linux/mm/page_alloc.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/compiler.h>
  26#include <linux/kernel.h>
  27#include <linux/kasan.h>
  28#include <linux/module.h>
  29#include <linux/suspend.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/slab.h>
  33#include <linux/ratelimit.h>
  34#include <linux/oom.h>
  35#include <linux/notifier.h>
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/memremap.h>
  46#include <linux/stop_machine.h>
  47#include <linux/sort.h>
  48#include <linux/pfn.h>
  49#include <linux/backing-dev.h>
  50#include <linux/fault-inject.h>
  51#include <linux/page-isolation.h>
  52#include <linux/page_ext.h>
  53#include <linux/debugobjects.h>
  54#include <linux/kmemleak.h>
  55#include <linux/compaction.h>
  56#include <trace/events/kmem.h>
  57#include <trace/events/oom.h>
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
  60#include <linux/migrate.h>
  61#include <linux/hugetlb.h>
  62#include <linux/sched/rt.h>
  63#include <linux/sched/mm.h>
  64#include <linux/page_owner.h>
  65#include <linux/kthread.h>
  66#include <linux/memcontrol.h>
  67#include <linux/ftrace.h>
  68#include <linux/lockdep.h>
  69#include <linux/nmi.h>
  70
  71#include <asm/sections.h>
  72#include <asm/tlbflush.h>
  73#include <asm/div64.h>
  74#include "internal.h"
  75
  76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  77static DEFINE_MUTEX(pcp_batch_high_lock);
  78#define MIN_PERCPU_PAGELIST_FRACTION    (8)
  79
  80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  81DEFINE_PER_CPU(int, numa_node);
  82EXPORT_PER_CPU_SYMBOL(numa_node);
  83#endif
  84
  85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
  86
  87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  88/*
  89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  92 * defined in <linux/topology.h>.
  93 */
  94DEFINE_PER_CPU(int, _numa_mem_);                /* Kernel "local memory" node */
  95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  96int _node_numa_mem_[MAX_NUMNODES];
  97#endif
  98
  99/* work_structs for global per-cpu drains */
 100DEFINE_MUTEX(pcpu_drain_mutex);
 101DEFINE_PER_CPU(struct work_struct, pcpu_drain);
 102
 103#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 104volatile unsigned long latent_entropy __latent_entropy;
 105EXPORT_SYMBOL(latent_entropy);
 106#endif
 107
 108/*
 109 * Array of node states.
 110 */
 111nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 112        [N_POSSIBLE] = NODE_MASK_ALL,
 113        [N_ONLINE] = { { [0] = 1UL } },
 114#ifndef CONFIG_NUMA
 115        [N_NORMAL_MEMORY] = { { [0] = 1UL } },
 116#ifdef CONFIG_HIGHMEM
 117        [N_HIGH_MEMORY] = { { [0] = 1UL } },
 118#endif
 119        [N_MEMORY] = { { [0] = 1UL } },
 120        [N_CPU] = { { [0] = 1UL } },
 121#endif  /* NUMA */
 122};
 123EXPORT_SYMBOL(node_states);
 124
 125/* Protect totalram_pages and zone->managed_pages */
 126static DEFINE_SPINLOCK(managed_page_count_lock);
 127
 128unsigned long totalram_pages __read_mostly;
 129unsigned long totalreserve_pages __read_mostly;
 130unsigned long totalcma_pages __read_mostly;
 131
 132int percpu_pagelist_fraction;
 133gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 134
 135/*
 136 * A cached value of the page's pageblock's migratetype, used when the page is
 137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 139 * Also the migratetype set in the page does not necessarily match the pcplist
 140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 141 * other index - this ensures that it will be put on the correct CMA freelist.
 142 */
 143static inline int get_pcppage_migratetype(struct page *page)
 144{
 145        return page->index;
 146}
 147
 148static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 149{
 150        page->index = migratetype;
 151}
 152
 153#ifdef CONFIG_PM_SLEEP
 154/*
 155 * The following functions are used by the suspend/hibernate code to temporarily
 156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 157 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 160 * guaranteed not to run in parallel with that modification).
 161 */
 162
 163static gfp_t saved_gfp_mask;
 164
 165void pm_restore_gfp_mask(void)
 166{
 167        WARN_ON(!mutex_is_locked(&pm_mutex));
 168        if (saved_gfp_mask) {
 169                gfp_allowed_mask = saved_gfp_mask;
 170                saved_gfp_mask = 0;
 171        }
 172}
 173
 174void pm_restrict_gfp_mask(void)
 175{
 176        WARN_ON(!mutex_is_locked(&pm_mutex));
 177        WARN_ON(saved_gfp_mask);
 178        saved_gfp_mask = gfp_allowed_mask;
 179        gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 180}
 181
 182bool pm_suspended_storage(void)
 183{
 184        if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 185                return false;
 186        return true;
 187}
 188#endif /* CONFIG_PM_SLEEP */
 189
 190#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 191unsigned int pageblock_order __read_mostly;
 192#endif
 193
 194static void __free_pages_ok(struct page *page, unsigned int order);
 195
 196/*
 197 * results with 256, 32 in the lowmem_reserve sysctl:
 198 *      1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 199 *      1G machine -> (16M dma, 784M normal, 224M high)
 200 *      NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 201 *      HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 202 *      HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 203 *
 204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 205 * don't need any ZONE_NORMAL reservation
 206 */
 207int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 208#ifdef CONFIG_ZONE_DMA
 209        [ZONE_DMA] = 256,
 210#endif
 211#ifdef CONFIG_ZONE_DMA32
 212        [ZONE_DMA32] = 256,
 213#endif
 214        [ZONE_NORMAL] = 32,
 215#ifdef CONFIG_HIGHMEM
 216        [ZONE_HIGHMEM] = 0,
 217#endif
 218        [ZONE_MOVABLE] = 0,
 219};
 220
 221EXPORT_SYMBOL(totalram_pages);
 222
 223static char * const zone_names[MAX_NR_ZONES] = {
 224#ifdef CONFIG_ZONE_DMA
 225         "DMA",
 226#endif
 227#ifdef CONFIG_ZONE_DMA32
 228         "DMA32",
 229#endif
 230         "Normal",
 231#ifdef CONFIG_HIGHMEM
 232         "HighMem",
 233#endif
 234         "Movable",
 235#ifdef CONFIG_ZONE_DEVICE
 236         "Device",
 237#endif
 238};
 239
 240char * const migratetype_names[MIGRATE_TYPES] = {
 241        "Unmovable",
 242        "Movable",
 243        "Reclaimable",
 244        "HighAtomic",
 245#ifdef CONFIG_CMA
 246        "CMA",
 247#endif
 248#ifdef CONFIG_MEMORY_ISOLATION
 249        "Isolate",
 250#endif
 251};
 252
 253compound_page_dtor * const compound_page_dtors[] = {
 254        NULL,
 255        free_compound_page,
 256#ifdef CONFIG_HUGETLB_PAGE
 257        free_huge_page,
 258#endif
 259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 260        free_transhuge_page,
 261#endif
 262};
 263
 264int min_free_kbytes = 1024;
 265int user_min_free_kbytes = -1;
 266int watermark_scale_factor = 10;
 267
 268static unsigned long nr_kernel_pages __meminitdata;
 269static unsigned long nr_all_pages __meminitdata;
 270static unsigned long dma_reserve __meminitdata;
 271
 272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 273static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
 274static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
 275static unsigned long required_kernelcore __initdata;
 276static unsigned long required_kernelcore_percent __initdata;
 277static unsigned long required_movablecore __initdata;
 278static unsigned long required_movablecore_percent __initdata;
 279static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
 280static bool mirrored_kernelcore __meminitdata;
 281
 282/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 283int movable_zone;
 284EXPORT_SYMBOL(movable_zone);
 285#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 286
 287#if MAX_NUMNODES > 1
 288int nr_node_ids __read_mostly = MAX_NUMNODES;
 289int nr_online_nodes __read_mostly = 1;
 290EXPORT_SYMBOL(nr_node_ids);
 291EXPORT_SYMBOL(nr_online_nodes);
 292#endif
 293
 294int page_group_by_mobility_disabled __read_mostly;
 295
 296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 297/* Returns true if the struct page for the pfn is uninitialised */
 298static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 299{
 300        int nid = early_pfn_to_nid(pfn);
 301
 302        if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 303                return true;
 304
 305        return false;
 306}
 307
 308/*
 309 * Returns false when the remaining initialisation should be deferred until
 310 * later in the boot cycle when it can be parallelised.
 311 */
 312static inline bool update_defer_init(pg_data_t *pgdat,
 313                                unsigned long pfn, unsigned long zone_end,
 314                                unsigned long *nr_initialised)
 315{
 316        /* Always populate low zones for address-constrained allocations */
 317        if (zone_end < pgdat_end_pfn(pgdat))
 318                return true;
 319        (*nr_initialised)++;
 320        if ((*nr_initialised > pgdat->static_init_pgcnt) &&
 321            (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 322                pgdat->first_deferred_pfn = pfn;
 323                return false;
 324        }
 325
 326        return true;
 327}
 328#else
 329static inline bool early_page_uninitialised(unsigned long pfn)
 330{
 331        return false;
 332}
 333
 334static inline bool update_defer_init(pg_data_t *pgdat,
 335                                unsigned long pfn, unsigned long zone_end,
 336                                unsigned long *nr_initialised)
 337{
 338        return true;
 339}
 340#endif
 341
 342/* Return a pointer to the bitmap storing bits affecting a block of pages */
 343static inline unsigned long *get_pageblock_bitmap(struct page *page,
 344                                                        unsigned long pfn)
 345{
 346#ifdef CONFIG_SPARSEMEM
 347        return __pfn_to_section(pfn)->pageblock_flags;
 348#else
 349        return page_zone(page)->pageblock_flags;
 350#endif /* CONFIG_SPARSEMEM */
 351}
 352
 353static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
 354{
 355#ifdef CONFIG_SPARSEMEM
 356        pfn &= (PAGES_PER_SECTION-1);
 357        return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 358#else
 359        pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
 360        return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 361#endif /* CONFIG_SPARSEMEM */
 362}
 363
 364/**
 365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 366 * @page: The page within the block of interest
 367 * @pfn: The target page frame number
 368 * @end_bitidx: The last bit of interest to retrieve
 369 * @mask: mask of bits that the caller is interested in
 370 *
 371 * Return: pageblock_bits flags
 372 */
 373static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
 374                                        unsigned long pfn,
 375                                        unsigned long end_bitidx,
 376                                        unsigned long mask)
 377{
 378        unsigned long *bitmap;
 379        unsigned long bitidx, word_bitidx;
 380        unsigned long word;
 381
 382        bitmap = get_pageblock_bitmap(page, pfn);
 383        bitidx = pfn_to_bitidx(page, pfn);
 384        word_bitidx = bitidx / BITS_PER_LONG;
 385        bitidx &= (BITS_PER_LONG-1);
 386
 387        word = bitmap[word_bitidx];
 388        bitidx += end_bitidx;
 389        return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
 390}
 391
 392unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
 393                                        unsigned long end_bitidx,
 394                                        unsigned long mask)
 395{
 396        return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
 397}
 398
 399static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
 400{
 401        return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
 402}
 403
 404/**
 405 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 406 * @page: The page within the block of interest
 407 * @flags: The flags to set
 408 * @pfn: The target page frame number
 409 * @end_bitidx: The last bit of interest
 410 * @mask: mask of bits that the caller is interested in
 411 */
 412void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 413                                        unsigned long pfn,
 414                                        unsigned long end_bitidx,
 415                                        unsigned long mask)
 416{
 417        unsigned long *bitmap;
 418        unsigned long bitidx, word_bitidx;
 419        unsigned long old_word, word;
 420
 421        BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 422
 423        bitmap = get_pageblock_bitmap(page, pfn);
 424        bitidx = pfn_to_bitidx(page, pfn);
 425        word_bitidx = bitidx / BITS_PER_LONG;
 426        bitidx &= (BITS_PER_LONG-1);
 427
 428        VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 429
 430        bitidx += end_bitidx;
 431        mask <<= (BITS_PER_LONG - bitidx - 1);
 432        flags <<= (BITS_PER_LONG - bitidx - 1);
 433
 434        word = READ_ONCE(bitmap[word_bitidx]);
 435        for (;;) {
 436                old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 437                if (word == old_word)
 438                        break;
 439                word = old_word;
 440        }
 441}
 442
 443void set_pageblock_migratetype(struct page *page, int migratetype)
 444{
 445        if (unlikely(page_group_by_mobility_disabled &&
 446                     migratetype < MIGRATE_PCPTYPES))
 447                migratetype = MIGRATE_UNMOVABLE;
 448
 449        set_pageblock_flags_group(page, (unsigned long)migratetype,
 450                                        PB_migrate, PB_migrate_end);
 451}
 452
 453#ifdef CONFIG_DEBUG_VM
 454static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 455{
 456        int ret = 0;
 457        unsigned seq;
 458        unsigned long pfn = page_to_pfn(page);
 459        unsigned long sp, start_pfn;
 460
 461        do {
 462                seq = zone_span_seqbegin(zone);
 463                start_pfn = zone->zone_start_pfn;
 464                sp = zone->spanned_pages;
 465                if (!zone_spans_pfn(zone, pfn))
 466                        ret = 1;
 467        } while (zone_span_seqretry(zone, seq));
 468
 469        if (ret)
 470                pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 471                        pfn, zone_to_nid(zone), zone->name,
 472                        start_pfn, start_pfn + sp);
 473
 474        return ret;
 475}
 476
 477static int page_is_consistent(struct zone *zone, struct page *page)
 478{
 479        if (!pfn_valid_within(page_to_pfn(page)))
 480                return 0;
 481        if (zone != page_zone(page))
 482                return 0;
 483
 484        return 1;
 485}
 486/*
 487 * Temporary debugging check for pages not lying within a given zone.
 488 */
 489static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 490{
 491        if (page_outside_zone_boundaries(zone, page))
 492                return 1;
 493        if (!page_is_consistent(zone, page))
 494                return 1;
 495
 496        return 0;
 497}
 498#else
 499static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 500{
 501        return 0;
 502}
 503#endif
 504
 505static void bad_page(struct page *page, const char *reason,
 506                unsigned long bad_flags)
 507{
 508        static unsigned long resume;
 509        static unsigned long nr_shown;
 510        static unsigned long nr_unshown;
 511
 512        /*
 513         * Allow a burst of 60 reports, then keep quiet for that minute;
 514         * or allow a steady drip of one report per second.
 515         */
 516        if (nr_shown == 60) {
 517                if (time_before(jiffies, resume)) {
 518                        nr_unshown++;
 519                        goto out;
 520                }
 521                if (nr_unshown) {
 522                        pr_alert(
 523                              "BUG: Bad page state: %lu messages suppressed\n",
 524                                nr_unshown);
 525                        nr_unshown = 0;
 526                }
 527                nr_shown = 0;
 528        }
 529        if (nr_shown++ == 0)
 530                resume = jiffies + 60 * HZ;
 531
 532        pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 533                current->comm, page_to_pfn(page));
 534        __dump_page(page, reason);
 535        bad_flags &= page->flags;
 536        if (bad_flags)
 537                pr_alert("bad because of flags: %#lx(%pGp)\n",
 538                                                bad_flags, &bad_flags);
 539        dump_page_owner(page);
 540
 541        print_modules();
 542        dump_stack();
 543out:
 544        /* Leave bad fields for debug, except PageBuddy could make trouble */
 545        page_mapcount_reset(page); /* remove PageBuddy */
 546        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 547}
 548
 549/*
 550 * Higher-order pages are called "compound pages".  They are structured thusly:
 551 *
 552 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 553 *
 554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 556 *
 557 * The first tail page's ->compound_dtor holds the offset in array of compound
 558 * page destructors. See compound_page_dtors.
 559 *
 560 * The first tail page's ->compound_order holds the order of allocation.
 561 * This usage means that zero-order pages may not be compound.
 562 */
 563
 564void free_compound_page(struct page *page)
 565{
 566        __free_pages_ok(page, compound_order(page));
 567}
 568
 569void prep_compound_page(struct page *page, unsigned int order)
 570{
 571        int i;
 572        int nr_pages = 1 << order;
 573
 574        set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 575        set_compound_order(page, order);
 576        __SetPageHead(page);
 577        for (i = 1; i < nr_pages; i++) {
 578                struct page *p = page + i;
 579                set_page_count(p, 0);
 580                p->mapping = TAIL_MAPPING;
 581                set_compound_head(p, page);
 582        }
 583        atomic_set(compound_mapcount_ptr(page), -1);
 584}
 585
 586#ifdef CONFIG_DEBUG_PAGEALLOC
 587unsigned int _debug_guardpage_minorder;
 588bool _debug_pagealloc_enabled __read_mostly
 589                        = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 590EXPORT_SYMBOL(_debug_pagealloc_enabled);
 591bool _debug_guardpage_enabled __read_mostly;
 592
 593static int __init early_debug_pagealloc(char *buf)
 594{
 595        if (!buf)
 596                return -EINVAL;
 597        return kstrtobool(buf, &_debug_pagealloc_enabled);
 598}
 599early_param("debug_pagealloc", early_debug_pagealloc);
 600
 601static bool need_debug_guardpage(void)
 602{
 603        /* If we don't use debug_pagealloc, we don't need guard page */
 604        if (!debug_pagealloc_enabled())
 605                return false;
 606
 607        if (!debug_guardpage_minorder())
 608                return false;
 609
 610        return true;
 611}
 612
 613static void init_debug_guardpage(void)
 614{
 615        if (!debug_pagealloc_enabled())
 616                return;
 617
 618        if (!debug_guardpage_minorder())
 619                return;
 620
 621        _debug_guardpage_enabled = true;
 622}
 623
 624struct page_ext_operations debug_guardpage_ops = {
 625        .need = need_debug_guardpage,
 626        .init = init_debug_guardpage,
 627};
 628
 629static int __init debug_guardpage_minorder_setup(char *buf)
 630{
 631        unsigned long res;
 632
 633        if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 634                pr_err("Bad debug_guardpage_minorder value\n");
 635                return 0;
 636        }
 637        _debug_guardpage_minorder = res;
 638        pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 639        return 0;
 640}
 641early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
 642
 643static inline bool set_page_guard(struct zone *zone, struct page *page,
 644                                unsigned int order, int migratetype)
 645{
 646        struct page_ext *page_ext;
 647
 648        if (!debug_guardpage_enabled())
 649                return false;
 650
 651        if (order >= debug_guardpage_minorder())
 652                return false;
 653
 654        page_ext = lookup_page_ext(page);
 655        if (unlikely(!page_ext))
 656                return false;
 657
 658        __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 659
 660        INIT_LIST_HEAD(&page->lru);
 661        set_page_private(page, order);
 662        /* Guard pages are not available for any usage */
 663        __mod_zone_freepage_state(zone, -(1 << order), migratetype);
 664
 665        return true;
 666}
 667
 668static inline void clear_page_guard(struct zone *zone, struct page *page,
 669                                unsigned int order, int migratetype)
 670{
 671        struct page_ext *page_ext;
 672
 673        if (!debug_guardpage_enabled())
 674                return;
 675
 676        page_ext = lookup_page_ext(page);
 677        if (unlikely(!page_ext))
 678                return;
 679
 680        __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 681
 682        set_page_private(page, 0);
 683        if (!is_migrate_isolate(migratetype))
 684                __mod_zone_freepage_state(zone, (1 << order), migratetype);
 685}
 686#else
 687struct page_ext_operations debug_guardpage_ops;
 688static inline bool set_page_guard(struct zone *zone, struct page *page,
 689                        unsigned int order, int migratetype) { return false; }
 690static inline void clear_page_guard(struct zone *zone, struct page *page,
 691                                unsigned int order, int migratetype) {}
 692#endif
 693
 694static inline void set_page_order(struct page *page, unsigned int order)
 695{
 696        set_page_private(page, order);
 697        __SetPageBuddy(page);
 698}
 699
 700static inline void rmv_page_order(struct page *page)
 701{
 702        __ClearPageBuddy(page);
 703        set_page_private(page, 0);
 704}
 705
 706/*
 707 * This function checks whether a page is free && is the buddy
 708 * we can do coalesce a page and its buddy if
 709 * (a) the buddy is not in a hole (check before calling!) &&
 710 * (b) the buddy is in the buddy system &&
 711 * (c) a page and its buddy have the same order &&
 712 * (d) a page and its buddy are in the same zone.
 713 *
 714 * For recording whether a page is in the buddy system, we set ->_mapcount
 715 * PAGE_BUDDY_MAPCOUNT_VALUE.
 716 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 717 * serialized by zone->lock.
 718 *
 719 * For recording page's order, we use page_private(page).
 720 */
 721static inline int page_is_buddy(struct page *page, struct page *buddy,
 722                                                        unsigned int order)
 723{
 724        if (page_is_guard(buddy) && page_order(buddy) == order) {
 725                if (page_zone_id(page) != page_zone_id(buddy))
 726                        return 0;
 727
 728                VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 729
 730                return 1;
 731        }
 732
 733        if (PageBuddy(buddy) && page_order(buddy) == order) {
 734                /*
 735                 * zone check is done late to avoid uselessly
 736                 * calculating zone/node ids for pages that could
 737                 * never merge.
 738                 */
 739                if (page_zone_id(page) != page_zone_id(buddy))
 740                        return 0;
 741
 742                VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 743
 744                return 1;
 745        }
 746        return 0;
 747}
 748
 749/*
 750 * Freeing function for a buddy system allocator.
 751 *
 752 * The concept of a buddy system is to maintain direct-mapped table
 753 * (containing bit values) for memory blocks of various "orders".
 754 * The bottom level table contains the map for the smallest allocatable
 755 * units of memory (here, pages), and each level above it describes
 756 * pairs of units from the levels below, hence, "buddies".
 757 * At a high level, all that happens here is marking the table entry
 758 * at the bottom level available, and propagating the changes upward
 759 * as necessary, plus some accounting needed to play nicely with other
 760 * parts of the VM system.
 761 * At each level, we keep a list of pages, which are heads of continuous
 762 * free pages of length of (1 << order) and marked with _mapcount
 763 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 764 * field.
 765 * So when we are allocating or freeing one, we can derive the state of the
 766 * other.  That is, if we allocate a small block, and both were
 767 * free, the remainder of the region must be split into blocks.
 768 * If a block is freed, and its buddy is also free, then this
 769 * triggers coalescing into a block of larger size.
 770 *
 771 * -- nyc
 772 */
 773
 774static inline void __free_one_page(struct page *page,
 775                unsigned long pfn,
 776                struct zone *zone, unsigned int order,
 777                int migratetype)
 778{
 779        unsigned long combined_pfn;
 780        unsigned long uninitialized_var(buddy_pfn);
 781        struct page *buddy;
 782        unsigned int max_order;
 783
 784        max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
 785
 786        VM_BUG_ON(!zone_is_initialized(zone));
 787        VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 788
 789        VM_BUG_ON(migratetype == -1);
 790        if (likely(!is_migrate_isolate(migratetype)))
 791                __mod_zone_freepage_state(zone, 1 << order, migratetype);
 792
 793        VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
 794        VM_BUG_ON_PAGE(bad_range(zone, page), page);
 795
 796continue_merging:
 797        while (order < max_order - 1) {
 798                buddy_pfn = __find_buddy_pfn(pfn, order);
 799                buddy = page + (buddy_pfn - pfn);
 800
 801                if (!pfn_valid_within(buddy_pfn))
 802                        goto done_merging;
 803                if (!page_is_buddy(page, buddy, order))
 804                        goto done_merging;
 805                /*
 806                 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 807                 * merge with it and move up one order.
 808                 */
 809                if (page_is_guard(buddy)) {
 810                        clear_page_guard(zone, buddy, order, migratetype);
 811                } else {
 812                        list_del(&buddy->lru);
 813                        zone->free_area[order].nr_free--;
 814                        rmv_page_order(buddy);
 815                }
 816                combined_pfn = buddy_pfn & pfn;
 817                page = page + (combined_pfn - pfn);
 818                pfn = combined_pfn;
 819                order++;
 820        }
 821        if (max_order < MAX_ORDER) {
 822                /* If we are here, it means order is >= pageblock_order.
 823                 * We want to prevent merge between freepages on isolate
 824                 * pageblock and normal pageblock. Without this, pageblock
 825                 * isolation could cause incorrect freepage or CMA accounting.
 826                 *
 827                 * We don't want to hit this code for the more frequent
 828                 * low-order merging.
 829                 */
 830                if (unlikely(has_isolate_pageblock(zone))) {
 831                        int buddy_mt;
 832
 833                        buddy_pfn = __find_buddy_pfn(pfn, order);
 834                        buddy = page + (buddy_pfn - pfn);
 835                        buddy_mt = get_pageblock_migratetype(buddy);
 836
 837                        if (migratetype != buddy_mt
 838                                        && (is_migrate_isolate(migratetype) ||
 839                                                is_migrate_isolate(buddy_mt)))
 840                                goto done_merging;
 841                }
 842                max_order++;
 843                goto continue_merging;
 844        }
 845
 846done_merging:
 847        set_page_order(page, order);
 848
 849        /*
 850         * If this is not the largest possible page, check if the buddy
 851         * of the next-highest order is free. If it is, it's possible
 852         * that pages are being freed that will coalesce soon. In case,
 853         * that is happening, add the free page to the tail of the list
 854         * so it's less likely to be used soon and more likely to be merged
 855         * as a higher order page
 856         */
 857        if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
 858                struct page *higher_page, *higher_buddy;
 859                combined_pfn = buddy_pfn & pfn;
 860                higher_page = page + (combined_pfn - pfn);
 861                buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
 862                higher_buddy = higher_page + (buddy_pfn - combined_pfn);
 863                if (pfn_valid_within(buddy_pfn) &&
 864                    page_is_buddy(higher_page, higher_buddy, order + 1)) {
 865                        list_add_tail(&page->lru,
 866                                &zone->free_area[order].free_list[migratetype]);
 867                        goto out;
 868                }
 869        }
 870
 871        list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 872out:
 873        zone->free_area[order].nr_free++;
 874}
 875
 876/*
 877 * A bad page could be due to a number of fields. Instead of multiple branches,
 878 * try and check multiple fields with one check. The caller must do a detailed
 879 * check if necessary.
 880 */
 881static inline bool page_expected_state(struct page *page,
 882                                        unsigned long check_flags)
 883{
 884        if (unlikely(atomic_read(&page->_mapcount) != -1))
 885                return false;
 886
 887        if (unlikely((unsigned long)page->mapping |
 888                        page_ref_count(page) |
 889#ifdef CONFIG_MEMCG
 890                        (unsigned long)page->mem_cgroup |
 891#endif
 892                        (page->flags & check_flags)))
 893                return false;
 894
 895        return true;
 896}
 897
 898static void free_pages_check_bad(struct page *page)
 899{
 900        const char *bad_reason;
 901        unsigned long bad_flags;
 902
 903        bad_reason = NULL;
 904        bad_flags = 0;
 905
 906        if (unlikely(atomic_read(&page->_mapcount) != -1))
 907                bad_reason = "nonzero mapcount";
 908        if (unlikely(page->mapping != NULL))
 909                bad_reason = "non-NULL mapping";
 910        if (unlikely(page_ref_count(page) != 0))
 911                bad_reason = "nonzero _refcount";
 912        if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
 913                bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 914                bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
 915        }
 916#ifdef CONFIG_MEMCG
 917        if (unlikely(page->mem_cgroup))
 918                bad_reason = "page still charged to cgroup";
 919#endif
 920        bad_page(page, bad_reason, bad_flags);
 921}
 922
 923static inline int free_pages_check(struct page *page)
 924{
 925        if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
 926                return 0;
 927
 928        /* Something has gone sideways, find it */
 929        free_pages_check_bad(page);
 930        return 1;
 931}
 932
 933static int free_tail_pages_check(struct page *head_page, struct page *page)
 934{
 935        int ret = 1;
 936
 937        /*
 938         * We rely page->lru.next never has bit 0 set, unless the page
 939         * is PageTail(). Let's make sure that's true even for poisoned ->lru.
 940         */
 941        BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
 942
 943        if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
 944                ret = 0;
 945                goto out;
 946        }
 947        switch (page - head_page) {
 948        case 1:
 949                /* the first tail page: ->mapping is compound_mapcount() */
 950                if (unlikely(compound_mapcount(page))) {
 951                        bad_page(page, "nonzero compound_mapcount", 0);
 952                        goto out;
 953                }
 954                break;
 955        case 2:
 956                /*
 957                 * the second tail page: ->mapping is
 958                 * page_deferred_list().next -- ignore value.
 959                 */
 960                break;
 961        default:
 962                if (page->mapping != TAIL_MAPPING) {
 963                        bad_page(page, "corrupted mapping in tail page", 0);
 964                        goto out;
 965                }
 966                break;
 967        }
 968        if (unlikely(!PageTail(page))) {
 969                bad_page(page, "PageTail not set", 0);
 970                goto out;
 971        }
 972        if (unlikely(compound_head(page) != head_page)) {
 973                bad_page(page, "compound_head not consistent", 0);
 974                goto out;
 975        }
 976        ret = 0;
 977out:
 978        page->mapping = NULL;
 979        clear_compound_head(page);
 980        return ret;
 981}
 982
 983static __always_inline bool free_pages_prepare(struct page *page,
 984                                        unsigned int order, bool check_free)
 985{
 986        int bad = 0;
 987
 988        VM_BUG_ON_PAGE(PageTail(page), page);
 989
 990        trace_mm_page_free(page, order);
 991
 992        /*
 993         * Check tail pages before head page information is cleared to
 994         * avoid checking PageCompound for order-0 pages.
 995         */
 996        if (unlikely(order)) {
 997                bool compound = PageCompound(page);
 998                int i;
 999
1000                VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1001
1002                if (compound)
1003                        ClearPageDoubleMap(page);
1004                for (i = 1; i < (1 << order); i++) {
1005                        if (compound)
1006                                bad += free_tail_pages_check(page, page + i);
1007                        if (unlikely(free_pages_check(page + i))) {
1008                                bad++;
1009                                continue;
1010                        }
1011                        (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1012                }
1013        }
1014        if (PageMappingFlags(page))
1015                page->mapping = NULL;
1016        if (memcg_kmem_enabled() && PageKmemcg(page))
1017                memcg_kmem_uncharge(page, order);
1018        if (check_free)
1019                bad += free_pages_check(page);
1020        if (bad)
1021                return false;
1022
1023        page_cpupid_reset_last(page);
1024        page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1025        reset_page_owner(page, order);
1026
1027        if (!PageHighMem(page)) {
1028                debug_check_no_locks_freed(page_address(page),
1029                                           PAGE_SIZE << order);
1030                debug_check_no_obj_freed(page_address(page),
1031                                           PAGE_SIZE << order);
1032        }
1033        arch_free_page(page, order);
1034        kernel_poison_pages(page, 1 << order, 0);
1035        kernel_map_pages(page, 1 << order, 0);
1036        kasan_free_pages(page, order);
1037
1038        return true;
1039}
1040
1041#ifdef CONFIG_DEBUG_VM
1042static inline bool free_pcp_prepare(struct page *page)
1043{
1044        return free_pages_prepare(page, 0, true);
1045}
1046
1047static inline bool bulkfree_pcp_prepare(struct page *page)
1048{
1049        return false;
1050}
1051#else
1052static bool free_pcp_prepare(struct page *page)
1053{
1054        return free_pages_prepare(page, 0, false);
1055}
1056
1057static bool bulkfree_pcp_prepare(struct page *page)
1058{
1059        return free_pages_check(page);
1060}
1061#endif /* CONFIG_DEBUG_VM */
1062
1063static inline void prefetch_buddy(struct page *page)
1064{
1065        unsigned long pfn = page_to_pfn(page);
1066        unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1067        struct page *buddy = page + (buddy_pfn - pfn);
1068
1069        prefetch(buddy);
1070}
1071
1072/*
1073 * Frees a number of pages from the PCP lists
1074 * Assumes all pages on list are in same zone, and of same order.
1075 * count is the number of pages to free.
1076 *
1077 * If the zone was previously in an "all pages pinned" state then look to
1078 * see if this freeing clears that state.
1079 *
1080 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1081 * pinned" detection logic.
1082 */
1083static void free_pcppages_bulk(struct zone *zone, int count,
1084                                        struct per_cpu_pages *pcp)
1085{
1086        int migratetype = 0;
1087        int batch_free = 0;
1088        int prefetch_nr = 0;
1089        bool isolated_pageblocks;
1090        struct page *page, *tmp;
1091        LIST_HEAD(head);
1092
1093        while (count) {
1094                struct list_head *list;
1095
1096                /*
1097                 * Remove pages from lists in a round-robin fashion. A
1098                 * batch_free count is maintained that is incremented when an
1099                 * empty list is encountered.  This is so more pages are freed
1100                 * off fuller lists instead of spinning excessively around empty
1101                 * lists
1102                 */
1103                do {
1104                        batch_free++;
1105                        if (++migratetype == MIGRATE_PCPTYPES)
1106                                migratetype = 0;
1107                        list = &pcp->lists[migratetype];
1108                } while (list_empty(list));
1109
1110                /* This is the only non-empty list. Free them all. */
1111                if (batch_free == MIGRATE_PCPTYPES)
1112                        batch_free = count;
1113
1114                do {
1115                        page = list_last_entry(list, struct page, lru);
1116                        /* must delete to avoid corrupting pcp list */
1117                        list_del(&page->lru);
1118                        pcp->count--;
1119
1120                        if (bulkfree_pcp_prepare(page))
1121                                continue;
1122
1123                        list_add_tail(&page->lru, &head);
1124
1125                        /*
1126                         * We are going to put the page back to the global
1127                         * pool, prefetch its buddy to speed up later access
1128                         * under zone->lock. It is believed the overhead of
1129                         * an additional test and calculating buddy_pfn here
1130                         * can be offset by reduced memory latency later. To
1131                         * avoid excessive prefetching due to large count, only
1132                         * prefetch buddy for the first pcp->batch nr of pages.
1133                         */
1134                        if (prefetch_nr++ < pcp->batch)
1135                                prefetch_buddy(page);
1136                } while (--count && --batch_free && !list_empty(list));
1137        }
1138
1139        spin_lock(&zone->lock);
1140        isolated_pageblocks = has_isolate_pageblock(zone);
1141
1142        /*
1143         * Use safe version since after __free_one_page(),
1144         * page->lru.next will not point to original list.
1145         */
1146        list_for_each_entry_safe(page, tmp, &head, lru) {
1147                int mt = get_pcppage_migratetype(page);
1148                /* MIGRATE_ISOLATE page should not go to pcplists */
1149                VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1150                /* Pageblock could have been isolated meanwhile */
1151                if (unlikely(isolated_pageblocks))
1152                        mt = get_pageblock_migratetype(page);
1153
1154                __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1155                trace_mm_page_pcpu_drain(page, 0, mt);
1156        }
1157        spin_unlock(&zone->lock);
1158}
1159
1160static void free_one_page(struct zone *zone,
1161                                struct page *page, unsigned long pfn,
1162                                unsigned int order,
1163                                int migratetype)
1164{
1165        spin_lock(&zone->lock);
1166        if (unlikely(has_isolate_pageblock(zone) ||
1167                is_migrate_isolate(migratetype))) {
1168                migratetype = get_pfnblock_migratetype(page, pfn);
1169        }
1170        __free_one_page(page, pfn, zone, order, migratetype);
1171        spin_unlock(&zone->lock);
1172}
1173
1174static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1175                                unsigned long zone, int nid)
1176{
1177        mm_zero_struct_page(page);
1178        set_page_links(page, zone, nid, pfn);
1179        init_page_count(page);
1180        page_mapcount_reset(page);
1181        page_cpupid_reset_last(page);
1182
1183        INIT_LIST_HEAD(&page->lru);
1184#ifdef WANT_PAGE_VIRTUAL
1185        /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1186        if (!is_highmem_idx(zone))
1187                set_page_address(page, __va(pfn << PAGE_SHIFT));
1188#endif
1189}
1190
1191#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1192static void __meminit init_reserved_page(unsigned long pfn)
1193{
1194        pg_data_t *pgdat;
1195        int nid, zid;
1196
1197        if (!early_page_uninitialised(pfn))
1198                return;
1199
1200        nid = early_pfn_to_nid(pfn);
1201        pgdat = NODE_DATA(nid);
1202
1203        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1204                struct zone *zone = &pgdat->node_zones[zid];
1205
1206                if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1207                        break;
1208        }
1209        __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1210}
1211#else
1212static inline void init_reserved_page(unsigned long pfn)
1213{
1214}
1215#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1216
1217/*
1218 * Initialised pages do not have PageReserved set. This function is
1219 * called for each range allocated by the bootmem allocator and
1220 * marks the pages PageReserved. The remaining valid pages are later
1221 * sent to the buddy page allocator.
1222 */
1223void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1224{
1225        unsigned long start_pfn = PFN_DOWN(start);
1226        unsigned long end_pfn = PFN_UP(end);
1227
1228        for (; start_pfn < end_pfn; start_pfn++) {
1229                if (pfn_valid(start_pfn)) {
1230                        struct page *page = pfn_to_page(start_pfn);
1231
1232                        init_reserved_page(start_pfn);
1233
1234                        /* Avoid false-positive PageTail() */
1235                        INIT_LIST_HEAD(&page->lru);
1236
1237                        SetPageReserved(page);
1238                }
1239        }
1240}
1241
1242static void __free_pages_ok(struct page *page, unsigned int order)
1243{
1244        unsigned long flags;
1245        int migratetype;
1246        unsigned long pfn = page_to_pfn(page);
1247
1248        if (!free_pages_prepare(page, order, true))
1249                return;
1250
1251        migratetype = get_pfnblock_migratetype(page, pfn);
1252        local_irq_save(flags);
1253        __count_vm_events(PGFREE, 1 << order);
1254        free_one_page(page_zone(page), page, pfn, order, migratetype);
1255        local_irq_restore(flags);
1256}
1257
1258static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1259{
1260        unsigned int nr_pages = 1 << order;
1261        struct page *p = page;
1262        unsigned int loop;
1263
1264        prefetchw(p);
1265        for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1266                prefetchw(p + 1);
1267                __ClearPageReserved(p);
1268                set_page_count(p, 0);
1269        }
1270        __ClearPageReserved(p);
1271        set_page_count(p, 0);
1272
1273        page_zone(page)->managed_pages += nr_pages;
1274        set_page_refcounted(page);
1275        __free_pages(page, order);
1276}
1277
1278#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1279        defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1280
1281static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1282
1283int __meminit early_pfn_to_nid(unsigned long pfn)
1284{
1285        static DEFINE_SPINLOCK(early_pfn_lock);
1286        int nid;
1287
1288        spin_lock(&early_pfn_lock);
1289        nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1290        if (nid < 0)
1291                nid = first_online_node;
1292        spin_unlock(&early_pfn_lock);
1293
1294        return nid;
1295}
1296#endif
1297
1298#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1299static inline bool __meminit __maybe_unused
1300meminit_pfn_in_nid(unsigned long pfn, int node,
1301                   struct mminit_pfnnid_cache *state)
1302{
1303        int nid;
1304
1305        nid = __early_pfn_to_nid(pfn, state);
1306        if (nid >= 0 && nid != node)
1307                return false;
1308        return true;
1309}
1310
1311/* Only safe to use early in boot when initialisation is single-threaded */
1312static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313{
1314        return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1315}
1316
1317#else
1318
1319static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1320{
1321        return true;
1322}
1323static inline bool __meminit  __maybe_unused
1324meminit_pfn_in_nid(unsigned long pfn, int node,
1325                   struct mminit_pfnnid_cache *state)
1326{
1327        return true;
1328}
1329#endif
1330
1331
1332void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1333                                                        unsigned int order)
1334{
1335        if (early_page_uninitialised(pfn))
1336                return;
1337        return __free_pages_boot_core(page, order);
1338}
1339
1340/*
1341 * Check that the whole (or subset of) a pageblock given by the interval of
1342 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1343 * with the migration of free compaction scanner. The scanners then need to
1344 * use only pfn_valid_within() check for arches that allow holes within
1345 * pageblocks.
1346 *
1347 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1348 *
1349 * It's possible on some configurations to have a setup like node0 node1 node0
1350 * i.e. it's possible that all pages within a zones range of pages do not
1351 * belong to a single zone. We assume that a border between node0 and node1
1352 * can occur within a single pageblock, but not a node0 node1 node0
1353 * interleaving within a single pageblock. It is therefore sufficient to check
1354 * the first and last page of a pageblock and avoid checking each individual
1355 * page in a pageblock.
1356 */
1357struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1358                                     unsigned long end_pfn, struct zone *zone)
1359{
1360        struct page *start_page;
1361        struct page *end_page;
1362
1363        /* end_pfn is one past the range we are checking */
1364        end_pfn--;
1365
1366        if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1367                return NULL;
1368
1369        start_page = pfn_to_online_page(start_pfn);
1370        if (!start_page)
1371                return NULL;
1372
1373        if (page_zone(start_page) != zone)
1374                return NULL;
1375
1376        end_page = pfn_to_page(end_pfn);
1377
1378        /* This gives a shorter code than deriving page_zone(end_page) */
1379        if (page_zone_id(start_page) != page_zone_id(end_page))
1380                return NULL;
1381
1382        return start_page;
1383}
1384
1385void set_zone_contiguous(struct zone *zone)
1386{
1387        unsigned long block_start_pfn = zone->zone_start_pfn;
1388        unsigned long block_end_pfn;
1389
1390        block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1391        for (; block_start_pfn < zone_end_pfn(zone);
1392                        block_start_pfn = block_end_pfn,
1393                         block_end_pfn += pageblock_nr_pages) {
1394
1395                block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1396
1397                if (!__pageblock_pfn_to_page(block_start_pfn,
1398                                             block_end_pfn, zone))
1399                        return;
1400        }
1401
1402        /* We confirm that there is no hole */
1403        zone->contiguous = true;
1404}
1405
1406void clear_zone_contiguous(struct zone *zone)
1407{
1408        zone->contiguous = false;
1409}
1410
1411#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1412static void __init deferred_free_range(unsigned long pfn,
1413                                       unsigned long nr_pages)
1414{
1415        struct page *page;
1416        unsigned long i;
1417
1418        if (!nr_pages)
1419                return;
1420
1421        page = pfn_to_page(pfn);
1422
1423        /* Free a large naturally-aligned chunk if possible */
1424        if (nr_pages == pageblock_nr_pages &&
1425            (pfn & (pageblock_nr_pages - 1)) == 0) {
1426                set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1427                __free_pages_boot_core(page, pageblock_order);
1428                return;
1429        }
1430
1431        for (i = 0; i < nr_pages; i++, page++, pfn++) {
1432                if ((pfn & (pageblock_nr_pages - 1)) == 0)
1433                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1434                __free_pages_boot_core(page, 0);
1435        }
1436}
1437
1438/* Completion tracking for deferred_init_memmap() threads */
1439static atomic_t pgdat_init_n_undone __initdata;
1440static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1441
1442static inline void __init pgdat_init_report_one_done(void)
1443{
1444        if (atomic_dec_and_test(&pgdat_init_n_undone))
1445                complete(&pgdat_init_all_done_comp);
1446}
1447
1448/*
1449 * Returns true if page needs to be initialized or freed to buddy allocator.
1450 *
1451 * First we check if pfn is valid on architectures where it is possible to have
1452 * holes within pageblock_nr_pages. On systems where it is not possible, this
1453 * function is optimized out.
1454 *
1455 * Then, we check if a current large page is valid by only checking the validity
1456 * of the head pfn.
1457 *
1458 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1459 * within a node: a pfn is between start and end of a node, but does not belong
1460 * to this memory node.
1461 */
1462static inline bool __init
1463deferred_pfn_valid(int nid, unsigned long pfn,
1464                   struct mminit_pfnnid_cache *nid_init_state)
1465{
1466        if (!pfn_valid_within(pfn))
1467                return false;
1468        if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1469                return false;
1470        if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1471                return false;
1472        return true;
1473}
1474
1475/*
1476 * Free pages to buddy allocator. Try to free aligned pages in
1477 * pageblock_nr_pages sizes.
1478 */
1479static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1480                                       unsigned long end_pfn)
1481{
1482        struct mminit_pfnnid_cache nid_init_state = { };
1483        unsigned long nr_pgmask = pageblock_nr_pages - 1;
1484        unsigned long nr_free = 0;
1485
1486        for (; pfn < end_pfn; pfn++) {
1487                if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1488                        deferred_free_range(pfn - nr_free, nr_free);
1489                        nr_free = 0;
1490                } else if (!(pfn & nr_pgmask)) {
1491                        deferred_free_range(pfn - nr_free, nr_free);
1492                        nr_free = 1;
1493                        touch_nmi_watchdog();
1494                } else {
1495                        nr_free++;
1496                }
1497        }
1498        /* Free the last block of pages to allocator */
1499        deferred_free_range(pfn - nr_free, nr_free);
1500}
1501
1502/*
1503 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1504 * by performing it only once every pageblock_nr_pages.
1505 * Return number of pages initialized.
1506 */
1507static unsigned long  __init deferred_init_pages(int nid, int zid,
1508                                                 unsigned long pfn,
1509                                                 unsigned long end_pfn)
1510{
1511        struct mminit_pfnnid_cache nid_init_state = { };
1512        unsigned long nr_pgmask = pageblock_nr_pages - 1;
1513        unsigned long nr_pages = 0;
1514        struct page *page = NULL;
1515
1516        for (; pfn < end_pfn; pfn++) {
1517                if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1518                        page = NULL;
1519                        continue;
1520                } else if (!page || !(pfn & nr_pgmask)) {
1521                        page = pfn_to_page(pfn);
1522                        touch_nmi_watchdog();
1523                } else {
1524                        page++;
1525                }
1526                __init_single_page(page, pfn, zid, nid);
1527                nr_pages++;
1528        }
1529        return (nr_pages);
1530}
1531
1532/* Initialise remaining memory on a node */
1533static int __init deferred_init_memmap(void *data)
1534{
1535        pg_data_t *pgdat = data;
1536        int nid = pgdat->node_id;
1537        unsigned long start = jiffies;
1538        unsigned long nr_pages = 0;
1539        unsigned long spfn, epfn, first_init_pfn, flags;
1540        phys_addr_t spa, epa;
1541        int zid;
1542        struct zone *zone;
1543        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1544        u64 i;
1545
1546        /* Bind memory initialisation thread to a local node if possible */
1547        if (!cpumask_empty(cpumask))
1548                set_cpus_allowed_ptr(current, cpumask);
1549
1550        pgdat_resize_lock(pgdat, &flags);
1551        first_init_pfn = pgdat->first_deferred_pfn;
1552        if (first_init_pfn == ULONG_MAX) {
1553                pgdat_resize_unlock(pgdat, &flags);
1554                pgdat_init_report_one_done();
1555                return 0;
1556        }
1557
1558        /* Sanity check boundaries */
1559        BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1560        BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1561        pgdat->first_deferred_pfn = ULONG_MAX;
1562
1563        /* Only the highest zone is deferred so find it */
1564        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1565                zone = pgdat->node_zones + zid;
1566                if (first_init_pfn < zone_end_pfn(zone))
1567                        break;
1568        }
1569        first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1570
1571        /*
1572         * Initialize and free pages. We do it in two loops: first we initialize
1573         * struct page, than free to buddy allocator, because while we are
1574         * freeing pages we can access pages that are ahead (computing buddy
1575         * page in __free_one_page()).
1576         */
1577        for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1578                spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1579                epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1580                nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1581        }
1582        for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1583                spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1584                epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1585                deferred_free_pages(nid, zid, spfn, epfn);
1586        }
1587        pgdat_resize_unlock(pgdat, &flags);
1588
1589        /* Sanity check that the next zone really is unpopulated */
1590        WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1591
1592        pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1593                                        jiffies_to_msecs(jiffies - start));
1594
1595        pgdat_init_report_one_done();
1596        return 0;
1597}
1598
1599/*
1600 * During boot we initialize deferred pages on-demand, as needed, but once
1601 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1602 * and we can permanently disable that path.
1603 */
1604static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1605
1606/*
1607 * If this zone has deferred pages, try to grow it by initializing enough
1608 * deferred pages to satisfy the allocation specified by order, rounded up to
1609 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1610 * of SECTION_SIZE bytes by initializing struct pages in increments of
1611 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1612 *
1613 * Return true when zone was grown, otherwise return false. We return true even
1614 * when we grow less than requested, to let the caller decide if there are
1615 * enough pages to satisfy the allocation.
1616 *
1617 * Note: We use noinline because this function is needed only during boot, and
1618 * it is called from a __ref function _deferred_grow_zone. This way we are
1619 * making sure that it is not inlined into permanent text section.
1620 */
1621static noinline bool __init
1622deferred_grow_zone(struct zone *zone, unsigned int order)
1623{
1624        int zid = zone_idx(zone);
1625        int nid = zone_to_nid(zone);
1626        pg_data_t *pgdat = NODE_DATA(nid);
1627        unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1628        unsigned long nr_pages = 0;
1629        unsigned long first_init_pfn, spfn, epfn, t, flags;
1630        unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1631        phys_addr_t spa, epa;
1632        u64 i;
1633
1634        /* Only the last zone may have deferred pages */
1635        if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1636                return false;
1637
1638        pgdat_resize_lock(pgdat, &flags);
1639
1640        /*
1641         * If deferred pages have been initialized while we were waiting for
1642         * the lock, return true, as the zone was grown.  The caller will retry
1643         * this zone.  We won't return to this function since the caller also
1644         * has this static branch.
1645         */
1646        if (!static_branch_unlikely(&deferred_pages)) {
1647                pgdat_resize_unlock(pgdat, &flags);
1648                return true;
1649        }
1650
1651        /*
1652         * If someone grew this zone while we were waiting for spinlock, return
1653         * true, as there might be enough pages already.
1654         */
1655        if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1656                pgdat_resize_unlock(pgdat, &flags);
1657                return true;
1658        }
1659
1660        first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1661
1662        if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1663                pgdat_resize_unlock(pgdat, &flags);
1664                return false;
1665        }
1666
1667        for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1668                spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1669                epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1670
1671                while (spfn < epfn && nr_pages < nr_pages_needed) {
1672                        t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1673                        first_deferred_pfn = min(t, epfn);
1674                        nr_pages += deferred_init_pages(nid, zid, spfn,
1675                                                        first_deferred_pfn);
1676                        spfn = first_deferred_pfn;
1677                }
1678
1679                if (nr_pages >= nr_pages_needed)
1680                        break;
1681        }
1682
1683        for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1684                spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1685                epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1686                deferred_free_pages(nid, zid, spfn, epfn);
1687
1688                if (first_deferred_pfn == epfn)
1689                        break;
1690        }
1691        pgdat->first_deferred_pfn = first_deferred_pfn;
1692        pgdat_resize_unlock(pgdat, &flags);
1693
1694        return nr_pages > 0;
1695}
1696
1697/*
1698 * deferred_grow_zone() is __init, but it is called from
1699 * get_page_from_freelist() during early boot until deferred_pages permanently
1700 * disables this call. This is why we have refdata wrapper to avoid warning,
1701 * and to ensure that the function body gets unloaded.
1702 */
1703static bool __ref
1704_deferred_grow_zone(struct zone *zone, unsigned int order)
1705{
1706        return deferred_grow_zone(zone, order);
1707}
1708
1709#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1710
1711void __init page_alloc_init_late(void)
1712{
1713        struct zone *zone;
1714
1715#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1716        int nid;
1717
1718        /* There will be num_node_state(N_MEMORY) threads */
1719        atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1720        for_each_node_state(nid, N_MEMORY) {
1721                kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1722        }
1723
1724        /* Block until all are initialised */
1725        wait_for_completion(&pgdat_init_all_done_comp);
1726
1727        /*
1728         * We initialized the rest of the deferred pages.  Permanently disable
1729         * on-demand struct page initialization.
1730         */
1731        static_branch_disable(&deferred_pages);
1732
1733        /* Reinit limits that are based on free pages after the kernel is up */
1734        files_maxfiles_init();
1735#endif
1736#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1737        /* Discard memblock private memory */
1738        memblock_discard();
1739#endif
1740
1741        for_each_populated_zone(zone)
1742                set_zone_contiguous(zone);
1743}
1744
1745#ifdef CONFIG_CMA
1746/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1747void __init init_cma_reserved_pageblock(struct page *page)
1748{
1749        unsigned i = pageblock_nr_pages;
1750        struct page *p = page;
1751
1752        do {
1753                __ClearPageReserved(p);
1754                set_page_count(p, 0);
1755        } while (++p, --i);
1756
1757        set_pageblock_migratetype(page, MIGRATE_CMA);
1758
1759        if (pageblock_order >= MAX_ORDER) {
1760                i = pageblock_nr_pages;
1761                p = page;
1762                do {
1763                        set_page_refcounted(p);
1764                        __free_pages(p, MAX_ORDER - 1);
1765                        p += MAX_ORDER_NR_PAGES;
1766                } while (i -= MAX_ORDER_NR_PAGES);
1767        } else {
1768                set_page_refcounted(page);
1769                __free_pages(page, pageblock_order);
1770        }
1771
1772        adjust_managed_page_count(page, pageblock_nr_pages);
1773}
1774#endif
1775
1776/*
1777 * The order of subdivision here is critical for the IO subsystem.
1778 * Please do not alter this order without good reasons and regression
1779 * testing. Specifically, as large blocks of memory are subdivided,
1780 * the order in which smaller blocks are delivered depends on the order
1781 * they're subdivided in this function. This is the primary factor
1782 * influencing the order in which pages are delivered to the IO
1783 * subsystem according to empirical testing, and this is also justified
1784 * by considering the behavior of a buddy system containing a single
1785 * large block of memory acted on by a series of small allocations.
1786 * This behavior is a critical factor in sglist merging's success.
1787 *
1788 * -- nyc
1789 */
1790static inline void expand(struct zone *zone, struct page *page,
1791        int low, int high, struct free_area *area,
1792        int migratetype)
1793{
1794        unsigned long size = 1 << high;
1795
1796        while (high > low) {
1797                area--;
1798                high--;
1799                size >>= 1;
1800                VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1801
1802                /*
1803                 * Mark as guard pages (or page), that will allow to
1804                 * merge back to allocator when buddy will be freed.
1805                 * Corresponding page table entries will not be touched,
1806                 * pages will stay not present in virtual address space
1807                 */
1808                if (set_page_guard(zone, &page[size], high, migratetype))
1809                        continue;
1810
1811                list_add(&page[size].lru, &area->free_list[migratetype]);
1812                area->nr_free++;
1813                set_page_order(&page[size], high);
1814        }
1815}
1816
1817static void check_new_page_bad(struct page *page)
1818{
1819        const char *bad_reason = NULL;
1820        unsigned long bad_flags = 0;
1821
1822        if (unlikely(atomic_read(&page->_mapcount) != -1))
1823                bad_reason = "nonzero mapcount";
1824        if (unlikely(page->mapping != NULL))
1825                bad_reason = "non-NULL mapping";
1826        if (unlikely(page_ref_count(page) != 0))
1827                bad_reason = "nonzero _count";
1828        if (unlikely(page->flags & __PG_HWPOISON)) {
1829                bad_reason = "HWPoisoned (hardware-corrupted)";
1830                bad_flags = __PG_HWPOISON;
1831                /* Don't complain about hwpoisoned pages */
1832                page_mapcount_reset(page); /* remove PageBuddy */
1833                return;
1834        }
1835        if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1836                bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1837                bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1838        }
1839#ifdef CONFIG_MEMCG
1840        if (unlikely(page->mem_cgroup))
1841                bad_reason = "page still charged to cgroup";
1842#endif
1843        bad_page(page, bad_reason, bad_flags);
1844}
1845
1846/*
1847 * This page is about to be returned from the page allocator
1848 */
1849static inline int check_new_page(struct page *page)
1850{
1851        if (likely(page_expected_state(page,
1852                                PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1853                return 0;
1854
1855        check_new_page_bad(page);
1856        return 1;
1857}
1858
1859static inline bool free_pages_prezeroed(void)
1860{
1861        return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1862                page_poisoning_enabled();
1863}
1864
1865#ifdef CONFIG_DEBUG_VM
1866static bool check_pcp_refill(struct page *page)
1867{
1868        return false;
1869}
1870
1871static bool check_new_pcp(struct page *page)
1872{
1873        return check_new_page(page);
1874}
1875#else
1876static bool check_pcp_refill(struct page *page)
1877{
1878        return check_new_page(page);
1879}
1880static bool check_new_pcp(struct page *page)
1881{
1882        return false;
1883}
1884#endif /* CONFIG_DEBUG_VM */
1885
1886static bool check_new_pages(struct page *page, unsigned int order)
1887{
1888        int i;
1889        for (i = 0; i < (1 << order); i++) {
1890                struct page *p = page + i;
1891
1892                if (unlikely(check_new_page(p)))
1893                        return true;
1894        }
1895
1896        return false;
1897}
1898
1899inline void post_alloc_hook(struct page *page, unsigned int order,
1900                                gfp_t gfp_flags)
1901{
1902        set_page_private(page, 0);
1903        set_page_refcounted(page);
1904
1905        arch_alloc_page(page, order);
1906        kernel_map_pages(page, 1 << order, 1);
1907        kernel_poison_pages(page, 1 << order, 1);
1908        kasan_alloc_pages(page, order);
1909        set_page_owner(page, order, gfp_flags);
1910}
1911
1912static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1913                                                        unsigned int alloc_flags)
1914{
1915        int i;
1916
1917        post_alloc_hook(page, order, gfp_flags);
1918
1919        if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1920                for (i = 0; i < (1 << order); i++)
1921                        clear_highpage(page + i);
1922
1923        if (order && (gfp_flags & __GFP_COMP))
1924                prep_compound_page(page, order);
1925
1926        /*
1927         * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1928         * allocate the page. The expectation is that the caller is taking
1929         * steps that will free more memory. The caller should avoid the page
1930         * being used for !PFMEMALLOC purposes.
1931         */
1932        if (alloc_flags & ALLOC_NO_WATERMARKS)
1933                set_page_pfmemalloc(page);
1934        else
1935                clear_page_pfmemalloc(page);
1936}
1937
1938/*
1939 * Go through the free lists for the given migratetype and remove
1940 * the smallest available page from the freelists
1941 */
1942static __always_inline
1943struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1944                                                int migratetype)
1945{
1946        unsigned int current_order;
1947        struct free_area *area;
1948        struct page *page;
1949
1950        /* Find a page of the appropriate size in the preferred list */
1951        for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1952                area = &(zone->free_area[current_order]);
1953                page = list_first_entry_or_null(&area->free_list[migratetype],
1954                                                        struct page, lru);
1955                if (!page)
1956                        continue;
1957                list_del(&page->lru);
1958                rmv_page_order(page);
1959                area->nr_free--;
1960                expand(zone, page, order, current_order, area, migratetype);
1961                set_pcppage_migratetype(page, migratetype);
1962                return page;
1963        }
1964
1965        return NULL;
1966}
1967
1968
1969/*
1970 * This array describes the order lists are fallen back to when
1971 * the free lists for the desirable migrate type are depleted
1972 */
1973static int fallbacks[MIGRATE_TYPES][4] = {
1974        [MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1975        [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1976        [MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1977#ifdef CONFIG_CMA
1978        [MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1979#endif
1980#ifdef CONFIG_MEMORY_ISOLATION
1981        [MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1982#endif
1983};
1984
1985#ifdef CONFIG_CMA
1986static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1987                                        unsigned int order)
1988{
1989        return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1990}
1991#else
1992static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1993                                        unsigned int order) { return NULL; }
1994#endif
1995
1996/*
1997 * Move the free pages in a range to the free lists of the requested type.
1998 * Note that start_page and end_pages are not aligned on a pageblock
1999 * boundary. If alignment is required, use move_freepages_block()
2000 */
2001static int move_freepages(struct zone *zone,
2002                          struct page *start_page, struct page *end_page,
2003                          int migratetype, int *num_movable)
2004{
2005        struct page *page;
2006        unsigned int order;
2007        int pages_moved = 0;
2008
2009#ifndef CONFIG_HOLES_IN_ZONE
2010        /*
2011         * page_zone is not safe to call in this context when
2012         * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2013         * anyway as we check zone boundaries in move_freepages_block().
2014         * Remove at a later date when no bug reports exist related to
2015         * grouping pages by mobility
2016         */
2017        VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2018                  pfn_valid(page_to_pfn(end_page)) &&
2019                  page_zone(start_page) != page_zone(end_page));
2020#endif
2021
2022        if (num_movable)
2023                *num_movable = 0;
2024
2025        for (page = start_page; page <= end_page;) {
2026                if (!pfn_valid_within(page_to_pfn(page))) {
2027                        page++;
2028                        continue;
2029                }
2030
2031                /* Make sure we are not inadvertently changing nodes */
2032                VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2033
2034                if (!PageBuddy(page)) {
2035                        /*
2036                         * We assume that pages that could be isolated for
2037                         * migration are movable. But we don't actually try
2038                         * isolating, as that would be expensive.
2039                         */
2040                        if (num_movable &&
2041                                        (PageLRU(page) || __PageMovable(page)))
2042                                (*num_movable)++;
2043
2044                        page++;
2045                        continue;
2046                }
2047
2048                order = page_order(page);
2049                list_move(&page->lru,
2050                          &zone->free_area[order].free_list[migratetype]);
2051                page += 1 << order;
2052                pages_moved += 1 << order;
2053        }
2054
2055        return pages_moved;
2056}
2057
2058int move_freepages_block(struct zone *zone, struct page *page,
2059                                int migratetype, int *num_movable)
2060{
2061        unsigned long start_pfn, end_pfn;
2062        struct page *start_page, *end_page;
2063
2064        start_pfn = page_to_pfn(page);
2065        start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2066        start_page = pfn_to_page(start_pfn);
2067        end_page = start_page + pageblock_nr_pages - 1;
2068        end_pfn = start_pfn + pageblock_nr_pages - 1;
2069
2070        /* Do not cross zone boundaries */
2071        if (!zone_spans_pfn(zone, start_pfn))
2072                start_page = page;
2073        if (!zone_spans_pfn(zone, end_pfn))
2074                return 0;
2075
2076        return move_freepages(zone, start_page, end_page, migratetype,
2077                                                                num_movable);
2078}
2079
2080static void change_pageblock_range(struct page *pageblock_page,
2081                                        int start_order, int migratetype)
2082{
2083        int nr_pageblocks = 1 << (start_order - pageblock_order);
2084
2085        while (nr_pageblocks--) {
2086                set_pageblock_migratetype(pageblock_page, migratetype);
2087                pageblock_page += pageblock_nr_pages;
2088        }
2089}
2090
2091/*
2092 * When we are falling back to another migratetype during allocation, try to
2093 * steal extra free pages from the same pageblocks to satisfy further
2094 * allocations, instead of polluting multiple pageblocks.
2095 *
2096 * If we are stealing a relatively large buddy page, it is likely there will
2097 * be more free pages in the pageblock, so try to steal them all. For
2098 * reclaimable and unmovable allocations, we steal regardless of page size,
2099 * as fragmentation caused by those allocations polluting movable pageblocks
2100 * is worse than movable allocations stealing from unmovable and reclaimable
2101 * pageblocks.
2102 */
2103static bool can_steal_fallback(unsigned int order, int start_mt)
2104{
2105        /*
2106         * Leaving this order check is intended, although there is
2107         * relaxed order check in next check. The reason is that
2108         * we can actually steal whole pageblock if this condition met,
2109         * but, below check doesn't guarantee it and that is just heuristic
2110         * so could be changed anytime.
2111         */
2112        if (order >= pageblock_order)
2113                return true;
2114
2115        if (order >= pageblock_order / 2 ||
2116                start_mt == MIGRATE_RECLAIMABLE ||
2117                start_mt == MIGRATE_UNMOVABLE ||
2118                page_group_by_mobility_disabled)
2119                return true;
2120
2121        return false;
2122}
2123
2124/*
2125 * This function implements actual steal behaviour. If order is large enough,
2126 * we can steal whole pageblock. If not, we first move freepages in this
2127 * pageblock to our migratetype and determine how many already-allocated pages
2128 * are there in the pageblock with a compatible migratetype. If at least half
2129 * of pages are free or compatible, we can change migratetype of the pageblock
2130 * itself, so pages freed in the future will be put on the correct free list.
2131 */
2132static void steal_suitable_fallback(struct zone *zone, struct page *page,
2133                                        int start_type, bool whole_block)
2134{
2135        unsigned int current_order = page_order(page);
2136        struct free_area *area;
2137        int free_pages, movable_pages, alike_pages;
2138        int old_block_type;
2139
2140        old_block_type = get_pageblock_migratetype(page);
2141
2142        /*
2143         * This can happen due to races and we want to prevent broken
2144         * highatomic accounting.
2145         */
2146        if (is_migrate_highatomic(old_block_type))
2147                goto single_page;
2148
2149        /* Take ownership for orders >= pageblock_order */
2150        if (current_order >= pageblock_order) {
2151                change_pageblock_range(page, current_order, start_type);
2152                goto single_page;
2153        }
2154
2155        /* We are not allowed to try stealing from the whole block */
2156        if (!whole_block)
2157                goto single_page;
2158
2159        free_pages = move_freepages_block(zone, page, start_type,
2160                                                &movable_pages);
2161        /*
2162         * Determine how many pages are compatible with our allocation.
2163         * For movable allocation, it's the number of movable pages which
2164         * we just obtained. For other types it's a bit more tricky.
2165         */
2166        if (start_type == MIGRATE_MOVABLE) {
2167                alike_pages = movable_pages;
2168        } else {
2169                /*
2170                 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2171                 * to MOVABLE pageblock, consider all non-movable pages as
2172                 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2173                 * vice versa, be conservative since we can't distinguish the
2174                 * exact migratetype of non-movable pages.
2175                 */
2176                if (old_block_type == MIGRATE_MOVABLE)
2177                        alike_pages = pageblock_nr_pages
2178                                                - (free_pages + movable_pages);
2179                else
2180                        alike_pages = 0;
2181        }
2182
2183        /* moving whole block can fail due to zone boundary conditions */
2184        if (!free_pages)
2185                goto single_page;
2186
2187        /*
2188         * If a sufficient number of pages in the block are either free or of
2189         * comparable migratability as our allocation, claim the whole block.
2190         */
2191        if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2192                        page_group_by_mobility_disabled)
2193                set_pageblock_migratetype(page, start_type);
2194
2195        return;
2196
2197single_page:
2198        area = &zone->free_area[current_order];
2199        list_move(&page->lru, &area->free_list[start_type]);
2200}
2201
2202/*
2203 * Check whether there is a suitable fallback freepage with requested order.
2204 * If only_stealable is true, this function returns fallback_mt only if
2205 * we can steal other freepages all together. This would help to reduce
2206 * fragmentation due to mixed migratetype pages in one pageblock.
2207 */
2208int find_suitable_fallback(struct free_area *area, unsigned int order,
2209                        int migratetype, bool only_stealable, bool *can_steal)
2210{
2211        int i;
2212        int fallback_mt;
2213
2214        if (area->nr_free == 0)
2215                return -1;
2216
2217        *can_steal = false;
2218        for (i = 0;; i++) {
2219                fallback_mt = fallbacks[migratetype][i];
2220                if (fallback_mt == MIGRATE_TYPES)
2221                        break;
2222
2223                if (list_empty(&area->free_list[fallback_mt]))
2224                        continue;
2225
2226                if (can_steal_fallback(order, migratetype))
2227                        *can_steal = true;
2228
2229                if (!only_stealable)
2230                        return fallback_mt;
2231
2232                if (*can_steal)
2233                        return fallback_mt;
2234        }
2235
2236        return -1;
2237}
2238
2239/*
2240 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2241 * there are no empty page blocks that contain a page with a suitable order
2242 */
2243static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2244                                unsigned int alloc_order)
2245{
2246        int mt;
2247        unsigned long max_managed, flags;
2248
2249        /*
2250         * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2251         * Check is race-prone but harmless.
2252         */
2253        max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2254        if (zone->nr_reserved_highatomic >= max_managed)
2255                return;
2256
2257        spin_lock_irqsave(&zone->lock, flags);
2258
2259        /* Recheck the nr_reserved_highatomic limit under the lock */
2260        if (zone->nr_reserved_highatomic >= max_managed)
2261                goto out_unlock;
2262
2263        /* Yoink! */
2264        mt = get_pageblock_migratetype(page);
2265        if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2266            && !is_migrate_cma(mt)) {
2267                zone->nr_reserved_highatomic += pageblock_nr_pages;
2268                set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2269                move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2270        }
2271
2272out_unlock:
2273        spin_unlock_irqrestore(&zone->lock, flags);
2274}
2275
2276/*
2277 * Used when an allocation is about to fail under memory pressure. This
2278 * potentially hurts the reliability of high-order allocations when under
2279 * intense memory pressure but failed atomic allocations should be easier
2280 * to recover from than an OOM.
2281 *
2282 * If @force is true, try to unreserve a pageblock even though highatomic
2283 * pageblock is exhausted.
2284 */
2285static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2286                                                bool force)
2287{
2288        struct zonelist *zonelist = ac->zonelist;
2289        unsigned long flags;
2290        struct zoneref *z;
2291        struct zone *zone;
2292        struct page *page;
2293        int order;
2294        bool ret;
2295
2296        for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2297                                                                ac->nodemask) {
2298                /*
2299                 * Preserve at least one pageblock unless memory pressure
2300                 * is really high.
2301                 */
2302                if (!force && zone->nr_reserved_highatomic <=
2303                                        pageblock_nr_pages)
2304                        continue;
2305
2306                spin_lock_irqsave(&zone->lock, flags);
2307                for (order = 0; order < MAX_ORDER; order++) {
2308                        struct free_area *area = &(zone->free_area[order]);
2309
2310                        page = list_first_entry_or_null(
2311                                        &area->free_list[MIGRATE_HIGHATOMIC],
2312                                        struct page, lru);
2313                        if (!page)
2314                                continue;
2315
2316                        /*
2317                         * In page freeing path, migratetype change is racy so
2318                         * we can counter several free pages in a pageblock
2319                         * in this loop althoug we changed the pageblock type
2320                         * from highatomic to ac->migratetype. So we should
2321                         * adjust the count once.
2322                         */
2323                        if (is_migrate_highatomic_page(page)) {
2324                                /*
2325                                 * It should never happen but changes to
2326                                 * locking could inadvertently allow a per-cpu
2327                                 * drain to add pages to MIGRATE_HIGHATOMIC
2328                                 * while unreserving so be safe and watch for
2329                                 * underflows.
2330                                 */
2331                                zone->nr_reserved_highatomic -= min(
2332                                                pageblock_nr_pages,
2333                                                zone->nr_reserved_highatomic);
2334                        }
2335
2336                        /*
2337                         * Convert to ac->migratetype and avoid the normal
2338                         * pageblock stealing heuristics. Minimally, the caller
2339                         * is doing the work and needs the pages. More
2340                         * importantly, if the block was always converted to
2341                         * MIGRATE_UNMOVABLE or another type then the number
2342                         * of pageblocks that cannot be completely freed
2343                         * may increase.
2344                         */
2345                        set_pageblock_migratetype(page, ac->migratetype);
2346                        ret = move_freepages_block(zone, page, ac->migratetype,
2347                                                                        NULL);
2348                        if (ret) {
2349                                spin_unlock_irqrestore(&zone->lock, flags);
2350                                return ret;
2351                        }
2352                }
2353                spin_unlock_irqrestore(&zone->lock, flags);
2354        }
2355
2356        return false;
2357}
2358
2359/*
2360 * Try finding a free buddy page on the fallback list and put it on the free
2361 * list of requested migratetype, possibly along with other pages from the same
2362 * block, depending on fragmentation avoidance heuristics. Returns true if
2363 * fallback was found so that __rmqueue_smallest() can grab it.
2364 *
2365 * The use of signed ints for order and current_order is a deliberate
2366 * deviation from the rest of this file, to make the for loop
2367 * condition simpler.
2368 */
2369static __always_inline bool
2370__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2371{
2372        struct free_area *area;
2373        int current_order;
2374        struct page *page;
2375        int fallback_mt;
2376        bool can_steal;
2377
2378        /*
2379         * Find the largest available free page in the other list. This roughly
2380         * approximates finding the pageblock with the most free pages, which
2381         * would be too costly to do exactly.
2382         */
2383        for (current_order = MAX_ORDER - 1; current_order >= order;
2384                                --current_order) {
2385                area = &(zone->free_area[current_order]);
2386                fallback_mt = find_suitable_fallback(area, current_order,
2387                                start_migratetype, false, &can_steal);
2388                if (fallback_mt == -1)
2389                        continue;
2390
2391                /*
2392                 * We cannot steal all free pages from the pageblock and the
2393                 * requested migratetype is movable. In that case it's better to
2394                 * steal and split the smallest available page instead of the
2395                 * largest available page, because even if the next movable
2396                 * allocation falls back into a different pageblock than this
2397                 * one, it won't cause permanent fragmentation.
2398                 */
2399                if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2400                                        && current_order > order)
2401                        goto find_smallest;
2402
2403                goto do_steal;
2404        }
2405
2406        return false;
2407
2408find_smallest:
2409        for (current_order = order; current_order < MAX_ORDER;
2410                                                        current_order++) {
2411                area = &(zone->free_area[current_order]);
2412                fallback_mt = find_suitable_fallback(area, current_order,
2413                                start_migratetype, false, &can_steal);
2414                if (fallback_mt != -1)
2415                        break;
2416        }
2417
2418        /*
2419         * This should not happen - we already found a suitable fallback
2420         * when looking for the largest page.
2421         */
2422        VM_BUG_ON(current_order == MAX_ORDER);
2423
2424do_steal:
2425        page = list_first_entry(&area->free_list[fallback_mt],
2426                                                        struct page, lru);
2427
2428        steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2429
2430        trace_mm_page_alloc_extfrag(page, order, current_order,
2431                start_migratetype, fallback_mt);
2432
2433        return true;
2434
2435}
2436
2437/*
2438 * Do the hard work of removing an element from the buddy allocator.
2439 * Call me with the zone->lock already held.
2440 */
2441static __always_inline struct page *
2442__rmqueue(struct zone *zone, unsigned int order, int migratetype)
2443{
2444        struct page *page;
2445
2446retry:
2447        page = __rmqueue_smallest(zone, order, migratetype);
2448        if (unlikely(!page)) {
2449                if (migratetype == MIGRATE_MOVABLE)
2450                        page = __rmqueue_cma_fallback(zone, order);
2451
2452                if (!page && __rmqueue_fallback(zone, order, migratetype))
2453                        goto retry;
2454        }
2455
2456        trace_mm_page_alloc_zone_locked(page, order, migratetype);
2457        return page;
2458}
2459
2460/*
2461 * Obtain a specified number of elements from the buddy allocator, all under
2462 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2463 * Returns the number of new pages which were placed at *list.
2464 */
2465static int rmqueue_bulk(struct zone *zone, unsigned int order,
2466                        unsigned long count, struct list_head *list,
2467                        int migratetype)
2468{
2469        int i, alloced = 0;
2470
2471        spin_lock(&zone->lock);
2472        for (i = 0; i < count; ++i) {
2473                struct page *page = __rmqueue(zone, order, migratetype);
2474                if (unlikely(page == NULL))
2475                        break;
2476
2477                if (unlikely(check_pcp_refill(page)))
2478                        continue;
2479
2480                /*
2481                 * Split buddy pages returned by expand() are received here in
2482                 * physical page order. The page is added to the tail of
2483                 * caller's list. From the callers perspective, the linked list
2484                 * is ordered by page number under some conditions. This is
2485                 * useful for IO devices that can forward direction from the
2486                 * head, thus also in the physical page order. This is useful
2487                 * for IO devices that can merge IO requests if the physical
2488                 * pages are ordered properly.
2489                 */
2490                list_add_tail(&page->lru, list);
2491                alloced++;
2492                if (is_migrate_cma(get_pcppage_migratetype(page)))
2493                        __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2494                                              -(1 << order));
2495        }
2496
2497        /*
2498         * i pages were removed from the buddy list even if some leak due
2499         * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2500         * on i. Do not confuse with 'alloced' which is the number of
2501         * pages added to the pcp list.
2502         */
2503        __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2504        spin_unlock(&zone->lock);
2505        return alloced;
2506}
2507
2508#ifdef CONFIG_NUMA
2509/*
2510 * Called from the vmstat counter updater to drain pagesets of this
2511 * currently executing processor on remote nodes after they have
2512 * expired.
2513 *
2514 * Note that this function must be called with the thread pinned to
2515 * a single processor.
2516 */
2517void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2518{
2519        unsigned long flags;
2520        int to_drain, batch;
2521
2522        local_irq_save(flags);
2523        batch = READ_ONCE(pcp->batch);
2524        to_drain = min(pcp->count, batch);
2525        if (to_drain > 0)
2526                free_pcppages_bulk(zone, to_drain, pcp);
2527        local_irq_restore(flags);
2528}
2529#endif
2530
2531/*
2532 * Drain pcplists of the indicated processor and zone.
2533 *
2534 * The processor must either be the current processor and the
2535 * thread pinned to the current processor or a processor that
2536 * is not online.
2537 */
2538static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2539{
2540        unsigned long flags;
2541        struct per_cpu_pageset *pset;
2542        struct per_cpu_pages *pcp;
2543
2544        local_irq_save(flags);
2545        pset = per_cpu_ptr(zone->pageset, cpu);
2546
2547        pcp = &pset->pcp;
2548        if (pcp->count)
2549                free_pcppages_bulk(zone, pcp->count, pcp);
2550        local_irq_restore(flags);
2551}
2552
2553/*
2554 * Drain pcplists of all zones on the indicated processor.
2555 *
2556 * The processor must either be the current processor and the
2557 * thread pinned to the current processor or a processor that
2558 * is not online.
2559 */
2560static void drain_pages(unsigned int cpu)
2561{
2562        struct zone *zone;
2563
2564        for_each_populated_zone(zone) {
2565                drain_pages_zone(cpu, zone);
2566        }
2567}
2568
2569/*
2570 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2571 *
2572 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2573 * the single zone's pages.
2574 */
2575void drain_local_pages(struct zone *zone)
2576{
2577        int cpu = smp_processor_id();
2578
2579        if (zone)
2580                drain_pages_zone(cpu, zone);
2581        else
2582                drain_pages(cpu);
2583}
2584
2585static void drain_local_pages_wq(struct work_struct *work)
2586{
2587        /*
2588         * drain_all_pages doesn't use proper cpu hotplug protection so
2589         * we can race with cpu offline when the WQ can move this from
2590         * a cpu pinned worker to an unbound one. We can operate on a different
2591         * cpu which is allright but we also have to make sure to not move to
2592         * a different one.
2593         */
2594        preempt_disable();
2595        drain_local_pages(NULL);
2596        preempt_enable();
2597}
2598
2599/*
2600 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2601 *
2602 * When zone parameter is non-NULL, spill just the single zone's pages.
2603 *
2604 * Note that this can be extremely slow as the draining happens in a workqueue.
2605 */
2606void drain_all_pages(struct zone *zone)
2607{
2608        int cpu;
2609
2610        /*
2611         * Allocate in the BSS so we wont require allocation in
2612         * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2613         */
2614        static cpumask_t cpus_with_pcps;
2615
2616        /*
2617         * Make sure nobody triggers this path before mm_percpu_wq is fully
2618         * initialized.
2619         */
2620        if (WARN_ON_ONCE(!mm_percpu_wq))
2621                return;
2622
2623        /*
2624         * Do not drain if one is already in progress unless it's specific to
2625         * a zone. Such callers are primarily CMA and memory hotplug and need
2626         * the drain to be complete when the call returns.
2627         */
2628        if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2629                if (!zone)
2630                        return;
2631                mutex_lock(&pcpu_drain_mutex);
2632        }
2633
2634        /*
2635         * We don't care about racing with CPU hotplug event
2636         * as offline notification will cause the notified
2637         * cpu to drain that CPU pcps and on_each_cpu_mask
2638         * disables preemption as part of its processing
2639         */
2640        for_each_online_cpu(cpu) {
2641                struct per_cpu_pageset *pcp;
2642                struct zone *z;
2643                bool has_pcps = false;
2644
2645                if (zone) {
2646                        pcp = per_cpu_ptr(zone->pageset, cpu);
2647                        if (pcp->pcp.count)
2648                                has_pcps = true;
2649                } else {
2650                        for_each_populated_zone(z) {
2651                                pcp = per_cpu_ptr(z->pageset, cpu);
2652                                if (pcp->pcp.count) {
2653                                        has_pcps = true;
2654                                        break;
2655                                }
2656                        }
2657                }
2658
2659                if (has_pcps)
2660                        cpumask_set_cpu(cpu, &cpus_with_pcps);
2661                else
2662                        cpumask_clear_cpu(cpu, &cpus_with_pcps);
2663        }
2664
2665        for_each_cpu(cpu, &cpus_with_pcps) {
2666                struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2667                INIT_WORK(work, drain_local_pages_wq);
2668                queue_work_on(cpu, mm_percpu_wq, work);
2669        }
2670        for_each_cpu(cpu, &cpus_with_pcps)
2671                flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2672
2673        mutex_unlock(&pcpu_drain_mutex);
2674}
2675
2676#ifdef CONFIG_HIBERNATION
2677
2678/*
2679 * Touch the watchdog for every WD_PAGE_COUNT pages.
2680 */
2681#define WD_PAGE_COUNT   (128*1024)
2682
2683void mark_free_pages(struct zone *zone)
2684{
2685        unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2686        unsigned long flags;
2687        unsigned int order, t;
2688        struct page *page;
2689
2690        if (zone_is_empty(zone))
2691                return;
2692
2693        spin_lock_irqsave(&zone->lock, flags);
2694
2695        max_zone_pfn = zone_end_pfn(zone);
2696        for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2697                if (pfn_valid(pfn)) {
2698                        page = pfn_to_page(pfn);
2699
2700                        if (!--page_count) {
2701                                touch_nmi_watchdog();
2702                                page_count = WD_PAGE_COUNT;
2703                        }
2704
2705                        if (page_zone(page) != zone)
2706                                continue;
2707
2708                        if (!swsusp_page_is_forbidden(page))
2709                                swsusp_unset_page_free(page);
2710                }
2711
2712        for_each_migratetype_order(order, t) {
2713                list_for_each_entry(page,
2714                                &zone->free_area[order].free_list[t], lru) {
2715                        unsigned long i;
2716
2717                        pfn = page_to_pfn(page);
2718                        for (i = 0; i < (1UL << order); i++) {
2719                                if (!--page_count) {
2720                                        touch_nmi_watchdog();
2721                                        page_count = WD_PAGE_COUNT;
2722                                }
2723                                swsusp_set_page_free(pfn_to_page(pfn + i));
2724                        }
2725                }
2726        }
2727        spin_unlock_irqrestore(&zone->lock, flags);
2728}
2729#endif /* CONFIG_PM */
2730
2731static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2732{
2733        int migratetype;
2734
2735        if (!free_pcp_prepare(page))
2736                return false;
2737
2738        migratetype = get_pfnblock_migratetype(page, pfn);
2739        set_pcppage_migratetype(page, migratetype);
2740        return true;
2741}
2742
2743static void free_unref_page_commit(struct page *page, unsigned long pfn)
2744{
2745        struct zone *zone = page_zone(page);
2746        struct per_cpu_pages *pcp;
2747        int migratetype;
2748
2749        migratetype = get_pcppage_migratetype(page);
2750        __count_vm_event(PGFREE);
2751
2752        /*
2753         * We only track unmovable, reclaimable and movable on pcp lists.
2754         * Free ISOLATE pages back to the allocator because they are being
2755         * offlined but treat HIGHATOMIC as movable pages so we can get those
2756         * areas back if necessary. Otherwise, we may have to free
2757         * excessively into the page allocator
2758         */
2759        if (migratetype >= MIGRATE_PCPTYPES) {
2760                if (unlikely(is_migrate_isolate(migratetype))) {
2761                        free_one_page(zone, page, pfn, 0, migratetype);
2762                        return;
2763                }
2764                migratetype = MIGRATE_MOVABLE;
2765        }
2766
2767        pcp = &this_cpu_ptr(zone->pageset)->pcp;
2768        list_add(&page->lru, &pcp->lists[migratetype]);
2769        pcp->count++;
2770        if (pcp->count >= pcp->high) {
2771                unsigned long batch = READ_ONCE(pcp->batch);
2772                free_pcppages_bulk(zone, batch, pcp);
2773        }
2774}
2775
2776/*
2777 * Free a 0-order page
2778 */
2779void free_unref_page(struct page *page)
2780{
2781        unsigned long flags;
2782        unsigned long pfn = page_to_pfn(page);
2783
2784        if (!free_unref_page_prepare(page, pfn))
2785                return;
2786
2787        local_irq_save(flags);
2788        free_unref_page_commit(page, pfn);
2789        local_irq_restore(flags);
2790}
2791
2792/*
2793 * Free a list of 0-order pages
2794 */
2795void free_unref_page_list(struct list_head *list)
2796{
2797        struct page *page, *next;
2798        unsigned long flags, pfn;
2799        int batch_count = 0;
2800
2801        /* Prepare pages for freeing */
2802        list_for_each_entry_safe(page, next, list, lru) {
2803                pfn = page_to_pfn(page);
2804                if (!free_unref_page_prepare(page, pfn))
2805                        list_del(&page->lru);
2806                set_page_private(page, pfn);
2807        }
2808
2809        local_irq_save(flags);
2810        list_for_each_entry_safe(page, next, list, lru) {
2811                unsigned long pfn = page_private(page);
2812
2813                set_page_private(page, 0);
2814                trace_mm_page_free_batched(page);
2815                free_unref_page_commit(page, pfn);
2816
2817                /*
2818                 * Guard against excessive IRQ disabled times when we get
2819                 * a large list of pages to free.
2820                 */
2821                if (++batch_count == SWAP_CLUSTER_MAX) {
2822                        local_irq_restore(flags);
2823                        batch_count = 0;
2824                        local_irq_save(flags);
2825                }
2826        }
2827        local_irq_restore(flags);
2828}
2829
2830/*
2831 * split_page takes a non-compound higher-order page, and splits it into
2832 * n (1<<order) sub-pages: page[0..n]
2833 * Each sub-page must be freed individually.
2834 *
2835 * Note: this is probably too low level an operation for use in drivers.
2836 * Please consult with lkml before using this in your driver.
2837 */
2838void split_page(struct page *page, unsigned int order)
2839{
2840        int i;
2841
2842        VM_BUG_ON_PAGE(PageCompound(page), page);
2843        VM_BUG_ON_PAGE(!page_count(page), page);
2844
2845        for (i = 1; i < (1 << order); i++)
2846                set_page_refcounted(page + i);
2847        split_page_owner(page, order);
2848}
2849EXPORT_SYMBOL_GPL(split_page);
2850
2851int __isolate_free_page(struct page *page, unsigned int order)
2852{
2853        unsigned long watermark;
2854        struct zone *zone;
2855        int mt;
2856
2857        BUG_ON(!PageBuddy(page));
2858
2859        zone = page_zone(page);
2860        mt = get_pageblock_migratetype(page);
2861
2862        if (!is_migrate_isolate(mt)) {
2863                /*
2864                 * Obey watermarks as if the page was being allocated. We can
2865                 * emulate a high-order watermark check with a raised order-0
2866                 * watermark, because we already know our high-order page
2867                 * exists.
2868                 */
2869                watermark = min_wmark_pages(zone) + (1UL << order);
2870                if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2871                        return 0;
2872
2873                __mod_zone_freepage_state(zone, -(1UL << order), mt);
2874        }
2875
2876        /* Remove page from free list */
2877        list_del(&page->lru);
2878        zone->free_area[order].nr_free--;
2879        rmv_page_order(page);
2880
2881        /*
2882         * Set the pageblock if the isolated page is at least half of a
2883         * pageblock
2884         */
2885        if (order >= pageblock_order - 1) {
2886                struct page *endpage = page + (1 << order) - 1;
2887                for (; page < endpage; page += pageblock_nr_pages) {
2888                        int mt = get_pageblock_migratetype(page);
2889                        if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2890                            && !is_migrate_highatomic(mt))
2891                                set_pageblock_migratetype(page,
2892                                                          MIGRATE_MOVABLE);
2893                }
2894        }
2895
2896
2897        return 1UL << order;
2898}
2899
2900/*
2901 * Update NUMA hit/miss statistics
2902 *
2903 * Must be called with interrupts disabled.
2904 */
2905static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2906{
2907#ifdef CONFIG_NUMA
2908        enum numa_stat_item local_stat = NUMA_LOCAL;
2909
2910        /* skip numa counters update if numa stats is disabled */
2911        if (!static_branch_likely(&vm_numa_stat_key))
2912                return;
2913
2914        if (z->node != numa_node_id())
2915                local_stat = NUMA_OTHER;
2916
2917        if (z->node == preferred_zone->node)
2918                __inc_numa_state(z, NUMA_HIT);
2919        else {
2920                __inc_numa_state(z, NUMA_MISS);
2921                __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2922        }
2923        __inc_numa_state(z, local_stat);
2924#endif
2925}
2926
2927/* Remove page from the per-cpu list, caller must protect the list */
2928static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2929                        struct per_cpu_pages *pcp,
2930                        struct list_head *list)
2931{
2932        struct page *page;
2933
2934        do {
2935                if (list_empty(list)) {
2936                        pcp->count += rmqueue_bulk(zone, 0,
2937                                        pcp->batch, list,
2938                                        migratetype);
2939                        if (unlikely(list_empty(list)))
2940                                return NULL;
2941                }
2942
2943                page = list_first_entry(list, struct page, lru);
2944                list_del(&page->lru);
2945                pcp->count--;
2946        } while (check_new_pcp(page));
2947
2948        return page;
2949}
2950
2951/* Lock and remove page from the per-cpu list */
2952static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2953                        struct zone *zone, unsigned int order,
2954                        gfp_t gfp_flags, int migratetype)
2955{
2956        struct per_cpu_pages *pcp;
2957        struct list_head *list;
2958        struct page *page;
2959        unsigned long flags;
2960
2961        local_irq_save(flags);
2962        pcp = &this_cpu_ptr(zone->pageset)->pcp;
2963        list = &pcp->lists[migratetype];
2964        page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2965        if (page) {
2966                __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2967                zone_statistics(preferred_zone, zone);
2968        }
2969        local_irq_restore(flags);
2970        return page;
2971}
2972
2973/*
2974 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2975 */
2976static inline
2977struct page *rmqueue(struct zone *preferred_zone,
2978                        struct zone *zone, unsigned int order,
2979                        gfp_t gfp_flags, unsigned int alloc_flags,
2980                        int migratetype)
2981{
2982        unsigned long flags;
2983        struct page *page;
2984
2985        if (likely(order == 0)) {
2986                page = rmqueue_pcplist(preferred_zone, zone, order,
2987                                gfp_flags, migratetype);
2988                goto out;
2989        }
2990
2991        /*
2992         * We most definitely don't want callers attempting to
2993         * allocate greater than order-1 page units with __GFP_NOFAIL.
2994         */
2995        WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2996        spin_lock_irqsave(&zone->lock, flags);
2997
2998        do {
2999                page = NULL;
3000                if (alloc_flags & ALLOC_HARDER) {
3001                        page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3002                        if (page)
3003                                trace_mm_page_alloc_zone_locked(page, order, migratetype);
3004                }
3005                if (!page)
3006                        page = __rmqueue(zone, order, migratetype);
3007        } while (page && check_new_pages(page, order));
3008        spin_unlock(&zone->lock);
3009        if (!page)
3010                goto failed;
3011        __mod_zone_freepage_state(zone, -(1 << order),
3012                                  get_pcppage_migratetype(page));
3013
3014        __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3015        zone_statistics(preferred_zone, zone);
3016        local_irq_restore(flags);
3017
3018out:
3019        VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3020        return page;
3021
3022failed:
3023        local_irq_restore(flags);
3024        return NULL;
3025}
3026
3027#ifdef CONFIG_FAIL_PAGE_ALLOC
3028
3029static struct {
3030        struct fault_attr attr;
3031
3032        bool ignore_gfp_highmem;
3033        bool ignore_gfp_reclaim;
3034        u32 min_order;
3035} fail_page_alloc = {
3036        .attr = FAULT_ATTR_INITIALIZER,
3037        .ignore_gfp_reclaim = true,
3038        .ignore_gfp_highmem = true,
3039        .min_order = 1,
3040};
3041
3042static int __init setup_fail_page_alloc(char *str)
3043{
3044        return setup_fault_attr(&fail_page_alloc.attr, str);
3045}
3046__setup("fail_page_alloc=", setup_fail_page_alloc);
3047
3048static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3049{
3050        if (order < fail_page_alloc.min_order)
3051                return false;
3052        if (gfp_mask & __GFP_NOFAIL)
3053                return false;
3054        if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3055                return false;
3056        if (fail_page_alloc.ignore_gfp_reclaim &&
3057                        (gfp_mask & __GFP_DIRECT_RECLAIM))
3058                return false;
3059
3060        return should_fail(&fail_page_alloc.attr, 1 << order);
3061}
3062
3063#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3064
3065static int __init fail_page_alloc_debugfs(void)
3066{
3067        umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3068        struct dentry *dir;
3069
3070        dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3071                                        &fail_page_alloc.attr);
3072        if (IS_ERR(dir))
3073                return PTR_ERR(dir);
3074
3075        if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3076                                &fail_page_alloc.ignore_gfp_reclaim))
3077                goto fail;
3078        if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3079                                &fail_page_alloc.ignore_gfp_highmem))
3080                goto fail;
3081        if (!debugfs_create_u32("min-order", mode, dir,
3082                                &fail_page_alloc.min_order))
3083                goto fail;
3084
3085        return 0;
3086fail:
3087        debugfs_remove_recursive(dir);
3088
3089        return -ENOMEM;
3090}
3091
3092late_initcall(fail_page_alloc_debugfs);
3093
3094#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3095
3096#else /* CONFIG_FAIL_PAGE_ALLOC */
3097
3098static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3099{
3100        return false;
3101}
3102
3103#endif /* CONFIG_FAIL_PAGE_ALLOC */
3104
3105/*
3106 * Return true if free base pages are above 'mark'. For high-order checks it
3107 * will return true of the order-0 watermark is reached and there is at least
3108 * one free page of a suitable size. Checking now avoids taking the zone lock
3109 * to check in the allocation paths if no pages are free.
3110 */
3111bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3112                         int classzone_idx, unsigned int alloc_flags,
3113                         long free_pages)
3114{
3115        long min = mark;
3116        int o;
3117        const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3118
3119        /* free_pages may go negative - that's OK */
3120        free_pages -= (1 << order) - 1;
3121
3122        if (alloc_flags & ALLOC_HIGH)
3123                min -= min / 2;
3124
3125        /*
3126         * If the caller does not have rights to ALLOC_HARDER then subtract
3127         * the high-atomic reserves. This will over-estimate the size of the
3128         * atomic reserve but it avoids a search.
3129         */
3130        if (likely(!alloc_harder)) {
3131                free_pages -= z->nr_reserved_highatomic;
3132        } else {
3133                /*
3134                 * OOM victims can try even harder than normal ALLOC_HARDER
3135                 * users on the grounds that it's definitely going to be in
3136                 * the exit path shortly and free memory. Any allocation it
3137                 * makes during the free path will be small and short-lived.
3138                 */
3139                if (alloc_flags & ALLOC_OOM)
3140                        min -= min / 2;
3141                else
3142                        min -= min / 4;
3143        }
3144
3145
3146#ifdef CONFIG_CMA
3147        /* If allocation can't use CMA areas don't use free CMA pages */
3148        if (!(alloc_flags & ALLOC_CMA))
3149                free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3150#endif
3151
3152        /*
3153         * Check watermarks for an order-0 allocation request. If these
3154         * are not met, then a high-order request also cannot go ahead
3155         * even if a suitable page happened to be free.
3156         */
3157        if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3158                return false;
3159
3160        /* If this is an order-0 request then the watermark is fine */
3161        if (!order)
3162                return true;
3163
3164        /* For a high-order request, check at least one suitable page is free */
3165        for (o = order; o < MAX_ORDER; o++) {
3166                struct free_area *area = &z->free_area[o];
3167                int mt;
3168
3169                if (!area->nr_free)
3170                        continue;
3171
3172                for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3173                        if (!list_empty(&area->free_list[mt]))
3174                                return true;
3175                }
3176
3177#ifdef CONFIG_CMA
3178                if ((alloc_flags & ALLOC_CMA) &&
3179                    !list_empty(&area->free_list[MIGRATE_CMA])) {
3180                        return true;
3181                }
3182#endif
3183                if (alloc_harder &&
3184                        !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3185                        return true;
3186        }
3187        return false;
3188}
3189
3190bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3191                      int classzone_idx, unsigned int alloc_flags)
3192{
3193        return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3194                                        zone_page_state(z, NR_FREE_PAGES));
3195}
3196
3197static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3198                unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3199{
3200        long free_pages = zone_page_state(z, NR_FREE_PAGES);
3201        long cma_pages = 0;
3202
3203#ifdef CONFIG_CMA
3204        /* If allocation can't use CMA areas don't use free CMA pages */
3205        if (!(alloc_flags & ALLOC_CMA))
3206                cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3207#endif
3208
3209        /*
3210         * Fast check for order-0 only. If this fails then the reserves
3211         * need to be calculated. There is a corner case where the check
3212         * passes but only the high-order atomic reserve are free. If
3213         * the caller is !atomic then it'll uselessly search the free
3214         * list. That corner case is then slower but it is harmless.
3215         */
3216        if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3217                return true;
3218
3219        return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3220                                        free_pages);
3221}
3222
3223bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3224                        unsigned long mark, int classzone_idx)
3225{
3226        long free_pages = zone_page_state(z, NR_FREE_PAGES);
3227
3228        if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3229                free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3230
3231        return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3232                                                                free_pages);
3233}
3234
3235#ifdef CONFIG_NUMA
3236static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3237{
3238        return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3239                                RECLAIM_DISTANCE;
3240}
3241#else   /* CONFIG_NUMA */
3242static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3243{
3244        return true;
3245}
3246#endif  /* CONFIG_NUMA */
3247
3248/*
3249 * get_page_from_freelist goes through the zonelist trying to allocate
3250 * a page.
3251 */
3252static struct page *
3253get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3254                                                const struct alloc_context *ac)
3255{
3256        struct zoneref *z = ac->preferred_zoneref;
3257        struct zone *zone;
3258        struct pglist_data *last_pgdat_dirty_limit = NULL;
3259
3260        /*
3261         * Scan zonelist, looking for a zone with enough free.
3262         * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3263         */
3264        for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3265                                                                ac->nodemask) {
3266                struct page *page;
3267                unsigned long mark;
3268
3269                if (cpusets_enabled() &&
3270                        (alloc_flags & ALLOC_CPUSET) &&
3271                        !__cpuset_zone_allowed(zone, gfp_mask))
3272                                continue;
3273                /*
3274                 * When allocating a page cache page for writing, we
3275                 * want to get it from a node that is within its dirty
3276                 * limit, such that no single node holds more than its
3277                 * proportional share of globally allowed dirty pages.
3278                 * The dirty limits take into account the node's
3279                 * lowmem reserves and high watermark so that kswapd
3280                 * should be able to balance it without having to
3281                 * write pages from its LRU list.
3282                 *
3283                 * XXX: For now, allow allocations to potentially
3284                 * exceed the per-node dirty limit in the slowpath
3285                 * (spread_dirty_pages unset) before going into reclaim,
3286                 * which is important when on a NUMA setup the allowed
3287                 * nodes are together not big enough to reach the
3288                 * global limit.  The proper fix for these situations
3289                 * will require awareness of nodes in the
3290                 * dirty-throttling and the flusher threads.
3291                 */
3292                if (ac->spread_dirty_pages) {
3293                        if (last_pgdat_dirty_limit == zone->zone_pgdat)
3294                                continue;
3295
3296                        if (!node_dirty_ok(zone->zone_pgdat)) {
3297                                last_pgdat_dirty_limit = zone->zone_pgdat;
3298                                continue;
3299                        }
3300                }
3301
3302                mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3303                if (!zone_watermark_fast(zone, order, mark,
3304                                       ac_classzone_idx(ac), alloc_flags)) {
3305                        int ret;
3306
3307#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3308                        /*
3309                         * Watermark failed for this zone, but see if we can
3310                         * grow this zone if it contains deferred pages.
3311                         */
3312                        if (static_branch_unlikely(&deferred_pages)) {
3313                                if (_deferred_grow_zone(zone, order))
3314                                        goto try_this_zone;
3315                        }
3316#endif
3317                        /* Checked here to keep the fast path fast */
3318                        BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3319                        if (alloc_flags & ALLOC_NO_WATERMARKS)
3320                                goto try_this_zone;
3321
3322                        if (node_reclaim_mode == 0 ||
3323                            !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3324                                continue;
3325
3326                        ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3327                        switch (ret) {
3328                        case NODE_RECLAIM_NOSCAN:
3329                                /* did not scan */
3330                                continue;
3331                        case NODE_RECLAIM_FULL:
3332                                /* scanned but unreclaimable */
3333                                continue;
3334                        default:
3335                                /* did we reclaim enough */
3336                                if (zone_watermark_ok(zone, order, mark,
3337                                                ac_classzone_idx(ac), alloc_flags))
3338                                        goto try_this_zone;
3339
3340                                continue;
3341                        }
3342                }
3343
3344try_this_zone:
3345                page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3346                                gfp_mask, alloc_flags, ac->migratetype);
3347                if (page) {
3348                        prep_new_page(page, order, gfp_mask, alloc_flags);
3349
3350                        /*
3351                         * If this is a high-order atomic allocation then check
3352                         * if the pageblock should be reserved for the future
3353                         */
3354                        if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3355                                reserve_highatomic_pageblock(page, zone, order);
3356
3357                        return page;
3358                } else {
3359#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3360                        /* Try again if zone has deferred pages */
3361                        if (static_branch_unlikely(&deferred_pages)) {
3362                                if (_deferred_grow_zone(zone, order))
3363                                        goto try_this_zone;
3364                        }
3365#endif
3366                }
3367        }
3368
3369        return NULL;
3370}
3371
3372/*
3373 * Large machines with many possible nodes should not always dump per-node
3374 * meminfo in irq context.
3375 */
3376static inline bool should_suppress_show_mem(void)
3377{
3378        bool ret = false;
3379
3380#if NODES_SHIFT > 8
3381        ret = in_interrupt();
3382#endif
3383        return ret;
3384}
3385
3386static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3387{
3388        unsigned int filter = SHOW_MEM_FILTER_NODES;
3389        static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3390
3391        if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3392                return;
3393
3394        /*
3395         * This documents exceptions given to allocations in certain
3396         * contexts that are allowed to allocate outside current's set
3397         * of allowed nodes.
3398         */
3399        if (!(gfp_mask & __GFP_NOMEMALLOC))
3400                if (tsk_is_oom_victim(current) ||
3401                    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3402                        filter &= ~SHOW_MEM_FILTER_NODES;
3403        if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3404                filter &= ~SHOW_MEM_FILTER_NODES;
3405
3406        show_mem(filter, nodemask);
3407}
3408
3409void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3410{
3411        struct va_format vaf;
3412        va_list args;
3413        static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3414                                      DEFAULT_RATELIMIT_BURST);
3415
3416        if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3417                return;
3418
3419        va_start(args, fmt);
3420        vaf.fmt = fmt;
3421        vaf.va = &args;
3422        pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3423                        current->comm, &vaf, gfp_mask, &gfp_mask,
3424                        nodemask_pr_args(nodemask));
3425        va_end(args);
3426
3427        cpuset_print_current_mems_allowed();
3428
3429        dump_stack();
3430        warn_alloc_show_mem(gfp_mask, nodemask);
3431}
3432
3433static inline struct page *
3434__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3435                              unsigned int alloc_flags,
3436                              const struct alloc_context *ac)
3437{
3438        struct page *page;
3439
3440        page = get_page_from_freelist(gfp_mask, order,
3441                        alloc_flags|ALLOC_CPUSET, ac);
3442        /*
3443         * fallback to ignore cpuset restriction if our nodes
3444         * are depleted
3445         */
3446        if (!page)
3447                page = get_page_from_freelist(gfp_mask, order,
3448                                alloc_flags, ac);
3449
3450        return page;
3451}
3452
3453static inline struct page *
3454__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3455        const struct alloc_context *ac, unsigned long *did_some_progress)
3456{
3457        struct oom_control oc = {
3458                .zonelist = ac->zonelist,
3459                .nodemask = ac->nodemask,
3460                .memcg = NULL,
3461                .gfp_mask = gfp_mask,
3462                .order = order,
3463        };
3464        struct page *page;
3465
3466        *did_some_progress = 0;
3467
3468        /*
3469         * Acquire the oom lock.  If that fails, somebody else is
3470         * making progress for us.
3471         */
3472        if (!mutex_trylock(&oom_lock)) {
3473                *did_some_progress = 1;
3474                schedule_timeout_uninterruptible(1);
3475                return NULL;
3476        }
3477
3478        /*
3479         * Go through the zonelist yet one more time, keep very high watermark
3480         * here, this is only to catch a parallel oom killing, we must fail if
3481         * we're still under heavy pressure. But make sure that this reclaim
3482         * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3483         * allocation which will never fail due to oom_lock already held.
3484         */
3485        page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3486                                      ~__GFP_DIRECT_RECLAIM, order,
3487                                      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3488        if (page)
3489                goto out;
3490
3491        /* Coredumps can quickly deplete all memory reserves */
3492        if (current->flags & PF_DUMPCORE)
3493                goto out;
3494        /* The OOM killer will not help higher order allocs */
3495        if (order > PAGE_ALLOC_COSTLY_ORDER)
3496                goto out;
3497        /*
3498         * We have already exhausted all our reclaim opportunities without any
3499         * success so it is time to admit defeat. We will skip the OOM killer
3500         * because it is very likely that the caller has a more reasonable
3501         * fallback than shooting a random task.
3502         */
3503        if (gfp_mask & __GFP_RETRY_MAYFAIL)
3504                goto out;
3505        /* The OOM killer does not needlessly kill tasks for lowmem */
3506        if (ac->high_zoneidx < ZONE_NORMAL)
3507                goto out;
3508        if (pm_suspended_storage())
3509                goto out;
3510        /*
3511         * XXX: GFP_NOFS allocations should rather fail than rely on
3512         * other request to make a forward progress.
3513         * We are in an unfortunate situation where out_of_memory cannot
3514         * do much for this context but let's try it to at least get
3515         * access to memory reserved if the current task is killed (see
3516         * out_of_memory). Once filesystems are ready to handle allocation
3517         * failures more gracefully we should just bail out here.
3518         */
3519
3520        /* The OOM killer may not free memory on a specific node */
3521        if (gfp_mask & __GFP_THISNODE)
3522                goto out;
3523
3524        /* Exhausted what can be done so it's blame time */
3525        if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3526                *did_some_progress = 1;
3527
3528                /*
3529                 * Help non-failing allocations by giving them access to memory
3530                 * reserves
3531                 */
3532                if (gfp_mask & __GFP_NOFAIL)
3533                        page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3534                                        ALLOC_NO_WATERMARKS, ac);
3535        }
3536out:
3537        mutex_unlock(&oom_lock);
3538        return page;
3539}
3540
3541/*
3542 * Maximum number of compaction retries wit a progress before OOM
3543 * killer is consider as the only way to move forward.
3544 */
3545#define MAX_COMPACT_RETRIES 16
3546
3547#ifdef CONFIG_COMPACTION
3548/* Try memory compaction for high-order allocations before reclaim */
3549static struct page *
3550__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3551                unsigned int alloc_flags, const struct alloc_context *ac,
3552                enum compact_priority prio, enum compact_result *compact_result)
3553{
3554        struct page *page;
3555        unsigned int noreclaim_flag;
3556
3557        if (!order)
3558                return NULL;
3559
3560        noreclaim_flag = memalloc_noreclaim_save();
3561        *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3562                                                                        prio);
3563        memalloc_noreclaim_restore(noreclaim_flag);
3564
3565        if (*compact_result <= COMPACT_INACTIVE)
3566                return NULL;
3567
3568        /*
3569         * At least in one zone compaction wasn't deferred or skipped, so let's
3570         * count a compaction stall
3571         */
3572        count_vm_event(COMPACTSTALL);
3573
3574        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3575
3576        if (page) {
3577                struct zone *zone = page_zone(page);
3578
3579                zone->compact_blockskip_flush = false;
3580                compaction_defer_reset(zone, order, true);
3581                count_vm_event(COMPACTSUCCESS);
3582                return page;
3583        }
3584
3585        /*
3586         * It's bad if compaction run occurs and fails. The most likely reason
3587         * is that pages exist, but not enough to satisfy watermarks.
3588         */
3589        count_vm_event(COMPACTFAIL);
3590
3591        cond_resched();
3592
3593        return NULL;
3594}
3595
3596static inline bool
3597should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3598                     enum compact_result compact_result,
3599                     enum compact_priority *compact_priority,
3600                     int *compaction_retries)
3601{
3602        int max_retries = MAX_COMPACT_RETRIES;
3603        int min_priority;
3604        bool ret = false;
3605        int retries = *compaction_retries;
3606        enum compact_priority priority = *compact_priority;
3607
3608        if (!order)
3609                return false;
3610
3611        if (compaction_made_progress(compact_result))
3612                (*compaction_retries)++;
3613
3614        /*
3615         * compaction considers all the zone as desperately out of memory
3616         * so it doesn't really make much sense to retry except when the
3617         * failure could be caused by insufficient priority
3618         */
3619        if (compaction_failed(compact_result))
3620                goto check_priority;
3621
3622        /*
3623         * make sure the compaction wasn't deferred or didn't bail out early
3624         * due to locks contention before we declare that we should give up.
3625         * But do not retry if the given zonelist is not suitable for
3626         * compaction.
3627         */
3628        if (compaction_withdrawn(compact_result)) {
3629                ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3630                goto out;
3631        }
3632
3633        /*
3634         * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3635         * costly ones because they are de facto nofail and invoke OOM
3636         * killer to move on while costly can fail and users are ready
3637         * to cope with that. 1/4 retries is rather arbitrary but we
3638         * would need much more detailed feedback from compaction to
3639         * make a better decision.
3640         */
3641        if (order > PAGE_ALLOC_COSTLY_ORDER)
3642                max_retries /= 4;
3643        if (*compaction_retries <= max_retries) {
3644                ret = true;
3645                goto out;
3646        }
3647
3648        /*
3649         * Make sure there are attempts at the highest priority if we exhausted
3650         * all retries or failed at the lower priorities.
3651         */
3652check_priority:
3653        min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3654                        MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3655
3656        if (*compact_priority > min_priority) {
3657                (*compact_priority)--;
3658                *compaction_retries = 0;
3659                ret = true;
3660        }
3661out:
3662        trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3663        return ret;
3664}
3665#else
3666static inline struct page *
3667__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3668                unsigned int alloc_flags, const struct alloc_context *ac,
3669                enum compact_priority prio, enum compact_result *compact_result)
3670{
3671        *compact_result = COMPACT_SKIPPED;
3672        return NULL;
3673}
3674
3675static inline bool
3676should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3677                     enum compact_result compact_result,
3678                     enum compact_priority *compact_priority,
3679                     int *compaction_retries)
3680{
3681        struct zone *zone;
3682        struct zoneref *z;
3683
3684        if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3685                return false;
3686
3687        /*
3688         * There are setups with compaction disabled which would prefer to loop
3689         * inside the allocator rather than hit the oom killer prematurely.
3690         * Let's give them a good hope and keep retrying while the order-0
3691         * watermarks are OK.
3692         */
3693        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3694                                        ac->nodemask) {
3695                if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3696                                        ac_classzone_idx(ac), alloc_flags))
3697                        return true;
3698        }
3699        return false;
3700}
3701#endif /* CONFIG_COMPACTION */
3702
3703#ifdef CONFIG_LOCKDEP
3704struct lockdep_map __fs_reclaim_map =
3705        STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3706
3707static bool __need_fs_reclaim(gfp_t gfp_mask)
3708{
3709        gfp_mask = current_gfp_context(gfp_mask);
3710
3711        /* no reclaim without waiting on it */
3712        if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3713                return false;
3714
3715        /* this guy won't enter reclaim */
3716        if (current->flags & PF_MEMALLOC)
3717                return false;
3718
3719        /* We're only interested __GFP_FS allocations for now */
3720        if (!(gfp_mask & __GFP_FS))
3721                return false;
3722
3723        if (gfp_mask & __GFP_NOLOCKDEP)
3724                return false;
3725
3726        return true;
3727}
3728
3729void fs_reclaim_acquire(gfp_t gfp_mask)
3730{
3731        if (__need_fs_reclaim(gfp_mask))
3732                lock_map_acquire(&__fs_reclaim_map);
3733}
3734EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3735
3736void fs_reclaim_release(gfp_t gfp_mask)
3737{
3738        if (__need_fs_reclaim(gfp_mask))
3739                lock_map_release(&__fs_reclaim_map);
3740}
3741EXPORT_SYMBOL_GPL(fs_reclaim_release);
3742#endif
3743
3744/* Perform direct synchronous page reclaim */
3745static int
3746__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3747                                        const struct alloc_context *ac)
3748{
3749        struct reclaim_state reclaim_state;
3750        int progress;
3751        unsigned int noreclaim_flag;
3752
3753        cond_resched();
3754
3755        /* We now go into synchronous reclaim */
3756        cpuset_memory_pressure_bump();
3757        noreclaim_flag = memalloc_noreclaim_save();
3758        fs_reclaim_acquire(gfp_mask);
3759        reclaim_state.reclaimed_slab = 0;
3760        current->reclaim_state = &reclaim_state;
3761
3762        progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3763                                                                ac->nodemask);
3764
3765        current->reclaim_state = NULL;
3766        fs_reclaim_release(gfp_mask);
3767        memalloc_noreclaim_restore(noreclaim_flag);
3768
3769        cond_resched();
3770
3771        return progress;
3772}
3773
3774/* The really slow allocator path where we enter direct reclaim */
3775static inline struct page *
3776__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3777                unsigned int alloc_flags, const struct alloc_context *ac,
3778                unsigned long *did_some_progress)
3779{
3780        struct page *page = NULL;
3781        bool drained = false;
3782
3783        *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3784        if (unlikely(!(*did_some_progress)))
3785                return NULL;
3786
3787retry:
3788        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3789
3790        /*
3791         * If an allocation failed after direct reclaim, it could be because
3792         * pages are pinned on the per-cpu lists or in high alloc reserves.
3793         * Shrink them them and try again
3794         */
3795        if (!page && !drained) {
3796                unreserve_highatomic_pageblock(ac, false);
3797                drain_all_pages(NULL);
3798                drained = true;
3799                goto retry;
3800        }
3801
3802        return page;
3803}
3804
3805static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3806                             const struct alloc_context *ac)
3807{
3808        struct zoneref *z;
3809        struct zone *zone;
3810        pg_data_t *last_pgdat = NULL;
3811        enum zone_type high_zoneidx = ac->high_zoneidx;
3812
3813        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3814                                        ac->nodemask) {
3815                if (last_pgdat != zone->zone_pgdat)
3816                        wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3817                last_pgdat = zone->zone_pgdat;
3818        }
3819}
3820
3821static inline unsigned int
3822gfp_to_alloc_flags(gfp_t gfp_mask)
3823{
3824        unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3825
3826        /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3827        BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3828
3829        /*
3830         * The caller may dip into page reserves a bit more if the caller
3831         * cannot run direct reclaim, or if the caller has realtime scheduling
3832         * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3833         * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3834         */
3835        alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3836
3837        if (gfp_mask & __GFP_ATOMIC) {
3838                /*
3839                 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3840                 * if it can't schedule.
3841                 */
3842                if (!(gfp_mask & __GFP_NOMEMALLOC))
3843                        alloc_flags |= ALLOC_HARDER;
3844                /*
3845                 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3846                 * comment for __cpuset_node_allowed().
3847                 */
3848                alloc_flags &= ~ALLOC_CPUSET;
3849        } else if (unlikely(rt_task(current)) && !in_interrupt())
3850                alloc_flags |= ALLOC_HARDER;
3851
3852#ifdef CONFIG_CMA
3853        if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3854                alloc_flags |= ALLOC_CMA;
3855#endif
3856        return alloc_flags;
3857}
3858
3859static bool oom_reserves_allowed(struct task_struct *tsk)
3860{
3861        if (!tsk_is_oom_victim(tsk))
3862                return false;
3863
3864        /*
3865         * !MMU doesn't have oom reaper so give access to memory reserves
3866         * only to the thread with TIF_MEMDIE set
3867         */
3868        if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3869                return false;
3870
3871        return true;
3872}
3873
3874/*
3875 * Distinguish requests which really need access to full memory
3876 * reserves from oom victims which can live with a portion of it
3877 */
3878static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3879{
3880        if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3881                return 0;
3882        if (gfp_mask & __GFP_MEMALLOC)
3883                return ALLOC_NO_WATERMARKS;
3884        if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3885                return ALLOC_NO_WATERMARKS;
3886        if (!in_interrupt()) {
3887                if (current->flags & PF_MEMALLOC)
3888                        return ALLOC_NO_WATERMARKS;
3889                else if (oom_reserves_allowed(current))
3890                        return ALLOC_OOM;
3891        }
3892
3893        return 0;
3894}
3895
3896bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3897{
3898        return !!__gfp_pfmemalloc_flags(gfp_mask);
3899}
3900
3901/*
3902 * Checks whether it makes sense to retry the reclaim to make a forward progress
3903 * for the given allocation request.
3904 *
3905 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3906 * without success, or when we couldn't even meet the watermark if we
3907 * reclaimed all remaining pages on the LRU lists.
3908 *
3909 * Returns true if a retry is viable or false to enter the oom path.
3910 */
3911static inline bool
3912should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3913                     struct alloc_context *ac, int alloc_flags,
3914                     bool did_some_progress, int *no_progress_loops)
3915{
3916        struct zone *zone;
3917        struct zoneref *z;
3918
3919        /*
3920         * Costly allocations might have made a progress but this doesn't mean
3921         * their order will become available due to high fragmentation so
3922         * always increment the no progress counter for them
3923         */
3924        if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3925                *no_progress_loops = 0;
3926        else
3927                (*no_progress_loops)++;
3928
3929        /*
3930         * Make sure we converge to OOM if we cannot make any progress
3931         * several times in the row.
3932         */
3933        if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3934                /* Before OOM, exhaust highatomic_reserve */
3935                return unreserve_highatomic_pageblock(ac, true);
3936        }
3937
3938        /*
3939         * Keep reclaiming pages while there is a chance this will lead
3940         * somewhere.  If none of the target zones can satisfy our allocation
3941         * request even if all reclaimable pages are considered then we are
3942         * screwed and have to go OOM.
3943         */
3944        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3945                                        ac->nodemask) {
3946                unsigned long available;
3947                unsigned long reclaimable;
3948                unsigned long min_wmark = min_wmark_pages(zone);
3949                bool wmark;
3950
3951                available = reclaimable = zone_reclaimable_pages(zone);
3952                available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3953
3954                /*
3955                 * Would the allocation succeed if we reclaimed all
3956                 * reclaimable pages?
3957                 */
3958                wmark = __zone_watermark_ok(zone, order, min_wmark,
3959                                ac_classzone_idx(ac), alloc_flags, available);
3960                trace_reclaim_retry_zone(z, order, reclaimable,
3961                                available, min_wmark, *no_progress_loops, wmark);
3962                if (wmark) {
3963                        /*
3964                         * If we didn't make any progress and have a lot of
3965                         * dirty + writeback pages then we should wait for
3966                         * an IO to complete to slow down the reclaim and
3967                         * prevent from pre mature OOM
3968                         */
3969                        if (!did_some_progress) {
3970                                unsigned long write_pending;
3971
3972                                write_pending = zone_page_state_snapshot(zone,
3973                                                        NR_ZONE_WRITE_PENDING);
3974
3975                                if (2 * write_pending > reclaimable) {
3976                                        congestion_wait(BLK_RW_ASYNC, HZ/10);
3977                                        return true;
3978                                }
3979                        }
3980
3981                        /*
3982                         * Memory allocation/reclaim might be called from a WQ
3983                         * context and the current implementation of the WQ
3984                         * concurrency control doesn't recognize that
3985                         * a particular WQ is congested if the worker thread is
3986                         * looping without ever sleeping. Therefore we have to
3987                         * do a short sleep here rather than calling
3988                         * cond_resched().
3989                         */
3990                        if (current->flags & PF_WQ_WORKER)
3991                                schedule_timeout_uninterruptible(1);
3992                        else
3993                                cond_resched();
3994
3995                        return true;
3996                }
3997        }
3998
3999        return false;
4000}
4001
4002static inline bool
4003check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4004{
4005        /*
4006         * It's possible that cpuset's mems_allowed and the nodemask from
4007         * mempolicy don't intersect. This should be normally dealt with by
4008         * policy_nodemask(), but it's possible to race with cpuset update in
4009         * such a way the check therein was true, and then it became false
4010         * before we got our cpuset_mems_cookie here.
4011         * This assumes that for all allocations, ac->nodemask can come only
4012         * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4013         * when it does not intersect with the cpuset restrictions) or the
4014         * caller can deal with a violated nodemask.
4015         */
4016        if (cpusets_enabled() && ac->nodemask &&
4017                        !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4018                ac->nodemask = NULL;
4019                return true;
4020        }
4021
4022        /*
4023         * When updating a task's mems_allowed or mempolicy nodemask, it is
4024         * possible to race with parallel threads in such a way that our
4025         * allocation can fail while the mask is being updated. If we are about
4026         * to fail, check if the cpuset changed during allocation and if so,
4027         * retry.
4028         */
4029        if (read_mems_allowed_retry(cpuset_mems_cookie))
4030                return true;
4031
4032        return false;
4033}
4034
4035static inline struct page *
4036__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4037                                                struct alloc_context *ac)
4038{
4039        bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4040        const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4041        struct page *page = NULL;
4042        unsigned int alloc_flags;
4043        unsigned long did_some_progress;
4044        enum compact_priority compact_priority;
4045        enum compact_result compact_result;
4046        int compaction_retries;
4047        int no_progress_loops;
4048        unsigned int cpuset_mems_cookie;
4049        int reserve_flags;
4050
4051        /*
4052         * In the slowpath, we sanity check order to avoid ever trying to
4053         * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4054         * be using allocators in order of preference for an area that is
4055         * too large.
4056         */
4057        if (order >= MAX_ORDER) {
4058                WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4059                return NULL;
4060        }
4061
4062        /*
4063         * We also sanity check to catch abuse of atomic reserves being used by
4064         * callers that are not in atomic context.
4065         */
4066        if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4067                                (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4068                gfp_mask &= ~__GFP_ATOMIC;
4069
4070retry_cpuset:
4071        compaction_retries = 0;
4072        no_progress_loops = 0;
4073        compact_priority = DEF_COMPACT_PRIORITY;
4074        cpuset_mems_cookie = read_mems_allowed_begin();
4075
4076        /*
4077         * The fast path uses conservative alloc_flags to succeed only until
4078         * kswapd needs to be woken up, and to avoid the cost of setting up
4079         * alloc_flags precisely. So we do that now.
4080         */
4081        alloc_flags = gfp_to_alloc_flags(gfp_mask);
4082
4083        /*
4084         * We need to recalculate the starting point for the zonelist iterator
4085         * because we might have used different nodemask in the fast path, or
4086         * there was a cpuset modification and we are retrying - otherwise we
4087         * could end up iterating over non-eligible zones endlessly.
4088         */
4089        ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4090                                        ac->high_zoneidx, ac->nodemask);
4091        if (!ac->preferred_zoneref->zone)
4092                goto nopage;
4093
4094        if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4095                wake_all_kswapds(order, gfp_mask, ac);
4096
4097        /*
4098         * The adjusted alloc_flags might result in immediate success, so try
4099         * that first
4100         */
4101        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4102        if (page)
4103                goto got_pg;
4104
4105        /*
4106         * For costly allocations, try direct compaction first, as it's likely
4107         * that we have enough base pages and don't need to reclaim. For non-
4108         * movable high-order allocations, do that as well, as compaction will
4109         * try prevent permanent fragmentation by migrating from blocks of the
4110         * same migratetype.
4111         * Don't try this for allocations that are allowed to ignore
4112         * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4113         */
4114        if (can_direct_reclaim &&
4115                        (costly_order ||
4116                           (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4117                        && !gfp_pfmemalloc_allowed(gfp_mask)) {
4118                page = __alloc_pages_direct_compact(gfp_mask, order,
4119                                                alloc_flags, ac,
4120                                                INIT_COMPACT_PRIORITY,
4121                                                &compact_result);
4122                if (page)
4123                        goto got_pg;
4124
4125                /*
4126                 * Checks for costly allocations with __GFP_NORETRY, which
4127                 * includes THP page fault allocations
4128                 */
4129                if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4130                        /*
4131                         * If compaction is deferred for high-order allocations,
4132                         * it is because sync compaction recently failed. If
4133                         * this is the case and the caller requested a THP
4134                         * allocation, we do not want to heavily disrupt the
4135                         * system, so we fail the allocation instead of entering
4136                         * direct reclaim.
4137                         */
4138                        if (compact_result == COMPACT_DEFERRED)
4139                                goto nopage;
4140
4141                        /*
4142                         * Looks like reclaim/compaction is worth trying, but
4143                         * sync compaction could be very expensive, so keep
4144                         * using async compaction.
4145                         */
4146                        compact_priority = INIT_COMPACT_PRIORITY;
4147                }
4148        }
4149
4150retry:
4151        /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4152        if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4153                wake_all_kswapds(order, gfp_mask, ac);
4154
4155        reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4156        if (reserve_flags)
4157                alloc_flags = reserve_flags;
4158
4159        /*
4160         * Reset the zonelist iterators if memory policies can be ignored.
4161         * These allocations are high priority and system rather than user
4162         * orientated.
4163         */
4164        if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4165                ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4166                ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4167                                        ac->high_zoneidx, ac->nodemask);
4168        }
4169
4170        /* Attempt with potentially adjusted zonelist and alloc_flags */
4171        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4172        if (page)
4173                goto got_pg;
4174
4175        /* Caller is not willing to reclaim, we can't balance anything */
4176        if (!can_direct_reclaim)
4177                goto nopage;
4178
4179        /* Avoid recursion of direct reclaim */
4180        if (current->flags & PF_MEMALLOC)
4181                goto nopage;
4182
4183        /* Try direct reclaim and then allocating */
4184        page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4185                                                        &did_some_progress);
4186        if (page)
4187                goto got_pg;
4188
4189        /* Try direct compaction and then allocating */
4190        page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4191                                        compact_priority, &compact_result);
4192        if (page)
4193                goto got_pg;
4194
4195        /* Do not loop if specifically requested */
4196        if (gfp_mask & __GFP_NORETRY)
4197                goto nopage;
4198
4199        /*
4200         * Do not retry costly high order allocations unless they are
4201         * __GFP_RETRY_MAYFAIL
4202         */
4203        if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4204                goto nopage;
4205
4206        if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4207                                 did_some_progress > 0, &no_progress_loops))
4208                goto retry;
4209
4210        /*
4211         * It doesn't make any sense to retry for the compaction if the order-0
4212         * reclaim is not able to make any progress because the current
4213         * implementation of the compaction depends on the sufficient amount
4214         * of free memory (see __compaction_suitable)
4215         */
4216        if (did_some_progress > 0 &&
4217                        should_compact_retry(ac, order, alloc_flags,
4218                                compact_result, &compact_priority,
4219                                &compaction_retries))
4220                goto retry;
4221
4222
4223        /* Deal with possible cpuset update races before we start OOM killing */
4224        if (check_retry_cpuset(cpuset_mems_cookie, ac))
4225                goto retry_cpuset;
4226
4227        /* Reclaim has failed us, start killing things */
4228        page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4229        if (page)
4230                goto got_pg;
4231
4232        /* Avoid allocations with no watermarks from looping endlessly */
4233        if (tsk_is_oom_victim(current) &&
4234            (alloc_flags == ALLOC_OOM ||
4235             (gfp_mask & __GFP_NOMEMALLOC)))
4236                goto nopage;
4237
4238        /* Retry as long as the OOM killer is making progress */
4239        if (did_some_progress) {
4240                no_progress_loops = 0;
4241                goto retry;
4242        }
4243
4244nopage:
4245        /* Deal with possible cpuset update races before we fail */
4246        if (check_retry_cpuset(cpuset_mems_cookie, ac))
4247                goto retry_cpuset;
4248
4249        /*
4250         * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4251         * we always retry
4252         */
4253        if (gfp_mask & __GFP_NOFAIL) {
4254                /*
4255                 * All existing users of the __GFP_NOFAIL are blockable, so warn
4256                 * of any new users that actually require GFP_NOWAIT
4257                 */
4258                if (WARN_ON_ONCE(!can_direct_reclaim))
4259                        goto fail;
4260
4261                /*
4262                 * PF_MEMALLOC request from this context is rather bizarre
4263                 * because we cannot reclaim anything and only can loop waiting
4264                 * for somebody to do a work for us
4265                 */
4266                WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4267
4268                /*
4269                 * non failing costly orders are a hard requirement which we
4270                 * are not prepared for much so let's warn about these users
4271                 * so that we can identify them and convert them to something
4272                 * else.
4273                 */
4274                WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4275
4276                /*
4277                 * Help non-failing allocations by giving them access to memory
4278                 * reserves but do not use ALLOC_NO_WATERMARKS because this
4279                 * could deplete whole memory reserves which would just make
4280                 * the situation worse
4281                 */
4282                page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4283                if (page)
4284                        goto got_pg;
4285
4286                cond_resched();
4287                goto retry;
4288        }
4289fail:
4290        warn_alloc(gfp_mask, ac->nodemask,
4291                        "page allocation failure: order:%u", order);
4292got_pg:
4293        return page;
4294}
4295
4296static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4297                int preferred_nid, nodemask_t *nodemask,
4298                struct alloc_context *ac, gfp_t *alloc_mask,
4299                unsigned int *alloc_flags)
4300{
4301        ac->high_zoneidx = gfp_zone(gfp_mask);
4302        ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4303        ac->nodemask = nodemask;
4304        ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4305
4306        if (cpusets_enabled()) {
4307                *alloc_mask |= __GFP_HARDWALL;
4308                if (!ac->nodemask)
4309                        ac->nodemask = &cpuset_current_mems_allowed;
4310                else
4311                        *alloc_flags |= ALLOC_CPUSET;
4312        }
4313
4314        fs_reclaim_acquire(gfp_mask);
4315        fs_reclaim_release(gfp_mask);
4316
4317        might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4318
4319        if (should_fail_alloc_page(gfp_mask, order))
4320                return false;
4321
4322        if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4323                *alloc_flags |= ALLOC_CMA;
4324
4325        return true;
4326}
4327
4328/* Determine whether to spread dirty pages and what the first usable zone */
4329static inline void finalise_ac(gfp_t gfp_mask,
4330                unsigned int order, struct alloc_context *ac)
4331{
4332        /* Dirty zone balancing only done in the fast path */
4333        ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4334
4335        /*
4336         * The preferred zone is used for statistics but crucially it is
4337         * also used as the starting point for the zonelist iterator. It
4338         * may get reset for allocations that ignore memory policies.
4339         */
4340        ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4341                                        ac->high_zoneidx, ac->nodemask);
4342}
4343
4344/*
4345 * This is the 'heart' of the zoned buddy allocator.
4346 */
4347struct page *
4348__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4349                                                        nodemask_t *nodemask)
4350{
4351        struct page *page;
4352        unsigned int alloc_flags = ALLOC_WMARK_LOW;
4353        gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4354        struct alloc_context ac = { };
4355
4356        gfp_mask &= gfp_allowed_mask;
4357        alloc_mask = gfp_mask;
4358        if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4359                return NULL;
4360
4361        finalise_ac(gfp_mask, order, &ac);
4362
4363        /* First allocation attempt */
4364        page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4365        if (likely(page))
4366                goto out;
4367
4368        /*
4369         * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4370         * resp. GFP_NOIO which has to be inherited for all allocation requests
4371         * from a particular context which has been marked by
4372         * memalloc_no{fs,io}_{save,restore}.
4373         */
4374        alloc_mask = current_gfp_context(gfp_mask);
4375        ac.spread_dirty_pages = false;
4376
4377        /*
4378         * Restore the original nodemask if it was potentially replaced with
4379         * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4380         */
4381        if (unlikely(ac.nodemask != nodemask))
4382                ac.nodemask = nodemask;
4383
4384        page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4385
4386out:
4387        if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4388            unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4389                __free_pages(page, order);
4390                page = NULL;
4391        }
4392
4393        trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4394
4395        return page;
4396}
4397EXPORT_SYMBOL(__alloc_pages_nodemask);
4398
4399/*
4400 * Common helper functions.
4401 */
4402unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4403{
4404        struct page *page;
4405
4406        /*
4407         * __get_free_pages() returns a virtual address, which cannot represent
4408         * a highmem page
4409         */
4410        VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4411
4412        page = alloc_pages(gfp_mask, order);
4413        if (!page)
4414                return 0;
4415        return (unsigned long) page_address(page);
4416}
4417EXPORT_SYMBOL(__get_free_pages);
4418
4419unsigned long get_zeroed_page(gfp_t gfp_mask)
4420{
4421        return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4422}
4423EXPORT_SYMBOL(get_zeroed_page);
4424
4425void __free_pages(struct page *page, unsigned int order)
4426{
4427        if (put_page_testzero(page)) {
4428                if (order == 0)
4429                        free_unref_page(page);
4430                else
4431                        __free_pages_ok(page, order);
4432        }
4433}
4434
4435EXPORT_SYMBOL(__free_pages);
4436
4437void free_pages(unsigned long addr, unsigned int order)
4438{
4439        if (addr != 0) {
4440                VM_BUG_ON(!virt_addr_valid((void *)addr));
4441                __free_pages(virt_to_page((void *)addr), order);
4442        }
4443}
4444
4445EXPORT_SYMBOL(free_pages);
4446
4447/*
4448 * Page Fragment:
4449 *  An arbitrary-length arbitrary-offset area of memory which resides
4450 *  within a 0 or higher order page.  Multiple fragments within that page
4451 *  are individually refcounted, in the page's reference counter.
4452 *
4453 * The page_frag functions below provide a simple allocation framework for
4454 * page fragments.  This is used by the network stack and network device
4455 * drivers to provide a backing region of memory for use as either an
4456 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4457 */
4458static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4459                                             gfp_t gfp_mask)
4460{
4461        struct page *page = NULL;
4462        gfp_t gfp = gfp_mask;
4463
4464#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4465        gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4466                    __GFP_NOMEMALLOC;
4467        page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4468                                PAGE_FRAG_CACHE_MAX_ORDER);
4469        nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4470#endif
4471        if (unlikely(!page))
4472                page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4473
4474        nc->va = page ? page_address(page) : NULL;
4475
4476        return page;
4477}
4478
4479void __page_frag_cache_drain(struct page *page, unsigned int count)
4480{
4481        VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4482
4483        if (page_ref_sub_and_test(page, count)) {
4484                unsigned int order = compound_order(page);
4485
4486                if (order == 0)
4487                        free_unref_page(page);
4488                else
4489                        __free_pages_ok(page, order);
4490        }
4491}
4492EXPORT_SYMBOL(__page_frag_cache_drain);
4493
4494void *page_frag_alloc(struct page_frag_cache *nc,
4495                      unsigned int fragsz, gfp_t gfp_mask)
4496{
4497        unsigned int size = PAGE_SIZE;
4498        struct page *page;
4499        int offset;
4500
4501        if (unlikely(!nc->va)) {
4502refill:
4503                page = __page_frag_cache_refill(nc, gfp_mask);
4504                if (!page)
4505                        return NULL;
4506
4507#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4508                /* if size can vary use size else just use PAGE_SIZE */
4509                size = nc->size;
4510#endif
4511                /* Even if we own the page, we do not use atomic_set().
4512                 * This would break get_page_unless_zero() users.
4513                 */
4514                page_ref_add(page, size - 1);
4515
4516                /* reset page count bias and offset to start of new frag */
4517                nc->pfmemalloc = page_is_pfmemalloc(page);
4518                nc->pagecnt_bias = size;
4519                nc->offset = size;
4520        }
4521
4522        offset = nc->offset - fragsz;
4523        if (unlikely(offset < 0)) {
4524                page = virt_to_page(nc->va);
4525
4526                if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4527                        goto refill;
4528
4529#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4530                /* if size can vary use size else just use PAGE_SIZE */
4531                size = nc->size;
4532#endif
4533                /* OK, page count is 0, we can safely set it */
4534                set_page_count(page, size);
4535
4536                /* reset page count bias and offset to start of new frag */
4537                nc->pagecnt_bias = size;
4538                offset = size - fragsz;
4539        }
4540
4541        nc->pagecnt_bias--;
4542        nc->offset = offset;
4543
4544        return nc->va + offset;
4545}
4546EXPORT_SYMBOL(page_frag_alloc);
4547
4548/*
4549 * Frees a page fragment allocated out of either a compound or order 0 page.
4550 */
4551void page_frag_free(void *addr)
4552{
4553        struct page *page = virt_to_head_page(addr);
4554
4555        if (unlikely(put_page_testzero(page)))
4556                __free_pages_ok(page, compound_order(page));
4557}
4558EXPORT_SYMBOL(page_frag_free);
4559
4560static void *make_alloc_exact(unsigned long addr, unsigned int order,
4561                size_t size)
4562{
4563        if (addr) {
4564                unsigned long alloc_end = addr + (PAGE_SIZE << order);
4565                unsigned long used = addr + PAGE_ALIGN(size);
4566
4567                split_page(virt_to_page((void *)addr), order);
4568                while (used < alloc_end) {
4569                        free_page(used);
4570                        used += PAGE_SIZE;
4571                }
4572        }
4573        return (void *)addr;
4574}
4575
4576/**
4577 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4578 * @size: the number of bytes to allocate
4579 * @gfp_mask: GFP flags for the allocation
4580 *
4581 * This function is similar to alloc_pages(), except that it allocates the
4582 * minimum number of pages to satisfy the request.  alloc_pages() can only
4583 * allocate memory in power-of-two pages.
4584 *
4585 * This function is also limited by MAX_ORDER.
4586 *
4587 * Memory allocated by this function must be released by free_pages_exact().
4588 */
4589void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4590{
4591        unsigned int order = get_order(size);
4592        unsigned long addr;
4593
4594        addr = __get_free_pages(gfp_mask, order);
4595        return make_alloc_exact(addr, order, size);
4596}
4597EXPORT_SYMBOL(alloc_pages_exact);
4598
4599/**
4600 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4601 *                         pages on a node.
4602 * @nid: the preferred node ID where memory should be allocated
4603 * @size: the number of bytes to allocate
4604 * @gfp_mask: GFP flags for the allocation
4605 *
4606 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4607 * back.
4608 */
4609void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4610{
4611        unsigned int order = get_order(size);
4612        struct page *p = alloc_pages_node(nid, gfp_mask, order);
4613        if (!p)
4614                return NULL;
4615        return make_alloc_exact((unsigned long)page_address(p), order, size);
4616}
4617
4618/**
4619 * free_pages_exact - release memory allocated via alloc_pages_exact()
4620 * @virt: the value returned by alloc_pages_exact.
4621 * @size: size of allocation, same value as passed to alloc_pages_exact().
4622 *
4623 * Release the memory allocated by a previous call to alloc_pages_exact.
4624 */
4625void free_pages_exact(void *virt, size_t size)
4626{
4627        unsigned long addr = (unsigned long)virt;
4628        unsigned long end = addr + PAGE_ALIGN(size);
4629
4630        while (addr < end) {
4631                free_page(addr);
4632                addr += PAGE_SIZE;
4633        }
4634}
4635EXPORT_SYMBOL(free_pages_exact);
4636
4637/**
4638 * nr_free_zone_pages - count number of pages beyond high watermark
4639 * @offset: The zone index of the highest zone
4640 *
4641 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4642 * high watermark within all zones at or below a given zone index.  For each
4643 * zone, the number of pages is calculated as:
4644 *
4645 *     nr_free_zone_pages = managed_pages - high_pages
4646 */
4647static unsigned long nr_free_zone_pages(int offset)
4648{
4649        struct zoneref *z;
4650        struct zone *zone;
4651
4652        /* Just pick one node, since fallback list is circular */
4653        unsigned long sum = 0;
4654
4655        struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4656
4657        for_each_zone_zonelist(zone, z, zonelist, offset) {
4658                unsigned long size = zone->managed_pages;
4659                unsigned long high = high_wmark_pages(zone);
4660                if (size > high)
4661                        sum += size - high;
4662        }
4663
4664        return sum;
4665}
4666
4667/**
4668 * nr_free_buffer_pages - count number of pages beyond high watermark
4669 *
4670 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4671 * watermark within ZONE_DMA and ZONE_NORMAL.
4672 */
4673unsigned long nr_free_buffer_pages(void)
4674{
4675        return nr_free_zone_pages(gfp_zone(GFP_USER));
4676}
4677EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4678
4679/**
4680 * nr_free_pagecache_pages - count number of pages beyond high watermark
4681 *
4682 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4683 * high watermark within all zones.
4684 */
4685unsigned long nr_free_pagecache_pages(void)
4686{
4687        return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4688}
4689
4690static inline void show_node(struct zone *zone)
4691{
4692        if (IS_ENABLED(CONFIG_NUMA))
4693                printk("Node %d ", zone_to_nid(zone));
4694}
4695
4696long si_mem_available(void)
4697{
4698        long available;
4699        unsigned long pagecache;
4700        unsigned long wmark_low = 0;
4701        unsigned long pages[NR_LRU_LISTS];
4702        struct zone *zone;
4703        int lru;
4704
4705        for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4706                pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4707
4708        for_each_zone(zone)
4709                wmark_low += zone->watermark[WMARK_LOW];
4710
4711        /*
4712         * Estimate the amount of memory available for userspace allocations,
4713         * without causing swapping.
4714         */
4715        available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4716
4717        /*
4718         * Not all the page cache can be freed, otherwise the system will
4719         * start swapping. Assume at least half of the page cache, or the
4720         * low watermark worth of cache, needs to stay.
4721         */
4722        pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4723        pagecache -= min(pagecache / 2, wmark_low);
4724        available += pagecache;
4725
4726        /*
4727         * Part of the reclaimable slab consists of items that are in use,
4728         * and cannot be freed. Cap this estimate at the low watermark.
4729         */
4730        available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4731                     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4732                         wmark_low);
4733
4734        /*
4735         * Part of the kernel memory, which can be released under memory
4736         * pressure.
4737         */
4738        available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4739                PAGE_SHIFT;
4740
4741        if (available < 0)
4742                available = 0;
4743        return available;
4744}
4745EXPORT_SYMBOL_GPL(si_mem_available);
4746
4747void si_meminfo(struct sysinfo *val)
4748{
4749        val->totalram = totalram_pages;
4750        val->sharedram = global_node_page_state(NR_SHMEM);
4751        val->freeram = global_zone_page_state(NR_FREE_PAGES);
4752        val->bufferram = nr_blockdev_pages();
4753        val->totalhigh = totalhigh_pages;
4754        val->freehigh = nr_free_highpages();
4755        val->mem_unit = PAGE_SIZE;
4756}
4757
4758EXPORT_SYMBOL(si_meminfo);
4759
4760#ifdef CONFIG_NUMA
4761void si_meminfo_node(struct sysinfo *val, int nid)
4762{
4763        int zone_type;          /* needs to be signed */
4764        unsigned long managed_pages = 0;
4765        unsigned long managed_highpages = 0;
4766        unsigned long free_highpages = 0;
4767        pg_data_t *pgdat = NODE_DATA(nid);
4768
4769        for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4770                managed_pages += pgdat->node_zones[zone_type].managed_pages;
4771        val->totalram = managed_pages;
4772        val->sharedram = node_page_state(pgdat, NR_SHMEM);
4773        val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4774#ifdef CONFIG_HIGHMEM
4775        for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4776                struct zone *zone = &pgdat->node_zones[zone_type];
4777
4778                if (is_highmem(zone)) {
4779                        managed_highpages += zone->managed_pages;
4780                        free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4781                }
4782        }
4783        val->totalhigh = managed_highpages;
4784        val->freehigh = free_highpages;
4785#else
4786        val->totalhigh = managed_highpages;
4787        val->freehigh = free_highpages;
4788#endif
4789        val->mem_unit = PAGE_SIZE;
4790}
4791#endif
4792
4793/*
4794 * Determine whether the node should be displayed or not, depending on whether
4795 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4796 */
4797static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4798{
4799        if (!(flags & SHOW_MEM_FILTER_NODES))
4800                return false;
4801
4802        /*
4803         * no node mask - aka implicit memory numa policy. Do not bother with
4804         * the synchronization - read_mems_allowed_begin - because we do not
4805         * have to be precise here.
4806         */
4807        if (!nodemask)
4808                nodemask = &cpuset_current_mems_allowed;
4809
4810        return !node_isset(nid, *nodemask);
4811}
4812
4813#define K(x) ((x) << (PAGE_SHIFT-10))
4814
4815static void show_migration_types(unsigned char type)
4816{
4817        static const char types[MIGRATE_TYPES] = {
4818                [MIGRATE_UNMOVABLE]     = 'U',
4819                [MIGRATE_MOVABLE]       = 'M',
4820                [MIGRATE_RECLAIMABLE]   = 'E',
4821                [MIGRATE_HIGHATOMIC]    = 'H',
4822#ifdef CONFIG_CMA
4823                [MIGRATE_CMA]           = 'C',
4824#endif
4825#ifdef CONFIG_MEMORY_ISOLATION
4826                [MIGRATE_ISOLATE]       = 'I',
4827#endif
4828        };
4829        char tmp[MIGRATE_TYPES + 1];
4830        char *p = tmp;
4831        int i;
4832
4833        for (i = 0; i < MIGRATE_TYPES; i++) {
4834                if (type & (1 << i))
4835                        *p++ = types[i];
4836        }
4837
4838        *p = '\0';
4839        printk(KERN_CONT "(%s) ", tmp);
4840}
4841
4842/*
4843 * Show free area list (used inside shift_scroll-lock stuff)
4844 * We also calculate the percentage fragmentation. We do this by counting the
4845 * memory on each free list with the exception of the first item on the list.
4846 *
4847 * Bits in @filter:
4848 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4849 *   cpuset.
4850 */
4851void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4852{
4853        unsigned long free_pcp = 0;
4854        int cpu;
4855        struct zone *zone;
4856        pg_data_t *pgdat;
4857
4858        for_each_populated_zone(zone) {
4859                if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4860                        continue;
4861
4862                for_each_online_cpu(cpu)
4863                        free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4864        }
4865
4866        printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4867                " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4868                " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4869                " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4870                " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4871                " free:%lu free_pcp:%lu free_cma:%lu\n",
4872                global_node_page_state(NR_ACTIVE_ANON),
4873                global_node_page_state(NR_INACTIVE_ANON),
4874                global_node_page_state(NR_ISOLATED_ANON),
4875                global_node_page_state(NR_ACTIVE_FILE),
4876                global_node_page_state(NR_INACTIVE_FILE),
4877                global_node_page_state(NR_ISOLATED_FILE),
4878                global_node_page_state(NR_UNEVICTABLE),
4879                global_node_page_state(NR_FILE_DIRTY),
4880                global_node_page_state(NR_WRITEBACK),
4881                global_node_page_state(NR_UNSTABLE_NFS),
4882                global_node_page_state(NR_SLAB_RECLAIMABLE),
4883                global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4884                global_node_page_state(NR_FILE_MAPPED),
4885                global_node_page_state(NR_SHMEM),
4886                global_zone_page_state(NR_PAGETABLE),
4887                global_zone_page_state(NR_BOUNCE),
4888                global_zone_page_state(NR_FREE_PAGES),
4889                free_pcp,
4890                global_zone_page_state(NR_FREE_CMA_PAGES));
4891
4892        for_each_online_pgdat(pgdat) {
4893                if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4894                        continue;
4895
4896                printk("Node %d"
4897                        " active_anon:%lukB"
4898                        " inactive_anon:%lukB"
4899                        " active_file:%lukB"
4900                        " inactive_file:%lukB"
4901                        " unevictable:%lukB"
4902                        " isolated(anon):%lukB"
4903                        " isolated(file):%lukB"
4904                        " mapped:%lukB"
4905                        " dirty:%lukB"
4906                        " writeback:%lukB"
4907                        " shmem:%lukB"
4908#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4909                        " shmem_thp: %lukB"
4910                        " shmem_pmdmapped: %lukB"
4911                        " anon_thp: %lukB"
4912#endif
4913                        " writeback_tmp:%lukB"
4914                        " unstable:%lukB"
4915                        " all_unreclaimable? %s"
4916                        "\n",
4917                        pgdat->node_id,
4918                        K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4919                        K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4920                        K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4921                        K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4922                        K(node_page_state(pgdat, NR_UNEVICTABLE)),
4923                        K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4924                        K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4925                        K(node_page_state(pgdat, NR_FILE_MAPPED)),
4926                        K(node_page_state(pgdat, NR_FILE_DIRTY)),
4927                        K(node_page_state(pgdat, NR_WRITEBACK)),
4928                        K(node_page_state(pgdat, NR_SHMEM)),
4929#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4930                        K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4931                        K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4932                                        * HPAGE_PMD_NR),
4933                        K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4934#endif
4935                        K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4936                        K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4937                        pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4938                                "yes" : "no");
4939        }
4940
4941        for_each_populated_zone(zone) {
4942                int i;
4943
4944                if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4945                        continue;
4946
4947                free_pcp = 0;
4948                for_each_online_cpu(cpu)
4949                        free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4950
4951                show_node(zone);
4952                printk(KERN_CONT
4953                        "%s"
4954                        " free:%lukB"
4955                        " min:%lukB"
4956                        " low:%lukB"
4957                        " high:%lukB"
4958                        " active_anon:%lukB"
4959                        " inactive_anon:%lukB"
4960                        " active_file:%lukB"
4961                        " inactive_file:%lukB"
4962                        " unevictable:%lukB"
4963                        " writepending:%lukB"
4964                        " present:%lukB"
4965                        " managed:%lukB"
4966                        " mlocked:%lukB"
4967                        " kernel_stack:%lukB"
4968                        " pagetables:%lukB"
4969                        " bounce:%lukB"
4970                        " free_pcp:%lukB"
4971                        " local_pcp:%ukB"
4972                        " free_cma:%lukB"
4973                        "\n",
4974                        zone->name,
4975                        K(zone_page_state(zone, NR_FREE_PAGES)),
4976                        K(min_wmark_pages(zone)),
4977                        K(low_wmark_pages(zone)),
4978                        K(high_wmark_pages(zone)),
4979                        K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4980                        K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4981                        K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4982                        K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4983                        K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4984                        K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4985                        K(zone->present_pages),
4986                        K(zone->managed_pages),
4987                        K(zone_page_state(zone, NR_MLOCK)),
4988                        zone_page_state(zone, NR_KERNEL_STACK_KB),
4989                        K(zone_page_state(zone, NR_PAGETABLE)),
4990                        K(zone_page_state(zone, NR_BOUNCE)),
4991                        K(free_pcp),
4992                        K(this_cpu_read(zone->pageset->pcp.count)),
4993                        K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4994                printk("lowmem_reserve[]:");
4995                for (i = 0; i < MAX_NR_ZONES; i++)
4996                        printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4997                printk(KERN_CONT "\n");
4998        }
4999
5000        for_each_populated_zone(zone) {
5001                unsigned int order;
5002                unsigned long nr[MAX_ORDER], flags, total = 0;
5003                unsigned char types[MAX_ORDER];
5004
5005                if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5006                        continue;
5007                show_node(zone);
5008                printk(KERN_CONT "%s: ", zone->name);
5009
5010                spin_lock_irqsave(&zone->lock, flags);
5011                for (order = 0; order < MAX_ORDER; order++) {
5012                        struct free_area *area = &zone->free_area[order];
5013                        int type;
5014
5015                        nr[order] = area->nr_free;
5016                        total += nr[order] << order;
5017
5018                        types[order] = 0;
5019                        for (type = 0; type < MIGRATE_TYPES; type++) {
5020                                if (!list_empty(&area->free_list[type]))
5021                                        types[order] |= 1 << type;
5022                        }
5023                }
5024                spin_unlock_irqrestore(&zone->lock, flags);
5025                for (order = 0; order < MAX_ORDER; order++) {
5026                        printk(KERN_CONT "%lu*%lukB ",
5027                               nr[order], K(1UL) << order);
5028                        if (nr[order])
5029                                show_migration_types(types[order]);
5030                }
5031                printk(KERN_CONT "= %lukB\n", K(total));
5032        }
5033
5034        hugetlb_show_meminfo();
5035
5036        printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5037
5038        show_swap_cache_info();
5039}
5040
5041static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5042{
5043        zoneref->zone = zone;
5044        zoneref->zone_idx = zone_idx(zone);
5045}
5046
5047/*
5048 * Builds allocation fallback zone lists.
5049 *
5050 * Add all populated zones of a node to the zonelist.
5051 */
5052static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5053{
5054        struct zone *zone;
5055        enum zone_type zone_type = MAX_NR_ZONES;
5056        int nr_zones = 0;
5057
5058        do {
5059                zone_type--;
5060                zone = pgdat->node_zones + zone_type;
5061                if (managed_zone(zone)) {
5062                        zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5063                        check_highest_zone(zone_type);
5064                }
5065        } while (zone_type);
5066
5067        return nr_zones;
5068}
5069
5070#ifdef CONFIG_NUMA
5071
5072static int __parse_numa_zonelist_order(char *s)
5073{
5074        /*
5075         * We used to support different zonlists modes but they turned
5076         * out to be just not useful. Let's keep the warning in place
5077         * if somebody still use the cmd line parameter so that we do
5078         * not fail it silently
5079         */
5080        if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5081                pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5082                return -EINVAL;
5083        }
5084        return 0;
5085}
5086
5087static __init int setup_numa_zonelist_order(char *s)
5088{
5089        if (!s)
5090                return 0;
5091
5092        return __parse_numa_zonelist_order(s);
5093}
5094early_param("numa_zonelist_order", setup_numa_zonelist_order);
5095
5096char numa_zonelist_order[] = "Node";
5097
5098/*
5099 * sysctl handler for numa_zonelist_order
5100 */
5101int numa_zonelist_order_handler(struct ctl_table *table, int write,
5102                void __user *buffer, size_t *length,
5103                loff_t *ppos)
5104{
5105        char *str;
5106        int ret;
5107
5108        if (!write)
5109                return proc_dostring(table, write, buffer, length, ppos);
5110        str = memdup_user_nul(buffer, 16);
5111        if (IS_ERR(str))
5112                return PTR_ERR(str);
5113
5114        ret = __parse_numa_zonelist_order(str);
5115        kfree(str);
5116        return ret;
5117}
5118
5119
5120#define MAX_NODE_LOAD (nr_online_nodes)
5121static int node_load[MAX_NUMNODES];
5122
5123/**
5124 * find_next_best_node - find the next node that should appear in a given node's fallback list
5125 * @node: node whose fallback list we're appending
5126 * @used_node_mask: nodemask_t of already used nodes
5127 *
5128 * We use a number of factors to determine which is the next node that should
5129 * appear on a given node's fallback list.  The node should not have appeared
5130 * already in @node's fallback list, and it should be the next closest node
5131 * according to the distance array (which contains arbitrary distance values
5132 * from each node to each node in the system), and should also prefer nodes
5133 * with no CPUs, since presumably they'll have very little allocation pressure
5134 * on them otherwise.
5135 * It returns -1 if no node is found.
5136 */
5137static int find_next_best_node(int node, nodemask_t *used_node_mask)
5138{
5139        int n, val;
5140        int min_val = INT_MAX;
5141        int best_node = NUMA_NO_NODE;
5142        const struct cpumask *tmp = cpumask_of_node(0);
5143
5144        /* Use the local node if we haven't already */
5145        if (!node_isset(node, *used_node_mask)) {
5146                node_set(node, *used_node_mask);
5147                return node;
5148        }
5149
5150        for_each_node_state(n, N_MEMORY) {
5151
5152                /* Don't want a node to appear more than once */
5153                if (node_isset(n, *used_node_mask))
5154                        continue;
5155
5156                /* Use the distance array to find the distance */
5157                val = node_distance(node, n);
5158
5159                /* Penalize nodes under us ("prefer the next node") */
5160                val += (n < node);
5161
5162                /* Give preference to headless and unused nodes */
5163                tmp = cpumask_of_node(n);
5164                if (!cpumask_empty(tmp))
5165                        val += PENALTY_FOR_NODE_WITH_CPUS;
5166
5167                /* Slight preference for less loaded node */
5168                val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5169                val += node_load[n];
5170
5171                if (val < min_val) {
5172                        min_val = val;
5173                        best_node = n;
5174                }
5175        }
5176
5177        if (best_node >= 0)
5178                node_set(best_node, *used_node_mask);
5179
5180        return best_node;
5181}
5182
5183
5184/*
5185 * Build zonelists ordered by node and zones within node.
5186 * This results in maximum locality--normal zone overflows into local
5187 * DMA zone, if any--but risks exhausting DMA zone.
5188 */
5189static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5190                unsigned nr_nodes)
5191{
5192        struct zoneref *zonerefs;
5193        int i;
5194
5195        zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5196
5197        for (i = 0; i < nr_nodes; i++) {
5198                int nr_zones;
5199
5200                pg_data_t *node = NODE_DATA(node_order[i]);
5201
5202                nr_zones = build_zonerefs_node(node, zonerefs);
5203                zonerefs += nr_zones;
5204        }
5205        zonerefs->zone = NULL;
5206        zonerefs->zone_idx = 0;
5207}
5208
5209/*
5210 * Build gfp_thisnode zonelists
5211 */
5212static void build_thisnode_zonelists(pg_data_t *pgdat)
5213{
5214        struct zoneref *zonerefs;
5215        int nr_zones;
5216
5217        zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5218        nr_zones = build_zonerefs_node(pgdat, zonerefs);
5219        zonerefs += nr_zones;
5220        zonerefs->zone = NULL;
5221        zonerefs->zone_idx = 0;
5222}
5223
5224/*
5225 * Build zonelists ordered by zone and nodes within zones.
5226 * This results in conserving DMA zone[s] until all Normal memory is
5227 * exhausted, but results in overflowing to remote node while memory
5228 * may still exist in local DMA zone.
5229 */
5230
5231static void build_zonelists(pg_data_t *pgdat)
5232{
5233        static int node_order[MAX_NUMNODES];
5234        int node, load, nr_nodes = 0;
5235        nodemask_t used_mask;
5236        int local_node, prev_node;
5237
5238        /* NUMA-aware ordering of nodes */
5239        local_node = pgdat->node_id;
5240        load = nr_online_nodes;
5241        prev_node = local_node;
5242        nodes_clear(used_mask);
5243
5244        memset(node_order, 0, sizeof(node_order));
5245        while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5246                /*
5247                 * We don't want to pressure a particular node.
5248                 * So adding penalty to the first node in same
5249                 * distance group to make it round-robin.
5250                 */
5251                if (node_distance(local_node, node) !=
5252                    node_distance(local_node, prev_node))
5253                        node_load[node] = load;
5254
5255                node_order[nr_nodes++] = node;
5256                prev_node = node;
5257                load--;
5258        }
5259
5260        build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5261        build_thisnode_zonelists(pgdat);
5262}
5263
5264#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5265/*
5266 * Return node id of node used for "local" allocations.
5267 * I.e., first node id of first zone in arg node's generic zonelist.
5268 * Used for initializing percpu 'numa_mem', which is used primarily
5269 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5270 */
5271int local_memory_node(int node)
5272{
5273        struct zoneref *z;
5274
5275        z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5276                                   gfp_zone(GFP_KERNEL),
5277                                   NULL);
5278        return z->zone->node;
5279}
5280#endif
5281
5282static void setup_min_unmapped_ratio(void);
5283static void setup_min_slab_ratio(void);
5284#else   /* CONFIG_NUMA */
5285
5286static void build_zonelists(pg_data_t *pgdat)
5287{
5288        int node, local_node;
5289        struct zoneref *zonerefs;
5290        int nr_zones;
5291
5292        local_node = pgdat->node_id;
5293
5294        zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5295        nr_zones = build_zonerefs_node(pgdat, zonerefs);
5296        zonerefs += nr_zones;
5297
5298        /*
5299         * Now we build the zonelist so that it contains the zones
5300         * of all the other nodes.
5301         * We don't want to pressure a particular node, so when
5302         * building the zones for node N, we make sure that the
5303         * zones coming right after the local ones are those from
5304         * node N+1 (modulo N)
5305         */
5306        for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5307                if (!node_online(node))
5308                        continue;
5309                nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5310                zonerefs += nr_zones;
5311        }
5312        for (node = 0; node < local_node; node++) {
5313                if (!node_online(node))
5314                        continue;
5315                nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5316                zonerefs += nr_zones;
5317        }
5318
5319        zonerefs->zone = NULL;
5320        zonerefs->zone_idx = 0;
5321}
5322
5323#endif  /* CONFIG_NUMA */
5324
5325/*
5326 * Boot pageset table. One per cpu which is going to be used for all
5327 * zones and all nodes. The parameters will be set in such a way
5328 * that an item put on a list will immediately be handed over to
5329 * the buddy list. This is safe since pageset manipulation is done
5330 * with interrupts disabled.
5331 *
5332 * The boot_pagesets must be kept even after bootup is complete for
5333 * unused processors and/or zones. They do play a role for bootstrapping
5334 * hotplugged processors.
5335 *
5336 * zoneinfo_show() and maybe other functions do
5337 * not check if the processor is online before following the pageset pointer.
5338 * Other parts of the kernel may not check if the zone is available.
5339 */
5340static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5341static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5342static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5343
5344static void __build_all_zonelists(void *data)
5345{
5346        int nid;
5347        int __maybe_unused cpu;
5348        pg_data_t *self = data;
5349        static DEFINE_SPINLOCK(lock);
5350
5351        spin_lock(&lock);
5352
5353#ifdef CONFIG_NUMA
5354        memset(node_load, 0, sizeof(node_load));
5355#endif
5356
5357        /*
5358         * This node is hotadded and no memory is yet present.   So just
5359         * building zonelists is fine - no need to touch other nodes.
5360         */
5361        if (self && !node_online(self->node_id)) {
5362                build_zonelists(self);
5363        } else {
5364                for_each_online_node(nid) {
5365                        pg_data_t *pgdat = NODE_DATA(nid);
5366
5367                        build_zonelists(pgdat);
5368                }
5369
5370#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5371                /*
5372                 * We now know the "local memory node" for each node--
5373                 * i.e., the node of the first zone in the generic zonelist.
5374                 * Set up numa_mem percpu variable for on-line cpus.  During
5375                 * boot, only the boot cpu should be on-line;  we'll init the
5376                 * secondary cpus' numa_mem as they come on-line.  During
5377                 * node/memory hotplug, we'll fixup all on-line cpus.
5378                 */
5379                for_each_online_cpu(cpu)
5380                        set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5381#endif
5382        }
5383
5384        spin_unlock(&lock);
5385}
5386
5387static noinline void __init
5388build_all_zonelists_init(void)
5389{
5390        int cpu;
5391
5392        __build_all_zonelists(NULL);
5393
5394        /*
5395         * Initialize the boot_pagesets that are going to be used
5396         * for bootstrapping processors. The real pagesets for
5397         * each zone will be allocated later when the per cpu
5398         * allocator is available.
5399         *
5400         * boot_pagesets are used also for bootstrapping offline
5401         * cpus if the system is already booted because the pagesets
5402         * are needed to initialize allocators on a specific cpu too.
5403         * F.e. the percpu allocator needs the page allocator which
5404         * needs the percpu allocator in order to allocate its pagesets
5405         * (a chicken-egg dilemma).
5406         */
5407        for_each_possible_cpu(cpu)
5408                setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5409
5410        mminit_verify_zonelist();
5411        cpuset_init_current_mems_allowed();
5412}
5413
5414/*
5415 * unless system_state == SYSTEM_BOOTING.
5416 *
5417 * __ref due to call of __init annotated helper build_all_zonelists_init
5418 * [protected by SYSTEM_BOOTING].
5419 */
5420void __ref build_all_zonelists(pg_data_t *pgdat)
5421{
5422        if (system_state == SYSTEM_BOOTING) {
5423                build_all_zonelists_init();
5424        } else {
5425                __build_all_zonelists(pgdat);
5426                /* cpuset refresh routine should be here */
5427        }
5428        vm_total_pages = nr_free_pagecache_pages();
5429        /*
5430         * Disable grouping by mobility if the number of pages in the
5431         * system is too low to allow the mechanism to work. It would be
5432         * more accurate, but expensive to check per-zone. This check is
5433         * made on memory-hotadd so a system can start with mobility
5434         * disabled and enable it later
5435         */
5436        if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5437                page_group_by_mobility_disabled = 1;
5438        else
5439                page_group_by_mobility_disabled = 0;
5440
5441        pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5442                nr_online_nodes,
5443                page_group_by_mobility_disabled ? "off" : "on",
5444                vm_total_pages);
5445#ifdef CONFIG_NUMA
5446        pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5447#endif
5448}
5449
5450/*
5451 * Initially all pages are reserved - free ones are freed
5452 * up by free_all_bootmem() once the early boot process is
5453 * done. Non-atomic initialization, single-pass.
5454 */
5455void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5456                unsigned long start_pfn, enum memmap_context context,
5457                struct vmem_altmap *altmap)
5458{
5459        unsigned long end_pfn = start_pfn + size;
5460        pg_data_t *pgdat = NODE_DATA(nid);
5461        unsigned long pfn;
5462        unsigned long nr_initialised = 0;
5463        struct page *page;
5464#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5465        struct memblock_region *r = NULL, *tmp;
5466#endif
5467
5468        if (highest_memmap_pfn < end_pfn - 1)
5469                highest_memmap_pfn = end_pfn - 1;
5470
5471        /*
5472         * Honor reservation requested by the driver for this ZONE_DEVICE
5473         * memory
5474         */
5475        if (altmap && start_pfn == altmap->base_pfn)
5476                start_pfn += altmap->reserve;
5477
5478        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5479                /*
5480                 * There can be holes in boot-time mem_map[]s handed to this
5481                 * function.  They do not exist on hotplugged memory.
5482                 */
5483                if (context != MEMMAP_EARLY)
5484                        goto not_early;
5485
5486                if (!early_pfn_valid(pfn))
5487                        continue;
5488                if (!early_pfn_in_nid(pfn, nid))
5489                        continue;
5490                if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5491                        break;
5492
5493#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5494                /*
5495                 * Check given memblock attribute by firmware which can affect
5496                 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5497                 * mirrored, it's an overlapped memmap init. skip it.
5498                 */
5499                if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5500                        if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5501                                for_each_memblock(memory, tmp)
5502                                        if (pfn < memblock_region_memory_end_pfn(tmp))
5503                                                break;
5504                                r = tmp;
5505                        }
5506                        if (pfn >= memblock_region_memory_base_pfn(r) &&
5507                            memblock_is_mirror(r)) {
5508                                /* already initialized as NORMAL */
5509                                pfn = memblock_region_memory_end_pfn(r);
5510                                continue;
5511                        }
5512                }
5513#endif
5514
5515not_early:
5516                page = pfn_to_page(pfn);
5517                __init_single_page(page, pfn, zone, nid);
5518                if (context == MEMMAP_HOTPLUG)
5519                        SetPageReserved(page);
5520
5521                /*
5522                 * Mark the block movable so that blocks are reserved for
5523                 * movable at startup. This will force kernel allocations
5524                 * to reserve their blocks rather than leaking throughout
5525                 * the address space during boot when many long-lived
5526                 * kernel allocations are made.
5527                 *
5528                 * bitmap is created for zone's valid pfn range. but memmap
5529                 * can be created for invalid pages (for alignment)
5530                 * check here not to call set_pageblock_migratetype() against
5531                 * pfn out of zone.
5532                 *
5533                 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5534                 * because this is done early in sparse_add_one_section
5535                 */
5536                if (!(pfn & (pageblock_nr_pages - 1))) {
5537                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5538                        cond_resched();
5539                }
5540        }
5541}
5542
5543static void __meminit zone_init_free_lists(struct zone *zone)
5544{
5545        unsigned int order, t;
5546        for_each_migratetype_order(order, t) {
5547                INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5548                zone->free_area[order].nr_free = 0;
5549        }
5550}
5551
5552#ifndef __HAVE_ARCH_MEMMAP_INIT
5553#define memmap_init(size, nid, zone, start_pfn) \
5554        memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5555#endif
5556
5557static int zone_batchsize(struct zone *zone)
5558{
5559#ifdef CONFIG_MMU
5560        int batch;
5561
5562        /*
5563         * The per-cpu-pages pools are set to around 1000th of the
5564         * size of the zone.  But no more than 1/2 of a meg.
5565         *
5566         * OK, so we don't know how big the cache is.  So guess.
5567         */
5568        batch = zone->managed_pages / 1024;
5569        if (batch * PAGE_SIZE > 512 * 1024)
5570                batch = (512 * 1024) / PAGE_SIZE;
5571        batch /= 4;             /* We effectively *= 4 below */
5572        if (batch < 1)
5573                batch = 1;
5574
5575        /*
5576         * Clamp the batch to a 2^n - 1 value. Having a power
5577         * of 2 value was found to be more likely to have
5578         * suboptimal cache aliasing properties in some cases.
5579         *
5580         * For example if 2 tasks are alternately allocating
5581         * batches of pages, one task can end up with a lot
5582         * of pages of one half of the possible page colors
5583         * and the other with pages of the other colors.
5584         */
5585        batch = rounddown_pow_of_two(batch + batch/2) - 1;
5586
5587        return batch;
5588
5589#else
5590        /* The deferral and batching of frees should be suppressed under NOMMU
5591         * conditions.
5592         *
5593         * The problem is that NOMMU needs to be able to allocate large chunks
5594         * of contiguous memory as there's no hardware page translation to
5595         * assemble apparent contiguous memory from discontiguous pages.
5596         *
5597         * Queueing large contiguous runs of pages for batching, however,
5598         * causes the pages to actually be freed in smaller chunks.  As there
5599         * can be a significant delay between the individual batches being
5600         * recycled, this leads to the once large chunks of space being
5601         * fragmented and becoming unavailable for high-order allocations.
5602         */
5603        return 0;
5604#endif
5605}
5606
5607/*
5608 * pcp->high and pcp->batch values are related and dependent on one another:
5609 * ->batch must never be higher then ->high.
5610 * The following function updates them in a safe manner without read side
5611 * locking.
5612 *
5613 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5614 * those fields changing asynchronously (acording the the above rule).
5615 *
5616 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5617 * outside of boot time (or some other assurance that no concurrent updaters
5618 * exist).
5619 */
5620static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5621                unsigned long batch)
5622{
5623       /* start with a fail safe value for batch */
5624        pcp->batch = 1;
5625        smp_wmb();
5626
5627       /* Update high, then batch, in order */
5628        pcp->high = high;
5629        smp_wmb();
5630
5631        pcp->batch = batch;
5632}
5633
5634/* a companion to pageset_set_high() */
5635static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5636{
5637        pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5638}
5639
5640static void pageset_init(struct per_cpu_pageset *p)
5641{
5642        struct per_cpu_pages *pcp;
5643        int migratetype;
5644
5645        memset(p, 0, sizeof(*p));
5646
5647        pcp = &p->pcp;
5648        pcp->count = 0;
5649        for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5650                INIT_LIST_HEAD(&pcp->lists[migratetype]);
5651}
5652
5653static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5654{
5655        pageset_init(p);
5656        pageset_set_batch(p, batch);
5657}
5658
5659/*
5660 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5661 * to the value high for the pageset p.
5662 */
5663static void pageset_set_high(struct per_cpu_pageset *p,
5664                                unsigned long high)
5665{
5666        unsigned long batch = max(1UL, high / 4);
5667        if ((high / 4) > (PAGE_SHIFT * 8))
5668                batch = PAGE_SHIFT * 8;
5669
5670        pageset_update(&p->pcp, high, batch);
5671}
5672
5673static void pageset_set_high_and_batch(struct zone *zone,
5674                                       struct per_cpu_pageset *pcp)
5675{
5676        if (percpu_pagelist_fraction)
5677                pageset_set_high(pcp,
5678                        (zone->managed_pages /
5679                                percpu_pagelist_fraction));
5680        else
5681                pageset_set_batch(pcp, zone_batchsize(zone));
5682}
5683
5684static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5685{
5686        struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5687
5688        pageset_init(pcp);
5689        pageset_set_high_and_batch(zone, pcp);
5690}
5691
5692void __meminit setup_zone_pageset(struct zone *zone)
5693{
5694        int cpu;
5695        zone->pageset = alloc_percpu(struct per_cpu_pageset);
5696        for_each_possible_cpu(cpu)
5697                zone_pageset_init(zone, cpu);
5698}
5699
5700/*
5701 * Allocate per cpu pagesets and initialize them.
5702 * Before this call only boot pagesets were available.
5703 */
5704void __init setup_per_cpu_pageset(void)
5705{
5706        struct pglist_data *pgdat;
5707        struct zone *zone;
5708
5709        for_each_populated_zone(zone)
5710                setup_zone_pageset(zone);
5711
5712        for_each_online_pgdat(pgdat)
5713                pgdat->per_cpu_nodestats =
5714                        alloc_percpu(struct per_cpu_nodestat);
5715}
5716
5717static __meminit void zone_pcp_init(struct zone *zone)
5718{
5719        /*
5720         * per cpu subsystem is not up at this point. The following code
5721         * relies on the ability of the linker to provide the
5722         * offset of a (static) per cpu variable into the per cpu area.
5723         */
5724        zone->pageset = &boot_pageset;
5725
5726        if (populated_zone(zone))
5727                printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5728                        zone->name, zone->present_pages,
5729                                         zone_batchsize(zone));
5730}
5731
5732void __meminit init_currently_empty_zone(struct zone *zone,
5733                                        unsigned long zone_start_pfn,
5734                                        unsigned long size)
5735{
5736        struct pglist_data *pgdat = zone->zone_pgdat;
5737
5738        pgdat->nr_zones = zone_idx(zone) + 1;
5739
5740        zone->zone_start_pfn = zone_start_pfn;
5741
5742        mminit_dprintk(MMINIT_TRACE, "memmap_init",
5743                        "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5744                        pgdat->node_id,
5745                        (unsigned long)zone_idx(zone),
5746                        zone_start_pfn, (zone_start_pfn + size));
5747
5748        zone_init_free_lists(zone);
5749        zone->initialized = 1;
5750}
5751
5752#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5753#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5754
5755/*
5756 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5757 */
5758int __meminit __early_pfn_to_nid(unsigned long pfn,
5759                                        struct mminit_pfnnid_cache *state)
5760{
5761        unsigned long start_pfn, end_pfn;
5762        int nid;
5763
5764        if (state->last_start <= pfn && pfn < state->last_end)
5765                return state->last_nid;
5766
5767        nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5768        if (nid != -1) {
5769                state->last_start = start_pfn;
5770                state->last_end = end_pfn;
5771                state->last_nid = nid;
5772        }
5773
5774        return nid;
5775}
5776#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5777
5778/**
5779 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5780 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5781 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5782 *
5783 * If an architecture guarantees that all ranges registered contain no holes
5784 * and may be freed, this this function may be used instead of calling
5785 * memblock_free_early_nid() manually.
5786 */
5787void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5788{
5789        unsigned long start_pfn, end_pfn;
5790        int i, this_nid;
5791
5792        for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5793                start_pfn = min(start_pfn, max_low_pfn);
5794                end_pfn = min(end_pfn, max_low_pfn);
5795
5796                if (start_pfn < end_pfn)
5797                        memblock_free_early_nid(PFN_PHYS(start_pfn),
5798                                        (end_pfn - start_pfn) << PAGE_SHIFT,
5799                                        this_nid);
5800        }
5801}
5802
5803/**
5804 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5805 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5806 *
5807 * If an architecture guarantees that all ranges registered contain no holes and may
5808 * be freed, this function may be used instead of calling memory_present() manually.
5809 */
5810void __init sparse_memory_present_with_active_regions(int nid)
5811{
5812        unsigned long start_pfn, end_pfn;
5813        int i, this_nid;
5814
5815        for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5816                memory_present(this_nid, start_pfn, end_pfn);
5817}
5818
5819/**
5820 * get_pfn_range_for_nid - Return the start and end page frames for a node
5821 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5822 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5823 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5824 *
5825 * It returns the start and end page frame of a node based on information
5826 * provided by memblock_set_node(). If called for a node
5827 * with no available memory, a warning is printed and the start and end
5828 * PFNs will be 0.
5829 */
5830void __meminit get_pfn_range_for_nid(unsigned int nid,
5831                        unsigned long *start_pfn, unsigned long *end_pfn)
5832{
5833        unsigned long this_start_pfn, this_end_pfn;
5834        int i;
5835
5836        *start_pfn = -1UL;
5837        *end_pfn = 0;
5838
5839        for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5840                *start_pfn = min(*start_pfn, this_start_pfn);
5841                *end_pfn = max(*end_pfn, this_end_pfn);
5842        }
5843
5844        if (*start_pfn == -1UL)
5845                *start_pfn = 0;
5846}
5847
5848/*
5849 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5850 * assumption is made that zones within a node are ordered in monotonic
5851 * increasing memory addresses so that the "highest" populated zone is used
5852 */
5853static void __init find_usable_zone_for_movable(void)
5854{
5855        int zone_index;
5856        for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5857                if (zone_index == ZONE_MOVABLE)
5858                        continue;
5859
5860                if (arch_zone_highest_possible_pfn[zone_index] >
5861                                arch_zone_lowest_possible_pfn[zone_index])
5862                        break;
5863        }
5864
5865        VM_BUG_ON(zone_index == -1);
5866        movable_zone = zone_index;
5867}
5868
5869/*
5870 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5871 * because it is sized independent of architecture. Unlike the other zones,
5872 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5873 * in each node depending on the size of each node and how evenly kernelcore
5874 * is distributed. This helper function adjusts the zone ranges
5875 * provided by the architecture for a given node by using the end of the
5876 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5877 * zones within a node are in order of monotonic increases memory addresses
5878 */
5879static void __meminit adjust_zone_range_for_zone_movable(int nid,
5880                                        unsigned long zone_type,
5881                                        unsigned long node_start_pfn,
5882                                        unsigned long node_end_pfn,
5883                                        unsigned long *zone_start_pfn,
5884                                        unsigned long *zone_end_pfn)
5885{
5886        /* Only adjust if ZONE_MOVABLE is on this node */
5887        if (zone_movable_pfn[nid]) {
5888                /* Size ZONE_MOVABLE */
5889                if (zone_type == ZONE_MOVABLE) {
5890                        *zone_start_pfn = zone_movable_pfn[nid];
5891                        *zone_end_pfn = min(node_end_pfn,
5892                                arch_zone_highest_possible_pfn[movable_zone]);
5893
5894                /* Adjust for ZONE_MOVABLE starting within this range */
5895                } else if (!mirrored_kernelcore &&
5896                        *zone_start_pfn < zone_movable_pfn[nid] &&
5897                        *zone_end_pfn > zone_movable_pfn[nid]) {
5898                        *zone_end_pfn = zone_movable_pfn[nid];
5899
5900                /* Check if this whole range is within ZONE_MOVABLE */
5901                } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5902                        *zone_start_pfn = *zone_end_pfn;
5903        }
5904}
5905
5906/*
5907 * Return the number of pages a zone spans in a node, including holes
5908 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5909 */
5910static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5911                                        unsigned long zone_type,
5912                                        unsigned long node_start_pfn,
5913                                        unsigned long node_end_pfn,
5914                                        unsigned long *zone_start_pfn,
5915                                        unsigned long *zone_end_pfn,
5916                                        unsigned long *ignored)
5917{
5918        /* When hotadd a new node from cpu_up(), the node should be empty */
5919        if (!node_start_pfn && !node_end_pfn)
5920                return 0;
5921
5922        /* Get the start and end of the zone */
5923        *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5924        *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5925        adjust_zone_range_for_zone_movable(nid, zone_type,
5926                                node_start_pfn, node_end_pfn,
5927                                zone_start_pfn, zone_end_pfn);
5928
5929        /* Check that this node has pages within the zone's required range */
5930        if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5931                return 0;
5932
5933        /* Move the zone boundaries inside the node if necessary */
5934        *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5935        *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5936
5937        /* Return the spanned pages */
5938        return *zone_end_pfn - *zone_start_pfn;
5939}
5940
5941/*
5942 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5943 * then all holes in the requested range will be accounted for.
5944 */
5945unsigned long __meminit __absent_pages_in_range(int nid,
5946                                unsigned long range_start_pfn,
5947                                unsigned long range_end_pfn)
5948{
5949        unsigned long nr_absent = range_end_pfn - range_start_pfn;
5950        unsigned long start_pfn, end_pfn;
5951        int i;
5952
5953        for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5954                start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5955                end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5956                nr_absent -= end_pfn - start_pfn;
5957        }
5958        return nr_absent;
5959}
5960
5961/**
5962 * absent_pages_in_range - Return number of page frames in holes within a range
5963 * @start_pfn: The start PFN to start searching for holes
5964 * @end_pfn: The end PFN to stop searching for holes
5965 *
5966 * It returns the number of pages frames in memory holes within a range.
5967 */
5968unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5969                                                        unsigned long end_pfn)
5970{
5971        return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5972}
5973
5974/* Return the number of page frames in holes in a zone on a node */
5975static unsigned long __meminit zone_absent_pages_in_node(int nid,
5976                                        unsigned long zone_type,
5977                                        unsigned long node_start_pfn,
5978                                        unsigned long node_end_pfn,
5979                                        unsigned long *ignored)
5980{
5981        unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5982        unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5983        unsigned long zone_start_pfn, zone_end_pfn;
5984        unsigned long nr_absent;
5985
5986        /* When hotadd a new node from cpu_up(), the node should be empty */
5987        if (!node_start_pfn && !node_end_pfn)
5988                return 0;
5989
5990        zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5991        zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5992
5993        adjust_zone_range_for_zone_movable(nid, zone_type,
5994                        node_start_pfn, node_end_pfn,
5995                        &zone_start_pfn, &zone_end_pfn);
5996        nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5997
5998        /*
5999         * ZONE_MOVABLE handling.
6000         * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6001         * and vice versa.
6002         */
6003        if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6004                unsigned long start_pfn, end_pfn;
6005                struct memblock_region *r;
6006
6007                for_each_memblock(memory, r) {
6008                        start_pfn = clamp(memblock_region_memory_base_pfn(r),
6009                                          zone_start_pfn, zone_end_pfn);
6010                        end_pfn = clamp(memblock_region_memory_end_pfn(r),
6011                                        zone_start_pfn, zone_end_pfn);
6012
6013                        if (zone_type == ZONE_MOVABLE &&
6014                            memblock_is_mirror(r))
6015                                nr_absent += end_pfn - start_pfn;
6016
6017                        if (zone_type == ZONE_NORMAL &&
6018                            !memblock_is_mirror(r))
6019                                nr_absent += end_pfn - start_pfn;
6020                }
6021        }
6022
6023        return nr_absent;
6024}
6025
6026#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6027static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6028                                        unsigned long zone_type,
6029                                        unsigned long node_start_pfn,
6030                                        unsigned long node_end_pfn,
6031                                        unsigned long *zone_start_pfn,
6032                                        unsigned long *zone_end_pfn,
6033                                        unsigned long *zones_size)
6034{
6035        unsigned int zone;
6036
6037        *zone_start_pfn = node_start_pfn;
6038        for (zone = 0; zone < zone_type; zone++)
6039                *zone_start_pfn += zones_size[zone];
6040
6041        *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6042
6043        return zones_size[zone_type];
6044}
6045
6046static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6047                                                unsigned long zone_type,
6048                                                unsigned long node_start_pfn,
6049                                                unsigned long node_end_pfn,
6050                                                unsigned long *zholes_size)
6051{
6052        if (!zholes_size)
6053                return 0;
6054
6055        return zholes_size[zone_type];
6056}
6057
6058#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6059
6060static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6061                                                unsigned long node_start_pfn,
6062                                                unsigned long node_end_pfn,
6063                                                unsigned long *zones_size,
6064                                                unsigned long *zholes_size)
6065{
6066        unsigned long realtotalpages = 0, totalpages = 0;
6067        enum zone_type i;
6068
6069        for (i = 0; i < MAX_NR_ZONES; i++) {
6070                struct zone *zone = pgdat->node_zones + i;
6071                unsigned long zone_start_pfn, zone_end_pfn;
6072                unsigned long size, real_size;
6073
6074                size = zone_spanned_pages_in_node(pgdat->node_id, i,
6075                                                  node_start_pfn,
6076                                                  node_end_pfn,
6077                                                  &zone_start_pfn,
6078                                                  &zone_end_pfn,
6079                                                  zones_size);
6080                real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6081                                                  node_start_pfn, node_end_pfn,
6082                                                  zholes_size);
6083                if (size)
6084                        zone->zone_start_pfn = zone_start_pfn;
6085                else
6086                        zone->zone_start_pfn = 0;
6087                zone->spanned_pages = size;
6088                zone->present_pages = real_size;
6089
6090                totalpages += size;
6091                realtotalpages += real_size;
6092        }
6093
6094        pgdat->node_spanned_pages = totalpages;
6095        pgdat->node_present_pages = realtotalpages;
6096        printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6097                                                        realtotalpages);
6098}
6099
6100#ifndef CONFIG_SPARSEMEM
6101/*
6102 * Calculate the size of the zone->blockflags rounded to an unsigned long
6103 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6104 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6105 * round what is now in bits to nearest long in bits, then return it in
6106 * bytes.
6107 */
6108static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6109{
6110        unsigned long usemapsize;
6111
6112        zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6113        usemapsize = roundup(zonesize, pageblock_nr_pages);
6114        usemapsize = usemapsize >> pageblock_order;
6115        usemapsize *= NR_PAGEBLOCK_BITS;
6116        usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6117
6118        return usemapsize / 8;
6119}
6120
6121static void __init setup_usemap(struct pglist_data *pgdat,
6122                                struct zone *zone,
6123                                unsigned long zone_start_pfn,
6124                                unsigned long zonesize)
6125{
6126        unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6127        zone->pageblock_flags = NULL;
6128        if (usemapsize)
6129                zone->pageblock_flags =
6130                        memblock_virt_alloc_node_nopanic(usemapsize,
6131                                                         pgdat->node_id);
6132}
6133#else
6134static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6135                                unsigned long zone_start_pfn, unsigned long zonesize) {}
6136#endif /* CONFIG_SPARSEMEM */
6137
6138#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6139
6140/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6141void __paginginit set_pageblock_order(void)
6142{
6143        unsigned int order;
6144
6145        /* Check that pageblock_nr_pages has not already been setup */
6146        if (pageblock_order)
6147                return;
6148
6149        if (HPAGE_SHIFT > PAGE_SHIFT)
6150                order = HUGETLB_PAGE_ORDER;
6151        else
6152                order = MAX_ORDER - 1;
6153
6154        /*
6155         * Assume the largest contiguous order of interest is a huge page.
6156         * This value may be variable depending on boot parameters on IA64 and
6157         * powerpc.
6158         */
6159        pageblock_order = order;
6160}
6161#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6162
6163/*
6164 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6165 * is unused as pageblock_order is set at compile-time. See
6166 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6167 * the kernel config
6168 */
6169void __paginginit set_pageblock_order(void)
6170{
6171}
6172
6173#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6174
6175static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6176                                                   unsigned long present_pages)
6177{
6178        unsigned long pages = spanned_pages;
6179
6180        /*
6181         * Provide a more accurate estimation if there are holes within
6182         * the zone and SPARSEMEM is in use. If there are holes within the
6183         * zone, each populated memory region may cost us one or two extra
6184         * memmap pages due to alignment because memmap pages for each
6185         * populated regions may not be naturally aligned on page boundary.
6186         * So the (present_pages >> 4) heuristic is a tradeoff for that.
6187         */
6188        if (spanned_pages > present_pages + (present_pages >> 4) &&
6189            IS_ENABLED(CONFIG_SPARSEMEM))
6190                pages = present_pages;
6191
6192        return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6193}
6194
6195/*
6196 * Set up the zone data structures:
6197 *   - mark all pages reserved
6198 *   - mark all memory queues empty
6199 *   - clear the memory bitmaps
6200 *
6201 * NOTE: pgdat should get zeroed by caller.
6202 */
6203static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6204{
6205        enum zone_type j;
6206        int nid = pgdat->node_id;
6207
6208        pgdat_resize_init(pgdat);
6209#ifdef CONFIG_NUMA_BALANCING
6210        spin_lock_init(&pgdat->numabalancing_migrate_lock);
6211        pgdat->numabalancing_migrate_nr_pages = 0;
6212        pgdat->numabalancing_migrate_next_window = jiffies;
6213#endif
6214#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6215        spin_lock_init(&pgdat->split_queue_lock);
6216        INIT_LIST_HEAD(&pgdat->split_queue);
6217        pgdat->split_queue_len = 0;
6218#endif
6219        init_waitqueue_head(&pgdat->kswapd_wait);
6220        init_waitqueue_head(&pgdat->pfmemalloc_wait);
6221#ifdef CONFIG_COMPACTION
6222        init_waitqueue_head(&pgdat->kcompactd_wait);
6223#endif
6224        pgdat_page_ext_init(pgdat);
6225        spin_lock_init(&pgdat->lru_lock);
6226        lruvec_init(node_lruvec(pgdat));
6227
6228        pgdat->per_cpu_nodestats = &boot_nodestats;
6229
6230        for (j = 0; j < MAX_NR_ZONES; j++) {
6231                struct zone *zone = pgdat->node_zones + j;
6232                unsigned long size, realsize, freesize, memmap_pages;
6233                unsigned long zone_start_pfn = zone->zone_start_pfn;
6234
6235                size = zone->spanned_pages;
6236                realsize = freesize = zone->present_pages;
6237
6238                /*
6239                 * Adjust freesize so that it accounts for how much memory
6240                 * is used by this zone for memmap. This affects the watermark
6241                 * and per-cpu initialisations
6242                 */
6243                memmap_pages = calc_memmap_size(size, realsize);
6244                if (!is_highmem_idx(j)) {
6245                        if (freesize >= memmap_pages) {
6246                                freesize -= memmap_pages;
6247                                if (memmap_pages)
6248                                        printk(KERN_DEBUG
6249                                               "  %s zone: %lu pages used for memmap\n",
6250                                               zone_names[j], memmap_pages);
6251                        } else
6252                                pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6253                                        zone_names[j], memmap_pages, freesize);
6254                }
6255
6256                /* Account for reserved pages */
6257                if (j == 0 && freesize > dma_reserve) {
6258                        freesize -= dma_reserve;
6259                        printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6260                                        zone_names[0], dma_reserve);
6261                }
6262
6263                if (!is_highmem_idx(j))
6264                        nr_kernel_pages += freesize;
6265                /* Charge for highmem memmap if there are enough kernel pages */
6266                else if (nr_kernel_pages > memmap_pages * 2)
6267                        nr_kernel_pages -= memmap_pages;
6268                nr_all_pages += freesize;
6269
6270                /*
6271                 * Set an approximate value for lowmem here, it will be adjusted
6272                 * when the bootmem allocator frees pages into the buddy system.
6273                 * And all highmem pages will be managed by the buddy system.
6274                 */
6275                zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6276#ifdef CONFIG_NUMA
6277                zone->node = nid;
6278#endif
6279                zone->name = zone_names[j];
6280                zone->zone_pgdat = pgdat;
6281                spin_lock_init(&zone->lock);
6282                zone_seqlock_init(zone);
6283                zone_pcp_init(zone);
6284
6285                if (!size)
6286                        continue;
6287
6288                set_pageblock_order();
6289                setup_usemap(pgdat, zone, zone_start_pfn, size);
6290                init_currently_empty_zone(zone, zone_start_pfn, size);
6291                memmap_init(size, nid, j, zone_start_pfn);
6292        }
6293}
6294
6295#ifdef CONFIG_FLAT_NODE_MEM_MAP
6296static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6297{
6298        unsigned long __maybe_unused start = 0;
6299        unsigned long __maybe_unused offset = 0;
6300
6301        /* Skip empty nodes */
6302        if (!pgdat->node_spanned_pages)
6303                return;
6304
6305        start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6306        offset = pgdat->node_start_pfn - start;
6307        /* ia64 gets its own node_mem_map, before this, without bootmem */
6308        if (!pgdat->node_mem_map) {
6309                unsigned long size, end;
6310                struct page *map;
6311
6312                /*
6313                 * The zone's endpoints aren't required to be MAX_ORDER
6314                 * aligned but the node_mem_map endpoints must be in order
6315                 * for the buddy allocator to function correctly.
6316                 */
6317                end = pgdat_end_pfn(pgdat);
6318                end = ALIGN(end, MAX_ORDER_NR_PAGES);
6319                size =  (end - start) * sizeof(struct page);
6320                map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
6321                pgdat->node_mem_map = map + offset;
6322        }
6323        pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6324                                __func__, pgdat->node_id, (unsigned long)pgdat,
6325                                (unsigned long)pgdat->node_mem_map);
6326#ifndef CONFIG_NEED_MULTIPLE_NODES
6327        /*
6328         * With no DISCONTIG, the global mem_map is just set as node 0's
6329         */
6330        if (pgdat == NODE_DATA(0)) {
6331                mem_map = NODE_DATA(0)->node_mem_map;
6332#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6333                if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6334                        mem_map -= offset;
6335#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6336        }
6337#endif
6338}
6339#else
6340static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6341#endif /* CONFIG_FLAT_NODE_MEM_MAP */
6342
6343void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6344                unsigned long node_start_pfn, unsigned long *zholes_size)
6345{
6346        pg_data_t *pgdat = NODE_DATA(nid);
6347        unsigned long start_pfn = 0;
6348        unsigned long end_pfn = 0;
6349
6350        /* pg_data_t should be reset to zero when it's allocated */
6351        WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6352
6353        pgdat->node_id = nid;
6354        pgdat->node_start_pfn = node_start_pfn;
6355        pgdat->per_cpu_nodestats = NULL;
6356#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6357        get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6358        pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6359                (u64)start_pfn << PAGE_SHIFT,
6360                end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6361#else
6362        start_pfn = node_start_pfn;
6363#endif
6364        calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6365                                  zones_size, zholes_size);
6366
6367        alloc_node_mem_map(pgdat);
6368
6369#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6370        /*
6371         * We start only with one section of pages, more pages are added as
6372         * needed until the rest of deferred pages are initialized.
6373         */
6374        pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6375                                         pgdat->node_spanned_pages);
6376        pgdat->first_deferred_pfn = ULONG_MAX;
6377#endif
6378        free_area_init_core(pgdat);
6379}
6380
6381#ifdef CONFIG_HAVE_MEMBLOCK
6382/*
6383 * Only struct pages that are backed by physical memory are zeroed and
6384 * initialized by going through __init_single_page(). But, there are some
6385 * struct pages which are reserved in memblock allocator and their fields
6386 * may be accessed (for example page_to_pfn() on some configuration accesses
6387 * flags). We must explicitly zero those struct pages.
6388 */
6389void __paginginit zero_resv_unavail(void)
6390{
6391        phys_addr_t start, end;
6392        unsigned long pfn;
6393        u64 i, pgcnt;
6394
6395        /*
6396         * Loop through ranges that are reserved, but do not have reported
6397         * physical memory backing.
6398         */
6399        pgcnt = 0;
6400        for_each_resv_unavail_range(i, &start, &end) {
6401                for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6402                        if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6403                                continue;
6404                        mm_zero_struct_page(pfn_to_page(pfn));
6405                        pgcnt++;
6406                }
6407        }
6408
6409        /*
6410         * Struct pages that do not have backing memory. This could be because
6411         * firmware is using some of this memory, or for some other reasons.
6412         * Once memblock is changed so such behaviour is not allowed: i.e.
6413         * list of "reserved" memory must be a subset of list of "memory", then
6414         * this code can be removed.
6415         */
6416        if (pgcnt)
6417                pr_info("Reserved but unavailable: %lld pages", pgcnt);
6418}
6419#endif /* CONFIG_HAVE_MEMBLOCK */
6420
6421#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6422
6423#if MAX_NUMNODES > 1
6424/*
6425 * Figure out the number of possible node ids.
6426 */
6427void __init setup_nr_node_ids(void)
6428{
6429        unsigned int highest;
6430
6431        highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6432        nr_node_ids = highest + 1;
6433}
6434#endif
6435
6436/**
6437 * node_map_pfn_alignment - determine the maximum internode alignment
6438 *
6439 * This function should be called after node map is populated and sorted.
6440 * It calculates the maximum power of two alignment which can distinguish
6441 * all the nodes.
6442 *
6443 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6444 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6445 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6446 * shifted, 1GiB is enough and this function will indicate so.
6447 *
6448 * This is used to test whether pfn -> nid mapping of the chosen memory
6449 * model has fine enough granularity to avoid incorrect mapping for the
6450 * populated node map.
6451 *
6452 * Returns the determined alignment in pfn's.  0 if there is no alignment
6453 * requirement (single node).
6454 */
6455unsigned long __init node_map_pfn_alignment(void)
6456{
6457        unsigned long accl_mask = 0, last_end = 0;
6458        unsigned long start, end, mask;
6459        int last_nid = -1;
6460        int i, nid;
6461
6462        for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6463                if (!start || last_nid < 0 || last_nid == nid) {
6464                        last_nid = nid;
6465                        last_end = end;
6466                        continue;
6467                }
6468
6469                /*
6470                 * Start with a mask granular enough to pin-point to the
6471                 * start pfn and tick off bits one-by-one until it becomes
6472                 * too coarse to separate the current node from the last.
6473                 */
6474                mask = ~((1 << __ffs(start)) - 1);
6475                while (mask && last_end <= (start & (mask << 1)))
6476                        mask <<= 1;
6477
6478                /* accumulate all internode masks */
6479                accl_mask |= mask;
6480        }
6481
6482        /* convert mask to number of pages */
6483        return ~accl_mask + 1;
6484}
6485
6486/* Find the lowest pfn for a node */
6487static unsigned long __init find_min_pfn_for_node(int nid)
6488{
6489        unsigned long min_pfn = ULONG_MAX;
6490        unsigned long start_pfn;
6491        int i;
6492
6493        for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6494                min_pfn = min(min_pfn, start_pfn);
6495
6496        if (min_pfn == ULONG_MAX) {
6497                pr_warn("Could not find start_pfn for node %d\n", nid);
6498                return 0;
6499        }
6500
6501        return min_pfn;
6502}
6503
6504/**
6505 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6506 *
6507 * It returns the minimum PFN based on information provided via
6508 * memblock_set_node().
6509 */
6510unsigned long __init find_min_pfn_with_active_regions(void)
6511{
6512        return find_min_pfn_for_node(MAX_NUMNODES);
6513}
6514
6515/*
6516 * early_calculate_totalpages()
6517 * Sum pages in active regions for movable zone.
6518 * Populate N_MEMORY for calculating usable_nodes.
6519 */
6520static unsigned long __init early_calculate_totalpages(void)
6521{
6522        unsigned long totalpages = 0;
6523        unsigned long start_pfn, end_pfn;
6524        int i, nid;
6525
6526        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6527                unsigned long pages = end_pfn - start_pfn;
6528
6529                totalpages += pages;
6530                if (pages)
6531                        node_set_state(nid, N_MEMORY);
6532        }
6533        return totalpages;
6534}
6535
6536/*
6537 * Find the PFN the Movable zone begins in each node. Kernel memory
6538 * is spread evenly between nodes as long as the nodes have enough
6539 * memory. When they don't, some nodes will have more kernelcore than
6540 * others
6541 */
6542static void __init find_zone_movable_pfns_for_nodes(void)
6543{
6544        int i, nid;
6545        unsigned long usable_startpfn;
6546        unsigned long kernelcore_node, kernelcore_remaining;
6547        /* save the state before borrow the nodemask */
6548        nodemask_t saved_node_state = node_states[N_MEMORY];
6549        unsigned long totalpages = early_calculate_totalpages();
6550        int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6551        struct memblock_region *r;
6552
6553        /* Need to find movable_zone earlier when movable_node is specified. */
6554        find_usable_zone_for_movable();
6555
6556        /*
6557         * If movable_node is specified, ignore kernelcore and movablecore
6558         * options.
6559         */
6560        if (movable_node_is_enabled()) {
6561                for_each_memblock(memory, r) {
6562                        if (!memblock_is_hotpluggable(r))
6563                                continue;
6564
6565                        nid = r->nid;
6566
6567                        usable_startpfn = PFN_DOWN(r->base);
6568                        zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6569                                min(usable_startpfn, zone_movable_pfn[nid]) :
6570                                usable_startpfn;
6571                }
6572
6573                goto out2;
6574        }
6575
6576        /*
6577         * If kernelcore=mirror is specified, ignore movablecore option
6578         */
6579        if (mirrored_kernelcore) {
6580                bool mem_below_4gb_not_mirrored = false;
6581
6582                for_each_memblock(memory, r) {
6583                        if (memblock_is_mirror(r))
6584                                continue;
6585
6586                        nid = r->nid;
6587
6588                        usable_startpfn = memblock_region_memory_base_pfn(r);
6589
6590                        if (usable_startpfn < 0x100000) {
6591                                mem_below_4gb_not_mirrored = true;
6592                                continue;
6593                        }
6594
6595                        zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6596                                min(usable_startpfn, zone_movable_pfn[nid]) :
6597                                usable_startpfn;
6598                }
6599
6600                if (mem_below_4gb_not_mirrored)
6601                        pr_warn("This configuration results in unmirrored kernel memory.");
6602
6603                goto out2;
6604        }
6605
6606        /*
6607         * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6608         * amount of necessary memory.
6609         */
6610        if (required_kernelcore_percent)
6611                required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6612                                       10000UL;
6613        if (required_movablecore_percent)
6614                required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6615                                        10000UL;
6616
6617        /*
6618         * If movablecore= was specified, calculate what size of
6619         * kernelcore that corresponds so that memory usable for
6620         * any allocation type is evenly spread. If both kernelcore
6621         * and movablecore are specified, then the value of kernelcore
6622         * will be used for required_kernelcore if it's greater than
6623         * what movablecore would have allowed.
6624         */
6625        if (required_movablecore) {
6626                unsigned long corepages;
6627
6628                /*
6629                 * Round-up so that ZONE_MOVABLE is at least as large as what
6630                 * was requested by the user
6631                 */
6632                required_movablecore =
6633                        roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6634                required_movablecore = min(totalpages, required_movablecore);
6635                corepages = totalpages - required_movablecore;
6636
6637                required_kernelcore = max(required_kernelcore, corepages);
6638        }
6639
6640        /*
6641         * If kernelcore was not specified or kernelcore size is larger
6642         * than totalpages, there is no ZONE_MOVABLE.
6643         */
6644        if (!required_kernelcore || required_kernelcore >= totalpages)
6645                goto out;
6646
6647        /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6648        usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6649
6650restart:
6651        /* Spread kernelcore memory as evenly as possible throughout nodes */
6652        kernelcore_node = required_kernelcore / usable_nodes;
6653        for_each_node_state(nid, N_MEMORY) {
6654                unsigned long start_pfn, end_pfn;
6655
6656                /*
6657                 * Recalculate kernelcore_node if the division per node
6658                 * now exceeds what is necessary to satisfy the requested
6659                 * amount of memory for the kernel
6660                 */
6661                if (required_kernelcore < kernelcore_node)
6662                        kernelcore_node = required_kernelcore / usable_nodes;
6663
6664                /*
6665                 * As the map is walked, we track how much memory is usable
6666                 * by the kernel using kernelcore_remaining. When it is
6667                 * 0, the rest of the node is usable by ZONE_MOVABLE
6668                 */
6669                kernelcore_remaining = kernelcore_node;
6670
6671                /* Go through each range of PFNs within this node */
6672                for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6673                        unsigned long size_pages;
6674
6675                        start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6676                        if (start_pfn >= end_pfn)
6677                                continue;
6678
6679                        /* Account for what is only usable for kernelcore */
6680                        if (start_pfn < usable_startpfn) {
6681                                unsigned long kernel_pages;
6682                                kernel_pages = min(end_pfn, usable_startpfn)
6683                                                                - start_pfn;
6684
6685                                kernelcore_remaining -= min(kernel_pages,
6686                                                        kernelcore_remaining);
6687                                required_kernelcore -= min(kernel_pages,
6688                                                        required_kernelcore);
6689
6690                                /* Continue if range is now fully accounted */
6691                                if (end_pfn <= usable_startpfn) {
6692
6693                                        /*
6694                                         * Push zone_movable_pfn to the end so
6695                                         * that if we have to rebalance
6696                                         * kernelcore across nodes, we will
6697                                         * not double account here
6698                                         */
6699                                        zone_movable_pfn[nid] = end_pfn;
6700                                        continue;
6701                                }
6702                                start_pfn = usable_startpfn;
6703                        }
6704
6705                        /*
6706                         * The usable PFN range for ZONE_MOVABLE is from
6707                         * start_pfn->end_pfn. Calculate size_pages as the
6708                         * number of pages used as kernelcore
6709                         */
6710                        size_pages = end_pfn - start_pfn;
6711                        if (size_pages > kernelcore_remaining)
6712                                size_pages = kernelcore_remaining;
6713                        zone_movable_pfn[nid] = start_pfn + size_pages;
6714
6715                        /*
6716                         * Some kernelcore has been met, update counts and
6717                         * break if the kernelcore for this node has been
6718                         * satisfied
6719                         */
6720                        required_kernelcore -= min(required_kernelcore,
6721                                                                size_pages);
6722                        kernelcore_remaining -= size_pages;
6723                        if (!kernelcore_remaining)
6724                                break;
6725                }
6726        }
6727
6728        /*
6729         * If there is still required_kernelcore, we do another pass with one
6730         * less node in the count. This will push zone_movable_pfn[nid] further
6731         * along on the nodes that still have memory until kernelcore is
6732         * satisfied
6733         */
6734        usable_nodes--;
6735        if (usable_nodes && required_kernelcore > usable_nodes)
6736                goto restart;
6737
6738out2:
6739        /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6740        for (nid = 0; nid < MAX_NUMNODES; nid++)
6741                zone_movable_pfn[nid] =
6742                        roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6743
6744out:
6745        /* restore the node_state */
6746        node_states[N_MEMORY] = saved_node_state;
6747}
6748
6749/* Any regular or high memory on that node ? */
6750static void check_for_memory(pg_data_t *pgdat, int nid)
6751{
6752        enum zone_type zone_type;
6753
6754        if (N_MEMORY == N_NORMAL_MEMORY)
6755                return;
6756
6757        for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6758                struct zone *zone = &pgdat->node_zones[zone_type];
6759                if (populated_zone(zone)) {
6760                        node_set_state(nid, N_HIGH_MEMORY);
6761                        if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6762                            zone_type <= ZONE_NORMAL)
6763                                node_set_state(nid, N_NORMAL_MEMORY);
6764                        break;
6765                }
6766        }
6767}
6768
6769/**
6770 * free_area_init_nodes - Initialise all pg_data_t and zone data
6771 * @max_zone_pfn: an array of max PFNs for each zone
6772 *
6773 * This will call free_area_init_node() for each active node in the system.
6774 * Using the page ranges provided by memblock_set_node(), the size of each
6775 * zone in each node and their holes is calculated. If the maximum PFN
6776 * between two adjacent zones match, it is assumed that the zone is empty.
6777 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6778 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6779 * starts where the previous one ended. For example, ZONE_DMA32 starts
6780 * at arch_max_dma_pfn.
6781 */
6782void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6783{
6784        unsigned long start_pfn, end_pfn;
6785        int i, nid;
6786
6787        /* Record where the zone boundaries are */
6788        memset(arch_zone_lowest_possible_pfn, 0,
6789                                sizeof(arch_zone_lowest_possible_pfn));
6790        memset(arch_zone_highest_possible_pfn, 0,
6791                                sizeof(arch_zone_highest_possible_pfn));
6792
6793        start_pfn = find_min_pfn_with_active_regions();
6794
6795        for (i = 0; i < MAX_NR_ZONES; i++) {
6796                if (i == ZONE_MOVABLE)
6797                        continue;
6798
6799                end_pfn = max(max_zone_pfn[i], start_pfn);
6800                arch_zone_lowest_possible_pfn[i] = start_pfn;
6801                arch_zone_highest_possible_pfn[i] = end_pfn;
6802
6803                start_pfn = end_pfn;
6804        }
6805
6806        /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6807        memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6808        find_zone_movable_pfns_for_nodes();
6809
6810        /* Print out the zone ranges */
6811        pr_info("Zone ranges:\n");
6812        for (i = 0; i < MAX_NR_ZONES; i++) {
6813                if (i == ZONE_MOVABLE)
6814                        continue;
6815                pr_info("  %-8s ", zone_names[i]);
6816                if (arch_zone_lowest_possible_pfn[i] ==
6817                                arch_zone_highest_possible_pfn[i])
6818                        pr_cont("empty\n");
6819                else
6820                        pr_cont("[mem %#018Lx-%#018Lx]\n",
6821                                (u64)arch_zone_lowest_possible_pfn[i]
6822                                        << PAGE_SHIFT,
6823                                ((u64)arch_zone_highest_possible_pfn[i]
6824                                        << PAGE_SHIFT) - 1);
6825        }
6826
6827        /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6828        pr_info("Movable zone start for each node\n");
6829        for (i = 0; i < MAX_NUMNODES; i++) {
6830                if (zone_movable_pfn[i])
6831                        pr_info("  Node %d: %#018Lx\n", i,
6832                               (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6833        }
6834
6835        /* Print out the early node map */
6836        pr_info("Early memory node ranges\n");
6837        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6838                pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6839                        (u64)start_pfn << PAGE_SHIFT,
6840                        ((u64)end_pfn << PAGE_SHIFT) - 1);
6841
6842        /* Initialise every node */
6843        mminit_verify_pageflags_layout();
6844        setup_nr_node_ids();
6845        for_each_online_node(nid) {
6846                pg_data_t *pgdat = NODE_DATA(nid);
6847                free_area_init_node(nid, NULL,
6848                                find_min_pfn_for_node(nid), NULL);
6849
6850                /* Any memory on that node */
6851                if (pgdat->node_present_pages)
6852                        node_set_state(nid, N_MEMORY);
6853                check_for_memory(pgdat, nid);
6854        }
6855        zero_resv_unavail();
6856}
6857
6858static int __init cmdline_parse_core(char *p, unsigned long *core,
6859                                     unsigned long *percent)
6860{
6861        unsigned long long coremem;
6862        char *endptr;
6863
6864        if (!p)
6865                return -EINVAL;
6866
6867        /* Value may be a percentage of total memory, otherwise bytes */
6868        coremem = simple_strtoull(p, &endptr, 0);
6869        if (*endptr == '%') {
6870                /* Paranoid check for percent values greater than 100 */
6871                WARN_ON(coremem > 100);
6872
6873                *percent = coremem;
6874        } else {
6875                coremem = memparse(p, &p);
6876                /* Paranoid check that UL is enough for the coremem value */
6877                WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6878
6879                *core = coremem >> PAGE_SHIFT;
6880                *percent = 0UL;
6881        }
6882        return 0;
6883}
6884
6885/*
6886 * kernelcore=size sets the amount of memory for use for allocations that
6887 * cannot be reclaimed or migrated.
6888 */
6889static int __init cmdline_parse_kernelcore(char *p)
6890{
6891        /* parse kernelcore=mirror */
6892        if (parse_option_str(p, "mirror")) {
6893                mirrored_kernelcore = true;
6894                return 0;
6895        }
6896
6897        return cmdline_parse_core(p, &required_kernelcore,
6898                                  &required_kernelcore_percent);
6899}
6900
6901/*
6902 * movablecore=size sets the amount of memory for use for allocations that
6903 * can be reclaimed or migrated.
6904 */
6905static int __init cmdline_parse_movablecore(char *p)
6906{
6907        return cmdline_parse_core(p, &required_movablecore,
6908                                  &required_movablecore_percent);
6909}
6910
6911early_param("kernelcore", cmdline_parse_kernelcore);
6912early_param("movablecore", cmdline_parse_movablecore);
6913
6914#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6915
6916void adjust_managed_page_count(struct page *page, long count)
6917{
6918        spin_lock(&managed_page_count_lock);
6919        page_zone(page)->managed_pages += count;
6920        totalram_pages += count;
6921#ifdef CONFIG_HIGHMEM
6922        if (PageHighMem(page))
6923                totalhigh_pages += count;
6924#endif
6925        spin_unlock(&managed_page_count_lock);
6926}
6927EXPORT_SYMBOL(adjust_managed_page_count);
6928
6929unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6930{
6931        void *pos;
6932        unsigned long pages = 0;
6933
6934        start = (void *)PAGE_ALIGN((unsigned long)start);
6935        end = (void *)((unsigned long)end & PAGE_MASK);
6936        for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6937                if ((unsigned int)poison <= 0xFF)
6938                        memset(pos, poison, PAGE_SIZE);
6939                free_reserved_page(virt_to_page(pos));
6940        }
6941
6942        if (pages && s)
6943                pr_info("Freeing %s memory: %ldK\n",
6944                        s, pages << (PAGE_SHIFT - 10));
6945
6946        return pages;
6947}
6948EXPORT_SYMBOL(free_reserved_area);
6949
6950#ifdef  CONFIG_HIGHMEM
6951void free_highmem_page(struct page *page)
6952{
6953        __free_reserved_page(page);
6954        totalram_pages++;
6955        page_zone(page)->managed_pages++;
6956        totalhigh_pages++;
6957}
6958#endif
6959
6960
6961void __init mem_init_print_info(const char *str)
6962{
6963        unsigned long physpages, codesize, datasize, rosize, bss_size;
6964        unsigned long init_code_size, init_data_size;
6965
6966        physpages = get_num_physpages();
6967        codesize = _etext - _stext;
6968        datasize = _edata - _sdata;
6969        rosize = __end_rodata - __start_rodata;
6970        bss_size = __bss_stop - __bss_start;
6971        init_data_size = __init_end - __init_begin;
6972        init_code_size = _einittext - _sinittext;
6973
6974        /*
6975         * Detect special cases and adjust section sizes accordingly:
6976         * 1) .init.* may be embedded into .data sections
6977         * 2) .init.text.* may be out of [__init_begin, __init_end],
6978         *    please refer to arch/tile/kernel/vmlinux.lds.S.
6979         * 3) .rodata.* may be embedded into .text or .data sections.
6980         */
6981#define adj_init_size(start, end, size, pos, adj) \
6982        do { \
6983                if (start <= pos && pos < end && size > adj) \
6984                        size -= adj; \
6985        } while (0)
6986
6987        adj_init_size(__init_begin, __init_end, init_data_size,
6988                     _sinittext, init_code_size);
6989        adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6990        adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6991        adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6992        adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6993
6994#undef  adj_init_size
6995
6996        pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6997#ifdef  CONFIG_HIGHMEM
6998                ", %luK highmem"
6999#endif
7000                "%s%s)\n",
7001                nr_free_pages() << (PAGE_SHIFT - 10),
7002                physpages << (PAGE_SHIFT - 10),
7003                codesize >> 10, datasize >> 10, rosize >> 10,
7004                (init_data_size + init_code_size) >> 10, bss_size >> 10,
7005                (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7006                totalcma_pages << (PAGE_SHIFT - 10),
7007#ifdef  CONFIG_HIGHMEM
7008                totalhigh_pages << (PAGE_SHIFT - 10),
7009#endif
7010                str ? ", " : "", str ? str : "");
7011}
7012
7013/**
7014 * set_dma_reserve - set the specified number of pages reserved in the first zone
7015 * @new_dma_reserve: The number of pages to mark reserved
7016 *
7017 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7018 * In the DMA zone, a significant percentage may be consumed by kernel image
7019 * and other unfreeable allocations which can skew the watermarks badly. This
7020 * function may optionally be used to account for unfreeable pages in the
7021 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7022 * smaller per-cpu batchsize.
7023 */
7024void __init set_dma_reserve(unsigned long new_dma_reserve)
7025{
7026        dma_reserve = new_dma_reserve;
7027}
7028
7029void __init free_area_init(unsigned long *zones_size)
7030{
7031        free_area_init_node(0, zones_size,
7032                        __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7033        zero_resv_unavail();
7034}
7035
7036static int page_alloc_cpu_dead(unsigned int cpu)
7037{
7038
7039        lru_add_drain_cpu(cpu);
7040        drain_pages(cpu);
7041
7042        /*
7043         * Spill the event counters of the dead processor
7044         * into the current processors event counters.
7045         * This artificially elevates the count of the current
7046         * processor.
7047         */
7048        vm_events_fold_cpu(cpu);
7049
7050        /*
7051         * Zero the differential counters of the dead processor
7052         * so that the vm statistics are consistent.
7053         *
7054         * This is only okay since the processor is dead and cannot
7055         * race with what we are doing.
7056         */
7057        cpu_vm_stats_fold(cpu);
7058        return 0;
7059}
7060
7061void __init page_alloc_init(void)
7062{
7063        int ret;
7064
7065        ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7066                                        "mm/page_alloc:dead", NULL,
7067                                        page_alloc_cpu_dead);
7068        WARN_ON(ret < 0);
7069}
7070
7071/*
7072 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7073 *      or min_free_kbytes changes.
7074 */
7075static void calculate_totalreserve_pages(void)
7076{
7077        struct pglist_data *pgdat;
7078        unsigned long reserve_pages = 0;
7079        enum zone_type i, j;
7080
7081        for_each_online_pgdat(pgdat) {
7082
7083                pgdat->totalreserve_pages = 0;
7084
7085                for (i = 0; i < MAX_NR_ZONES; i++) {
7086                        struct zone *zone = pgdat->node_zones + i;
7087                        long max = 0;
7088
7089                        /* Find valid and maximum lowmem_reserve in the zone */
7090                        for (j = i; j < MAX_NR_ZONES; j++) {
7091                                if (zone->lowmem_reserve[j] > max)
7092                                        max = zone->lowmem_reserve[j];
7093                        }
7094
7095                        /* we treat the high watermark as reserved pages. */
7096                        max += high_wmark_pages(zone);
7097
7098                        if (max > zone->managed_pages)
7099                                max = zone->managed_pages;
7100
7101                        pgdat->totalreserve_pages += max;
7102
7103                        reserve_pages += max;
7104                }
7105        }
7106        totalreserve_pages = reserve_pages;
7107}
7108
7109/*
7110 * setup_per_zone_lowmem_reserve - called whenever
7111 *      sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7112 *      has a correct pages reserved value, so an adequate number of
7113 *      pages are left in the zone after a successful __alloc_pages().
7114 */
7115static void setup_per_zone_lowmem_reserve(void)
7116{
7117        struct pglist_data *pgdat;
7118        enum zone_type j, idx;
7119
7120        for_each_online_pgdat(pgdat) {
7121                for (j = 0; j < MAX_NR_ZONES; j++) {
7122                        struct zone *zone = pgdat->node_zones + j;
7123                        unsigned long managed_pages = zone->managed_pages;
7124
7125                        zone->lowmem_reserve[j] = 0;
7126
7127                        idx = j;
7128                        while (idx) {
7129                                struct zone *lower_zone;
7130
7131                                idx--;
7132                                lower_zone = pgdat->node_zones + idx;
7133
7134                                if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7135                                        sysctl_lowmem_reserve_ratio[idx] = 0;
7136                                        lower_zone->lowmem_reserve[j] = 0;
7137                                } else {
7138                                        lower_zone->lowmem_reserve[j] =
7139                                                managed_pages / sysctl_lowmem_reserve_ratio[idx];
7140                                }
7141                                managed_pages += lower_zone->managed_pages;
7142                        }
7143                }
7144        }
7145
7146        /* update totalreserve_pages */
7147        calculate_totalreserve_pages();
7148}
7149
7150static void __setup_per_zone_wmarks(void)
7151{
7152        unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7153        unsigned long lowmem_pages = 0;
7154        struct zone *zone;
7155        unsigned long flags;
7156
7157        /* Calculate total number of !ZONE_HIGHMEM pages */
7158        for_each_zone(zone) {
7159                if (!is_highmem(zone))
7160                        lowmem_pages += zone->managed_pages;
7161        }
7162
7163        for_each_zone(zone) {
7164                u64 tmp;
7165
7166                spin_lock_irqsave(&zone->lock, flags);
7167                tmp = (u64)pages_min * zone->managed_pages;
7168                do_div(tmp, lowmem_pages);
7169                if (is_highmem(zone)) {
7170                        /*
7171                         * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7172                         * need highmem pages, so cap pages_min to a small
7173                         * value here.
7174                         *
7175                         * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7176                         * deltas control asynch page reclaim, and so should
7177                         * not be capped for highmem.
7178                         */
7179                        unsigned long min_pages;
7180
7181                        min_pages = zone->managed_pages / 1024;
7182                        min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7183                        zone->watermark[WMARK_MIN] = min_pages;
7184                } else {
7185                        /*
7186                         * If it's a lowmem zone, reserve a number of pages
7187                         * proportionate to the zone's size.
7188                         */
7189                        zone->watermark[WMARK_MIN] = tmp;
7190                }
7191
7192                /*
7193                 * Set the kswapd watermarks distance according to the
7194                 * scale factor in proportion to available memory, but
7195                 * ensure a minimum size on small systems.
7196                 */
7197                tmp = max_t(u64, tmp >> 2,
7198                            mult_frac(zone->managed_pages,
7199                                      watermark_scale_factor, 10000));
7200
7201                zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7202                zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7203
7204                spin_unlock_irqrestore(&zone->lock, flags);
7205        }
7206
7207        /* update totalreserve_pages */
7208        calculate_totalreserve_pages();
7209}
7210
7211/**
7212 * setup_per_zone_wmarks - called when min_free_kbytes changes
7213 * or when memory is hot-{added|removed}
7214 *
7215 * Ensures that the watermark[min,low,high] values for each zone are set
7216 * correctly with respect to min_free_kbytes.
7217 */
7218void setup_per_zone_wmarks(void)
7219{
7220        static DEFINE_SPINLOCK(lock);
7221
7222        spin_lock(&lock);
7223        __setup_per_zone_wmarks();
7224        spin_unlock(&lock);
7225}
7226
7227/*
7228 * Initialise min_free_kbytes.
7229 *
7230 * For small machines we want it small (128k min).  For large machines
7231 * we want it large (64MB max).  But it is not linear, because network
7232 * bandwidth does not increase linearly with machine size.  We use
7233 *
7234 *      min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7235 *      min_free_kbytes = sqrt(lowmem_kbytes * 16)
7236 *
7237 * which yields
7238 *
7239 * 16MB:        512k
7240 * 32MB:        724k
7241 * 64MB:        1024k
7242 * 128MB:       1448k
7243 * 256MB:       2048k
7244 * 512MB:       2896k
7245 * 1024MB:      4096k
7246 * 2048MB:      5792k
7247 * 4096MB:      8192k
7248 * 8192MB:      11584k
7249 * 16384MB:     16384k
7250 */
7251int __meminit init_per_zone_wmark_min(void)
7252{
7253        unsigned long lowmem_kbytes;
7254        int new_min_free_kbytes;
7255
7256        lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7257        new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7258
7259        if (new_min_free_kbytes > user_min_free_kbytes) {
7260                min_free_kbytes = new_min_free_kbytes;
7261                if (min_free_kbytes < 128)
7262                        min_free_kbytes = 128;
7263                if (min_free_kbytes > 65536)
7264                        min_free_kbytes = 65536;
7265        } else {
7266                pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7267                                new_min_free_kbytes, user_min_free_kbytes);
7268        }
7269        setup_per_zone_wmarks();
7270        refresh_zone_stat_thresholds();
7271        setup_per_zone_lowmem_reserve();
7272
7273#ifdef CONFIG_NUMA
7274        setup_min_unmapped_ratio();
7275        setup_min_slab_ratio();
7276#endif
7277
7278        return 0;
7279}
7280core_initcall(init_per_zone_wmark_min)
7281
7282/*
7283 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7284 *      that we can call two helper functions whenever min_free_kbytes
7285 *      changes.
7286 */
7287int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7288        void __user *buffer, size_t *length, loff_t *ppos)
7289{
7290        int rc;
7291
7292        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7293        if (rc)
7294                return rc;
7295
7296        if (write) {
7297                user_min_free_kbytes = min_free_kbytes;
7298                setup_per_zone_wmarks();
7299        }
7300        return 0;
7301}
7302
7303int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7304        void __user *buffer, size_t *length, loff_t *ppos)
7305{
7306        int rc;
7307
7308        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7309        if (rc)
7310                return rc;
7311
7312        if (write)
7313                setup_per_zone_wmarks();
7314
7315        return 0;
7316}
7317
7318#ifdef CONFIG_NUMA
7319static void setup_min_unmapped_ratio(void)
7320{
7321        pg_data_t *pgdat;
7322        struct zone *zone;
7323
7324        for_each_online_pgdat(pgdat)
7325                pgdat->min_unmapped_pages = 0;
7326
7327        for_each_zone(zone)
7328                zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7329                                sysctl_min_unmapped_ratio) / 100;
7330}
7331
7332
7333int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7334        void __user *buffer, size_t *length, loff_t *ppos)
7335{
7336        int rc;
7337
7338        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7339        if (rc)
7340                return rc;
7341
7342        setup_min_unmapped_ratio();
7343
7344        return 0;
7345}
7346
7347static void setup_min_slab_ratio(void)
7348{
7349        pg_data_t *pgdat;
7350        struct zone *zone;
7351
7352        for_each_online_pgdat(pgdat)
7353                pgdat->min_slab_pages = 0;
7354
7355        for_each_zone(zone)
7356                zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7357                                sysctl_min_slab_ratio) / 100;
7358}
7359
7360int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7361        void __user *buffer, size_t *length, loff_t *ppos)
7362{
7363        int rc;
7364
7365        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7366        if (rc)
7367                return rc;
7368
7369        setup_min_slab_ratio();
7370
7371        return 0;
7372}
7373#endif
7374
7375/*
7376 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7377 *      proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7378 *      whenever sysctl_lowmem_reserve_ratio changes.
7379 *
7380 * The reserve ratio obviously has absolutely no relation with the
7381 * minimum watermarks. The lowmem reserve ratio can only make sense
7382 * if in function of the boot time zone sizes.
7383 */
7384int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7385        void __user *buffer, size_t *length, loff_t *ppos)
7386{
7387        proc_dointvec_minmax(table, write, buffer, length, ppos);
7388        setup_per_zone_lowmem_reserve();
7389        return 0;
7390}
7391
7392/*
7393 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7394 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7395 * pagelist can have before it gets flushed back to buddy allocator.
7396 */
7397int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7398        void __user *buffer, size_t *length, loff_t *ppos)
7399{
7400        struct zone *zone;
7401        int old_percpu_pagelist_fraction;
7402        int ret;
7403
7404        mutex_lock(&pcp_batch_high_lock);
7405        old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7406
7407        ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7408        if (!write || ret < 0)
7409                goto out;
7410
7411        /* Sanity checking to avoid pcp imbalance */
7412        if (percpu_pagelist_fraction &&
7413            percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7414                percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7415                ret = -EINVAL;
7416                goto out;
7417        }
7418
7419        /* No change? */
7420        if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7421                goto out;
7422
7423        for_each_populated_zone(zone) {
7424                unsigned int cpu;
7425
7426                for_each_possible_cpu(cpu)
7427                        pageset_set_high_and_batch(zone,
7428                                        per_cpu_ptr(zone->pageset, cpu));
7429        }
7430out:
7431        mutex_unlock(&pcp_batch_high_lock);
7432        return ret;
7433}
7434
7435#ifdef CONFIG_NUMA
7436int hashdist = HASHDIST_DEFAULT;
7437
7438static int __init set_hashdist(char *str)
7439{
7440        if (!str)
7441                return 0;
7442        hashdist = simple_strtoul(str, &str, 0);
7443        return 1;
7444}
7445__setup("hashdist=", set_hashdist);
7446#endif
7447
7448#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7449/*
7450 * Returns the number of pages that arch has reserved but
7451 * is not known to alloc_large_system_hash().
7452 */
7453static unsigned long __init arch_reserved_kernel_pages(void)
7454{
7455        return 0;
7456}
7457#endif
7458
7459/*
7460 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7461 * machines. As memory size is increased the scale is also increased but at
7462 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7463 * quadruples the scale is increased by one, which means the size of hash table
7464 * only doubles, instead of quadrupling as well.
7465 * Because 32-bit systems cannot have large physical memory, where this scaling
7466 * makes sense, it is disabled on such platforms.
7467 */
7468#if __BITS_PER_LONG > 32
7469#define ADAPT_SCALE_BASE        (64ul << 30)
7470#define ADAPT_SCALE_SHIFT       2
7471#define ADAPT_SCALE_NPAGES      (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7472#endif
7473
7474/*
7475 * allocate a large system hash table from bootmem
7476 * - it is assumed that the hash table must contain an exact power-of-2
7477 *   quantity of entries
7478 * - limit is the number of hash buckets, not the total allocation size
7479 */
7480void *__init alloc_large_system_hash(const char *tablename,
7481                                     unsigned long bucketsize,
7482                                     unsigned long numentries,
7483                                     int scale,
7484                                     int flags,
7485                                     unsigned int *_hash_shift,
7486                                     unsigned int *_hash_mask,
7487                                     unsigned long low_limit,
7488                                     unsigned long high_limit)
7489{
7490        unsigned long long max = high_limit;
7491        unsigned long log2qty, size;
7492        void *table = NULL;
7493        gfp_t gfp_flags;
7494
7495        /* allow the kernel cmdline to have a say */
7496        if (!numentries) {
7497                /* round applicable memory size up to nearest megabyte */
7498                numentries = nr_kernel_pages;
7499                numentries -= arch_reserved_kernel_pages();
7500
7501                /* It isn't necessary when PAGE_SIZE >= 1MB */
7502                if (PAGE_SHIFT < 20)
7503                        numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7504
7505#if __BITS_PER_LONG > 32
7506                if (!high_limit) {
7507                        unsigned long adapt;
7508
7509                        for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7510                             adapt <<= ADAPT_SCALE_SHIFT)
7511                                scale++;
7512                }
7513#endif
7514
7515                /* limit to 1 bucket per 2^scale bytes of low memory */
7516                if (scale > PAGE_SHIFT)
7517                        numentries >>= (scale - PAGE_SHIFT);
7518                else
7519                        numentries <<= (PAGE_SHIFT - scale);
7520
7521                /* Make sure we've got at least a 0-order allocation.. */
7522                if (unlikely(flags & HASH_SMALL)) {
7523                        /* Makes no sense without HASH_EARLY */
7524                        WARN_ON(!(flags & HASH_EARLY));
7525                        if (!(numentries >> *_hash_shift)) {
7526                                numentries = 1UL << *_hash_shift;
7527                                BUG_ON(!numentries);
7528                        }
7529                } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7530                        numentries = PAGE_SIZE / bucketsize;
7531        }
7532        numentries = roundup_pow_of_two(numentries);
7533
7534        /* limit allocation size to 1/16 total memory by default */
7535        if (max == 0) {
7536                max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7537                do_div(max, bucketsize);
7538        }
7539        max = min(max, 0x80000000ULL);
7540
7541        if (numentries < low_limit)
7542                numentries = low_limit;
7543        if (numentries > max)
7544                numentries = max;
7545
7546        log2qty = ilog2(numentries);
7547
7548        gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7549        do {
7550                size = bucketsize << log2qty;
7551                if (flags & HASH_EARLY) {
7552                        if (flags & HASH_ZERO)
7553                                table = memblock_virt_alloc_nopanic(size, 0);
7554                        else
7555                                table = memblock_virt_alloc_raw(size, 0);
7556                } else if (hashdist) {
7557                        table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7558                } else {
7559                        /*
7560                         * If bucketsize is not a power-of-two, we may free
7561                         * some pages at the end of hash table which
7562                         * alloc_pages_exact() automatically does
7563                         */
7564                        if (get_order(size) < MAX_ORDER) {
7565                                table = alloc_pages_exact(size, gfp_flags);
7566                                kmemleak_alloc(table, size, 1, gfp_flags);
7567                        }
7568                }
7569        } while (!table && size > PAGE_SIZE && --log2qty);
7570
7571        if (!table)
7572                panic("Failed to allocate %s hash table\n", tablename);
7573
7574        pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7575                tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7576
7577        if (_hash_shift)
7578                *_hash_shift = log2qty;
7579        if (_hash_mask)
7580                *_hash_mask = (1 << log2qty) - 1;
7581
7582        return table;
7583}
7584
7585/*
7586 * This function checks whether pageblock includes unmovable pages or not.
7587 * If @count is not zero, it is okay to include less @count unmovable pages
7588 *
7589 * PageLRU check without isolation or lru_lock could race so that
7590 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7591 * check without lock_page also may miss some movable non-lru pages at
7592 * race condition. So you can't expect this function should be exact.
7593 */
7594bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7595                         int migratetype,
7596                         bool skip_hwpoisoned_pages)
7597{
7598        unsigned long pfn, iter, found;
7599
7600        /*
7601         * TODO we could make this much more efficient by not checking every
7602         * page in the range if we know all of them are in MOVABLE_ZONE and
7603         * that the movable zone guarantees that pages are migratable but
7604         * the later is not the case right now unfortunatelly. E.g. movablecore
7605         * can still lead to having bootmem allocations in zone_movable.
7606         */
7607
7608        /*
7609         * CMA allocations (alloc_contig_range) really need to mark isolate
7610         * CMA pageblocks even when they are not movable in fact so consider
7611         * them movable here.
7612         */
7613        if (is_migrate_cma(migratetype) &&
7614                        is_migrate_cma(get_pageblock_migratetype(page)))
7615                return false;
7616
7617        pfn = page_to_pfn(page);
7618        for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7619                unsigned long check = pfn + iter;
7620
7621                if (!pfn_valid_within(check))
7622                        continue;
7623
7624                page = pfn_to_page(check);
7625
7626                if (PageReserved(page))
7627                        goto unmovable;
7628
7629                /*
7630                 * Hugepages are not in LRU lists, but they're movable.
7631                 * We need not scan over tail pages bacause we don't
7632                 * handle each tail page individually in migration.
7633                 */
7634                if (PageHuge(page)) {
7635                        iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7636                        continue;
7637                }
7638
7639                /*
7640                 * We can't use page_count without pin a page
7641                 * because another CPU can free compound page.
7642                 * This check already skips compound tails of THP
7643                 * because their page->_refcount is zero at all time.
7644                 */
7645                if (!page_ref_count(page)) {
7646                        if (PageBuddy(page))
7647                                iter += (1 << page_order(page)) - 1;
7648                        continue;
7649                }
7650
7651                /*
7652                 * The HWPoisoned page may be not in buddy system, and
7653                 * page_count() is not 0.
7654                 */
7655                if (skip_hwpoisoned_pages && PageHWPoison(page))
7656                        continue;
7657
7658                if (__PageMovable(page))
7659                        continue;
7660
7661                if (!PageLRU(page))
7662                        found++;
7663                /*
7664                 * If there are RECLAIMABLE pages, we need to check
7665                 * it.  But now, memory offline itself doesn't call
7666                 * shrink_node_slabs() and it still to be fixed.
7667                 */
7668                /*
7669                 * If the page is not RAM, page_count()should be 0.
7670                 * we don't need more check. This is an _used_ not-movable page.
7671                 *
7672                 * The problematic thing here is PG_reserved pages. PG_reserved
7673                 * is set to both of a memory hole page and a _used_ kernel
7674                 * page at boot.
7675                 */
7676                if (found > count)
7677                        goto unmovable;
7678        }
7679        return false;
7680unmovable:
7681        WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7682        return true;
7683}
7684
7685bool is_pageblock_removable_nolock(struct page *page)
7686{
7687        struct zone *zone;
7688        unsigned long pfn;
7689
7690        /*
7691         * We have to be careful here because we are iterating over memory
7692         * sections which are not zone aware so we might end up outside of
7693         * the zone but still within the section.
7694         * We have to take care about the node as well. If the node is offline
7695         * its NODE_DATA will be NULL - see page_zone.
7696         */
7697        if (!node_online(page_to_nid(page)))
7698                return false;
7699
7700        zone = page_zone(page);
7701        pfn = page_to_pfn(page);
7702        if (!zone_spans_pfn(zone, pfn))
7703                return false;
7704
7705        return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7706}
7707
7708#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7709
7710static unsigned long pfn_max_align_down(unsigned long pfn)
7711{
7712        return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7713                             pageblock_nr_pages) - 1);
7714}
7715
7716static unsigned long pfn_max_align_up(unsigned long pfn)
7717{
7718        return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7719                                pageblock_nr_pages));
7720}
7721
7722/* [start, end) must belong to a single zone. */
7723static int __alloc_contig_migrate_range(struct compact_control *cc,
7724                                        unsigned long start, unsigned long end)
7725{
7726        /* This function is based on compact_zone() from compaction.c. */
7727        unsigned long nr_reclaimed;
7728        unsigned long pfn = start;
7729        unsigned int tries = 0;
7730        int ret = 0;
7731
7732        migrate_prep();
7733
7734        while (pfn < end || !list_empty(&cc->migratepages)) {
7735                if (fatal_signal_pending(current)) {
7736                        ret = -EINTR;
7737                        break;
7738                }
7739
7740                if (list_empty(&cc->migratepages)) {
7741                        cc->nr_migratepages = 0;
7742                        pfn = isolate_migratepages_range(cc, pfn, end);
7743                        if (!pfn) {
7744                                ret = -EINTR;
7745                                break;
7746                        }
7747                        tries = 0;
7748                } else if (++tries == 5) {
7749                        ret = ret < 0 ? ret : -EBUSY;
7750                        break;
7751                }
7752
7753                nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7754                                                        &cc->migratepages);
7755                cc->nr_migratepages -= nr_reclaimed;
7756
7757                ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7758                                    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7759        }
7760        if (ret < 0) {
7761                putback_movable_pages(&cc->migratepages);
7762                return ret;
7763        }
7764        return 0;
7765}
7766
7767/**
7768 * alloc_contig_range() -- tries to allocate given range of pages
7769 * @start:      start PFN to allocate
7770 * @end:        one-past-the-last PFN to allocate
7771 * @migratetype:        migratetype of the underlaying pageblocks (either
7772 *                      #MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7773 *                      in range must have the same migratetype and it must
7774 *                      be either of the two.
7775 * @gfp_mask:   GFP mask to use during compaction
7776 *
7777 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7778 * aligned.  The PFN range must belong to a single zone.
7779 *
7780 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7781 * pageblocks in the range.  Once isolated, the pageblocks should not
7782 * be modified by others.
7783 *
7784 * Returns zero on success or negative error code.  On success all
7785 * pages which PFN is in [start, end) are allocated for the caller and
7786 * need to be freed with free_contig_range().
7787 */
7788int alloc_contig_range(unsigned long start, unsigned long end,
7789                       unsigned migratetype, gfp_t gfp_mask)
7790{
7791        unsigned long outer_start, outer_end;
7792        unsigned int order;
7793        int ret = 0;
7794
7795        struct compact_control cc = {
7796                .nr_migratepages = 0,
7797                .order = -1,
7798                .zone = page_zone(pfn_to_page(start)),
7799                .mode = MIGRATE_SYNC,
7800                .ignore_skip_hint = true,
7801                .no_set_skip_hint = true,
7802                .gfp_mask = current_gfp_context(gfp_mask),
7803        };
7804        INIT_LIST_HEAD(&cc.migratepages);
7805
7806        /*
7807         * What we do here is we mark all pageblocks in range as
7808         * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7809         * have different sizes, and due to the way page allocator
7810         * work, we align the range to biggest of the two pages so
7811         * that page allocator won't try to merge buddies from
7812         * different pageblocks and change MIGRATE_ISOLATE to some
7813         * other migration type.
7814         *
7815         * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7816         * migrate the pages from an unaligned range (ie. pages that
7817         * we are interested in).  This will put all the pages in
7818         * range back to page allocator as MIGRATE_ISOLATE.
7819         *
7820         * When this is done, we take the pages in range from page
7821         * allocator removing them from the buddy system.  This way
7822         * page allocator will never consider using them.
7823         *
7824         * This lets us mark the pageblocks back as
7825         * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7826         * aligned range but not in the unaligned, original range are
7827         * put back to page allocator so that buddy can use them.
7828         */
7829
7830        ret = start_isolate_page_range(pfn_max_align_down(start),
7831                                       pfn_max_align_up(end), migratetype,
7832                                       false);
7833        if (ret)
7834                return ret;
7835
7836        /*
7837         * In case of -EBUSY, we'd like to know which page causes problem.
7838         * So, just fall through. test_pages_isolated() has a tracepoint
7839         * which will report the busy page.
7840         *
7841         * It is possible that busy pages could become available before
7842         * the call to test_pages_isolated, and the range will actually be
7843         * allocated.  So, if we fall through be sure to clear ret so that
7844         * -EBUSY is not accidentally used or returned to caller.
7845         */
7846        ret = __alloc_contig_migrate_range(&cc, start, end);
7847        if (ret && ret != -EBUSY)
7848                goto done;
7849        ret =0;
7850
7851        /*
7852         * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7853         * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7854         * more, all pages in [start, end) are free in page allocator.
7855         * What we are going to do is to allocate all pages from
7856         * [start, end) (that is remove them from page allocator).
7857         *
7858         * The only problem is that pages at the beginning and at the
7859         * end of interesting range may be not aligned with pages that
7860         * page allocator holds, ie. they can be part of higher order
7861         * pages.  Because of this, we reserve the bigger range and
7862         * once this is done free the pages we are not interested in.
7863         *
7864         * We don't have to hold zone->lock here because the pages are
7865         * isolated thus they won't get removed from buddy.
7866         */
7867
7868        lru_add_drain_all();
7869        drain_all_pages(cc.zone);
7870
7871        order = 0;
7872        outer_start = start;
7873        while (!PageBuddy(pfn_to_page(outer_start))) {
7874                if (++order >= MAX_ORDER) {
7875                        outer_start = start;
7876                        break;
7877                }
7878                outer_start &= ~0UL << order;
7879        }
7880
7881        if (outer_start != start) {
7882                order = page_order(pfn_to_page(outer_start));
7883
7884                /*
7885                 * outer_start page could be small order buddy page and
7886                 * it doesn't include start page. Adjust outer_start
7887                 * in this case to report failed page properly
7888                 * on tracepoint in test_pages_isolated()
7889                 */
7890                if (outer_start + (1UL << order) <= start)
7891                        outer_start = start;
7892        }
7893
7894        /* Make sure the range is really isolated. */
7895        if (test_pages_isolated(outer_start, end, false)) {
7896                pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7897                        __func__, outer_start, end);
7898                ret = -EBUSY;
7899                goto done;
7900        }
7901
7902        /* Grab isolated pages from freelists. */
7903        outer_end = isolate_freepages_range(&cc, outer_start, end);
7904        if (!outer_end) {
7905                ret = -EBUSY;
7906                goto done;
7907        }
7908
7909        /* Free head and tail (if any) */
7910        if (start != outer_start)
7911                free_contig_range(outer_start, start - outer_start);
7912        if (end != outer_end)
7913                free_contig_range(end, outer_end - end);
7914
7915done:
7916        undo_isolate_page_range(pfn_max_align_down(start),
7917                                pfn_max_align_up(end), migratetype);
7918        return ret;
7919}
7920
7921void free_contig_range(unsigned long pfn, unsigned nr_pages)
7922{
7923        unsigned int count = 0;
7924
7925        for (; nr_pages--; pfn++) {
7926                struct page *page = pfn_to_page(pfn);
7927
7928                count += page_count(page) != 1;
7929                __free_page(page);
7930        }
7931        WARN(count != 0, "%d pages are still in use!\n", count);
7932}
7933#endif
7934
7935#ifdef CONFIG_MEMORY_HOTPLUG
7936/*
7937 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7938 * page high values need to be recalulated.
7939 */
7940void __meminit zone_pcp_update(struct zone *zone)
7941{
7942        unsigned cpu;
7943        mutex_lock(&pcp_batch_high_lock);
7944        for_each_possible_cpu(cpu)
7945                pageset_set_high_and_batch(zone,
7946                                per_cpu_ptr(zone->pageset, cpu));
7947        mutex_unlock(&pcp_batch_high_lock);
7948}
7949#endif
7950
7951void zone_pcp_reset(struct zone *zone)
7952{
7953        unsigned long flags;
7954        int cpu;
7955        struct per_cpu_pageset *pset;
7956
7957        /* avoid races with drain_pages()  */
7958        local_irq_save(flags);
7959        if (zone->pageset != &boot_pageset) {
7960                for_each_online_cpu(cpu) {
7961                        pset = per_cpu_ptr(zone->pageset, cpu);
7962                        drain_zonestat(zone, pset);
7963                }
7964                free_percpu(zone->pageset);
7965                zone->pageset = &boot_pageset;
7966        }
7967        local_irq_restore(flags);
7968}
7969
7970#ifdef CONFIG_MEMORY_HOTREMOVE
7971/*
7972 * All pages in the range must be in a single zone and isolated
7973 * before calling this.
7974 */
7975void
7976__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7977{
7978        struct page *page;
7979        struct zone *zone;
7980        unsigned int order, i;
7981        unsigned long pfn;
7982        unsigned long flags;
7983        /* find the first valid pfn */
7984        for (pfn = start_pfn; pfn < end_pfn; pfn++)
7985                if (pfn_valid(pfn))
7986                        break;
7987        if (pfn == end_pfn)
7988                return;
7989        offline_mem_sections(pfn, end_pfn);
7990        zone = page_zone(pfn_to_page(pfn));
7991        spin_lock_irqsave(&zone->lock, flags);
7992        pfn = start_pfn;
7993        while (pfn < end_pfn) {
7994                if (!pfn_valid(pfn)) {
7995                        pfn++;
7996                        continue;
7997                }
7998                page = pfn_to_page(pfn);
7999                /*
8000                 * The HWPoisoned page may be not in buddy system, and
8001                 * page_count() is not 0.
8002                 */
8003                if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8004                        pfn++;
8005                        SetPageReserved(page);
8006                        continue;
8007                }
8008
8009                BUG_ON(page_count(page));
8010                BUG_ON(!PageBuddy(page));
8011                order = page_order(page);
8012#ifdef CONFIG_DEBUG_VM
8013                pr_info("remove from free list %lx %d %lx\n",
8014                        pfn, 1 << order, end_pfn);
8015#endif
8016                list_del(&page->lru);
8017                rmv_page_order(page);
8018                zone->free_area[order].nr_free--;
8019                for (i = 0; i < (1 << order); i++)
8020                        SetPageReserved((page+i));
8021                pfn += (1 << order);
8022        }
8023        spin_unlock_irqrestore(&zone->lock, flags);
8024}
8025#endif
8026
8027bool is_free_buddy_page(struct page *page)
8028{
8029        struct zone *zone = page_zone(page);
8030        unsigned long pfn = page_to_pfn(page);
8031        unsigned long flags;
8032        unsigned int order;
8033
8034        spin_lock_irqsave(&zone->lock, flags);
8035        for (order = 0; order < MAX_ORDER; order++) {
8036                struct page *page_head = page - (pfn & ((1 << order) - 1));
8037
8038                if (PageBuddy(page_head) && page_order(page_head) >= order)
8039                        break;
8040        }
8041        spin_unlock_irqrestore(&zone->lock, flags);
8042
8043        return order < MAX_ORDER;
8044}
8045