linux/mm/mmap.c
<<
>>
Prefs
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/slab.h>
  13#include <linux/backing-dev.h>
  14#include <linux/mm.h>
  15#include <linux/vmacache.h>
  16#include <linux/shm.h>
  17#include <linux/mman.h>
  18#include <linux/pagemap.h>
  19#include <linux/swap.h>
  20#include <linux/syscalls.h>
  21#include <linux/capability.h>
  22#include <linux/init.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/personality.h>
  26#include <linux/security.h>
  27#include <linux/hugetlb.h>
  28#include <linux/shmem_fs.h>
  29#include <linux/profile.h>
  30#include <linux/export.h>
  31#include <linux/mount.h>
  32#include <linux/mempolicy.h>
  33#include <linux/rmap.h>
  34#include <linux/mmu_notifier.h>
  35#include <linux/mmdebug.h>
  36#include <linux/perf_event.h>
  37#include <linux/audit.h>
  38#include <linux/khugepaged.h>
  39#include <linux/uprobes.h>
  40#include <linux/rbtree_augmented.h>
  41#include <linux/notifier.h>
  42#include <linux/memory.h>
  43#include <linux/printk.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/moduleparam.h>
  46#include <linux/pkeys.h>
  47#include <linux/oom.h>
  48
  49#include <linux/uaccess.h>
  50#include <asm/cacheflush.h>
  51#include <asm/tlb.h>
  52#include <asm/mmu_context.h>
  53
  54#include "internal.h"
  55
  56#ifndef arch_mmap_check
  57#define arch_mmap_check(addr, len, flags)       (0)
  58#endif
  59
  60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  61const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  62const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  63int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  64#endif
  65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  66const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  67const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  68int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  69#endif
  70
  71static bool ignore_rlimit_data;
  72core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  73
  74static void unmap_region(struct mm_struct *mm,
  75                struct vm_area_struct *vma, struct vm_area_struct *prev,
  76                unsigned long start, unsigned long end);
  77
  78/* description of effects of mapping type and prot in current implementation.
  79 * this is due to the limited x86 page protection hardware.  The expected
  80 * behavior is in parens:
  81 *
  82 * map_type     prot
  83 *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
  84 * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
  85 *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
  86 *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
  87 *
  88 * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
  89 *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
  90 *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
  91 *
  92 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
  93 * MAP_PRIVATE:
  94 *                                                              r: (no) no
  95 *                                                              w: (no) no
  96 *                                                              x: (yes) yes
  97 */
  98pgprot_t protection_map[16] __ro_after_init = {
  99        __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
 100        __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
 101};
 102
 103#ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
 104static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
 105{
 106        return prot;
 107}
 108#endif
 109
 110pgprot_t vm_get_page_prot(unsigned long vm_flags)
 111{
 112        pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
 113                                (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 114                        pgprot_val(arch_vm_get_page_prot(vm_flags)));
 115
 116        return arch_filter_pgprot(ret);
 117}
 118EXPORT_SYMBOL(vm_get_page_prot);
 119
 120static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 121{
 122        return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 123}
 124
 125/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 126void vma_set_page_prot(struct vm_area_struct *vma)
 127{
 128        unsigned long vm_flags = vma->vm_flags;
 129        pgprot_t vm_page_prot;
 130
 131        vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 132        if (vma_wants_writenotify(vma, vm_page_prot)) {
 133                vm_flags &= ~VM_SHARED;
 134                vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
 135        }
 136        /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
 137        WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 138}
 139
 140/*
 141 * Requires inode->i_mapping->i_mmap_rwsem
 142 */
 143static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 144                struct file *file, struct address_space *mapping)
 145{
 146        if (vma->vm_flags & VM_DENYWRITE)
 147                atomic_inc(&file_inode(file)->i_writecount);
 148        if (vma->vm_flags & VM_SHARED)
 149                mapping_unmap_writable(mapping);
 150
 151        flush_dcache_mmap_lock(mapping);
 152        vma_interval_tree_remove(vma, &mapping->i_mmap);
 153        flush_dcache_mmap_unlock(mapping);
 154}
 155
 156/*
 157 * Unlink a file-based vm structure from its interval tree, to hide
 158 * vma from rmap and vmtruncate before freeing its page tables.
 159 */
 160void unlink_file_vma(struct vm_area_struct *vma)
 161{
 162        struct file *file = vma->vm_file;
 163
 164        if (file) {
 165                struct address_space *mapping = file->f_mapping;
 166                i_mmap_lock_write(mapping);
 167                __remove_shared_vm_struct(vma, file, mapping);
 168                i_mmap_unlock_write(mapping);
 169        }
 170}
 171
 172/*
 173 * Close a vm structure and free it, returning the next.
 174 */
 175static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 176{
 177        struct vm_area_struct *next = vma->vm_next;
 178
 179        might_sleep();
 180        if (vma->vm_ops && vma->vm_ops->close)
 181                vma->vm_ops->close(vma);
 182        if (vma->vm_file)
 183                fput(vma->vm_file);
 184        mpol_put(vma_policy(vma));
 185        kmem_cache_free(vm_area_cachep, vma);
 186        return next;
 187}
 188
 189static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf);
 190
 191SYSCALL_DEFINE1(brk, unsigned long, brk)
 192{
 193        unsigned long retval;
 194        unsigned long newbrk, oldbrk;
 195        struct mm_struct *mm = current->mm;
 196        struct vm_area_struct *next;
 197        unsigned long min_brk;
 198        bool populate;
 199        LIST_HEAD(uf);
 200
 201        if (down_write_killable(&mm->mmap_sem))
 202                return -EINTR;
 203
 204#ifdef CONFIG_COMPAT_BRK
 205        /*
 206         * CONFIG_COMPAT_BRK can still be overridden by setting
 207         * randomize_va_space to 2, which will still cause mm->start_brk
 208         * to be arbitrarily shifted
 209         */
 210        if (current->brk_randomized)
 211                min_brk = mm->start_brk;
 212        else
 213                min_brk = mm->end_data;
 214#else
 215        min_brk = mm->start_brk;
 216#endif
 217        if (brk < min_brk)
 218                goto out;
 219
 220        /*
 221         * Check against rlimit here. If this check is done later after the test
 222         * of oldbrk with newbrk then it can escape the test and let the data
 223         * segment grow beyond its set limit the in case where the limit is
 224         * not page aligned -Ram Gupta
 225         */
 226        if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 227                              mm->end_data, mm->start_data))
 228                goto out;
 229
 230        newbrk = PAGE_ALIGN(brk);
 231        oldbrk = PAGE_ALIGN(mm->brk);
 232        if (oldbrk == newbrk)
 233                goto set_brk;
 234
 235        /* Always allow shrinking brk. */
 236        if (brk <= mm->brk) {
 237                if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
 238                        goto set_brk;
 239                goto out;
 240        }
 241
 242        /* Check against existing mmap mappings. */
 243        next = find_vma(mm, oldbrk);
 244        if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 245                goto out;
 246
 247        /* Ok, looks good - let it rip. */
 248        if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0)
 249                goto out;
 250
 251set_brk:
 252        mm->brk = brk;
 253        populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 254        up_write(&mm->mmap_sem);
 255        userfaultfd_unmap_complete(mm, &uf);
 256        if (populate)
 257                mm_populate(oldbrk, newbrk - oldbrk);
 258        return brk;
 259
 260out:
 261        retval = mm->brk;
 262        up_write(&mm->mmap_sem);
 263        return retval;
 264}
 265
 266static long vma_compute_subtree_gap(struct vm_area_struct *vma)
 267{
 268        unsigned long max, prev_end, subtree_gap;
 269
 270        /*
 271         * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
 272         * allow two stack_guard_gaps between them here, and when choosing
 273         * an unmapped area; whereas when expanding we only require one.
 274         * That's a little inconsistent, but keeps the code here simpler.
 275         */
 276        max = vm_start_gap(vma);
 277        if (vma->vm_prev) {
 278                prev_end = vm_end_gap(vma->vm_prev);
 279                if (max > prev_end)
 280                        max -= prev_end;
 281                else
 282                        max = 0;
 283        }
 284        if (vma->vm_rb.rb_left) {
 285                subtree_gap = rb_entry(vma->vm_rb.rb_left,
 286                                struct vm_area_struct, vm_rb)->rb_subtree_gap;
 287                if (subtree_gap > max)
 288                        max = subtree_gap;
 289        }
 290        if (vma->vm_rb.rb_right) {
 291                subtree_gap = rb_entry(vma->vm_rb.rb_right,
 292                                struct vm_area_struct, vm_rb)->rb_subtree_gap;
 293                if (subtree_gap > max)
 294                        max = subtree_gap;
 295        }
 296        return max;
 297}
 298
 299#ifdef CONFIG_DEBUG_VM_RB
 300static int browse_rb(struct mm_struct *mm)
 301{
 302        struct rb_root *root = &mm->mm_rb;
 303        int i = 0, j, bug = 0;
 304        struct rb_node *nd, *pn = NULL;
 305        unsigned long prev = 0, pend = 0;
 306
 307        for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 308                struct vm_area_struct *vma;
 309                vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 310                if (vma->vm_start < prev) {
 311                        pr_emerg("vm_start %lx < prev %lx\n",
 312                                  vma->vm_start, prev);
 313                        bug = 1;
 314                }
 315                if (vma->vm_start < pend) {
 316                        pr_emerg("vm_start %lx < pend %lx\n",
 317                                  vma->vm_start, pend);
 318                        bug = 1;
 319                }
 320                if (vma->vm_start > vma->vm_end) {
 321                        pr_emerg("vm_start %lx > vm_end %lx\n",
 322                                  vma->vm_start, vma->vm_end);
 323                        bug = 1;
 324                }
 325                spin_lock(&mm->page_table_lock);
 326                if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 327                        pr_emerg("free gap %lx, correct %lx\n",
 328                               vma->rb_subtree_gap,
 329                               vma_compute_subtree_gap(vma));
 330                        bug = 1;
 331                }
 332                spin_unlock(&mm->page_table_lock);
 333                i++;
 334                pn = nd;
 335                prev = vma->vm_start;
 336                pend = vma->vm_end;
 337        }
 338        j = 0;
 339        for (nd = pn; nd; nd = rb_prev(nd))
 340                j++;
 341        if (i != j) {
 342                pr_emerg("backwards %d, forwards %d\n", j, i);
 343                bug = 1;
 344        }
 345        return bug ? -1 : i;
 346}
 347
 348static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 349{
 350        struct rb_node *nd;
 351
 352        for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 353                struct vm_area_struct *vma;
 354                vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 355                VM_BUG_ON_VMA(vma != ignore &&
 356                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 357                        vma);
 358        }
 359}
 360
 361static void validate_mm(struct mm_struct *mm)
 362{
 363        int bug = 0;
 364        int i = 0;
 365        unsigned long highest_address = 0;
 366        struct vm_area_struct *vma = mm->mmap;
 367
 368        while (vma) {
 369                struct anon_vma *anon_vma = vma->anon_vma;
 370                struct anon_vma_chain *avc;
 371
 372                if (anon_vma) {
 373                        anon_vma_lock_read(anon_vma);
 374                        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 375                                anon_vma_interval_tree_verify(avc);
 376                        anon_vma_unlock_read(anon_vma);
 377                }
 378
 379                highest_address = vm_end_gap(vma);
 380                vma = vma->vm_next;
 381                i++;
 382        }
 383        if (i != mm->map_count) {
 384                pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 385                bug = 1;
 386        }
 387        if (highest_address != mm->highest_vm_end) {
 388                pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 389                          mm->highest_vm_end, highest_address);
 390                bug = 1;
 391        }
 392        i = browse_rb(mm);
 393        if (i != mm->map_count) {
 394                if (i != -1)
 395                        pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 396                bug = 1;
 397        }
 398        VM_BUG_ON_MM(bug, mm);
 399}
 400#else
 401#define validate_mm_rb(root, ignore) do { } while (0)
 402#define validate_mm(mm) do { } while (0)
 403#endif
 404
 405RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
 406                     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
 407
 408/*
 409 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 410 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 411 * in the rbtree.
 412 */
 413static void vma_gap_update(struct vm_area_struct *vma)
 414{
 415        /*
 416         * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
 417         * function that does exacltly what we want.
 418         */
 419        vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 420}
 421
 422static inline void vma_rb_insert(struct vm_area_struct *vma,
 423                                 struct rb_root *root)
 424{
 425        /* All rb_subtree_gap values must be consistent prior to insertion */
 426        validate_mm_rb(root, NULL);
 427
 428        rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 429}
 430
 431static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 432{
 433        /*
 434         * Note rb_erase_augmented is a fairly large inline function,
 435         * so make sure we instantiate it only once with our desired
 436         * augmented rbtree callbacks.
 437         */
 438        rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 439}
 440
 441static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
 442                                                struct rb_root *root,
 443                                                struct vm_area_struct *ignore)
 444{
 445        /*
 446         * All rb_subtree_gap values must be consistent prior to erase,
 447         * with the possible exception of the "next" vma being erased if
 448         * next->vm_start was reduced.
 449         */
 450        validate_mm_rb(root, ignore);
 451
 452        __vma_rb_erase(vma, root);
 453}
 454
 455static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
 456                                         struct rb_root *root)
 457{
 458        /*
 459         * All rb_subtree_gap values must be consistent prior to erase,
 460         * with the possible exception of the vma being erased.
 461         */
 462        validate_mm_rb(root, vma);
 463
 464        __vma_rb_erase(vma, root);
 465}
 466
 467/*
 468 * vma has some anon_vma assigned, and is already inserted on that
 469 * anon_vma's interval trees.
 470 *
 471 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 472 * vma must be removed from the anon_vma's interval trees using
 473 * anon_vma_interval_tree_pre_update_vma().
 474 *
 475 * After the update, the vma will be reinserted using
 476 * anon_vma_interval_tree_post_update_vma().
 477 *
 478 * The entire update must be protected by exclusive mmap_sem and by
 479 * the root anon_vma's mutex.
 480 */
 481static inline void
 482anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 483{
 484        struct anon_vma_chain *avc;
 485
 486        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 487                anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 488}
 489
 490static inline void
 491anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 492{
 493        struct anon_vma_chain *avc;
 494
 495        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 496                anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 497}
 498
 499static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 500                unsigned long end, struct vm_area_struct **pprev,
 501                struct rb_node ***rb_link, struct rb_node **rb_parent)
 502{
 503        struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 504
 505        __rb_link = &mm->mm_rb.rb_node;
 506        rb_prev = __rb_parent = NULL;
 507
 508        while (*__rb_link) {
 509                struct vm_area_struct *vma_tmp;
 510
 511                __rb_parent = *__rb_link;
 512                vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 513
 514                if (vma_tmp->vm_end > addr) {
 515                        /* Fail if an existing vma overlaps the area */
 516                        if (vma_tmp->vm_start < end)
 517                                return -ENOMEM;
 518                        __rb_link = &__rb_parent->rb_left;
 519                } else {
 520                        rb_prev = __rb_parent;
 521                        __rb_link = &__rb_parent->rb_right;
 522                }
 523        }
 524
 525        *pprev = NULL;
 526        if (rb_prev)
 527                *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 528        *rb_link = __rb_link;
 529        *rb_parent = __rb_parent;
 530        return 0;
 531}
 532
 533static unsigned long count_vma_pages_range(struct mm_struct *mm,
 534                unsigned long addr, unsigned long end)
 535{
 536        unsigned long nr_pages = 0;
 537        struct vm_area_struct *vma;
 538
 539        /* Find first overlaping mapping */
 540        vma = find_vma_intersection(mm, addr, end);
 541        if (!vma)
 542                return 0;
 543
 544        nr_pages = (min(end, vma->vm_end) -
 545                max(addr, vma->vm_start)) >> PAGE_SHIFT;
 546
 547        /* Iterate over the rest of the overlaps */
 548        for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 549                unsigned long overlap_len;
 550
 551                if (vma->vm_start > end)
 552                        break;
 553
 554                overlap_len = min(end, vma->vm_end) - vma->vm_start;
 555                nr_pages += overlap_len >> PAGE_SHIFT;
 556        }
 557
 558        return nr_pages;
 559}
 560
 561void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 562                struct rb_node **rb_link, struct rb_node *rb_parent)
 563{
 564        /* Update tracking information for the gap following the new vma. */
 565        if (vma->vm_next)
 566                vma_gap_update(vma->vm_next);
 567        else
 568                mm->highest_vm_end = vm_end_gap(vma);
 569
 570        /*
 571         * vma->vm_prev wasn't known when we followed the rbtree to find the
 572         * correct insertion point for that vma. As a result, we could not
 573         * update the vma vm_rb parents rb_subtree_gap values on the way down.
 574         * So, we first insert the vma with a zero rb_subtree_gap value
 575         * (to be consistent with what we did on the way down), and then
 576         * immediately update the gap to the correct value. Finally we
 577         * rebalance the rbtree after all augmented values have been set.
 578         */
 579        rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 580        vma->rb_subtree_gap = 0;
 581        vma_gap_update(vma);
 582        vma_rb_insert(vma, &mm->mm_rb);
 583}
 584
 585static void __vma_link_file(struct vm_area_struct *vma)
 586{
 587        struct file *file;
 588
 589        file = vma->vm_file;
 590        if (file) {
 591                struct address_space *mapping = file->f_mapping;
 592
 593                if (vma->vm_flags & VM_DENYWRITE)
 594                        atomic_dec(&file_inode(file)->i_writecount);
 595                if (vma->vm_flags & VM_SHARED)
 596                        atomic_inc(&mapping->i_mmap_writable);
 597
 598                flush_dcache_mmap_lock(mapping);
 599                vma_interval_tree_insert(vma, &mapping->i_mmap);
 600                flush_dcache_mmap_unlock(mapping);
 601        }
 602}
 603
 604static void
 605__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 606        struct vm_area_struct *prev, struct rb_node **rb_link,
 607        struct rb_node *rb_parent)
 608{
 609        __vma_link_list(mm, vma, prev, rb_parent);
 610        __vma_link_rb(mm, vma, rb_link, rb_parent);
 611}
 612
 613static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 614                        struct vm_area_struct *prev, struct rb_node **rb_link,
 615                        struct rb_node *rb_parent)
 616{
 617        struct address_space *mapping = NULL;
 618
 619        if (vma->vm_file) {
 620                mapping = vma->vm_file->f_mapping;
 621                i_mmap_lock_write(mapping);
 622        }
 623
 624        __vma_link(mm, vma, prev, rb_link, rb_parent);
 625        __vma_link_file(vma);
 626
 627        if (mapping)
 628                i_mmap_unlock_write(mapping);
 629
 630        mm->map_count++;
 631        validate_mm(mm);
 632}
 633
 634/*
 635 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 636 * mm's list and rbtree.  It has already been inserted into the interval tree.
 637 */
 638static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 639{
 640        struct vm_area_struct *prev;
 641        struct rb_node **rb_link, *rb_parent;
 642
 643        if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 644                           &prev, &rb_link, &rb_parent))
 645                BUG();
 646        __vma_link(mm, vma, prev, rb_link, rb_parent);
 647        mm->map_count++;
 648}
 649
 650static __always_inline void __vma_unlink_common(struct mm_struct *mm,
 651                                                struct vm_area_struct *vma,
 652                                                struct vm_area_struct *prev,
 653                                                bool has_prev,
 654                                                struct vm_area_struct *ignore)
 655{
 656        struct vm_area_struct *next;
 657
 658        vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
 659        next = vma->vm_next;
 660        if (has_prev)
 661                prev->vm_next = next;
 662        else {
 663                prev = vma->vm_prev;
 664                if (prev)
 665                        prev->vm_next = next;
 666                else
 667                        mm->mmap = next;
 668        }
 669        if (next)
 670                next->vm_prev = prev;
 671
 672        /* Kill the cache */
 673        vmacache_invalidate(mm);
 674}
 675
 676static inline void __vma_unlink_prev(struct mm_struct *mm,
 677                                     struct vm_area_struct *vma,
 678                                     struct vm_area_struct *prev)
 679{
 680        __vma_unlink_common(mm, vma, prev, true, vma);
 681}
 682
 683/*
 684 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 685 * is already present in an i_mmap tree without adjusting the tree.
 686 * The following helper function should be used when such adjustments
 687 * are necessary.  The "insert" vma (if any) is to be inserted
 688 * before we drop the necessary locks.
 689 */
 690int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
 691        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
 692        struct vm_area_struct *expand)
 693{
 694        struct mm_struct *mm = vma->vm_mm;
 695        struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
 696        struct address_space *mapping = NULL;
 697        struct rb_root_cached *root = NULL;
 698        struct anon_vma *anon_vma = NULL;
 699        struct file *file = vma->vm_file;
 700        bool start_changed = false, end_changed = false;
 701        long adjust_next = 0;
 702        int remove_next = 0;
 703
 704        if (next && !insert) {
 705                struct vm_area_struct *exporter = NULL, *importer = NULL;
 706
 707                if (end >= next->vm_end) {
 708                        /*
 709                         * vma expands, overlapping all the next, and
 710                         * perhaps the one after too (mprotect case 6).
 711                         * The only other cases that gets here are
 712                         * case 1, case 7 and case 8.
 713                         */
 714                        if (next == expand) {
 715                                /*
 716                                 * The only case where we don't expand "vma"
 717                                 * and we expand "next" instead is case 8.
 718                                 */
 719                                VM_WARN_ON(end != next->vm_end);
 720                                /*
 721                                 * remove_next == 3 means we're
 722                                 * removing "vma" and that to do so we
 723                                 * swapped "vma" and "next".
 724                                 */
 725                                remove_next = 3;
 726                                VM_WARN_ON(file != next->vm_file);
 727                                swap(vma, next);
 728                        } else {
 729                                VM_WARN_ON(expand != vma);
 730                                /*
 731                                 * case 1, 6, 7, remove_next == 2 is case 6,
 732                                 * remove_next == 1 is case 1 or 7.
 733                                 */
 734                                remove_next = 1 + (end > next->vm_end);
 735                                VM_WARN_ON(remove_next == 2 &&
 736                                           end != next->vm_next->vm_end);
 737                                VM_WARN_ON(remove_next == 1 &&
 738                                           end != next->vm_end);
 739                                /* trim end to next, for case 6 first pass */
 740                                end = next->vm_end;
 741                        }
 742
 743                        exporter = next;
 744                        importer = vma;
 745
 746                        /*
 747                         * If next doesn't have anon_vma, import from vma after
 748                         * next, if the vma overlaps with it.
 749                         */
 750                        if (remove_next == 2 && !next->anon_vma)
 751                                exporter = next->vm_next;
 752
 753                } else if (end > next->vm_start) {
 754                        /*
 755                         * vma expands, overlapping part of the next:
 756                         * mprotect case 5 shifting the boundary up.
 757                         */
 758                        adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 759                        exporter = next;
 760                        importer = vma;
 761                        VM_WARN_ON(expand != importer);
 762                } else if (end < vma->vm_end) {
 763                        /*
 764                         * vma shrinks, and !insert tells it's not
 765                         * split_vma inserting another: so it must be
 766                         * mprotect case 4 shifting the boundary down.
 767                         */
 768                        adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
 769                        exporter = vma;
 770                        importer = next;
 771                        VM_WARN_ON(expand != importer);
 772                }
 773
 774                /*
 775                 * Easily overlooked: when mprotect shifts the boundary,
 776                 * make sure the expanding vma has anon_vma set if the
 777                 * shrinking vma had, to cover any anon pages imported.
 778                 */
 779                if (exporter && exporter->anon_vma && !importer->anon_vma) {
 780                        int error;
 781
 782                        importer->anon_vma = exporter->anon_vma;
 783                        error = anon_vma_clone(importer, exporter);
 784                        if (error)
 785                                return error;
 786                }
 787        }
 788again:
 789        vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
 790
 791        if (file) {
 792                mapping = file->f_mapping;
 793                root = &mapping->i_mmap;
 794                uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 795
 796                if (adjust_next)
 797                        uprobe_munmap(next, next->vm_start, next->vm_end);
 798
 799                i_mmap_lock_write(mapping);
 800                if (insert) {
 801                        /*
 802                         * Put into interval tree now, so instantiated pages
 803                         * are visible to arm/parisc __flush_dcache_page
 804                         * throughout; but we cannot insert into address
 805                         * space until vma start or end is updated.
 806                         */
 807                        __vma_link_file(insert);
 808                }
 809        }
 810
 811        anon_vma = vma->anon_vma;
 812        if (!anon_vma && adjust_next)
 813                anon_vma = next->anon_vma;
 814        if (anon_vma) {
 815                VM_WARN_ON(adjust_next && next->anon_vma &&
 816                           anon_vma != next->anon_vma);
 817                anon_vma_lock_write(anon_vma);
 818                anon_vma_interval_tree_pre_update_vma(vma);
 819                if (adjust_next)
 820                        anon_vma_interval_tree_pre_update_vma(next);
 821        }
 822
 823        if (root) {
 824                flush_dcache_mmap_lock(mapping);
 825                vma_interval_tree_remove(vma, root);
 826                if (adjust_next)
 827                        vma_interval_tree_remove(next, root);
 828        }
 829
 830        if (start != vma->vm_start) {
 831                vma->vm_start = start;
 832                start_changed = true;
 833        }
 834        if (end != vma->vm_end) {
 835                vma->vm_end = end;
 836                end_changed = true;
 837        }
 838        vma->vm_pgoff = pgoff;
 839        if (adjust_next) {
 840                next->vm_start += adjust_next << PAGE_SHIFT;
 841                next->vm_pgoff += adjust_next;
 842        }
 843
 844        if (root) {
 845                if (adjust_next)
 846                        vma_interval_tree_insert(next, root);
 847                vma_interval_tree_insert(vma, root);
 848                flush_dcache_mmap_unlock(mapping);
 849        }
 850
 851        if (remove_next) {
 852                /*
 853                 * vma_merge has merged next into vma, and needs
 854                 * us to remove next before dropping the locks.
 855                 */
 856                if (remove_next != 3)
 857                        __vma_unlink_prev(mm, next, vma);
 858                else
 859                        /*
 860                         * vma is not before next if they've been
 861                         * swapped.
 862                         *
 863                         * pre-swap() next->vm_start was reduced so
 864                         * tell validate_mm_rb to ignore pre-swap()
 865                         * "next" (which is stored in post-swap()
 866                         * "vma").
 867                         */
 868                        __vma_unlink_common(mm, next, NULL, false, vma);
 869                if (file)
 870                        __remove_shared_vm_struct(next, file, mapping);
 871        } else if (insert) {
 872                /*
 873                 * split_vma has split insert from vma, and needs
 874                 * us to insert it before dropping the locks
 875                 * (it may either follow vma or precede it).
 876                 */
 877                __insert_vm_struct(mm, insert);
 878        } else {
 879                if (start_changed)
 880                        vma_gap_update(vma);
 881                if (end_changed) {
 882                        if (!next)
 883                                mm->highest_vm_end = vm_end_gap(vma);
 884                        else if (!adjust_next)
 885                                vma_gap_update(next);
 886                }
 887        }
 888
 889        if (anon_vma) {
 890                anon_vma_interval_tree_post_update_vma(vma);
 891                if (adjust_next)
 892                        anon_vma_interval_tree_post_update_vma(next);
 893                anon_vma_unlock_write(anon_vma);
 894        }
 895        if (mapping)
 896                i_mmap_unlock_write(mapping);
 897
 898        if (root) {
 899                uprobe_mmap(vma);
 900
 901                if (adjust_next)
 902                        uprobe_mmap(next);
 903        }
 904
 905        if (remove_next) {
 906                if (file) {
 907                        uprobe_munmap(next, next->vm_start, next->vm_end);
 908                        fput(file);
 909                }
 910                if (next->anon_vma)
 911                        anon_vma_merge(vma, next);
 912                mm->map_count--;
 913                mpol_put(vma_policy(next));
 914                kmem_cache_free(vm_area_cachep, next);
 915                /*
 916                 * In mprotect's case 6 (see comments on vma_merge),
 917                 * we must remove another next too. It would clutter
 918                 * up the code too much to do both in one go.
 919                 */
 920                if (remove_next != 3) {
 921                        /*
 922                         * If "next" was removed and vma->vm_end was
 923                         * expanded (up) over it, in turn
 924                         * "next->vm_prev->vm_end" changed and the
 925                         * "vma->vm_next" gap must be updated.
 926                         */
 927                        next = vma->vm_next;
 928                } else {
 929                        /*
 930                         * For the scope of the comment "next" and
 931                         * "vma" considered pre-swap(): if "vma" was
 932                         * removed, next->vm_start was expanded (down)
 933                         * over it and the "next" gap must be updated.
 934                         * Because of the swap() the post-swap() "vma"
 935                         * actually points to pre-swap() "next"
 936                         * (post-swap() "next" as opposed is now a
 937                         * dangling pointer).
 938                         */
 939                        next = vma;
 940                }
 941                if (remove_next == 2) {
 942                        remove_next = 1;
 943                        end = next->vm_end;
 944                        goto again;
 945                }
 946                else if (next)
 947                        vma_gap_update(next);
 948                else {
 949                        /*
 950                         * If remove_next == 2 we obviously can't
 951                         * reach this path.
 952                         *
 953                         * If remove_next == 3 we can't reach this
 954                         * path because pre-swap() next is always not
 955                         * NULL. pre-swap() "next" is not being
 956                         * removed and its next->vm_end is not altered
 957                         * (and furthermore "end" already matches
 958                         * next->vm_end in remove_next == 3).
 959                         *
 960                         * We reach this only in the remove_next == 1
 961                         * case if the "next" vma that was removed was
 962                         * the highest vma of the mm. However in such
 963                         * case next->vm_end == "end" and the extended
 964                         * "vma" has vma->vm_end == next->vm_end so
 965                         * mm->highest_vm_end doesn't need any update
 966                         * in remove_next == 1 case.
 967                         */
 968                        VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
 969                }
 970        }
 971        if (insert && file)
 972                uprobe_mmap(insert);
 973
 974        validate_mm(mm);
 975
 976        return 0;
 977}
 978
 979/*
 980 * If the vma has a ->close operation then the driver probably needs to release
 981 * per-vma resources, so we don't attempt to merge those.
 982 */
 983static inline int is_mergeable_vma(struct vm_area_struct *vma,
 984                                struct file *file, unsigned long vm_flags,
 985                                struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 986{
 987        /*
 988         * VM_SOFTDIRTY should not prevent from VMA merging, if we
 989         * match the flags but dirty bit -- the caller should mark
 990         * merged VMA as dirty. If dirty bit won't be excluded from
 991         * comparison, we increase pressue on the memory system forcing
 992         * the kernel to generate new VMAs when old one could be
 993         * extended instead.
 994         */
 995        if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 996                return 0;
 997        if (vma->vm_file != file)
 998                return 0;
 999        if (vma->vm_ops && vma->vm_ops->close)
1000                return 0;
1001        if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1002                return 0;
1003        return 1;
1004}
1005
1006static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1007                                        struct anon_vma *anon_vma2,
1008                                        struct vm_area_struct *vma)
1009{
1010        /*
1011         * The list_is_singular() test is to avoid merging VMA cloned from
1012         * parents. This can improve scalability caused by anon_vma lock.
1013         */
1014        if ((!anon_vma1 || !anon_vma2) && (!vma ||
1015                list_is_singular(&vma->anon_vma_chain)))
1016                return 1;
1017        return anon_vma1 == anon_vma2;
1018}
1019
1020/*
1021 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1022 * in front of (at a lower virtual address and file offset than) the vma.
1023 *
1024 * We cannot merge two vmas if they have differently assigned (non-NULL)
1025 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1026 *
1027 * We don't check here for the merged mmap wrapping around the end of pagecache
1028 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1029 * wrap, nor mmaps which cover the final page at index -1UL.
1030 */
1031static int
1032can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1033                     struct anon_vma *anon_vma, struct file *file,
1034                     pgoff_t vm_pgoff,
1035                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1036{
1037        if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1038            is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1039                if (vma->vm_pgoff == vm_pgoff)
1040                        return 1;
1041        }
1042        return 0;
1043}
1044
1045/*
1046 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1047 * beyond (at a higher virtual address and file offset than) the vma.
1048 *
1049 * We cannot merge two vmas if they have differently assigned (non-NULL)
1050 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1051 */
1052static int
1053can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1054                    struct anon_vma *anon_vma, struct file *file,
1055                    pgoff_t vm_pgoff,
1056                    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1057{
1058        if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1059            is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1060                pgoff_t vm_pglen;
1061                vm_pglen = vma_pages(vma);
1062                if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1063                        return 1;
1064        }
1065        return 0;
1066}
1067
1068/*
1069 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1070 * whether that can be merged with its predecessor or its successor.
1071 * Or both (it neatly fills a hole).
1072 *
1073 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1074 * certain not to be mapped by the time vma_merge is called; but when
1075 * called for mprotect, it is certain to be already mapped (either at
1076 * an offset within prev, or at the start of next), and the flags of
1077 * this area are about to be changed to vm_flags - and the no-change
1078 * case has already been eliminated.
1079 *
1080 * The following mprotect cases have to be considered, where AAAA is
1081 * the area passed down from mprotect_fixup, never extending beyond one
1082 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1083 *
1084 *     AAAA             AAAA                AAAA          AAAA
1085 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1086 *    cannot merge    might become    might become    might become
1087 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1088 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1089 *    mremap move:                                    PPPPXXXXXXXX 8
1090 *        AAAA
1091 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1092 *    might become    case 1 below    case 2 below    case 3 below
1093 *
1094 * It is important for case 8 that the the vma NNNN overlapping the
1095 * region AAAA is never going to extended over XXXX. Instead XXXX must
1096 * be extended in region AAAA and NNNN must be removed. This way in
1097 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1098 * rmap_locks, the properties of the merged vma will be already
1099 * correct for the whole merged range. Some of those properties like
1100 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1101 * be correct for the whole merged range immediately after the
1102 * rmap_locks are released. Otherwise if XXXX would be removed and
1103 * NNNN would be extended over the XXXX range, remove_migration_ptes
1104 * or other rmap walkers (if working on addresses beyond the "end"
1105 * parameter) may establish ptes with the wrong permissions of NNNN
1106 * instead of the right permissions of XXXX.
1107 */
1108struct vm_area_struct *vma_merge(struct mm_struct *mm,
1109                        struct vm_area_struct *prev, unsigned long addr,
1110                        unsigned long end, unsigned long vm_flags,
1111                        struct anon_vma *anon_vma, struct file *file,
1112                        pgoff_t pgoff, struct mempolicy *policy,
1113                        struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1114{
1115        pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1116        struct vm_area_struct *area, *next;
1117        int err;
1118
1119        /*
1120         * We later require that vma->vm_flags == vm_flags,
1121         * so this tests vma->vm_flags & VM_SPECIAL, too.
1122         */
1123        if (vm_flags & VM_SPECIAL)
1124                return NULL;
1125
1126        if (prev)
1127                next = prev->vm_next;
1128        else
1129                next = mm->mmap;
1130        area = next;
1131        if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1132                next = next->vm_next;
1133
1134        /* verify some invariant that must be enforced by the caller */
1135        VM_WARN_ON(prev && addr <= prev->vm_start);
1136        VM_WARN_ON(area && end > area->vm_end);
1137        VM_WARN_ON(addr >= end);
1138
1139        /*
1140         * Can it merge with the predecessor?
1141         */
1142        if (prev && prev->vm_end == addr &&
1143                        mpol_equal(vma_policy(prev), policy) &&
1144                        can_vma_merge_after(prev, vm_flags,
1145                                            anon_vma, file, pgoff,
1146                                            vm_userfaultfd_ctx)) {
1147                /*
1148                 * OK, it can.  Can we now merge in the successor as well?
1149                 */
1150                if (next && end == next->vm_start &&
1151                                mpol_equal(policy, vma_policy(next)) &&
1152                                can_vma_merge_before(next, vm_flags,
1153                                                     anon_vma, file,
1154                                                     pgoff+pglen,
1155                                                     vm_userfaultfd_ctx) &&
1156                                is_mergeable_anon_vma(prev->anon_vma,
1157                                                      next->anon_vma, NULL)) {
1158                                                        /* cases 1, 6 */
1159                        err = __vma_adjust(prev, prev->vm_start,
1160                                         next->vm_end, prev->vm_pgoff, NULL,
1161                                         prev);
1162                } else                                  /* cases 2, 5, 7 */
1163                        err = __vma_adjust(prev, prev->vm_start,
1164                                         end, prev->vm_pgoff, NULL, prev);
1165                if (err)
1166                        return NULL;
1167                khugepaged_enter_vma_merge(prev, vm_flags);
1168                return prev;
1169        }
1170
1171        /*
1172         * Can this new request be merged in front of next?
1173         */
1174        if (next && end == next->vm_start &&
1175                        mpol_equal(policy, vma_policy(next)) &&
1176                        can_vma_merge_before(next, vm_flags,
1177                                             anon_vma, file, pgoff+pglen,
1178                                             vm_userfaultfd_ctx)) {
1179                if (prev && addr < prev->vm_end)        /* case 4 */
1180                        err = __vma_adjust(prev, prev->vm_start,
1181                                         addr, prev->vm_pgoff, NULL, next);
1182                else {                                  /* cases 3, 8 */
1183                        err = __vma_adjust(area, addr, next->vm_end,
1184                                         next->vm_pgoff - pglen, NULL, next);
1185                        /*
1186                         * In case 3 area is already equal to next and
1187                         * this is a noop, but in case 8 "area" has
1188                         * been removed and next was expanded over it.
1189                         */
1190                        area = next;
1191                }
1192                if (err)
1193                        return NULL;
1194                khugepaged_enter_vma_merge(area, vm_flags);
1195                return area;
1196        }
1197
1198        return NULL;
1199}
1200
1201/*
1202 * Rough compatbility check to quickly see if it's even worth looking
1203 * at sharing an anon_vma.
1204 *
1205 * They need to have the same vm_file, and the flags can only differ
1206 * in things that mprotect may change.
1207 *
1208 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1209 * we can merge the two vma's. For example, we refuse to merge a vma if
1210 * there is a vm_ops->close() function, because that indicates that the
1211 * driver is doing some kind of reference counting. But that doesn't
1212 * really matter for the anon_vma sharing case.
1213 */
1214static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1215{
1216        return a->vm_end == b->vm_start &&
1217                mpol_equal(vma_policy(a), vma_policy(b)) &&
1218                a->vm_file == b->vm_file &&
1219                !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1220                b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1221}
1222
1223/*
1224 * Do some basic sanity checking to see if we can re-use the anon_vma
1225 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1226 * the same as 'old', the other will be the new one that is trying
1227 * to share the anon_vma.
1228 *
1229 * NOTE! This runs with mm_sem held for reading, so it is possible that
1230 * the anon_vma of 'old' is concurrently in the process of being set up
1231 * by another page fault trying to merge _that_. But that's ok: if it
1232 * is being set up, that automatically means that it will be a singleton
1233 * acceptable for merging, so we can do all of this optimistically. But
1234 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1235 *
1236 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1237 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1238 * is to return an anon_vma that is "complex" due to having gone through
1239 * a fork).
1240 *
1241 * We also make sure that the two vma's are compatible (adjacent,
1242 * and with the same memory policies). That's all stable, even with just
1243 * a read lock on the mm_sem.
1244 */
1245static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1246{
1247        if (anon_vma_compatible(a, b)) {
1248                struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1249
1250                if (anon_vma && list_is_singular(&old->anon_vma_chain))
1251                        return anon_vma;
1252        }
1253        return NULL;
1254}
1255
1256/*
1257 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1258 * neighbouring vmas for a suitable anon_vma, before it goes off
1259 * to allocate a new anon_vma.  It checks because a repetitive
1260 * sequence of mprotects and faults may otherwise lead to distinct
1261 * anon_vmas being allocated, preventing vma merge in subsequent
1262 * mprotect.
1263 */
1264struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1265{
1266        struct anon_vma *anon_vma;
1267        struct vm_area_struct *near;
1268
1269        near = vma->vm_next;
1270        if (!near)
1271                goto try_prev;
1272
1273        anon_vma = reusable_anon_vma(near, vma, near);
1274        if (anon_vma)
1275                return anon_vma;
1276try_prev:
1277        near = vma->vm_prev;
1278        if (!near)
1279                goto none;
1280
1281        anon_vma = reusable_anon_vma(near, near, vma);
1282        if (anon_vma)
1283                return anon_vma;
1284none:
1285        /*
1286         * There's no absolute need to look only at touching neighbours:
1287         * we could search further afield for "compatible" anon_vmas.
1288         * But it would probably just be a waste of time searching,
1289         * or lead to too many vmas hanging off the same anon_vma.
1290         * We're trying to allow mprotect remerging later on,
1291         * not trying to minimize memory used for anon_vmas.
1292         */
1293        return NULL;
1294}
1295
1296/*
1297 * If a hint addr is less than mmap_min_addr change hint to be as
1298 * low as possible but still greater than mmap_min_addr
1299 */
1300static inline unsigned long round_hint_to_min(unsigned long hint)
1301{
1302        hint &= PAGE_MASK;
1303        if (((void *)hint != NULL) &&
1304            (hint < mmap_min_addr))
1305                return PAGE_ALIGN(mmap_min_addr);
1306        return hint;
1307}
1308
1309static inline int mlock_future_check(struct mm_struct *mm,
1310                                     unsigned long flags,
1311                                     unsigned long len)
1312{
1313        unsigned long locked, lock_limit;
1314
1315        /*  mlock MCL_FUTURE? */
1316        if (flags & VM_LOCKED) {
1317                locked = len >> PAGE_SHIFT;
1318                locked += mm->locked_vm;
1319                lock_limit = rlimit(RLIMIT_MEMLOCK);
1320                lock_limit >>= PAGE_SHIFT;
1321                if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1322                        return -EAGAIN;
1323        }
1324        return 0;
1325}
1326
1327static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1328{
1329        if (S_ISREG(inode->i_mode))
1330                return MAX_LFS_FILESIZE;
1331
1332        if (S_ISBLK(inode->i_mode))
1333                return MAX_LFS_FILESIZE;
1334
1335        /* Special "we do even unsigned file positions" case */
1336        if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1337                return 0;
1338
1339        /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1340        return ULONG_MAX;
1341}
1342
1343static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1344                                unsigned long pgoff, unsigned long len)
1345{
1346        u64 maxsize = file_mmap_size_max(file, inode);
1347
1348        if (maxsize && len > maxsize)
1349                return false;
1350        maxsize -= len;
1351        if (pgoff > maxsize >> PAGE_SHIFT)
1352                return false;
1353        return true;
1354}
1355
1356/*
1357 * The caller must hold down_write(&current->mm->mmap_sem).
1358 */
1359unsigned long do_mmap(struct file *file, unsigned long addr,
1360                        unsigned long len, unsigned long prot,
1361                        unsigned long flags, vm_flags_t vm_flags,
1362                        unsigned long pgoff, unsigned long *populate,
1363                        struct list_head *uf)
1364{
1365        struct mm_struct *mm = current->mm;
1366        int pkey = 0;
1367
1368        *populate = 0;
1369
1370        if (!len)
1371                return -EINVAL;
1372
1373        /*
1374         * Does the application expect PROT_READ to imply PROT_EXEC?
1375         *
1376         * (the exception is when the underlying filesystem is noexec
1377         *  mounted, in which case we dont add PROT_EXEC.)
1378         */
1379        if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1380                if (!(file && path_noexec(&file->f_path)))
1381                        prot |= PROT_EXEC;
1382
1383        /* force arch specific MAP_FIXED handling in get_unmapped_area */
1384        if (flags & MAP_FIXED_NOREPLACE)
1385                flags |= MAP_FIXED;
1386
1387        if (!(flags & MAP_FIXED))
1388                addr = round_hint_to_min(addr);
1389
1390        /* Careful about overflows.. */
1391        len = PAGE_ALIGN(len);
1392        if (!len)
1393                return -ENOMEM;
1394
1395        /* offset overflow? */
1396        if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1397                return -EOVERFLOW;
1398
1399        /* Too many mappings? */
1400        if (mm->map_count > sysctl_max_map_count)
1401                return -ENOMEM;
1402
1403        /* Obtain the address to map to. we verify (or select) it and ensure
1404         * that it represents a valid section of the address space.
1405         */
1406        addr = get_unmapped_area(file, addr, len, pgoff, flags);
1407        if (offset_in_page(addr))
1408                return addr;
1409
1410        if (flags & MAP_FIXED_NOREPLACE) {
1411                struct vm_area_struct *vma = find_vma(mm, addr);
1412
1413                if (vma && vma->vm_start <= addr)
1414                        return -EEXIST;
1415        }
1416
1417        if (prot == PROT_EXEC) {
1418                pkey = execute_only_pkey(mm);
1419                if (pkey < 0)
1420                        pkey = 0;
1421        }
1422
1423        /* Do simple checking here so the lower-level routines won't have
1424         * to. we assume access permissions have been handled by the open
1425         * of the memory object, so we don't do any here.
1426         */
1427        vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1428                        mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1429
1430        if (flags & MAP_LOCKED)
1431                if (!can_do_mlock())
1432                        return -EPERM;
1433
1434        if (mlock_future_check(mm, vm_flags, len))
1435                return -EAGAIN;
1436
1437        if (file) {
1438                struct inode *inode = file_inode(file);
1439                unsigned long flags_mask;
1440
1441                if (!file_mmap_ok(file, inode, pgoff, len))
1442                        return -EOVERFLOW;
1443
1444                flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1445
1446                switch (flags & MAP_TYPE) {
1447                case MAP_SHARED:
1448                        /*
1449                         * Force use of MAP_SHARED_VALIDATE with non-legacy
1450                         * flags. E.g. MAP_SYNC is dangerous to use with
1451                         * MAP_SHARED as you don't know which consistency model
1452                         * you will get. We silently ignore unsupported flags
1453                         * with MAP_SHARED to preserve backward compatibility.
1454                         */
1455                        flags &= LEGACY_MAP_MASK;
1456                        /* fall through */
1457                case MAP_SHARED_VALIDATE:
1458                        if (flags & ~flags_mask)
1459                                return -EOPNOTSUPP;
1460                        if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1461                                return -EACCES;
1462
1463                        /*
1464                         * Make sure we don't allow writing to an append-only
1465                         * file..
1466                         */
1467                        if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1468                                return -EACCES;
1469
1470                        /*
1471                         * Make sure there are no mandatory locks on the file.
1472                         */
1473                        if (locks_verify_locked(file))
1474                                return -EAGAIN;
1475
1476                        vm_flags |= VM_SHARED | VM_MAYSHARE;
1477                        if (!(file->f_mode & FMODE_WRITE))
1478                                vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1479
1480                        /* fall through */
1481                case MAP_PRIVATE:
1482                        if (!(file->f_mode & FMODE_READ))
1483                                return -EACCES;
1484                        if (path_noexec(&file->f_path)) {
1485                                if (vm_flags & VM_EXEC)
1486                                        return -EPERM;
1487                                vm_flags &= ~VM_MAYEXEC;
1488                        }
1489
1490                        if (!file->f_op->mmap)
1491                                return -ENODEV;
1492                        if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1493                                return -EINVAL;
1494                        break;
1495
1496                default:
1497                        return -EINVAL;
1498                }
1499        } else {
1500                switch (flags & MAP_TYPE) {
1501                case MAP_SHARED:
1502                        if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1503                                return -EINVAL;
1504                        /*
1505                         * Ignore pgoff.
1506                         */
1507                        pgoff = 0;
1508                        vm_flags |= VM_SHARED | VM_MAYSHARE;
1509                        break;
1510                case MAP_PRIVATE:
1511                        /*
1512                         * Set pgoff according to addr for anon_vma.
1513                         */
1514                        pgoff = addr >> PAGE_SHIFT;
1515                        break;
1516                default:
1517                        return -EINVAL;
1518                }
1519        }
1520
1521        /*
1522         * Set 'VM_NORESERVE' if we should not account for the
1523         * memory use of this mapping.
1524         */
1525        if (flags & MAP_NORESERVE) {
1526                /* We honor MAP_NORESERVE if allowed to overcommit */
1527                if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1528                        vm_flags |= VM_NORESERVE;
1529
1530                /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1531                if (file && is_file_hugepages(file))
1532                        vm_flags |= VM_NORESERVE;
1533        }
1534
1535        addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1536        if (!IS_ERR_VALUE(addr) &&
1537            ((vm_flags & VM_LOCKED) ||
1538             (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1539                *populate = len;
1540        return addr;
1541}
1542
1543unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1544                              unsigned long prot, unsigned long flags,
1545                              unsigned long fd, unsigned long pgoff)
1546{
1547        struct file *file = NULL;
1548        unsigned long retval;
1549
1550        if (!(flags & MAP_ANONYMOUS)) {
1551                audit_mmap_fd(fd, flags);
1552                file = fget(fd);
1553                if (!file)
1554                        return -EBADF;
1555                if (is_file_hugepages(file))
1556                        len = ALIGN(len, huge_page_size(hstate_file(file)));
1557                retval = -EINVAL;
1558                if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1559                        goto out_fput;
1560        } else if (flags & MAP_HUGETLB) {
1561                struct user_struct *user = NULL;
1562                struct hstate *hs;
1563
1564                hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1565                if (!hs)
1566                        return -EINVAL;
1567
1568                len = ALIGN(len, huge_page_size(hs));
1569                /*
1570                 * VM_NORESERVE is used because the reservations will be
1571                 * taken when vm_ops->mmap() is called
1572                 * A dummy user value is used because we are not locking
1573                 * memory so no accounting is necessary
1574                 */
1575                file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1576                                VM_NORESERVE,
1577                                &user, HUGETLB_ANONHUGE_INODE,
1578                                (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1579                if (IS_ERR(file))
1580                        return PTR_ERR(file);
1581        }
1582
1583        flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1584
1585        retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1586out_fput:
1587        if (file)
1588                fput(file);
1589        return retval;
1590}
1591
1592SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1593                unsigned long, prot, unsigned long, flags,
1594                unsigned long, fd, unsigned long, pgoff)
1595{
1596        return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1597}
1598
1599#ifdef __ARCH_WANT_SYS_OLD_MMAP
1600struct mmap_arg_struct {
1601        unsigned long addr;
1602        unsigned long len;
1603        unsigned long prot;
1604        unsigned long flags;
1605        unsigned long fd;
1606        unsigned long offset;
1607};
1608
1609SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1610{
1611        struct mmap_arg_struct a;
1612
1613        if (copy_from_user(&a, arg, sizeof(a)))
1614                return -EFAULT;
1615        if (offset_in_page(a.offset))
1616                return -EINVAL;
1617
1618        return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1619                               a.offset >> PAGE_SHIFT);
1620}
1621#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1622
1623/*
1624 * Some shared mappigns will want the pages marked read-only
1625 * to track write events. If so, we'll downgrade vm_page_prot
1626 * to the private version (using protection_map[] without the
1627 * VM_SHARED bit).
1628 */
1629int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1630{
1631        vm_flags_t vm_flags = vma->vm_flags;
1632        const struct vm_operations_struct *vm_ops = vma->vm_ops;
1633
1634        /* If it was private or non-writable, the write bit is already clear */
1635        if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1636                return 0;
1637
1638        /* The backer wishes to know when pages are first written to? */
1639        if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1640                return 1;
1641
1642        /* The open routine did something to the protections that pgprot_modify
1643         * won't preserve? */
1644        if (pgprot_val(vm_page_prot) !=
1645            pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1646                return 0;
1647
1648        /* Do we need to track softdirty? */
1649        if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1650                return 1;
1651
1652        /* Specialty mapping? */
1653        if (vm_flags & VM_PFNMAP)
1654                return 0;
1655
1656        /* Can the mapping track the dirty pages? */
1657        return vma->vm_file && vma->vm_file->f_mapping &&
1658                mapping_cap_account_dirty(vma->vm_file->f_mapping);
1659}
1660
1661/*
1662 * We account for memory if it's a private writeable mapping,
1663 * not hugepages and VM_NORESERVE wasn't set.
1664 */
1665static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1666{
1667        /*
1668         * hugetlb has its own accounting separate from the core VM
1669         * VM_HUGETLB may not be set yet so we cannot check for that flag.
1670         */
1671        if (file && is_file_hugepages(file))
1672                return 0;
1673
1674        return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1675}
1676
1677unsigned long mmap_region(struct file *file, unsigned long addr,
1678                unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1679                struct list_head *uf)
1680{
1681        struct mm_struct *mm = current->mm;
1682        struct vm_area_struct *vma, *prev;
1683        int error;
1684        struct rb_node **rb_link, *rb_parent;
1685        unsigned long charged = 0;
1686
1687        /* Check against address space limit. */
1688        if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1689                unsigned long nr_pages;
1690
1691                /*
1692                 * MAP_FIXED may remove pages of mappings that intersects with
1693                 * requested mapping. Account for the pages it would unmap.
1694                 */
1695                nr_pages = count_vma_pages_range(mm, addr, addr + len);
1696
1697                if (!may_expand_vm(mm, vm_flags,
1698                                        (len >> PAGE_SHIFT) - nr_pages))
1699                        return -ENOMEM;
1700        }
1701
1702        /* Clear old maps */
1703        while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1704                              &rb_parent)) {
1705                if (do_munmap(mm, addr, len, uf))
1706                        return -ENOMEM;
1707        }
1708
1709        /*
1710         * Private writable mapping: check memory availability
1711         */
1712        if (accountable_mapping(file, vm_flags)) {
1713                charged = len >> PAGE_SHIFT;
1714                if (security_vm_enough_memory_mm(mm, charged))
1715                        return -ENOMEM;
1716                vm_flags |= VM_ACCOUNT;
1717        }
1718
1719        /*
1720         * Can we just expand an old mapping?
1721         */
1722        vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1723                        NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1724        if (vma)
1725                goto out;
1726
1727        /*
1728         * Determine the object being mapped and call the appropriate
1729         * specific mapper. the address has already been validated, but
1730         * not unmapped, but the maps are removed from the list.
1731         */
1732        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1733        if (!vma) {
1734                error = -ENOMEM;
1735                goto unacct_error;
1736        }
1737
1738        vma->vm_mm = mm;
1739        vma->vm_start = addr;
1740        vma->vm_end = addr + len;
1741        vma->vm_flags = vm_flags;
1742        vma->vm_page_prot = vm_get_page_prot(vm_flags);
1743        vma->vm_pgoff = pgoff;
1744        INIT_LIST_HEAD(&vma->anon_vma_chain);
1745
1746        if (file) {
1747                if (vm_flags & VM_DENYWRITE) {
1748                        error = deny_write_access(file);
1749                        if (error)
1750                                goto free_vma;
1751                }
1752                if (vm_flags & VM_SHARED) {
1753                        error = mapping_map_writable(file->f_mapping);
1754                        if (error)
1755                                goto allow_write_and_free_vma;
1756                }
1757
1758                /* ->mmap() can change vma->vm_file, but must guarantee that
1759                 * vma_link() below can deny write-access if VM_DENYWRITE is set
1760                 * and map writably if VM_SHARED is set. This usually means the
1761                 * new file must not have been exposed to user-space, yet.
1762                 */
1763                vma->vm_file = get_file(file);
1764                error = call_mmap(file, vma);
1765                if (error)
1766                        goto unmap_and_free_vma;
1767
1768                /* Can addr have changed??
1769                 *
1770                 * Answer: Yes, several device drivers can do it in their
1771                 *         f_op->mmap method. -DaveM
1772                 * Bug: If addr is changed, prev, rb_link, rb_parent should
1773                 *      be updated for vma_link()
1774                 */
1775                WARN_ON_ONCE(addr != vma->vm_start);
1776
1777                addr = vma->vm_start;
1778                vm_flags = vma->vm_flags;
1779        } else if (vm_flags & VM_SHARED) {
1780                error = shmem_zero_setup(vma);
1781                if (error)
1782                        goto free_vma;
1783        }
1784
1785        vma_link(mm, vma, prev, rb_link, rb_parent);
1786        /* Once vma denies write, undo our temporary denial count */
1787        if (file) {
1788                if (vm_flags & VM_SHARED)
1789                        mapping_unmap_writable(file->f_mapping);
1790                if (vm_flags & VM_DENYWRITE)
1791                        allow_write_access(file);
1792        }
1793        file = vma->vm_file;
1794out:
1795        perf_event_mmap(vma);
1796
1797        vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1798        if (vm_flags & VM_LOCKED) {
1799                if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1800                                        vma == get_gate_vma(current->mm)))
1801                        mm->locked_vm += (len >> PAGE_SHIFT);
1802                else
1803                        vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1804        }
1805
1806        if (file)
1807                uprobe_mmap(vma);
1808
1809        /*
1810         * New (or expanded) vma always get soft dirty status.
1811         * Otherwise user-space soft-dirty page tracker won't
1812         * be able to distinguish situation when vma area unmapped,
1813         * then new mapped in-place (which must be aimed as
1814         * a completely new data area).
1815         */
1816        vma->vm_flags |= VM_SOFTDIRTY;
1817
1818        vma_set_page_prot(vma);
1819
1820        return addr;
1821
1822unmap_and_free_vma:
1823        vma->vm_file = NULL;
1824        fput(file);
1825
1826        /* Undo any partial mapping done by a device driver. */
1827        unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1828        charged = 0;
1829        if (vm_flags & VM_SHARED)
1830                mapping_unmap_writable(file->f_mapping);
1831allow_write_and_free_vma:
1832        if (vm_flags & VM_DENYWRITE)
1833                allow_write_access(file);
1834free_vma:
1835        kmem_cache_free(vm_area_cachep, vma);
1836unacct_error:
1837        if (charged)
1838                vm_unacct_memory(charged);
1839        return error;
1840}
1841
1842unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1843{
1844        /*
1845         * We implement the search by looking for an rbtree node that
1846         * immediately follows a suitable gap. That is,
1847         * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1848         * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1849         * - gap_end - gap_start >= length
1850         */
1851
1852        struct mm_struct *mm = current->mm;
1853        struct vm_area_struct *vma;
1854        unsigned long length, low_limit, high_limit, gap_start, gap_end;
1855
1856        /* Adjust search length to account for worst case alignment overhead */
1857        length = info->length + info->align_mask;
1858        if (length < info->length)
1859                return -ENOMEM;
1860
1861        /* Adjust search limits by the desired length */
1862        if (info->high_limit < length)
1863                return -ENOMEM;
1864        high_limit = info->high_limit - length;
1865
1866        if (info->low_limit > high_limit)
1867                return -ENOMEM;
1868        low_limit = info->low_limit + length;
1869
1870        /* Check if rbtree root looks promising */
1871        if (RB_EMPTY_ROOT(&mm->mm_rb))
1872                goto check_highest;
1873        vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1874        if (vma->rb_subtree_gap < length)
1875                goto check_highest;
1876
1877        while (true) {
1878                /* Visit left subtree if it looks promising */
1879                gap_end = vm_start_gap(vma);
1880                if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1881                        struct vm_area_struct *left =
1882                                rb_entry(vma->vm_rb.rb_left,
1883                                         struct vm_area_struct, vm_rb);
1884                        if (left->rb_subtree_gap >= length) {
1885                                vma = left;
1886                                continue;
1887                        }
1888                }
1889
1890                gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1891check_current:
1892                /* Check if current node has a suitable gap */
1893                if (gap_start > high_limit)
1894                        return -ENOMEM;
1895                if (gap_end >= low_limit &&
1896                    gap_end > gap_start && gap_end - gap_start >= length)
1897                        goto found;
1898
1899                /* Visit right subtree if it looks promising */
1900                if (vma->vm_rb.rb_right) {
1901                        struct vm_area_struct *right =
1902                                rb_entry(vma->vm_rb.rb_right,
1903                                         struct vm_area_struct, vm_rb);
1904                        if (right->rb_subtree_gap >= length) {
1905                                vma = right;
1906                                continue;
1907                        }
1908                }
1909
1910                /* Go back up the rbtree to find next candidate node */
1911                while (true) {
1912                        struct rb_node *prev = &vma->vm_rb;
1913                        if (!rb_parent(prev))
1914                                goto check_highest;
1915                        vma = rb_entry(rb_parent(prev),
1916                                       struct vm_area_struct, vm_rb);
1917                        if (prev == vma->vm_rb.rb_left) {
1918                                gap_start = vm_end_gap(vma->vm_prev);
1919                                gap_end = vm_start_gap(vma);
1920                                goto check_current;
1921                        }
1922                }
1923        }
1924
1925check_highest:
1926        /* Check highest gap, which does not precede any rbtree node */
1927        gap_start = mm->highest_vm_end;
1928        gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1929        if (gap_start > high_limit)
1930                return -ENOMEM;
1931
1932found:
1933        /* We found a suitable gap. Clip it with the original low_limit. */
1934        if (gap_start < info->low_limit)
1935                gap_start = info->low_limit;
1936
1937        /* Adjust gap address to the desired alignment */
1938        gap_start += (info->align_offset - gap_start) & info->align_mask;
1939
1940        VM_BUG_ON(gap_start + info->length > info->high_limit);
1941        VM_BUG_ON(gap_start + info->length > gap_end);
1942        return gap_start;
1943}
1944
1945unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1946{
1947        struct mm_struct *mm = current->mm;
1948        struct vm_area_struct *vma;
1949        unsigned long length, low_limit, high_limit, gap_start, gap_end;
1950
1951        /* Adjust search length to account for worst case alignment overhead */
1952        length = info->length + info->align_mask;
1953        if (length < info->length)
1954                return -ENOMEM;
1955
1956        /*
1957         * Adjust search limits by the desired length.
1958         * See implementation comment at top of unmapped_area().
1959         */
1960        gap_end = info->high_limit;
1961        if (gap_end < length)
1962                return -ENOMEM;
1963        high_limit = gap_end - length;
1964
1965        if (info->low_limit > high_limit)
1966                return -ENOMEM;
1967        low_limit = info->low_limit + length;
1968
1969        /* Check highest gap, which does not precede any rbtree node */
1970        gap_start = mm->highest_vm_end;
1971        if (gap_start <= high_limit)
1972                goto found_highest;
1973
1974        /* Check if rbtree root looks promising */
1975        if (RB_EMPTY_ROOT(&mm->mm_rb))
1976                return -ENOMEM;
1977        vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1978        if (vma->rb_subtree_gap < length)
1979                return -ENOMEM;
1980
1981        while (true) {
1982                /* Visit right subtree if it looks promising */
1983                gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1984                if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1985                        struct vm_area_struct *right =
1986                                rb_entry(vma->vm_rb.rb_right,
1987                                         struct vm_area_struct, vm_rb);
1988                        if (right->rb_subtree_gap >= length) {
1989                                vma = right;
1990                                continue;
1991                        }
1992                }
1993
1994check_current:
1995                /* Check if current node has a suitable gap */
1996                gap_end = vm_start_gap(vma);
1997                if (gap_end < low_limit)
1998                        return -ENOMEM;
1999                if (gap_start <= high_limit &&
2000                    gap_end > gap_start && gap_end - gap_start >= length)
2001                        goto found;
2002
2003                /* Visit left subtree if it looks promising */
2004                if (vma->vm_rb.rb_left) {
2005                        struct vm_area_struct *left =
2006                                rb_entry(vma->vm_rb.rb_left,
2007                                         struct vm_area_struct, vm_rb);
2008                        if (left->rb_subtree_gap >= length) {
2009                                vma = left;
2010                                continue;
2011                        }
2012                }
2013
2014                /* Go back up the rbtree to find next candidate node */
2015                while (true) {
2016                        struct rb_node *prev = &vma->vm_rb;
2017                        if (!rb_parent(prev))
2018                                return -ENOMEM;
2019                        vma = rb_entry(rb_parent(prev),
2020                                       struct vm_area_struct, vm_rb);
2021                        if (prev == vma->vm_rb.rb_right) {
2022                                gap_start = vma->vm_prev ?
2023                                        vm_end_gap(vma->vm_prev) : 0;
2024                                goto check_current;
2025                        }
2026                }
2027        }
2028
2029found:
2030        /* We found a suitable gap. Clip it with the original high_limit. */
2031        if (gap_end > info->high_limit)
2032                gap_end = info->high_limit;
2033
2034found_highest:
2035        /* Compute highest gap address at the desired alignment */
2036        gap_end -= info->length;
2037        gap_end -= (gap_end - info->align_offset) & info->align_mask;
2038
2039        VM_BUG_ON(gap_end < info->low_limit);
2040        VM_BUG_ON(gap_end < gap_start);
2041        return gap_end;
2042}
2043
2044/* Get an address range which is currently unmapped.
2045 * For shmat() with addr=0.
2046 *
2047 * Ugly calling convention alert:
2048 * Return value with the low bits set means error value,
2049 * ie
2050 *      if (ret & ~PAGE_MASK)
2051 *              error = ret;
2052 *
2053 * This function "knows" that -ENOMEM has the bits set.
2054 */
2055#ifndef HAVE_ARCH_UNMAPPED_AREA
2056unsigned long
2057arch_get_unmapped_area(struct file *filp, unsigned long addr,
2058                unsigned long len, unsigned long pgoff, unsigned long flags)
2059{
2060        struct mm_struct *mm = current->mm;
2061        struct vm_area_struct *vma, *prev;
2062        struct vm_unmapped_area_info info;
2063
2064        if (len > TASK_SIZE - mmap_min_addr)
2065                return -ENOMEM;
2066
2067        if (flags & MAP_FIXED)
2068                return addr;
2069
2070        if (addr) {
2071                addr = PAGE_ALIGN(addr);
2072                vma = find_vma_prev(mm, addr, &prev);
2073                if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2074                    (!vma || addr + len <= vm_start_gap(vma)) &&
2075                    (!prev || addr >= vm_end_gap(prev)))
2076                        return addr;
2077        }
2078
2079        info.flags = 0;
2080        info.length = len;
2081        info.low_limit = mm->mmap_base;
2082        info.high_limit = TASK_SIZE;
2083        info.align_mask = 0;
2084        return vm_unmapped_area(&info);
2085}
2086#endif
2087
2088/*
2089 * This mmap-allocator allocates new areas top-down from below the
2090 * stack's low limit (the base):
2091 */
2092#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2093unsigned long
2094arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2095                          const unsigned long len, const unsigned long pgoff,
2096                          const unsigned long flags)
2097{
2098        struct vm_area_struct *vma, *prev;
2099        struct mm_struct *mm = current->mm;
2100        unsigned long addr = addr0;
2101        struct vm_unmapped_area_info info;
2102
2103        /* requested length too big for entire address space */
2104        if (len > TASK_SIZE - mmap_min_addr)
2105                return -ENOMEM;
2106
2107        if (flags & MAP_FIXED)
2108                return addr;
2109
2110        /* requesting a specific address */
2111        if (addr) {
2112                addr = PAGE_ALIGN(addr);
2113                vma = find_vma_prev(mm, addr, &prev);
2114                if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2115                                (!vma || addr + len <= vm_start_gap(vma)) &&
2116                                (!prev || addr >= vm_end_gap(prev)))
2117                        return addr;
2118        }
2119
2120        info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2121        info.length = len;
2122        info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2123        info.high_limit = mm->mmap_base;
2124        info.align_mask = 0;
2125        addr = vm_unmapped_area(&info);
2126
2127        /*
2128         * A failed mmap() very likely causes application failure,
2129         * so fall back to the bottom-up function here. This scenario
2130         * can happen with large stack limits and large mmap()
2131         * allocations.
2132         */
2133        if (offset_in_page(addr)) {
2134                VM_BUG_ON(addr != -ENOMEM);
2135                info.flags = 0;
2136                info.low_limit = TASK_UNMAPPED_BASE;
2137                info.high_limit = TASK_SIZE;
2138                addr = vm_unmapped_area(&info);
2139        }
2140
2141        return addr;
2142}
2143#endif
2144
2145unsigned long
2146get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2147                unsigned long pgoff, unsigned long flags)
2148{
2149        unsigned long (*get_area)(struct file *, unsigned long,
2150                                  unsigned long, unsigned long, unsigned long);
2151
2152        unsigned long error = arch_mmap_check(addr, len, flags);
2153        if (error)
2154                return error;
2155
2156        /* Careful about overflows.. */
2157        if (len > TASK_SIZE)
2158                return -ENOMEM;
2159
2160        get_area = current->mm->get_unmapped_area;
2161        if (file) {
2162                if (file->f_op->get_unmapped_area)
2163                        get_area = file->f_op->get_unmapped_area;
2164        } else if (flags & MAP_SHARED) {
2165                /*
2166                 * mmap_region() will call shmem_zero_setup() to create a file,
2167                 * so use shmem's get_unmapped_area in case it can be huge.
2168                 * do_mmap_pgoff() will clear pgoff, so match alignment.
2169                 */
2170                pgoff = 0;
2171                get_area = shmem_get_unmapped_area;
2172        }
2173
2174        addr = get_area(file, addr, len, pgoff, flags);
2175        if (IS_ERR_VALUE(addr))
2176                return addr;
2177
2178        if (addr > TASK_SIZE - len)
2179                return -ENOMEM;
2180        if (offset_in_page(addr))
2181                return -EINVAL;
2182
2183        error = security_mmap_addr(addr);
2184        return error ? error : addr;
2185}
2186
2187EXPORT_SYMBOL(get_unmapped_area);
2188
2189/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2190struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2191{
2192        struct rb_node *rb_node;
2193        struct vm_area_struct *vma;
2194
2195        /* Check the cache first. */
2196        vma = vmacache_find(mm, addr);
2197        if (likely(vma))
2198                return vma;
2199
2200        rb_node = mm->mm_rb.rb_node;
2201
2202        while (rb_node) {
2203                struct vm_area_struct *tmp;
2204
2205                tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2206
2207                if (tmp->vm_end > addr) {
2208                        vma = tmp;
2209                        if (tmp->vm_start <= addr)
2210                                break;
2211                        rb_node = rb_node->rb_left;
2212                } else
2213                        rb_node = rb_node->rb_right;
2214        }
2215
2216        if (vma)
2217                vmacache_update(addr, vma);
2218        return vma;
2219}
2220
2221EXPORT_SYMBOL(find_vma);
2222
2223/*
2224 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2225 */
2226struct vm_area_struct *
2227find_vma_prev(struct mm_struct *mm, unsigned long addr,
2228                        struct vm_area_struct **pprev)
2229{
2230        struct vm_area_struct *vma;
2231
2232        vma = find_vma(mm, addr);
2233        if (vma) {
2234                *pprev = vma->vm_prev;
2235        } else {
2236                struct rb_node *rb_node = mm->mm_rb.rb_node;
2237                *pprev = NULL;
2238                while (rb_node) {
2239                        *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2240                        rb_node = rb_node->rb_right;
2241                }
2242        }
2243        return vma;
2244}
2245
2246/*
2247 * Verify that the stack growth is acceptable and
2248 * update accounting. This is shared with both the
2249 * grow-up and grow-down cases.
2250 */
2251static int acct_stack_growth(struct vm_area_struct *vma,
2252                             unsigned long size, unsigned long grow)
2253{
2254        struct mm_struct *mm = vma->vm_mm;
2255        unsigned long new_start;
2256
2257        /* address space limit tests */
2258        if (!may_expand_vm(mm, vma->vm_flags, grow))
2259                return -ENOMEM;
2260
2261        /* Stack limit test */
2262        if (size > rlimit(RLIMIT_STACK))
2263                return -ENOMEM;
2264
2265        /* mlock limit tests */
2266        if (vma->vm_flags & VM_LOCKED) {
2267                unsigned long locked;
2268                unsigned long limit;
2269                locked = mm->locked_vm + grow;
2270                limit = rlimit(RLIMIT_MEMLOCK);
2271                limit >>= PAGE_SHIFT;
2272                if (locked > limit && !capable(CAP_IPC_LOCK))
2273                        return -ENOMEM;
2274        }
2275
2276        /* Check to ensure the stack will not grow into a hugetlb-only region */
2277        new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2278                        vma->vm_end - size;
2279        if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2280                return -EFAULT;
2281
2282        /*
2283         * Overcommit..  This must be the final test, as it will
2284         * update security statistics.
2285         */
2286        if (security_vm_enough_memory_mm(mm, grow))
2287                return -ENOMEM;
2288
2289        return 0;
2290}
2291
2292#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2293/*
2294 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2295 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2296 */
2297int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2298{
2299        struct mm_struct *mm = vma->vm_mm;
2300        struct vm_area_struct *next;
2301        unsigned long gap_addr;
2302        int error = 0;
2303
2304        if (!(vma->vm_flags & VM_GROWSUP))
2305                return -EFAULT;
2306
2307        /* Guard against exceeding limits of the address space. */
2308        address &= PAGE_MASK;
2309        if (address >= (TASK_SIZE & PAGE_MASK))
2310                return -ENOMEM;
2311        address += PAGE_SIZE;
2312
2313        /* Enforce stack_guard_gap */
2314        gap_addr = address + stack_guard_gap;
2315
2316        /* Guard against overflow */
2317        if (gap_addr < address || gap_addr > TASK_SIZE)
2318                gap_addr = TASK_SIZE;
2319
2320        next = vma->vm_next;
2321        if (next && next->vm_start < gap_addr &&
2322                        (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2323                if (!(next->vm_flags & VM_GROWSUP))
2324                        return -ENOMEM;
2325                /* Check that both stack segments have the same anon_vma? */
2326        }
2327
2328        /* We must make sure the anon_vma is allocated. */
2329        if (unlikely(anon_vma_prepare(vma)))
2330                return -ENOMEM;
2331
2332        /*
2333         * vma->vm_start/vm_end cannot change under us because the caller
2334         * is required to hold the mmap_sem in read mode.  We need the
2335         * anon_vma lock to serialize against concurrent expand_stacks.
2336         */
2337        anon_vma_lock_write(vma->anon_vma);
2338
2339        /* Somebody else might have raced and expanded it already */
2340        if (address > vma->vm_end) {
2341                unsigned long size, grow;
2342
2343                size = address - vma->vm_start;
2344                grow = (address - vma->vm_end) >> PAGE_SHIFT;
2345
2346                error = -ENOMEM;
2347                if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2348                        error = acct_stack_growth(vma, size, grow);
2349                        if (!error) {
2350                                /*
2351                                 * vma_gap_update() doesn't support concurrent
2352                                 * updates, but we only hold a shared mmap_sem
2353                                 * lock here, so we need to protect against
2354                                 * concurrent vma expansions.
2355                                 * anon_vma_lock_write() doesn't help here, as
2356                                 * we don't guarantee that all growable vmas
2357                                 * in a mm share the same root anon vma.
2358                                 * So, we reuse mm->page_table_lock to guard
2359                                 * against concurrent vma expansions.
2360                                 */
2361                                spin_lock(&mm->page_table_lock);
2362                                if (vma->vm_flags & VM_LOCKED)
2363                                        mm->locked_vm += grow;
2364                                vm_stat_account(mm, vma->vm_flags, grow);
2365                                anon_vma_interval_tree_pre_update_vma(vma);
2366                                vma->vm_end = address;
2367                                anon_vma_interval_tree_post_update_vma(vma);
2368                                if (vma->vm_next)
2369                                        vma_gap_update(vma->vm_next);
2370                                else
2371                                        mm->highest_vm_end = vm_end_gap(vma);
2372                                spin_unlock(&mm->page_table_lock);
2373
2374                                perf_event_mmap(vma);
2375                        }
2376                }
2377        }
2378        anon_vma_unlock_write(vma->anon_vma);
2379        khugepaged_enter_vma_merge(vma, vma->vm_flags);
2380        validate_mm(mm);
2381        return error;
2382}
2383#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2384
2385/*
2386 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2387 */
2388int expand_downwards(struct vm_area_struct *vma,
2389                                   unsigned long address)
2390{
2391        struct mm_struct *mm = vma->vm_mm;
2392        struct vm_area_struct *prev;
2393        int error;
2394
2395        address &= PAGE_MASK;
2396        error = security_mmap_addr(address);
2397        if (error)
2398                return error;
2399
2400        /* Enforce stack_guard_gap */
2401        prev = vma->vm_prev;
2402        /* Check that both stack segments have the same anon_vma? */
2403        if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2404                        (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2405                if (address - prev->vm_end < stack_guard_gap)
2406                        return -ENOMEM;
2407        }
2408
2409        /* We must make sure the anon_vma is allocated. */
2410        if (unlikely(anon_vma_prepare(vma)))
2411                return -ENOMEM;
2412
2413        /*
2414         * vma->vm_start/vm_end cannot change under us because the caller
2415         * is required to hold the mmap_sem in read mode.  We need the
2416         * anon_vma lock to serialize against concurrent expand_stacks.
2417         */
2418        anon_vma_lock_write(vma->anon_vma);
2419
2420        /* Somebody else might have raced and expanded it already */
2421        if (address < vma->vm_start) {
2422                unsigned long size, grow;
2423
2424                size = vma->vm_end - address;
2425                grow = (vma->vm_start - address) >> PAGE_SHIFT;
2426
2427                error = -ENOMEM;
2428                if (grow <= vma->vm_pgoff) {
2429                        error = acct_stack_growth(vma, size, grow);
2430                        if (!error) {
2431                                /*
2432                                 * vma_gap_update() doesn't support concurrent
2433                                 * updates, but we only hold a shared mmap_sem
2434                                 * lock here, so we need to protect against
2435                                 * concurrent vma expansions.
2436                                 * anon_vma_lock_write() doesn't help here, as
2437                                 * we don't guarantee that all growable vmas
2438                                 * in a mm share the same root anon vma.
2439                                 * So, we reuse mm->page_table_lock to guard
2440                                 * against concurrent vma expansions.
2441                                 */
2442                                spin_lock(&mm->page_table_lock);
2443                                if (vma->vm_flags & VM_LOCKED)
2444                                        mm->locked_vm += grow;
2445                                vm_stat_account(mm, vma->vm_flags, grow);
2446                                anon_vma_interval_tree_pre_update_vma(vma);
2447                                vma->vm_start = address;
2448                                vma->vm_pgoff -= grow;
2449                                anon_vma_interval_tree_post_update_vma(vma);
2450                                vma_gap_update(vma);
2451                                spin_unlock(&mm->page_table_lock);
2452
2453                                perf_event_mmap(vma);
2454                        }
2455                }
2456        }
2457        anon_vma_unlock_write(vma->anon_vma);
2458        khugepaged_enter_vma_merge(vma, vma->vm_flags);
2459        validate_mm(mm);
2460        return error;
2461}
2462
2463/* enforced gap between the expanding stack and other mappings. */
2464unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2465
2466static int __init cmdline_parse_stack_guard_gap(char *p)
2467{
2468        unsigned long val;
2469        char *endptr;
2470
2471        val = simple_strtoul(p, &endptr, 10);
2472        if (!*endptr)
2473                stack_guard_gap = val << PAGE_SHIFT;
2474
2475        return 0;
2476}
2477__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2478
2479#ifdef CONFIG_STACK_GROWSUP
2480int expand_stack(struct vm_area_struct *vma, unsigned long address)
2481{
2482        return expand_upwards(vma, address);
2483}
2484
2485struct vm_area_struct *
2486find_extend_vma(struct mm_struct *mm, unsigned long addr)
2487{
2488        struct vm_area_struct *vma, *prev;
2489
2490        addr &= PAGE_MASK;
2491        vma = find_vma_prev(mm, addr, &prev);
2492        if (vma && (vma->vm_start <= addr))
2493                return vma;
2494        if (!prev || expand_stack(prev, addr))
2495                return NULL;
2496        if (prev->vm_flags & VM_LOCKED)
2497                populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2498        return prev;
2499}
2500#else
2501int expand_stack(struct vm_area_struct *vma, unsigned long address)
2502{
2503        return expand_downwards(vma, address);
2504}
2505
2506struct vm_area_struct *
2507find_extend_vma(struct mm_struct *mm, unsigned long addr)
2508{
2509        struct vm_area_struct *vma;
2510        unsigned long start;
2511
2512        addr &= PAGE_MASK;
2513        vma = find_vma(mm, addr);
2514        if (!vma)
2515                return NULL;
2516        if (vma->vm_start <= addr)
2517                return vma;
2518        if (!(vma->vm_flags & VM_GROWSDOWN))
2519                return NULL;
2520        start = vma->vm_start;
2521        if (expand_stack(vma, addr))
2522                return NULL;
2523        if (vma->vm_flags & VM_LOCKED)
2524                populate_vma_page_range(vma, addr, start, NULL);
2525        return vma;
2526}
2527#endif
2528
2529EXPORT_SYMBOL_GPL(find_extend_vma);
2530
2531/*
2532 * Ok - we have the memory areas we should free on the vma list,
2533 * so release them, and do the vma updates.
2534 *
2535 * Called with the mm semaphore held.
2536 */
2537static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2538{
2539        unsigned long nr_accounted = 0;
2540
2541        /* Update high watermark before we lower total_vm */
2542        update_hiwater_vm(mm);
2543        do {
2544                long nrpages = vma_pages(vma);
2545
2546                if (vma->vm_flags & VM_ACCOUNT)
2547                        nr_accounted += nrpages;
2548                vm_stat_account(mm, vma->vm_flags, -nrpages);
2549                vma = remove_vma(vma);
2550        } while (vma);
2551        vm_unacct_memory(nr_accounted);
2552        validate_mm(mm);
2553}
2554
2555/*
2556 * Get rid of page table information in the indicated region.
2557 *
2558 * Called with the mm semaphore held.
2559 */
2560static void unmap_region(struct mm_struct *mm,
2561                struct vm_area_struct *vma, struct vm_area_struct *prev,
2562                unsigned long start, unsigned long end)
2563{
2564        struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2565        struct mmu_gather tlb;
2566
2567        lru_add_drain();
2568        tlb_gather_mmu(&tlb, mm, start, end);
2569        update_hiwater_rss(mm);
2570        unmap_vmas(&tlb, vma, start, end);
2571        free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2572                                 next ? next->vm_start : USER_PGTABLES_CEILING);
2573        tlb_finish_mmu(&tlb, start, end);
2574}
2575
2576/*
2577 * Create a list of vma's touched by the unmap, removing them from the mm's
2578 * vma list as we go..
2579 */
2580static void
2581detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2582        struct vm_area_struct *prev, unsigned long end)
2583{
2584        struct vm_area_struct **insertion_point;
2585        struct vm_area_struct *tail_vma = NULL;
2586
2587        insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2588        vma->vm_prev = NULL;
2589        do {
2590                vma_rb_erase(vma, &mm->mm_rb);
2591                mm->map_count--;
2592                tail_vma = vma;
2593                vma = vma->vm_next;
2594        } while (vma && vma->vm_start < end);
2595        *insertion_point = vma;
2596        if (vma) {
2597                vma->vm_prev = prev;
2598                vma_gap_update(vma);
2599        } else
2600                mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2601        tail_vma->vm_next = NULL;
2602
2603        /* Kill the cache */
2604        vmacache_invalidate(mm);
2605}
2606
2607/*
2608 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2609 * has already been checked or doesn't make sense to fail.
2610 */
2611int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2612                unsigned long addr, int new_below)
2613{
2614        struct vm_area_struct *new;
2615        int err;
2616
2617        if (vma->vm_ops && vma->vm_ops->split) {
2618                err = vma->vm_ops->split(vma, addr);
2619                if (err)
2620                        return err;
2621        }
2622
2623        new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2624        if (!new)
2625                return -ENOMEM;
2626
2627        /* most fields are the same, copy all, and then fixup */
2628        *new = *vma;
2629
2630        INIT_LIST_HEAD(&new->anon_vma_chain);
2631
2632        if (new_below)
2633                new->vm_end = addr;
2634        else {
2635                new->vm_start = addr;
2636                new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2637        }
2638
2639        err = vma_dup_policy(vma, new);
2640        if (err)
2641                goto out_free_vma;
2642
2643        err = anon_vma_clone(new, vma);
2644        if (err)
2645                goto out_free_mpol;
2646
2647        if (new->vm_file)
2648                get_file(new->vm_file);
2649
2650        if (new->vm_ops && new->vm_ops->open)
2651                new->vm_ops->open(new);
2652
2653        if (new_below)
2654                err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2655                        ((addr - new->vm_start) >> PAGE_SHIFT), new);
2656        else
2657                err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2658
2659        /* Success. */
2660        if (!err)
2661                return 0;
2662
2663        /* Clean everything up if vma_adjust failed. */
2664        if (new->vm_ops && new->vm_ops->close)
2665                new->vm_ops->close(new);
2666        if (new->vm_file)
2667                fput(new->vm_file);
2668        unlink_anon_vmas(new);
2669 out_free_mpol:
2670        mpol_put(vma_policy(new));
2671 out_free_vma:
2672        kmem_cache_free(vm_area_cachep, new);
2673        return err;
2674}
2675
2676/*
2677 * Split a vma into two pieces at address 'addr', a new vma is allocated
2678 * either for the first part or the tail.
2679 */
2680int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2681              unsigned long addr, int new_below)
2682{
2683        if (mm->map_count >= sysctl_max_map_count)
2684                return -ENOMEM;
2685
2686        return __split_vma(mm, vma, addr, new_below);
2687}
2688
2689/* Munmap is split into 2 main parts -- this part which finds
2690 * what needs doing, and the areas themselves, which do the
2691 * work.  This now handles partial unmappings.
2692 * Jeremy Fitzhardinge <jeremy@goop.org>
2693 */
2694int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2695              struct list_head *uf)
2696{
2697        unsigned long end;
2698        struct vm_area_struct *vma, *prev, *last;
2699
2700        if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2701                return -EINVAL;
2702
2703        len = PAGE_ALIGN(len);
2704        if (len == 0)
2705                return -EINVAL;
2706
2707        /* Find the first overlapping VMA */
2708        vma = find_vma(mm, start);
2709        if (!vma)
2710                return 0;
2711        prev = vma->vm_prev;
2712        /* we have  start < vma->vm_end  */
2713
2714        /* if it doesn't overlap, we have nothing.. */
2715        end = start + len;
2716        if (vma->vm_start >= end)
2717                return 0;
2718
2719        /*
2720         * If we need to split any vma, do it now to save pain later.
2721         *
2722         * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2723         * unmapped vm_area_struct will remain in use: so lower split_vma
2724         * places tmp vma above, and higher split_vma places tmp vma below.
2725         */
2726        if (start > vma->vm_start) {
2727                int error;
2728
2729                /*
2730                 * Make sure that map_count on return from munmap() will
2731                 * not exceed its limit; but let map_count go just above
2732                 * its limit temporarily, to help free resources as expected.
2733                 */
2734                if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2735                        return -ENOMEM;
2736
2737                error = __split_vma(mm, vma, start, 0);
2738                if (error)
2739                        return error;
2740                prev = vma;
2741        }
2742
2743        /* Does it split the last one? */
2744        last = find_vma(mm, end);
2745        if (last && end > last->vm_start) {
2746                int error = __split_vma(mm, last, end, 1);
2747                if (error)
2748                        return error;
2749        }
2750        vma = prev ? prev->vm_next : mm->mmap;
2751
2752        if (unlikely(uf)) {
2753                /*
2754                 * If userfaultfd_unmap_prep returns an error the vmas
2755                 * will remain splitted, but userland will get a
2756                 * highly unexpected error anyway. This is no
2757                 * different than the case where the first of the two
2758                 * __split_vma fails, but we don't undo the first
2759                 * split, despite we could. This is unlikely enough
2760                 * failure that it's not worth optimizing it for.
2761                 */
2762                int error = userfaultfd_unmap_prep(vma, start, end, uf);
2763                if (error)
2764                        return error;
2765        }
2766
2767        /*
2768         * unlock any mlock()ed ranges before detaching vmas
2769         */
2770        if (mm->locked_vm) {
2771                struct vm_area_struct *tmp = vma;
2772                while (tmp && tmp->vm_start < end) {
2773                        if (tmp->vm_flags & VM_LOCKED) {
2774                                mm->locked_vm -= vma_pages(tmp);
2775                                munlock_vma_pages_all(tmp);
2776                        }
2777                        tmp = tmp->vm_next;
2778                }
2779        }
2780
2781        /*
2782         * Remove the vma's, and unmap the actual pages
2783         */
2784        detach_vmas_to_be_unmapped(mm, vma, prev, end);
2785        unmap_region(mm, vma, prev, start, end);
2786
2787        arch_unmap(mm, vma, start, end);
2788
2789        /* Fix up all other VM information */
2790        remove_vma_list(mm, vma);
2791
2792        return 0;
2793}
2794
2795int vm_munmap(unsigned long start, size_t len)
2796{
2797        int ret;
2798        struct mm_struct *mm = current->mm;
2799        LIST_HEAD(uf);
2800
2801        if (down_write_killable(&mm->mmap_sem))
2802                return -EINTR;
2803
2804        ret = do_munmap(mm, start, len, &uf);
2805        up_write(&mm->mmap_sem);
2806        userfaultfd_unmap_complete(mm, &uf);
2807        return ret;
2808}
2809EXPORT_SYMBOL(vm_munmap);
2810
2811SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2812{
2813        profile_munmap(addr);
2814        return vm_munmap(addr, len);
2815}
2816
2817
2818/*
2819 * Emulation of deprecated remap_file_pages() syscall.
2820 */
2821SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2822                unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2823{
2824
2825        struct mm_struct *mm = current->mm;
2826        struct vm_area_struct *vma;
2827        unsigned long populate = 0;
2828        unsigned long ret = -EINVAL;
2829        struct file *file;
2830
2831        pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2832                     current->comm, current->pid);
2833
2834        if (prot)
2835                return ret;
2836        start = start & PAGE_MASK;
2837        size = size & PAGE_MASK;
2838
2839        if (start + size <= start)
2840                return ret;
2841
2842        /* Does pgoff wrap? */
2843        if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2844                return ret;
2845
2846        if (down_write_killable(&mm->mmap_sem))
2847                return -EINTR;
2848
2849        vma = find_vma(mm, start);
2850
2851        if (!vma || !(vma->vm_flags & VM_SHARED))
2852                goto out;
2853
2854        if (start < vma->vm_start)
2855                goto out;
2856
2857        if (start + size > vma->vm_end) {
2858                struct vm_area_struct *next;
2859
2860                for (next = vma->vm_next; next; next = next->vm_next) {
2861                        /* hole between vmas ? */
2862                        if (next->vm_start != next->vm_prev->vm_end)
2863                                goto out;
2864
2865                        if (next->vm_file != vma->vm_file)
2866                                goto out;
2867
2868                        if (next->vm_flags != vma->vm_flags)
2869                                goto out;
2870
2871                        if (start + size <= next->vm_end)
2872                                break;
2873                }
2874
2875                if (!next)
2876                        goto out;
2877        }
2878
2879        prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2880        prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2881        prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2882
2883        flags &= MAP_NONBLOCK;
2884        flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2885        if (vma->vm_flags & VM_LOCKED) {
2886                struct vm_area_struct *tmp;
2887                flags |= MAP_LOCKED;
2888
2889                /* drop PG_Mlocked flag for over-mapped range */
2890                for (tmp = vma; tmp->vm_start >= start + size;
2891                                tmp = tmp->vm_next) {
2892                        /*
2893                         * Split pmd and munlock page on the border
2894                         * of the range.
2895                         */
2896                        vma_adjust_trans_huge(tmp, start, start + size, 0);
2897
2898                        munlock_vma_pages_range(tmp,
2899                                        max(tmp->vm_start, start),
2900                                        min(tmp->vm_end, start + size));
2901                }
2902        }
2903
2904        file = get_file(vma->vm_file);
2905        ret = do_mmap_pgoff(vma->vm_file, start, size,
2906                        prot, flags, pgoff, &populate, NULL);
2907        fput(file);
2908out:
2909        up_write(&mm->mmap_sem);
2910        if (populate)
2911                mm_populate(ret, populate);
2912        if (!IS_ERR_VALUE(ret))
2913                ret = 0;
2914        return ret;
2915}
2916
2917static inline void verify_mm_writelocked(struct mm_struct *mm)
2918{
2919#ifdef CONFIG_DEBUG_VM
2920        if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2921                WARN_ON(1);
2922                up_read(&mm->mmap_sem);
2923        }
2924#endif
2925}
2926
2927/*
2928 *  this is really a simplified "do_mmap".  it only handles
2929 *  anonymous maps.  eventually we may be able to do some
2930 *  brk-specific accounting here.
2931 */
2932static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf)
2933{
2934        struct mm_struct *mm = current->mm;
2935        struct vm_area_struct *vma, *prev;
2936        unsigned long len;
2937        struct rb_node **rb_link, *rb_parent;
2938        pgoff_t pgoff = addr >> PAGE_SHIFT;
2939        int error;
2940
2941        len = PAGE_ALIGN(request);
2942        if (len < request)
2943                return -ENOMEM;
2944        if (!len)
2945                return 0;
2946
2947        /* Until we need other flags, refuse anything except VM_EXEC. */
2948        if ((flags & (~VM_EXEC)) != 0)
2949                return -EINVAL;
2950        flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2951
2952        error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2953        if (offset_in_page(error))
2954                return error;
2955
2956        error = mlock_future_check(mm, mm->def_flags, len);
2957        if (error)
2958                return error;
2959
2960        /*
2961         * mm->mmap_sem is required to protect against another thread
2962         * changing the mappings in case we sleep.
2963         */
2964        verify_mm_writelocked(mm);
2965
2966        /*
2967         * Clear old maps.  this also does some error checking for us
2968         */
2969        while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2970                              &rb_parent)) {
2971                if (do_munmap(mm, addr, len, uf))
2972                        return -ENOMEM;
2973        }
2974
2975        /* Check against address space limits *after* clearing old maps... */
2976        if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2977                return -ENOMEM;
2978
2979        if (mm->map_count > sysctl_max_map_count)
2980                return -ENOMEM;
2981
2982        if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2983                return -ENOMEM;
2984
2985        /* Can we just expand an old private anonymous mapping? */
2986        vma = vma_merge(mm, prev, addr, addr + len, flags,
2987                        NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2988        if (vma)
2989                goto out;
2990
2991        /*
2992         * create a vma struct for an anonymous mapping
2993         */
2994        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2995        if (!vma) {
2996                vm_unacct_memory(len >> PAGE_SHIFT);
2997                return -ENOMEM;
2998        }
2999
3000        INIT_LIST_HEAD(&vma->anon_vma_chain);
3001        vma->vm_mm = mm;
3002        vma->vm_start = addr;
3003        vma->vm_end = addr + len;
3004        vma->vm_pgoff = pgoff;
3005        vma->vm_flags = flags;
3006        vma->vm_page_prot = vm_get_page_prot(flags);
3007        vma_link(mm, vma, prev, rb_link, rb_parent);
3008out:
3009        perf_event_mmap(vma);
3010        mm->total_vm += len >> PAGE_SHIFT;
3011        mm->data_vm += len >> PAGE_SHIFT;
3012        if (flags & VM_LOCKED)
3013                mm->locked_vm += (len >> PAGE_SHIFT);
3014        vma->vm_flags |= VM_SOFTDIRTY;
3015        return 0;
3016}
3017
3018static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf)
3019{
3020        return do_brk_flags(addr, len, 0, uf);
3021}
3022
3023int vm_brk_flags(unsigned long addr, unsigned long len, unsigned long flags)
3024{
3025        struct mm_struct *mm = current->mm;
3026        int ret;
3027        bool populate;
3028        LIST_HEAD(uf);
3029
3030        if (down_write_killable(&mm->mmap_sem))
3031                return -EINTR;
3032
3033        ret = do_brk_flags(addr, len, flags, &uf);
3034        populate = ((mm->def_flags & VM_LOCKED) != 0);
3035        up_write(&mm->mmap_sem);
3036        userfaultfd_unmap_complete(mm, &uf);
3037        if (populate && !ret)
3038                mm_populate(addr, len);
3039        return ret;
3040}
3041EXPORT_SYMBOL(vm_brk_flags);
3042
3043int vm_brk(unsigned long addr, unsigned long len)
3044{
3045        return vm_brk_flags(addr, len, 0);
3046}
3047EXPORT_SYMBOL(vm_brk);
3048
3049/* Release all mmaps. */
3050void exit_mmap(struct mm_struct *mm)
3051{
3052        struct mmu_gather tlb;
3053        struct vm_area_struct *vma;
3054        unsigned long nr_accounted = 0;
3055
3056        /* mm's last user has gone, and its about to be pulled down */
3057        mmu_notifier_release(mm);
3058
3059        if (unlikely(mm_is_oom_victim(mm))) {
3060                /*
3061                 * Manually reap the mm to free as much memory as possible.
3062                 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3063                 * this mm from further consideration.  Taking mm->mmap_sem for
3064                 * write after setting MMF_OOM_SKIP will guarantee that the oom
3065                 * reaper will not run on this mm again after mmap_sem is
3066                 * dropped.
3067                 *
3068                 * Nothing can be holding mm->mmap_sem here and the above call
3069                 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3070                 * __oom_reap_task_mm() will not block.
3071                 *
3072                 * This needs to be done before calling munlock_vma_pages_all(),
3073                 * which clears VM_LOCKED, otherwise the oom reaper cannot
3074                 * reliably test it.
3075                 */
3076                mutex_lock(&oom_lock);
3077                __oom_reap_task_mm(mm);
3078                mutex_unlock(&oom_lock);
3079
3080                set_bit(MMF_OOM_SKIP, &mm->flags);
3081                down_write(&mm->mmap_sem);
3082                up_write(&mm->mmap_sem);
3083        }
3084
3085        if (mm->locked_vm) {
3086                vma = mm->mmap;
3087                while (vma) {
3088                        if (vma->vm_flags & VM_LOCKED)
3089                                munlock_vma_pages_all(vma);
3090                        vma = vma->vm_next;
3091                }
3092        }
3093
3094        arch_exit_mmap(mm);
3095
3096        vma = mm->mmap;
3097        if (!vma)       /* Can happen if dup_mmap() received an OOM */
3098                return;
3099
3100        lru_add_drain();
3101        flush_cache_mm(mm);
3102        tlb_gather_mmu(&tlb, mm, 0, -1);
3103        /* update_hiwater_rss(mm) here? but nobody should be looking */
3104        /* Use -1 here to ensure all VMAs in the mm are unmapped */
3105        unmap_vmas(&tlb, vma, 0, -1);
3106        free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3107        tlb_finish_mmu(&tlb, 0, -1);
3108
3109        /*
3110         * Walk the list again, actually closing and freeing it,
3111         * with preemption enabled, without holding any MM locks.
3112         */
3113        while (vma) {
3114                if (vma->vm_flags & VM_ACCOUNT)
3115                        nr_accounted += vma_pages(vma);
3116                vma = remove_vma(vma);
3117        }
3118        vm_unacct_memory(nr_accounted);
3119}
3120
3121/* Insert vm structure into process list sorted by address
3122 * and into the inode's i_mmap tree.  If vm_file is non-NULL
3123 * then i_mmap_rwsem is taken here.
3124 */
3125int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3126{
3127        struct vm_area_struct *prev;
3128        struct rb_node **rb_link, *rb_parent;
3129
3130        if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3131                           &prev, &rb_link, &rb_parent))
3132                return -ENOMEM;
3133        if ((vma->vm_flags & VM_ACCOUNT) &&
3134             security_vm_enough_memory_mm(mm, vma_pages(vma)))
3135                return -ENOMEM;
3136
3137        /*
3138         * The vm_pgoff of a purely anonymous vma should be irrelevant
3139         * until its first write fault, when page's anon_vma and index
3140         * are set.  But now set the vm_pgoff it will almost certainly
3141         * end up with (unless mremap moves it elsewhere before that
3142         * first wfault), so /proc/pid/maps tells a consistent story.
3143         *
3144         * By setting it to reflect the virtual start address of the
3145         * vma, merges and splits can happen in a seamless way, just
3146         * using the existing file pgoff checks and manipulations.
3147         * Similarly in do_mmap_pgoff and in do_brk.
3148         */
3149        if (vma_is_anonymous(vma)) {
3150                BUG_ON(vma->anon_vma);
3151                vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3152        }
3153
3154        vma_link(mm, vma, prev, rb_link, rb_parent);
3155        return 0;
3156}
3157
3158/*
3159 * Copy the vma structure to a new location in the same mm,
3160 * prior to moving page table entries, to effect an mremap move.
3161 */
3162struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3163        unsigned long addr, unsigned long len, pgoff_t pgoff,
3164        bool *need_rmap_locks)
3165{
3166        struct vm_area_struct *vma = *vmap;
3167        unsigned long vma_start = vma->vm_start;
3168        struct mm_struct *mm = vma->vm_mm;
3169        struct vm_area_struct *new_vma, *prev;
3170        struct rb_node **rb_link, *rb_parent;
3171        bool faulted_in_anon_vma = true;
3172
3173        /*
3174         * If anonymous vma has not yet been faulted, update new pgoff
3175         * to match new location, to increase its chance of merging.
3176         */
3177        if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3178                pgoff = addr >> PAGE_SHIFT;
3179                faulted_in_anon_vma = false;
3180        }
3181
3182        if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3183                return NULL;    /* should never get here */
3184        new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3185                            vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3186                            vma->vm_userfaultfd_ctx);
3187        if (new_vma) {
3188                /*
3189                 * Source vma may have been merged into new_vma
3190                 */
3191                if (unlikely(vma_start >= new_vma->vm_start &&
3192                             vma_start < new_vma->vm_end)) {
3193                        /*
3194                         * The only way we can get a vma_merge with
3195                         * self during an mremap is if the vma hasn't
3196                         * been faulted in yet and we were allowed to
3197                         * reset the dst vma->vm_pgoff to the
3198                         * destination address of the mremap to allow
3199                         * the merge to happen. mremap must change the
3200                         * vm_pgoff linearity between src and dst vmas
3201                         * (in turn preventing a vma_merge) to be
3202                         * safe. It is only safe to keep the vm_pgoff
3203                         * linear if there are no pages mapped yet.
3204                         */
3205                        VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3206                        *vmap = vma = new_vma;
3207                }
3208                *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3209        } else {
3210                new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3211                if (!new_vma)
3212                        goto out;
3213                *new_vma = *vma;
3214                new_vma->vm_start = addr;
3215                new_vma->vm_end = addr + len;
3216                new_vma->vm_pgoff = pgoff;
3217                if (vma_dup_policy(vma, new_vma))
3218                        goto out_free_vma;
3219                INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3220                if (anon_vma_clone(new_vma, vma))
3221                        goto out_free_mempol;
3222                if (new_vma->vm_file)
3223                        get_file(new_vma->vm_file);
3224                if (new_vma->vm_ops && new_vma->vm_ops->open)
3225                        new_vma->vm_ops->open(new_vma);
3226                vma_link(mm, new_vma, prev, rb_link, rb_parent);
3227                *need_rmap_locks = false;
3228        }
3229        return new_vma;
3230
3231out_free_mempol:
3232        mpol_put(vma_policy(new_vma));
3233out_free_vma:
3234        kmem_cache_free(vm_area_cachep, new_vma);
3235out:
3236        return NULL;
3237}
3238
3239/*
3240 * Return true if the calling process may expand its vm space by the passed
3241 * number of pages
3242 */
3243bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3244{
3245        if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3246                return false;
3247
3248        if (is_data_mapping(flags) &&
3249            mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3250                /* Workaround for Valgrind */
3251                if (rlimit(RLIMIT_DATA) == 0 &&
3252                    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3253                        return true;
3254
3255                pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3256                             current->comm, current->pid,
3257                             (mm->data_vm + npages) << PAGE_SHIFT,
3258                             rlimit(RLIMIT_DATA),
3259                             ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3260
3261                if (!ignore_rlimit_data)
3262                        return false;
3263        }
3264
3265        return true;
3266}
3267
3268void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3269{
3270        mm->total_vm += npages;
3271
3272        if (is_exec_mapping(flags))
3273                mm->exec_vm += npages;
3274        else if (is_stack_mapping(flags))
3275                mm->stack_vm += npages;
3276        else if (is_data_mapping(flags))
3277                mm->data_vm += npages;
3278}
3279
3280static int special_mapping_fault(struct vm_fault *vmf);
3281
3282/*
3283 * Having a close hook prevents vma merging regardless of flags.
3284 */
3285static void special_mapping_close(struct vm_area_struct *vma)
3286{
3287}
3288
3289static const char *special_mapping_name(struct vm_area_struct *vma)
3290{
3291        return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3292}
3293
3294static int special_mapping_mremap(struct vm_area_struct *new_vma)
3295{
3296        struct vm_special_mapping *sm = new_vma->vm_private_data;
3297
3298        if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3299                return -EFAULT;
3300
3301        if (sm->mremap)
3302                return sm->mremap(sm, new_vma);
3303
3304        return 0;
3305}
3306
3307static const struct vm_operations_struct special_mapping_vmops = {
3308        .close = special_mapping_close,
3309        .fault = special_mapping_fault,
3310        .mremap = special_mapping_mremap,
3311        .name = special_mapping_name,
3312};
3313
3314static const struct vm_operations_struct legacy_special_mapping_vmops = {
3315        .close = special_mapping_close,
3316        .fault = special_mapping_fault,
3317};
3318
3319static int special_mapping_fault(struct vm_fault *vmf)
3320{
3321        struct vm_area_struct *vma = vmf->vma;
3322        pgoff_t pgoff;
3323        struct page **pages;
3324
3325        if (vma->vm_ops == &legacy_special_mapping_vmops) {
3326                pages = vma->vm_private_data;
3327        } else {
3328                struct vm_special_mapping *sm = vma->vm_private_data;
3329
3330                if (sm->fault)
3331                        return sm->fault(sm, vmf->vma, vmf);
3332
3333                pages = sm->pages;
3334        }
3335
3336        for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3337                pgoff--;
3338
3339        if (*pages) {
3340                struct page *page = *pages;
3341                get_page(page);
3342                vmf->page = page;
3343                return 0;
3344        }
3345
3346        return VM_FAULT_SIGBUS;
3347}
3348
3349static struct vm_area_struct *__install_special_mapping(
3350        struct mm_struct *mm,
3351        unsigned long addr, unsigned long len,
3352        unsigned long vm_flags, void *priv,
3353        const struct vm_operations_struct *ops)
3354{
3355        int ret;
3356        struct vm_area_struct *vma;
3357
3358        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3359        if (unlikely(vma == NULL))
3360                return ERR_PTR(-ENOMEM);
3361
3362        INIT_LIST_HEAD(&vma->anon_vma_chain);
3363        vma->vm_mm = mm;
3364        vma->vm_start = addr;
3365        vma->vm_end = addr + len;
3366
3367        vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3368        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3369
3370        vma->vm_ops = ops;
3371        vma->vm_private_data = priv;
3372
3373        ret = insert_vm_struct(mm, vma);
3374        if (ret)
3375                goto out;
3376
3377        vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3378
3379        perf_event_mmap(vma);
3380
3381        return vma;
3382
3383out:
3384        kmem_cache_free(vm_area_cachep, vma);
3385        return ERR_PTR(ret);
3386}
3387
3388bool vma_is_special_mapping(const struct vm_area_struct *vma,
3389        const struct vm_special_mapping *sm)
3390{
3391        return vma->vm_private_data == sm &&
3392                (vma->vm_ops == &special_mapping_vmops ||
3393                 vma->vm_ops == &legacy_special_mapping_vmops);
3394}
3395
3396/*
3397 * Called with mm->mmap_sem held for writing.
3398 * Insert a new vma covering the given region, with the given flags.
3399 * Its pages are supplied by the given array of struct page *.
3400 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3401 * The region past the last page supplied will always produce SIGBUS.
3402 * The array pointer and the pages it points to are assumed to stay alive
3403 * for as long as this mapping might exist.
3404 */
3405struct vm_area_struct *_install_special_mapping(
3406        struct mm_struct *mm,
3407        unsigned long addr, unsigned long len,
3408        unsigned long vm_flags, const struct vm_special_mapping *spec)
3409{
3410        return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3411                                        &special_mapping_vmops);
3412}
3413
3414int install_special_mapping(struct mm_struct *mm,
3415                            unsigned long addr, unsigned long len,
3416                            unsigned long vm_flags, struct page **pages)
3417{
3418        struct vm_area_struct *vma = __install_special_mapping(
3419                mm, addr, len, vm_flags, (void *)pages,
3420                &legacy_special_mapping_vmops);
3421
3422        return PTR_ERR_OR_ZERO(vma);
3423}
3424
3425static DEFINE_MUTEX(mm_all_locks_mutex);
3426
3427static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3428{
3429        if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3430                /*
3431                 * The LSB of head.next can't change from under us
3432                 * because we hold the mm_all_locks_mutex.
3433                 */
3434                down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3435                /*
3436                 * We can safely modify head.next after taking the
3437                 * anon_vma->root->rwsem. If some other vma in this mm shares
3438                 * the same anon_vma we won't take it again.
3439                 *
3440                 * No need of atomic instructions here, head.next
3441                 * can't change from under us thanks to the
3442                 * anon_vma->root->rwsem.
3443                 */
3444                if (__test_and_set_bit(0, (unsigned long *)
3445                                       &anon_vma->root->rb_root.rb_root.rb_node))
3446                        BUG();
3447        }
3448}
3449
3450static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3451{
3452        if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3453                /*
3454                 * AS_MM_ALL_LOCKS can't change from under us because
3455                 * we hold the mm_all_locks_mutex.
3456                 *
3457                 * Operations on ->flags have to be atomic because
3458                 * even if AS_MM_ALL_LOCKS is stable thanks to the
3459                 * mm_all_locks_mutex, there may be other cpus
3460                 * changing other bitflags in parallel to us.
3461                 */
3462                if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3463                        BUG();
3464                down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3465        }
3466}
3467
3468/*
3469 * This operation locks against the VM for all pte/vma/mm related
3470 * operations that could ever happen on a certain mm. This includes
3471 * vmtruncate, try_to_unmap, and all page faults.
3472 *
3473 * The caller must take the mmap_sem in write mode before calling
3474 * mm_take_all_locks(). The caller isn't allowed to release the
3475 * mmap_sem until mm_drop_all_locks() returns.
3476 *
3477 * mmap_sem in write mode is required in order to block all operations
3478 * that could modify pagetables and free pages without need of
3479 * altering the vma layout. It's also needed in write mode to avoid new
3480 * anon_vmas to be associated with existing vmas.
3481 *
3482 * A single task can't take more than one mm_take_all_locks() in a row
3483 * or it would deadlock.
3484 *
3485 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3486 * mapping->flags avoid to take the same lock twice, if more than one
3487 * vma in this mm is backed by the same anon_vma or address_space.
3488 *
3489 * We take locks in following order, accordingly to comment at beginning
3490 * of mm/rmap.c:
3491 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3492 *     hugetlb mapping);
3493 *   - all i_mmap_rwsem locks;
3494 *   - all anon_vma->rwseml
3495 *
3496 * We can take all locks within these types randomly because the VM code
3497 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3498 * mm_all_locks_mutex.
3499 *
3500 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3501 * that may have to take thousand of locks.
3502 *
3503 * mm_take_all_locks() can fail if it's interrupted by signals.
3504 */
3505int mm_take_all_locks(struct mm_struct *mm)
3506{
3507        struct vm_area_struct *vma;
3508        struct anon_vma_chain *avc;
3509
3510        BUG_ON(down_read_trylock(&mm->mmap_sem));
3511
3512        mutex_lock(&mm_all_locks_mutex);
3513
3514        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3515                if (signal_pending(current))
3516                        goto out_unlock;
3517                if (vma->vm_file && vma->vm_file->f_mapping &&
3518                                is_vm_hugetlb_page(vma))
3519                        vm_lock_mapping(mm, vma->vm_file->f_mapping);
3520        }
3521
3522        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3523                if (signal_pending(current))
3524                        goto out_unlock;
3525                if (vma->vm_file && vma->vm_file->f_mapping &&
3526                                !is_vm_hugetlb_page(vma))
3527                        vm_lock_mapping(mm, vma->vm_file->f_mapping);
3528        }
3529
3530        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3531                if (signal_pending(current))
3532                        goto out_unlock;
3533                if (vma->anon_vma)
3534                        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3535                                vm_lock_anon_vma(mm, avc->anon_vma);
3536        }
3537
3538        return 0;
3539
3540out_unlock:
3541        mm_drop_all_locks(mm);
3542        return -EINTR;
3543}
3544
3545static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3546{
3547        if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3548                /*
3549                 * The LSB of head.next can't change to 0 from under
3550                 * us because we hold the mm_all_locks_mutex.
3551                 *
3552                 * We must however clear the bitflag before unlocking
3553                 * the vma so the users using the anon_vma->rb_root will
3554                 * never see our bitflag.
3555                 *
3556                 * No need of atomic instructions here, head.next
3557                 * can't change from under us until we release the
3558                 * anon_vma->root->rwsem.
3559                 */
3560                if (!__test_and_clear_bit(0, (unsigned long *)
3561                                          &anon_vma->root->rb_root.rb_root.rb_node))
3562                        BUG();
3563                anon_vma_unlock_write(anon_vma);
3564        }
3565}
3566
3567static void vm_unlock_mapping(struct address_space *mapping)
3568{
3569        if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3570                /*
3571                 * AS_MM_ALL_LOCKS can't change to 0 from under us
3572                 * because we hold the mm_all_locks_mutex.
3573                 */
3574                i_mmap_unlock_write(mapping);
3575                if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3576                                        &mapping->flags))
3577                        BUG();
3578        }
3579}
3580
3581/*
3582 * The mmap_sem cannot be released by the caller until
3583 * mm_drop_all_locks() returns.
3584 */
3585void mm_drop_all_locks(struct mm_struct *mm)
3586{
3587        struct vm_area_struct *vma;
3588        struct anon_vma_chain *avc;
3589
3590        BUG_ON(down_read_trylock(&mm->mmap_sem));
3591        BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3592
3593        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3594                if (vma->anon_vma)
3595                        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3596                                vm_unlock_anon_vma(avc->anon_vma);
3597                if (vma->vm_file && vma->vm_file->f_mapping)
3598                        vm_unlock_mapping(vma->vm_file->f_mapping);
3599        }
3600
3601        mutex_unlock(&mm_all_locks_mutex);
3602}
3603
3604/*
3605 * initialise the percpu counter for VM
3606 */
3607void __init mmap_init(void)
3608{
3609        int ret;
3610
3611        ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3612        VM_BUG_ON(ret);
3613}
3614
3615/*
3616 * Initialise sysctl_user_reserve_kbytes.
3617 *
3618 * This is intended to prevent a user from starting a single memory hogging
3619 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3620 * mode.
3621 *
3622 * The default value is min(3% of free memory, 128MB)
3623 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3624 */
3625static int init_user_reserve(void)
3626{
3627        unsigned long free_kbytes;
3628
3629        free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3630
3631        sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3632        return 0;
3633}
3634subsys_initcall(init_user_reserve);
3635
3636/*
3637 * Initialise sysctl_admin_reserve_kbytes.
3638 *
3639 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3640 * to log in and kill a memory hogging process.
3641 *
3642 * Systems with more than 256MB will reserve 8MB, enough to recover
3643 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3644 * only reserve 3% of free pages by default.
3645 */
3646static int init_admin_reserve(void)
3647{
3648        unsigned long free_kbytes;
3649
3650        free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3651
3652        sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3653        return 0;
3654}
3655subsys_initcall(init_admin_reserve);
3656
3657/*
3658 * Reinititalise user and admin reserves if memory is added or removed.
3659 *
3660 * The default user reserve max is 128MB, and the default max for the
3661 * admin reserve is 8MB. These are usually, but not always, enough to
3662 * enable recovery from a memory hogging process using login/sshd, a shell,
3663 * and tools like top. It may make sense to increase or even disable the
3664 * reserve depending on the existence of swap or variations in the recovery
3665 * tools. So, the admin may have changed them.
3666 *
3667 * If memory is added and the reserves have been eliminated or increased above
3668 * the default max, then we'll trust the admin.
3669 *
3670 * If memory is removed and there isn't enough free memory, then we
3671 * need to reset the reserves.
3672 *
3673 * Otherwise keep the reserve set by the admin.
3674 */
3675static int reserve_mem_notifier(struct notifier_block *nb,
3676                             unsigned long action, void *data)
3677{
3678        unsigned long tmp, free_kbytes;
3679
3680        switch (action) {
3681        case MEM_ONLINE:
3682                /* Default max is 128MB. Leave alone if modified by operator. */
3683                tmp = sysctl_user_reserve_kbytes;
3684                if (0 < tmp && tmp < (1UL << 17))
3685                        init_user_reserve();
3686
3687                /* Default max is 8MB.  Leave alone if modified by operator. */
3688                tmp = sysctl_admin_reserve_kbytes;
3689                if (0 < tmp && tmp < (1UL << 13))
3690                        init_admin_reserve();
3691
3692                break;
3693        case MEM_OFFLINE:
3694                free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3695
3696                if (sysctl_user_reserve_kbytes > free_kbytes) {
3697                        init_user_reserve();
3698                        pr_info("vm.user_reserve_kbytes reset to %lu\n",
3699                                sysctl_user_reserve_kbytes);
3700                }
3701
3702                if (sysctl_admin_reserve_kbytes > free_kbytes) {
3703                        init_admin_reserve();
3704                        pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3705                                sysctl_admin_reserve_kbytes);
3706                }
3707                break;
3708        default:
3709                break;
3710        }
3711        return NOTIFY_OK;
3712}
3713
3714static struct notifier_block reserve_mem_nb = {
3715        .notifier_call = reserve_mem_notifier,
3716};
3717
3718static int __meminit init_reserve_notifier(void)
3719{
3720        if (register_hotmemory_notifier(&reserve_mem_nb))
3721                pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3722
3723        return 0;
3724}
3725subsys_initcall(init_reserve_notifier);
3726