linux/mm/nommu.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/nommu.c
   3 *
   4 *  Replacement code for mm functions to support CPU's that don't
   5 *  have any form of memory management unit (thus no virtual memory).
   6 *
   7 *  See Documentation/nommu-mmap.txt
   8 *
   9 *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
  10 *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
  11 *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
  12 *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
  13 *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
  14 */
  15
  16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  17
  18#include <linux/export.h>
  19#include <linux/mm.h>
  20#include <linux/sched/mm.h>
  21#include <linux/vmacache.h>
  22#include <linux/mman.h>
  23#include <linux/swap.h>
  24#include <linux/file.h>
  25#include <linux/highmem.h>
  26#include <linux/pagemap.h>
  27#include <linux/slab.h>
  28#include <linux/vmalloc.h>
  29#include <linux/blkdev.h>
  30#include <linux/backing-dev.h>
  31#include <linux/compiler.h>
  32#include <linux/mount.h>
  33#include <linux/personality.h>
  34#include <linux/security.h>
  35#include <linux/syscalls.h>
  36#include <linux/audit.h>
  37#include <linux/printk.h>
  38
  39#include <linux/uaccess.h>
  40#include <asm/tlb.h>
  41#include <asm/tlbflush.h>
  42#include <asm/mmu_context.h>
  43#include "internal.h"
  44
  45void *high_memory;
  46EXPORT_SYMBOL(high_memory);
  47struct page *mem_map;
  48unsigned long max_mapnr;
  49EXPORT_SYMBOL(max_mapnr);
  50unsigned long highest_memmap_pfn;
  51int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
  52int heap_stack_gap = 0;
  53
  54atomic_long_t mmap_pages_allocated;
  55
  56EXPORT_SYMBOL(mem_map);
  57
  58/* list of mapped, potentially shareable regions */
  59static struct kmem_cache *vm_region_jar;
  60struct rb_root nommu_region_tree = RB_ROOT;
  61DECLARE_RWSEM(nommu_region_sem);
  62
  63const struct vm_operations_struct generic_file_vm_ops = {
  64};
  65
  66/*
  67 * Return the total memory allocated for this pointer, not
  68 * just what the caller asked for.
  69 *
  70 * Doesn't have to be accurate, i.e. may have races.
  71 */
  72unsigned int kobjsize(const void *objp)
  73{
  74        struct page *page;
  75
  76        /*
  77         * If the object we have should not have ksize performed on it,
  78         * return size of 0
  79         */
  80        if (!objp || !virt_addr_valid(objp))
  81                return 0;
  82
  83        page = virt_to_head_page(objp);
  84
  85        /*
  86         * If the allocator sets PageSlab, we know the pointer came from
  87         * kmalloc().
  88         */
  89        if (PageSlab(page))
  90                return ksize(objp);
  91
  92        /*
  93         * If it's not a compound page, see if we have a matching VMA
  94         * region. This test is intentionally done in reverse order,
  95         * so if there's no VMA, we still fall through and hand back
  96         * PAGE_SIZE for 0-order pages.
  97         */
  98        if (!PageCompound(page)) {
  99                struct vm_area_struct *vma;
 100
 101                vma = find_vma(current->mm, (unsigned long)objp);
 102                if (vma)
 103                        return vma->vm_end - vma->vm_start;
 104        }
 105
 106        /*
 107         * The ksize() function is only guaranteed to work for pointers
 108         * returned by kmalloc(). So handle arbitrary pointers here.
 109         */
 110        return PAGE_SIZE << compound_order(page);
 111}
 112
 113static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 114                      unsigned long start, unsigned long nr_pages,
 115                      unsigned int foll_flags, struct page **pages,
 116                      struct vm_area_struct **vmas, int *nonblocking)
 117{
 118        struct vm_area_struct *vma;
 119        unsigned long vm_flags;
 120        int i;
 121
 122        /* calculate required read or write permissions.
 123         * If FOLL_FORCE is set, we only require the "MAY" flags.
 124         */
 125        vm_flags  = (foll_flags & FOLL_WRITE) ?
 126                        (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
 127        vm_flags &= (foll_flags & FOLL_FORCE) ?
 128                        (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
 129
 130        for (i = 0; i < nr_pages; i++) {
 131                vma = find_vma(mm, start);
 132                if (!vma)
 133                        goto finish_or_fault;
 134
 135                /* protect what we can, including chardevs */
 136                if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
 137                    !(vm_flags & vma->vm_flags))
 138                        goto finish_or_fault;
 139
 140                if (pages) {
 141                        pages[i] = virt_to_page(start);
 142                        if (pages[i])
 143                                get_page(pages[i]);
 144                }
 145                if (vmas)
 146                        vmas[i] = vma;
 147                start = (start + PAGE_SIZE) & PAGE_MASK;
 148        }
 149
 150        return i;
 151
 152finish_or_fault:
 153        return i ? : -EFAULT;
 154}
 155
 156/*
 157 * get a list of pages in an address range belonging to the specified process
 158 * and indicate the VMA that covers each page
 159 * - this is potentially dodgy as we may end incrementing the page count of a
 160 *   slab page or a secondary page from a compound page
 161 * - don't permit access to VMAs that don't support it, such as I/O mappings
 162 */
 163long get_user_pages(unsigned long start, unsigned long nr_pages,
 164                    unsigned int gup_flags, struct page **pages,
 165                    struct vm_area_struct **vmas)
 166{
 167        return __get_user_pages(current, current->mm, start, nr_pages,
 168                                gup_flags, pages, vmas, NULL);
 169}
 170EXPORT_SYMBOL(get_user_pages);
 171
 172long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
 173                            unsigned int gup_flags, struct page **pages,
 174                            int *locked)
 175{
 176        return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
 177}
 178EXPORT_SYMBOL(get_user_pages_locked);
 179
 180static long __get_user_pages_unlocked(struct task_struct *tsk,
 181                        struct mm_struct *mm, unsigned long start,
 182                        unsigned long nr_pages, struct page **pages,
 183                        unsigned int gup_flags)
 184{
 185        long ret;
 186        down_read(&mm->mmap_sem);
 187        ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
 188                                NULL, NULL);
 189        up_read(&mm->mmap_sem);
 190        return ret;
 191}
 192
 193long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
 194                             struct page **pages, unsigned int gup_flags)
 195{
 196        return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
 197                                         pages, gup_flags);
 198}
 199EXPORT_SYMBOL(get_user_pages_unlocked);
 200
 201/**
 202 * follow_pfn - look up PFN at a user virtual address
 203 * @vma: memory mapping
 204 * @address: user virtual address
 205 * @pfn: location to store found PFN
 206 *
 207 * Only IO mappings and raw PFN mappings are allowed.
 208 *
 209 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 210 */
 211int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 212        unsigned long *pfn)
 213{
 214        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
 215                return -EINVAL;
 216
 217        *pfn = address >> PAGE_SHIFT;
 218        return 0;
 219}
 220EXPORT_SYMBOL(follow_pfn);
 221
 222LIST_HEAD(vmap_area_list);
 223
 224void vfree(const void *addr)
 225{
 226        kfree(addr);
 227}
 228EXPORT_SYMBOL(vfree);
 229
 230void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
 231{
 232        /*
 233         *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
 234         * returns only a logical address.
 235         */
 236        return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
 237}
 238EXPORT_SYMBOL(__vmalloc);
 239
 240void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
 241{
 242        return __vmalloc(size, flags, PAGE_KERNEL);
 243}
 244
 245void *vmalloc_user(unsigned long size)
 246{
 247        void *ret;
 248
 249        ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
 250        if (ret) {
 251                struct vm_area_struct *vma;
 252
 253                down_write(&current->mm->mmap_sem);
 254                vma = find_vma(current->mm, (unsigned long)ret);
 255                if (vma)
 256                        vma->vm_flags |= VM_USERMAP;
 257                up_write(&current->mm->mmap_sem);
 258        }
 259
 260        return ret;
 261}
 262EXPORT_SYMBOL(vmalloc_user);
 263
 264struct page *vmalloc_to_page(const void *addr)
 265{
 266        return virt_to_page(addr);
 267}
 268EXPORT_SYMBOL(vmalloc_to_page);
 269
 270unsigned long vmalloc_to_pfn(const void *addr)
 271{
 272        return page_to_pfn(virt_to_page(addr));
 273}
 274EXPORT_SYMBOL(vmalloc_to_pfn);
 275
 276long vread(char *buf, char *addr, unsigned long count)
 277{
 278        /* Don't allow overflow */
 279        if ((unsigned long) buf + count < count)
 280                count = -(unsigned long) buf;
 281
 282        memcpy(buf, addr, count);
 283        return count;
 284}
 285
 286long vwrite(char *buf, char *addr, unsigned long count)
 287{
 288        /* Don't allow overflow */
 289        if ((unsigned long) addr + count < count)
 290                count = -(unsigned long) addr;
 291
 292        memcpy(addr, buf, count);
 293        return count;
 294}
 295
 296/*
 297 *      vmalloc  -  allocate virtually contiguous memory
 298 *
 299 *      @size:          allocation size
 300 *
 301 *      Allocate enough pages to cover @size from the page level
 302 *      allocator and map them into contiguous kernel virtual space.
 303 *
 304 *      For tight control over page level allocator and protection flags
 305 *      use __vmalloc() instead.
 306 */
 307void *vmalloc(unsigned long size)
 308{
 309       return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
 310}
 311EXPORT_SYMBOL(vmalloc);
 312
 313/*
 314 *      vzalloc - allocate virtually contiguous memory with zero fill
 315 *
 316 *      @size:          allocation size
 317 *
 318 *      Allocate enough pages to cover @size from the page level
 319 *      allocator and map them into contiguous kernel virtual space.
 320 *      The memory allocated is set to zero.
 321 *
 322 *      For tight control over page level allocator and protection flags
 323 *      use __vmalloc() instead.
 324 */
 325void *vzalloc(unsigned long size)
 326{
 327        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 328                        PAGE_KERNEL);
 329}
 330EXPORT_SYMBOL(vzalloc);
 331
 332/**
 333 * vmalloc_node - allocate memory on a specific node
 334 * @size:       allocation size
 335 * @node:       numa node
 336 *
 337 * Allocate enough pages to cover @size from the page level
 338 * allocator and map them into contiguous kernel virtual space.
 339 *
 340 * For tight control over page level allocator and protection flags
 341 * use __vmalloc() instead.
 342 */
 343void *vmalloc_node(unsigned long size, int node)
 344{
 345        return vmalloc(size);
 346}
 347EXPORT_SYMBOL(vmalloc_node);
 348
 349/**
 350 * vzalloc_node - allocate memory on a specific node with zero fill
 351 * @size:       allocation size
 352 * @node:       numa node
 353 *
 354 * Allocate enough pages to cover @size from the page level
 355 * allocator and map them into contiguous kernel virtual space.
 356 * The memory allocated is set to zero.
 357 *
 358 * For tight control over page level allocator and protection flags
 359 * use __vmalloc() instead.
 360 */
 361void *vzalloc_node(unsigned long size, int node)
 362{
 363        return vzalloc(size);
 364}
 365EXPORT_SYMBOL(vzalloc_node);
 366
 367#ifndef PAGE_KERNEL_EXEC
 368# define PAGE_KERNEL_EXEC PAGE_KERNEL
 369#endif
 370
 371/**
 372 *      vmalloc_exec  -  allocate virtually contiguous, executable memory
 373 *      @size:          allocation size
 374 *
 375 *      Kernel-internal function to allocate enough pages to cover @size
 376 *      the page level allocator and map them into contiguous and
 377 *      executable kernel virtual space.
 378 *
 379 *      For tight control over page level allocator and protection flags
 380 *      use __vmalloc() instead.
 381 */
 382
 383void *vmalloc_exec(unsigned long size)
 384{
 385        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
 386}
 387
 388/**
 389 * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 390 *      @size:          allocation size
 391 *
 392 *      Allocate enough 32bit PA addressable pages to cover @size from the
 393 *      page level allocator and map them into contiguous kernel virtual space.
 394 */
 395void *vmalloc_32(unsigned long size)
 396{
 397        return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
 398}
 399EXPORT_SYMBOL(vmalloc_32);
 400
 401/**
 402 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
 403 *      @size:          allocation size
 404 *
 405 * The resulting memory area is 32bit addressable and zeroed so it can be
 406 * mapped to userspace without leaking data.
 407 *
 408 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
 409 * remap_vmalloc_range() are permissible.
 410 */
 411void *vmalloc_32_user(unsigned long size)
 412{
 413        /*
 414         * We'll have to sort out the ZONE_DMA bits for 64-bit,
 415         * but for now this can simply use vmalloc_user() directly.
 416         */
 417        return vmalloc_user(size);
 418}
 419EXPORT_SYMBOL(vmalloc_32_user);
 420
 421void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
 422{
 423        BUG();
 424        return NULL;
 425}
 426EXPORT_SYMBOL(vmap);
 427
 428void vunmap(const void *addr)
 429{
 430        BUG();
 431}
 432EXPORT_SYMBOL(vunmap);
 433
 434void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
 435{
 436        BUG();
 437        return NULL;
 438}
 439EXPORT_SYMBOL(vm_map_ram);
 440
 441void vm_unmap_ram(const void *mem, unsigned int count)
 442{
 443        BUG();
 444}
 445EXPORT_SYMBOL(vm_unmap_ram);
 446
 447void vm_unmap_aliases(void)
 448{
 449}
 450EXPORT_SYMBOL_GPL(vm_unmap_aliases);
 451
 452/*
 453 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 454 * have one.
 455 */
 456void __weak vmalloc_sync_all(void)
 457{
 458}
 459
 460struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
 461{
 462        BUG();
 463        return NULL;
 464}
 465EXPORT_SYMBOL_GPL(alloc_vm_area);
 466
 467void free_vm_area(struct vm_struct *area)
 468{
 469        BUG();
 470}
 471EXPORT_SYMBOL_GPL(free_vm_area);
 472
 473int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
 474                   struct page *page)
 475{
 476        return -EINVAL;
 477}
 478EXPORT_SYMBOL(vm_insert_page);
 479
 480/*
 481 *  sys_brk() for the most part doesn't need the global kernel
 482 *  lock, except when an application is doing something nasty
 483 *  like trying to un-brk an area that has already been mapped
 484 *  to a regular file.  in this case, the unmapping will need
 485 *  to invoke file system routines that need the global lock.
 486 */
 487SYSCALL_DEFINE1(brk, unsigned long, brk)
 488{
 489        struct mm_struct *mm = current->mm;
 490
 491        if (brk < mm->start_brk || brk > mm->context.end_brk)
 492                return mm->brk;
 493
 494        if (mm->brk == brk)
 495                return mm->brk;
 496
 497        /*
 498         * Always allow shrinking brk
 499         */
 500        if (brk <= mm->brk) {
 501                mm->brk = brk;
 502                return brk;
 503        }
 504
 505        /*
 506         * Ok, looks good - let it rip.
 507         */
 508        flush_icache_range(mm->brk, brk);
 509        return mm->brk = brk;
 510}
 511
 512/*
 513 * initialise the percpu counter for VM and region record slabs
 514 */
 515void __init mmap_init(void)
 516{
 517        int ret;
 518
 519        ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
 520        VM_BUG_ON(ret);
 521        vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
 522}
 523
 524/*
 525 * validate the region tree
 526 * - the caller must hold the region lock
 527 */
 528#ifdef CONFIG_DEBUG_NOMMU_REGIONS
 529static noinline void validate_nommu_regions(void)
 530{
 531        struct vm_region *region, *last;
 532        struct rb_node *p, *lastp;
 533
 534        lastp = rb_first(&nommu_region_tree);
 535        if (!lastp)
 536                return;
 537
 538        last = rb_entry(lastp, struct vm_region, vm_rb);
 539        BUG_ON(last->vm_end <= last->vm_start);
 540        BUG_ON(last->vm_top < last->vm_end);
 541
 542        while ((p = rb_next(lastp))) {
 543                region = rb_entry(p, struct vm_region, vm_rb);
 544                last = rb_entry(lastp, struct vm_region, vm_rb);
 545
 546                BUG_ON(region->vm_end <= region->vm_start);
 547                BUG_ON(region->vm_top < region->vm_end);
 548                BUG_ON(region->vm_start < last->vm_top);
 549
 550                lastp = p;
 551        }
 552}
 553#else
 554static void validate_nommu_regions(void)
 555{
 556}
 557#endif
 558
 559/*
 560 * add a region into the global tree
 561 */
 562static void add_nommu_region(struct vm_region *region)
 563{
 564        struct vm_region *pregion;
 565        struct rb_node **p, *parent;
 566
 567        validate_nommu_regions();
 568
 569        parent = NULL;
 570        p = &nommu_region_tree.rb_node;
 571        while (*p) {
 572                parent = *p;
 573                pregion = rb_entry(parent, struct vm_region, vm_rb);
 574                if (region->vm_start < pregion->vm_start)
 575                        p = &(*p)->rb_left;
 576                else if (region->vm_start > pregion->vm_start)
 577                        p = &(*p)->rb_right;
 578                else if (pregion == region)
 579                        return;
 580                else
 581                        BUG();
 582        }
 583
 584        rb_link_node(&region->vm_rb, parent, p);
 585        rb_insert_color(&region->vm_rb, &nommu_region_tree);
 586
 587        validate_nommu_regions();
 588}
 589
 590/*
 591 * delete a region from the global tree
 592 */
 593static void delete_nommu_region(struct vm_region *region)
 594{
 595        BUG_ON(!nommu_region_tree.rb_node);
 596
 597        validate_nommu_regions();
 598        rb_erase(&region->vm_rb, &nommu_region_tree);
 599        validate_nommu_regions();
 600}
 601
 602/*
 603 * free a contiguous series of pages
 604 */
 605static void free_page_series(unsigned long from, unsigned long to)
 606{
 607        for (; from < to; from += PAGE_SIZE) {
 608                struct page *page = virt_to_page(from);
 609
 610                atomic_long_dec(&mmap_pages_allocated);
 611                put_page(page);
 612        }
 613}
 614
 615/*
 616 * release a reference to a region
 617 * - the caller must hold the region semaphore for writing, which this releases
 618 * - the region may not have been added to the tree yet, in which case vm_top
 619 *   will equal vm_start
 620 */
 621static void __put_nommu_region(struct vm_region *region)
 622        __releases(nommu_region_sem)
 623{
 624        BUG_ON(!nommu_region_tree.rb_node);
 625
 626        if (--region->vm_usage == 0) {
 627                if (region->vm_top > region->vm_start)
 628                        delete_nommu_region(region);
 629                up_write(&nommu_region_sem);
 630
 631                if (region->vm_file)
 632                        fput(region->vm_file);
 633
 634                /* IO memory and memory shared directly out of the pagecache
 635                 * from ramfs/tmpfs mustn't be released here */
 636                if (region->vm_flags & VM_MAPPED_COPY)
 637                        free_page_series(region->vm_start, region->vm_top);
 638                kmem_cache_free(vm_region_jar, region);
 639        } else {
 640                up_write(&nommu_region_sem);
 641        }
 642}
 643
 644/*
 645 * release a reference to a region
 646 */
 647static void put_nommu_region(struct vm_region *region)
 648{
 649        down_write(&nommu_region_sem);
 650        __put_nommu_region(region);
 651}
 652
 653/*
 654 * add a VMA into a process's mm_struct in the appropriate place in the list
 655 * and tree and add to the address space's page tree also if not an anonymous
 656 * page
 657 * - should be called with mm->mmap_sem held writelocked
 658 */
 659static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
 660{
 661        struct vm_area_struct *pvma, *prev;
 662        struct address_space *mapping;
 663        struct rb_node **p, *parent, *rb_prev;
 664
 665        BUG_ON(!vma->vm_region);
 666
 667        mm->map_count++;
 668        vma->vm_mm = mm;
 669
 670        /* add the VMA to the mapping */
 671        if (vma->vm_file) {
 672                mapping = vma->vm_file->f_mapping;
 673
 674                i_mmap_lock_write(mapping);
 675                flush_dcache_mmap_lock(mapping);
 676                vma_interval_tree_insert(vma, &mapping->i_mmap);
 677                flush_dcache_mmap_unlock(mapping);
 678                i_mmap_unlock_write(mapping);
 679        }
 680
 681        /* add the VMA to the tree */
 682        parent = rb_prev = NULL;
 683        p = &mm->mm_rb.rb_node;
 684        while (*p) {
 685                parent = *p;
 686                pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
 687
 688                /* sort by: start addr, end addr, VMA struct addr in that order
 689                 * (the latter is necessary as we may get identical VMAs) */
 690                if (vma->vm_start < pvma->vm_start)
 691                        p = &(*p)->rb_left;
 692                else if (vma->vm_start > pvma->vm_start) {
 693                        rb_prev = parent;
 694                        p = &(*p)->rb_right;
 695                } else if (vma->vm_end < pvma->vm_end)
 696                        p = &(*p)->rb_left;
 697                else if (vma->vm_end > pvma->vm_end) {
 698                        rb_prev = parent;
 699                        p = &(*p)->rb_right;
 700                } else if (vma < pvma)
 701                        p = &(*p)->rb_left;
 702                else if (vma > pvma) {
 703                        rb_prev = parent;
 704                        p = &(*p)->rb_right;
 705                } else
 706                        BUG();
 707        }
 708
 709        rb_link_node(&vma->vm_rb, parent, p);
 710        rb_insert_color(&vma->vm_rb, &mm->mm_rb);
 711
 712        /* add VMA to the VMA list also */
 713        prev = NULL;
 714        if (rb_prev)
 715                prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 716
 717        __vma_link_list(mm, vma, prev, parent);
 718}
 719
 720/*
 721 * delete a VMA from its owning mm_struct and address space
 722 */
 723static void delete_vma_from_mm(struct vm_area_struct *vma)
 724{
 725        int i;
 726        struct address_space *mapping;
 727        struct mm_struct *mm = vma->vm_mm;
 728        struct task_struct *curr = current;
 729
 730        mm->map_count--;
 731        for (i = 0; i < VMACACHE_SIZE; i++) {
 732                /* if the vma is cached, invalidate the entire cache */
 733                if (curr->vmacache.vmas[i] == vma) {
 734                        vmacache_invalidate(mm);
 735                        break;
 736                }
 737        }
 738
 739        /* remove the VMA from the mapping */
 740        if (vma->vm_file) {
 741                mapping = vma->vm_file->f_mapping;
 742
 743                i_mmap_lock_write(mapping);
 744                flush_dcache_mmap_lock(mapping);
 745                vma_interval_tree_remove(vma, &mapping->i_mmap);
 746                flush_dcache_mmap_unlock(mapping);
 747                i_mmap_unlock_write(mapping);
 748        }
 749
 750        /* remove from the MM's tree and list */
 751        rb_erase(&vma->vm_rb, &mm->mm_rb);
 752
 753        if (vma->vm_prev)
 754                vma->vm_prev->vm_next = vma->vm_next;
 755        else
 756                mm->mmap = vma->vm_next;
 757
 758        if (vma->vm_next)
 759                vma->vm_next->vm_prev = vma->vm_prev;
 760}
 761
 762/*
 763 * destroy a VMA record
 764 */
 765static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
 766{
 767        if (vma->vm_ops && vma->vm_ops->close)
 768                vma->vm_ops->close(vma);
 769        if (vma->vm_file)
 770                fput(vma->vm_file);
 771        put_nommu_region(vma->vm_region);
 772        kmem_cache_free(vm_area_cachep, vma);
 773}
 774
 775/*
 776 * look up the first VMA in which addr resides, NULL if none
 777 * - should be called with mm->mmap_sem at least held readlocked
 778 */
 779struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 780{
 781        struct vm_area_struct *vma;
 782
 783        /* check the cache first */
 784        vma = vmacache_find(mm, addr);
 785        if (likely(vma))
 786                return vma;
 787
 788        /* trawl the list (there may be multiple mappings in which addr
 789         * resides) */
 790        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 791                if (vma->vm_start > addr)
 792                        return NULL;
 793                if (vma->vm_end > addr) {
 794                        vmacache_update(addr, vma);
 795                        return vma;
 796                }
 797        }
 798
 799        return NULL;
 800}
 801EXPORT_SYMBOL(find_vma);
 802
 803/*
 804 * find a VMA
 805 * - we don't extend stack VMAs under NOMMU conditions
 806 */
 807struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
 808{
 809        return find_vma(mm, addr);
 810}
 811
 812/*
 813 * expand a stack to a given address
 814 * - not supported under NOMMU conditions
 815 */
 816int expand_stack(struct vm_area_struct *vma, unsigned long address)
 817{
 818        return -ENOMEM;
 819}
 820
 821/*
 822 * look up the first VMA exactly that exactly matches addr
 823 * - should be called with mm->mmap_sem at least held readlocked
 824 */
 825static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
 826                                             unsigned long addr,
 827                                             unsigned long len)
 828{
 829        struct vm_area_struct *vma;
 830        unsigned long end = addr + len;
 831
 832        /* check the cache first */
 833        vma = vmacache_find_exact(mm, addr, end);
 834        if (vma)
 835                return vma;
 836
 837        /* trawl the list (there may be multiple mappings in which addr
 838         * resides) */
 839        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 840                if (vma->vm_start < addr)
 841                        continue;
 842                if (vma->vm_start > addr)
 843                        return NULL;
 844                if (vma->vm_end == end) {
 845                        vmacache_update(addr, vma);
 846                        return vma;
 847                }
 848        }
 849
 850        return NULL;
 851}
 852
 853/*
 854 * determine whether a mapping should be permitted and, if so, what sort of
 855 * mapping we're capable of supporting
 856 */
 857static int validate_mmap_request(struct file *file,
 858                                 unsigned long addr,
 859                                 unsigned long len,
 860                                 unsigned long prot,
 861                                 unsigned long flags,
 862                                 unsigned long pgoff,
 863                                 unsigned long *_capabilities)
 864{
 865        unsigned long capabilities, rlen;
 866        int ret;
 867
 868        /* do the simple checks first */
 869        if (flags & MAP_FIXED)
 870                return -EINVAL;
 871
 872        if ((flags & MAP_TYPE) != MAP_PRIVATE &&
 873            (flags & MAP_TYPE) != MAP_SHARED)
 874                return -EINVAL;
 875
 876        if (!len)
 877                return -EINVAL;
 878
 879        /* Careful about overflows.. */
 880        rlen = PAGE_ALIGN(len);
 881        if (!rlen || rlen > TASK_SIZE)
 882                return -ENOMEM;
 883
 884        /* offset overflow? */
 885        if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
 886                return -EOVERFLOW;
 887
 888        if (file) {
 889                /* files must support mmap */
 890                if (!file->f_op->mmap)
 891                        return -ENODEV;
 892
 893                /* work out if what we've got could possibly be shared
 894                 * - we support chardevs that provide their own "memory"
 895                 * - we support files/blockdevs that are memory backed
 896                 */
 897                if (file->f_op->mmap_capabilities) {
 898                        capabilities = file->f_op->mmap_capabilities(file);
 899                } else {
 900                        /* no explicit capabilities set, so assume some
 901                         * defaults */
 902                        switch (file_inode(file)->i_mode & S_IFMT) {
 903                        case S_IFREG:
 904                        case S_IFBLK:
 905                                capabilities = NOMMU_MAP_COPY;
 906                                break;
 907
 908                        case S_IFCHR:
 909                                capabilities =
 910                                        NOMMU_MAP_DIRECT |
 911                                        NOMMU_MAP_READ |
 912                                        NOMMU_MAP_WRITE;
 913                                break;
 914
 915                        default:
 916                                return -EINVAL;
 917                        }
 918                }
 919
 920                /* eliminate any capabilities that we can't support on this
 921                 * device */
 922                if (!file->f_op->get_unmapped_area)
 923                        capabilities &= ~NOMMU_MAP_DIRECT;
 924                if (!(file->f_mode & FMODE_CAN_READ))
 925                        capabilities &= ~NOMMU_MAP_COPY;
 926
 927                /* The file shall have been opened with read permission. */
 928                if (!(file->f_mode & FMODE_READ))
 929                        return -EACCES;
 930
 931                if (flags & MAP_SHARED) {
 932                        /* do checks for writing, appending and locking */
 933                        if ((prot & PROT_WRITE) &&
 934                            !(file->f_mode & FMODE_WRITE))
 935                                return -EACCES;
 936
 937                        if (IS_APPEND(file_inode(file)) &&
 938                            (file->f_mode & FMODE_WRITE))
 939                                return -EACCES;
 940
 941                        if (locks_verify_locked(file))
 942                                return -EAGAIN;
 943
 944                        if (!(capabilities & NOMMU_MAP_DIRECT))
 945                                return -ENODEV;
 946
 947                        /* we mustn't privatise shared mappings */
 948                        capabilities &= ~NOMMU_MAP_COPY;
 949                } else {
 950                        /* we're going to read the file into private memory we
 951                         * allocate */
 952                        if (!(capabilities & NOMMU_MAP_COPY))
 953                                return -ENODEV;
 954
 955                        /* we don't permit a private writable mapping to be
 956                         * shared with the backing device */
 957                        if (prot & PROT_WRITE)
 958                                capabilities &= ~NOMMU_MAP_DIRECT;
 959                }
 960
 961                if (capabilities & NOMMU_MAP_DIRECT) {
 962                        if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
 963                            ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
 964                            ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
 965                            ) {
 966                                capabilities &= ~NOMMU_MAP_DIRECT;
 967                                if (flags & MAP_SHARED) {
 968                                        pr_warn("MAP_SHARED not completely supported on !MMU\n");
 969                                        return -EINVAL;
 970                                }
 971                        }
 972                }
 973
 974                /* handle executable mappings and implied executable
 975                 * mappings */
 976                if (path_noexec(&file->f_path)) {
 977                        if (prot & PROT_EXEC)
 978                                return -EPERM;
 979                } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
 980                        /* handle implication of PROT_EXEC by PROT_READ */
 981                        if (current->personality & READ_IMPLIES_EXEC) {
 982                                if (capabilities & NOMMU_MAP_EXEC)
 983                                        prot |= PROT_EXEC;
 984                        }
 985                } else if ((prot & PROT_READ) &&
 986                         (prot & PROT_EXEC) &&
 987                         !(capabilities & NOMMU_MAP_EXEC)
 988                         ) {
 989                        /* backing file is not executable, try to copy */
 990                        capabilities &= ~NOMMU_MAP_DIRECT;
 991                }
 992        } else {
 993                /* anonymous mappings are always memory backed and can be
 994                 * privately mapped
 995                 */
 996                capabilities = NOMMU_MAP_COPY;
 997
 998                /* handle PROT_EXEC implication by PROT_READ */
 999                if ((prot & PROT_READ) &&
1000                    (current->personality & READ_IMPLIES_EXEC))
1001                        prot |= PROT_EXEC;
1002        }
1003
1004        /* allow the security API to have its say */
1005        ret = security_mmap_addr(addr);
1006        if (ret < 0)
1007                return ret;
1008
1009        /* looks okay */
1010        *_capabilities = capabilities;
1011        return 0;
1012}
1013
1014/*
1015 * we've determined that we can make the mapping, now translate what we
1016 * now know into VMA flags
1017 */
1018static unsigned long determine_vm_flags(struct file *file,
1019                                        unsigned long prot,
1020                                        unsigned long flags,
1021                                        unsigned long capabilities)
1022{
1023        unsigned long vm_flags;
1024
1025        vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1026        /* vm_flags |= mm->def_flags; */
1027
1028        if (!(capabilities & NOMMU_MAP_DIRECT)) {
1029                /* attempt to share read-only copies of mapped file chunks */
1030                vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1031                if (file && !(prot & PROT_WRITE))
1032                        vm_flags |= VM_MAYSHARE;
1033        } else {
1034                /* overlay a shareable mapping on the backing device or inode
1035                 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1036                 * romfs/cramfs */
1037                vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1038                if (flags & MAP_SHARED)
1039                        vm_flags |= VM_SHARED;
1040        }
1041
1042        /* refuse to let anyone share private mappings with this process if
1043         * it's being traced - otherwise breakpoints set in it may interfere
1044         * with another untraced process
1045         */
1046        if ((flags & MAP_PRIVATE) && current->ptrace)
1047                vm_flags &= ~VM_MAYSHARE;
1048
1049        return vm_flags;
1050}
1051
1052/*
1053 * set up a shared mapping on a file (the driver or filesystem provides and
1054 * pins the storage)
1055 */
1056static int do_mmap_shared_file(struct vm_area_struct *vma)
1057{
1058        int ret;
1059
1060        ret = call_mmap(vma->vm_file, vma);
1061        if (ret == 0) {
1062                vma->vm_region->vm_top = vma->vm_region->vm_end;
1063                return 0;
1064        }
1065        if (ret != -ENOSYS)
1066                return ret;
1067
1068        /* getting -ENOSYS indicates that direct mmap isn't possible (as
1069         * opposed to tried but failed) so we can only give a suitable error as
1070         * it's not possible to make a private copy if MAP_SHARED was given */
1071        return -ENODEV;
1072}
1073
1074/*
1075 * set up a private mapping or an anonymous shared mapping
1076 */
1077static int do_mmap_private(struct vm_area_struct *vma,
1078                           struct vm_region *region,
1079                           unsigned long len,
1080                           unsigned long capabilities)
1081{
1082        unsigned long total, point;
1083        void *base;
1084        int ret, order;
1085
1086        /* invoke the file's mapping function so that it can keep track of
1087         * shared mappings on devices or memory
1088         * - VM_MAYSHARE will be set if it may attempt to share
1089         */
1090        if (capabilities & NOMMU_MAP_DIRECT) {
1091                ret = call_mmap(vma->vm_file, vma);
1092                if (ret == 0) {
1093                        /* shouldn't return success if we're not sharing */
1094                        BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1095                        vma->vm_region->vm_top = vma->vm_region->vm_end;
1096                        return 0;
1097                }
1098                if (ret != -ENOSYS)
1099                        return ret;
1100
1101                /* getting an ENOSYS error indicates that direct mmap isn't
1102                 * possible (as opposed to tried but failed) so we'll try to
1103                 * make a private copy of the data and map that instead */
1104        }
1105
1106
1107        /* allocate some memory to hold the mapping
1108         * - note that this may not return a page-aligned address if the object
1109         *   we're allocating is smaller than a page
1110         */
1111        order = get_order(len);
1112        total = 1 << order;
1113        point = len >> PAGE_SHIFT;
1114
1115        /* we don't want to allocate a power-of-2 sized page set */
1116        if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1117                total = point;
1118
1119        base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1120        if (!base)
1121                goto enomem;
1122
1123        atomic_long_add(total, &mmap_pages_allocated);
1124
1125        region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1126        region->vm_start = (unsigned long) base;
1127        region->vm_end   = region->vm_start + len;
1128        region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1129
1130        vma->vm_start = region->vm_start;
1131        vma->vm_end   = region->vm_start + len;
1132
1133        if (vma->vm_file) {
1134                /* read the contents of a file into the copy */
1135                loff_t fpos;
1136
1137                fpos = vma->vm_pgoff;
1138                fpos <<= PAGE_SHIFT;
1139
1140                ret = kernel_read(vma->vm_file, base, len, &fpos);
1141                if (ret < 0)
1142                        goto error_free;
1143
1144                /* clear the last little bit */
1145                if (ret < len)
1146                        memset(base + ret, 0, len - ret);
1147
1148        }
1149
1150        return 0;
1151
1152error_free:
1153        free_page_series(region->vm_start, region->vm_top);
1154        region->vm_start = vma->vm_start = 0;
1155        region->vm_end   = vma->vm_end = 0;
1156        region->vm_top   = 0;
1157        return ret;
1158
1159enomem:
1160        pr_err("Allocation of length %lu from process %d (%s) failed\n",
1161               len, current->pid, current->comm);
1162        show_free_areas(0, NULL);
1163        return -ENOMEM;
1164}
1165
1166/*
1167 * handle mapping creation for uClinux
1168 */
1169unsigned long do_mmap(struct file *file,
1170                        unsigned long addr,
1171                        unsigned long len,
1172                        unsigned long prot,
1173                        unsigned long flags,
1174                        vm_flags_t vm_flags,
1175                        unsigned long pgoff,
1176                        unsigned long *populate,
1177                        struct list_head *uf)
1178{
1179        struct vm_area_struct *vma;
1180        struct vm_region *region;
1181        struct rb_node *rb;
1182        unsigned long capabilities, result;
1183        int ret;
1184
1185        *populate = 0;
1186
1187        /* decide whether we should attempt the mapping, and if so what sort of
1188         * mapping */
1189        ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1190                                    &capabilities);
1191        if (ret < 0)
1192                return ret;
1193
1194        /* we ignore the address hint */
1195        addr = 0;
1196        len = PAGE_ALIGN(len);
1197
1198        /* we've determined that we can make the mapping, now translate what we
1199         * now know into VMA flags */
1200        vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1201
1202        /* we're going to need to record the mapping */
1203        region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1204        if (!region)
1205                goto error_getting_region;
1206
1207        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1208        if (!vma)
1209                goto error_getting_vma;
1210
1211        region->vm_usage = 1;
1212        region->vm_flags = vm_flags;
1213        region->vm_pgoff = pgoff;
1214
1215        INIT_LIST_HEAD(&vma->anon_vma_chain);
1216        vma->vm_flags = vm_flags;
1217        vma->vm_pgoff = pgoff;
1218
1219        if (file) {
1220                region->vm_file = get_file(file);
1221                vma->vm_file = get_file(file);
1222        }
1223
1224        down_write(&nommu_region_sem);
1225
1226        /* if we want to share, we need to check for regions created by other
1227         * mmap() calls that overlap with our proposed mapping
1228         * - we can only share with a superset match on most regular files
1229         * - shared mappings on character devices and memory backed files are
1230         *   permitted to overlap inexactly as far as we are concerned for in
1231         *   these cases, sharing is handled in the driver or filesystem rather
1232         *   than here
1233         */
1234        if (vm_flags & VM_MAYSHARE) {
1235                struct vm_region *pregion;
1236                unsigned long pglen, rpglen, pgend, rpgend, start;
1237
1238                pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1239                pgend = pgoff + pglen;
1240
1241                for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1242                        pregion = rb_entry(rb, struct vm_region, vm_rb);
1243
1244                        if (!(pregion->vm_flags & VM_MAYSHARE))
1245                                continue;
1246
1247                        /* search for overlapping mappings on the same file */
1248                        if (file_inode(pregion->vm_file) !=
1249                            file_inode(file))
1250                                continue;
1251
1252                        if (pregion->vm_pgoff >= pgend)
1253                                continue;
1254
1255                        rpglen = pregion->vm_end - pregion->vm_start;
1256                        rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1257                        rpgend = pregion->vm_pgoff + rpglen;
1258                        if (pgoff >= rpgend)
1259                                continue;
1260
1261                        /* handle inexactly overlapping matches between
1262                         * mappings */
1263                        if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1264                            !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1265                                /* new mapping is not a subset of the region */
1266                                if (!(capabilities & NOMMU_MAP_DIRECT))
1267                                        goto sharing_violation;
1268                                continue;
1269                        }
1270
1271                        /* we've found a region we can share */
1272                        pregion->vm_usage++;
1273                        vma->vm_region = pregion;
1274                        start = pregion->vm_start;
1275                        start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1276                        vma->vm_start = start;
1277                        vma->vm_end = start + len;
1278
1279                        if (pregion->vm_flags & VM_MAPPED_COPY)
1280                                vma->vm_flags |= VM_MAPPED_COPY;
1281                        else {
1282                                ret = do_mmap_shared_file(vma);
1283                                if (ret < 0) {
1284                                        vma->vm_region = NULL;
1285                                        vma->vm_start = 0;
1286                                        vma->vm_end = 0;
1287                                        pregion->vm_usage--;
1288                                        pregion = NULL;
1289                                        goto error_just_free;
1290                                }
1291                        }
1292                        fput(region->vm_file);
1293                        kmem_cache_free(vm_region_jar, region);
1294                        region = pregion;
1295                        result = start;
1296                        goto share;
1297                }
1298
1299                /* obtain the address at which to make a shared mapping
1300                 * - this is the hook for quasi-memory character devices to
1301                 *   tell us the location of a shared mapping
1302                 */
1303                if (capabilities & NOMMU_MAP_DIRECT) {
1304                        addr = file->f_op->get_unmapped_area(file, addr, len,
1305                                                             pgoff, flags);
1306                        if (IS_ERR_VALUE(addr)) {
1307                                ret = addr;
1308                                if (ret != -ENOSYS)
1309                                        goto error_just_free;
1310
1311                                /* the driver refused to tell us where to site
1312                                 * the mapping so we'll have to attempt to copy
1313                                 * it */
1314                                ret = -ENODEV;
1315                                if (!(capabilities & NOMMU_MAP_COPY))
1316                                        goto error_just_free;
1317
1318                                capabilities &= ~NOMMU_MAP_DIRECT;
1319                        } else {
1320                                vma->vm_start = region->vm_start = addr;
1321                                vma->vm_end = region->vm_end = addr + len;
1322                        }
1323                }
1324        }
1325
1326        vma->vm_region = region;
1327
1328        /* set up the mapping
1329         * - the region is filled in if NOMMU_MAP_DIRECT is still set
1330         */
1331        if (file && vma->vm_flags & VM_SHARED)
1332                ret = do_mmap_shared_file(vma);
1333        else
1334                ret = do_mmap_private(vma, region, len, capabilities);
1335        if (ret < 0)
1336                goto error_just_free;
1337        add_nommu_region(region);
1338
1339        /* clear anonymous mappings that don't ask for uninitialized data */
1340        if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1341                memset((void *)region->vm_start, 0,
1342                       region->vm_end - region->vm_start);
1343
1344        /* okay... we have a mapping; now we have to register it */
1345        result = vma->vm_start;
1346
1347        current->mm->total_vm += len >> PAGE_SHIFT;
1348
1349share:
1350        add_vma_to_mm(current->mm, vma);
1351
1352        /* we flush the region from the icache only when the first executable
1353         * mapping of it is made  */
1354        if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1355                flush_icache_range(region->vm_start, region->vm_end);
1356                region->vm_icache_flushed = true;
1357        }
1358
1359        up_write(&nommu_region_sem);
1360
1361        return result;
1362
1363error_just_free:
1364        up_write(&nommu_region_sem);
1365error:
1366        if (region->vm_file)
1367                fput(region->vm_file);
1368        kmem_cache_free(vm_region_jar, region);
1369        if (vma->vm_file)
1370                fput(vma->vm_file);
1371        kmem_cache_free(vm_area_cachep, vma);
1372        return ret;
1373
1374sharing_violation:
1375        up_write(&nommu_region_sem);
1376        pr_warn("Attempt to share mismatched mappings\n");
1377        ret = -EINVAL;
1378        goto error;
1379
1380error_getting_vma:
1381        kmem_cache_free(vm_region_jar, region);
1382        pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1383                        len, current->pid);
1384        show_free_areas(0, NULL);
1385        return -ENOMEM;
1386
1387error_getting_region:
1388        pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1389                        len, current->pid);
1390        show_free_areas(0, NULL);
1391        return -ENOMEM;
1392}
1393
1394unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1395                              unsigned long prot, unsigned long flags,
1396                              unsigned long fd, unsigned long pgoff)
1397{
1398        struct file *file = NULL;
1399        unsigned long retval = -EBADF;
1400
1401        audit_mmap_fd(fd, flags);
1402        if (!(flags & MAP_ANONYMOUS)) {
1403                file = fget(fd);
1404                if (!file)
1405                        goto out;
1406        }
1407
1408        flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1409
1410        retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1411
1412        if (file)
1413                fput(file);
1414out:
1415        return retval;
1416}
1417
1418SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1419                unsigned long, prot, unsigned long, flags,
1420                unsigned long, fd, unsigned long, pgoff)
1421{
1422        return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1423}
1424
1425#ifdef __ARCH_WANT_SYS_OLD_MMAP
1426struct mmap_arg_struct {
1427        unsigned long addr;
1428        unsigned long len;
1429        unsigned long prot;
1430        unsigned long flags;
1431        unsigned long fd;
1432        unsigned long offset;
1433};
1434
1435SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1436{
1437        struct mmap_arg_struct a;
1438
1439        if (copy_from_user(&a, arg, sizeof(a)))
1440                return -EFAULT;
1441        if (offset_in_page(a.offset))
1442                return -EINVAL;
1443
1444        return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1445                               a.offset >> PAGE_SHIFT);
1446}
1447#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1448
1449/*
1450 * split a vma into two pieces at address 'addr', a new vma is allocated either
1451 * for the first part or the tail.
1452 */
1453int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1454              unsigned long addr, int new_below)
1455{
1456        struct vm_area_struct *new;
1457        struct vm_region *region;
1458        unsigned long npages;
1459
1460        /* we're only permitted to split anonymous regions (these should have
1461         * only a single usage on the region) */
1462        if (vma->vm_file)
1463                return -ENOMEM;
1464
1465        if (mm->map_count >= sysctl_max_map_count)
1466                return -ENOMEM;
1467
1468        region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1469        if (!region)
1470                return -ENOMEM;
1471
1472        new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1473        if (!new) {
1474                kmem_cache_free(vm_region_jar, region);
1475                return -ENOMEM;
1476        }
1477
1478        /* most fields are the same, copy all, and then fixup */
1479        *new = *vma;
1480        *region = *vma->vm_region;
1481        new->vm_region = region;
1482
1483        npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1484
1485        if (new_below) {
1486                region->vm_top = region->vm_end = new->vm_end = addr;
1487        } else {
1488                region->vm_start = new->vm_start = addr;
1489                region->vm_pgoff = new->vm_pgoff += npages;
1490        }
1491
1492        if (new->vm_ops && new->vm_ops->open)
1493                new->vm_ops->open(new);
1494
1495        delete_vma_from_mm(vma);
1496        down_write(&nommu_region_sem);
1497        delete_nommu_region(vma->vm_region);
1498        if (new_below) {
1499                vma->vm_region->vm_start = vma->vm_start = addr;
1500                vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1501        } else {
1502                vma->vm_region->vm_end = vma->vm_end = addr;
1503                vma->vm_region->vm_top = addr;
1504        }
1505        add_nommu_region(vma->vm_region);
1506        add_nommu_region(new->vm_region);
1507        up_write(&nommu_region_sem);
1508        add_vma_to_mm(mm, vma);
1509        add_vma_to_mm(mm, new);
1510        return 0;
1511}
1512
1513/*
1514 * shrink a VMA by removing the specified chunk from either the beginning or
1515 * the end
1516 */
1517static int shrink_vma(struct mm_struct *mm,
1518                      struct vm_area_struct *vma,
1519                      unsigned long from, unsigned long to)
1520{
1521        struct vm_region *region;
1522
1523        /* adjust the VMA's pointers, which may reposition it in the MM's tree
1524         * and list */
1525        delete_vma_from_mm(vma);
1526        if (from > vma->vm_start)
1527                vma->vm_end = from;
1528        else
1529                vma->vm_start = to;
1530        add_vma_to_mm(mm, vma);
1531
1532        /* cut the backing region down to size */
1533        region = vma->vm_region;
1534        BUG_ON(region->vm_usage != 1);
1535
1536        down_write(&nommu_region_sem);
1537        delete_nommu_region(region);
1538        if (from > region->vm_start) {
1539                to = region->vm_top;
1540                region->vm_top = region->vm_end = from;
1541        } else {
1542                region->vm_start = to;
1543        }
1544        add_nommu_region(region);
1545        up_write(&nommu_region_sem);
1546
1547        free_page_series(from, to);
1548        return 0;
1549}
1550
1551/*
1552 * release a mapping
1553 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1554 *   VMA, though it need not cover the whole VMA
1555 */
1556int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1557{
1558        struct vm_area_struct *vma;
1559        unsigned long end;
1560        int ret;
1561
1562        len = PAGE_ALIGN(len);
1563        if (len == 0)
1564                return -EINVAL;
1565
1566        end = start + len;
1567
1568        /* find the first potentially overlapping VMA */
1569        vma = find_vma(mm, start);
1570        if (!vma) {
1571                static int limit;
1572                if (limit < 5) {
1573                        pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1574                                        current->pid, current->comm,
1575                                        start, start + len - 1);
1576                        limit++;
1577                }
1578                return -EINVAL;
1579        }
1580
1581        /* we're allowed to split an anonymous VMA but not a file-backed one */
1582        if (vma->vm_file) {
1583                do {
1584                        if (start > vma->vm_start)
1585                                return -EINVAL;
1586                        if (end == vma->vm_end)
1587                                goto erase_whole_vma;
1588                        vma = vma->vm_next;
1589                } while (vma);
1590                return -EINVAL;
1591        } else {
1592                /* the chunk must be a subset of the VMA found */
1593                if (start == vma->vm_start && end == vma->vm_end)
1594                        goto erase_whole_vma;
1595                if (start < vma->vm_start || end > vma->vm_end)
1596                        return -EINVAL;
1597                if (offset_in_page(start))
1598                        return -EINVAL;
1599                if (end != vma->vm_end && offset_in_page(end))
1600                        return -EINVAL;
1601                if (start != vma->vm_start && end != vma->vm_end) {
1602                        ret = split_vma(mm, vma, start, 1);
1603                        if (ret < 0)
1604                                return ret;
1605                }
1606                return shrink_vma(mm, vma, start, end);
1607        }
1608
1609erase_whole_vma:
1610        delete_vma_from_mm(vma);
1611        delete_vma(mm, vma);
1612        return 0;
1613}
1614EXPORT_SYMBOL(do_munmap);
1615
1616int vm_munmap(unsigned long addr, size_t len)
1617{
1618        struct mm_struct *mm = current->mm;
1619        int ret;
1620
1621        down_write(&mm->mmap_sem);
1622        ret = do_munmap(mm, addr, len, NULL);
1623        up_write(&mm->mmap_sem);
1624        return ret;
1625}
1626EXPORT_SYMBOL(vm_munmap);
1627
1628SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1629{
1630        return vm_munmap(addr, len);
1631}
1632
1633/*
1634 * release all the mappings made in a process's VM space
1635 */
1636void exit_mmap(struct mm_struct *mm)
1637{
1638        struct vm_area_struct *vma;
1639
1640        if (!mm)
1641                return;
1642
1643        mm->total_vm = 0;
1644
1645        while ((vma = mm->mmap)) {
1646                mm->mmap = vma->vm_next;
1647                delete_vma_from_mm(vma);
1648                delete_vma(mm, vma);
1649                cond_resched();
1650        }
1651}
1652
1653int vm_brk(unsigned long addr, unsigned long len)
1654{
1655        return -ENOMEM;
1656}
1657
1658/*
1659 * expand (or shrink) an existing mapping, potentially moving it at the same
1660 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1661 *
1662 * under NOMMU conditions, we only permit changing a mapping's size, and only
1663 * as long as it stays within the region allocated by do_mmap_private() and the
1664 * block is not shareable
1665 *
1666 * MREMAP_FIXED is not supported under NOMMU conditions
1667 */
1668static unsigned long do_mremap(unsigned long addr,
1669                        unsigned long old_len, unsigned long new_len,
1670                        unsigned long flags, unsigned long new_addr)
1671{
1672        struct vm_area_struct *vma;
1673
1674        /* insanity checks first */
1675        old_len = PAGE_ALIGN(old_len);
1676        new_len = PAGE_ALIGN(new_len);
1677        if (old_len == 0 || new_len == 0)
1678                return (unsigned long) -EINVAL;
1679
1680        if (offset_in_page(addr))
1681                return -EINVAL;
1682
1683        if (flags & MREMAP_FIXED && new_addr != addr)
1684                return (unsigned long) -EINVAL;
1685
1686        vma = find_vma_exact(current->mm, addr, old_len);
1687        if (!vma)
1688                return (unsigned long) -EINVAL;
1689
1690        if (vma->vm_end != vma->vm_start + old_len)
1691                return (unsigned long) -EFAULT;
1692
1693        if (vma->vm_flags & VM_MAYSHARE)
1694                return (unsigned long) -EPERM;
1695
1696        if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1697                return (unsigned long) -ENOMEM;
1698
1699        /* all checks complete - do it */
1700        vma->vm_end = vma->vm_start + new_len;
1701        return vma->vm_start;
1702}
1703
1704SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1705                unsigned long, new_len, unsigned long, flags,
1706                unsigned long, new_addr)
1707{
1708        unsigned long ret;
1709
1710        down_write(&current->mm->mmap_sem);
1711        ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1712        up_write(&current->mm->mmap_sem);
1713        return ret;
1714}
1715
1716struct page *follow_page_mask(struct vm_area_struct *vma,
1717                              unsigned long address, unsigned int flags,
1718                              unsigned int *page_mask)
1719{
1720        *page_mask = 0;
1721        return NULL;
1722}
1723
1724int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1725                unsigned long pfn, unsigned long size, pgprot_t prot)
1726{
1727        if (addr != (pfn << PAGE_SHIFT))
1728                return -EINVAL;
1729
1730        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1731        return 0;
1732}
1733EXPORT_SYMBOL(remap_pfn_range);
1734
1735int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1736{
1737        unsigned long pfn = start >> PAGE_SHIFT;
1738        unsigned long vm_len = vma->vm_end - vma->vm_start;
1739
1740        pfn += vma->vm_pgoff;
1741        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1742}
1743EXPORT_SYMBOL(vm_iomap_memory);
1744
1745int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1746                        unsigned long pgoff)
1747{
1748        unsigned int size = vma->vm_end - vma->vm_start;
1749
1750        if (!(vma->vm_flags & VM_USERMAP))
1751                return -EINVAL;
1752
1753        vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1754        vma->vm_end = vma->vm_start + size;
1755
1756        return 0;
1757}
1758EXPORT_SYMBOL(remap_vmalloc_range);
1759
1760unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1761        unsigned long len, unsigned long pgoff, unsigned long flags)
1762{
1763        return -ENOMEM;
1764}
1765
1766int filemap_fault(struct vm_fault *vmf)
1767{
1768        BUG();
1769        return 0;
1770}
1771EXPORT_SYMBOL(filemap_fault);
1772
1773void filemap_map_pages(struct vm_fault *vmf,
1774                pgoff_t start_pgoff, pgoff_t end_pgoff)
1775{
1776        BUG();
1777}
1778EXPORT_SYMBOL(filemap_map_pages);
1779
1780int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1781                unsigned long addr, void *buf, int len, unsigned int gup_flags)
1782{
1783        struct vm_area_struct *vma;
1784        int write = gup_flags & FOLL_WRITE;
1785
1786        down_read(&mm->mmap_sem);
1787
1788        /* the access must start within one of the target process's mappings */
1789        vma = find_vma(mm, addr);
1790        if (vma) {
1791                /* don't overrun this mapping */
1792                if (addr + len >= vma->vm_end)
1793                        len = vma->vm_end - addr;
1794
1795                /* only read or write mappings where it is permitted */
1796                if (write && vma->vm_flags & VM_MAYWRITE)
1797                        copy_to_user_page(vma, NULL, addr,
1798                                         (void *) addr, buf, len);
1799                else if (!write && vma->vm_flags & VM_MAYREAD)
1800                        copy_from_user_page(vma, NULL, addr,
1801                                            buf, (void *) addr, len);
1802                else
1803                        len = 0;
1804        } else {
1805                len = 0;
1806        }
1807
1808        up_read(&mm->mmap_sem);
1809
1810        return len;
1811}
1812
1813/**
1814 * access_remote_vm - access another process' address space
1815 * @mm:         the mm_struct of the target address space
1816 * @addr:       start address to access
1817 * @buf:        source or destination buffer
1818 * @len:        number of bytes to transfer
1819 * @gup_flags:  flags modifying lookup behaviour
1820 *
1821 * The caller must hold a reference on @mm.
1822 */
1823int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1824                void *buf, int len, unsigned int gup_flags)
1825{
1826        return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1827}
1828
1829/*
1830 * Access another process' address space.
1831 * - source/target buffer must be kernel space
1832 */
1833int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1834                unsigned int gup_flags)
1835{
1836        struct mm_struct *mm;
1837
1838        if (addr + len < addr)
1839                return 0;
1840
1841        mm = get_task_mm(tsk);
1842        if (!mm)
1843                return 0;
1844
1845        len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1846
1847        mmput(mm);
1848        return len;
1849}
1850EXPORT_SYMBOL_GPL(access_process_vm);
1851
1852/**
1853 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1854 * @inode: The inode to check
1855 * @size: The current filesize of the inode
1856 * @newsize: The proposed filesize of the inode
1857 *
1858 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1859 * make sure that that any outstanding VMAs aren't broken and then shrink the
1860 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1861 * automatically grant mappings that are too large.
1862 */
1863int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1864                                size_t newsize)
1865{
1866        struct vm_area_struct *vma;
1867        struct vm_region *region;
1868        pgoff_t low, high;
1869        size_t r_size, r_top;
1870
1871        low = newsize >> PAGE_SHIFT;
1872        high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1873
1874        down_write(&nommu_region_sem);
1875        i_mmap_lock_read(inode->i_mapping);
1876
1877        /* search for VMAs that fall within the dead zone */
1878        vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1879                /* found one - only interested if it's shared out of the page
1880                 * cache */
1881                if (vma->vm_flags & VM_SHARED) {
1882                        i_mmap_unlock_read(inode->i_mapping);
1883                        up_write(&nommu_region_sem);
1884                        return -ETXTBSY; /* not quite true, but near enough */
1885                }
1886        }
1887
1888        /* reduce any regions that overlap the dead zone - if in existence,
1889         * these will be pointed to by VMAs that don't overlap the dead zone
1890         *
1891         * we don't check for any regions that start beyond the EOF as there
1892         * shouldn't be any
1893         */
1894        vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1895                if (!(vma->vm_flags & VM_SHARED))
1896                        continue;
1897
1898                region = vma->vm_region;
1899                r_size = region->vm_top - region->vm_start;
1900                r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1901
1902                if (r_top > newsize) {
1903                        region->vm_top -= r_top - newsize;
1904                        if (region->vm_end > region->vm_top)
1905                                region->vm_end = region->vm_top;
1906                }
1907        }
1908
1909        i_mmap_unlock_read(inode->i_mapping);
1910        up_write(&nommu_region_sem);
1911        return 0;
1912}
1913
1914/*
1915 * Initialise sysctl_user_reserve_kbytes.
1916 *
1917 * This is intended to prevent a user from starting a single memory hogging
1918 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1919 * mode.
1920 *
1921 * The default value is min(3% of free memory, 128MB)
1922 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1923 */
1924static int __meminit init_user_reserve(void)
1925{
1926        unsigned long free_kbytes;
1927
1928        free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1929
1930        sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1931        return 0;
1932}
1933subsys_initcall(init_user_reserve);
1934
1935/*
1936 * Initialise sysctl_admin_reserve_kbytes.
1937 *
1938 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1939 * to log in and kill a memory hogging process.
1940 *
1941 * Systems with more than 256MB will reserve 8MB, enough to recover
1942 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1943 * only reserve 3% of free pages by default.
1944 */
1945static int __meminit init_admin_reserve(void)
1946{
1947        unsigned long free_kbytes;
1948
1949        free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1950
1951        sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1952        return 0;
1953}
1954subsys_initcall(init_admin_reserve);
1955