linux/mm/rmap.c
<<
>>
Prefs
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex       (while writing or truncating, not reading or faulting)
  24 *   mm->mmap_sem
  25 *     page->flags PG_locked (lock_page)
  26 *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
  27 *         mapping->i_mmap_rwsem
  28 *           anon_vma->rwsem
  29 *             mm->page_table_lock or pte_lock
  30 *               zone_lru_lock (in mark_page_accessed, isolate_lru_page)
  31 *               swap_lock (in swap_duplicate, swap_info_get)
  32 *                 mmlist_lock (in mmput, drain_mmlist and others)
  33 *                 mapping->private_lock (in __set_page_dirty_buffers)
  34 *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
  35 *                     i_pages lock (widely used)
  36 *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  37 *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  38 *                   sb_lock (within inode_lock in fs/fs-writeback.c)
  39 *                   i_pages lock (widely used, in set_page_dirty,
  40 *                             in arch-dependent flush_dcache_mmap_lock,
  41 *                             within bdi.wb->list_lock in __sync_single_inode)
  42 *
  43 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
  44 *   ->tasklist_lock
  45 *     pte map lock
  46 */
  47
  48#include <linux/mm.h>
  49#include <linux/sched/mm.h>
  50#include <linux/sched/task.h>
  51#include <linux/pagemap.h>
  52#include <linux/swap.h>
  53#include <linux/swapops.h>
  54#include <linux/slab.h>
  55#include <linux/init.h>
  56#include <linux/ksm.h>
  57#include <linux/rmap.h>
  58#include <linux/rcupdate.h>
  59#include <linux/export.h>
  60#include <linux/memcontrol.h>
  61#include <linux/mmu_notifier.h>
  62#include <linux/migrate.h>
  63#include <linux/hugetlb.h>
  64#include <linux/backing-dev.h>
  65#include <linux/page_idle.h>
  66#include <linux/memremap.h>
  67
  68#include <asm/tlbflush.h>
  69
  70#include <trace/events/tlb.h>
  71
  72#include "internal.h"
  73
  74static struct kmem_cache *anon_vma_cachep;
  75static struct kmem_cache *anon_vma_chain_cachep;
  76
  77static inline struct anon_vma *anon_vma_alloc(void)
  78{
  79        struct anon_vma *anon_vma;
  80
  81        anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  82        if (anon_vma) {
  83                atomic_set(&anon_vma->refcount, 1);
  84                anon_vma->degree = 1;   /* Reference for first vma */
  85                anon_vma->parent = anon_vma;
  86                /*
  87                 * Initialise the anon_vma root to point to itself. If called
  88                 * from fork, the root will be reset to the parents anon_vma.
  89                 */
  90                anon_vma->root = anon_vma;
  91        }
  92
  93        return anon_vma;
  94}
  95
  96static inline void anon_vma_free(struct anon_vma *anon_vma)
  97{
  98        VM_BUG_ON(atomic_read(&anon_vma->refcount));
  99
 100        /*
 101         * Synchronize against page_lock_anon_vma_read() such that
 102         * we can safely hold the lock without the anon_vma getting
 103         * freed.
 104         *
 105         * Relies on the full mb implied by the atomic_dec_and_test() from
 106         * put_anon_vma() against the acquire barrier implied by
 107         * down_read_trylock() from page_lock_anon_vma_read(). This orders:
 108         *
 109         * page_lock_anon_vma_read()    VS      put_anon_vma()
 110         *   down_read_trylock()                  atomic_dec_and_test()
 111         *   LOCK                                 MB
 112         *   atomic_read()                        rwsem_is_locked()
 113         *
 114         * LOCK should suffice since the actual taking of the lock must
 115         * happen _before_ what follows.
 116         */
 117        might_sleep();
 118        if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 119                anon_vma_lock_write(anon_vma);
 120                anon_vma_unlock_write(anon_vma);
 121        }
 122
 123        kmem_cache_free(anon_vma_cachep, anon_vma);
 124}
 125
 126static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 127{
 128        return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 129}
 130
 131static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 132{
 133        kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 134}
 135
 136static void anon_vma_chain_link(struct vm_area_struct *vma,
 137                                struct anon_vma_chain *avc,
 138                                struct anon_vma *anon_vma)
 139{
 140        avc->vma = vma;
 141        avc->anon_vma = anon_vma;
 142        list_add(&avc->same_vma, &vma->anon_vma_chain);
 143        anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 144}
 145
 146/**
 147 * __anon_vma_prepare - attach an anon_vma to a memory region
 148 * @vma: the memory region in question
 149 *
 150 * This makes sure the memory mapping described by 'vma' has
 151 * an 'anon_vma' attached to it, so that we can associate the
 152 * anonymous pages mapped into it with that anon_vma.
 153 *
 154 * The common case will be that we already have one, which
 155 * is handled inline by anon_vma_prepare(). But if
 156 * not we either need to find an adjacent mapping that we
 157 * can re-use the anon_vma from (very common when the only
 158 * reason for splitting a vma has been mprotect()), or we
 159 * allocate a new one.
 160 *
 161 * Anon-vma allocations are very subtle, because we may have
 162 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 163 * and that may actually touch the spinlock even in the newly
 164 * allocated vma (it depends on RCU to make sure that the
 165 * anon_vma isn't actually destroyed).
 166 *
 167 * As a result, we need to do proper anon_vma locking even
 168 * for the new allocation. At the same time, we do not want
 169 * to do any locking for the common case of already having
 170 * an anon_vma.
 171 *
 172 * This must be called with the mmap_sem held for reading.
 173 */
 174int __anon_vma_prepare(struct vm_area_struct *vma)
 175{
 176        struct mm_struct *mm = vma->vm_mm;
 177        struct anon_vma *anon_vma, *allocated;
 178        struct anon_vma_chain *avc;
 179
 180        might_sleep();
 181
 182        avc = anon_vma_chain_alloc(GFP_KERNEL);
 183        if (!avc)
 184                goto out_enomem;
 185
 186        anon_vma = find_mergeable_anon_vma(vma);
 187        allocated = NULL;
 188        if (!anon_vma) {
 189                anon_vma = anon_vma_alloc();
 190                if (unlikely(!anon_vma))
 191                        goto out_enomem_free_avc;
 192                allocated = anon_vma;
 193        }
 194
 195        anon_vma_lock_write(anon_vma);
 196        /* page_table_lock to protect against threads */
 197        spin_lock(&mm->page_table_lock);
 198        if (likely(!vma->anon_vma)) {
 199                vma->anon_vma = anon_vma;
 200                anon_vma_chain_link(vma, avc, anon_vma);
 201                /* vma reference or self-parent link for new root */
 202                anon_vma->degree++;
 203                allocated = NULL;
 204                avc = NULL;
 205        }
 206        spin_unlock(&mm->page_table_lock);
 207        anon_vma_unlock_write(anon_vma);
 208
 209        if (unlikely(allocated))
 210                put_anon_vma(allocated);
 211        if (unlikely(avc))
 212                anon_vma_chain_free(avc);
 213
 214        return 0;
 215
 216 out_enomem_free_avc:
 217        anon_vma_chain_free(avc);
 218 out_enomem:
 219        return -ENOMEM;
 220}
 221
 222/*
 223 * This is a useful helper function for locking the anon_vma root as
 224 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 225 * have the same vma.
 226 *
 227 * Such anon_vma's should have the same root, so you'd expect to see
 228 * just a single mutex_lock for the whole traversal.
 229 */
 230static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 231{
 232        struct anon_vma *new_root = anon_vma->root;
 233        if (new_root != root) {
 234                if (WARN_ON_ONCE(root))
 235                        up_write(&root->rwsem);
 236                root = new_root;
 237                down_write(&root->rwsem);
 238        }
 239        return root;
 240}
 241
 242static inline void unlock_anon_vma_root(struct anon_vma *root)
 243{
 244        if (root)
 245                up_write(&root->rwsem);
 246}
 247
 248/*
 249 * Attach the anon_vmas from src to dst.
 250 * Returns 0 on success, -ENOMEM on failure.
 251 *
 252 * If dst->anon_vma is NULL this function tries to find and reuse existing
 253 * anon_vma which has no vmas and only one child anon_vma. This prevents
 254 * degradation of anon_vma hierarchy to endless linear chain in case of
 255 * constantly forking task. On the other hand, an anon_vma with more than one
 256 * child isn't reused even if there was no alive vma, thus rmap walker has a
 257 * good chance of avoiding scanning the whole hierarchy when it searches where
 258 * page is mapped.
 259 */
 260int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 261{
 262        struct anon_vma_chain *avc, *pavc;
 263        struct anon_vma *root = NULL;
 264
 265        list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 266                struct anon_vma *anon_vma;
 267
 268                avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 269                if (unlikely(!avc)) {
 270                        unlock_anon_vma_root(root);
 271                        root = NULL;
 272                        avc = anon_vma_chain_alloc(GFP_KERNEL);
 273                        if (!avc)
 274                                goto enomem_failure;
 275                }
 276                anon_vma = pavc->anon_vma;
 277                root = lock_anon_vma_root(root, anon_vma);
 278                anon_vma_chain_link(dst, avc, anon_vma);
 279
 280                /*
 281                 * Reuse existing anon_vma if its degree lower than two,
 282                 * that means it has no vma and only one anon_vma child.
 283                 *
 284                 * Do not chose parent anon_vma, otherwise first child
 285                 * will always reuse it. Root anon_vma is never reused:
 286                 * it has self-parent reference and at least one child.
 287                 */
 288                if (!dst->anon_vma && anon_vma != src->anon_vma &&
 289                                anon_vma->degree < 2)
 290                        dst->anon_vma = anon_vma;
 291        }
 292        if (dst->anon_vma)
 293                dst->anon_vma->degree++;
 294        unlock_anon_vma_root(root);
 295        return 0;
 296
 297 enomem_failure:
 298        /*
 299         * dst->anon_vma is dropped here otherwise its degree can be incorrectly
 300         * decremented in unlink_anon_vmas().
 301         * We can safely do this because callers of anon_vma_clone() don't care
 302         * about dst->anon_vma if anon_vma_clone() failed.
 303         */
 304        dst->anon_vma = NULL;
 305        unlink_anon_vmas(dst);
 306        return -ENOMEM;
 307}
 308
 309/*
 310 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 311 * the corresponding VMA in the parent process is attached to.
 312 * Returns 0 on success, non-zero on failure.
 313 */
 314int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 315{
 316        struct anon_vma_chain *avc;
 317        struct anon_vma *anon_vma;
 318        int error;
 319
 320        /* Don't bother if the parent process has no anon_vma here. */
 321        if (!pvma->anon_vma)
 322                return 0;
 323
 324        /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
 325        vma->anon_vma = NULL;
 326
 327        /*
 328         * First, attach the new VMA to the parent VMA's anon_vmas,
 329         * so rmap can find non-COWed pages in child processes.
 330         */
 331        error = anon_vma_clone(vma, pvma);
 332        if (error)
 333                return error;
 334
 335        /* An existing anon_vma has been reused, all done then. */
 336        if (vma->anon_vma)
 337                return 0;
 338
 339        /* Then add our own anon_vma. */
 340        anon_vma = anon_vma_alloc();
 341        if (!anon_vma)
 342                goto out_error;
 343        avc = anon_vma_chain_alloc(GFP_KERNEL);
 344        if (!avc)
 345                goto out_error_free_anon_vma;
 346
 347        /*
 348         * The root anon_vma's spinlock is the lock actually used when we
 349         * lock any of the anon_vmas in this anon_vma tree.
 350         */
 351        anon_vma->root = pvma->anon_vma->root;
 352        anon_vma->parent = pvma->anon_vma;
 353        /*
 354         * With refcounts, an anon_vma can stay around longer than the
 355         * process it belongs to. The root anon_vma needs to be pinned until
 356         * this anon_vma is freed, because the lock lives in the root.
 357         */
 358        get_anon_vma(anon_vma->root);
 359        /* Mark this anon_vma as the one where our new (COWed) pages go. */
 360        vma->anon_vma = anon_vma;
 361        anon_vma_lock_write(anon_vma);
 362        anon_vma_chain_link(vma, avc, anon_vma);
 363        anon_vma->parent->degree++;
 364        anon_vma_unlock_write(anon_vma);
 365
 366        return 0;
 367
 368 out_error_free_anon_vma:
 369        put_anon_vma(anon_vma);
 370 out_error:
 371        unlink_anon_vmas(vma);
 372        return -ENOMEM;
 373}
 374
 375void unlink_anon_vmas(struct vm_area_struct *vma)
 376{
 377        struct anon_vma_chain *avc, *next;
 378        struct anon_vma *root = NULL;
 379
 380        /*
 381         * Unlink each anon_vma chained to the VMA.  This list is ordered
 382         * from newest to oldest, ensuring the root anon_vma gets freed last.
 383         */
 384        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 385                struct anon_vma *anon_vma = avc->anon_vma;
 386
 387                root = lock_anon_vma_root(root, anon_vma);
 388                anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 389
 390                /*
 391                 * Leave empty anon_vmas on the list - we'll need
 392                 * to free them outside the lock.
 393                 */
 394                if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
 395                        anon_vma->parent->degree--;
 396                        continue;
 397                }
 398
 399                list_del(&avc->same_vma);
 400                anon_vma_chain_free(avc);
 401        }
 402        if (vma->anon_vma)
 403                vma->anon_vma->degree--;
 404        unlock_anon_vma_root(root);
 405
 406        /*
 407         * Iterate the list once more, it now only contains empty and unlinked
 408         * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 409         * needing to write-acquire the anon_vma->root->rwsem.
 410         */
 411        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 412                struct anon_vma *anon_vma = avc->anon_vma;
 413
 414                VM_WARN_ON(anon_vma->degree);
 415                put_anon_vma(anon_vma);
 416
 417                list_del(&avc->same_vma);
 418                anon_vma_chain_free(avc);
 419        }
 420}
 421
 422static void anon_vma_ctor(void *data)
 423{
 424        struct anon_vma *anon_vma = data;
 425
 426        init_rwsem(&anon_vma->rwsem);
 427        atomic_set(&anon_vma->refcount, 0);
 428        anon_vma->rb_root = RB_ROOT_CACHED;
 429}
 430
 431void __init anon_vma_init(void)
 432{
 433        anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 434                        0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
 435                        anon_vma_ctor);
 436        anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
 437                        SLAB_PANIC|SLAB_ACCOUNT);
 438}
 439
 440/*
 441 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 442 *
 443 * Since there is no serialization what so ever against page_remove_rmap()
 444 * the best this function can do is return a locked anon_vma that might
 445 * have been relevant to this page.
 446 *
 447 * The page might have been remapped to a different anon_vma or the anon_vma
 448 * returned may already be freed (and even reused).
 449 *
 450 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 451 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 452 * ensure that any anon_vma obtained from the page will still be valid for as
 453 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 454 *
 455 * All users of this function must be very careful when walking the anon_vma
 456 * chain and verify that the page in question is indeed mapped in it
 457 * [ something equivalent to page_mapped_in_vma() ].
 458 *
 459 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
 460 * that the anon_vma pointer from page->mapping is valid if there is a
 461 * mapcount, we can dereference the anon_vma after observing those.
 462 */
 463struct anon_vma *page_get_anon_vma(struct page *page)
 464{
 465        struct anon_vma *anon_vma = NULL;
 466        unsigned long anon_mapping;
 467
 468        rcu_read_lock();
 469        anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 470        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 471                goto out;
 472        if (!page_mapped(page))
 473                goto out;
 474
 475        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 476        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 477                anon_vma = NULL;
 478                goto out;
 479        }
 480
 481        /*
 482         * If this page is still mapped, then its anon_vma cannot have been
 483         * freed.  But if it has been unmapped, we have no security against the
 484         * anon_vma structure being freed and reused (for another anon_vma:
 485         * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
 486         * above cannot corrupt).
 487         */
 488        if (!page_mapped(page)) {
 489                rcu_read_unlock();
 490                put_anon_vma(anon_vma);
 491                return NULL;
 492        }
 493out:
 494        rcu_read_unlock();
 495
 496        return anon_vma;
 497}
 498
 499/*
 500 * Similar to page_get_anon_vma() except it locks the anon_vma.
 501 *
 502 * Its a little more complex as it tries to keep the fast path to a single
 503 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 504 * reference like with page_get_anon_vma() and then block on the mutex.
 505 */
 506struct anon_vma *page_lock_anon_vma_read(struct page *page)
 507{
 508        struct anon_vma *anon_vma = NULL;
 509        struct anon_vma *root_anon_vma;
 510        unsigned long anon_mapping;
 511
 512        rcu_read_lock();
 513        anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 514        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 515                goto out;
 516        if (!page_mapped(page))
 517                goto out;
 518
 519        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 520        root_anon_vma = READ_ONCE(anon_vma->root);
 521        if (down_read_trylock(&root_anon_vma->rwsem)) {
 522                /*
 523                 * If the page is still mapped, then this anon_vma is still
 524                 * its anon_vma, and holding the mutex ensures that it will
 525                 * not go away, see anon_vma_free().
 526                 */
 527                if (!page_mapped(page)) {
 528                        up_read(&root_anon_vma->rwsem);
 529                        anon_vma = NULL;
 530                }
 531                goto out;
 532        }
 533
 534        /* trylock failed, we got to sleep */
 535        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 536                anon_vma = NULL;
 537                goto out;
 538        }
 539
 540        if (!page_mapped(page)) {
 541                rcu_read_unlock();
 542                put_anon_vma(anon_vma);
 543                return NULL;
 544        }
 545
 546        /* we pinned the anon_vma, its safe to sleep */
 547        rcu_read_unlock();
 548        anon_vma_lock_read(anon_vma);
 549
 550        if (atomic_dec_and_test(&anon_vma->refcount)) {
 551                /*
 552                 * Oops, we held the last refcount, release the lock
 553                 * and bail -- can't simply use put_anon_vma() because
 554                 * we'll deadlock on the anon_vma_lock_write() recursion.
 555                 */
 556                anon_vma_unlock_read(anon_vma);
 557                __put_anon_vma(anon_vma);
 558                anon_vma = NULL;
 559        }
 560
 561        return anon_vma;
 562
 563out:
 564        rcu_read_unlock();
 565        return anon_vma;
 566}
 567
 568void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 569{
 570        anon_vma_unlock_read(anon_vma);
 571}
 572
 573#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 574/*
 575 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
 576 * important if a PTE was dirty when it was unmapped that it's flushed
 577 * before any IO is initiated on the page to prevent lost writes. Similarly,
 578 * it must be flushed before freeing to prevent data leakage.
 579 */
 580void try_to_unmap_flush(void)
 581{
 582        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 583
 584        if (!tlb_ubc->flush_required)
 585                return;
 586
 587        arch_tlbbatch_flush(&tlb_ubc->arch);
 588        tlb_ubc->flush_required = false;
 589        tlb_ubc->writable = false;
 590}
 591
 592/* Flush iff there are potentially writable TLB entries that can race with IO */
 593void try_to_unmap_flush_dirty(void)
 594{
 595        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 596
 597        if (tlb_ubc->writable)
 598                try_to_unmap_flush();
 599}
 600
 601static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 602{
 603        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 604
 605        arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
 606        tlb_ubc->flush_required = true;
 607
 608        /*
 609         * Ensure compiler does not re-order the setting of tlb_flush_batched
 610         * before the PTE is cleared.
 611         */
 612        barrier();
 613        mm->tlb_flush_batched = true;
 614
 615        /*
 616         * If the PTE was dirty then it's best to assume it's writable. The
 617         * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
 618         * before the page is queued for IO.
 619         */
 620        if (writable)
 621                tlb_ubc->writable = true;
 622}
 623
 624/*
 625 * Returns true if the TLB flush should be deferred to the end of a batch of
 626 * unmap operations to reduce IPIs.
 627 */
 628static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 629{
 630        bool should_defer = false;
 631
 632        if (!(flags & TTU_BATCH_FLUSH))
 633                return false;
 634
 635        /* If remote CPUs need to be flushed then defer batch the flush */
 636        if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
 637                should_defer = true;
 638        put_cpu();
 639
 640        return should_defer;
 641}
 642
 643/*
 644 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
 645 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
 646 * operation such as mprotect or munmap to race between reclaim unmapping
 647 * the page and flushing the page. If this race occurs, it potentially allows
 648 * access to data via a stale TLB entry. Tracking all mm's that have TLB
 649 * batching in flight would be expensive during reclaim so instead track
 650 * whether TLB batching occurred in the past and if so then do a flush here
 651 * if required. This will cost one additional flush per reclaim cycle paid
 652 * by the first operation at risk such as mprotect and mumap.
 653 *
 654 * This must be called under the PTL so that an access to tlb_flush_batched
 655 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
 656 * via the PTL.
 657 */
 658void flush_tlb_batched_pending(struct mm_struct *mm)
 659{
 660        if (mm->tlb_flush_batched) {
 661                flush_tlb_mm(mm);
 662
 663                /*
 664                 * Do not allow the compiler to re-order the clearing of
 665                 * tlb_flush_batched before the tlb is flushed.
 666                 */
 667                barrier();
 668                mm->tlb_flush_batched = false;
 669        }
 670}
 671#else
 672static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 673{
 674}
 675
 676static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 677{
 678        return false;
 679}
 680#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 681
 682/*
 683 * At what user virtual address is page expected in vma?
 684 * Caller should check the page is actually part of the vma.
 685 */
 686unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 687{
 688        unsigned long address;
 689        if (PageAnon(page)) {
 690                struct anon_vma *page__anon_vma = page_anon_vma(page);
 691                /*
 692                 * Note: swapoff's unuse_vma() is more efficient with this
 693                 * check, and needs it to match anon_vma when KSM is active.
 694                 */
 695                if (!vma->anon_vma || !page__anon_vma ||
 696                    vma->anon_vma->root != page__anon_vma->root)
 697                        return -EFAULT;
 698        } else if (page->mapping) {
 699                if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
 700                        return -EFAULT;
 701        } else
 702                return -EFAULT;
 703        address = __vma_address(page, vma);
 704        if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 705                return -EFAULT;
 706        return address;
 707}
 708
 709pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 710{
 711        pgd_t *pgd;
 712        p4d_t *p4d;
 713        pud_t *pud;
 714        pmd_t *pmd = NULL;
 715        pmd_t pmde;
 716
 717        pgd = pgd_offset(mm, address);
 718        if (!pgd_present(*pgd))
 719                goto out;
 720
 721        p4d = p4d_offset(pgd, address);
 722        if (!p4d_present(*p4d))
 723                goto out;
 724
 725        pud = pud_offset(p4d, address);
 726        if (!pud_present(*pud))
 727                goto out;
 728
 729        pmd = pmd_offset(pud, address);
 730        /*
 731         * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
 732         * without holding anon_vma lock for write.  So when looking for a
 733         * genuine pmde (in which to find pte), test present and !THP together.
 734         */
 735        pmde = *pmd;
 736        barrier();
 737        if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 738                pmd = NULL;
 739out:
 740        return pmd;
 741}
 742
 743struct page_referenced_arg {
 744        int mapcount;
 745        int referenced;
 746        unsigned long vm_flags;
 747        struct mem_cgroup *memcg;
 748};
 749/*
 750 * arg: page_referenced_arg will be passed
 751 */
 752static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
 753                        unsigned long address, void *arg)
 754{
 755        struct page_referenced_arg *pra = arg;
 756        struct page_vma_mapped_walk pvmw = {
 757                .page = page,
 758                .vma = vma,
 759                .address = address,
 760        };
 761        int referenced = 0;
 762
 763        while (page_vma_mapped_walk(&pvmw)) {
 764                address = pvmw.address;
 765
 766                if (vma->vm_flags & VM_LOCKED) {
 767                        page_vma_mapped_walk_done(&pvmw);
 768                        pra->vm_flags |= VM_LOCKED;
 769                        return false; /* To break the loop */
 770                }
 771
 772                if (pvmw.pte) {
 773                        if (ptep_clear_flush_young_notify(vma, address,
 774                                                pvmw.pte)) {
 775                                /*
 776                                 * Don't treat a reference through
 777                                 * a sequentially read mapping as such.
 778                                 * If the page has been used in another mapping,
 779                                 * we will catch it; if this other mapping is
 780                                 * already gone, the unmap path will have set
 781                                 * PG_referenced or activated the page.
 782                                 */
 783                                if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 784                                        referenced++;
 785                        }
 786                } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 787                        if (pmdp_clear_flush_young_notify(vma, address,
 788                                                pvmw.pmd))
 789                                referenced++;
 790                } else {
 791                        /* unexpected pmd-mapped page? */
 792                        WARN_ON_ONCE(1);
 793                }
 794
 795                pra->mapcount--;
 796        }
 797
 798        if (referenced)
 799                clear_page_idle(page);
 800        if (test_and_clear_page_young(page))
 801                referenced++;
 802
 803        if (referenced) {
 804                pra->referenced++;
 805                pra->vm_flags |= vma->vm_flags;
 806        }
 807
 808        if (!pra->mapcount)
 809                return false; /* To break the loop */
 810
 811        return true;
 812}
 813
 814static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 815{
 816        struct page_referenced_arg *pra = arg;
 817        struct mem_cgroup *memcg = pra->memcg;
 818
 819        if (!mm_match_cgroup(vma->vm_mm, memcg))
 820                return true;
 821
 822        return false;
 823}
 824
 825/**
 826 * page_referenced - test if the page was referenced
 827 * @page: the page to test
 828 * @is_locked: caller holds lock on the page
 829 * @memcg: target memory cgroup
 830 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 831 *
 832 * Quick test_and_clear_referenced for all mappings to a page,
 833 * returns the number of ptes which referenced the page.
 834 */
 835int page_referenced(struct page *page,
 836                    int is_locked,
 837                    struct mem_cgroup *memcg,
 838                    unsigned long *vm_flags)
 839{
 840        int we_locked = 0;
 841        struct page_referenced_arg pra = {
 842                .mapcount = total_mapcount(page),
 843                .memcg = memcg,
 844        };
 845        struct rmap_walk_control rwc = {
 846                .rmap_one = page_referenced_one,
 847                .arg = (void *)&pra,
 848                .anon_lock = page_lock_anon_vma_read,
 849        };
 850
 851        *vm_flags = 0;
 852        if (!page_mapped(page))
 853                return 0;
 854
 855        if (!page_rmapping(page))
 856                return 0;
 857
 858        if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 859                we_locked = trylock_page(page);
 860                if (!we_locked)
 861                        return 1;
 862        }
 863
 864        /*
 865         * If we are reclaiming on behalf of a cgroup, skip
 866         * counting on behalf of references from different
 867         * cgroups
 868         */
 869        if (memcg) {
 870                rwc.invalid_vma = invalid_page_referenced_vma;
 871        }
 872
 873        rmap_walk(page, &rwc);
 874        *vm_flags = pra.vm_flags;
 875
 876        if (we_locked)
 877                unlock_page(page);
 878
 879        return pra.referenced;
 880}
 881
 882static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 883                            unsigned long address, void *arg)
 884{
 885        struct page_vma_mapped_walk pvmw = {
 886                .page = page,
 887                .vma = vma,
 888                .address = address,
 889                .flags = PVMW_SYNC,
 890        };
 891        unsigned long start = address, end;
 892        int *cleaned = arg;
 893
 894        /*
 895         * We have to assume the worse case ie pmd for invalidation. Note that
 896         * the page can not be free from this function.
 897         */
 898        end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
 899        mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
 900
 901        while (page_vma_mapped_walk(&pvmw)) {
 902                unsigned long cstart;
 903                int ret = 0;
 904
 905                cstart = address = pvmw.address;
 906                if (pvmw.pte) {
 907                        pte_t entry;
 908                        pte_t *pte = pvmw.pte;
 909
 910                        if (!pte_dirty(*pte) && !pte_write(*pte))
 911                                continue;
 912
 913                        flush_cache_page(vma, address, pte_pfn(*pte));
 914                        entry = ptep_clear_flush(vma, address, pte);
 915                        entry = pte_wrprotect(entry);
 916                        entry = pte_mkclean(entry);
 917                        set_pte_at(vma->vm_mm, address, pte, entry);
 918                        ret = 1;
 919                } else {
 920#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
 921                        pmd_t *pmd = pvmw.pmd;
 922                        pmd_t entry;
 923
 924                        if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
 925                                continue;
 926
 927                        flush_cache_page(vma, address, page_to_pfn(page));
 928                        entry = pmdp_huge_clear_flush(vma, address, pmd);
 929                        entry = pmd_wrprotect(entry);
 930                        entry = pmd_mkclean(entry);
 931                        set_pmd_at(vma->vm_mm, address, pmd, entry);
 932                        cstart &= PMD_MASK;
 933                        ret = 1;
 934#else
 935                        /* unexpected pmd-mapped page? */
 936                        WARN_ON_ONCE(1);
 937#endif
 938                }
 939
 940                /*
 941                 * No need to call mmu_notifier_invalidate_range() as we are
 942                 * downgrading page table protection not changing it to point
 943                 * to a new page.
 944                 *
 945                 * See Documentation/vm/mmu_notifier.txt
 946                 */
 947                if (ret)
 948                        (*cleaned)++;
 949        }
 950
 951        mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
 952
 953        return true;
 954}
 955
 956static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
 957{
 958        if (vma->vm_flags & VM_SHARED)
 959                return false;
 960
 961        return true;
 962}
 963
 964int page_mkclean(struct page *page)
 965{
 966        int cleaned = 0;
 967        struct address_space *mapping;
 968        struct rmap_walk_control rwc = {
 969                .arg = (void *)&cleaned,
 970                .rmap_one = page_mkclean_one,
 971                .invalid_vma = invalid_mkclean_vma,
 972        };
 973
 974        BUG_ON(!PageLocked(page));
 975
 976        if (!page_mapped(page))
 977                return 0;
 978
 979        mapping = page_mapping(page);
 980        if (!mapping)
 981                return 0;
 982
 983        rmap_walk(page, &rwc);
 984
 985        return cleaned;
 986}
 987EXPORT_SYMBOL_GPL(page_mkclean);
 988
 989/**
 990 * page_move_anon_rmap - move a page to our anon_vma
 991 * @page:       the page to move to our anon_vma
 992 * @vma:        the vma the page belongs to
 993 *
 994 * When a page belongs exclusively to one process after a COW event,
 995 * that page can be moved into the anon_vma that belongs to just that
 996 * process, so the rmap code will not search the parent or sibling
 997 * processes.
 998 */
 999void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1000{
1001        struct anon_vma *anon_vma = vma->anon_vma;
1002
1003        page = compound_head(page);
1004
1005        VM_BUG_ON_PAGE(!PageLocked(page), page);
1006        VM_BUG_ON_VMA(!anon_vma, vma);
1007
1008        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1009        /*
1010         * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1011         * simultaneously, so a concurrent reader (eg page_referenced()'s
1012         * PageAnon()) will not see one without the other.
1013         */
1014        WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1015}
1016
1017/**
1018 * __page_set_anon_rmap - set up new anonymous rmap
1019 * @page:       Page to add to rmap     
1020 * @vma:        VM area to add page to.
1021 * @address:    User virtual address of the mapping     
1022 * @exclusive:  the page is exclusively owned by the current process
1023 */
1024static void __page_set_anon_rmap(struct page *page,
1025        struct vm_area_struct *vma, unsigned long address, int exclusive)
1026{
1027        struct anon_vma *anon_vma = vma->anon_vma;
1028
1029        BUG_ON(!anon_vma);
1030
1031        if (PageAnon(page))
1032                return;
1033
1034        /*
1035         * If the page isn't exclusively mapped into this vma,
1036         * we must use the _oldest_ possible anon_vma for the
1037         * page mapping!
1038         */
1039        if (!exclusive)
1040                anon_vma = anon_vma->root;
1041
1042        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1043        page->mapping = (struct address_space *) anon_vma;
1044        page->index = linear_page_index(vma, address);
1045}
1046
1047/**
1048 * __page_check_anon_rmap - sanity check anonymous rmap addition
1049 * @page:       the page to add the mapping to
1050 * @vma:        the vm area in which the mapping is added
1051 * @address:    the user virtual address mapped
1052 */
1053static void __page_check_anon_rmap(struct page *page,
1054        struct vm_area_struct *vma, unsigned long address)
1055{
1056#ifdef CONFIG_DEBUG_VM
1057        /*
1058         * The page's anon-rmap details (mapping and index) are guaranteed to
1059         * be set up correctly at this point.
1060         *
1061         * We have exclusion against page_add_anon_rmap because the caller
1062         * always holds the page locked, except if called from page_dup_rmap,
1063         * in which case the page is already known to be setup.
1064         *
1065         * We have exclusion against page_add_new_anon_rmap because those pages
1066         * are initially only visible via the pagetables, and the pte is locked
1067         * over the call to page_add_new_anon_rmap.
1068         */
1069        BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1070        BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1071#endif
1072}
1073
1074/**
1075 * page_add_anon_rmap - add pte mapping to an anonymous page
1076 * @page:       the page to add the mapping to
1077 * @vma:        the vm area in which the mapping is added
1078 * @address:    the user virtual address mapped
1079 * @compound:   charge the page as compound or small page
1080 *
1081 * The caller needs to hold the pte lock, and the page must be locked in
1082 * the anon_vma case: to serialize mapping,index checking after setting,
1083 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1084 * (but PageKsm is never downgraded to PageAnon).
1085 */
1086void page_add_anon_rmap(struct page *page,
1087        struct vm_area_struct *vma, unsigned long address, bool compound)
1088{
1089        do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1090}
1091
1092/*
1093 * Special version of the above for do_swap_page, which often runs
1094 * into pages that are exclusively owned by the current process.
1095 * Everybody else should continue to use page_add_anon_rmap above.
1096 */
1097void do_page_add_anon_rmap(struct page *page,
1098        struct vm_area_struct *vma, unsigned long address, int flags)
1099{
1100        bool compound = flags & RMAP_COMPOUND;
1101        bool first;
1102
1103        if (compound) {
1104                atomic_t *mapcount;
1105                VM_BUG_ON_PAGE(!PageLocked(page), page);
1106                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1107                mapcount = compound_mapcount_ptr(page);
1108                first = atomic_inc_and_test(mapcount);
1109        } else {
1110                first = atomic_inc_and_test(&page->_mapcount);
1111        }
1112
1113        if (first) {
1114                int nr = compound ? hpage_nr_pages(page) : 1;
1115                /*
1116                 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1117                 * these counters are not modified in interrupt context, and
1118                 * pte lock(a spinlock) is held, which implies preemption
1119                 * disabled.
1120                 */
1121                if (compound)
1122                        __inc_node_page_state(page, NR_ANON_THPS);
1123                __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1124        }
1125        if (unlikely(PageKsm(page)))
1126                return;
1127
1128        VM_BUG_ON_PAGE(!PageLocked(page), page);
1129
1130        /* address might be in next vma when migration races vma_adjust */
1131        if (first)
1132                __page_set_anon_rmap(page, vma, address,
1133                                flags & RMAP_EXCLUSIVE);
1134        else
1135                __page_check_anon_rmap(page, vma, address);
1136}
1137
1138/**
1139 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1140 * @page:       the page to add the mapping to
1141 * @vma:        the vm area in which the mapping is added
1142 * @address:    the user virtual address mapped
1143 * @compound:   charge the page as compound or small page
1144 *
1145 * Same as page_add_anon_rmap but must only be called on *new* pages.
1146 * This means the inc-and-test can be bypassed.
1147 * Page does not have to be locked.
1148 */
1149void page_add_new_anon_rmap(struct page *page,
1150        struct vm_area_struct *vma, unsigned long address, bool compound)
1151{
1152        int nr = compound ? hpage_nr_pages(page) : 1;
1153
1154        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1155        __SetPageSwapBacked(page);
1156        if (compound) {
1157                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1158                /* increment count (starts at -1) */
1159                atomic_set(compound_mapcount_ptr(page), 0);
1160                __inc_node_page_state(page, NR_ANON_THPS);
1161        } else {
1162                /* Anon THP always mapped first with PMD */
1163                VM_BUG_ON_PAGE(PageTransCompound(page), page);
1164                /* increment count (starts at -1) */
1165                atomic_set(&page->_mapcount, 0);
1166        }
1167        __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1168        __page_set_anon_rmap(page, vma, address, 1);
1169}
1170
1171/**
1172 * page_add_file_rmap - add pte mapping to a file page
1173 * @page: the page to add the mapping to
1174 * @compound: charge the page as compound or small page
1175 *
1176 * The caller needs to hold the pte lock.
1177 */
1178void page_add_file_rmap(struct page *page, bool compound)
1179{
1180        int i, nr = 1;
1181
1182        VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1183        lock_page_memcg(page);
1184        if (compound && PageTransHuge(page)) {
1185                for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1186                        if (atomic_inc_and_test(&page[i]._mapcount))
1187                                nr++;
1188                }
1189                if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1190                        goto out;
1191                VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1192                __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1193        } else {
1194                if (PageTransCompound(page) && page_mapping(page)) {
1195                        VM_WARN_ON_ONCE(!PageLocked(page));
1196
1197                        SetPageDoubleMap(compound_head(page));
1198                        if (PageMlocked(page))
1199                                clear_page_mlock(compound_head(page));
1200                }
1201                if (!atomic_inc_and_test(&page->_mapcount))
1202                        goto out;
1203        }
1204        __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1205out:
1206        unlock_page_memcg(page);
1207}
1208
1209static void page_remove_file_rmap(struct page *page, bool compound)
1210{
1211        int i, nr = 1;
1212
1213        VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1214        lock_page_memcg(page);
1215
1216        /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1217        if (unlikely(PageHuge(page))) {
1218                /* hugetlb pages are always mapped with pmds */
1219                atomic_dec(compound_mapcount_ptr(page));
1220                goto out;
1221        }
1222
1223        /* page still mapped by someone else? */
1224        if (compound && PageTransHuge(page)) {
1225                for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1226                        if (atomic_add_negative(-1, &page[i]._mapcount))
1227                                nr++;
1228                }
1229                if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1230                        goto out;
1231                VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1232                __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1233        } else {
1234                if (!atomic_add_negative(-1, &page->_mapcount))
1235                        goto out;
1236        }
1237
1238        /*
1239         * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1240         * these counters are not modified in interrupt context, and
1241         * pte lock(a spinlock) is held, which implies preemption disabled.
1242         */
1243        __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1244
1245        if (unlikely(PageMlocked(page)))
1246                clear_page_mlock(page);
1247out:
1248        unlock_page_memcg(page);
1249}
1250
1251static void page_remove_anon_compound_rmap(struct page *page)
1252{
1253        int i, nr;
1254
1255        if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1256                return;
1257
1258        /* Hugepages are not counted in NR_ANON_PAGES for now. */
1259        if (unlikely(PageHuge(page)))
1260                return;
1261
1262        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1263                return;
1264
1265        __dec_node_page_state(page, NR_ANON_THPS);
1266
1267        if (TestClearPageDoubleMap(page)) {
1268                /*
1269                 * Subpages can be mapped with PTEs too. Check how many of
1270                 * themi are still mapped.
1271                 */
1272                for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1273                        if (atomic_add_negative(-1, &page[i]._mapcount))
1274                                nr++;
1275                }
1276        } else {
1277                nr = HPAGE_PMD_NR;
1278        }
1279
1280        if (unlikely(PageMlocked(page)))
1281                clear_page_mlock(page);
1282
1283        if (nr) {
1284                __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1285                deferred_split_huge_page(page);
1286        }
1287}
1288
1289/**
1290 * page_remove_rmap - take down pte mapping from a page
1291 * @page:       page to remove mapping from
1292 * @compound:   uncharge the page as compound or small page
1293 *
1294 * The caller needs to hold the pte lock.
1295 */
1296void page_remove_rmap(struct page *page, bool compound)
1297{
1298        if (!PageAnon(page))
1299                return page_remove_file_rmap(page, compound);
1300
1301        if (compound)
1302                return page_remove_anon_compound_rmap(page);
1303
1304        /* page still mapped by someone else? */
1305        if (!atomic_add_negative(-1, &page->_mapcount))
1306                return;
1307
1308        /*
1309         * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1310         * these counters are not modified in interrupt context, and
1311         * pte lock(a spinlock) is held, which implies preemption disabled.
1312         */
1313        __dec_node_page_state(page, NR_ANON_MAPPED);
1314
1315        if (unlikely(PageMlocked(page)))
1316                clear_page_mlock(page);
1317
1318        if (PageTransCompound(page))
1319                deferred_split_huge_page(compound_head(page));
1320
1321        /*
1322         * It would be tidy to reset the PageAnon mapping here,
1323         * but that might overwrite a racing page_add_anon_rmap
1324         * which increments mapcount after us but sets mapping
1325         * before us: so leave the reset to free_unref_page,
1326         * and remember that it's only reliable while mapped.
1327         * Leaving it set also helps swapoff to reinstate ptes
1328         * faster for those pages still in swapcache.
1329         */
1330}
1331
1332/*
1333 * @arg: enum ttu_flags will be passed to this argument
1334 */
1335static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1336                     unsigned long address, void *arg)
1337{
1338        struct mm_struct *mm = vma->vm_mm;
1339        struct page_vma_mapped_walk pvmw = {
1340                .page = page,
1341                .vma = vma,
1342                .address = address,
1343        };
1344        pte_t pteval;
1345        struct page *subpage;
1346        bool ret = true;
1347        unsigned long start = address, end;
1348        enum ttu_flags flags = (enum ttu_flags)arg;
1349
1350        /* munlock has nothing to gain from examining un-locked vmas */
1351        if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1352                return true;
1353
1354        if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1355            is_zone_device_page(page) && !is_device_private_page(page))
1356                return true;
1357
1358        if (flags & TTU_SPLIT_HUGE_PMD) {
1359                split_huge_pmd_address(vma, address,
1360                                flags & TTU_SPLIT_FREEZE, page);
1361        }
1362
1363        /*
1364         * We have to assume the worse case ie pmd for invalidation. Note that
1365         * the page can not be free in this function as call of try_to_unmap()
1366         * must hold a reference on the page.
1367         */
1368        end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
1369        mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
1370
1371        while (page_vma_mapped_walk(&pvmw)) {
1372#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1373                /* PMD-mapped THP migration entry */
1374                if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1375                        VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1376
1377                        set_pmd_migration_entry(&pvmw, page);
1378                        continue;
1379                }
1380#endif
1381
1382                /*
1383                 * If the page is mlock()d, we cannot swap it out.
1384                 * If it's recently referenced (perhaps page_referenced
1385                 * skipped over this mm) then we should reactivate it.
1386                 */
1387                if (!(flags & TTU_IGNORE_MLOCK)) {
1388                        if (vma->vm_flags & VM_LOCKED) {
1389                                /* PTE-mapped THP are never mlocked */
1390                                if (!PageTransCompound(page)) {
1391                                        /*
1392                                         * Holding pte lock, we do *not* need
1393                                         * mmap_sem here
1394                                         */
1395                                        mlock_vma_page(page);
1396                                }
1397                                ret = false;
1398                                page_vma_mapped_walk_done(&pvmw);
1399                                break;
1400                        }
1401                        if (flags & TTU_MUNLOCK)
1402                                continue;
1403                }
1404
1405                /* Unexpected PMD-mapped THP? */
1406                VM_BUG_ON_PAGE(!pvmw.pte, page);
1407
1408                subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1409                address = pvmw.address;
1410
1411
1412                if (IS_ENABLED(CONFIG_MIGRATION) &&
1413                    (flags & TTU_MIGRATION) &&
1414                    is_zone_device_page(page)) {
1415                        swp_entry_t entry;
1416                        pte_t swp_pte;
1417
1418                        pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1419
1420                        /*
1421                         * Store the pfn of the page in a special migration
1422                         * pte. do_swap_page() will wait until the migration
1423                         * pte is removed and then restart fault handling.
1424                         */
1425                        entry = make_migration_entry(page, 0);
1426                        swp_pte = swp_entry_to_pte(entry);
1427                        if (pte_soft_dirty(pteval))
1428                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1429                        set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1430                        /*
1431                         * No need to invalidate here it will synchronize on
1432                         * against the special swap migration pte.
1433                         */
1434                        goto discard;
1435                }
1436
1437                if (!(flags & TTU_IGNORE_ACCESS)) {
1438                        if (ptep_clear_flush_young_notify(vma, address,
1439                                                pvmw.pte)) {
1440                                ret = false;
1441                                page_vma_mapped_walk_done(&pvmw);
1442                                break;
1443                        }
1444                }
1445
1446                /* Nuke the page table entry. */
1447                flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1448                if (should_defer_flush(mm, flags)) {
1449                        /*
1450                         * We clear the PTE but do not flush so potentially
1451                         * a remote CPU could still be writing to the page.
1452                         * If the entry was previously clean then the
1453                         * architecture must guarantee that a clear->dirty
1454                         * transition on a cached TLB entry is written through
1455                         * and traps if the PTE is unmapped.
1456                         */
1457                        pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1458
1459                        set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1460                } else {
1461                        pteval = ptep_clear_flush(vma, address, pvmw.pte);
1462                }
1463
1464                /* Move the dirty bit to the page. Now the pte is gone. */
1465                if (pte_dirty(pteval))
1466                        set_page_dirty(page);
1467
1468                /* Update high watermark before we lower rss */
1469                update_hiwater_rss(mm);
1470
1471                if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1472                        pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1473                        if (PageHuge(page)) {
1474                                int nr = 1 << compound_order(page);
1475                                hugetlb_count_sub(nr, mm);
1476                                set_huge_swap_pte_at(mm, address,
1477                                                     pvmw.pte, pteval,
1478                                                     vma_mmu_pagesize(vma));
1479                        } else {
1480                                dec_mm_counter(mm, mm_counter(page));
1481                                set_pte_at(mm, address, pvmw.pte, pteval);
1482                        }
1483
1484                } else if (pte_unused(pteval)) {
1485                        /*
1486                         * The guest indicated that the page content is of no
1487                         * interest anymore. Simply discard the pte, vmscan
1488                         * will take care of the rest.
1489                         */
1490                        dec_mm_counter(mm, mm_counter(page));
1491                        /* We have to invalidate as we cleared the pte */
1492                        mmu_notifier_invalidate_range(mm, address,
1493                                                      address + PAGE_SIZE);
1494                } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1495                                (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1496                        swp_entry_t entry;
1497                        pte_t swp_pte;
1498
1499                        if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1500                                set_pte_at(mm, address, pvmw.pte, pteval);
1501                                ret = false;
1502                                page_vma_mapped_walk_done(&pvmw);
1503                                break;
1504                        }
1505
1506                        /*
1507                         * Store the pfn of the page in a special migration
1508                         * pte. do_swap_page() will wait until the migration
1509                         * pte is removed and then restart fault handling.
1510                         */
1511                        entry = make_migration_entry(subpage,
1512                                        pte_write(pteval));
1513                        swp_pte = swp_entry_to_pte(entry);
1514                        if (pte_soft_dirty(pteval))
1515                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1516                        set_pte_at(mm, address, pvmw.pte, swp_pte);
1517                        /*
1518                         * No need to invalidate here it will synchronize on
1519                         * against the special swap migration pte.
1520                         */
1521                } else if (PageAnon(page)) {
1522                        swp_entry_t entry = { .val = page_private(subpage) };
1523                        pte_t swp_pte;
1524                        /*
1525                         * Store the swap location in the pte.
1526                         * See handle_pte_fault() ...
1527                         */
1528                        if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1529                                WARN_ON_ONCE(1);
1530                                ret = false;
1531                                /* We have to invalidate as we cleared the pte */
1532                                mmu_notifier_invalidate_range(mm, address,
1533                                                        address + PAGE_SIZE);
1534                                page_vma_mapped_walk_done(&pvmw);
1535                                break;
1536                        }
1537
1538                        /* MADV_FREE page check */
1539                        if (!PageSwapBacked(page)) {
1540                                if (!PageDirty(page)) {
1541                                        /* Invalidate as we cleared the pte */
1542                                        mmu_notifier_invalidate_range(mm,
1543                                                address, address + PAGE_SIZE);
1544                                        dec_mm_counter(mm, MM_ANONPAGES);
1545                                        goto discard;
1546                                }
1547
1548                                /*
1549                                 * If the page was redirtied, it cannot be
1550                                 * discarded. Remap the page to page table.
1551                                 */
1552                                set_pte_at(mm, address, pvmw.pte, pteval);
1553                                SetPageSwapBacked(page);
1554                                ret = false;
1555                                page_vma_mapped_walk_done(&pvmw);
1556                                break;
1557                        }
1558
1559                        if (swap_duplicate(entry) < 0) {
1560                                set_pte_at(mm, address, pvmw.pte, pteval);
1561                                ret = false;
1562                                page_vma_mapped_walk_done(&pvmw);
1563                                break;
1564                        }
1565                        if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1566                                set_pte_at(mm, address, pvmw.pte, pteval);
1567                                ret = false;
1568                                page_vma_mapped_walk_done(&pvmw);
1569                                break;
1570                        }
1571                        if (list_empty(&mm->mmlist)) {
1572                                spin_lock(&mmlist_lock);
1573                                if (list_empty(&mm->mmlist))
1574                                        list_add(&mm->mmlist, &init_mm.mmlist);
1575                                spin_unlock(&mmlist_lock);
1576                        }
1577                        dec_mm_counter(mm, MM_ANONPAGES);
1578                        inc_mm_counter(mm, MM_SWAPENTS);
1579                        swp_pte = swp_entry_to_pte(entry);
1580                        if (pte_soft_dirty(pteval))
1581                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1582                        set_pte_at(mm, address, pvmw.pte, swp_pte);
1583                        /* Invalidate as we cleared the pte */
1584                        mmu_notifier_invalidate_range(mm, address,
1585                                                      address + PAGE_SIZE);
1586                } else {
1587                        /*
1588                         * We should not need to notify here as we reach this
1589                         * case only from freeze_page() itself only call from
1590                         * split_huge_page_to_list() so everything below must
1591                         * be true:
1592                         *   - page is not anonymous
1593                         *   - page is locked
1594                         *
1595                         * So as it is a locked file back page thus it can not
1596                         * be remove from the page cache and replace by a new
1597                         * page before mmu_notifier_invalidate_range_end so no
1598                         * concurrent thread might update its page table to
1599                         * point at new page while a device still is using this
1600                         * page.
1601                         *
1602                         * See Documentation/vm/mmu_notifier.txt
1603                         */
1604                        dec_mm_counter(mm, mm_counter_file(page));
1605                }
1606discard:
1607                /*
1608                 * No need to call mmu_notifier_invalidate_range() it has be
1609                 * done above for all cases requiring it to happen under page
1610                 * table lock before mmu_notifier_invalidate_range_end()
1611                 *
1612                 * See Documentation/vm/mmu_notifier.txt
1613                 */
1614                page_remove_rmap(subpage, PageHuge(page));
1615                put_page(page);
1616        }
1617
1618        mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
1619
1620        return ret;
1621}
1622
1623bool is_vma_temporary_stack(struct vm_area_struct *vma)
1624{
1625        int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1626
1627        if (!maybe_stack)
1628                return false;
1629
1630        if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1631                                                VM_STACK_INCOMPLETE_SETUP)
1632                return true;
1633
1634        return false;
1635}
1636
1637static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1638{
1639        return is_vma_temporary_stack(vma);
1640}
1641
1642static int page_mapcount_is_zero(struct page *page)
1643{
1644        return !total_mapcount(page);
1645}
1646
1647/**
1648 * try_to_unmap - try to remove all page table mappings to a page
1649 * @page: the page to get unmapped
1650 * @flags: action and flags
1651 *
1652 * Tries to remove all the page table entries which are mapping this
1653 * page, used in the pageout path.  Caller must hold the page lock.
1654 *
1655 * If unmap is successful, return true. Otherwise, false.
1656 */
1657bool try_to_unmap(struct page *page, enum ttu_flags flags)
1658{
1659        struct rmap_walk_control rwc = {
1660                .rmap_one = try_to_unmap_one,
1661                .arg = (void *)flags,
1662                .done = page_mapcount_is_zero,
1663                .anon_lock = page_lock_anon_vma_read,
1664        };
1665
1666        /*
1667         * During exec, a temporary VMA is setup and later moved.
1668         * The VMA is moved under the anon_vma lock but not the
1669         * page tables leading to a race where migration cannot
1670         * find the migration ptes. Rather than increasing the
1671         * locking requirements of exec(), migration skips
1672         * temporary VMAs until after exec() completes.
1673         */
1674        if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1675            && !PageKsm(page) && PageAnon(page))
1676                rwc.invalid_vma = invalid_migration_vma;
1677
1678        if (flags & TTU_RMAP_LOCKED)
1679                rmap_walk_locked(page, &rwc);
1680        else
1681                rmap_walk(page, &rwc);
1682
1683        return !page_mapcount(page) ? true : false;
1684}
1685
1686static int page_not_mapped(struct page *page)
1687{
1688        return !page_mapped(page);
1689};
1690
1691/**
1692 * try_to_munlock - try to munlock a page
1693 * @page: the page to be munlocked
1694 *
1695 * Called from munlock code.  Checks all of the VMAs mapping the page
1696 * to make sure nobody else has this page mlocked. The page will be
1697 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1698 */
1699
1700void try_to_munlock(struct page *page)
1701{
1702        struct rmap_walk_control rwc = {
1703                .rmap_one = try_to_unmap_one,
1704                .arg = (void *)TTU_MUNLOCK,
1705                .done = page_not_mapped,
1706                .anon_lock = page_lock_anon_vma_read,
1707
1708        };
1709
1710        VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1711        VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1712
1713        rmap_walk(page, &rwc);
1714}
1715
1716void __put_anon_vma(struct anon_vma *anon_vma)
1717{
1718        struct anon_vma *root = anon_vma->root;
1719
1720        anon_vma_free(anon_vma);
1721        if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1722                anon_vma_free(root);
1723}
1724
1725static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1726                                        struct rmap_walk_control *rwc)
1727{
1728        struct anon_vma *anon_vma;
1729
1730        if (rwc->anon_lock)
1731                return rwc->anon_lock(page);
1732
1733        /*
1734         * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1735         * because that depends on page_mapped(); but not all its usages
1736         * are holding mmap_sem. Users without mmap_sem are required to
1737         * take a reference count to prevent the anon_vma disappearing
1738         */
1739        anon_vma = page_anon_vma(page);
1740        if (!anon_vma)
1741                return NULL;
1742
1743        anon_vma_lock_read(anon_vma);
1744        return anon_vma;
1745}
1746
1747/*
1748 * rmap_walk_anon - do something to anonymous page using the object-based
1749 * rmap method
1750 * @page: the page to be handled
1751 * @rwc: control variable according to each walk type
1752 *
1753 * Find all the mappings of a page using the mapping pointer and the vma chains
1754 * contained in the anon_vma struct it points to.
1755 *
1756 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1757 * where the page was found will be held for write.  So, we won't recheck
1758 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1759 * LOCKED.
1760 */
1761static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1762                bool locked)
1763{
1764        struct anon_vma *anon_vma;
1765        pgoff_t pgoff_start, pgoff_end;
1766        struct anon_vma_chain *avc;
1767
1768        if (locked) {
1769                anon_vma = page_anon_vma(page);
1770                /* anon_vma disappear under us? */
1771                VM_BUG_ON_PAGE(!anon_vma, page);
1772        } else {
1773                anon_vma = rmap_walk_anon_lock(page, rwc);
1774        }
1775        if (!anon_vma)
1776                return;
1777
1778        pgoff_start = page_to_pgoff(page);
1779        pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1780        anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1781                        pgoff_start, pgoff_end) {
1782                struct vm_area_struct *vma = avc->vma;
1783                unsigned long address = vma_address(page, vma);
1784
1785                cond_resched();
1786
1787                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1788                        continue;
1789
1790                if (!rwc->rmap_one(page, vma, address, rwc->arg))
1791                        break;
1792                if (rwc->done && rwc->done(page))
1793                        break;
1794        }
1795
1796        if (!locked)
1797                anon_vma_unlock_read(anon_vma);
1798}
1799
1800/*
1801 * rmap_walk_file - do something to file page using the object-based rmap method
1802 * @page: the page to be handled
1803 * @rwc: control variable according to each walk type
1804 *
1805 * Find all the mappings of a page using the mapping pointer and the vma chains
1806 * contained in the address_space struct it points to.
1807 *
1808 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1809 * where the page was found will be held for write.  So, we won't recheck
1810 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1811 * LOCKED.
1812 */
1813static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1814                bool locked)
1815{
1816        struct address_space *mapping = page_mapping(page);
1817        pgoff_t pgoff_start, pgoff_end;
1818        struct vm_area_struct *vma;
1819
1820        /*
1821         * The page lock not only makes sure that page->mapping cannot
1822         * suddenly be NULLified by truncation, it makes sure that the
1823         * structure at mapping cannot be freed and reused yet,
1824         * so we can safely take mapping->i_mmap_rwsem.
1825         */
1826        VM_BUG_ON_PAGE(!PageLocked(page), page);
1827
1828        if (!mapping)
1829                return;
1830
1831        pgoff_start = page_to_pgoff(page);
1832        pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1833        if (!locked)
1834                i_mmap_lock_read(mapping);
1835        vma_interval_tree_foreach(vma, &mapping->i_mmap,
1836                        pgoff_start, pgoff_end) {
1837                unsigned long address = vma_address(page, vma);
1838
1839                cond_resched();
1840
1841                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1842                        continue;
1843
1844                if (!rwc->rmap_one(page, vma, address, rwc->arg))
1845                        goto done;
1846                if (rwc->done && rwc->done(page))
1847                        goto done;
1848        }
1849
1850done:
1851        if (!locked)
1852                i_mmap_unlock_read(mapping);
1853}
1854
1855void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1856{
1857        if (unlikely(PageKsm(page)))
1858                rmap_walk_ksm(page, rwc);
1859        else if (PageAnon(page))
1860                rmap_walk_anon(page, rwc, false);
1861        else
1862                rmap_walk_file(page, rwc, false);
1863}
1864
1865/* Like rmap_walk, but caller holds relevant rmap lock */
1866void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1867{
1868        /* no ksm support for now */
1869        VM_BUG_ON_PAGE(PageKsm(page), page);
1870        if (PageAnon(page))
1871                rmap_walk_anon(page, rwc, true);
1872        else
1873                rmap_walk_file(page, rwc, true);
1874}
1875
1876#ifdef CONFIG_HUGETLB_PAGE
1877/*
1878 * The following three functions are for anonymous (private mapped) hugepages.
1879 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1880 * and no lru code, because we handle hugepages differently from common pages.
1881 */
1882static void __hugepage_set_anon_rmap(struct page *page,
1883        struct vm_area_struct *vma, unsigned long address, int exclusive)
1884{
1885        struct anon_vma *anon_vma = vma->anon_vma;
1886
1887        BUG_ON(!anon_vma);
1888
1889        if (PageAnon(page))
1890                return;
1891        if (!exclusive)
1892                anon_vma = anon_vma->root;
1893
1894        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1895        page->mapping = (struct address_space *) anon_vma;
1896        page->index = linear_page_index(vma, address);
1897}
1898
1899void hugepage_add_anon_rmap(struct page *page,
1900                            struct vm_area_struct *vma, unsigned long address)
1901{
1902        struct anon_vma *anon_vma = vma->anon_vma;
1903        int first;
1904
1905        BUG_ON(!PageLocked(page));
1906        BUG_ON(!anon_vma);
1907        /* address might be in next vma when migration races vma_adjust */
1908        first = atomic_inc_and_test(compound_mapcount_ptr(page));
1909        if (first)
1910                __hugepage_set_anon_rmap(page, vma, address, 0);
1911}
1912
1913void hugepage_add_new_anon_rmap(struct page *page,
1914                        struct vm_area_struct *vma, unsigned long address)
1915{
1916        BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1917        atomic_set(compound_mapcount_ptr(page), 0);
1918        __hugepage_set_anon_rmap(page, vma, address, 1);
1919}
1920#endif /* CONFIG_HUGETLB_PAGE */
1921