPECIAL 1
 822#else
 823# define HAVE_PTE_SPECIAL 0
 824#endif
 825struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 826                             pte_t pte, bool with_public_device)
 827{
 828        unsigned long pfn = pte_pfn(pte);
 829
 830        if (HAVE_PTE_SPECIAL) {
 831                if (likely(!pte_special(pte)))
 832                        goto check_pfn;
 833                if (vma->vm_ops && vma->vm_ops->find_special_page)
 834                        return vma->vm_ops->find_special_page(vma, addr);
 835                if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 836                        return NULL;
 837                if (is_zero_pfn(pfn))
 838                        return NULL;
 839
 840                /*
 841                 * Device public pages are special pages (they are ZONE_DEVICE
 842                 * pages but different from persistent memory). They behave
 843                 * allmost like normal pages. The difference is that they are
 844                 * not on the lru and thus should never be involve with any-
 845                 * thing that involve lru manipulation (mlock, numa balancing,
 846                 * ...).
 847                 *
 848                 * This is why we still want to return NULL for such page from
 849                 * vm_normal_page() so that we do not have to special case all
 850                 * call site of vm_normal_page().
 851                 */
 852                if (likely(pfn <= highest_memmap_pfn)) {
 853                        struct page *page = pfn_to_page(pfn);
 854
 855                        if (is_device_public_page(page)) {
 856                                if (with_public_device)
 857                                        return page;
 858                                return NULL;
 859                        }
 860                }
 861                print_bad_pte(vma, addr, pte, NULL);
 862                return NULL;
 863        }
 864
 865        /* !HAVE_PTE_SPECIAL case follows: */
 866
 867        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 868                if (vma->vm_flags & VM_MIXEDMAP) {
 869                        if (!pfn_valid(pfn))
 870                                return NULL;
 871                        goto out;
 872                } else {
 873                        unsigned long off;
 874                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 875                        if (pfn == vma->vm_pgoff + off)
 876                                return NULL;
 877                        if (!is_cow_mapping(vma->vm_flags))
 878                                return NULL;
 879                }
 880        }
 881
 882        if (is_zero_pfn(pfn))
 883                return NULL;
 884check_pfn:
 885        if (unlikely(pfn > highest_memmap_pfn)) {
 886                print_bad_pte(vma, addr, pte, NULL);
 887                return NULL;
 888        }
 889
 890        /*
 891         * NOTE! We still have PageReserved() pages in the page tables.
 892         * eg. VDSO mappings can cause them to exist.
 893         */
 894out:
 895        return pfn_to_page(pfn);
 896}
 897
 898#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 899struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 900                                pmd_t pmd)
 901{
 902        unsigned long pfn = pmd_pfn(pmd);
 903
 904        /*
 905         * There is no pmd_special() but there may be special pmds, e.g.
 906         * in a direct-access (dax) mapping, so let's just replicate the
 907         * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
 908         */
 909        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 910                if (vma->vm_flags & VM_MIXEDMAP) {
 911                        if (!pfn_valid(pfn))
 912                                return NULL;
 913                        goto out;
 914                } else {
 915                        unsigned long off;
 916                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 917                        if (pfn == vma->vm_pgoff + off)
 918                                return NULL;
 919                        if (!is_cow_mapping(vma->vm_flags))
 920                                return NULL;
 921                }
 922        }
 923
 924        if (is_zero_pfn(pfn))
 925                return NULL;
 926        if (unlikely(pfn > highest_memmap_pfn))
 927                return NULL;
 928
 929        /*
 930         * NOTE! We still have PageReserved() pages in the page tables.
 931         * eg. VDSO mappings can cause them to exist.
 932         */
 933out:
 934        return pfn_to_page(pfn);
 935}
 936#endif
 937
 938/*
 939 * copy one vm_area from one task to the other. Assumes the page tables
 940 * already present in the new task to be cleared in the whole range
 941 * covered by this vma.
 942 */
 943
 944static inline unsigned long
 945copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 946                pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 947                unsigned long addr, int *rss)
 948{
 949        unsigned long vm_flags = vma->vm_flags;
 950        pte_t pte = *src_pte;
 951        struct page *page;
 952
 953        /* pte contains position in swap or file, so copy. */
 954        if (unlikely(!pte_present(pte))) {
 955                swp_entry_t entry = pte_to_swp_entry(pte);
 956
 957                if (likely(!non_swap_entry(entry))) {
 958                        if (swap_duplicate(entry) < 0)
 959                                return entry.val;
 960
 961                        /* make sure dst_mm is on swapoff's mmlist. */
 962                        if (unlikely(list_empty(&dst_mm->mmlist))) {
 963                                spin_lock(&mmlist_lock);
 964                                if (list_empty(&dst_mm->mmlist))
 965                                        list_add(&dst_mm->mmlist,
 966                                                        &src_mm->mmlist);
 967                                spin_unlock(&mmlist_lock);
 968                        }
 969                        rss[MM_SWAPENTS]++;
 970                } else if (is_migration_entry(entry)) {
 971                        page = migration_entry_to_page(entry);
 972
 973                        rss[mm_counter(page)]++;
 974
 975                        if (is_write_migration_entry(entry) &&
 976                                        is_cow_mapping(vm_flags)) {
 977                                /*
 978                                 * COW mappings require pages in both
 979                                 * parent and child to be set to read.
 980                                 */
 981                                make_migration_entry_read(&entry);
 982                                pte = swp_entry_to_pte(entry);
 983                                if (pte_swp_soft_dirty(*src_pte))
 984                                        pte = pte_swp_mksoft_dirty(pte);
 985                                set_pte_at(src_mm, addr, src_pte, pte);
 986                        }
 987                } else if (is_device_private_entry(entry)) {
 988                        page = device_private_entry_to_page(entry);
 989
 990                        /*
 991                         * Update rss count even for unaddressable pages, as
 992                         * they should treated just like normal pages in this
 993                         * respect.
 994                         *
 995                         * We will likely want to have some new rss counters
 996                         * for unaddressable pages, at some point. But for now
 997                         * keep things as they are.
 998                         */
 999                        get_page(page);
1000                        rss[mm_counter(page)]++;
1001                        page_dup_rmap(page, false);
1002
1003                        /*
1004                         * We do not preserve soft-dirty information, because so
1005                         * far, checkpoint/restore is the only feature that
1006                         * requires that. And checkpoint/restore does not work
1007                         * when a device driver is involved (you cannot easily
1008                         * save and restore device driver state).
1009                         */
1010                        if (is_write_device_private_entry(entry) &&
1011                            is_cow_mapping(vm_flags)) {
1012                                make_device_private_entry_read(&entry);
1013                                pte = swp_entry_to_pte(entry);
1014                                set_pte_at(src_mm, addr, src_pte, pte);
1015                        }
1016                }
1017                goto out_set_pte;
1018        }
1019
1020        /*
1021         * If it's a COW mapping, write protect it both
1022         * in the parent and the child
1023         */
1024        if (is_cow_mapping(vm_flags)) {
1025                ptep_set_wrprotect(src_mm, addr, src_pte);
1026                pte = pte_wrprotect(pte);
1027        }
1028
1029        /*
1030         * If it's a shared mapping, mark it clean in
1031         * the child
1032         */
1033        if (vm_flags & VM_SHARED)
1034                pte = pte_mkclean(pte);
1035        pte = pte_mkold(pte);
1036
1037        page = vm_normal_page(vma, addr, pte);
1038        if (page) {
1039                get_page(page);
1040                page_dup_rmap(page, false);
1041                rss[mm_counter(page)]++;
1042        } else if (pte_devmap(pte)) {
1043                page = pte_page(pte);
1044
1045                /*
1046                 * Cache coherent device memory behave like regular page and
1047                 * not like persistent memory page. For more informations see
1048                 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1049                 */
1050                if (is_device_public_page(page)) {
1051                        get_page(page);
1052                        page_dup_rmap(page, false);
1053                        rss[mm_counter(page)]++;
1054                }
1055        }
1056
1057out_set_pte:
1058        set_pte_at(dst_mm, addr, dst_pte, pte);
1059        return 0;
1060}
1061
1062static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1063                   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1064                   unsigned long addr, unsigned long end)
1065{
1066        pte_t *orig_src_pte, *orig_dst_pte;
1067        pte_t *src_pte, *dst_pte;
1068        spinlock_t *src_ptl, *dst_ptl;
1069        int progress = 0;
1070        int rss[NR_MM_COUNTERS];
1071        swp_entry_t entry = (swp_entry_t){0};
1072
1073again:
1074        init_rss_vec(rss);
1075
1076        dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1077        if (!dst_pte)
1078                return -ENOMEM;
1079        src_pte = pte_offset_map(src_pmd, addr);
1080        src_ptl = pte_lockptr(src_mm, src_pmd);
1081        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1082        orig_src_pte = src_pte;
1083        orig_dst_pte = dst_pte;
1084        arch_enter_lazy_mmu_mode();
1085
1086        do {
1087                /*
1088                 * We are holding two locks at this point - either of them
1089                 * could generate latencies in another task on another CPU.
1090                 */
1091                if (progress >= 32) {
1092                        progress = 0;
1093                        if (need_resched() ||
1094                            spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1095                                break;
1096                }
1097                if (pte_none(*src_pte)) {
1098                        progress++;
1099                        continue;
1100                }
1101                entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1102                                                        vma, addr, rss);
1103                if (entry.val)
1104                        break;
1105                progress += 8;
1106        } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1107
1108        arch_leave_lazy_mmu_mode();
1109        spin_unlock(src_ptl);
1110        pte_unmap(orig_src_pte);
1111        add_mm_rss_vec(dst_mm, rss);
1112        pte_unmap_unlock(orig_dst_pte, dst_ptl);
1113        cond_resched();
1114
1115        if (entry.val) {
1116                if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1117                        return -ENOMEM;
1118                progress = 0;
1119        }
1120        if (addr != end)
1121                goto again;
1122        return 0;
1123}
1124
1125static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1126                pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1127                unsigned long addr, unsigned long end)
1128{
1129        pmd_t *src_pmd, *dst_pmd;
1130        unsigned long next;
1131
1132        dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1133        if (!dst_pmd)
1134                return -ENOMEM;
1135        src_pmd = pmd_offset(src_pud, addr);
1136        do {
1137                next = pmd_addr_end(addr, end);
1138                if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1139                        || pmd_devmap(*src_pmd)) {
1140                        int err;
1141                        VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1142                        err = copy_huge_pmd(dst_mm, src_mm,
1143                                            dst_pmd, src_pmd, addr, vma);
1144                        if (err == -ENOMEM)
1145                                return -ENOMEM;
1146                        if (!err)
1147                                continue;
1148                        /* fall through */
1149                }
1150                if (pmd_none_or_clear_bad(src_pmd))
1151                        continue;
1152                if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1153                                                vma, addr, next))
1154                        return -ENOMEM;
1155        } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1156        return 0;
1157}
1158
1159static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1160                p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1161                unsigned long addr, unsigned long end)
1162{
1163        pud_t *src_pud, *dst_pud;
1164        unsigned long next;
1165
1166        dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1167        if (!dst_pud)
1168                return -ENOMEM;
1169        src_pud = pud_offset(src_p4d, addr);
1170        do {
1171                next = pud_addr_end(addr, end);
1172                if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1173                        int err;
1174
1175                        VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1176                        err = copy_huge_pud(dst_mm, src_mm,
1177                                            dst_pud, src_pud, addr, vma);
1178                        if (err == -ENOMEM)
1179                                return -ENOMEM;
1180                        if (!err)
1181                                continue;
1182                        /* fall through */
1183                }
1184                if (pud_none_or_clear_bad(src_pud))
1185                        continue;
1186                if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1187                                                vma, addr, next))
1188                        return -ENOMEM;
1189        } while (dst_pud++, src_pud++, addr = next, addr != end);
1190        return 0;
1191}
1192
1193static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1194                pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1195                unsigned long addr, unsigned long end)
1196{
1197        p4d_t *src_p4d, *dst_p4d;
1198        unsigned long next;
1199
1200        dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1201        if (!dst_p4d)
1202                return -ENOMEM;
1203        src_p4d = p4d_offset(src_pgd, addr);
1204        do {
1205                next = p4d_addr_end(addr, end);
1206                if (p4d_none_or_clear_bad(src_p4d))
1207                        continue;
1208                if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1209                                                vma, addr, next))
1210                        return -ENOMEM;
1211        } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1212        return 0;
1213}
1214
1215int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1216                struct vm_area_struct *vma)
1217{
1218        pgd_t *src_pgd, *dst_pgd;
1219        unsigned long next;
1220        unsigned long addr = vma->vm_start;
1221        unsigned long end = vma->vm_end;
1222        unsigned long mmun_start;       /* For mmu_notifiers */
1223        unsigned long mmun_end;         /* For mmu_notifiers */
1224        bool is_cow;
1225        int ret;
1226
1227        /*
1228         * Don't copy ptes where a page fault will fill them correctly.
1229         * Fork becomes much lighter when there are big shared or private
1230         * readonly mappings. The tradeoff is that copy_page_range is more
1231         * efficient than faulting.
1232         */
1233        if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1234                        !vma->anon_vma)
1235                return 0;
1236
1237        if (is_vm_hugetlb_page(vma))
1238                return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1239
1240        if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1241                /*
1242                 * We do not free on error cases below as remove_vma
1243                 * gets called on error from higher level routine
1244                 */
1245                ret = track_pfn_copy(vma);
1246                if (ret)
1247                        return ret;
1248        }
1249
1250        /*
1251         * We need to invalidate the secondary MMU mappings only when
1252         * there could be a permission downgrade on the ptes of the
1253         * parent mm. And a permission downgrade will only happen if
1254         * is_cow_mapping() returns true.
1255         */
1256        is_cow = is_cow_mapping(vma->vm_flags);
1257        mmun_start = addr;
1258        mmun_end   = end;
1259        if (is_cow)
1260                mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1261                                                    mmun_end);
1262
1263        ret = 0;
1264        dst_pgd = pgd_offset(dst_mm, addr);
1265        src_pgd = pgd_offset(src_mm, addr);
1266        do {
1267                next = pgd_addr_end(addr, end);
1268                if (pgd_none_or_clear_bad(src_pgd))
1269                        continue;
1270                if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1271                                            vma, addr, next))) {
1272                        ret = -ENOMEM;
1273                        break;
1274                }
1275        } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1276
1277        if (is_cow)
1278                mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1279        return ret;
1280}
1281
1282static unsigned long zap_pte_range(struct mmu_gather *tlb,
1283                                struct vm_area_struct *vma, pmd_t *pmd,
1284                                unsigned long addr, unsigned long end,
1285                                struct zap_details *details)
1286{
1287        struct mm_struct *mm = tlb->mm;
1288        int force_flush = 0;
1289        int rss[NR_MM_COUNTERS];
1290        spinlock_t *ptl;
1291        pte_t *start_pte;
1292        pte_t *pte;
1293        swp_entry_t entry;
1294
1295        tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1296again:
1297        init_rss_vec(rss);
1298        start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1299        pte = start_pte;
1300        flush_tlb_batched_pending(mm);
1301        arch_enter_lazy_mmu_mode();
1302        do {
1303                pte_t ptent = *pte;
1304                if (pte_none(ptent))
1305                        continue;
1306
1307                if (pte_present(ptent)) {
1308                        struct page *page;
1309
1310                        page = _vm_normal_page(vma, addr, ptent, true);
1311                        if (unlikely(details) && page) {
1312                                /*
1313                                 * unmap_shared_mapping_pages() wants to
1314                                 * invalidate cache without truncating:
1315                                 * unmap shared but keep private pages.
1316                                 */
1317                                if (details->check_mapping &&
1318                                    details->check_mapping != page_rmapping(page))
1319                                        continue;
1320                        }
1321                        ptent = ptep_get_and_clear_full(mm, addr, pte,
1322                                                        tlb->fullmm);
1323                        tlb_remove_tlb_entry(tlb, pte, addr);
1324                        if (unlikely(!page))
1325                                continue;
1326
1327                        if (!PageAnon(page)) {
1328                                if (pte_dirty(ptent)) {
1329                                        force_flush = 1;
1330                                        set_page_dirty(page);
1331                                }
1332                                if (pte_young(ptent) &&
1333                                    likely(!(vma->vm_flags & VM_SEQ_READ)))
1334                                        mark_page_accessed(page);
1335                        }
1336                        rss[mm_counter(page)]--;
1337                        page_remove_rmap(page, false);
1338                        if (unlikely(page_mapcount(page) < 0))
1339                                print_bad_pte(vma, addr, ptent, page);
1340                        if (unlikely(__tlb_remove_page(tlb, page))) {
1341                                force_flush = 1;
1342                                addr += PAGE_SIZE;
1343                                break;
1344                        }
1345                        continue;
1346                }
1347
1348                entry = pte_to_swp_entry(ptent);
1349                if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1350                        struct page *page = device_private_entry_to_page(entry);
1351
1352                        if (unlikely(details && details->check_mapping)) {
1353                                /*
1354                                 * unmap_shared_mapping_pages() wants to
1355                                 * invalidate cache without truncating:
1356                                 * unmap shared but keep private pages.
1357                                 */
1358                                if (details->check_mapping !=
1359                                    page_rmapping(page))
1360                                        continue;
1361                        }
1362
1363                        pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1364                        rss[mm_counter(page)]--;
1365                        page_remove_rmap(page, false);
1366                        put_page(page);
1367                        continue;
1368                }
1369
1370                /* If details->check_mapping, we leave swap entries. */
1371                if (unlikely(details))
1372                        continue;
1373
1374                entry = pte_to_swp_entry(ptent);
1375                if (!non_swap_entry(entry))
1376                        rss[MM_SWAPENTS]--;
1377                else if (is_migration_entry(entry)) {
1378                        struct page *page;
1379
1380                        page = migration_entry_to_page(entry);
1381                        rss[mm_counter(page)]--;
1382                }
1383                if (unlikely(!free_swap_and_cache(entry)))
1384                        print_bad_pte(vma, addr, ptent, NULL);
1385                pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1386        } while (pte++, addr += PAGE_SIZE, addr != end);
1387
1388        add_mm_rss_vec(mm, rss);
1389        arch_leave_lazy_mmu_mode();
1390
1391        /* Do the actual TLB flush before dropping ptl */
1392        if (force_flush)
1393                tlb_flush_mmu_tlbonly(tlb);
1394        pte_unmap_unlock(start_pte, ptl);
1395
1396        /*
1397         * If we forced a TLB flush (either due to running out of
1398         * batch buffers or because we needed to flush dirty TLB
1399         * entries before releasing the ptl), free the batched
1400         * memory too. Restart if we didn't do everything.
1401         */
1402        if (force_flush) {
1403                force_flush = 0;
1404                tlb_flush_mmu_free(tlb);
1405                if (addr != end)
1406                        goto again;
1407        }
1408
1409        return addr;
1410}
1411
1412static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1413                                struct vm_area_struct *vma, pud_t *pud,
1414                                unsigned long addr, unsigned long end,
1415                                struct zap_details *details)
1416{
1417        pmd_t *pmd;
1418        unsigned long next;
1419
1420        pmd = pmd_offset(pud, addr);
1421        do {
1422                next = pmd_addr_end(addr, end);
1423                if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1424                        if (next - addr != HPAGE_PMD_SIZE) {
1425                                VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1426                                    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1427                                __split_huge_pmd(vma, pmd, addr, false, NULL);
1428                        } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1429                                goto next;
1430                        /* fall through */
1431                }
1432                /*
1433                 * Here there can be other concurrent MADV_DONTNEED or
1434                 * trans huge page faults running, and if the pmd is
1435                 * none or trans huge it can change under us. This is
1436                 * because MADV_DONTNEED holds the mmap_sem in read
1437                 * mode.
1438                 */
1439                if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1440                        goto next;
1441                next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1442next:
1443                cond_resched();
1444        } while (pmd++, addr = next, addr != end);
1445
1446        return addr;
1447}
1448
1449static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1450                                struct vm_area_struct *vma, p4d_t *p4d,
1451                                unsigned long addr, unsigned long end,
1452                                struct zap_details *details)
1453{
1454        pud_t *pud;
1455        unsigned long next;
1456
1457        pud = pud_offset(p4d, addr);
1458        do {
1459                next = pud_addr_end(addr, end);
1460                if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1461                        if (next - addr != HPAGE_PUD_SIZE) {
1462                                VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1463                                split_huge_pud(vma, pud, addr);
1464                        } else if (zap_huge_pud(tlb, vma, pud, addr))
1465                                goto next;
1466                        /* fall through */
1467                }
1468                if (pud_none_or_clear_bad(pud))
1469                        continue;
1470                next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1471next:
1472                cond_resched();
1473        } while (pud++, addr = next, addr != end);
1474
1475        return addr;
1476}
1477
1478static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1479                                struct vm_area_struct *vma, pgd_t *pgd,
1480                                unsigned long addr, unsigned long end,
1481                                struct zap_details *details)
1482{
1483        p4d_t *p4d;
1484        unsigned long next;
1485
1486        p4d = p4d_offset(pgd, addr);
1487        do {
1488                next = p4d_addr_end(addr, end);
1489                if (p4d_none_or_clear_bad(p4d))
1490                        continue;
1491                next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1492        } while (p4d++, addr = next, addr != end);
1493
1494        return addr;
1495}
1496
1497void unmap_page_range(struct mmu_gather *tlb,
1498                             struct vm_area_struct *vma,
1499                             unsigned long addr, unsigned long end,
1500                             struct zap_details *details)
1501{
1502        pgd_t *pgd;
1503        unsigned long next;
1504
1505        BUG_ON(addr >= end);
1506        tlb_start_vma(tlb, vma);
1507        pgd = pgd_offset(vma->vm_mm, addr);
1508        do {
1509                next = pgd_addr_end(addr, end);
1510                if (pgd_none_or_clear_bad(pgd))
1511                        continue;
1512                next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1513        } while (pgd++, addr = next, addr != end);
1514        tlb_end_vma(tlb, vma);
1515}
1516
1517
1518static void unmap_single_vma(struct mmu_gather *tlb,
1519                struct vm_area_struct *vma, unsigned long start_addr,
1520                unsigned long end_addr,
1521                struct zap_details *details)
1522{
1523        unsigned long start = max(vma->vm_start, start_addr);
1524        unsigned long end;
1525
1526        if (start >= vma->vm_end)
1527                return;
1528        end = min(vma->vm_end, end_addr);
1529        if (end <= vma->vm_start)
1530                return;
1531
1532        if (vma->vm_file)
1533                uprobe_munmap(vma, start, end);
1534
1535        if (unlikely(vma->vm_flags & VM_PFNMAP))
1536                untrack_pfn(vma, 0, 0);
1537
1538        if (start != end) {
1539                if (unlikely(is_vm_hugetlb_page(vma))) {
1540                        /*
1541                         * It is undesirable to test vma->vm_file as it
1542                         * should be non-null for valid hugetlb area.
1543                         * However, vm_file will be NULL in the error
1544                         * cleanup path of mmap_region. When
1545                         * hugetlbfs ->mmap method fails,
1546                         * mmap_region() nullifies vma->vm_file
1547                         * before calling this function to clean up.
1548                         * Since no pte has actually been setup, it is
1549                         * safe to do nothing in this case.
1550                         */
1551                        if (vma->vm_file) {
1552                                i_mmap_lock_write(vma->vm_file->f_mapping);
1553                                __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1554                                i_mmap_unlock_write(vma->vm_file->f_mapping);
1555                        }
1556                } else
1557                        unmap_page_range(tlb, vma, start, end, details);
1558        }
1559}
1560
1561/**
1562 * unmap_vmas - unmap a range of memory covered by a list of vma's
1563 * @tlb: address of the caller's struct mmu_gather
1564 * @vma: the starting vma
1565 * @start_addr: virtual address at which to start unmapping
1566 * @end_addr: virtual address at which to end unmapping
1567 *
1568 * Unmap all pages in the vma list.
1569 *
1570 * Only addresses between `start' and `end' will be unmapped.
1571 *
1572 * The VMA list must be sorted in ascending virtual address order.
1573 *
1574 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1575 * range after unmap_vmas() returns.  So the only responsibility here is to
1576 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1577 * drops the lock and schedules.
1578 */
1579void unmap_vmas(struct mmu_gather *tlb,
1580                struct vm_area_struct *vma, unsigned long start_addr,
1581                unsigned long end_addr)
1582{
1583        struct mm_struct *mm = vma->vm_mm;
1584
1585        mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1586        for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1587                unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1588        mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1589}
1590
1591/**
1592 * zap_page_range - remove user pages in a given range
1593 * @vma: vm_area_struct holding the applicable pages
1594 * @start: starting address of pages to zap
1595 * @size: number of bytes to zap
1596 *
1597 * Caller must protect the VMA list
1598 */
1599void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1600                unsigned long size)
1601{
1602        struct mm_struct *mm = vma->vm_mm;
1603        struct mmu_gather tlb;
1604        unsigned long end = start + size;
1605
1606        lru_add_drain();
1607        tlb_gather_mmu(&tlb, mm, start, end);
1608        update_hiwater_rss(mm);
1609        mmu_notifier_invalidate_range_start(mm, start, end);
1610        for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1611                unmap_single_vma(&tlb, vma, start, end, NULL);
1612
1613                /*
1614                 * zap_page_range does not specify whether mmap_sem should be
1615                 * held for read or write. That allows parallel zap_page_range
1616                 * operations to unmap a PTE and defer a flush meaning that
1617                 * this call observes pte_none and fails to flush the TLB.
1618                 * Rather than adding a complex API, ensure that no stale
1619                 * TLB entries exist when this call returns.
1620                 */
1621                flush_tlb_range(vma, start, end);
1622        }
1623
1624        mmu_notifier_invalidate_range_end(mm, start, end);
1625        tlb_finish_mmu(&tlb, start, end);
1626}
1627
1628/**
1629 * zap_page_range_single - remove user pages in a given range
1630 * @vma: vm_area_struct holding the applicable pages
1631 * @address: starting address of pages to zap
1632 * @size: number of bytes to zap
1633 * @details: details of shared cache invalidation
1634 *
1635 * The range must fit into one VMA.
1636 */
1637static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1638                unsigned long size, struct zap_details *details)
1639{
1640        struct mm_struct *mm = vma->vm_mm;
1641        struct mmu_gather tlb;
1642        unsigned long end = address + size;
1643
1644        lru_add_drain();
1645        tlb_gather_mmu(&tlb, mm, address, end);
1646        update_hiwater_rss(mm);
1647        mmu_notifier_invalidate_range_start(mm, address, end);
1648        unmap_single_vma(&tlb, vma, address, end, details);
1649        mmu_notifier_invalidate_range_end(mm, address, end);
1650        tlb_finish_mmu(&tlb, address, end);
1651}
1652
1653/**
1654 * zap_vma_ptes - remove ptes mapping the vma
1655 * @vma: vm_area_struct holding ptes to be zapped
1656 * @address: starting address of pages to zap
1657 * @size: number of bytes to zap
1658 *
1659 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1660 *
1661 * The entire address range must be fully contained within the vma.
1662 *
1663 * Returns 0 if successful.
1664 */
1665int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1666                unsigned long size)
1667{
1668        if (address < vma->vm_start || address + size > vma->vm_end ||
1669                        !(vma->vm_flags & VM_PFNMAP))
1670                return -1;
1671        zap_page_range_single(vma, address, size, NULL);
1672        return 0;
1673}
1674EXPORT_SYMBOL_GPL(zap_vma_ptes);
1675
1676pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1677                        spinlock_t **ptl)
1678{
1679        pgd_t *pgd;
1680        p4d_t *p4d;
1681        pud_t *pud;
1682        pmd_t *pmd;
1683
1684        pgd = pgd_offset(mm, addr);
1685        p4d = p4d_alloc(mm, pgd, addr);
1686        if (!p4d)
1687                return NULL;
1688        pud = pud_alloc(mm, p4d, addr);
1689        if (!pud)
1690                return NULL;
1691        pmd = pmd_alloc(mm, pud, addr);
1692        if (!pmd)
1693                return NULL;
1694
1695        VM_BUG_ON(pmd_trans_huge(*pmd));
1696        return pte_alloc_map_lock(mm, pmd, addr, ptl);
1697}
1698
1699/*
1700 * This is the old fallback for page remapping.
1701 *
1702 * For historical reasons, it only allows reserved pages. Only
1703 * old drivers should use this, and they needed to mark their
1704 * pages reserved for the old functions anyway.
1705 */
1706static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1707                        struct page *page, pgprot_t prot)
1708{
1709        struct mm_struct *mm = vma->vm_mm;
1710        int retval;
1711        pte_t *pte;
1712        spinlock_t *ptl;
1713
1714        retval = -EINVAL;
1715        if (PageAnon(page))
1716                goto out;
1717        retval = -ENOMEM;
1718        flush_dcache_page(page);
1719        pte = get_locked_pte(mm, addr, &ptl);
1720        if (!pte)
1721                goto out;
1722        retval = -EBUSY;
1723        if (!pte_none(*pte))
1724                goto out_unlock;
1725
1726        /* Ok, finally just insert the thing.. */
1727        get_page(page);
1728        inc_mm_counter_fast(mm, mm_counter_file(page));
1729        page_add_file_rmap(page, false);
1730        set_pte_at(mm, addr, pte, mk_pte(page, prot));
1731
1732        retval = 0;
1733        pte_unmap_unlock(pte, ptl);
1734        return retval;
1735out_unlock:
1736        pte_unmap_unlock(pte, ptl);
1737out:
1738        return retval;
1739}
1740
1741/**
1742 * vm_insert_page - insert single page into user vma
1743 * @vma: user vma to map to
1744 * @addr: target user address of this page
1745 * @page: source kernel page
1746 *
1747 * This allows drivers to insert individual pages they've allocated
1748 * into a user vma.
1749 *
1750 * The page has to be a nice clean _individual_ kernel allocation.
1751 * If you allocate a compound page, you need to have marked it as
1752 * such (__GFP_COMP), or manually just split the page up yourself
1753 * (see split_page()).
1754 *
1755 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1756 * took an arbitrary page protection parameter. This doesn't allow
1757 * that. Your vma protection will have to be set up correctly, which
1758 * means that if you want a shared writable mapping, you'd better
1759 * ask for a shared writable mapping!
1760 *
1761 * The page does not need to be reserved.
1762 *
1763 * Usually this function is called from f_op->mmap() handler
1764 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1765 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1766 * function from other places, for example from page-fault handler.
1767 */
1768int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1769                        struct page *page)
1770{
1771        if (addr < vma->vm_start || addr >= vma->vm_end)
1772                return -EFAULT;
1773        if (!page_count(page))
1774                return -EINVAL;
1775        if (!(vma->vm_flags & VM_MIXEDMAP)) {
1776                BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1777                BUG_ON(vma->vm_flags & VM_PFNMAP);
1778                vma->vm_flags |= VM_MIXEDMAP;
1779        }
1780        return insert_page(vma, addr, page, vma->vm_page_prot);
1781}
1782EXPORT_SYMBOL(vm_insert_page);
1783
1784static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1785                        pfn_t pfn, pgprot_t prot, bool mkwrite)
1786{
1787        struct mm_struct *mm = vma->vm_mm;
1788        int retval;
1789        pte_t *pte, entry;
1790        spinlock_t *ptl;
1791
1792        retval = -ENOMEM;
1793        pte = get_locked_pte(mm, addr, &ptl);
1794        if (!pte)
1795                goto out;
1796        retval = -EBUSY;
1797        if (!pte_none(*pte)) {
1798                if (mkwrite) {
1799                        /*
1800                         * For read faults on private mappings the PFN passed
1801                         * in may not match the PFN we have mapped if the
1802                         * mapped PFN is a writeable COW page.  In the mkwrite
1803                         * case we are creating a writable PTE for a shared
1804                         * mapping and we expect the PFNs to match.
1805                         */
1806                        if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1807                                goto out_unlock;
1808                        entry = *pte;
1809                        goto out_mkwrite;
1810                } else
1811                        goto out_unlock;
1812        }
1813
1814        /* Ok, finally just insert the thing.. */
1815        if (pfn_t_devmap(pfn))
1816                entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1817        else
1818                entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1819
1820out_mkwrite:
1821        if (mkwrite) {
1822                entry = pte_mkyoung(entry);
1823                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1824        }
1825
1826        set_pte_at(mm, addr, pte, entry);
1827        update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1828
1829        retval = 0;
1830out_unlock:
1831        pte_unmap_unlock(pte, ptl);
1832out:
1833        return retval;
1834}
1835
1836/**
1837 * vm_insert_pfn - insert single pfn into user vma
1838 * @vma: user vma to map to
1839 * @addr: target user address of this page
1840 * @pfn: source kernel pfn
1841 *
1842 * Similar to vm_insert_page, this allows drivers to insert individual pages
1843 * they've allocated into a user vma. Same comments apply.
1844 *
1845 * This function should only be called from a vm_ops->fault handler, and
1846 * in that case the handler should return NULL.
1847 *
1848 * vma cannot be a COW mapping.
1849 *
1850 * As this is called only for pages that do not currently exist, we
1851 * do not need to flush old virtual caches or the TLB.
1852 */
1853int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1854                        unsigned long pfn)
1855{
1856        return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1857}
1858EXPORT_SYMBOL(vm_insert_pfn);
1859
1860/**
1861 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1862 * @vma: user vma to map to
1863 * @addr: target user address of this page
1864 * @pfn: source kernel pfn
1865 * @pgprot: pgprot flags for the inserted page
1866 *
1867 * This is exactly like vm_insert_pfn, except that it allows drivers to
1868 * to override pgprot on a per-page basis.
1869 *
1870 * This only makes sense for IO mappings, and it makes no sense for
1871 * cow mappings.  In general, using multiple vmas is preferable;
1872 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1873 * impractical.
1874 */
1875int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1876                        unsigned long pfn, pgprot_t pgprot)
1877{
1878        int ret;
1879        /*
1880         * Technically, architectures with pte_special can avoid all these
1881         * restrictions (same for remap_pfn_range).  However we would like
1882         * consistency in testing and feature parity among all, so we should
1883         * try to keep these invariants in place for everybody.
1884         */
1885        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1886        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1887                                                (VM_PFNMAP|VM_MIXEDMAP));
1888        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1889        BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1890
1891        if (addr < vma->vm_start || addr >= vma->vm_end)
1892                return -EFAULT;
1893
1894        track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1895
1896        ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1897                        false);
1898
1899        return ret;
1900}
1901EXPORT_SYMBOL(vm_insert_pfn_prot);
1902
1903static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1904{
1905        /* these checks mirror the abort conditions in vm_normal_page */
1906        if (vma->vm_flags & VM_MIXEDMAP)
1907                return true;
1908        if (pfn_t_devmap(pfn))
1909                return true;
1910        if (pfn_t_special(pfn))
1911                return true;
1912        if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1913                return true;
1914        return false;
1915}
1916
1917static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1918                        pfn_t pfn, bool mkwrite)
1919{
1920        pgprot_t pgprot = vma->vm_page_prot;
1921
1922        BUG_ON(!vm_mixed_ok(vma, pfn));
1923
1924        if (addr < vma->vm_start || addr >= vma->vm_end)
1925                return -EFAULT;
1926
1927        track_pfn_insert(vma, &pgprot, pfn);
1928
1929        /*
1930         * If we don't have pte special, then we have to use the pfn_valid()
1931         * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1932         * refcount the page if pfn_valid is true (hence insert_page rather
1933         * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1934         * without pte special, it would there be refcounted as a normal page.
1935         */
1936        if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1937                struct page *page;
1938
1939                /*
1940                 * At this point we are committed to insert_page()
1941                 * regardless of whether the caller specified flags that
1942                 * result in pfn_t_has_page() == false.
1943                 */
1944                page = pfn_to_page(pfn_t_to_pfn(pfn));
1945                return insert_page(vma, addr, page, pgprot);
1946        }
1947        return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1948}
1949
1950int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1951                        pfn_t pfn)
1952{
1953        return __vm_insert_mixed(vma, addr, pfn, false);
1954
1955}
1956EXPORT_SYMBOL(vm_insert_mixed);
1957
1958int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1959                        pfn_t pfn)
1960{
1961        return __vm_insert_mixed(vma, addr, pfn, true);
1962}
1963EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1964
1965/*
1966 * maps a range of physical memory into the requested pages. the old
1967 * mappings are removed. any references to nonexistent pages results
1968 * in null mappings (currently treated as "copy-on-access")
1969 */
1970static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1971                        unsigned long addr, unsigned long end,
1972                        unsigned long pfn, pgprot_t prot)
1973{
1974        pte_t *pte;
1975        spinlock_t *ptl;
1976
1977        pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1978        if (!pte)
1979                return -ENOMEM;
1980        arch_enter_lazy_mmu_mode();
1981        do {
1982                BUG_ON(!pte_none(*pte));
1983                set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1984                pfn++;
1985        } while (pte++, addr += PAGE_SIZE, addr != end);
1986        arch_leave_lazy_mmu_mode();
1987        pte_unmap_unlock(pte - 1, ptl);
1988        return 0;
1989}
1990
1991static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1992                        unsigned long addr, unsigned long end,
1993                        unsigned long pfn, pgprot_t prot)
1994{
1995        pmd_t *pmd;
1996        unsigned long next;
1997
1998        pfn -= addr >> PAGE_SHIFT;
1999        pmd = pmd_alloc(mm, pud, addr);
2000        if (!pmd)
2001                return -ENOMEM;
2002        VM_BUG_ON(pmd_trans_huge(*pmd));
2003        do {
2004                next = pmd_addr_end(addr, end);
2005                if (remap_pte_range(mm, pmd, addr, next,
2006                                pfn + (addr >> PAGE_SHIFT), prot))
2007                        return -ENOMEM;
2008        } while (pmd++, addr = next, addr != end);
2009        return 0;
2010}
2011
2012static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2013                        unsigned long addr, unsigned long end,
2014                        unsigned long pfn, pgprot_t prot)
2015{
2016        pud_t *pud;
2017        unsigned long next;
2018
2019        pfn -= addr >> PAGE_SHIFT;
2020        pud = pud_alloc(mm, p4d, addr);
2021        if (!pud)
2022                return -ENOMEM;
2023        do {
2024                next = pud_addr_end(addr, end);
2025                if (remap_pmd_range(mm, pud, addr, next,
2026                                pfn + (addr >> PAGE_SHIFT), prot))
2027                        return -ENOMEM;
2028        } while (pud++, addr = next, addr != end);
2029        return 0;
2030}
2031
2032static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2033                        unsigned long addr, unsigned long end,
2034                        unsigned long pfn, pgprot_t prot)
2035{
2036        p4d_t *p4d;
2037        unsigned long next;
2038
2039        pfn -= addr >> PAGE_SHIFT;
2040        p4d = p4d_alloc(mm, pgd, addr);
2041        if (!p4d)
2042                return -ENOMEM;
2043        do {
2044                next = p4d_addr_end(addr, end);
2045                if (remap_pud_range(mm, p4d, addr, next,
2046                                pfn + (addr >> PAGE_SHIFT), prot))
2047                        return -ENOMEM;
2048        } while (p4d++, addr = next, addr != end);
2049        return 0;
2050}
2051
2052/**
2053 * remap_pfn_range - remap kernel memory to userspace
2054 * @vma: user vma to map to
2055 * @addr: target user address to start at
2056 * @pfn: physical address of kernel memory
2057 * @size: size of map area
2058 * @prot: page protection flags for this mapping
2059 *
2060 *  Note: this is only safe if the mm semaphore is held when called.
2061 */
2062int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2063                    unsigned long pfn, unsigned long size, pgprot_t prot)
2064{
2065        pgd_t *pgd;
2066        unsigned long next;
2067        unsigned long end = addr + PAGE_ALIGN(size);
2068        struct mm_struct *mm = vma->vm_mm;
2069        unsigned long remap_pfn = pfn;
2070        int err;
2071
2072        /*
2073         * Physically remapped pages are special. Tell the
2074         * rest of the world about it:
2075         *   VM_IO tells people not to look at these pages
2076         *      (accesses can have side effects).
2077         *   VM_PFNMAP tells the core MM that the base pages are just
2078         *      raw PFN mappings, and do not have a "struct page" associated
2079         *      with them.
2080         *   VM_DONTEXPAND
2081         *      Disable vma merging and expanding with mremap().
2082         *   VM_DONTDUMP
2083         *      Omit vma from core dump, even when VM_IO turned off.
2084         *
2085         * There's a horrible special case to handle copy-on-write
2086         * behaviour that some programs depend on. We mark the "original"
2087         * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2088         * See vm_normal_page() for details.
2089         */
2090        if (is_cow_mapping(vma->vm_flags)) {
2091                if (addr != vma->vm_start || end != vma->vm_end)
2092                        return -EINVAL;
2093                vma->vm_pgoff = pfn;
2094        }
2095
2096        err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2097        if (err)
2098                return -EINVAL;
2099
2100        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2101
2102        BUG_ON(addr >= end);
2103        pfn -= addr >> PAGE_SHIFT;
2104        pgd = pgd_offset(mm, addr);
2105        flush_cache_range(vma, addr, end);
2106        do {
2107                next = pgd_addr_end(addr, end);
2108                err = remap_p4d_range(mm, pgd, addr, next,
2109                                pfn + (addr >> PAGE_SHIFT), prot);
2110                if (err)
2111                        break;
2112        } while (pgd++, addr = next, addr != end);
2113
2114        if (err)
2115                untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2116
2117        return err;
2118}
2119EXPORT_SYMBOL(remap_pfn_range);
2120
2121/**
2122 * vm_iomap_memory - remap memory to userspace
2123 * @vma: user vma to map to
2124 * @start: start of area
2125 * @len: size of area
2126 *
2127 * This is a simplified io_remap_pfn_range() for common driver use. The
2128 * driver just needs to give us the physical memory range to be mapped,
2129 * we'll figure out the rest from the vma information.
2130 *
2131 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2132 * whatever write-combining details or similar.
2133 */
2134int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2135{
2136        unsigned long vm_len, pfn, pages;
2137
2138        /* Check that the physical memory area passed in looks valid */
2139        if (start + len < start)
2140                return -EINVAL;
2141        /*
2142         * You *really* shouldn't map things that aren't page-aligned,
2143         * but we've historically allowed it because IO memory might
2144         * just have smaller alignment.
2145         */
2146        len += start & ~PAGE_MASK;
2147        pfn = start >> PAGE_SHIFT;
2148        pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2149        if (pfn + pages < pfn)
2150                return -EINVAL;
2151
2152        /* We start the mapping 'vm_pgoff' pages into the area */
2153        if (vma->vm_pgoff > pages)
2154                return -EINVAL;
2155        pfn += vma->vm_pgoff;
2156        pages -= vma->vm_pgoff;
2157
2158        /* Can we fit all of the mapping? */
2159        vm_len = vma->vm_end - vma->vm_start;
2160        if (vm_len >> PAGE_SHIFT > pages)
2161                return -EINVAL;
2162
2163        /* Ok, let it rip */
2164        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2165}
2166EXPORT_SYMBOL(vm_iomap_memory);
2167
2168static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2169                                     unsigned long addr, unsigned long end,
2170                                     pte_fn_t fn, void *data)
2171{
2172        pte_t *pte;
2173        int err;
2174        pgtable_t token;
2175        spinlock_t *uninitialized_var(ptl);
2176
2177        pte = (mm == &init_mm) ?
2178                pte_alloc_kernel(pmd, addr) :
2179                pte_alloc_map_lock(mm, pmd, addr, &ptl);
2180        if (!pte)
2181                return -ENOMEM;
2182
2183        BUG_ON(pmd_huge(*pmd));
2184
2185        arch_enter_lazy_mmu_mode();
2186
2187        token = pmd_pgtable(*pmd);
2188
2189        do {
2190                err = fn(pte++, token, addr, data);
2191                if (err)
2192                        break;
2193        } while (addr += PAGE_SIZE, addr != end);
2194
2195        arch_leave_lazy_mmu_mode();
2196
2197        if (mm != &init_mm)
2198                pte_unmap_unlock(pte-1, ptl);
2199        return err;
2200}
2201
2202static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2203                                     unsigned long addr, unsigned long end,
2204                                     pte_fn_t fn, void *data)
2205{
2206        pmd_t *pmd;
2207        unsigned long next;
2208        int err;
2209
2210        BUG_ON(pud_huge(*pud));
2211
2212        pmd = pmd_alloc(mm, pud, addr);
2213        if (!pmd)
2214                return -ENOMEM;
2215        do {
2216                next = pmd_addr_end(addr, end);
2217                err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2218                if (err)
2219                        break;
2220        } while (pmd++, addr = next, addr != end);
2221        return err;
2222}
2223
2224static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2225                                     unsigned long addr, unsigned long end,
2226                                     pte_fn_t fn, void *data)
2227{
2228        pud_t *pud;
2229        unsigned long next;
2230        int err;
2231
2232        pud = pud_alloc(mm, p4d, addr);
2233        if (!pud)
2234                return -ENOMEM;
2235        do {
2236                next = pud_addr_end(addr, end);
2237                err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2238                if (err)
2239                        break;
2240        } while (pud++, addr = next, addr != end);
2241        return err;
2242}
2243
2244static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2245                                     unsigned long addr, unsigned long end,
2246                                     pte_fn_t fn, void *data)
2247{
2248        p4d_t *p4d;
2249        unsigned long next;
2250        int err;
2251
2252        p4d = p4d_alloc(mm, pgd, addr);
2253        if (!p4d)
2254                return -ENOMEM;
2255        do {
2256                next = p4d_addr_end(addr, end);
2257                err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2258                if (err)
2259                        break;
2260        } while (p4d++, addr = next, addr != end);
2261        return err;
2262}
2263
2264/*
2265 * Scan a region of virtual memory, filling in page tables as necessary
2266 * and calling a provided function on each leaf page table.
2267 */
2268int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2269                        unsigned long size, pte_fn_t fn, void *data)
2270{
2271        pgd_t *pgd;
2272        unsigned long next;
2273        unsigned long end = addr + size;
2274        int err;
2275
2276        if (WARN_ON(addr >= end))
2277                return -EINVAL;
2278
2279        pgd = pgd_offset(mm, addr);
2280        do {
2281                next = pgd_addr_end(addr, end);
2282                err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2283                if (err)
2284                        break;
2285        } while (pgd++, addr = next, addr != end);
2286
2287        return err;
2288}
2289EXPORT_SYMBOL_GPL(apply_to_page_range);
2290
2291/*
2292 * handle_pte_fault chooses page fault handler according to an entry which was
2293 * read non-atomically.  Before making any commitment, on those architectures
2294 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2295 * parts, do_swap_page must check under lock before unmapping the pte and
2296 * proceeding (but do_wp_page is only called after already making such a check;
2297 * and do_anonymous_page can safely check later on).
2298 */
2299static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2300                                pte_t *page_table, pte_t orig_pte)
2301{
2302        int same = 1;
2303#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2304        if (sizeof(pte_t) > sizeof(unsigned long)) {
2305                spinlock_t *ptl = pte_lockptr(mm, pmd);
2306                spin_lock(ptl);
2307                same = pte_same(*page_table, orig_pte);
2308                spin_unlock(ptl);
2309        }
2310#endif
2311        pte_unmap(page_table);
2312        return same;
2313}
2314
2315static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2316{
2317        debug_dma_assert_idle(src);
2318
2319        /*
2320         * If the source page was a PFN mapping, we don't have
2321         * a "struct page" for it. We do a best-effort copy by
2322         * just copying from the original user address. If that
2323         * fails, we just zero-fill it. Live with it.
2324         */
2325        if (unlikely(!src)) {
2326                void *kaddr = kmap_atomic(dst);
2327                void __user *uaddr = (void __user *)(va & PAGE_MASK);
2328
2329                /*
2330                 * This really shouldn't fail, because the page is there
2331                 * in the page tables. But it might just be unreadable,
2332                 * in which case we just give up and fill the result with
2333                 * zeroes.
2334                 */
2335                if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2336                        clear_page(kaddr);
2337                kunmap_atomic(kaddr);
2338                flush_dcache_page(dst);
2339        } else
2340                copy_user_highpage(dst, src, va, vma);
2341}
2342
2343static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2344{
2345        struct file *vm_file = vma->vm_file;
2346
2347        if (vm_file)
2348                return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2349
2350        /*
2351         * Special mappings (e.g. VDSO) do not have any file so fake
2352         * a default GFP_KERNEL for them.
2353         */
2354        return GFP_KERNEL;
2355}
2356
2357/*
2358 * Notify the address space that the page is about to become writable so that
2359 * it can prohibit this or wait for the page to get into an appropriate state.
2360 *
2361 * We do this without the lock held, so that it can sleep if it needs to.
2362 */
2363static int do_page_mkwrite(struct vm_fault *vmf)
2364{
2365        int ret;
2366        struct page *page = vmf->page;
2367        unsigned int old_flags = vmf->flags;
2368
2369        vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2370
2371        ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2372        /* Restore original flags so that caller is not surprised */
2373        vmf->flags = old_flags;
2374        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2375                return ret;
2376        if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2377                lock_page(page);
2378                if (!page->mapping) {
2379                        unlock_page(page);
2380                        return 0; /* retry */
2381                }
2382                ret |= VM_FAULT_LOCKED;
2383        } else
2384                VM_BUG_ON_PAGE(!PageLocked(page), page);
2385        return ret;
2386}
2387
2388/*
2389 * Handle dirtying of a page in shared file mapping on a write fault.
2390 *
2391 * The function expects the page to be locked and unlocks it.
2392 */
2393static void fault_dirty_shared_page(struct vm_area_struct *vma,
2394                                    struct page *page)
2395{
2396        struct address_space *mapping;
2397        bool dirtied;
2398        bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2399
2400        dirtied = set_page_dirty(page);
2401        VM_BUG_ON_PAGE(PageAnon(page), page);
2402        /*
2403         * Take a local copy of the address_space - page.mapping may be zeroed
2404         * by truncate after unlock_page().   The address_space itself remains
2405         * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2406         * release semantics to prevent the compiler from undoing this copying.
2407         */
2408        mapping = page_rmapping(page);
2409        unlock_page(page);
2410
2411        if ((dirtied || page_mkwrite) && mapping) {
2412                /*
2413                 * Some device drivers do not set page.mapping
2414                 * but still dirty their pages
2415                 */
2416                balance_dirty_pages_ratelimited(mapping);
2417        }
2418
2419        if (!page_mkwrite)
2420                file_update_time(vma->vm_file);
2421}
2422
2423/*
2424 * Handle write page faults for pages that can be reused in the current vma
2425 *
2426 * This can happen either due to the mapping being with the VM_SHARED flag,
2427 * or due to us being the last reference standing to the page. In either
2428 * case, all we need to do here is to mark the page as writable and update
2429 * any related book-keeping.
2430 */
2431static inline void wp_page_reuse(struct vm_fault *vmf)
2432        __releases(vmf->ptl)
2433{
2434        struct vm_area_struct *vma = vmf->vma;
2435        struct page *page = vmf->page;
2436        pte_t entry;
2437        /*
2438         * Clear the pages cpupid information as the existing
2439         * information potentially belongs to a now completely
2440         * unrelated process.
2441         */
2442        if (page)
2443                page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2444
2445        flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2446        entry = pte_mkyoung(vmf->orig_pte);
2447        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2448        if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2449                update_mmu_cache(vma, vmf->address, vmf->pte);
2450        pte_unmap_unlock(vmf->pte, vmf->ptl);
2451}
2452
2453/*
2454 * Handle the case of a page which we actually need to copy to a new page.
2455 *
2456 * Called with mmap_sem locked and the old page referenced, but
2457 * without the ptl held.
2458 *
2459 * High level logic flow:
2460 *
2461 * - Allocate a page, copy the content of the old page to the new one.
2462 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2463 * - Take the PTL. If the pte changed, bail out and release the allocated page
2464 * - If the pte is still the way we remember it, update the page table and all
2465 *   relevant references. This includes dropping the reference the page-table
2466 *   held to the old page, as well as updating the rmap.
2467 * - In any case, unlock the PTL and drop the reference we took to the old page.
2468 */
2469static int wp_page_copy(struct vm_fault *vmf)
2470{
2471        struct vm_area_struct *vma = vmf->vma;
2472        struct mm_struct *mm = vma->vm_mm;
2473        struct page *old_page = vmf->page;
2474        struct page *new_page = NULL;
2475        pte_t entry;
2476        int page_copied = 0;
2477        const unsigned long mmun_start = vmf->address & PAGE_MASK;
2478        const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2479        struct mem_cgroup *memcg;
2480
2481        if (unlikely(anon_vma_prepare(vma)))
2482                goto oom;
2483
2484        if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2485                new_page = alloc_zeroed_user_highpage_movable(vma,
2486                                                              vmf->address);
2487                if (!new_page)
2488                        goto oom;
2489        } else {
2490                new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2491                                vmf->address);
2492                if (!new_page)
2493                        goto oom;
2494                cow_user_page(new_page, old_page, vmf->address, vma);
2495        }
2496
2497        if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2498                goto oom_free_new;
2499
2500        __SetPageUptodate(new_page);
2501
2502        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2503
2504        /*
2505         * Re-check the pte - we dropped the lock
2506         */
2507        vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2508        if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2509                if (old_page) {
2510                        if (!PageAnon(old_page)) {
2511                                dec_mm_counter_fast(mm,
2512                                                mm_counter_file(old_page));
2513                                inc_mm_counter_fast(mm, MM_ANONPAGES);
2514                        }
2515                } else {
2516                        inc_mm_counter_fast(mm, MM_ANONPAGES);
2517                }
2518                flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2519                entry = mk_pte(new_page, vma->vm_page_prot);
2520                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2521                /*
2522                 * Clear the pte entry and flush it first, before updating the
2523                 * pte with the new entry. This will avoid a race condition
2524                 * seen in the presence of one thread doing SMC and another
2525                 * thread doing COW.
2526                 */
2527                ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2528                page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2529                mem_cgroup_commit_charge(new_page, memcg, false, false);
2530                lru_cache_add_active_or_unevictable(new_page, vma);
2531                /*
2532                 * We call the notify macro here because, when using secondary
2533                 * mmu page tables (such as kvm shadow page tables), we want the
2534                 * new page to be mapped directly into the secondary page table.
2535                 */
2536                set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2537                update_mmu_cache(vma, vmf->address, vmf->pte);
2538                if (old_page) {
2539                        /*
2540                         * Only after switching the pte to the new page may
2541                         * we remove the mapcount here. Otherwise another
2542                         * process may come and find the rmap count decremented
2543                         * before the pte is switched to the new page, and
2544                         * "reuse" the old page writing into it while our pte
2545                         * here still points into it and can be read by other
2546                         * threads.
2547                         *
2548                         * The critical issue is to order this
2549                         * page_remove_rmap with the ptp_clear_flush above.
2550                         * Those stores are ordered by (if nothing else,)
2551                         * the barrier present in the atomic_add_negative
2552                         * in page_remove_rmap.
2553                         *
2554                         * Then the TLB flush in ptep_clear_flush ensures that
2555                         * no process can access the old page before the
2556                         * decremented mapcount is visible. And the old page
2557                         * cannot be reused until after the decremented
2558                         * mapcount is visible. So transitively, TLBs to
2559                         * old page will be flushed before it can be reused.
2560                         */
2561                        page_remove_rmap(old_page, false);
2562                }
2563
2564                /* Free the old page.. */
2565                new_page = old_page;
2566                page_copied = 1;
2567        } else {
2568                mem_cgroup_cancel_charge(new_page, memcg, false);
2569        }
2570
2571        if (new_page)
2572                put_page(new_page);
2573
2574        pte_unmap_unlock(vmf->pte, vmf->ptl);
2575        /*
2576         * No need to double call mmu_notifier->invalidate_range() callback as
2577         * the above ptep_clear_flush_notify() did already call it.
2578         */
2579        mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2580        if (old_page) {
2581                /*
2582                 * Don't let another task, with possibly unlocked vma,
2583                 * keep the mlocked page.
2584                 */
2585                if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2586                        lock_page(old_page);    /* LRU manipulation */
2587                        if (PageMlocked(old_page))
2588                                munlock_vma_page(old_page);
2589                        unlock_page(old_page);
2590                }
2591                put_page(old_page);
2592        }
2593        return page_copied ? VM_FAULT_WRITE : 0;
2594oom_free_new:
2595        put_page(new_page);
2596oom:
2597        if (old_page)
2598                put_page(old_page);
2599        return VM_FAULT_OOM;
2600}
2601
2602/**
2603 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2604 *                        writeable once the page is prepared
2605 *
2606 * @vmf: structure describing the fault
2607 *
2608 * This function handles all that is needed to finish a write page fault in a
2609 * shared mapping due to PTE being read-only once the mapped page is prepared.
2610 * It handles locking of PTE and modifying it. The function returns
2611 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2612 * lock.
2613 *
2614 * The function expects the page to be locked or other protection against
2615 * concurrent faults / writeback (such as DAX radix tree locks).
2616 */
2617int finish_mkwrite_fault(struct vm_fault *vmf)
2618{
2619        WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2620        vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2621                                       &vmf->ptl);
2622        /*
2623         * We might have raced with another page fault while we released the
2624         * pte_offset_map_lock.
2625         */
2626        if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2627                pte_unmap_unlock(vmf->pte, vmf->ptl);
2628                return VM_FAULT_NOPAGE;
2629        }
2630        wp_page_reuse(vmf);
2631        return 0;
2632}
2633
2634/*
2635 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2636 * mapping
2637 */
2638static int wp_pfn_shared(struct vm_fault *vmf)
2639{
2640        struct vm_area_struct *vma = vmf->vma;
2641
2642        if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2643                int ret;
2644
2645                pte_unmap_unlock(vmf->pte, vmf->ptl);
2646                vmf->flags |= FAULT_FLAG_MKWRITE;
2647                ret = vma->vm_ops->pfn_mkwrite(vmf);
2648                if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2649                        return ret;
2650                return finish_mkwrite_fault(vmf);
2651        }
2652        wp_page_reuse(vmf);
2653        return VM_FAULT_WRITE;
2654}
2655
2656static int wp_page_shared(struct vm_fault *vmf)
2657        __releases(vmf->ptl)
2658{
2659        struct vm_area_struct *vma = vmf->vma;
2660
2661        get_page(vmf->page);
2662
2663        if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2664                int tmp;
2665
2666                pte_unmap_unlock(vmf->pte, vmf->ptl);
2667                tmp = do_page_mkwrite(vmf);
2668                if (unlikely(!tmp || (tmp &
2669                                      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2670                        put_page(vmf->page);
2671                        return tmp;
2672                }
2673                tmp = finish_mkwrite_fault(vmf);
2674                if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2675                        unlock_page(vmf->page);
2676                        put_page(vmf->page);
2677                        return tmp;
2678                }
2679        } else {
2680                wp_page_reuse(vmf);
2681                lock_page(vmf->page);
2682        }
2683        fault_dirty_shared_page(vma, vmf->page);
2684        put_page(vmf->page);
2685
2686        return VM_FAULT_WRITE;
2687}
2688
2689/*
2690 * This routine handles present pages, when users try to write
2691 * to a shared page. It is done by copying the page to a new address
2692 * and decrementing the shared-page counter for the old page.
2693 *
2694 * Note that this routine assumes that the protection checks have been
2695 * done by the caller (the low-level page fault routine in most cases).
2696 * Thus we can safely just mark it writable once we've done any necessary
2697 * COW.
2698 *
2699 * We also mark the page dirty at this point even though the page will
2700 * change only once the write actually happens. This avoids a few races,
2701 * and potentially makes it more efficient.
2702 *
2703 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2704 * but allow concurrent faults), with pte both mapped and locked.
2705 * We return with mmap_sem still held, but pte unmapped and unlocked.
2706 */
2707static int do_wp_page(struct vm_fault *vmf)
2708        __releases(vmf->ptl)
2709{
2710        struct vm_area_struct *vma = vmf->vma;
2711
2712        vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2713        if (!vmf->page) {
2714                /*
2715                 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2716                 * VM_PFNMAP VMA.
2717                 *
2718                 * We should not cow pages in a shared writeable mapping.
2719                 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2720                 */
2721                if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2722                                     (VM_WRITE|VM_SHARED))
2723                        return wp_pfn_shared(vmf);
2724
2725                pte_unmap_unlock(vmf->pte, vmf->ptl);
2726                return wp_page_copy(vmf);
2727        }
2728
2729        /*
2730         * Take out anonymous pages first, anonymous shared vmas are
2731         * not dirty accountable.
2732         */
2733        if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2734                int total_map_swapcount;
2735                if (!trylock_page(vmf->page)) {
2736                        get_page(vmf->page);
2737                        pte_unmap_unlock(vmf->pte, vmf->ptl);
2738                        lock_page(vmf->page);
2739                        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2740                                        vmf->address, &vmf->ptl);
2741                        if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2742                                unlock_page(vmf->page);
2743                                pte_unmap_unlock(vmf->pte, vmf->ptl);
2744                                put_page(vmf->page);
2745                                return 0;
2746                        }
2747                        put_page(vmf->page);
2748                }
2749                if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2750                        if (total_map_swapcount == 1) {
2751                                /*
2752                                 * The page is all ours. Move it to
2753                                 * our anon_vma so the rmap code will
2754                                 * not search our parent or siblings.
2755                                 * Protected against the rmap code by
2756                                 * the page lock.
2757                                 */
2758                                page_move_anon_rmap(vmf->page, vma);
2759                        }
2760                        unlock_page(vmf->page);
2761                        wp_page_reuse(vmf);
2762                        return VM_FAULT_WRITE;
2763                }
2764                unlock_page(vmf->page);
2765        } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2766                                        (VM_WRITE|VM_SHARED))) {
2767                return wp_page_shared(vmf);
2768        }
2769
2770        /*
2771         * Ok, we need to copy. Oh, well..
2772         */
2773        get_page(vmf->page);
2774
2775        pte_unmap_unlock(vmf->pte, vmf->ptl);
2776        return wp_page_copy(vmf);
2777}
2778
2779static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2780                unsigned long start_addr, unsigned long end_addr,
2781                struct zap_details *details)
2782{
2783        zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2784}
2785
2786static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2787                                            struct zap_details *details)
2788{
2789        struct vm_area_struct *vma;
2790        pgoff_t vba, vea, zba, zea;
2791
2792        vma_interval_tree_foreach(vma, root,
2793                        details->first_index, details->last_index) {
2794
2795                vba = vma->vm_pgoff;
2796                vea = vba + vma_pages(vma) - 1;
2797                zba = details->first_index;
2798                if (zba < vba)
2799                        zba = vba;
2800                zea = details->last_index;
2801                if (zea > vea)
2802                        zea = vea;
2803
2804                unmap_mapping_range_vma(vma,
2805                        ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2806                        ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2807                                details);
2808        }
2809}
2810
2811/**
2812 * unmap_mapping_pages() - Unmap pages from processes.
2813 * @mapping: The address space containing pages to be unmapped.
2814 * @start: Index of first page to be unmapped.
2815 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2816 * @even_cows: Whether to unmap even private COWed pages.
2817 *
2818 * Unmap the pages in this address space from any userspace process which
2819 * has them mmaped.  Generally, you want to remove COWed pages as well when
2820 * a file is being truncated, but not when invalidating pages from the page
2821 * cache.
2822 */
2823void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2824                pgoff_t nr, bool even_cows)
2825{
2826        struct zap_details details = { };
2827
2828        details.check_mapping = even_cows ? NULL : mapping;
2829        details.first_index = start;
2830        details.last_index = start + nr - 1;
2831        if (details.last_index < details.first_index)
2832                details.last_index = ULONG_MAX;
2833
2834        i_mmap_lock_write(mapping);
2835        if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2836                unmap_mapping_range_tree(&mapping->i_mmap, &details);
2837        i_mmap_unlock_write(mapping);
2838}
2839
2840/**
2841 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2842 * address_space corresponding to the specified byte range in the underlying
2843 * file.
2844 *
2845 * @mapping: the address space containing mmaps to be unmapped.
2846 * @holebegin: byte in first page to unmap, relative to the start of
2847 * the underlying file.  This will be rounded down to a PAGE_SIZE
2848 * boundary.  Note that this is different from truncate_pagecache(), which
2849 * must keep the partial page.  In contrast, we must get rid of
2850 * partial pages.
2851 * @holelen: size of prospective hole in bytes.  This will be rounded
2852 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2853 * end of the file.
2854 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2855 * but 0 when invalidating pagecache, don't throw away private data.
2856 */
2857void unmap_mapping_range(struct address_space *mapping,
2858                loff_t const holebegin, loff_t const holelen, int even_cows)
2859{
2860        pgoff_t hba = holebegin >> PAGE_SHIFT;
2861        pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2862
2863        /* Check for overflow. */
2864        if (sizeof(holelen) > sizeof(hlen)) {
2865                long long holeend =
2866                        (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2867                if (holeend & ~(long long)ULONG_MAX)
2868                        hlen = ULONG_MAX - hba + 1;
2869        }
2870
2871        unmap_mapping_pages(mapping, hba, hlen, even_cows);
2872}
2873EXPORT_SYMBOL(unmap_mapping_range);
2874
2875/*
2876 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2877 * but allow concurrent faults), and pte mapped but not yet locked.
2878 * We return with pte unmapped and unlocked.
2879 *
2880 * We return with the mmap_sem locked or unlocked in the same cases
2881 * as does filemap_fault().
2882 */
2883int do_swap_page(struct vm_fault *vmf)
2884{
2885        struct vm_area_struct *vma = vmf->vma;
2886        struct page *page = NULL, *swapcache;
2887        struct mem_cgroup *memcg;
2888        swp_entry_t entry;
2889        pte_t pte;
2890        int locked;
2891        int exclusive = 0;
2892        int ret = 0;
2893
2894        if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2895                goto out;
2896
2897        entry = pte_to_swp_entry(vmf->orig_pte);
2898        if (unlikely(non_swap_entry(entry))) {
2899                if (is_migration_entry(entry)) {
2900                        migration_entry_wait(vma->vm_mm, vmf->pmd,
2901                                             vmf->address);
2902                } else if (is_device_private_entry(entry)) {
2903                        /*
2904                         * For un-addressable device memory we call the pgmap
2905                         * fault handler callback. The callback must migrate
2906                         * the page back to some CPU accessible page.
2907                         */
2908                        ret = device_private_entry_fault(vma, vmf->address, entry,
2909                                                 vmf->flags, vmf->pmd);
2910                } else if (is_hwpoison_entry(entry)) {
2911                        ret = VM_FAULT_HWPOISON;
2912                } else {
2913                        print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2914                        ret = VM_FAULT_SIGBUS;
2915                }
2916                goto out;
2917        }
2918
2919
2920        delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2921        page = lookup_swap_cache(entry, vma, vmf->address);
2922        swapcache = page;
2923
2924        if (!page) {
2925                struct swap_info_struct *si = swp_swap_info(entry);
2926
2927                if (si->flags & SWP_SYNCHRONOUS_IO &&
2928                                __swap_count(si, entry) == 1) {
2929                        /* skip swapcache */
2930                        page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2931                                                        vmf->address);
2932                        if (page) {
2933                                __SetPageLocked(page);
2934                                __SetPageSwapBacked(page);
2935                                set_page_private(page, entry.val);
2936                                lru_cache_add_anon(page);
2937                                swap_readpage(page, true);
2938                        }
2939                } else {
2940                        page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2941                                                vmf);
2942                        swapcache = page;
2943                }
2944
2945                if (!page) {
2946                        /*
2947                         * Back out if somebody else faulted in this pte
2948                         * while we released the pte lock.
2949                         */
2950                        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2951                                        vmf->address, &vmf->ptl);
2952                        if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2953                                ret = VM_FAULT_OOM;
2954                        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2955                        goto unlock;
2956                }
2957
2958                /* Had to read the page from swap area: Major fault */
2959                ret = VM_FAULT_MAJOR;
2960                count_vm_event(PGMAJFAULT);
2961                count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2962        } else if (PageHWPoison(page)) {
2963                /*
2964                 * hwpoisoned dirty swapcache pages are kept for killing
2965                 * owner processes (which may be unknown at hwpoison time)
2966                 */
2967                ret = VM_FAULT_HWPOISON;
2968                delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2969                goto out_release;
2970        }
2971
2972        locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2973
2974        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2975        if (!locked) {
2976                ret |= VM_FAULT_RETRY;
2977                goto out_release;
2978        }
2979
2980        /*
2981         * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2982         * release the swapcache from under us.  The page pin, and pte_same
2983         * test below, are not enough to exclude that.  Even if it is still
2984         * swapcache, we need to check that the page's swap has not changed.
2985         */
2986        if (unlikely((!PageSwapCache(page) ||
2987                        page_private(page) != entry.val)) && swapcache)
2988                goto out_page;
2989
2990        page = ksm_might_need_to_copy(page, vma, vmf->address);
2991        if (unlikely(!page)) {
2992                ret = VM_FAULT_OOM;
2993                page = swapcache;
2994                goto out_page;
2995        }
2996
2997        if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2998                                &memcg, false)) {
2999                ret = VM_FAULT_OOM;
3000                goto out_page;
3001        }
3002
3003        /*
3004         * Back out if somebody else already faulted in this pte.
3005         */
3006        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3007                        &vmf->ptl);
3008        if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3009                goto out_nomap;
3010
3011        if (unlikely(!PageUptodate(page))) {
3012                ret = VM_FAULT_SIGBUS;
3013                goto out_nomap;
3014        }
3015
3016        /*
3017         * The page isn't present yet, go ahead with the fault.
3018         *
3019         * Be careful about the sequence of operations here.
3020         * To get its accounting right, reuse_swap_page() must be called
3021         * while the page is counted on swap but not yet in mapcount i.e.
3022         * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3023         * must be called after the swap_free(), or it will never succeed.
3024         */
3025
3026        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3027        dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3028        pte = mk_pte(page, vma->vm_page_prot);
3029        if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3030                pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3031                vmf->flags &= ~FAULT_FLAG_WRITE;
3032                ret |= VM_FAULT_WRITE;
3033                exclusive = RMAP_EXCLUSIVE;
3034        }
3035        flush_icache_page(vma, page);
3036        if (pte_swp_soft_dirty(vmf->orig_pte))
3037                pte = pte_mksoft_dirty(pte);
3038        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3039        arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3040        vmf->orig_pte = pte;
3041
3042        /* ksm created a completely new copy */
3043        if (unlikely(page != swapcache && swapcache)) {
3044                page_add_new_anon_rmap(page, vma, vmf->address, false);
3045                mem_cgroup_commit_charge(page, memcg, false, false);
3046                lru_cache_add_active_or_unevictable(page, vma);
3047        } else {
3048                do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3049                mem_cgroup_commit_charge(page, memcg, true, false);
3050                activate_page(page);
3051        }
3052
3053        swap_free(entry);
3054        if (mem_cgroup_swap_full(page) ||
3055            (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3056                try_to_free_swap(page);
3057        unlock_page(page);
3058        if (page != swapcache && swapcache) {
3059                /*
3060                 * Hold the lock to avoid the swap entry to be reused
3061                 * until we take the PT lock for the pte_same() check
3062                 * (to avoid false positives from pte_same). For
3063                 * further safety release the lock after the swap_free
3064                 * so that the swap count won't change under a
3065                 * parallel locked swapcache.
3066                 */
3067                unlock_page(swapcache);
3068                put_page(swapcache);
3069        }
3070
3071        if (vmf->flags & FAULT_FLAG_WRITE) {
3072                ret |= do_wp_page(vmf);
3073                if (ret & VM_FAULT_ERROR)
3074                        ret &= VM_FAULT_ERROR;
3075                goto out;
3076        }
3077
3078        /* No need to invalidate - it was non-present before */
3079        update_mmu_cache(vma, vmf->address, vmf->pte);
3080unlock:
3081        pte_unmap_unlock(vmf->pte, vmf->ptl);
3082out:
3083        return ret;
3084out_nomap:
3085        mem_cgroup_cancel_charge(page, memcg, false);
3086        pte_unmap_unlock(vmf->pte, vmf->ptl);
3087out_page:
3088        unlock_page(page);
3089out_release:
3090        put_page(page);
3091        if (page != swapcache && swapcache) {
3092                unlock_page(swapcache);
3093                put_page(swapcache);
3094        }
3095        return ret;
3096}
3097
3098/*
3099 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3100 * but allow concurrent faults), and pte mapped but not yet locked.
3101 * We return with mmap_sem still held, but pte unmapped and unlocked.
3102 */
3103static int do_anonymous_page(struct vm_fault *vmf)
3104{
3105        struct vm_area_struct *vma = vmf->vma;
3106        struct mem_cgroup *memcg;
3107        struct page *page;
3108        int ret = 0;
3109        pte_t entry;
3110
3111        /* File mapping without ->vm_ops ? */
3112        if (vma->vm_flags & VM_SHARED)
3113                return VM_FAULT_SIGBUS;
3114
3115        /*
3116         * Use pte_alloc() instead of pte_alloc_map().  We can't run
3117         * pte_offset_map() on pmds where a huge pmd might be created
3118         * from a different thread.
3119         *
3120         * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3121         * parallel threads are excluded by other means.
3122         *
3123         * Here we only have down_read(mmap_sem).
3124         */
3125        if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3126                return VM_FAULT_OOM;
3127
3128        /* See the comment in pte_alloc_one_map() */
3129        if (unlikely(pmd_trans_unstable(vmf->pmd)))
3130                return 0;
3131
3132        /* Use the zero-page for reads */
3133        if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3134                        !mm_forbids_zeropage(vma->vm_mm)) {
3135                entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3136                                                vma->vm_page_prot));
3137                vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3138                                vmf->address, &vmf->ptl);
3139                if (!pte_none(*vmf->pte))
3140                        goto unlock;
3141                ret = check_stable_address_space(vma->vm_mm);
3142                if (ret)
3143                        goto unlock;
3144                /* Deliver the page fault to userland, check inside PT lock */
3145                if (userfaultfd_missing(vma)) {
3146                        pte_unmap_unlock(vmf->pte, vmf->ptl);
3147                        return handle_userfault(vmf, VM_UFFD_MISSING);
3148                }
3149                goto setpte;
3150        }
3151
3152        /* Allocate our own private page. */
3153        if (unlikely(anon_vma_prepare(vma)))
3154                goto oom;
3155        page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3156        if (!page)
3157                goto oom;
3158
3159        if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3160                goto oom_free_page;
3161
3162        /*
3163         * The memory barrier inside __SetPageUptodate makes sure that
3164         * preceeding stores to the page contents become visible before
3165         * the set_pte_at() write.
3166         */
3167        __SetPageUptodate(page);
3168
3169        entry = mk_pte(page, vma->vm_page_prot);
3170        if (vma->vm_flags & VM_WRITE)
3171                entry = pte_mkwrite(pte_mkdirty(entry));
3172
3173        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3174                        &vmf->ptl);
3175        if (!pte_none(*vmf->pte))
3176                goto release;
3177
3178        ret = check_stable_address_space(vma->vm_mm);
3179        if (ret)
3180                goto release;
3181
3182        /* Deliver the page fault to userland, check inside PT lock */
3183        if (userfaultfd_missing(vma)) {
3184                pte_unmap_unlock(vmf->pte, vmf->ptl);
3185                mem_cgroup_cancel_charge(page, memcg, false);
3186                put_page(page);
3187                return handle_userfault(vmf, VM_UFFD_MISSING);
3188        }
3189
3190        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3191        page_add_new_anon_rmap(page, vma, vmf->address, false);
3192        mem_cgroup_commit_charge(page, memcg, false, false);
3193        lru_cache_add_active_or_unevictable(page, vma);
3194setpte:
3195        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3196
3197        /* No need to invalidate - it was non-present before */
3198        update_mmu_cache(vma, vmf->address, vmf->pte);
3199unlock:
3200        pte_unmap_unlock(vmf->pte, vmf->ptl);
3201        return ret;
3202release:
3203        mem_cgroup_cancel_charge(page, memcg, false);
3204        put_page(page);
3205        goto unlock;
3206oom_free_page:
3207        put_page(page);
3208oom:
3209        return VM_FAULT_OOM;
3210}
3211
3212/*
3213 * The mmap_sem must have been held on entry, and may have been
3214 * released depending on flags and vma->vm_ops->fault() return value.
3215 * See filemap_fault() and __lock_page_retry().
3216 */
3217static int __do_fault(struct vm_fault *vmf)
3218{
3219        struct vm_area_struct *vma = vmf->vma;
3220        int ret;
3221
3222        ret = vma->vm_ops->fault(vmf);
3223        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3224                            VM_FAULT_DONE_COW)))
3225                return ret;
3226
3227        if (unlikely(PageHWPoison(vmf->page))) {
3228                if (ret & VM_FAULT_LOCKED)
3229                        unlock_page(vmf->page);
3230                put_page(vmf->page);
3231                vmf->page = NULL;
3232                return VM_FAULT_HWPOISON;
3233        }
3234
3235        if (unlikely(!(ret & VM_FAULT_LOCKED)))
3236                lock_page(vmf->page);
3237        else
3238                VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3239
3240        return ret;
3241}
3242
3243/*
3244 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3245 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3246 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3247 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3248 */
3249static int pmd_devmap_trans_unstable(pmd_t *pmd)
3250{
3251        return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3252}
3253
3254static int pte_alloc_one_map(struct vm_fault *vmf)
3255{
3256        struct vm_area_struct *vma = vmf->vma;
3257
3258        if (!pmd_none(*vmf->pmd))
3259                goto map_pte;
3260        if (vmf->prealloc_pte) {
3261                vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3262                if (unlikely(!pmd_none(*vmf->pmd))) {
3263                        spin_unlock(vmf->ptl);
3264                        goto map_pte;
3265                }
3266
3267                mm_inc_nr_ptes(vma->vm_mm);
3268                pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3269                spin_unlock(vmf->ptl);
3270                vmf->prealloc_pte = NULL;
3271        } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3272                return VM_FAULT_OOM;
3273        }
3274map_pte:
3275        /*
3276         * If a huge pmd materialized under us just retry later.  Use
3277         * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3278         * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3279         * under us and then back to pmd_none, as a result of MADV_DONTNEED
3280         * running immediately after a huge pmd fault in a different thread of
3281         * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3282         * All we have to ensure is that it is a regular pmd that we can walk
3283         * with pte_offset_map() and we can do that through an atomic read in
3284         * C, which is what pmd_trans_unstable() provides.
3285         */
3286        if (pmd_devmap_trans_unstable(vmf->pmd))
3287                return VM_FAULT_NOPAGE;
3288
3289        /*
3290         * At this point we know that our vmf->pmd points to a page of ptes
3291         * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3292         * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3293         * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3294         * be valid and we will re-check to make sure the vmf->pte isn't
3295         * pte_none() under vmf->ptl protection when we return to
3296         * alloc_set_pte().
3297         */
3298        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3299                        &vmf->ptl);
3300        return 0;
3301}
3302
3303#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3304
3305#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3306static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3307                unsigned long haddr)
3308{
3309        if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3310                        (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3311                return false;
3312        if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3313                return false;
3314        return true;
3315}
3316
3317static void deposit_prealloc_pte(struct vm_fault *vmf)
3318{
3319        struct vm_area_struct *vma = vmf->vma;
3320
3321        pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3322        /*
3323         * We are going to consume the prealloc table,
3324         * count that as nr_ptes.
3325         */
3326        mm_inc_nr_ptes(vma->vm_mm);
3327        vmf->prealloc_pte = NULL;
3328}
3329
3330static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3331{
3332        struct vm_area_struct *vma = vmf->vma;
3333        bool write = vmf->flags & FAULT_FLAG_WRITE;
3334        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3335        pmd_t entry;
3336        int i, ret;
3337
3338        if (!transhuge_vma_suitable(vma, haddr))
3339                return VM_FAULT_FALLBACK;
3340
3341        ret = VM_FAULT_FALLBACK;
3342        page = compound_head(page);
3343
3344        /*
3345         * Archs like ppc64 need additonal space to store information
3346         * related to pte entry. Use the preallocated table for that.
3347         */
3348        if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3349                vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3350                if (!vmf->prealloc_pte)
3351                        return VM_FAULT_OOM;
3352                smp_wmb(); /* See comment in __pte_alloc() */
3353        }
3354
3355        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3356        if (unlikely(!pmd_none(*vmf->pmd)))
3357                goto out;
3358
3359        for (i = 0; i < HPAGE_PMD_NR; i++)
3360                flush_icache_page(vma, page + i);
3361
3362        entry = mk_huge_pmd(page, vma->vm_page_prot);
3363        if (write)
3364                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3365
3366        add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3367        page_add_file_rmap(page, true);
3368        /*
3369         * deposit and withdraw with pmd lock held
3370         */
3371        if (arch_needs_pgtable_deposit())
3372                deposit_prealloc_pte(vmf);
3373
3374        set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3375
3376        update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3377
3378        /* fault is handled */
3379        ret = 0;
3380        count_vm_event(THP_FILE_MAPPED);
3381out:
3382        spin_unlock(vmf->ptl);
3383        return ret;
3384}
3385#else
3386static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3387{
3388        BUILD_BUG();
3389        return 0;
3390}
3391#endif
3392
3393/**
3394 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3395 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3396 *
3397 * @vmf: fault environment
3398 * @memcg: memcg to charge page (only for private mappings)
3399 * @page: page to map
3400 *
3401 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3402 * return.
3403 *
3404 * Target users are page handler itself and implementations of
3405 * vm_ops->map_pages.
3406 */
3407int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3408                struct page *page)
3409{
3410        struct vm_area_struct *vma = vmf->vma;
3411        bool write = vmf->flags & FAULT_FLAG_WRITE;
3412        pte_t entry;
3413        int ret;
3414
3415        if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3416                        IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3417                /* THP on COW? */
3418                VM_BUG_ON_PAGE(memcg, page);
3419
3420                ret = do_set_pmd(vmf, page);
3421                if (ret != VM_FAULT_FALLBACK)
3422                        return ret;
3423        }
3424
3425        if (!vmf->pte) {
3426                ret = pte_alloc_one_map(vmf);
3427                if (ret)
3428                        return ret;
3429        }
3430
3431        /* Re-check under ptl */
3432        if (unlikely(!pte_none(*vmf->pte)))
3433                return VM_FAULT_NOPAGE;
3434
3435        flush_icache_page(vma, page);
3436        entry = mk_pte(page, vma->vm_page_prot);
3437        if (write)
3438                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3439        /* copy-on-write page */
3440        if (write && !(vma->vm_flags & VM_SHARED)) {
3441                inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3442                page_add_new_anon_rmap(page, vma, vmf->address, false);
3443                mem_cgroup_commit_charge(page, memcg, false, false);
3444                lru_cache_add_active_or_unevictable(page, vma);
3445        } else {
3446                inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3447                page_add_file_rmap(page, false);
3448        }
3449        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3450
3451        /* no need to invalidate: a not-present page won't be cached */
3452        update_mmu_cache(vma, vmf->address, vmf->pte);
3453
3454        return 0;
3455}
3456
3457
3458/**
3459 * finish_fault - finish page fault once we have prepared the page to fault
3460 *
3461 * @vmf: structure describing the fault
3462 *
3463 * This function handles all that is needed to finish a page fault once the
3464 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3465 * given page, adds reverse page mapping, handles memcg charges and LRU
3466 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3467 * error.
3468 *
3469 * The function expects the page to be locked and on success it consumes a
3470 * reference of a page being mapped (for the PTE which maps it).
3471 */
3472int finish_fault(struct vm_fault *vmf)
3473{
3474        struct page *page;
3475        int ret = 0;
3476
3477        /* Did we COW the page? */
3478        if ((vmf->flags & FAULT_FLAG_WRITE) &&
3479            !(vmf->vma->vm_flags & VM_SHARED))
3480                page = vmf->cow_page;
3481        else
3482                page = vmf->page;
3483
3484        /*
3485         * check even for read faults because we might have lost our CoWed
3486         * page
3487         */
3488        if (!(vmf->vma->vm_flags & VM_SHARED))
3489                ret = check_stable_address_space(vmf->vma->vm_mm);
3490        if (!ret)
3491                ret = alloc_set_pte(vmf, vmf->memcg, page);
3492        if (vmf->pte)
3493                pte_unmap_unlock(vmf->pte, vmf->ptl);
3494        return ret;
3495}
3496
3497static unsigned long fault_around_bytes __read_mostly =
3498        rounddown_pow_of_two(65536);
3499
3500#ifdef CONFIG_DEBUG_FS
3501static int fault_around_bytes_get(void *data, u64 *val)
3502{
3503        *val = fault_around_bytes;
3504        return 0;
3505}
3506
3507/*
3508 * fault_around_bytes must be rounded down to the nearest page order as it's
3509 * what do_fault_around() expects to see.
3510 */
3511static int fault_around_bytes_set(void *data, u64 val)
3512{
3513        if (val / PAGE_SIZE > PTRS_PER_PTE)
3514                return -EINVAL;
3515        if (val > PAGE_SIZE)
3516                fault_around_bytes = rounddown_pow_of_two(val);
3517        else
3518                fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3519        return 0;
3520}
3521DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3522                fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3523
3524static int __init fault_around_debugfs(void)
3525{
3526        void *ret;
3527
3528        ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3529                        &fault_around_bytes_fops);
3530        if (!ret)
3531                pr_warn("Failed to create fault_around_bytes in debugfs");
3532        return 0;
3533}
3534late_initcall(fault_around_debugfs);
3535#endif
3536
3537/*
3538 * do_fault_around() tries to map few pages around the fault address. The hope
3539 * is that the pages will be needed soon and this will lower the number of
3540 * faults to handle.
3541 *
3542 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3543 * not ready to be mapped: not up-to-date, locked, etc.
3544 *
3545 * This function is called with the page table lock taken. In the split ptlock
3546 * case the page table lock only protects only those entries which belong to
3547 * the page table corresponding to the fault address.
3548 *
3549 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3550 * only once.
3551 *
3552 * fault_around_bytes defines how many bytes we'll try to map.
3553 * do_fault_around() expects it to be set to a power of two less than or equal
3554 * to PTRS_PER_PTE.
3555 *
3556 * The virtual address of the area that we map is naturally aligned to
3557 * fault_around_bytes rounded down to the machine page size
3558 * (and therefore to page order).  This way it's easier to guarantee
3559 * that we don't cross page table boundaries.
3560 */
3561static int do_fault_around(struct vm_fault *vmf)
3562{
3563        unsigned long address = vmf->address, nr_pages, mask;
3564        pgoff_t start_pgoff = vmf->pgoff;
3565        pgoff_t end_pgoff;
3566        int off, ret = 0;
3567
3568        nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3569        mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3570
3571        vmf->address = max(address & mask, vmf->vma->vm_start);
3572        off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3573        start_pgoff -= off;
3574
3575        /*
3576         *  end_pgoff is either the end of the page table, the end of
3577         *  the vma or nr_pages from start_pgoff, depending what is nearest.
3578         */
3579        end_pgoff = start_pgoff -
3580                ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3581                PTRS_PER_PTE - 1;
3582        end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3583                        start_pgoff + nr_pages - 1);
3584
3585        if (pmd_none(*vmf->pmd)) {
3586                vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3587                                                  vmf->address);
3588                if (!vmf->prealloc_pte)
3589                        goto out;
3590                smp_wmb(); /* See comment in __pte_alloc() */
3591        }
3592
3593        vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3594
3595        /* Huge page is mapped? Page fault is solved */
3596        if (pmd_trans_huge(*vmf->pmd)) {
3597                ret = VM_FAULT_NOPAGE;
3598                goto out;
3599        }
3600
3601        /* ->map_pages() haven't done anything useful. Cold page cache? */
3602        if (!vmf->pte)
3603                goto out;
3604
3605        /* check if the page fault is solved */
3606        vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3607        if (!pte_none(*vmf->pte))
3608                ret = VM_FAULT_NOPAGE;
3609        pte_unmap_unlock(vmf->pte, vmf->ptl);
3610out:
3611        vmf->address = address;
3612        vmf->pte = NULL;
3613        return ret;
3614}
3615
3616static int do_read_fault(struct vm_fault *vmf)
3617{
3618        struct vm_area_struct *vma = vmf->vma;
3619        int ret = 0;
3620
3621        /*
3622         * Let's call ->map_pages() first and use ->fault() as fallback
3623         * if page by the offset is not ready to be mapped (cold cache or
3624         * something).
3625         */
3626        if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3627                ret = do_fault_around(vmf);
3628                if (ret)
3629                        return ret;
3630        }
3631
3632        ret = __do_fault(vmf);
3633        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3634                return ret;
3635
3636        ret |= finish_fault(vmf);
3637        unlock_page(vmf->page);
3638        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3639                put_page(vmf->page);
3640        return ret;
3641}
3642
3643static int do_cow_fault(struct vm_fault *vmf)
3644{
3645        struct vm_area_struct *vma = vmf->vma;
3646        int ret;
3647
3648        if (unlikely(anon_vma_prepare(vma)))
3649                return VM_FAULT_OOM;
3650
3651        vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3652        if (!vmf->cow_page)
3653                return VM_FAULT_OOM;
3654
3655        if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3656                                &vmf->memcg, false)) {
3657                put_page(vmf->cow_page);
3658                return VM_FAULT_OOM;
3659        }
3660
3661        ret = __do_fault(vmf);
3662        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3663                goto uncharge_out;
3664        if (ret & VM_FAULT_DONE_COW)
3665                return ret;
3666
3667        copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3668        __SetPageUptodate(vmf->cow_page);
3669
3670        ret |= finish_fault(vmf);
3671        unlock_page(vmf->page);
3672        put_page(vmf->page);
3673        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3674                goto uncharge_out;
3675        return ret;
3676uncharge_out:
3677        mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3678        put_page(vmf->cow_page);
3679        return ret;
3680}
3681
3682static int do_shared_fault(struct vm_fault *vmf)
3683{
3684        struct vm_area_struct *vma = vmf->vma;
3685        int ret, tmp;
3686
3687        ret = __do_fault(vmf);
3688        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3689                return ret;
3690
3691        /*
3692         * Check if the backing address space wants to know that the page is
3693         * about to become writable
3694         */
3695        if (vma->vm_ops->page_mkwrite) {
3696                unlock_page(vmf->page);
3697                tmp = do_page_mkwrite(vmf);
3698                if (unlikely(!tmp ||
3699                                (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3700                        put_page(vmf->page);
3701                        return tmp;
3702                }
3703        }
3704
3705        ret |= finish_fault(vmf);
3706        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3707                                        VM_FAULT_RETRY))) {
3708                unlock_page(vmf->page);
3709                put_page(vmf->page);
3710                return ret;
3711        }
3712
3713        fault_dirty_shared_page(vma, vmf->page);
3714        return ret;
3715}
3716
3717/*
3718 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3719 * but allow concurrent faults).
3720 * The mmap_sem may have been released depending on flags and our
3721 * return value.  See filemap_fault() and __lock_page_or_retry().
3722 */
3723static int do_fault(struct vm_fault *vmf)
3724{
3725        struct vm_area_struct *vma = vmf->vma;
3726        int ret;
3727
3728        /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3729        if (!vma->vm_ops->fault)
3730                ret = VM_FAULT_SIGBUS;
3731        else if (!(vmf->flags & FAULT_FLAG_WRITE))
3732                ret = do_read_fault(vmf);
3733        else if (!(vma->vm_flags & VM_SHARED))
3734                ret = do_cow_fault(vmf);
3735        else
3736                ret = do_shared_fault(vmf);
3737
3738        /* preallocated pagetable is unused: free it */
3739        if (vmf->prealloc_pte) {
3740                pte_free(vma->vm_mm, vmf->prealloc_pte);
3741                vmf->prealloc_pte = NULL;
3742        }
3743        return ret;
3744}
3745
3746static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3747                                unsigned long addr, int page_nid,
3748                                int *flags)
3749{
3750        get_page(page);
3751
3752        count_vm_numa_event(NUMA_HINT_FAULTS);
3753        if (page_nid == numa_node_id()) {
3754                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3755                *flags |= TNF_FAULT_LOCAL;
3756        }
3757
3758        return mpol_misplaced(page, vma, addr);
3759}
3760
3761static int do_numa_page(struct vm_fault *vmf)
3762{
3763        struct vm_area_struct *vma = vmf->vma;
3764        struct page *page = NULL;
3765        int page_nid = -1;
3766        int last_cpupid;
3767        int target_nid;
3768        bool migrated = false;
3769        pte_t pte;
3770        bool was_writable = pte_savedwrite(vmf->orig_pte);
3771        int flags = 0;
3772
3773        /*
3774         * The "pte" at this point cannot be used safely without
3775         * validation through pte_unmap_same(). It's of NUMA type but
3776         * the pfn may be screwed if the read is non atomic.
3777         */
3778        vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3779        spin_lock(vmf->ptl);
3780        if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3781                pte_unmap_unlock(vmf->pte, vmf->ptl);
3782                goto out;
3783        }
3784
3785        /*
3786         * Make it present again, Depending on how arch implementes non
3787         * accessible ptes, some can allow access by kernel mode.
3788         */
3789        pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3790        pte = pte_modify(pte, vma->vm_page_prot);
3791        pte = pte_mkyoung(pte);
3792        if (was_writable)
3793                pte = pte_mkwrite(pte);
3794        ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3795        update_mmu_cache(vma, vmf->address, vmf->pte);
3796
3797        page = vm_normal_page(vma, vmf->address, pte);
3798        if (!page) {
3799                pte_unmap_unlock(vmf->pte, vmf->ptl);
3800                return 0;
3801        }
3802
3803        /* TODO: handle PTE-mapped THP */
3804        if (PageCompound(page)) {
3805                pte_unmap_unlock(vmf->pte, vmf->ptl);
3806                return 0;
3807        }
3808
3809        /*
3810         * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3811         * much anyway since they can be in shared cache state. This misses
3812         * the case where a mapping is writable but the process never writes
3813         * to it but pte_write gets cleared during protection updates and
3814         * pte_dirty has unpredictable behaviour between PTE scan updates,
3815         * background writeback, dirty balancing and application behaviour.
3816         */
3817        if (!pte_write(pte))
3818                flags |= TNF_NO_GROUP;
3819
3820        /*
3821         * Flag if the page is shared between multiple address spaces. This
3822         * is later used when determining whether to group tasks together
3823         */
3824        if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3825                flags |= TNF_SHARED;
3826
3827        last_cpupid = page_cpupid_last(page);
3828        page_nid = page_to_nid(page);
3829        target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3830                        &flags);
3831        pte_unmap_unlock(vmf->pte, vmf->ptl);
3832        if (target_nid == -1) {
3833                put_page(page);
3834                goto out;
3835        }
3836
3837        /* Migrate to the requested node */
3838        migrated = migrate_misplaced_page(page, vma, target_nid);
3839        if (migrated) {
3840                page_nid = target_nid;
3841                flags |= TNF_MIGRATED;
3842        } else
3843                flags |= TNF_MIGRATE_FAIL;
3844
3845out:
3846        if (page_nid != -1)
3847                task_numa_fault(last_cpupid, page_nid, 1, flags);
3848        return 0;
3849}
3850
3851static inline int create_huge_pmd(struct vm_fault *vmf)
3852{
3853        if (vma_is_anonymous(vmf->vma))
3854                return do_huge_pmd_anonymous_page(vmf);
3855        if (vmf->vma->vm_ops->huge_fault)
3856                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3857        return VM_FAULT_FALLBACK;
3858}
3859
3860/* `inline' is required to avoid gcc 4.1.2 build error */
3861static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3862{
3863        if (vma_is_anonymous(vmf->vma))
3864                return do_huge_pmd_wp_page(vmf, orig_pmd);
3865        if (vmf->vma->vm_ops->huge_fault)
3866                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3867
3868        /* COW handled on pte level: split pmd */
3869        VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3870        __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3871
3872        return VM_FAULT_FALLBACK;
3873}
3874
3875static inline bool vma_is_accessible(struct vm_area_struct *vma)
3876{
3877        return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3878}
3879
3880static int create_huge_pud(struct vm_fault *vmf)
3881{
3882#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3883        /* No support for anonymous transparent PUD pages yet */
3884        if (vma_is_anonymous(vmf->vma))
3885                return VM_FAULT_FALLBACK;
3886        if (vmf->vma->vm_ops->huge_fault)
3887                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3888#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3889        return VM_FAULT_FALLBACK;
3890}
3891
3892static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3893{
3894#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3895        /* No support for anonymous transparent PUD pages yet */
3896        if (vma_is_anonymous(vmf->vma))
3897                return VM_FAULT_FALLBACK;
3898        if (vmf->vma->vm_ops->huge_fault)
3899                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3900#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3901        return VM_FAULT_FALLBACK;
3902}
3903
3904/*
3905 * These routines also need to handle stuff like marking pages dirty
3906 * and/or accessed for architectures that don't do it in hardware (most
3907 * RISC architectures).  The early dirtying is also good on the i386.
3908 *
3909 * There is also a hook called "update_mmu_cache()" that architectures
3910 * with external mmu caches can use to update those (ie the Sparc or
3911 * PowerPC hashed page tables that act as extended TLBs).
3912 *
3913 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3914 * concurrent faults).
3915 *
3916 * The mmap_sem may have been released depending on flags and our return value.
3917 * See filemap_fault() and __lock_page_or_retry().
3918 */
3919static int handle_pte_fault(struct vm_fault *vmf)
3920{
3921        pte_t entry;
3922
3923        if (unlikely(pmd_none(*vmf->pmd))) {
3924                /*
3925                 * Leave __pte_alloc() until later: because vm_ops->fault may
3926                 * want to allocate huge page, and if we expose page table
3927                 * for an instant, it will be difficult to retract from
3928                 * concurrent faults and from rmap lookups.
3929                 */
3930                vmf->pte = NULL;
3931        } else {
3932                /* See comment in pte_alloc_one_map() */
3933                if (pmd_devmap_trans_unstable(vmf->pmd))
3934                        return 0;
3935                /*
3936                 * A regular pmd is established and it can't morph into a huge
3937                 * pmd from under us anymore at this point because we hold the
3938                 * mmap_sem read mode and khugepaged takes it in write mode.
3939                 * So now it's safe to run pte_offset_map().
3940                 */
3941                vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3942                vmf->orig_pte = *vmf->pte;
3943
3944                /*
3945                 * some architectures can have larger ptes than wordsize,
3946                 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3947                 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3948                 * accesses.  The code below just needs a consistent view
3949                 * for the ifs and we later double check anyway with the
3950                 * ptl lock held. So here a barrier will do.
3951                 */
3952                barrier();
3953                if (pte_none(vmf->orig_pte)) {
3954                        pte_unmap(vmf->pte);
3955                        vmf->pte = NULL;
3956                }
3957        }
3958
3959        if (!vmf->pte) {
3960                if (vma_is_anonymous(vmf->vma))
3961                        return do_anonymous_page(vmf);
3962                else
3963                        return do_fault(vmf);
3964        }
3965
3966        if (!pte_present(vmf->orig_pte))
3967                return do_swap_page(vmf);
3968
3969        if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3970                return do_numa_page(vmf);
3971
3972        vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3973        spin_lock(vmf->ptl);
3974        entry = vmf->orig_pte;
3975        if (unlikely(!pte_same(*vmf->pte, entry)))
3976                goto unlock;
3977        if (vmf->flags & FAULT_FLAG_WRITE) {
3978                if (!pte_write(entry))
3979                        return do_wp_page(vmf);
3980                entry = pte_mkdirty(entry);
3981        }
3982        entry = pte_mkyoung(entry);
3983        if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3984                                vmf->flags & FAULT_FLAG_WRITE)) {
3985                update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3986        } else {
3987                /*
3988                 * This is needed only for protection faults but the arch code
3989                 * is not yet telling us if this is a protection fault or not.
3990                 * This still avoids useless tlb flushes for .text page faults
3991                 * with threads.
3992                 */
3993                if (vmf->flags & FAULT_FLAG_WRITE)
3994                        flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3995        }
3996unlock:
3997        pte_unmap_unlock(vmf->pte, vmf->ptl);
3998        return 0;
3999}
4000
4001/*
4002 * By the time we get here, we already hold the mm semaphore
4003 *
4004 * The mmap_sem may have been released depending on flags and our
4005 * return value.  See filemap_fault() and __lock_page_or_retry().
4006 */
4007static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4008                unsigned int flags)
4009{
4010        struct vm_fault vmf = {
4011                .vma = vma,
4012                .address = address & PAGE_MASK,
4013                .flags = flags,
4014                .pgoff = linear_page_index(vma, address),
4015                .gfp_mask = __get_fault_gfp_mask(vma),
4016        };
4017        unsigned int dirty = flags & FAULT_FLAG_WRITE;
4018        struct mm_struct *mm = vma->vm_mm;
4019        pgd_t *pgd;
4020        p4d_t *p4d;
4021        int ret;
4022
4023        pgd = pgd_offset(mm, address);
4024        p4d = p4d_alloc(mm, pgd, address);
4025        if (!p4d)
4026                return VM_FAULT_OOM;
4027
4028        vmf.pud = pud_alloc(mm, p4d, address);
4029        if (!vmf.pud)
4030                return VM_FAULT_OOM;
4031        if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4032                ret = create_huge_pud(&vmf);
4033                if (!(ret & VM_FAULT_FALLBACK))
4034                        return ret;
4035        } else {
4036                pud_t orig_pud = *vmf.pud;
4037
4038                barrier();
4039                if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4040
4041                        /* NUMA case for anonymous PUDs would go here */
4042
4043                        if (dirty && !pud_write(orig_pud)) {
4044                                ret = wp_huge_pud(&vmf, orig_pud);
4045                                if (!(ret & VM_FAULT_FALLBACK))
4046                                        return ret;
4047                        } else {
4048                                huge_pud_set_accessed(&vmf, orig_pud);
4049                                return 0;
4050                        }
4051                }
4052        }
4053
4054        vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4055        if (!vmf.pmd)
4056                return VM_FAULT_OOM;
4057        if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4058                ret = create_huge_pmd(&vmf);
4059                if (!(ret & VM_FAULT_FALLBACK))
4060                        return ret;
4061        } else {
4062                pmd_t orig_pmd = *vmf.pmd;
4063
4064                barrier();
4065                if (unlikely(is_swap_pmd(orig_pmd))) {
4066                        VM_BUG_ON(thp_migration_supported() &&
4067                                          !is_pmd_migration_entry(orig_pmd));
4068                        if (is_pmd_migration_entry(orig_pmd))
4069                                pmd_migration_entry_wait(mm, vmf.pmd);
4070                        return 0;
4071                }
4072                if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4073                        if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4074                                return do_huge_pmd_numa_page(&vmf, orig_pmd);
4075
4076                        if (dirty && !pmd_write(orig_pmd)) {
4077                                ret = wp_huge_pmd(&vmf, orig_pmd);
4078                                if (!(ret & VM_FAULT_FALLBACK))
4079                                        return ret;
4080                        } else {
4081                                huge_pmd_set_accessed(&vmf, orig_pmd);
4082                                return 0;
4083                        }
4084                }
4085        }
4086
4087        return handle_pte_fault(&vmf);
4088}
4089
4090/*
4091 * By the time we get here, we already hold the mm semaphore
4092 *
4093 * The mmap_sem may have been released depending on flags and our
4094 * return value.  See filemap_fault() and __lock_page_or_retry().
4095 */
4096int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4097                unsigned int flags)
4098{
4099        int ret;
4100
4101        __set_current_state(TASK_RUNNING);
4102
4103        count_vm_event(PGFAULT);
4104        count_memcg_event_mm(vma->vm_mm, PGFAULT);
4105
4106        /* do counter updates before entering really critical section. */
4107        check_sync_rss_stat(current);
4108
4109        if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4110                                            flags & FAULT_FLAG_INSTRUCTION,
4111                                            flags & FAULT_FLAG_REMOTE))
4112                return VM_FAULT_SIGSEGV;
4113
4114        /*
4115         * Enable the memcg OOM handling for faults triggered in user
4116         * space.  Kernel faults are handled more gracefully.
4117         */
4118        if (flags & FAULT_FLAG_USER)
4119                mem_cgroup_oom_enable();
4120
4121        if (unlikely(is_vm_hugetlb_page(vma)))
4122                ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4123        else
4124                ret = __handle_mm_fault(vma, address, flags);
4125
4126        if (flags & FAULT_FLAG_USER) {
4127                mem_cgroup_oom_disable();
4128                /*
4129                 * The task may have entered a memcg OOM situation but
4130                 * if the allocation error was handled gracefully (no
4131                 * VM_FAULT_OOM), there is no need to kill anything.
4132                 * Just clean up the OOM state peacefully.
4133                 */
4134                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4135                        mem_cgroup_oom_synchronize(false);
4136        }
4137
4138        return ret;
4139}
4140EXPORT_SYMBOL_GPL(handle_mm_fault);
4141
4142#ifndef __PAGETABLE_P4D_FOLDED
4143/*
4144 * Allocate p4d page table.
4145 * We've already handled the fast-path in-line.
4146 */
4147int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4148{
4149        p4d_t *new = p4d_alloc_one(mm, address);
4150        if (!new)
4151                return -ENOMEM;
4152
4153        smp_wmb(); /* See comment in __pte_alloc */
4154
4155        spin_lock(&mm->page_table_lock);
4156        if (pgd_present(*pgd))          /* Another has populated it */
4157                p4d_free(mm, new);
4158        else
4159                pgd_populate(mm, pgd, new);
4160        spin_unlock(&mm->page_table_lock);
4161        return 0;
4162}
4163#endif /* __PAGETABLE_P4D_FOLDED */
4164
4165#ifndef __PAGETABLE_PUD_FOLDED
4166/*
4167 * Allocate page upper directory.
4168 * We've already handled the fast-path in-line.
4169 */
4170int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4171{
4172        pud_t *new = pud_alloc_one(mm, address);
4173        if (!new)
4174                return -ENOMEM;
4175
4176        smp_wmb(); /* See comment in __pte_alloc */
4177
4178        spin_lock(&mm->page_table_lock);
4179#ifndef __ARCH_HAS_5LEVEL_HACK
4180        if (!p4d_present(*p4d)) {
4181                mm_inc_nr_puds(mm);
4182                p4d_populate(mm, p4d, new);
4183        } else  /* Another has populated it */
4184                pud_free(mm, new);
4185#else
4186        if (!pgd_present(*p4d)) {
4187                mm_inc_nr_puds(mm);
4188                pgd_populate(mm, p4d, new);
4189        } else  /* Another has populated it */
4190                pud_free(mm, new);
4191#endif /* __ARCH_HAS_5LEVEL_HACK */
4192        spin_unlock(&mm->page_table_lock);
4193        return 0;
4194}
4195#endif /* __PAGETABLE_PUD_FOLDED */
4196
4197#ifndef __PAGETABLE_PMD_FOLDED
4198/*
4199 * Allocate page middle directory.
4200 * We've already handled the fast-path in-line.
4201 */
4202int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4203{
4204        spinlock_t *ptl;
4205        pmd_t *new = pmd_alloc_one(mm, address);
4206        if (!new)
4207                return -ENOMEM;
4208
4209        smp_wmb(); /* See comment in __pte_alloc */
4210
4211        ptl = pud_lock(mm, pud);
4212#ifndef __ARCH_HAS_4LEVEL_HACK
4213        if (!pud_present(*pud)) {
4214                mm_inc_nr_pmds(mm);
4215                pud_populate(mm, pud, new);
4216        } else  /* Another has populated it */
4217                pmd_free(mm, new);
4218#else
4219        if (!pgd_present(*pud)) {
4220                mm_inc_nr_pmds(mm);
4221                pgd_populate(mm, pud, new);
4222        } else /* Another has populated it */
4223                pmd_free(mm, new);
4224#endif /* __ARCH_HAS_4LEVEL_HACK */
4225        spin_unlock(ptl);
4226        return 0;
4227}
4228#endif /* __PAGETABLE_PMD_FOLDED */
4229
4230static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4231                            unsigned long *start, unsigned long *end,
4232                            pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4233{
4234        pgd_t *pgd;
4235        p4d_t *p4d;
4236        pud_t *pud;
4237        pmd_t *pmd;
4238        pte_t *ptep;
4239
4240        pgd = pgd_offset(mm, address);
4241        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4242                goto out;
4243
4244        p4d = p4d_offset(pgd, address);
4245        if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4246                goto out;
4247
4248        pud = pud_offset(p4d, address);
4249        if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4250                goto out;
4251
4252        pmd = pmd_offset(pud, address);
4253        VM_BUG_ON(pmd_trans_huge(*pmd));
4254
4255        if (pmd_huge(*pmd)) {
4256                if (!pmdpp)
4257                        goto out;
4258
4259                if (start && end) {
4260                        *start = address & PMD_MASK;
4261                        *end = *start + PMD_SIZE;
4262                        mmu_notifier_invalidate_range_start(mm, *start, *end);
4263                }
4264                *ptlp = pmd_lock(mm, pmd);
4265                if (pmd_huge(*pmd)) {
4266                        *pmdpp = pmd;
4267                        return 0;
4268                }
4269                spin_unlock(*ptlp);
4270                if (start && end)
4271                        mmu_notifier_invalidate_range_end(mm, *start, *end);
4272        }
4273
4274        if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4275                goto out;
4276
4277        if (start && end) {
4278                *start = address & PAGE_MASK;
4279                *end = *start + PAGE_SIZE;
4280                mmu_notifier_invalidate_range_start(mm, *start, *end);
4281        }
4282        ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4283        if (!pte_present(*ptep))
4284                goto unlock;
4285        *ptepp = ptep;
4286        return 0;
4287unlock:
4288        pte_unmap_unlock(ptep, *ptlp);
4289        if (start && end)
4290                mmu_notifier_invalidate_range_end(mm, *start, *end);
4291out:
4292        return -EINVAL;
4293}
4294
4295static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4296                             pte_t **ptepp, spinlock_t **ptlp)
4297{
4298        int res;
4299
4300        /* (void) is needed to make gcc happy */
4301        (void) __cond_lock(*ptlp,
4302                           !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4303                                                    ptepp, NULL, ptlp)));
4304        return res;
4305}
4306
4307int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4308                             unsigned long *start, unsigned long *end,
4309                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4310{
4311        int res;
4312
4313        /* (void) is needed to make gcc happy */
4314        (void) __cond_lock(*ptlp,
4315                           !(res = __follow_pte_pmd(mm, address, start, end,
4316                                                    ptepp, pmdpp, ptlp)));
4317        return res;
4318}
4319EXPORT_SYMBOL(follow_pte_pmd);
4320
4321/**
4322 * follow_pfn - look up PFN at a user virtual address
4323 * @vma: memory mapping
4324 * @address: user virtual address
4325 * @pfn: location to store found PFN
4326 *
4327 * Only IO mappings and raw PFN mappings are allowed.
4328 *
4329 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4330 */
4331int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4332        unsigned long *pfn)
4333{
4334        int ret = -EINVAL;
4335        spinlock_t *ptl;
4336        pte_t *ptep;
4337
4338        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4339                return ret;
4340
4341        ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4342        if (ret)
4343                return ret;
4344        *pfn = pte_pfn(*ptep);
4345        pte_unmap_unlock(ptep, ptl);
4346        return 0;
4347}
4348EXPORT_SYMBOL(follow_pfn);
4349
4350#ifdef CONFIG_HAVE_IOREMAP_PROT
4351int follow_phys(struct vm_area_struct *vma,
4352                unsigned long address, unsigned int flags,
4353                unsigned long *prot, resource_size_t *phys)
4354{
4355        int ret = -EINVAL;
4356        pte_t *ptep, pte;
4357        spinlock_t *ptl;
4358
4359        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4360                goto out;
4361
4362        if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4363                goto out;
4364        pte = *ptep;
4365
4366        if ((flags & FOLL_WRITE) && !pte_write(pte))
4367                goto unlock;
4368
4369        *prot = pgprot_val(pte_pgprot(pte));
4370        *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4371
4372        ret = 0;
4373unlock:
4374        pte_unmap_unlock(ptep, ptl);
4375out:
4376        return ret;
4377}
4378
4379int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4380                        void *buf, int len, int write)
4381{
4382        resource_size_t phys_addr;
4383        unsigned long prot = 0;
4384        void __iomem *maddr;
4385        int offset = addr & (PAGE_SIZE-1);
4386
4387        if (follow_phys(vma, addr, write, &prot, &phys_addr))
4388                return -EINVAL;
4389
4390        maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4391        if (write)
4392                memcpy_toio(maddr + offset, buf, len);
4393        else
4394                memcpy_fromio(buf, maddr + offset, len);
4395        iounmap(maddr);
4396
4397        return len;
4398}
4399EXPORT_SYMBOL_GPL(generic_access_phys);
4400#endif
4401
4402/*
4403 * Access another process' address space as given in mm.  If non-NULL, use the
4404 * given task for page fault accounting.
4405 */
4406int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4407                unsigned long addr, void *buf, int len, unsigned int gup_flags)
4408{
4409        struct vm_area_struct *vma;
4410        void *old_buf = buf;
4411        int write = gup_flags & FOLL_WRITE;
4412
4413        down_read(&mm->mmap_sem);
4414        /* ignore errors, just check how much was successfully transferred */
4415        while (len) {
4416                int bytes, ret, offset;
4417                void *maddr;
4418                struct page *page = NULL;
4419
4420                ret = get_user_pages_remote(tsk, mm, addr, 1,
4421                                gup_flags, &page, &vma, NULL);
4422                if (ret <= 0) {
4423#ifndef CONFIG_HAVE_IOREMAP_PROT
4424                        break;
4425#else
4426                        /*
4427                         * Check if this is a VM_IO | VM_PFNMAP VMA, which
4428                         * we can access using slightly different code.
4429                         */
4430                        vma = find_vma(mm, addr);
4431                        if (!vma || vma->vm_start > addr)
4432                                break;
4433                        if (vma->vm_ops && vma->vm_ops->access)
4434                                ret = vma->vm_ops->access(vma, addr, buf,
4435                                                          len, write);
4436                        if (ret <= 0)
4437                                break;
4438                        bytes = ret;
4439#endif
4440                } else {
4441                        bytes = len;
4442                        offset = addr & (PAGE_SIZE-1);
4443                        if (bytes > PAGE_SIZE-offset)
4444                                bytes = PAGE_SIZE-offset;
4445
4446                        maddr = kmap(page);
4447                        if (write) {
4448                                copy_to_user_page(vma, page, addr,
4449                                                  maddr + offset, buf, bytes);
4450                                set_page_dirty_lock(page);
4451                        } else {
4452                                copy_from_user_page(vma, page, addr,
4453                                                    buf, maddr + offset, bytes);
4454                        }
4455                        kunmap(page);
4456                        put_page(page);
4457                }
4458                len -= bytes;
4459                buf += bytes;
4460                addr += bytes;
4461        }
4462        up_read(&mm->mmap_sem);
4463
4464        return buf - old_buf;
4465}
4466
4467/**
4468 * access_remote_vm - access another process' address space
4469 * @mm:         the mm_struct of the target address space
4470 * @addr:       start address to access
4471 * @buf:        source or destination buffer
4472 * @len:        number of bytes to transfer
4473 * @gup_flags:  flags modifying lookup behaviour
4474 *
4475 * The caller must hold a reference on @mm.
4476 */
4477int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4478                void *buf, int len, unsigned int gup_flags)
4479{
4480        return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4481}
4482
4483/*
4484 * Access another process' address space.
4485 * Source/target buffer must be kernel space,
4486 * Do not walk the page table directly, use get_user_pages
4487 */
4488int access_process_vm(struct task_struct *tsk, unsigned long addr,
4489                void *buf, int len, unsigned int gup_flags)
4490{
4491        struct mm_struct *mm;
4492        int ret;
4493
4494        mm = get_task_mm(tsk);
4495        if (!mm)
4496                return 0;
4497
4498        ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4499
4500        mmput(mm);
4501
4502        return ret;
4503}
4504EXPORT_SYMBOL_GPL(access_process_vm);
4505
4506/*
4507 * Print the name of a VMA.
4508 */
4509void print_vma_addr(char *prefix, unsigned long ip)
4510{
4511        struct mm_struct *mm = current->mm;
4512        struct vm_area_struct *vma;
4513
4514        /*
4515         * we might be running from an atomic context so we cannot sleep
4516         */
4517        if (!down_read_trylock(&mm->mmap_sem))
4518                return;
4519
4520        vma = find_vma(mm, ip);
4521        if (vma && vma->vm_file) {
4522                struct file *f = vma->vm_file;
4523                char *buf = (char *)__get_free_page(GFP_NOWAIT);
4524                if (buf) {
4525                        char *p;
4526
4527                        p = file_path(f, buf, PAGE_SIZE);
4528                        if (IS_ERR(p))
4529                                p = "?";
4530                        printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4531                                        vma->vm_start,
4532                                        vma->vm_end - vma->vm_start);
4533                        free_page((unsigned long)buf);
4534                }
4535        }
4536        up_read(&mm->mmap_sem);
4537}
4538
4539#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4540void __might_fault(const char *file, int line)
4541{
4542        /*
4543         * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4544         * holding the mmap_sem, this is safe because kernel memory doesn't
4545         * get paged out, therefore we'll never actually fault, and the
4546         * below annotations will generate false positives.
4547         */
4548        if (uaccess_kernel())
4549                return;
4550        if (pagefault_disabled())
4551                return;
4552        __might_sleep(file, line, 0);
4553#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4554        if (current->mm)
4555                might_lock_read(&current->mm->mmap_sem);
4556#endif
4557}
4558EXPORT_SYMBOL(__might_fault);
4559#endif
4560
4561#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4562static void clear_gigantic_page(struct page *page,
4563                                unsigned long addr,
4564                                unsigned int pages_per_huge_page)
4565{
4566        int i;
4567        struct page *p = page;
4568
4569        might_sleep();
4570        for (i = 0; i < pages_per_huge_page;
4571             i++, p = mem_map_next(p, page, i)) {
4572                cond_resched();
4573                clear_user_highpage(p, addr + i * PAGE_SIZE);
4574        }
4575}
4576void clear_huge_page(struct page *page,
4577                     unsigned long addr_hint, unsigned int pages_per_huge_page)
4578{
4579        int i, n, base, l;
4580        unsigned long addr = addr_hint &
4581                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4582
4583        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4584                clear_gigantic_page(page, addr, pages_per_huge_page);
4585                return;
4586        }
4587
4588        /* Clear sub-page to access last to keep its cache lines hot */
4589        might_sleep();
4590        n = (addr_hint - addr) / PAGE_SIZE;
4591        if (2 * n <= pages_per_huge_page) {
4592                /* If sub-page to access in first half of huge page */
4593                base = 0;
4594                l = n;
4595                /* Clear sub-pages at the end of huge page */
4596                for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4597                        cond_resched();
4598                        clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4599                }
4600        } else {
4601                /* If sub-page to access in second half of huge page */
4602                base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4603                l = pages_per_huge_page - n;
4604                /* Clear sub-pages at the begin of huge page */
4605                for (i = 0; i < base; i++) {
4606                        cond_resched();
4607                        clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4608                }
4609        }
4610        /*
4611         * Clear remaining sub-pages in left-right-left-right pattern
4612         * towards the sub-page to access
4613         */
4614        for (i = 0; i < l; i++) {
4615                int left_idx = base + i;
4616                int right_idx = base + 2 * l - 1 - i;
4617
4618                cond_resched();
4619                clear_user_highpage(page + left_idx,
4620                                    addr + left_idx * PAGE_SIZE);
4621                cond_resched();
4622                clear_user_highpage(page + right_idx,
4623                                    addr + right_idx * PAGE_SIZE);
4624        }
4625}
4626
4627static void copy_user_gigantic_page(struct page *dst, struct page *src,
4628                                    unsigned long addr,
4629                                    struct vm_area_struct *vma,
4630                                    unsigned int pages_per_huge_page)
4631{
4632        int i;
4633        struct page *dst_base = dst;
4634        struct page *src_base = src;
4635
4636        for (i = 0; i < pages_per_huge_page; ) {
4637                cond_resched();
4638                copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4639
4640                i++;
4641                dst = mem_map_next(dst, dst_base, i);
4642                src = mem_map_next(src, src_base, i);
4643        }
4644}
4645
4646void copy_user_huge_page(struct page *dst, struct page *src,
4647                         unsigned long addr, struct vm_area_struct *vma,
4648                         unsigned int pages_per_huge_page)
4649{
4650        int i;
4651
4652        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4653                copy_user_gigantic_page(dst, src, addr, vma,
4654                                        pages_per_huge_page);
4655                return;
4656        }
4657
4658        might_sleep();
4659        for (i = 0; i < pages_per_huge_page; i++) {
4660                cond_resched();
4661                copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4662        }
4663}
4664
4665long copy_huge_page_from_user(struct page *dst_page,
4666                                const void __user *usr_src,
4667                                unsigned int pages_per_huge_page,
4668                                bool allow_pagefault)
4669{
4670        void *src = (void *)usr_src;
4671        void *page_kaddr;
4672        unsigned long i, rc = 0;
4673        unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4674
4675        for (i = 0; i < pages_per_huge_page; i++) {
4676                if (allow_pagefault)
4677                        page_kaddr = kmap(dst_page + i);
4678                else
4679                        page_kaddr = kmap_atomic(dst_page + i);
4680                rc = copy_from_user(page_kaddr,
4681                                (const void __user *)(src + i * PAGE_SIZE),
4682                                PAGE_SIZE);
4683                if (allow_pagefault)
4684                        kunmap(dst_page + i);
4685                else
4686                        kunmap_atomic(page_kaddr);
4687
4688                ret_val -= (PAGE_SIZE - rc);
4689                if (rc)
4690                        break;
4691
4692                cond_resched();
4693        }
4694        return ret_val;
4695}
4696#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4697
4698#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4699
4700static struct kmem_cache *page_ptl_cachep;
4701
4702void __init ptlock_cache_init(void)
4703{
4704        page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4705                        SLAB_PANIC, NULL);
4706}
4707
4708bool ptlock_alloc(struct page *page)
4709{
4710        spinlock_t *ptl;
4711
4712        ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4713        if (!ptl)
4714                return false;
4715        page->ptl = ptl;
4716        return true;
4717}
4718
4719void ptlock_free(struct page *page)
4720{
4721        kmem_cache_free(page_ptl_cachep, page->ptl);
4722}
4723#endif
4724