linux/mm/percpu.c
<<
>>
Prefs
   1/*
   2 * mm/percpu.c - percpu memory allocator
   3 *
   4 * Copyright (C) 2009           SUSE Linux Products GmbH
   5 * Copyright (C) 2009           Tejun Heo <tj@kernel.org>
   6 *
   7 * Copyright (C) 2017           Facebook Inc.
   8 * Copyright (C) 2017           Dennis Zhou <dennisszhou@gmail.com>
   9 *
  10 * This file is released under the GPLv2 license.
  11 *
  12 * The percpu allocator handles both static and dynamic areas.  Percpu
  13 * areas are allocated in chunks which are divided into units.  There is
  14 * a 1-to-1 mapping for units to possible cpus.  These units are grouped
  15 * based on NUMA properties of the machine.
  16 *
  17 *  c0                           c1                         c2
  18 *  -------------------          -------------------        ------------
  19 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
  20 *  -------------------  ......  -------------------  ....  ------------
  21 *
  22 * Allocation is done by offsets into a unit's address space.  Ie., an
  23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
  24 * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
  25 * and even sparse.  Access is handled by configuring percpu base
  26 * registers according to the cpu to unit mappings and offsetting the
  27 * base address using pcpu_unit_size.
  28 *
  29 * There is special consideration for the first chunk which must handle
  30 * the static percpu variables in the kernel image as allocation services
  31 * are not online yet.  In short, the first chunk is structured like so:
  32 *
  33 *                  <Static | [Reserved] | Dynamic>
  34 *
  35 * The static data is copied from the original section managed by the
  36 * linker.  The reserved section, if non-zero, primarily manages static
  37 * percpu variables from kernel modules.  Finally, the dynamic section
  38 * takes care of normal allocations.
  39 *
  40 * The allocator organizes chunks into lists according to free size and
  41 * tries to allocate from the fullest chunk first.  Each chunk is managed
  42 * by a bitmap with metadata blocks.  The allocation map is updated on
  43 * every allocation and free to reflect the current state while the boundary
  44 * map is only updated on allocation.  Each metadata block contains
  45 * information to help mitigate the need to iterate over large portions
  46 * of the bitmap.  The reverse mapping from page to chunk is stored in
  47 * the page's index.  Lastly, units are lazily backed and grow in unison.
  48 *
  49 * There is a unique conversion that goes on here between bytes and bits.
  50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
  51 * tracks the number of pages it is responsible for in nr_pages.  Helper
  52 * functions are used to convert from between the bytes, bits, and blocks.
  53 * All hints are managed in bits unless explicitly stated.
  54 *
  55 * To use this allocator, arch code should do the following:
  56 *
  57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
  58 *   regular address to percpu pointer and back if they need to be
  59 *   different from the default
  60 *
  61 * - use pcpu_setup_first_chunk() during percpu area initialization to
  62 *   setup the first chunk containing the kernel static percpu area
  63 */
  64
  65#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  66
  67#include <linux/bitmap.h>
  68#include <linux/bootmem.h>
  69#include <linux/err.h>
  70#include <linux/lcm.h>
  71#include <linux/list.h>
  72#include <linux/log2.h>
  73#include <linux/mm.h>
  74#include <linux/module.h>
  75#include <linux/mutex.h>
  76#include <linux/percpu.h>
  77#include <linux/pfn.h>
  78#include <linux/slab.h>
  79#include <linux/spinlock.h>
  80#include <linux/vmalloc.h>
  81#include <linux/workqueue.h>
  82#include <linux/kmemleak.h>
  83#include <linux/sched.h>
  84
  85#include <asm/cacheflush.h>
  86#include <asm/sections.h>
  87#include <asm/tlbflush.h>
  88#include <asm/io.h>
  89
  90#define CREATE_TRACE_POINTS
  91#include <trace/events/percpu.h>
  92
  93#include "percpu-internal.h"
  94
  95/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
  96#define PCPU_SLOT_BASE_SHIFT            5
  97
  98#define PCPU_EMPTY_POP_PAGES_LOW        2
  99#define PCPU_EMPTY_POP_PAGES_HIGH       4
 100
 101#ifdef CONFIG_SMP
 102/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
 103#ifndef __addr_to_pcpu_ptr
 104#define __addr_to_pcpu_ptr(addr)                                        \
 105        (void __percpu *)((unsigned long)(addr) -                       \
 106                          (unsigned long)pcpu_base_addr +               \
 107                          (unsigned long)__per_cpu_start)
 108#endif
 109#ifndef __pcpu_ptr_to_addr
 110#define __pcpu_ptr_to_addr(ptr)                                         \
 111        (void __force *)((unsigned long)(ptr) +                         \
 112                         (unsigned long)pcpu_base_addr -                \
 113                         (unsigned long)__per_cpu_start)
 114#endif
 115#else   /* CONFIG_SMP */
 116/* on UP, it's always identity mapped */
 117#define __addr_to_pcpu_ptr(addr)        (void __percpu *)(addr)
 118#define __pcpu_ptr_to_addr(ptr)         (void __force *)(ptr)
 119#endif  /* CONFIG_SMP */
 120
 121static int pcpu_unit_pages __ro_after_init;
 122static int pcpu_unit_size __ro_after_init;
 123static int pcpu_nr_units __ro_after_init;
 124static int pcpu_atom_size __ro_after_init;
 125int pcpu_nr_slots __ro_after_init;
 126static size_t pcpu_chunk_struct_size __ro_after_init;
 127
 128/* cpus with the lowest and highest unit addresses */
 129static unsigned int pcpu_low_unit_cpu __ro_after_init;
 130static unsigned int pcpu_high_unit_cpu __ro_after_init;
 131
 132/* the address of the first chunk which starts with the kernel static area */
 133void *pcpu_base_addr __ro_after_init;
 134EXPORT_SYMBOL_GPL(pcpu_base_addr);
 135
 136static const int *pcpu_unit_map __ro_after_init;                /* cpu -> unit */
 137const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
 138
 139/* group information, used for vm allocation */
 140static int pcpu_nr_groups __ro_after_init;
 141static const unsigned long *pcpu_group_offsets __ro_after_init;
 142static const size_t *pcpu_group_sizes __ro_after_init;
 143
 144/*
 145 * The first chunk which always exists.  Note that unlike other
 146 * chunks, this one can be allocated and mapped in several different
 147 * ways and thus often doesn't live in the vmalloc area.
 148 */
 149struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
 150
 151/*
 152 * Optional reserved chunk.  This chunk reserves part of the first
 153 * chunk and serves it for reserved allocations.  When the reserved
 154 * region doesn't exist, the following variable is NULL.
 155 */
 156struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
 157
 158DEFINE_SPINLOCK(pcpu_lock);     /* all internal data structures */
 159static DEFINE_MUTEX(pcpu_alloc_mutex);  /* chunk create/destroy, [de]pop, map ext */
 160
 161struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
 162
 163/* chunks which need their map areas extended, protected by pcpu_lock */
 164static LIST_HEAD(pcpu_map_extend_chunks);
 165
 166/*
 167 * The number of empty populated pages, protected by pcpu_lock.  The
 168 * reserved chunk doesn't contribute to the count.
 169 */
 170int pcpu_nr_empty_pop_pages;
 171
 172/*
 173 * Balance work is used to populate or destroy chunks asynchronously.  We
 174 * try to keep the number of populated free pages between
 175 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 176 * empty chunk.
 177 */
 178static void pcpu_balance_workfn(struct work_struct *work);
 179static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
 180static bool pcpu_async_enabled __read_mostly;
 181static bool pcpu_atomic_alloc_failed;
 182
 183static void pcpu_schedule_balance_work(void)
 184{
 185        if (pcpu_async_enabled)
 186                schedule_work(&pcpu_balance_work);
 187}
 188
 189/**
 190 * pcpu_addr_in_chunk - check if the address is served from this chunk
 191 * @chunk: chunk of interest
 192 * @addr: percpu address
 193 *
 194 * RETURNS:
 195 * True if the address is served from this chunk.
 196 */
 197static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
 198{
 199        void *start_addr, *end_addr;
 200
 201        if (!chunk)
 202                return false;
 203
 204        start_addr = chunk->base_addr + chunk->start_offset;
 205        end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
 206                   chunk->end_offset;
 207
 208        return addr >= start_addr && addr < end_addr;
 209}
 210
 211static int __pcpu_size_to_slot(int size)
 212{
 213        int highbit = fls(size);        /* size is in bytes */
 214        return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
 215}
 216
 217static int pcpu_size_to_slot(int size)
 218{
 219        if (size == pcpu_unit_size)
 220                return pcpu_nr_slots - 1;
 221        return __pcpu_size_to_slot(size);
 222}
 223
 224static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
 225{
 226        if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
 227                return 0;
 228
 229        return pcpu_size_to_slot(chunk->free_bytes);
 230}
 231
 232/* set the pointer to a chunk in a page struct */
 233static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
 234{
 235        page->index = (unsigned long)pcpu;
 236}
 237
 238/* obtain pointer to a chunk from a page struct */
 239static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
 240{
 241        return (struct pcpu_chunk *)page->index;
 242}
 243
 244static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
 245{
 246        return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
 247}
 248
 249static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
 250{
 251        return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
 252}
 253
 254static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
 255                                     unsigned int cpu, int page_idx)
 256{
 257        return (unsigned long)chunk->base_addr +
 258               pcpu_unit_page_offset(cpu, page_idx);
 259}
 260
 261static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
 262{
 263        *rs = find_next_zero_bit(bitmap, end, *rs);
 264        *re = find_next_bit(bitmap, end, *rs + 1);
 265}
 266
 267static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
 268{
 269        *rs = find_next_bit(bitmap, end, *rs);
 270        *re = find_next_zero_bit(bitmap, end, *rs + 1);
 271}
 272
 273/*
 274 * Bitmap region iterators.  Iterates over the bitmap between
 275 * [@start, @end) in @chunk.  @rs and @re should be integer variables
 276 * and will be set to start and end index of the current free region.
 277 */
 278#define pcpu_for_each_unpop_region(bitmap, rs, re, start, end)               \
 279        for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
 280             (rs) < (re);                                                    \
 281             (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
 282
 283#define pcpu_for_each_pop_region(bitmap, rs, re, start, end)                 \
 284        for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end));   \
 285             (rs) < (re);                                                    \
 286             (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
 287
 288/*
 289 * The following are helper functions to help access bitmaps and convert
 290 * between bitmap offsets to address offsets.
 291 */
 292static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
 293{
 294        return chunk->alloc_map +
 295               (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
 296}
 297
 298static unsigned long pcpu_off_to_block_index(int off)
 299{
 300        return off / PCPU_BITMAP_BLOCK_BITS;
 301}
 302
 303static unsigned long pcpu_off_to_block_off(int off)
 304{
 305        return off & (PCPU_BITMAP_BLOCK_BITS - 1);
 306}
 307
 308static unsigned long pcpu_block_off_to_off(int index, int off)
 309{
 310        return index * PCPU_BITMAP_BLOCK_BITS + off;
 311}
 312
 313/**
 314 * pcpu_next_md_free_region - finds the next hint free area
 315 * @chunk: chunk of interest
 316 * @bit_off: chunk offset
 317 * @bits: size of free area
 318 *
 319 * Helper function for pcpu_for_each_md_free_region.  It checks
 320 * block->contig_hint and performs aggregation across blocks to find the
 321 * next hint.  It modifies bit_off and bits in-place to be consumed in the
 322 * loop.
 323 */
 324static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
 325                                     int *bits)
 326{
 327        int i = pcpu_off_to_block_index(*bit_off);
 328        int block_off = pcpu_off_to_block_off(*bit_off);
 329        struct pcpu_block_md *block;
 330
 331        *bits = 0;
 332        for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
 333             block++, i++) {
 334                /* handles contig area across blocks */
 335                if (*bits) {
 336                        *bits += block->left_free;
 337                        if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
 338                                continue;
 339                        return;
 340                }
 341
 342                /*
 343                 * This checks three things.  First is there a contig_hint to
 344                 * check.  Second, have we checked this hint before by
 345                 * comparing the block_off.  Third, is this the same as the
 346                 * right contig hint.  In the last case, it spills over into
 347                 * the next block and should be handled by the contig area
 348                 * across blocks code.
 349                 */
 350                *bits = block->contig_hint;
 351                if (*bits && block->contig_hint_start >= block_off &&
 352                    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
 353                        *bit_off = pcpu_block_off_to_off(i,
 354                                        block->contig_hint_start);
 355                        return;
 356                }
 357                /* reset to satisfy the second predicate above */
 358                block_off = 0;
 359
 360                *bits = block->right_free;
 361                *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
 362        }
 363}
 364
 365/**
 366 * pcpu_next_fit_region - finds fit areas for a given allocation request
 367 * @chunk: chunk of interest
 368 * @alloc_bits: size of allocation
 369 * @align: alignment of area (max PAGE_SIZE)
 370 * @bit_off: chunk offset
 371 * @bits: size of free area
 372 *
 373 * Finds the next free region that is viable for use with a given size and
 374 * alignment.  This only returns if there is a valid area to be used for this
 375 * allocation.  block->first_free is returned if the allocation request fits
 376 * within the block to see if the request can be fulfilled prior to the contig
 377 * hint.
 378 */
 379static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
 380                                 int align, int *bit_off, int *bits)
 381{
 382        int i = pcpu_off_to_block_index(*bit_off);
 383        int block_off = pcpu_off_to_block_off(*bit_off);
 384        struct pcpu_block_md *block;
 385
 386        *bits = 0;
 387        for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
 388             block++, i++) {
 389                /* handles contig area across blocks */
 390                if (*bits) {
 391                        *bits += block->left_free;
 392                        if (*bits >= alloc_bits)
 393                                return;
 394                        if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
 395                                continue;
 396                }
 397
 398                /* check block->contig_hint */
 399                *bits = ALIGN(block->contig_hint_start, align) -
 400                        block->contig_hint_start;
 401                /*
 402                 * This uses the block offset to determine if this has been
 403                 * checked in the prior iteration.
 404                 */
 405                if (block->contig_hint &&
 406                    block->contig_hint_start >= block_off &&
 407                    block->contig_hint >= *bits + alloc_bits) {
 408                        *bits += alloc_bits + block->contig_hint_start -
 409                                 block->first_free;
 410                        *bit_off = pcpu_block_off_to_off(i, block->first_free);
 411                        return;
 412                }
 413                /* reset to satisfy the second predicate above */
 414                block_off = 0;
 415
 416                *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
 417                                 align);
 418                *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
 419                *bit_off = pcpu_block_off_to_off(i, *bit_off);
 420                if (*bits >= alloc_bits)
 421                        return;
 422        }
 423
 424        /* no valid offsets were found - fail condition */
 425        *bit_off = pcpu_chunk_map_bits(chunk);
 426}
 427
 428/*
 429 * Metadata free area iterators.  These perform aggregation of free areas
 430 * based on the metadata blocks and return the offset @bit_off and size in
 431 * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
 432 * a fit is found for the allocation request.
 433 */
 434#define pcpu_for_each_md_free_region(chunk, bit_off, bits)              \
 435        for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));    \
 436             (bit_off) < pcpu_chunk_map_bits((chunk));                  \
 437             (bit_off) += (bits) + 1,                                   \
 438             pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
 439
 440#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
 441        for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
 442                                  &(bits));                                   \
 443             (bit_off) < pcpu_chunk_map_bits((chunk));                        \
 444             (bit_off) += (bits),                                             \
 445             pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
 446                                  &(bits)))
 447
 448/**
 449 * pcpu_mem_zalloc - allocate memory
 450 * @size: bytes to allocate
 451 * @gfp: allocation flags
 452 *
 453 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 454 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
 455 * This is to facilitate passing through whitelisted flags.  The
 456 * returned memory is always zeroed.
 457 *
 458 * RETURNS:
 459 * Pointer to the allocated area on success, NULL on failure.
 460 */
 461static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
 462{
 463        if (WARN_ON_ONCE(!slab_is_available()))
 464                return NULL;
 465
 466        if (size <= PAGE_SIZE)
 467                return kzalloc(size, gfp);
 468        else
 469                return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
 470}
 471
 472/**
 473 * pcpu_mem_free - free memory
 474 * @ptr: memory to free
 475 *
 476 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
 477 */
 478static void pcpu_mem_free(void *ptr)
 479{
 480        kvfree(ptr);
 481}
 482
 483/**
 484 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 485 * @chunk: chunk of interest
 486 * @oslot: the previous slot it was on
 487 *
 488 * This function is called after an allocation or free changed @chunk.
 489 * New slot according to the changed state is determined and @chunk is
 490 * moved to the slot.  Note that the reserved chunk is never put on
 491 * chunk slots.
 492 *
 493 * CONTEXT:
 494 * pcpu_lock.
 495 */
 496static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
 497{
 498        int nslot = pcpu_chunk_slot(chunk);
 499
 500        if (chunk != pcpu_reserved_chunk && oslot != nslot) {
 501                if (oslot < nslot)
 502                        list_move(&chunk->list, &pcpu_slot[nslot]);
 503                else
 504                        list_move_tail(&chunk->list, &pcpu_slot[nslot]);
 505        }
 506}
 507
 508/**
 509 * pcpu_cnt_pop_pages- counts populated backing pages in range
 510 * @chunk: chunk of interest
 511 * @bit_off: start offset
 512 * @bits: size of area to check
 513 *
 514 * Calculates the number of populated pages in the region
 515 * [page_start, page_end).  This keeps track of how many empty populated
 516 * pages are available and decide if async work should be scheduled.
 517 *
 518 * RETURNS:
 519 * The nr of populated pages.
 520 */
 521static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
 522                                     int bits)
 523{
 524        int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
 525        int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
 526
 527        if (page_start >= page_end)
 528                return 0;
 529
 530        /*
 531         * bitmap_weight counts the number of bits set in a bitmap up to
 532         * the specified number of bits.  This is counting the populated
 533         * pages up to page_end and then subtracting the populated pages
 534         * up to page_start to count the populated pages in
 535         * [page_start, page_end).
 536         */
 537        return bitmap_weight(chunk->populated, page_end) -
 538               bitmap_weight(chunk->populated, page_start);
 539}
 540
 541/**
 542 * pcpu_chunk_update - updates the chunk metadata given a free area
 543 * @chunk: chunk of interest
 544 * @bit_off: chunk offset
 545 * @bits: size of free area
 546 *
 547 * This updates the chunk's contig hint and starting offset given a free area.
 548 * Choose the best starting offset if the contig hint is equal.
 549 */
 550static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
 551{
 552        if (bits > chunk->contig_bits) {
 553                chunk->contig_bits_start = bit_off;
 554                chunk->contig_bits = bits;
 555        } else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
 556                   (!bit_off ||
 557                    __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
 558                /* use the start with the best alignment */
 559                chunk->contig_bits_start = bit_off;
 560        }
 561}
 562
 563/**
 564 * pcpu_chunk_refresh_hint - updates metadata about a chunk
 565 * @chunk: chunk of interest
 566 *
 567 * Iterates over the metadata blocks to find the largest contig area.
 568 * It also counts the populated pages and uses the delta to update the
 569 * global count.
 570 *
 571 * Updates:
 572 *      chunk->contig_bits
 573 *      chunk->contig_bits_start
 574 *      nr_empty_pop_pages (chunk and global)
 575 */
 576static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
 577{
 578        int bit_off, bits, nr_empty_pop_pages;
 579
 580        /* clear metadata */
 581        chunk->contig_bits = 0;
 582
 583        bit_off = chunk->first_bit;
 584        bits = nr_empty_pop_pages = 0;
 585        pcpu_for_each_md_free_region(chunk, bit_off, bits) {
 586                pcpu_chunk_update(chunk, bit_off, bits);
 587
 588                nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
 589        }
 590
 591        /*
 592         * Keep track of nr_empty_pop_pages.
 593         *
 594         * The chunk maintains the previous number of free pages it held,
 595         * so the delta is used to update the global counter.  The reserved
 596         * chunk is not part of the free page count as they are populated
 597         * at init and are special to serving reserved allocations.
 598         */
 599        if (chunk != pcpu_reserved_chunk)
 600                pcpu_nr_empty_pop_pages +=
 601                        (nr_empty_pop_pages - chunk->nr_empty_pop_pages);
 602
 603        chunk->nr_empty_pop_pages = nr_empty_pop_pages;
 604}
 605
 606/**
 607 * pcpu_block_update - updates a block given a free area
 608 * @block: block of interest
 609 * @start: start offset in block
 610 * @end: end offset in block
 611 *
 612 * Updates a block given a known free area.  The region [start, end) is
 613 * expected to be the entirety of the free area within a block.  Chooses
 614 * the best starting offset if the contig hints are equal.
 615 */
 616static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
 617{
 618        int contig = end - start;
 619
 620        block->first_free = min(block->first_free, start);
 621        if (start == 0)
 622                block->left_free = contig;
 623
 624        if (end == PCPU_BITMAP_BLOCK_BITS)
 625                block->right_free = contig;
 626
 627        if (contig > block->contig_hint) {
 628                block->contig_hint_start = start;
 629                block->contig_hint = contig;
 630        } else if (block->contig_hint_start && contig == block->contig_hint &&
 631                   (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
 632                /* use the start with the best alignment */
 633                block->contig_hint_start = start;
 634        }
 635}
 636
 637/**
 638 * pcpu_block_refresh_hint
 639 * @chunk: chunk of interest
 640 * @index: index of the metadata block
 641 *
 642 * Scans over the block beginning at first_free and updates the block
 643 * metadata accordingly.
 644 */
 645static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
 646{
 647        struct pcpu_block_md *block = chunk->md_blocks + index;
 648        unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
 649        int rs, re;     /* region start, region end */
 650
 651        /* clear hints */
 652        block->contig_hint = 0;
 653        block->left_free = block->right_free = 0;
 654
 655        /* iterate over free areas and update the contig hints */
 656        pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
 657                                   PCPU_BITMAP_BLOCK_BITS) {
 658                pcpu_block_update(block, rs, re);
 659        }
 660}
 661
 662/**
 663 * pcpu_block_update_hint_alloc - update hint on allocation path
 664 * @chunk: chunk of interest
 665 * @bit_off: chunk offset
 666 * @bits: size of request
 667 *
 668 * Updates metadata for the allocation path.  The metadata only has to be
 669 * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
 670 * scans are required if the block's contig hint is broken.
 671 */
 672static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
 673                                         int bits)
 674{
 675        struct pcpu_block_md *s_block, *e_block, *block;
 676        int s_index, e_index;   /* block indexes of the freed allocation */
 677        int s_off, e_off;       /* block offsets of the freed allocation */
 678
 679        /*
 680         * Calculate per block offsets.
 681         * The calculation uses an inclusive range, but the resulting offsets
 682         * are [start, end).  e_index always points to the last block in the
 683         * range.
 684         */
 685        s_index = pcpu_off_to_block_index(bit_off);
 686        e_index = pcpu_off_to_block_index(bit_off + bits - 1);
 687        s_off = pcpu_off_to_block_off(bit_off);
 688        e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
 689
 690        s_block = chunk->md_blocks + s_index;
 691        e_block = chunk->md_blocks + e_index;
 692
 693        /*
 694         * Update s_block.
 695         * block->first_free must be updated if the allocation takes its place.
 696         * If the allocation breaks the contig_hint, a scan is required to
 697         * restore this hint.
 698         */
 699        if (s_off == s_block->first_free)
 700                s_block->first_free = find_next_zero_bit(
 701                                        pcpu_index_alloc_map(chunk, s_index),
 702                                        PCPU_BITMAP_BLOCK_BITS,
 703                                        s_off + bits);
 704
 705        if (s_off >= s_block->contig_hint_start &&
 706            s_off < s_block->contig_hint_start + s_block->contig_hint) {
 707                /* block contig hint is broken - scan to fix it */
 708                pcpu_block_refresh_hint(chunk, s_index);
 709        } else {
 710                /* update left and right contig manually */
 711                s_block->left_free = min(s_block->left_free, s_off);
 712                if (s_index == e_index)
 713                        s_block->right_free = min_t(int, s_block->right_free,
 714                                        PCPU_BITMAP_BLOCK_BITS - e_off);
 715                else
 716                        s_block->right_free = 0;
 717        }
 718
 719        /*
 720         * Update e_block.
 721         */
 722        if (s_index != e_index) {
 723                /*
 724                 * When the allocation is across blocks, the end is along
 725                 * the left part of the e_block.
 726                 */
 727                e_block->first_free = find_next_zero_bit(
 728                                pcpu_index_alloc_map(chunk, e_index),
 729                                PCPU_BITMAP_BLOCK_BITS, e_off);
 730
 731                if (e_off == PCPU_BITMAP_BLOCK_BITS) {
 732                        /* reset the block */
 733                        e_block++;
 734                } else {
 735                        if (e_off > e_block->contig_hint_start) {
 736                                /* contig hint is broken - scan to fix it */
 737                                pcpu_block_refresh_hint(chunk, e_index);
 738                        } else {
 739                                e_block->left_free = 0;
 740                                e_block->right_free =
 741                                        min_t(int, e_block->right_free,
 742                                              PCPU_BITMAP_BLOCK_BITS - e_off);
 743                        }
 744                }
 745
 746                /* update in-between md_blocks */
 747                for (block = s_block + 1; block < e_block; block++) {
 748                        block->contig_hint = 0;
 749                        block->left_free = 0;
 750                        block->right_free = 0;
 751                }
 752        }
 753
 754        /*
 755         * The only time a full chunk scan is required is if the chunk
 756         * contig hint is broken.  Otherwise, it means a smaller space
 757         * was used and therefore the chunk contig hint is still correct.
 758         */
 759        if (bit_off >= chunk->contig_bits_start  &&
 760            bit_off < chunk->contig_bits_start + chunk->contig_bits)
 761                pcpu_chunk_refresh_hint(chunk);
 762}
 763
 764/**
 765 * pcpu_block_update_hint_free - updates the block hints on the free path
 766 * @chunk: chunk of interest
 767 * @bit_off: chunk offset
 768 * @bits: size of request
 769 *
 770 * Updates metadata for the allocation path.  This avoids a blind block
 771 * refresh by making use of the block contig hints.  If this fails, it scans
 772 * forward and backward to determine the extent of the free area.  This is
 773 * capped at the boundary of blocks.
 774 *
 775 * A chunk update is triggered if a page becomes free, a block becomes free,
 776 * or the free spans across blocks.  This tradeoff is to minimize iterating
 777 * over the block metadata to update chunk->contig_bits.  chunk->contig_bits
 778 * may be off by up to a page, but it will never be more than the available
 779 * space.  If the contig hint is contained in one block, it will be accurate.
 780 */
 781static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
 782                                        int bits)
 783{
 784        struct pcpu_block_md *s_block, *e_block, *block;
 785        int s_index, e_index;   /* block indexes of the freed allocation */
 786        int s_off, e_off;       /* block offsets of the freed allocation */
 787        int start, end;         /* start and end of the whole free area */
 788
 789        /*
 790         * Calculate per block offsets.
 791         * The calculation uses an inclusive range, but the resulting offsets
 792         * are [start, end).  e_index always points to the last block in the
 793         * range.
 794         */
 795        s_index = pcpu_off_to_block_index(bit_off);
 796        e_index = pcpu_off_to_block_index(bit_off + bits - 1);
 797        s_off = pcpu_off_to_block_off(bit_off);
 798        e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
 799
 800        s_block = chunk->md_blocks + s_index;
 801        e_block = chunk->md_blocks + e_index;
 802
 803        /*
 804         * Check if the freed area aligns with the block->contig_hint.
 805         * If it does, then the scan to find the beginning/end of the
 806         * larger free area can be avoided.
 807         *
 808         * start and end refer to beginning and end of the free area
 809         * within each their respective blocks.  This is not necessarily
 810         * the entire free area as it may span blocks past the beginning
 811         * or end of the block.
 812         */
 813        start = s_off;
 814        if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
 815                start = s_block->contig_hint_start;
 816        } else {
 817                /*
 818                 * Scan backwards to find the extent of the free area.
 819                 * find_last_bit returns the starting bit, so if the start bit
 820                 * is returned, that means there was no last bit and the
 821                 * remainder of the chunk is free.
 822                 */
 823                int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
 824                                          start);
 825                start = (start == l_bit) ? 0 : l_bit + 1;
 826        }
 827
 828        end = e_off;
 829        if (e_off == e_block->contig_hint_start)
 830                end = e_block->contig_hint_start + e_block->contig_hint;
 831        else
 832                end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
 833                                    PCPU_BITMAP_BLOCK_BITS, end);
 834
 835        /* update s_block */
 836        e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
 837        pcpu_block_update(s_block, start, e_off);
 838
 839        /* freeing in the same block */
 840        if (s_index != e_index) {
 841                /* update e_block */
 842                pcpu_block_update(e_block, 0, end);
 843
 844                /* reset md_blocks in the middle */
 845                for (block = s_block + 1; block < e_block; block++) {
 846                        block->first_free = 0;
 847                        block->contig_hint_start = 0;
 848                        block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
 849                        block->left_free = PCPU_BITMAP_BLOCK_BITS;
 850                        block->right_free = PCPU_BITMAP_BLOCK_BITS;
 851                }
 852        }
 853
 854        /*
 855         * Refresh chunk metadata when the free makes a page free, a block
 856         * free, or spans across blocks.  The contig hint may be off by up to
 857         * a page, but if the hint is contained in a block, it will be accurate
 858         * with the else condition below.
 859         */
 860        if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
 861             ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
 862            s_index != e_index)
 863                pcpu_chunk_refresh_hint(chunk);
 864        else
 865                pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
 866                                  s_block->contig_hint);
 867}
 868
 869/**
 870 * pcpu_is_populated - determines if the region is populated
 871 * @chunk: chunk of interest
 872 * @bit_off: chunk offset
 873 * @bits: size of area
 874 * @next_off: return value for the next offset to start searching
 875 *
 876 * For atomic allocations, check if the backing pages are populated.
 877 *
 878 * RETURNS:
 879 * Bool if the backing pages are populated.
 880 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
 881 */
 882static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
 883                              int *next_off)
 884{
 885        int page_start, page_end, rs, re;
 886
 887        page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
 888        page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
 889
 890        rs = page_start;
 891        pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
 892        if (rs >= page_end)
 893                return true;
 894
 895        *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
 896        return false;
 897}
 898
 899/**
 900 * pcpu_find_block_fit - finds the block index to start searching
 901 * @chunk: chunk of interest
 902 * @alloc_bits: size of request in allocation units
 903 * @align: alignment of area (max PAGE_SIZE bytes)
 904 * @pop_only: use populated regions only
 905 *
 906 * Given a chunk and an allocation spec, find the offset to begin searching
 907 * for a free region.  This iterates over the bitmap metadata blocks to
 908 * find an offset that will be guaranteed to fit the requirements.  It is
 909 * not quite first fit as if the allocation does not fit in the contig hint
 910 * of a block or chunk, it is skipped.  This errs on the side of caution
 911 * to prevent excess iteration.  Poor alignment can cause the allocator to
 912 * skip over blocks and chunks that have valid free areas.
 913 *
 914 * RETURNS:
 915 * The offset in the bitmap to begin searching.
 916 * -1 if no offset is found.
 917 */
 918static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
 919                               size_t align, bool pop_only)
 920{
 921        int bit_off, bits, next_off;
 922
 923        /*
 924         * Check to see if the allocation can fit in the chunk's contig hint.
 925         * This is an optimization to prevent scanning by assuming if it
 926         * cannot fit in the global hint, there is memory pressure and creating
 927         * a new chunk would happen soon.
 928         */
 929        bit_off = ALIGN(chunk->contig_bits_start, align) -
 930                  chunk->contig_bits_start;
 931        if (bit_off + alloc_bits > chunk->contig_bits)
 932                return -1;
 933
 934        bit_off = chunk->first_bit;
 935        bits = 0;
 936        pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
 937                if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
 938                                                   &next_off))
 939                        break;
 940
 941                bit_off = next_off;
 942                bits = 0;
 943        }
 944
 945        if (bit_off == pcpu_chunk_map_bits(chunk))
 946                return -1;
 947
 948        return bit_off;
 949}
 950
 951/**
 952 * pcpu_alloc_area - allocates an area from a pcpu_chunk
 953 * @chunk: chunk of interest
 954 * @alloc_bits: size of request in allocation units
 955 * @align: alignment of area (max PAGE_SIZE)
 956 * @start: bit_off to start searching
 957 *
 958 * This function takes in a @start offset to begin searching to fit an
 959 * allocation of @alloc_bits with alignment @align.  It needs to scan
 960 * the allocation map because if it fits within the block's contig hint,
 961 * @start will be block->first_free. This is an attempt to fill the
 962 * allocation prior to breaking the contig hint.  The allocation and
 963 * boundary maps are updated accordingly if it confirms a valid
 964 * free area.
 965 *
 966 * RETURNS:
 967 * Allocated addr offset in @chunk on success.
 968 * -1 if no matching area is found.
 969 */
 970static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
 971                           size_t align, int start)
 972{
 973        size_t align_mask = (align) ? (align - 1) : 0;
 974        int bit_off, end, oslot;
 975
 976        lockdep_assert_held(&pcpu_lock);
 977
 978        oslot = pcpu_chunk_slot(chunk);
 979
 980        /*
 981         * Search to find a fit.
 982         */
 983        end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
 984        bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
 985                                             alloc_bits, align_mask);
 986        if (bit_off >= end)
 987                return -1;
 988
 989        /* update alloc map */
 990        bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
 991
 992        /* update boundary map */
 993        set_bit(bit_off, chunk->bound_map);
 994        bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
 995        set_bit(bit_off + alloc_bits, chunk->bound_map);
 996
 997        chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
 998
 999        /* update first free bit */
1000        if (bit_off == chunk->first_bit)
1001                chunk->first_bit = find_next_zero_bit(
1002                                        chunk->alloc_map,
1003                                        pcpu_chunk_map_bits(chunk),
1004                                        bit_off + alloc_bits);
1005
1006        pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1007
1008        pcpu_chunk_relocate(chunk, oslot);
1009
1010        return bit_off * PCPU_MIN_ALLOC_SIZE;
1011}
1012
1013/**
1014 * pcpu_free_area - frees the corresponding offset
1015 * @chunk: chunk of interest
1016 * @off: addr offset into chunk
1017 *
1018 * This function determines the size of an allocation to free using
1019 * the boundary bitmap and clears the allocation map.
1020 */
1021static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1022{
1023        int bit_off, bits, end, oslot;
1024
1025        lockdep_assert_held(&pcpu_lock);
1026        pcpu_stats_area_dealloc(chunk);
1027
1028        oslot = pcpu_chunk_slot(chunk);
1029
1030        bit_off = off / PCPU_MIN_ALLOC_SIZE;
1031
1032        /* find end index */
1033        end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1034                            bit_off + 1);
1035        bits = end - bit_off;
1036        bitmap_clear(chunk->alloc_map, bit_off, bits);
1037
1038        /* update metadata */
1039        chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1040
1041        /* update first free bit */
1042        chunk->first_bit = min(chunk->first_bit, bit_off);
1043
1044        pcpu_block_update_hint_free(chunk, bit_off, bits);
1045
1046        pcpu_chunk_relocate(chunk, oslot);
1047}
1048
1049static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1050{
1051        struct pcpu_block_md *md_block;
1052
1053        for (md_block = chunk->md_blocks;
1054             md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1055             md_block++) {
1056                md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1057                md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1058                md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1059        }
1060}
1061
1062/**
1063 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1064 * @tmp_addr: the start of the region served
1065 * @map_size: size of the region served
1066 *
1067 * This is responsible for creating the chunks that serve the first chunk.  The
1068 * base_addr is page aligned down of @tmp_addr while the region end is page
1069 * aligned up.  Offsets are kept track of to determine the region served. All
1070 * this is done to appease the bitmap allocator in avoiding partial blocks.
1071 *
1072 * RETURNS:
1073 * Chunk serving the region at @tmp_addr of @map_size.
1074 */
1075static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1076                                                         int map_size)
1077{
1078        struct pcpu_chunk *chunk;
1079        unsigned long aligned_addr, lcm_align;
1080        int start_offset, offset_bits, region_size, region_bits;
1081
1082        /* region calculations */
1083        aligned_addr = tmp_addr & PAGE_MASK;
1084
1085        start_offset = tmp_addr - aligned_addr;
1086
1087        /*
1088         * Align the end of the region with the LCM of PAGE_SIZE and
1089         * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1090         * the other.
1091         */
1092        lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1093        region_size = ALIGN(start_offset + map_size, lcm_align);
1094
1095        /* allocate chunk */
1096        chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
1097                                    BITS_TO_LONGS(region_size >> PAGE_SHIFT),
1098                                    0);
1099
1100        INIT_LIST_HEAD(&chunk->list);
1101
1102        chunk->base_addr = (void *)aligned_addr;
1103        chunk->start_offset = start_offset;
1104        chunk->end_offset = region_size - chunk->start_offset - map_size;
1105
1106        chunk->nr_pages = region_size >> PAGE_SHIFT;
1107        region_bits = pcpu_chunk_map_bits(chunk);
1108
1109        chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
1110                                               sizeof(chunk->alloc_map[0]), 0);
1111        chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
1112                                               sizeof(chunk->bound_map[0]), 0);
1113        chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
1114                                               sizeof(chunk->md_blocks[0]), 0);
1115        pcpu_init_md_blocks(chunk);
1116
1117        /* manage populated page bitmap */
1118        chunk->immutable = true;
1119        bitmap_fill(chunk->populated, chunk->nr_pages);
1120        chunk->nr_populated = chunk->nr_pages;
1121        chunk->nr_empty_pop_pages =
1122                pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
1123                                   map_size / PCPU_MIN_ALLOC_SIZE);
1124
1125        chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1126        chunk->free_bytes = map_size;
1127
1128        if (chunk->start_offset) {
1129                /* hide the beginning of the bitmap */
1130                offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1131                bitmap_set(chunk->alloc_map, 0, offset_bits);
1132                set_bit(0, chunk->bound_map);
1133                set_bit(offset_bits, chunk->bound_map);
1134
1135                chunk->first_bit = offset_bits;
1136
1137                pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1138        }
1139
1140        if (chunk->end_offset) {
1141                /* hide the end of the bitmap */
1142                offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1143                bitmap_set(chunk->alloc_map,
1144                           pcpu_chunk_map_bits(chunk) - offset_bits,
1145                           offset_bits);
1146                set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1147                        chunk->bound_map);
1148                set_bit(region_bits, chunk->bound_map);
1149
1150                pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1151                                             - offset_bits, offset_bits);
1152        }
1153
1154        return chunk;
1155}
1156
1157static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1158{
1159        struct pcpu_chunk *chunk;
1160        int region_bits;
1161
1162        chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1163        if (!chunk)
1164                return NULL;
1165
1166        INIT_LIST_HEAD(&chunk->list);
1167        chunk->nr_pages = pcpu_unit_pages;
1168        region_bits = pcpu_chunk_map_bits(chunk);
1169
1170        chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1171                                           sizeof(chunk->alloc_map[0]), gfp);
1172        if (!chunk->alloc_map)
1173                goto alloc_map_fail;
1174
1175        chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1176                                           sizeof(chunk->bound_map[0]), gfp);
1177        if (!chunk->bound_map)
1178                goto bound_map_fail;
1179
1180        chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1181                                           sizeof(chunk->md_blocks[0]), gfp);
1182        if (!chunk->md_blocks)
1183                goto md_blocks_fail;
1184
1185        pcpu_init_md_blocks(chunk);
1186
1187        /* init metadata */
1188        chunk->contig_bits = region_bits;
1189        chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1190
1191        return chunk;
1192
1193md_blocks_fail:
1194        pcpu_mem_free(chunk->bound_map);
1195bound_map_fail:
1196        pcpu_mem_free(chunk->alloc_map);
1197alloc_map_fail:
1198        pcpu_mem_free(chunk);
1199
1200        return NULL;
1201}
1202
1203static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1204{
1205        if (!chunk)
1206                return;
1207        pcpu_mem_free(chunk->bound_map);
1208        pcpu_mem_free(chunk->alloc_map);
1209        pcpu_mem_free(chunk);
1210}
1211
1212/**
1213 * pcpu_chunk_populated - post-population bookkeeping
1214 * @chunk: pcpu_chunk which got populated
1215 * @page_start: the start page
1216 * @page_end: the end page
1217 * @for_alloc: if this is to populate for allocation
1218 *
1219 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1220 * the bookkeeping information accordingly.  Must be called after each
1221 * successful population.
1222 *
1223 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1224 * is to serve an allocation in that area.
1225 */
1226static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1227                                 int page_end, bool for_alloc)
1228{
1229        int nr = page_end - page_start;
1230
1231        lockdep_assert_held(&pcpu_lock);
1232
1233        bitmap_set(chunk->populated, page_start, nr);
1234        chunk->nr_populated += nr;
1235
1236        if (!for_alloc) {
1237                chunk->nr_empty_pop_pages += nr;
1238                pcpu_nr_empty_pop_pages += nr;
1239        }
1240}
1241
1242/**
1243 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1244 * @chunk: pcpu_chunk which got depopulated
1245 * @page_start: the start page
1246 * @page_end: the end page
1247 *
1248 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1249 * Update the bookkeeping information accordingly.  Must be called after
1250 * each successful depopulation.
1251 */
1252static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1253                                   int page_start, int page_end)
1254{
1255        int nr = page_end - page_start;
1256
1257        lockdep_assert_held(&pcpu_lock);
1258
1259        bitmap_clear(chunk->populated, page_start, nr);
1260        chunk->nr_populated -= nr;
1261        chunk->nr_empty_pop_pages -= nr;
1262        pcpu_nr_empty_pop_pages -= nr;
1263}
1264
1265/*
1266 * Chunk management implementation.
1267 *
1268 * To allow different implementations, chunk alloc/free and
1269 * [de]population are implemented in a separate file which is pulled
1270 * into this file and compiled together.  The following functions
1271 * should be implemented.
1272 *
1273 * pcpu_populate_chunk          - populate the specified range of a chunk
1274 * pcpu_depopulate_chunk        - depopulate the specified range of a chunk
1275 * pcpu_create_chunk            - create a new chunk
1276 * pcpu_destroy_chunk           - destroy a chunk, always preceded by full depop
1277 * pcpu_addr_to_page            - translate address to physical address
1278 * pcpu_verify_alloc_info       - check alloc_info is acceptable during init
1279 */
1280static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1281                               int page_start, int page_end, gfp_t gfp);
1282static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1283                                  int page_start, int page_end);
1284static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1285static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1286static struct page *pcpu_addr_to_page(void *addr);
1287static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1288
1289#ifdef CONFIG_NEED_PER_CPU_KM
1290#include "percpu-km.c"
1291#else
1292#include "percpu-vm.c"
1293#endif
1294
1295/**
1296 * pcpu_chunk_addr_search - determine chunk containing specified address
1297 * @addr: address for which the chunk needs to be determined.
1298 *
1299 * This is an internal function that handles all but static allocations.
1300 * Static percpu address values should never be passed into the allocator.
1301 *
1302 * RETURNS:
1303 * The address of the found chunk.
1304 */
1305static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1306{
1307        /* is it in the dynamic region (first chunk)? */
1308        if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1309                return pcpu_first_chunk;
1310
1311        /* is it in the reserved region? */
1312        if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1313                return pcpu_reserved_chunk;
1314
1315        /*
1316         * The address is relative to unit0 which might be unused and
1317         * thus unmapped.  Offset the address to the unit space of the
1318         * current processor before looking it up in the vmalloc
1319         * space.  Note that any possible cpu id can be used here, so
1320         * there's no need to worry about preemption or cpu hotplug.
1321         */
1322        addr += pcpu_unit_offsets[raw_smp_processor_id()];
1323        return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1324}
1325
1326/**
1327 * pcpu_alloc - the percpu allocator
1328 * @size: size of area to allocate in bytes
1329 * @align: alignment of area (max PAGE_SIZE)
1330 * @reserved: allocate from the reserved chunk if available
1331 * @gfp: allocation flags
1332 *
1333 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1334 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1335 * then no warning will be triggered on invalid or failed allocation
1336 * requests.
1337 *
1338 * RETURNS:
1339 * Percpu pointer to the allocated area on success, NULL on failure.
1340 */
1341static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1342                                 gfp_t gfp)
1343{
1344        /* whitelisted flags that can be passed to the backing allocators */
1345        gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1346        bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1347        bool do_warn = !(gfp & __GFP_NOWARN);
1348        static int warn_limit = 10;
1349        struct pcpu_chunk *chunk;
1350        const char *err;
1351        int slot, off, cpu, ret;
1352        unsigned long flags;
1353        void __percpu *ptr;
1354        size_t bits, bit_align;
1355
1356        /*
1357         * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1358         * therefore alignment must be a minimum of that many bytes.
1359         * An allocation may have internal fragmentation from rounding up
1360         * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1361         */
1362        if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1363                align = PCPU_MIN_ALLOC_SIZE;
1364
1365        size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1366        bits = size >> PCPU_MIN_ALLOC_SHIFT;
1367        bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1368
1369        if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1370                     !is_power_of_2(align))) {
1371                WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1372                     size, align);
1373                return NULL;
1374        }
1375
1376        if (!is_atomic) {
1377                /*
1378                 * pcpu_balance_workfn() allocates memory under this mutex,
1379                 * and it may wait for memory reclaim. Allow current task
1380                 * to become OOM victim, in case of memory pressure.
1381                 */
1382                if (gfp & __GFP_NOFAIL)
1383                        mutex_lock(&pcpu_alloc_mutex);
1384                else if (mutex_lock_killable(&pcpu_alloc_mutex))
1385                        return NULL;
1386        }
1387
1388        spin_lock_irqsave(&pcpu_lock, flags);
1389
1390        /* serve reserved allocations from the reserved chunk if available */
1391        if (reserved && pcpu_reserved_chunk) {
1392                chunk = pcpu_reserved_chunk;
1393
1394                off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1395                if (off < 0) {
1396                        err = "alloc from reserved chunk failed";
1397                        goto fail_unlock;
1398                }
1399
1400                off = pcpu_alloc_area(chunk, bits, bit_align, off);
1401                if (off >= 0)
1402                        goto area_found;
1403
1404                err = "alloc from reserved chunk failed";
1405                goto fail_unlock;
1406        }
1407
1408restart:
1409        /* search through normal chunks */
1410        for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1411                list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1412                        off = pcpu_find_block_fit(chunk, bits, bit_align,
1413                                                  is_atomic);
1414                        if (off < 0)
1415                                continue;
1416
1417                        off = pcpu_alloc_area(chunk, bits, bit_align, off);
1418                        if (off >= 0)
1419                                goto area_found;
1420
1421                }
1422        }
1423
1424        spin_unlock_irqrestore(&pcpu_lock, flags);
1425
1426        /*
1427         * No space left.  Create a new chunk.  We don't want multiple
1428         * tasks to create chunks simultaneously.  Serialize and create iff
1429         * there's still no empty chunk after grabbing the mutex.
1430         */
1431        if (is_atomic) {
1432                err = "atomic alloc failed, no space left";
1433                goto fail;
1434        }
1435
1436        if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1437                chunk = pcpu_create_chunk(pcpu_gfp);
1438                if (!chunk) {
1439                        err = "failed to allocate new chunk";
1440                        goto fail;
1441                }
1442
1443                spin_lock_irqsave(&pcpu_lock, flags);
1444                pcpu_chunk_relocate(chunk, -1);
1445        } else {
1446                spin_lock_irqsave(&pcpu_lock, flags);
1447        }
1448
1449        goto restart;
1450
1451area_found:
1452        pcpu_stats_area_alloc(chunk, size);
1453        spin_unlock_irqrestore(&pcpu_lock, flags);
1454
1455        /* populate if not all pages are already there */
1456        if (!is_atomic) {
1457                int page_start, page_end, rs, re;
1458
1459                page_start = PFN_DOWN(off);
1460                page_end = PFN_UP(off + size);
1461
1462                pcpu_for_each_unpop_region(chunk->populated, rs, re,
1463                                           page_start, page_end) {
1464                        WARN_ON(chunk->immutable);
1465
1466                        ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1467
1468                        spin_lock_irqsave(&pcpu_lock, flags);
1469                        if (ret) {
1470                                pcpu_free_area(chunk, off);
1471                                err = "failed to populate";
1472                                goto fail_unlock;
1473                        }
1474                        pcpu_chunk_populated(chunk, rs, re, true);
1475                        spin_unlock_irqrestore(&pcpu_lock, flags);
1476                }
1477
1478                mutex_unlock(&pcpu_alloc_mutex);
1479        }
1480
1481        if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1482                pcpu_schedule_balance_work();
1483
1484        /* clear the areas and return address relative to base address */
1485        for_each_possible_cpu(cpu)
1486                memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1487
1488        ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1489        kmemleak_alloc_percpu(ptr, size, gfp);
1490
1491        trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1492                        chunk->base_addr, off, ptr);
1493
1494        return ptr;
1495
1496fail_unlock:
1497        spin_unlock_irqrestore(&pcpu_lock, flags);
1498fail:
1499        trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1500
1501        if (!is_atomic && do_warn && warn_limit) {
1502                pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1503                        size, align, is_atomic, err);
1504                dump_stack();
1505                if (!--warn_limit)
1506                        pr_info("limit reached, disable warning\n");
1507        }
1508        if (is_atomic) {
1509                /* see the flag handling in pcpu_blance_workfn() */
1510                pcpu_atomic_alloc_failed = true;
1511                pcpu_schedule_balance_work();
1512        } else {
1513                mutex_unlock(&pcpu_alloc_mutex);
1514        }
1515        return NULL;
1516}
1517
1518/**
1519 * __alloc_percpu_gfp - allocate dynamic percpu area
1520 * @size: size of area to allocate in bytes
1521 * @align: alignment of area (max PAGE_SIZE)
1522 * @gfp: allocation flags
1523 *
1524 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1525 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1526 * be called from any context but is a lot more likely to fail. If @gfp
1527 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1528 * allocation requests.
1529 *
1530 * RETURNS:
1531 * Percpu pointer to the allocated area on success, NULL on failure.
1532 */
1533void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1534{
1535        return pcpu_alloc(size, align, false, gfp);
1536}
1537EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1538
1539/**
1540 * __alloc_percpu - allocate dynamic percpu area
1541 * @size: size of area to allocate in bytes
1542 * @align: alignment of area (max PAGE_SIZE)
1543 *
1544 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1545 */
1546void __percpu *__alloc_percpu(size_t size, size_t align)
1547{
1548        return pcpu_alloc(size, align, false, GFP_KERNEL);
1549}
1550EXPORT_SYMBOL_GPL(__alloc_percpu);
1551
1552/**
1553 * __alloc_reserved_percpu - allocate reserved percpu area
1554 * @size: size of area to allocate in bytes
1555 * @align: alignment of area (max PAGE_SIZE)
1556 *
1557 * Allocate zero-filled percpu area of @size bytes aligned at @align
1558 * from reserved percpu area if arch has set it up; otherwise,
1559 * allocation is served from the same dynamic area.  Might sleep.
1560 * Might trigger writeouts.
1561 *
1562 * CONTEXT:
1563 * Does GFP_KERNEL allocation.
1564 *
1565 * RETURNS:
1566 * Percpu pointer to the allocated area on success, NULL on failure.
1567 */
1568void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1569{
1570        return pcpu_alloc(size, align, true, GFP_KERNEL);
1571}
1572
1573/**
1574 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1575 * @work: unused
1576 *
1577 * Reclaim all fully free chunks except for the first one.  This is also
1578 * responsible for maintaining the pool of empty populated pages.  However,
1579 * it is possible that this is called when physical memory is scarce causing
1580 * OOM killer to be triggered.  We should avoid doing so until an actual
1581 * allocation causes the failure as it is possible that requests can be
1582 * serviced from already backed regions.
1583 */
1584static void pcpu_balance_workfn(struct work_struct *work)
1585{
1586        /* gfp flags passed to underlying allocators */
1587        const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1588        LIST_HEAD(to_free);
1589        struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1590        struct pcpu_chunk *chunk, *next;
1591        int slot, nr_to_pop, ret;
1592
1593        /*
1594         * There's no reason to keep around multiple unused chunks and VM
1595         * areas can be scarce.  Destroy all free chunks except for one.
1596         */
1597        mutex_lock(&pcpu_alloc_mutex);
1598        spin_lock_irq(&pcpu_lock);
1599
1600        list_for_each_entry_safe(chunk, next, free_head, list) {
1601                WARN_ON(chunk->immutable);
1602
1603                /* spare the first one */
1604                if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1605                        continue;
1606
1607                list_move(&chunk->list, &to_free);
1608        }
1609
1610        spin_unlock_irq(&pcpu_lock);
1611
1612        list_for_each_entry_safe(chunk, next, &to_free, list) {
1613                int rs, re;
1614
1615                pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1616                                         chunk->nr_pages) {
1617                        pcpu_depopulate_chunk(chunk, rs, re);
1618                        spin_lock_irq(&pcpu_lock);
1619                        pcpu_chunk_depopulated(chunk, rs, re);
1620                        spin_unlock_irq(&pcpu_lock);
1621                }
1622                pcpu_destroy_chunk(chunk);
1623                cond_resched();
1624        }
1625
1626        /*
1627         * Ensure there are certain number of free populated pages for
1628         * atomic allocs.  Fill up from the most packed so that atomic
1629         * allocs don't increase fragmentation.  If atomic allocation
1630         * failed previously, always populate the maximum amount.  This
1631         * should prevent atomic allocs larger than PAGE_SIZE from keeping
1632         * failing indefinitely; however, large atomic allocs are not
1633         * something we support properly and can be highly unreliable and
1634         * inefficient.
1635         */
1636retry_pop:
1637        if (pcpu_atomic_alloc_failed) {
1638                nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1639                /* best effort anyway, don't worry about synchronization */
1640                pcpu_atomic_alloc_failed = false;
1641        } else {
1642                nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1643                                  pcpu_nr_empty_pop_pages,
1644                                  0, PCPU_EMPTY_POP_PAGES_HIGH);
1645        }
1646
1647        for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1648                int nr_unpop = 0, rs, re;
1649
1650                if (!nr_to_pop)
1651                        break;
1652
1653                spin_lock_irq(&pcpu_lock);
1654                list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1655                        nr_unpop = chunk->nr_pages - chunk->nr_populated;
1656                        if (nr_unpop)
1657                                break;
1658                }
1659                spin_unlock_irq(&pcpu_lock);
1660
1661                if (!nr_unpop)
1662                        continue;
1663
1664                /* @chunk can't go away while pcpu_alloc_mutex is held */
1665                pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1666                                           chunk->nr_pages) {
1667                        int nr = min(re - rs, nr_to_pop);
1668
1669                        ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1670                        if (!ret) {
1671                                nr_to_pop -= nr;
1672                                spin_lock_irq(&pcpu_lock);
1673                                pcpu_chunk_populated(chunk, rs, rs + nr, false);
1674                                spin_unlock_irq(&pcpu_lock);
1675                        } else {
1676                                nr_to_pop = 0;
1677                        }
1678
1679                        if (!nr_to_pop)
1680                                break;
1681                }
1682        }
1683
1684        if (nr_to_pop) {
1685                /* ran out of chunks to populate, create a new one and retry */
1686                chunk = pcpu_create_chunk(gfp);
1687                if (chunk) {
1688                        spin_lock_irq(&pcpu_lock);
1689                        pcpu_chunk_relocate(chunk, -1);
1690                        spin_unlock_irq(&pcpu_lock);
1691                        goto retry_pop;
1692                }
1693        }
1694
1695        mutex_unlock(&pcpu_alloc_mutex);
1696}
1697
1698/**
1699 * free_percpu - free percpu area
1700 * @ptr: pointer to area to free
1701 *
1702 * Free percpu area @ptr.
1703 *
1704 * CONTEXT:
1705 * Can be called from atomic context.
1706 */
1707void free_percpu(void __percpu *ptr)
1708{
1709        void *addr;
1710        struct pcpu_chunk *chunk;
1711        unsigned long flags;
1712        int off;
1713
1714        if (!ptr)
1715                return;
1716
1717        kmemleak_free_percpu(ptr);
1718
1719        addr = __pcpu_ptr_to_addr(ptr);
1720
1721        spin_lock_irqsave(&pcpu_lock, flags);
1722
1723        chunk = pcpu_chunk_addr_search(addr);
1724        off = addr - chunk->base_addr;
1725
1726        pcpu_free_area(chunk, off);
1727
1728        /* if there are more than one fully free chunks, wake up grim reaper */
1729        if (chunk->free_bytes == pcpu_unit_size) {
1730                struct pcpu_chunk *pos;
1731
1732                list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1733                        if (pos != chunk) {
1734                                pcpu_schedule_balance_work();
1735                                break;
1736                        }
1737        }
1738
1739        trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1740
1741        spin_unlock_irqrestore(&pcpu_lock, flags);
1742}
1743EXPORT_SYMBOL_GPL(free_percpu);
1744
1745bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1746{
1747#ifdef CONFIG_SMP
1748        const size_t static_size = __per_cpu_end - __per_cpu_start;
1749        void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1750        unsigned int cpu;
1751
1752        for_each_possible_cpu(cpu) {
1753                void *start = per_cpu_ptr(base, cpu);
1754                void *va = (void *)addr;
1755
1756                if (va >= start && va < start + static_size) {
1757                        if (can_addr) {
1758                                *can_addr = (unsigned long) (va - start);
1759                                *can_addr += (unsigned long)
1760                                        per_cpu_ptr(base, get_boot_cpu_id());
1761                        }
1762                        return true;
1763                }
1764        }
1765#endif
1766        /* on UP, can't distinguish from other static vars, always false */
1767        return false;
1768}
1769
1770/**
1771 * is_kernel_percpu_address - test whether address is from static percpu area
1772 * @addr: address to test
1773 *
1774 * Test whether @addr belongs to in-kernel static percpu area.  Module
1775 * static percpu areas are not considered.  For those, use
1776 * is_module_percpu_address().
1777 *
1778 * RETURNS:
1779 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1780 */
1781bool is_kernel_percpu_address(unsigned long addr)
1782{
1783        return __is_kernel_percpu_address(addr, NULL);
1784}
1785
1786/**
1787 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1788 * @addr: the address to be converted to physical address
1789 *
1790 * Given @addr which is dereferenceable address obtained via one of
1791 * percpu access macros, this function translates it into its physical
1792 * address.  The caller is responsible for ensuring @addr stays valid
1793 * until this function finishes.
1794 *
1795 * percpu allocator has special setup for the first chunk, which currently
1796 * supports either embedding in linear address space or vmalloc mapping,
1797 * and, from the second one, the backing allocator (currently either vm or
1798 * km) provides translation.
1799 *
1800 * The addr can be translated simply without checking if it falls into the
1801 * first chunk. But the current code reflects better how percpu allocator
1802 * actually works, and the verification can discover both bugs in percpu
1803 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1804 * code.
1805 *
1806 * RETURNS:
1807 * The physical address for @addr.
1808 */
1809phys_addr_t per_cpu_ptr_to_phys(void *addr)
1810{
1811        void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1812        bool in_first_chunk = false;
1813        unsigned long first_low, first_high;
1814        unsigned int cpu;
1815
1816        /*
1817         * The following test on unit_low/high isn't strictly
1818         * necessary but will speed up lookups of addresses which
1819         * aren't in the first chunk.
1820         *
1821         * The address check is against full chunk sizes.  pcpu_base_addr
1822         * points to the beginning of the first chunk including the
1823         * static region.  Assumes good intent as the first chunk may
1824         * not be full (ie. < pcpu_unit_pages in size).
1825         */
1826        first_low = (unsigned long)pcpu_base_addr +
1827                    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1828        first_high = (unsigned long)pcpu_base_addr +
1829                     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
1830        if ((unsigned long)addr >= first_low &&
1831            (unsigned long)addr < first_high) {
1832                for_each_possible_cpu(cpu) {
1833                        void *start = per_cpu_ptr(base, cpu);
1834
1835                        if (addr >= start && addr < start + pcpu_unit_size) {
1836                                in_first_chunk = true;
1837                                break;
1838                        }
1839                }
1840        }
1841
1842        if (in_first_chunk) {
1843                if (!is_vmalloc_addr(addr))
1844                        return __pa(addr);
1845                else
1846                        return page_to_phys(vmalloc_to_page(addr)) +
1847                               offset_in_page(addr);
1848        } else
1849                return page_to_phys(pcpu_addr_to_page(addr)) +
1850                       offset_in_page(addr);
1851}
1852
1853/**
1854 * pcpu_alloc_alloc_info - allocate percpu allocation info
1855 * @nr_groups: the number of groups
1856 * @nr_units: the number of units
1857 *
1858 * Allocate ai which is large enough for @nr_groups groups containing
1859 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1860 * cpu_map array which is long enough for @nr_units and filled with
1861 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1862 * pointer of other groups.
1863 *
1864 * RETURNS:
1865 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1866 * failure.
1867 */
1868struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1869                                                      int nr_units)
1870{
1871        struct pcpu_alloc_info *ai;
1872        size_t base_size, ai_size;
1873        void *ptr;
1874        int unit;
1875
1876        base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1877                          __alignof__(ai->groups[0].cpu_map[0]));
1878        ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1879
1880        ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), PAGE_SIZE);
1881        if (!ptr)
1882                return NULL;
1883        ai = ptr;
1884        ptr += base_size;
1885
1886        ai->groups[0].cpu_map = ptr;
1887
1888        for (unit = 0; unit < nr_units; unit++)
1889                ai->groups[0].cpu_map[unit] = NR_CPUS;
1890
1891        ai->nr_groups = nr_groups;
1892        ai->__ai_size = PFN_ALIGN(ai_size);
1893
1894        return ai;
1895}
1896
1897/**
1898 * pcpu_free_alloc_info - free percpu allocation info
1899 * @ai: pcpu_alloc_info to free
1900 *
1901 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1902 */
1903void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1904{
1905        memblock_free_early(__pa(ai), ai->__ai_size);
1906}
1907
1908/**
1909 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1910 * @lvl: loglevel
1911 * @ai: allocation info to dump
1912 *
1913 * Print out information about @ai using loglevel @lvl.
1914 */
1915static void pcpu_dump_alloc_info(const char *lvl,
1916                                 const struct pcpu_alloc_info *ai)
1917{
1918        int group_width = 1, cpu_width = 1, width;
1919        char empty_str[] = "--------";
1920        int alloc = 0, alloc_end = 0;
1921        int group, v;
1922        int upa, apl;   /* units per alloc, allocs per line */
1923
1924        v = ai->nr_groups;
1925        while (v /= 10)
1926                group_width++;
1927
1928        v = num_possible_cpus();
1929        while (v /= 10)
1930                cpu_width++;
1931        empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1932
1933        upa = ai->alloc_size / ai->unit_size;
1934        width = upa * (cpu_width + 1) + group_width + 3;
1935        apl = rounddown_pow_of_two(max(60 / width, 1));
1936
1937        printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1938               lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1939               ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1940
1941        for (group = 0; group < ai->nr_groups; group++) {
1942                const struct pcpu_group_info *gi = &ai->groups[group];
1943                int unit = 0, unit_end = 0;
1944
1945                BUG_ON(gi->nr_units % upa);
1946                for (alloc_end += gi->nr_units / upa;
1947                     alloc < alloc_end; alloc++) {
1948                        if (!(alloc % apl)) {
1949                                pr_cont("\n");
1950                                printk("%spcpu-alloc: ", lvl);
1951                        }
1952                        pr_cont("[%0*d] ", group_width, group);
1953
1954                        for (unit_end += upa; unit < unit_end; unit++)
1955                                if (gi->cpu_map[unit] != NR_CPUS)
1956                                        pr_cont("%0*d ",
1957                                                cpu_width, gi->cpu_map[unit]);
1958                                else
1959                                        pr_cont("%s ", empty_str);
1960                }
1961        }
1962        pr_cont("\n");
1963}
1964
1965/**
1966 * pcpu_setup_first_chunk - initialize the first percpu chunk
1967 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1968 * @base_addr: mapped address
1969 *
1970 * Initialize the first percpu chunk which contains the kernel static
1971 * perpcu area.  This function is to be called from arch percpu area
1972 * setup path.
1973 *
1974 * @ai contains all information necessary to initialize the first
1975 * chunk and prime the dynamic percpu allocator.
1976 *
1977 * @ai->static_size is the size of static percpu area.
1978 *
1979 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1980 * reserve after the static area in the first chunk.  This reserves
1981 * the first chunk such that it's available only through reserved
1982 * percpu allocation.  This is primarily used to serve module percpu
1983 * static areas on architectures where the addressing model has
1984 * limited offset range for symbol relocations to guarantee module
1985 * percpu symbols fall inside the relocatable range.
1986 *
1987 * @ai->dyn_size determines the number of bytes available for dynamic
1988 * allocation in the first chunk.  The area between @ai->static_size +
1989 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1990 *
1991 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1992 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1993 * @ai->dyn_size.
1994 *
1995 * @ai->atom_size is the allocation atom size and used as alignment
1996 * for vm areas.
1997 *
1998 * @ai->alloc_size is the allocation size and always multiple of
1999 * @ai->atom_size.  This is larger than @ai->atom_size if
2000 * @ai->unit_size is larger than @ai->atom_size.
2001 *
2002 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2003 * percpu areas.  Units which should be colocated are put into the
2004 * same group.  Dynamic VM areas will be allocated according to these
2005 * groupings.  If @ai->nr_groups is zero, a single group containing
2006 * all units is assumed.
2007 *
2008 * The caller should have mapped the first chunk at @base_addr and
2009 * copied static data to each unit.
2010 *
2011 * The first chunk will always contain a static and a dynamic region.
2012 * However, the static region is not managed by any chunk.  If the first
2013 * chunk also contains a reserved region, it is served by two chunks -
2014 * one for the reserved region and one for the dynamic region.  They
2015 * share the same vm, but use offset regions in the area allocation map.
2016 * The chunk serving the dynamic region is circulated in the chunk slots
2017 * and available for dynamic allocation like any other chunk.
2018 *
2019 * RETURNS:
2020 * 0 on success, -errno on failure.
2021 */
2022int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2023                                  void *base_addr)
2024{
2025        size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2026        size_t static_size, dyn_size;
2027        struct pcpu_chunk *chunk;
2028        unsigned long *group_offsets;
2029        size_t *group_sizes;
2030        unsigned long *unit_off;
2031        unsigned int cpu;
2032        int *unit_map;
2033        int group, unit, i;
2034        int map_size;
2035        unsigned long tmp_addr;
2036
2037#define PCPU_SETUP_BUG_ON(cond) do {                                    \
2038        if (unlikely(cond)) {                                           \
2039                pr_emerg("failed to initialize, %s\n", #cond);          \
2040                pr_emerg("cpu_possible_mask=%*pb\n",                    \
2041                         cpumask_pr_args(cpu_possible_mask));           \
2042                pcpu_dump_alloc_info(KERN_EMERG, ai);                   \
2043                BUG();                                                  \
2044        }                                                               \
2045} while (0)
2046
2047        /* sanity checks */
2048        PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2049#ifdef CONFIG_SMP
2050        PCPU_SETUP_BUG_ON(!ai->static_size);
2051        PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2052#endif
2053        PCPU_SETUP_BUG_ON(!base_addr);
2054        PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2055        PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2056        PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2057        PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2058        PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2059        PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2060        PCPU_SETUP_BUG_ON(!ai->dyn_size);
2061        PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2062        PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2063                            IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2064        PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2065
2066        /* process group information and build config tables accordingly */
2067        group_offsets = memblock_virt_alloc(ai->nr_groups *
2068                                             sizeof(group_offsets[0]), 0);
2069        group_sizes = memblock_virt_alloc(ai->nr_groups *
2070                                           sizeof(group_sizes[0]), 0);
2071        unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
2072        unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2073
2074        for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2075                unit_map[cpu] = UINT_MAX;
2076
2077        pcpu_low_unit_cpu = NR_CPUS;
2078        pcpu_high_unit_cpu = NR_CPUS;
2079
2080        for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2081                const struct pcpu_group_info *gi = &ai->groups[group];
2082
2083                group_offsets[group] = gi->base_offset;
2084                group_sizes[group] = gi->nr_units * ai->unit_size;
2085
2086                for (i = 0; i < gi->nr_units; i++) {
2087                        cpu = gi->cpu_map[i];
2088                        if (cpu == NR_CPUS)
2089                                continue;
2090
2091                        PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2092                        PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2093                        PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2094
2095                        unit_map[cpu] = unit + i;
2096                        unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2097
2098                        /* determine low/high unit_cpu */
2099                        if (pcpu_low_unit_cpu == NR_CPUS ||
2100                            unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2101                                pcpu_low_unit_cpu = cpu;
2102                        if (pcpu_high_unit_cpu == NR_CPUS ||
2103                            unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2104                                pcpu_high_unit_cpu = cpu;
2105                }
2106        }
2107        pcpu_nr_units = unit;
2108
2109        for_each_possible_cpu(cpu)
2110                PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2111
2112        /* we're done parsing the input, undefine BUG macro and dump config */
2113#undef PCPU_SETUP_BUG_ON
2114        pcpu_dump_alloc_info(KERN_DEBUG, ai);
2115
2116        pcpu_nr_groups = ai->nr_groups;
2117        pcpu_group_offsets = group_offsets;
2118        pcpu_group_sizes = group_sizes;
2119        pcpu_unit_map = unit_map;
2120        pcpu_unit_offsets = unit_off;
2121
2122        /* determine basic parameters */
2123        pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2124        pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2125        pcpu_atom_size = ai->atom_size;
2126        pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2127                BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2128
2129        pcpu_stats_save_ai(ai);
2130
2131        /*
2132         * Allocate chunk slots.  The additional last slot is for
2133         * empty chunks.
2134         */
2135        pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2136        pcpu_slot = memblock_virt_alloc(
2137                        pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
2138        for (i = 0; i < pcpu_nr_slots; i++)
2139                INIT_LIST_HEAD(&pcpu_slot[i]);
2140
2141        /*
2142         * The end of the static region needs to be aligned with the
2143         * minimum allocation size as this offsets the reserved and
2144         * dynamic region.  The first chunk ends page aligned by
2145         * expanding the dynamic region, therefore the dynamic region
2146         * can be shrunk to compensate while still staying above the
2147         * configured sizes.
2148         */
2149        static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2150        dyn_size = ai->dyn_size - (static_size - ai->static_size);
2151
2152        /*
2153         * Initialize first chunk.
2154         * If the reserved_size is non-zero, this initializes the reserved
2155         * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2156         * and the dynamic region is initialized here.  The first chunk,
2157         * pcpu_first_chunk, will always point to the chunk that serves
2158         * the dynamic region.
2159         */
2160        tmp_addr = (unsigned long)base_addr + static_size;
2161        map_size = ai->reserved_size ?: dyn_size;
2162        chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2163
2164        /* init dynamic chunk if necessary */
2165        if (ai->reserved_size) {
2166                pcpu_reserved_chunk = chunk;
2167
2168                tmp_addr = (unsigned long)base_addr + static_size +
2169                           ai->reserved_size;
2170                map_size = dyn_size;
2171                chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2172        }
2173
2174        /* link the first chunk in */
2175        pcpu_first_chunk = chunk;
2176        pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2177        pcpu_chunk_relocate(pcpu_first_chunk, -1);
2178
2179        pcpu_stats_chunk_alloc();
2180        trace_percpu_create_chunk(base_addr);
2181
2182        /* we're done */
2183        pcpu_base_addr = base_addr;
2184        return 0;
2185}
2186
2187#ifdef CONFIG_SMP
2188
2189const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2190        [PCPU_FC_AUTO]  = "auto",
2191        [PCPU_FC_EMBED] = "embed",
2192        [PCPU_FC_PAGE]  = "page",
2193};
2194
2195enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2196
2197static int __init percpu_alloc_setup(char *str)
2198{
2199        if (!str)
2200                return -EINVAL;
2201
2202        if (0)
2203                /* nada */;
2204#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2205        else if (!strcmp(str, "embed"))
2206                pcpu_chosen_fc = PCPU_FC_EMBED;
2207#endif
2208#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2209        else if (!strcmp(str, "page"))
2210                pcpu_chosen_fc = PCPU_FC_PAGE;
2211#endif
2212        else
2213                pr_warn("unknown allocator %s specified\n", str);
2214
2215        return 0;
2216}
2217early_param("percpu_alloc", percpu_alloc_setup);
2218
2219/*
2220 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2221 * Build it if needed by the arch config or the generic setup is going
2222 * to be used.
2223 */
2224#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2225        !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2226#define BUILD_EMBED_FIRST_CHUNK
2227#endif
2228
2229/* build pcpu_page_first_chunk() iff needed by the arch config */
2230#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2231#define BUILD_PAGE_FIRST_CHUNK
2232#endif
2233
2234/* pcpu_build_alloc_info() is used by both embed and page first chunk */
2235#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2236/**
2237 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2238 * @reserved_size: the size of reserved percpu area in bytes
2239 * @dyn_size: minimum free size for dynamic allocation in bytes
2240 * @atom_size: allocation atom size
2241 * @cpu_distance_fn: callback to determine distance between cpus, optional
2242 *
2243 * This function determines grouping of units, their mappings to cpus
2244 * and other parameters considering needed percpu size, allocation
2245 * atom size and distances between CPUs.
2246 *
2247 * Groups are always multiples of atom size and CPUs which are of
2248 * LOCAL_DISTANCE both ways are grouped together and share space for
2249 * units in the same group.  The returned configuration is guaranteed
2250 * to have CPUs on different nodes on different groups and >=75% usage
2251 * of allocated virtual address space.
2252 *
2253 * RETURNS:
2254 * On success, pointer to the new allocation_info is returned.  On
2255 * failure, ERR_PTR value is returned.
2256 */
2257static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2258                                size_t reserved_size, size_t dyn_size,
2259                                size_t atom_size,
2260                                pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2261{
2262        static int group_map[NR_CPUS] __initdata;
2263        static int group_cnt[NR_CPUS] __initdata;
2264        const size_t static_size = __per_cpu_end - __per_cpu_start;
2265        int nr_groups = 1, nr_units = 0;
2266        size_t size_sum, min_unit_size, alloc_size;
2267        int upa, max_upa, uninitialized_var(best_upa);  /* units_per_alloc */
2268        int last_allocs, group, unit;
2269        unsigned int cpu, tcpu;
2270        struct pcpu_alloc_info *ai;
2271        unsigned int *cpu_map;
2272
2273        /* this function may be called multiple times */
2274        memset(group_map, 0, sizeof(group_map));
2275        memset(group_cnt, 0, sizeof(group_cnt));
2276
2277        /* calculate size_sum and ensure dyn_size is enough for early alloc */
2278        size_sum = PFN_ALIGN(static_size + reserved_size +
2279                            max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2280        dyn_size = size_sum - static_size - reserved_size;
2281
2282        /*
2283         * Determine min_unit_size, alloc_size and max_upa such that
2284         * alloc_size is multiple of atom_size and is the smallest
2285         * which can accommodate 4k aligned segments which are equal to
2286         * or larger than min_unit_size.
2287         */
2288        min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2289
2290        /* determine the maximum # of units that can fit in an allocation */
2291        alloc_size = roundup(min_unit_size, atom_size);
2292        upa = alloc_size / min_unit_size;
2293        while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2294                upa--;
2295        max_upa = upa;
2296
2297        /* group cpus according to their proximity */
2298        for_each_possible_cpu(cpu) {
2299                group = 0;
2300        next_group:
2301                for_each_possible_cpu(tcpu) {
2302                        if (cpu == tcpu)
2303                                break;
2304                        if (group_map[tcpu] == group && cpu_distance_fn &&
2305                            (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2306                             cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2307                                group++;
2308                                nr_groups = max(nr_groups, group + 1);
2309                                goto next_group;
2310                        }
2311                }
2312                group_map[cpu] = group;
2313                group_cnt[group]++;
2314        }
2315
2316        /*
2317         * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2318         * Expand the unit_size until we use >= 75% of the units allocated.
2319         * Related to atom_size, which could be much larger than the unit_size.
2320         */
2321        last_allocs = INT_MAX;
2322        for (upa = max_upa; upa; upa--) {
2323                int allocs = 0, wasted = 0;
2324
2325                if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2326                        continue;
2327
2328                for (group = 0; group < nr_groups; group++) {
2329                        int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2330                        allocs += this_allocs;
2331                        wasted += this_allocs * upa - group_cnt[group];
2332                }
2333
2334                /*
2335                 * Don't accept if wastage is over 1/3.  The
2336                 * greater-than comparison ensures upa==1 always
2337                 * passes the following check.
2338                 */
2339                if (wasted > num_possible_cpus() / 3)
2340                        continue;
2341
2342                /* and then don't consume more memory */
2343                if (allocs > last_allocs)
2344                        break;
2345                last_allocs = allocs;
2346                best_upa = upa;
2347        }
2348        upa = best_upa;
2349
2350        /* allocate and fill alloc_info */
2351        for (group = 0; group < nr_groups; group++)
2352                nr_units += roundup(group_cnt[group], upa);
2353
2354        ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2355        if (!ai)
2356                return ERR_PTR(-ENOMEM);
2357        cpu_map = ai->groups[0].cpu_map;
2358
2359        for (group = 0; group < nr_groups; group++) {
2360                ai->groups[group].cpu_map = cpu_map;
2361                cpu_map += roundup(group_cnt[group], upa);
2362        }
2363
2364        ai->static_size = static_size;
2365        ai->reserved_size = reserved_size;
2366        ai->dyn_size = dyn_size;
2367        ai->unit_size = alloc_size / upa;
2368        ai->atom_size = atom_size;
2369        ai->alloc_size = alloc_size;
2370
2371        for (group = 0, unit = 0; group_cnt[group]; group++) {
2372                struct pcpu_group_info *gi = &ai->groups[group];
2373
2374                /*
2375                 * Initialize base_offset as if all groups are located
2376                 * back-to-back.  The caller should update this to
2377                 * reflect actual allocation.
2378                 */
2379                gi->base_offset = unit * ai->unit_size;
2380
2381                for_each_possible_cpu(cpu)
2382                        if (group_map[cpu] == group)
2383                                gi->cpu_map[gi->nr_units++] = cpu;
2384                gi->nr_units = roundup(gi->nr_units, upa);
2385                unit += gi->nr_units;
2386        }
2387        BUG_ON(unit != nr_units);
2388
2389        return ai;
2390}
2391#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2392
2393#if defined(BUILD_EMBED_FIRST_CHUNK)
2394/**
2395 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2396 * @reserved_size: the size of reserved percpu area in bytes
2397 * @dyn_size: minimum free size for dynamic allocation in bytes
2398 * @atom_size: allocation atom size
2399 * @cpu_distance_fn: callback to determine distance between cpus, optional
2400 * @alloc_fn: function to allocate percpu page
2401 * @free_fn: function to free percpu page
2402 *
2403 * This is a helper to ease setting up embedded first percpu chunk and
2404 * can be called where pcpu_setup_first_chunk() is expected.
2405 *
2406 * If this function is used to setup the first chunk, it is allocated
2407 * by calling @alloc_fn and used as-is without being mapped into
2408 * vmalloc area.  Allocations are always whole multiples of @atom_size
2409 * aligned to @atom_size.
2410 *
2411 * This enables the first chunk to piggy back on the linear physical
2412 * mapping which often uses larger page size.  Please note that this
2413 * can result in very sparse cpu->unit mapping on NUMA machines thus
2414 * requiring large vmalloc address space.  Don't use this allocator if
2415 * vmalloc space is not orders of magnitude larger than distances
2416 * between node memory addresses (ie. 32bit NUMA machines).
2417 *
2418 * @dyn_size specifies the minimum dynamic area size.
2419 *
2420 * If the needed size is smaller than the minimum or specified unit
2421 * size, the leftover is returned using @free_fn.
2422 *
2423 * RETURNS:
2424 * 0 on success, -errno on failure.
2425 */
2426int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2427                                  size_t atom_size,
2428                                  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2429                                  pcpu_fc_alloc_fn_t alloc_fn,
2430                                  pcpu_fc_free_fn_t free_fn)
2431{
2432        void *base = (void *)ULONG_MAX;
2433        void **areas = NULL;
2434        struct pcpu_alloc_info *ai;
2435        size_t size_sum, areas_size;
2436        unsigned long max_distance;
2437        int group, i, highest_group, rc;
2438
2439        ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2440                                   cpu_distance_fn);
2441        if (IS_ERR(ai))
2442                return PTR_ERR(ai);
2443
2444        size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2445        areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2446
2447        areas = memblock_virt_alloc_nopanic(areas_size, 0);
2448        if (!areas) {
2449                rc = -ENOMEM;
2450                goto out_free;
2451        }
2452
2453        /* allocate, copy and determine base address & max_distance */
2454        highest_group = 0;
2455        for (group = 0; group < ai->nr_groups; group++) {
2456                struct pcpu_group_info *gi = &ai->groups[group];
2457                unsigned int cpu = NR_CPUS;
2458                void *ptr;
2459
2460                for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2461                        cpu = gi->cpu_map[i];
2462                BUG_ON(cpu == NR_CPUS);
2463
2464                /* allocate space for the whole group */
2465                ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2466                if (!ptr) {
2467                        rc = -ENOMEM;
2468                        goto out_free_areas;
2469                }
2470                /* kmemleak tracks the percpu allocations separately */
2471                kmemleak_free(ptr);
2472                areas[group] = ptr;
2473
2474                base = min(ptr, base);
2475                if (ptr > areas[highest_group])
2476                        highest_group = group;
2477        }
2478        max_distance = areas[highest_group] - base;
2479        max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2480
2481        /* warn if maximum distance is further than 75% of vmalloc space */
2482        if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2483                pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2484                                max_distance, VMALLOC_TOTAL);
2485#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2486                /* and fail if we have fallback */
2487                rc = -EINVAL;
2488                goto out_free_areas;
2489#endif
2490        }
2491
2492        /*
2493         * Copy data and free unused parts.  This should happen after all
2494         * allocations are complete; otherwise, we may end up with
2495         * overlapping groups.
2496         */
2497        for (group = 0; group < ai->nr_groups; group++) {
2498                struct pcpu_group_info *gi = &ai->groups[group];
2499                void *ptr = areas[group];
2500
2501                for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2502                        if (gi->cpu_map[i] == NR_CPUS) {
2503                                /* unused unit, free whole */
2504                                free_fn(ptr, ai->unit_size);
2505                                continue;
2506                        }
2507                        /* copy and return the unused part */
2508                        memcpy(ptr, __per_cpu_load, ai->static_size);
2509                        free_fn(ptr + size_sum, ai->unit_size - size_sum);
2510                }
2511        }
2512
2513        /* base address is now known, determine group base offsets */
2514        for (group = 0; group < ai->nr_groups; group++) {
2515                ai->groups[group].base_offset = areas[group] - base;
2516        }
2517
2518        pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2519                PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2520                ai->dyn_size, ai->unit_size);
2521
2522        rc = pcpu_setup_first_chunk(ai, base);
2523        goto out_free;
2524
2525out_free_areas:
2526        for (group = 0; group < ai->nr_groups; group++)
2527                if (areas[group])
2528                        free_fn(areas[group],
2529                                ai->groups[group].nr_units * ai->unit_size);
2530out_free:
2531        pcpu_free_alloc_info(ai);
2532        if (areas)
2533                memblock_free_early(__pa(areas), areas_size);
2534        return rc;
2535}
2536#endif /* BUILD_EMBED_FIRST_CHUNK */
2537
2538#ifdef BUILD_PAGE_FIRST_CHUNK
2539/**
2540 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2541 * @reserved_size: the size of reserved percpu area in bytes
2542 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2543 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2544 * @populate_pte_fn: function to populate pte
2545 *
2546 * This is a helper to ease setting up page-remapped first percpu
2547 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2548 *
2549 * This is the basic allocator.  Static percpu area is allocated
2550 * page-by-page into vmalloc area.
2551 *
2552 * RETURNS:
2553 * 0 on success, -errno on failure.
2554 */
2555int __init pcpu_page_first_chunk(size_t reserved_size,
2556                                 pcpu_fc_alloc_fn_t alloc_fn,
2557                                 pcpu_fc_free_fn_t free_fn,
2558                                 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2559{
2560        static struct vm_struct vm;
2561        struct pcpu_alloc_info *ai;
2562        char psize_str[16];
2563        int unit_pages;
2564        size_t pages_size;
2565        struct page **pages;
2566        int unit, i, j, rc;
2567        int upa;
2568        int nr_g0_units;
2569
2570        snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2571
2572        ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2573        if (IS_ERR(ai))
2574                return PTR_ERR(ai);
2575        BUG_ON(ai->nr_groups != 1);
2576        upa = ai->alloc_size/ai->unit_size;
2577        nr_g0_units = roundup(num_possible_cpus(), upa);
2578        if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2579                pcpu_free_alloc_info(ai);
2580                return -EINVAL;
2581        }
2582
2583        unit_pages = ai->unit_size >> PAGE_SHIFT;
2584
2585        /* unaligned allocations can't be freed, round up to page size */
2586        pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2587                               sizeof(pages[0]));
2588        pages = memblock_virt_alloc(pages_size, 0);
2589
2590        /* allocate pages */
2591        j = 0;
2592        for (unit = 0; unit < num_possible_cpus(); unit++) {
2593                unsigned int cpu = ai->groups[0].cpu_map[unit];
2594                for (i = 0; i < unit_pages; i++) {
2595                        void *ptr;
2596
2597                        ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2598                        if (!ptr) {
2599                                pr_warn("failed to allocate %s page for cpu%u\n",
2600                                                psize_str, cpu);
2601                                goto enomem;
2602                        }
2603                        /* kmemleak tracks the percpu allocations separately */
2604                        kmemleak_free(ptr);
2605                        pages[j++] = virt_to_page(ptr);
2606                }
2607        }
2608
2609        /* allocate vm area, map the pages and copy static data */
2610        vm.flags = VM_ALLOC;
2611        vm.size = num_possible_cpus() * ai->unit_size;
2612        vm_area_register_early(&vm, PAGE_SIZE);
2613
2614        for (unit = 0; unit < num_possible_cpus(); unit++) {
2615                unsigned long unit_addr =
2616                        (unsigned long)vm.addr + unit * ai->unit_size;
2617
2618                for (i = 0; i < unit_pages; i++)
2619                        populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2620
2621                /* pte already populated, the following shouldn't fail */
2622                rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2623                                      unit_pages);
2624                if (rc < 0)
2625                        panic("failed to map percpu area, err=%d\n", rc);
2626
2627                /*
2628                 * FIXME: Archs with virtual cache should flush local
2629                 * cache for the linear mapping here - something
2630                 * equivalent to flush_cache_vmap() on the local cpu.
2631                 * flush_cache_vmap() can't be used as most supporting
2632                 * data structures are not set up yet.
2633                 */
2634
2635                /* copy static data */
2636                memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2637        }
2638
2639        /* we're ready, commit */
2640        pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2641                unit_pages, psize_str, vm.addr, ai->static_size,
2642                ai->reserved_size, ai->dyn_size);
2643
2644        rc = pcpu_setup_first_chunk(ai, vm.addr);
2645        goto out_free_ar;
2646
2647enomem:
2648        while (--j >= 0)
2649                free_fn(page_address(pages[j]), PAGE_SIZE);
2650        rc = -ENOMEM;
2651out_free_ar:
2652        memblock_free_early(__pa(pages), pages_size);
2653        pcpu_free_alloc_info(ai);
2654        return rc;
2655}
2656#endif /* BUILD_PAGE_FIRST_CHUNK */
2657
2658#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2659/*
2660 * Generic SMP percpu area setup.
2661 *
2662 * The embedding helper is used because its behavior closely resembles
2663 * the original non-dynamic generic percpu area setup.  This is
2664 * important because many archs have addressing restrictions and might
2665 * fail if the percpu area is located far away from the previous
2666 * location.  As an added bonus, in non-NUMA cases, embedding is
2667 * generally a good idea TLB-wise because percpu area can piggy back
2668 * on the physical linear memory mapping which uses large page
2669 * mappings on applicable archs.
2670 */
2671unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2672EXPORT_SYMBOL(__per_cpu_offset);
2673
2674static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2675                                       size_t align)
2676{
2677        return  memblock_virt_alloc_from_nopanic(
2678                        size, align, __pa(MAX_DMA_ADDRESS));
2679}
2680
2681static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2682{
2683        memblock_free_early(__pa(ptr), size);
2684}
2685
2686void __init setup_per_cpu_areas(void)
2687{
2688        unsigned long delta;
2689        unsigned int cpu;
2690        int rc;
2691
2692        /*
2693         * Always reserve area for module percpu variables.  That's
2694         * what the legacy allocator did.
2695         */
2696        rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2697                                    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2698                                    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2699        if (rc < 0)
2700                panic("Failed to initialize percpu areas.");
2701
2702        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2703        for_each_possible_cpu(cpu)
2704                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2705}
2706#endif  /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2707
2708#else   /* CONFIG_SMP */
2709
2710/*
2711 * UP percpu area setup.
2712 *
2713 * UP always uses km-based percpu allocator with identity mapping.
2714 * Static percpu variables are indistinguishable from the usual static
2715 * variables and don't require any special preparation.
2716 */
2717void __init setup_per_cpu_areas(void)
2718{
2719        const size_t unit_size =
2720                roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2721                                         PERCPU_DYNAMIC_RESERVE));
2722        struct pcpu_alloc_info *ai;
2723        void *fc;
2724
2725        ai = pcpu_alloc_alloc_info(1, 1);
2726        fc = memblock_virt_alloc_from_nopanic(unit_size,
2727                                              PAGE_SIZE,
2728                                              __pa(MAX_DMA_ADDRESS));
2729        if (!ai || !fc)
2730                panic("Failed to allocate memory for percpu areas.");
2731        /* kmemleak tracks the percpu allocations separately */
2732        kmemleak_free(fc);
2733
2734        ai->dyn_size = unit_size;
2735        ai->unit_size = unit_size;
2736        ai->atom_size = unit_size;
2737        ai->alloc_size = unit_size;
2738        ai->groups[0].nr_units = 1;
2739        ai->groups[0].cpu_map[0] = 0;
2740
2741        if (pcpu_setup_first_chunk(ai, fc) < 0)
2742                panic("Failed to initialize percpu areas.");
2743        pcpu_free_alloc_info(ai);
2744}
2745
2746#endif  /* CONFIG_SMP */
2747
2748/*
2749 * Percpu allocator is initialized early during boot when neither slab or
2750 * workqueue is available.  Plug async management until everything is up
2751 * and running.
2752 */
2753static int __init percpu_enable_async(void)
2754{
2755        pcpu_async_enabled = true;
2756        return 0;
2757}
2758subsys_initcall(percpu_enable_async);
2759