linux/mm/shmem.c
<<
>>
Prefs
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *               2000 Transmeta Corp.
   6 *               2000-2001 Christoph Rohland
   7 *               2000-2001 SAP AG
   8 *               2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/mm.h>
  32#include <linux/sched/signal.h>
  33#include <linux/export.h>
  34#include <linux/swap.h>
  35#include <linux/uio.h>
  36#include <linux/khugepaged.h>
  37#include <linux/hugetlb.h>
  38
  39#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
  40
  41static struct vfsmount *shm_mnt;
  42
  43#ifdef CONFIG_SHMEM
  44/*
  45 * This virtual memory filesystem is heavily based on the ramfs. It
  46 * extends ramfs by the ability to use swap and honor resource limits
  47 * which makes it a completely usable filesystem.
  48 */
  49
  50#include <linux/xattr.h>
  51#include <linux/exportfs.h>
  52#include <linux/posix_acl.h>
  53#include <linux/posix_acl_xattr.h>
  54#include <linux/mman.h>
  55#include <linux/string.h>
  56#include <linux/slab.h>
  57#include <linux/backing-dev.h>
  58#include <linux/shmem_fs.h>
  59#include <linux/writeback.h>
  60#include <linux/blkdev.h>
  61#include <linux/pagevec.h>
  62#include <linux/percpu_counter.h>
  63#include <linux/falloc.h>
  64#include <linux/splice.h>
  65#include <linux/security.h>
  66#include <linux/swapops.h>
  67#include <linux/mempolicy.h>
  68#include <linux/namei.h>
  69#include <linux/ctype.h>
  70#include <linux/migrate.h>
  71#include <linux/highmem.h>
  72#include <linux/seq_file.h>
  73#include <linux/magic.h>
  74#include <linux/syscalls.h>
  75#include <linux/fcntl.h>
  76#include <uapi/linux/memfd.h>
  77#include <linux/userfaultfd_k.h>
  78#include <linux/rmap.h>
  79#include <linux/uuid.h>
  80
  81#include <linux/uaccess.h>
  82#include <asm/pgtable.h>
  83
  84#include "internal.h"
  85
  86#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  87#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  88
  89/* Pretend that each entry is of this size in directory's i_size */
  90#define BOGO_DIRENT_SIZE 20
  91
  92/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  93#define SHORT_SYMLINK_LEN 128
  94
  95/*
  96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  97 * inode->i_private (with i_mutex making sure that it has only one user at
  98 * a time): we would prefer not to enlarge the shmem inode just for that.
  99 */
 100struct shmem_falloc {
 101        wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
 102        pgoff_t start;          /* start of range currently being fallocated */
 103        pgoff_t next;           /* the next page offset to be fallocated */
 104        pgoff_t nr_falloced;    /* how many new pages have been fallocated */
 105        pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
 106};
 107
 108#ifdef CONFIG_TMPFS
 109static unsigned long shmem_default_max_blocks(void)
 110{
 111        return totalram_pages / 2;
 112}
 113
 114static unsigned long shmem_default_max_inodes(void)
 115{
 116        return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 117}
 118#endif
 119
 120static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 121static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 122                                struct shmem_inode_info *info, pgoff_t index);
 123static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 124                struct page **pagep, enum sgp_type sgp,
 125                gfp_t gfp, struct vm_area_struct *vma,
 126                struct vm_fault *vmf, int *fault_type);
 127
 128int shmem_getpage(struct inode *inode, pgoff_t index,
 129                struct page **pagep, enum sgp_type sgp)
 130{
 131        return shmem_getpage_gfp(inode, index, pagep, sgp,
 132                mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
 133}
 134
 135static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 136{
 137        return sb->s_fs_info;
 138}
 139
 140/*
 141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 142 * for shared memory and for shared anonymous (/dev/zero) mappings
 143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 144 * consistent with the pre-accounting of private mappings ...
 145 */
 146static inline int shmem_acct_size(unsigned long flags, loff_t size)
 147{
 148        return (flags & VM_NORESERVE) ?
 149                0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 150}
 151
 152static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 153{
 154        if (!(flags & VM_NORESERVE))
 155                vm_unacct_memory(VM_ACCT(size));
 156}
 157
 158static inline int shmem_reacct_size(unsigned long flags,
 159                loff_t oldsize, loff_t newsize)
 160{
 161        if (!(flags & VM_NORESERVE)) {
 162                if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 163                        return security_vm_enough_memory_mm(current->mm,
 164                                        VM_ACCT(newsize) - VM_ACCT(oldsize));
 165                else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 166                        vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 167        }
 168        return 0;
 169}
 170
 171/*
 172 * ... whereas tmpfs objects are accounted incrementally as
 173 * pages are allocated, in order to allow large sparse files.
 174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 176 */
 177static inline int shmem_acct_block(unsigned long flags, long pages)
 178{
 179        if (!(flags & VM_NORESERVE))
 180                return 0;
 181
 182        return security_vm_enough_memory_mm(current->mm,
 183                        pages * VM_ACCT(PAGE_SIZE));
 184}
 185
 186static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 187{
 188        if (flags & VM_NORESERVE)
 189                vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 190}
 191
 192static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
 193{
 194        struct shmem_inode_info *info = SHMEM_I(inode);
 195        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 196
 197        if (shmem_acct_block(info->flags, pages))
 198                return false;
 199
 200        if (sbinfo->max_blocks) {
 201                if (percpu_counter_compare(&sbinfo->used_blocks,
 202                                           sbinfo->max_blocks - pages) > 0)
 203                        goto unacct;
 204                percpu_counter_add(&sbinfo->used_blocks, pages);
 205        }
 206
 207        return true;
 208
 209unacct:
 210        shmem_unacct_blocks(info->flags, pages);
 211        return false;
 212}
 213
 214static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 215{
 216        struct shmem_inode_info *info = SHMEM_I(inode);
 217        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 218
 219        if (sbinfo->max_blocks)
 220                percpu_counter_sub(&sbinfo->used_blocks, pages);
 221        shmem_unacct_blocks(info->flags, pages);
 222}
 223
 224static const struct super_operations shmem_ops;
 225static const struct address_space_operations shmem_aops;
 226static const struct file_operations shmem_file_operations;
 227static const struct inode_operations shmem_inode_operations;
 228static const struct inode_operations shmem_dir_inode_operations;
 229static const struct inode_operations shmem_special_inode_operations;
 230static const struct vm_operations_struct shmem_vm_ops;
 231static struct file_system_type shmem_fs_type;
 232
 233bool vma_is_shmem(struct vm_area_struct *vma)
 234{
 235        return vma->vm_ops == &shmem_vm_ops;
 236}
 237
 238static LIST_HEAD(shmem_swaplist);
 239static DEFINE_MUTEX(shmem_swaplist_mutex);
 240
 241static int shmem_reserve_inode(struct super_block *sb)
 242{
 243        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 244        if (sbinfo->max_inodes) {
 245                spin_lock(&sbinfo->stat_lock);
 246                if (!sbinfo->free_inodes) {
 247                        spin_unlock(&sbinfo->stat_lock);
 248                        return -ENOSPC;
 249                }
 250                sbinfo->free_inodes--;
 251                spin_unlock(&sbinfo->stat_lock);
 252        }
 253        return 0;
 254}
 255
 256static void shmem_free_inode(struct super_block *sb)
 257{
 258        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 259        if (sbinfo->max_inodes) {
 260                spin_lock(&sbinfo->stat_lock);
 261                sbinfo->free_inodes++;
 262                spin_unlock(&sbinfo->stat_lock);
 263        }
 264}
 265
 266/**
 267 * shmem_recalc_inode - recalculate the block usage of an inode
 268 * @inode: inode to recalc
 269 *
 270 * We have to calculate the free blocks since the mm can drop
 271 * undirtied hole pages behind our back.
 272 *
 273 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 275 *
 276 * It has to be called with the spinlock held.
 277 */
 278static void shmem_recalc_inode(struct inode *inode)
 279{
 280        struct shmem_inode_info *info = SHMEM_I(inode);
 281        long freed;
 282
 283        freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 284        if (freed > 0) {
 285                info->alloced -= freed;
 286                inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 287                shmem_inode_unacct_blocks(inode, freed);
 288        }
 289}
 290
 291bool shmem_charge(struct inode *inode, long pages)
 292{
 293        struct shmem_inode_info *info = SHMEM_I(inode);
 294        unsigned long flags;
 295
 296        if (!shmem_inode_acct_block(inode, pages))
 297                return false;
 298
 299        spin_lock_irqsave(&info->lock, flags);
 300        info->alloced += pages;
 301        inode->i_blocks += pages * BLOCKS_PER_PAGE;
 302        shmem_recalc_inode(inode);
 303        spin_unlock_irqrestore(&info->lock, flags);
 304        inode->i_mapping->nrpages += pages;
 305
 306        return true;
 307}
 308
 309void shmem_uncharge(struct inode *inode, long pages)
 310{
 311        struct shmem_inode_info *info = SHMEM_I(inode);
 312        unsigned long flags;
 313
 314        spin_lock_irqsave(&info->lock, flags);
 315        info->alloced -= pages;
 316        inode->i_blocks -= pages * BLOCKS_PER_PAGE;
 317        shmem_recalc_inode(inode);
 318        spin_unlock_irqrestore(&info->lock, flags);
 319
 320        shmem_inode_unacct_blocks(inode, pages);
 321}
 322
 323/*
 324 * Replace item expected in radix tree by a new item, while holding tree lock.
 325 */
 326static int shmem_radix_tree_replace(struct address_space *mapping,
 327                        pgoff_t index, void *expected, void *replacement)
 328{
 329        struct radix_tree_node *node;
 330        void **pslot;
 331        void *item;
 332
 333        VM_BUG_ON(!expected);
 334        VM_BUG_ON(!replacement);
 335        item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
 336        if (!item)
 337                return -ENOENT;
 338        if (item != expected)
 339                return -ENOENT;
 340        __radix_tree_replace(&mapping->i_pages, node, pslot,
 341                             replacement, NULL);
 342        return 0;
 343}
 344
 345/*
 346 * Sometimes, before we decide whether to proceed or to fail, we must check
 347 * that an entry was not already brought back from swap by a racing thread.
 348 *
 349 * Checking page is not enough: by the time a SwapCache page is locked, it
 350 * might be reused, and again be SwapCache, using the same swap as before.
 351 */
 352static bool shmem_confirm_swap(struct address_space *mapping,
 353                               pgoff_t index, swp_entry_t swap)
 354{
 355        void *item;
 356
 357        rcu_read_lock();
 358        item = radix_tree_lookup(&mapping->i_pages, index);
 359        rcu_read_unlock();
 360        return item == swp_to_radix_entry(swap);
 361}
 362
 363/*
 364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 365 *
 366 * SHMEM_HUGE_NEVER:
 367 *      disables huge pages for the mount;
 368 * SHMEM_HUGE_ALWAYS:
 369 *      enables huge pages for the mount;
 370 * SHMEM_HUGE_WITHIN_SIZE:
 371 *      only allocate huge pages if the page will be fully within i_size,
 372 *      also respect fadvise()/madvise() hints;
 373 * SHMEM_HUGE_ADVISE:
 374 *      only allocate huge pages if requested with fadvise()/madvise();
 375 */
 376
 377#define SHMEM_HUGE_NEVER        0
 378#define SHMEM_HUGE_ALWAYS       1
 379#define SHMEM_HUGE_WITHIN_SIZE  2
 380#define SHMEM_HUGE_ADVISE       3
 381
 382/*
 383 * Special values.
 384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 385 *
 386 * SHMEM_HUGE_DENY:
 387 *      disables huge on shm_mnt and all mounts, for emergency use;
 388 * SHMEM_HUGE_FORCE:
 389 *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 390 *
 391 */
 392#define SHMEM_HUGE_DENY         (-1)
 393#define SHMEM_HUGE_FORCE        (-2)
 394
 395#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
 396/* ifdef here to avoid bloating shmem.o when not necessary */
 397
 398int shmem_huge __read_mostly;
 399
 400#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 401static int shmem_parse_huge(const char *str)
 402{
 403        if (!strcmp(str, "never"))
 404                return SHMEM_HUGE_NEVER;
 405        if (!strcmp(str, "always"))
 406                return SHMEM_HUGE_ALWAYS;
 407        if (!strcmp(str, "within_size"))
 408                return SHMEM_HUGE_WITHIN_SIZE;
 409        if (!strcmp(str, "advise"))
 410                return SHMEM_HUGE_ADVISE;
 411        if (!strcmp(str, "deny"))
 412                return SHMEM_HUGE_DENY;
 413        if (!strcmp(str, "force"))
 414                return SHMEM_HUGE_FORCE;
 415        return -EINVAL;
 416}
 417
 418static const char *shmem_format_huge(int huge)
 419{
 420        switch (huge) {
 421        case SHMEM_HUGE_NEVER:
 422                return "never";
 423        case SHMEM_HUGE_ALWAYS:
 424                return "always";
 425        case SHMEM_HUGE_WITHIN_SIZE:
 426                return "within_size";
 427        case SHMEM_HUGE_ADVISE:
 428                return "advise";
 429        case SHMEM_HUGE_DENY:
 430                return "deny";
 431        case SHMEM_HUGE_FORCE:
 432                return "force";
 433        default:
 434                VM_BUG_ON(1);
 435                return "bad_val";
 436        }
 437}
 438#endif
 439
 440static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 441                struct shrink_control *sc, unsigned long nr_to_split)
 442{
 443        LIST_HEAD(list), *pos, *next;
 444        LIST_HEAD(to_remove);
 445        struct inode *inode;
 446        struct shmem_inode_info *info;
 447        struct page *page;
 448        unsigned long batch = sc ? sc->nr_to_scan : 128;
 449        int removed = 0, split = 0;
 450
 451        if (list_empty(&sbinfo->shrinklist))
 452                return SHRINK_STOP;
 453
 454        spin_lock(&sbinfo->shrinklist_lock);
 455        list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 456                info = list_entry(pos, struct shmem_inode_info, shrinklist);
 457
 458                /* pin the inode */
 459                inode = igrab(&info->vfs_inode);
 460
 461                /* inode is about to be evicted */
 462                if (!inode) {
 463                        list_del_init(&info->shrinklist);
 464                        removed++;
 465                        goto next;
 466                }
 467
 468                /* Check if there's anything to gain */
 469                if (round_up(inode->i_size, PAGE_SIZE) ==
 470                                round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 471                        list_move(&info->shrinklist, &to_remove);
 472                        removed++;
 473                        goto next;
 474                }
 475
 476                list_move(&info->shrinklist, &list);
 477next:
 478                if (!--batch)
 479                        break;
 480        }
 481        spin_unlock(&sbinfo->shrinklist_lock);
 482
 483        list_for_each_safe(pos, next, &to_remove) {
 484                info = list_entry(pos, struct shmem_inode_info, shrinklist);
 485                inode = &info->vfs_inode;
 486                list_del_init(&info->shrinklist);
 487                iput(inode);
 488        }
 489
 490        list_for_each_safe(pos, next, &list) {
 491                int ret;
 492
 493                info = list_entry(pos, struct shmem_inode_info, shrinklist);
 494                inode = &info->vfs_inode;
 495
 496                if (nr_to_split && split >= nr_to_split)
 497                        goto leave;
 498
 499                page = find_get_page(inode->i_mapping,
 500                                (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
 501                if (!page)
 502                        goto drop;
 503
 504                /* No huge page at the end of the file: nothing to split */
 505                if (!PageTransHuge(page)) {
 506                        put_page(page);
 507                        goto drop;
 508                }
 509
 510                /*
 511                 * Leave the inode on the list if we failed to lock
 512                 * the page at this time.
 513                 *
 514                 * Waiting for the lock may lead to deadlock in the
 515                 * reclaim path.
 516                 */
 517                if (!trylock_page(page)) {
 518                        put_page(page);
 519                        goto leave;
 520                }
 521
 522                ret = split_huge_page(page);
 523                unlock_page(page);
 524                put_page(page);
 525
 526                /* If split failed leave the inode on the list */
 527                if (ret)
 528                        goto leave;
 529
 530                split++;
 531drop:
 532                list_del_init(&info->shrinklist);
 533                removed++;
 534leave:
 535                iput(inode);
 536        }
 537
 538        spin_lock(&sbinfo->shrinklist_lock);
 539        list_splice_tail(&list, &sbinfo->shrinklist);
 540        sbinfo->shrinklist_len -= removed;
 541        spin_unlock(&sbinfo->shrinklist_lock);
 542
 543        return split;
 544}
 545
 546static long shmem_unused_huge_scan(struct super_block *sb,
 547                struct shrink_control *sc)
 548{
 549        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 550
 551        if (!READ_ONCE(sbinfo->shrinklist_len))
 552                return SHRINK_STOP;
 553
 554        return shmem_unused_huge_shrink(sbinfo, sc, 0);
 555}
 556
 557static long shmem_unused_huge_count(struct super_block *sb,
 558                struct shrink_control *sc)
 559{
 560        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 561        return READ_ONCE(sbinfo->shrinklist_len);
 562}
 563#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
 564
 565#define shmem_huge SHMEM_HUGE_DENY
 566
 567static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 568                struct shrink_control *sc, unsigned long nr_to_split)
 569{
 570        return 0;
 571}
 572#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
 573
 574/*
 575 * Like add_to_page_cache_locked, but error if expected item has gone.
 576 */
 577static int shmem_add_to_page_cache(struct page *page,
 578                                   struct address_space *mapping,
 579                                   pgoff_t index, void *expected)
 580{
 581        int error, nr = hpage_nr_pages(page);
 582
 583        VM_BUG_ON_PAGE(PageTail(page), page);
 584        VM_BUG_ON_PAGE(index != round_down(index, nr), page);
 585        VM_BUG_ON_PAGE(!PageLocked(page), page);
 586        VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 587        VM_BUG_ON(expected && PageTransHuge(page));
 588
 589        page_ref_add(page, nr);
 590        page->mapping = mapping;
 591        page->index = index;
 592
 593        xa_lock_irq(&mapping->i_pages);
 594        if (PageTransHuge(page)) {
 595                void __rcu **results;
 596                pgoff_t idx;
 597                int i;
 598
 599                error = 0;
 600                if (radix_tree_gang_lookup_slot(&mapping->i_pages,
 601                                        &results, &idx, index, 1) &&
 602                                idx < index + HPAGE_PMD_NR) {
 603                        error = -EEXIST;
 604                }
 605
 606                if (!error) {
 607                        for (i = 0; i < HPAGE_PMD_NR; i++) {
 608                                error = radix_tree_insert(&mapping->i_pages,
 609                                                index + i, page + i);
 610                                VM_BUG_ON(error);
 611                        }
 612                        count_vm_event(THP_FILE_ALLOC);
 613                }
 614        } else if (!expected) {
 615                error = radix_tree_insert(&mapping->i_pages, index, page);
 616        } else {
 617                error = shmem_radix_tree_replace(mapping, index, expected,
 618                                                                 page);
 619        }
 620
 621        if (!error) {
 622                mapping->nrpages += nr;
 623                if (PageTransHuge(page))
 624                        __inc_node_page_state(page, NR_SHMEM_THPS);
 625                __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
 626                __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
 627                xa_unlock_irq(&mapping->i_pages);
 628        } else {
 629                page->mapping = NULL;
 630                xa_unlock_irq(&mapping->i_pages);
 631                page_ref_sub(page, nr);
 632        }
 633        return error;
 634}
 635
 636/*
 637 * Like delete_from_page_cache, but substitutes swap for page.
 638 */
 639static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 640{
 641        struct address_space *mapping = page->mapping;
 642        int error;
 643
 644        VM_BUG_ON_PAGE(PageCompound(page), page);
 645
 646        xa_lock_irq(&mapping->i_pages);
 647        error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 648        page->mapping = NULL;
 649        mapping->nrpages--;
 650        __dec_node_page_state(page, NR_FILE_PAGES);
 651        __dec_node_page_state(page, NR_SHMEM);
 652        xa_unlock_irq(&mapping->i_pages);
 653        put_page(page);
 654        BUG_ON(error);
 655}
 656
 657/*
 658 * Remove swap entry from radix tree, free the swap and its page cache.
 659 */
 660static int shmem_free_swap(struct address_space *mapping,
 661                           pgoff_t index, void *radswap)
 662{
 663        void *old;
 664
 665        xa_lock_irq(&mapping->i_pages);
 666        old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
 667        xa_unlock_irq(&mapping->i_pages);
 668        if (old != radswap)
 669                return -ENOENT;
 670        free_swap_and_cache(radix_to_swp_entry(radswap));
 671        return 0;
 672}
 673
 674/*
 675 * Determine (in bytes) how many of the shmem object's pages mapped by the
 676 * given offsets are swapped out.
 677 *
 678 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 679 * as long as the inode doesn't go away and racy results are not a problem.
 680 */
 681unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 682                                                pgoff_t start, pgoff_t end)
 683{
 684        struct radix_tree_iter iter;
 685        void **slot;
 686        struct page *page;
 687        unsigned long swapped = 0;
 688
 689        rcu_read_lock();
 690
 691        radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
 692                if (iter.index >= end)
 693                        break;
 694
 695                page = radix_tree_deref_slot(slot);
 696
 697                if (radix_tree_deref_retry(page)) {
 698                        slot = radix_tree_iter_retry(&iter);
 699                        continue;
 700                }
 701
 702                if (radix_tree_exceptional_entry(page))
 703                        swapped++;
 704
 705                if (need_resched()) {
 706                        slot = radix_tree_iter_resume(slot, &iter);
 707                        cond_resched_rcu();
 708                }
 709        }
 710
 711        rcu_read_unlock();
 712
 713        return swapped << PAGE_SHIFT;
 714}
 715
 716/*
 717 * Determine (in bytes) how many of the shmem object's pages mapped by the
 718 * given vma is swapped out.
 719 *
 720 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 721 * as long as the inode doesn't go away and racy results are not a problem.
 722 */
 723unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 724{
 725        struct inode *inode = file_inode(vma->vm_file);
 726        struct shmem_inode_info *info = SHMEM_I(inode);
 727        struct address_space *mapping = inode->i_mapping;
 728        unsigned long swapped;
 729
 730        /* Be careful as we don't hold info->lock */
 731        swapped = READ_ONCE(info->swapped);
 732
 733        /*
 734         * The easier cases are when the shmem object has nothing in swap, or
 735         * the vma maps it whole. Then we can simply use the stats that we
 736         * already track.
 737         */
 738        if (!swapped)
 739                return 0;
 740
 741        if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 742                return swapped << PAGE_SHIFT;
 743
 744        /* Here comes the more involved part */
 745        return shmem_partial_swap_usage(mapping,
 746                        linear_page_index(vma, vma->vm_start),
 747                        linear_page_index(vma, vma->vm_end));
 748}
 749
 750/*
 751 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 752 */
 753void shmem_unlock_mapping(struct address_space *mapping)
 754{
 755        struct pagevec pvec;
 756        pgoff_t indices[PAGEVEC_SIZE];
 757        pgoff_t index = 0;
 758
 759        pagevec_init(&pvec);
 760        /*
 761         * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 762         */
 763        while (!mapping_unevictable(mapping)) {
 764                /*
 765                 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 766                 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 767                 */
 768                pvec.nr = find_get_entries(mapping, index,
 769                                           PAGEVEC_SIZE, pvec.pages, indices);
 770                if (!pvec.nr)
 771                        break;
 772                index = indices[pvec.nr - 1] + 1;
 773                pagevec_remove_exceptionals(&pvec);
 774                check_move_unevictable_pages(pvec.pages, pvec.nr);
 775                pagevec_release(&pvec);
 776                cond_resched();
 777        }
 778}
 779
 780/*
 781 * Remove range of pages and swap entries from radix tree, and free them.
 782 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 783 */
 784static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 785                                                                 bool unfalloc)
 786{
 787        struct address_space *mapping = inode->i_mapping;
 788        struct shmem_inode_info *info = SHMEM_I(inode);
 789        pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 790        pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 791        unsigned int partial_start = lstart & (PAGE_SIZE - 1);
 792        unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
 793        struct pagevec pvec;
 794        pgoff_t indices[PAGEVEC_SIZE];
 795        long nr_swaps_freed = 0;
 796        pgoff_t index;
 797        int i;
 798
 799        if (lend == -1)
 800                end = -1;       /* unsigned, so actually very big */
 801
 802        pagevec_init(&pvec);
 803        index = start;
 804        while (index < end) {
 805                pvec.nr = find_get_entries(mapping, index,
 806                        min(end - index, (pgoff_t)PAGEVEC_SIZE),
 807                        pvec.pages, indices);
 808                if (!pvec.nr)
 809                        break;
 810                for (i = 0; i < pagevec_count(&pvec); i++) {
 811                        struct page *page = pvec.pages[i];
 812
 813                        index = indices[i];
 814                        if (index >= end)
 815                                break;
 816
 817                        if (radix_tree_exceptional_entry(page)) {
 818                                if (unfalloc)
 819                                        continue;
 820                                nr_swaps_freed += !shmem_free_swap(mapping,
 821                                                                index, page);
 822                                continue;
 823                        }
 824
 825                        VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
 826
 827                        if (!trylock_page(page))
 828                                continue;
 829
 830                        if (PageTransTail(page)) {
 831                                /* Middle of THP: zero out the page */
 832                                clear_highpage(page);
 833                                unlock_page(page);
 834                                continue;
 835                        } else if (PageTransHuge(page)) {
 836                                if (index == round_down(end, HPAGE_PMD_NR)) {
 837                                        /*
 838                                         * Range ends in the middle of THP:
 839                                         * zero out the page
 840                                         */
 841                                        clear_highpage(page);
 842                                        unlock_page(page);
 843                                        continue;
 844                                }
 845                                index += HPAGE_PMD_NR - 1;
 846                                i += HPAGE_PMD_NR - 1;
 847                        }
 848
 849                        if (!unfalloc || !PageUptodate(page)) {
 850                                VM_BUG_ON_PAGE(PageTail(page), page);
 851                                if (page_mapping(page) == mapping) {
 852                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 853                                        truncate_inode_page(mapping, page);
 854                                }
 855                        }
 856                        unlock_page(page);
 857                }
 858                pagevec_remove_exceptionals(&pvec);
 859                pagevec_release(&pvec);
 860                cond_resched();
 861                index++;
 862        }
 863
 864        if (partial_start) {
 865                struct page *page = NULL;
 866                shmem_getpage(inode, start - 1, &page, SGP_READ);
 867                if (page) {
 868                        unsigned int top = PAGE_SIZE;
 869                        if (start > end) {
 870                                top = partial_end;
 871                                partial_end = 0;
 872                        }
 873                        zero_user_segment(page, partial_start, top);
 874                        set_page_dirty(page);
 875                        unlock_page(page);
 876                        put_page(page);
 877                }
 878        }
 879        if (partial_end) {
 880                struct page *page = NULL;
 881                shmem_getpage(inode, end, &page, SGP_READ);
 882                if (page) {
 883                        zero_user_segment(page, 0, partial_end);
 884                        set_page_dirty(page);
 885                        unlock_page(page);
 886                        put_page(page);
 887                }
 888        }
 889        if (start >= end)
 890                return;
 891
 892        index = start;
 893        while (index < end) {
 894                cond_resched();
 895
 896                pvec.nr = find_get_entries(mapping, index,
 897                                min(end - index, (pgoff_t)PAGEVEC_SIZE),
 898                                pvec.pages, indices);
 899                if (!pvec.nr) {
 900                        /* If all gone or hole-punch or unfalloc, we're done */
 901                        if (index == start || end != -1)
 902                                break;
 903                        /* But if truncating, restart to make sure all gone */
 904                        index = start;
 905                        continue;
 906                }
 907                for (i = 0; i < pagevec_count(&pvec); i++) {
 908                        struct page *page = pvec.pages[i];
 909
 910                        index = indices[i];
 911                        if (index >= end)
 912                                break;
 913
 914                        if (radix_tree_exceptional_entry(page)) {
 915                                if (unfalloc)
 916                                        continue;
 917                                if (shmem_free_swap(mapping, index, page)) {
 918                                        /* Swap was replaced by page: retry */
 919                                        index--;
 920                                        break;
 921                                }
 922                                nr_swaps_freed++;
 923                                continue;
 924                        }
 925
 926                        lock_page(page);
 927
 928                        if (PageTransTail(page)) {
 929                                /* Middle of THP: zero out the page */
 930                                clear_highpage(page);
 931                                unlock_page(page);
 932                                /*
 933                                 * Partial thp truncate due 'start' in middle
 934                                 * of THP: don't need to look on these pages
 935                                 * again on !pvec.nr restart.
 936                                 */
 937                                if (index != round_down(end, HPAGE_PMD_NR))
 938                                        start++;
 939                                continue;
 940                        } else if (PageTransHuge(page)) {
 941                                if (index == round_down(end, HPAGE_PMD_NR)) {
 942                                        /*
 943                                         * Range ends in the middle of THP:
 944                                         * zero out the page
 945                                         */
 946                                        clear_highpage(page);
 947                                        unlock_page(page);
 948                                        continue;
 949                                }
 950                                index += HPAGE_PMD_NR - 1;
 951                                i += HPAGE_PMD_NR - 1;
 952                        }
 953
 954                        if (!unfalloc || !PageUptodate(page)) {
 955                                VM_BUG_ON_PAGE(PageTail(page), page);
 956                                if (page_mapping(page) == mapping) {
 957                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 958                                        truncate_inode_page(mapping, page);
 959                                } else {
 960                                        /* Page was replaced by swap: retry */
 961                                        unlock_page(page);
 962                                        index--;
 963                                        break;
 964                                }
 965                        }
 966                        unlock_page(page);
 967                }
 968                pagevec_remove_exceptionals(&pvec);
 969                pagevec_release(&pvec);
 970                index++;
 971        }
 972
 973        spin_lock_irq(&info->lock);
 974        info->swapped -= nr_swaps_freed;
 975        shmem_recalc_inode(inode);
 976        spin_unlock_irq(&info->lock);
 977}
 978
 979void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 980{
 981        shmem_undo_range(inode, lstart, lend, false);
 982        inode->i_ctime = inode->i_mtime = current_time(inode);
 983}
 984EXPORT_SYMBOL_GPL(shmem_truncate_range);
 985
 986static int shmem_getattr(const struct path *path, struct kstat *stat,
 987                         u32 request_mask, unsigned int query_flags)
 988{
 989        struct inode *inode = path->dentry->d_inode;
 990        struct shmem_inode_info *info = SHMEM_I(inode);
 991
 992        if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
 993                spin_lock_irq(&info->lock);
 994                shmem_recalc_inode(inode);
 995                spin_unlock_irq(&info->lock);
 996        }
 997        generic_fillattr(inode, stat);
 998        return 0;
 999}
1000
1001static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1002{
1003        struct inode *inode = d_inode(dentry);
1004        struct shmem_inode_info *info = SHMEM_I(inode);
1005        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1006        int error;
1007
1008        error = setattr_prepare(dentry, attr);
1009        if (error)
1010                return error;
1011
1012        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1013                loff_t oldsize = inode->i_size;
1014                loff_t newsize = attr->ia_size;
1015
1016                /* protected by i_mutex */
1017                if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1018                    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1019                        return -EPERM;
1020
1021                if (newsize != oldsize) {
1022                        error = shmem_reacct_size(SHMEM_I(inode)->flags,
1023                                        oldsize, newsize);
1024                        if (error)
1025                                return error;
1026                        i_size_write(inode, newsize);
1027                        inode->i_ctime = inode->i_mtime = current_time(inode);
1028                }
1029                if (newsize <= oldsize) {
1030                        loff_t holebegin = round_up(newsize, PAGE_SIZE);
1031                        if (oldsize > holebegin)
1032                                unmap_mapping_range(inode->i_mapping,
1033                                                        holebegin, 0, 1);
1034                        if (info->alloced)
1035                                shmem_truncate_range(inode,
1036                                                        newsize, (loff_t)-1);
1037                        /* unmap again to remove racily COWed private pages */
1038                        if (oldsize > holebegin)
1039                                unmap_mapping_range(inode->i_mapping,
1040                                                        holebegin, 0, 1);
1041
1042                        /*
1043                         * Part of the huge page can be beyond i_size: subject
1044                         * to shrink under memory pressure.
1045                         */
1046                        if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1047                                spin_lock(&sbinfo->shrinklist_lock);
1048                                /*
1049                                 * _careful to defend against unlocked access to
1050                                 * ->shrink_list in shmem_unused_huge_shrink()
1051                                 */
1052                                if (list_empty_careful(&info->shrinklist)) {
1053                                        list_add_tail(&info->shrinklist,
1054                                                        &sbinfo->shrinklist);
1055                                        sbinfo->shrinklist_len++;
1056                                }
1057                                spin_unlock(&sbinfo->shrinklist_lock);
1058                        }
1059                }
1060        }
1061
1062        setattr_copy(inode, attr);
1063        if (attr->ia_valid & ATTR_MODE)
1064                error = posix_acl_chmod(inode, inode->i_mode);
1065        return error;
1066}
1067
1068static void shmem_evict_inode(struct inode *inode)
1069{
1070        struct shmem_inode_info *info = SHMEM_I(inode);
1071        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1072
1073        if (inode->i_mapping->a_ops == &shmem_aops) {
1074                shmem_unacct_size(info->flags, inode->i_size);
1075                inode->i_size = 0;
1076                shmem_truncate_range(inode, 0, (loff_t)-1);
1077                if (!list_empty(&info->shrinklist)) {
1078                        spin_lock(&sbinfo->shrinklist_lock);
1079                        if (!list_empty(&info->shrinklist)) {
1080                                list_del_init(&info->shrinklist);
1081                                sbinfo->shrinklist_len--;
1082                        }
1083                        spin_unlock(&sbinfo->shrinklist_lock);
1084                }
1085                if (!list_empty(&info->swaplist)) {
1086                        mutex_lock(&shmem_swaplist_mutex);
1087                        list_del_init(&info->swaplist);
1088                        mutex_unlock(&shmem_swaplist_mutex);
1089                }
1090        }
1091
1092        simple_xattrs_free(&info->xattrs);
1093        WARN_ON(inode->i_blocks);
1094        shmem_free_inode(inode->i_sb);
1095        clear_inode(inode);
1096}
1097
1098static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1099{
1100        struct radix_tree_iter iter;
1101        void **slot;
1102        unsigned long found = -1;
1103        unsigned int checked = 0;
1104
1105        rcu_read_lock();
1106        radix_tree_for_each_slot(slot, root, &iter, 0) {
1107                if (*slot == item) {
1108                        found = iter.index;
1109                        break;
1110                }
1111                checked++;
1112                if ((checked % 4096) != 0)
1113                        continue;
1114                slot = radix_tree_iter_resume(slot, &iter);
1115                cond_resched_rcu();
1116        }
1117
1118        rcu_read_unlock();
1119        return found;
1120}
1121
1122/*
1123 * If swap found in inode, free it and move page from swapcache to filecache.
1124 */
1125static int shmem_unuse_inode(struct shmem_inode_info *info,
1126                             swp_entry_t swap, struct page **pagep)
1127{
1128        struct address_space *mapping = info->vfs_inode.i_mapping;
1129        void *radswap;
1130        pgoff_t index;
1131        gfp_t gfp;
1132        int error = 0;
1133
1134        radswap = swp_to_radix_entry(swap);
1135        index = find_swap_entry(&mapping->i_pages, radswap);
1136        if (index == -1)
1137                return -EAGAIN; /* tell shmem_unuse we found nothing */
1138
1139        /*
1140         * Move _head_ to start search for next from here.
1141         * But be careful: shmem_evict_inode checks list_empty without taking
1142         * mutex, and there's an instant in list_move_tail when info->swaplist
1143         * would appear empty, if it were the only one on shmem_swaplist.
1144         */
1145        if (shmem_swaplist.next != &info->swaplist)
1146                list_move_tail(&shmem_swaplist, &info->swaplist);
1147
1148        gfp = mapping_gfp_mask(mapping);
1149        if (shmem_should_replace_page(*pagep, gfp)) {
1150                mutex_unlock(&shmem_swaplist_mutex);
1151                error = shmem_replace_page(pagep, gfp, info, index);
1152                mutex_lock(&shmem_swaplist_mutex);
1153                /*
1154                 * We needed to drop mutex to make that restrictive page
1155                 * allocation, but the inode might have been freed while we
1156                 * dropped it: although a racing shmem_evict_inode() cannot
1157                 * complete without emptying the radix_tree, our page lock
1158                 * on this swapcache page is not enough to prevent that -
1159                 * free_swap_and_cache() of our swap entry will only
1160                 * trylock_page(), removing swap from radix_tree whatever.
1161                 *
1162                 * We must not proceed to shmem_add_to_page_cache() if the
1163                 * inode has been freed, but of course we cannot rely on
1164                 * inode or mapping or info to check that.  However, we can
1165                 * safely check if our swap entry is still in use (and here
1166                 * it can't have got reused for another page): if it's still
1167                 * in use, then the inode cannot have been freed yet, and we
1168                 * can safely proceed (if it's no longer in use, that tells
1169                 * nothing about the inode, but we don't need to unuse swap).
1170                 */
1171                if (!page_swapcount(*pagep))
1172                        error = -ENOENT;
1173        }
1174
1175        /*
1176         * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1177         * but also to hold up shmem_evict_inode(): so inode cannot be freed
1178         * beneath us (pagelock doesn't help until the page is in pagecache).
1179         */
1180        if (!error)
1181                error = shmem_add_to_page_cache(*pagep, mapping, index,
1182                                                radswap);
1183        if (error != -ENOMEM) {
1184                /*
1185                 * Truncation and eviction use free_swap_and_cache(), which
1186                 * only does trylock page: if we raced, best clean up here.
1187                 */
1188                delete_from_swap_cache(*pagep);
1189                set_page_dirty(*pagep);
1190                if (!error) {
1191                        spin_lock_irq(&info->lock);
1192                        info->swapped--;
1193                        spin_unlock_irq(&info->lock);
1194                        swap_free(swap);
1195                }
1196        }
1197        return error;
1198}
1199
1200/*
1201 * Search through swapped inodes to find and replace swap by page.
1202 */
1203int shmem_unuse(swp_entry_t swap, struct page *page)
1204{
1205        struct list_head *this, *next;
1206        struct shmem_inode_info *info;
1207        struct mem_cgroup *memcg;
1208        int error = 0;
1209
1210        /*
1211         * There's a faint possibility that swap page was replaced before
1212         * caller locked it: caller will come back later with the right page.
1213         */
1214        if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1215                goto out;
1216
1217        /*
1218         * Charge page using GFP_KERNEL while we can wait, before taking
1219         * the shmem_swaplist_mutex which might hold up shmem_writepage().
1220         * Charged back to the user (not to caller) when swap account is used.
1221         */
1222        error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1223                        false);
1224        if (error)
1225                goto out;
1226        /* No radix_tree_preload: swap entry keeps a place for page in tree */
1227        error = -EAGAIN;
1228
1229        mutex_lock(&shmem_swaplist_mutex);
1230        list_for_each_safe(this, next, &shmem_swaplist) {
1231                info = list_entry(this, struct shmem_inode_info, swaplist);
1232                if (info->swapped)
1233                        error = shmem_unuse_inode(info, swap, &page);
1234                else
1235                        list_del_init(&info->swaplist);
1236                cond_resched();
1237                if (error != -EAGAIN)
1238                        break;
1239                /* found nothing in this: move on to search the next */
1240        }
1241        mutex_unlock(&shmem_swaplist_mutex);
1242
1243        if (error) {
1244                if (error != -ENOMEM)
1245                        error = 0;
1246                mem_cgroup_cancel_charge(page, memcg, false);
1247        } else
1248                mem_cgroup_commit_charge(page, memcg, true, false);
1249out:
1250        unlock_page(page);
1251        put_page(page);
1252        return error;
1253}
1254
1255/*
1256 * Move the page from the page cache to the swap cache.
1257 */
1258static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1259{
1260        struct shmem_inode_info *info;
1261        struct address_space *mapping;
1262        struct inode *inode;
1263        swp_entry_t swap;
1264        pgoff_t index;
1265
1266        VM_BUG_ON_PAGE(PageCompound(page), page);
1267        BUG_ON(!PageLocked(page));
1268        mapping = page->mapping;
1269        index = page->index;
1270        inode = mapping->host;
1271        info = SHMEM_I(inode);
1272        if (info->flags & VM_LOCKED)
1273                goto redirty;
1274        if (!total_swap_pages)
1275                goto redirty;
1276
1277        /*
1278         * Our capabilities prevent regular writeback or sync from ever calling
1279         * shmem_writepage; but a stacking filesystem might use ->writepage of
1280         * its underlying filesystem, in which case tmpfs should write out to
1281         * swap only in response to memory pressure, and not for the writeback
1282         * threads or sync.
1283         */
1284        if (!wbc->for_reclaim) {
1285                WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1286                goto redirty;
1287        }
1288
1289        /*
1290         * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1291         * value into swapfile.c, the only way we can correctly account for a
1292         * fallocated page arriving here is now to initialize it and write it.
1293         *
1294         * That's okay for a page already fallocated earlier, but if we have
1295         * not yet completed the fallocation, then (a) we want to keep track
1296         * of this page in case we have to undo it, and (b) it may not be a
1297         * good idea to continue anyway, once we're pushing into swap.  So
1298         * reactivate the page, and let shmem_fallocate() quit when too many.
1299         */
1300        if (!PageUptodate(page)) {
1301                if (inode->i_private) {
1302                        struct shmem_falloc *shmem_falloc;
1303                        spin_lock(&inode->i_lock);
1304                        shmem_falloc = inode->i_private;
1305                        if (shmem_falloc &&
1306                            !shmem_falloc->waitq &&
1307                            index >= shmem_falloc->start &&
1308                            index < shmem_falloc->next)
1309                                shmem_falloc->nr_unswapped++;
1310                        else
1311                                shmem_falloc = NULL;
1312                        spin_unlock(&inode->i_lock);
1313                        if (shmem_falloc)
1314                                goto redirty;
1315                }
1316                clear_highpage(page);
1317                flush_dcache_page(page);
1318                SetPageUptodate(page);
1319        }
1320
1321        swap = get_swap_page(page);
1322        if (!swap.val)
1323                goto redirty;
1324
1325        if (mem_cgroup_try_charge_swap(page, swap))
1326                goto free_swap;
1327
1328        /*
1329         * Add inode to shmem_unuse()'s list of swapped-out inodes,
1330         * if it's not already there.  Do it now before the page is
1331         * moved to swap cache, when its pagelock no longer protects
1332         * the inode from eviction.  But don't unlock the mutex until
1333         * we've incremented swapped, because shmem_unuse_inode() will
1334         * prune a !swapped inode from the swaplist under this mutex.
1335         */
1336        mutex_lock(&shmem_swaplist_mutex);
1337        if (list_empty(&info->swaplist))
1338                list_add_tail(&info->swaplist, &shmem_swaplist);
1339
1340        if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1341                spin_lock_irq(&info->lock);
1342                shmem_recalc_inode(inode);
1343                info->swapped++;
1344                spin_unlock_irq(&info->lock);
1345
1346                swap_shmem_alloc(swap);
1347                shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1348
1349                mutex_unlock(&shmem_swaplist_mutex);
1350                BUG_ON(page_mapped(page));
1351                swap_writepage(page, wbc);
1352                return 0;
1353        }
1354
1355        mutex_unlock(&shmem_swaplist_mutex);
1356free_swap:
1357        put_swap_page(page, swap);
1358redirty:
1359        set_page_dirty(page);
1360        if (wbc->for_reclaim)
1361                return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1362        unlock_page(page);
1363        return 0;
1364}
1365
1366#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1367static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1368{
1369        char buffer[64];
1370
1371        if (!mpol || mpol->mode == MPOL_DEFAULT)
1372                return;         /* show nothing */
1373
1374        mpol_to_str(buffer, sizeof(buffer), mpol);
1375
1376        seq_printf(seq, ",mpol=%s", buffer);
1377}
1378
1379static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1380{
1381        struct mempolicy *mpol = NULL;
1382        if (sbinfo->mpol) {
1383                spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1384                mpol = sbinfo->mpol;
1385                mpol_get(mpol);
1386                spin_unlock(&sbinfo->stat_lock);
1387        }
1388        return mpol;
1389}
1390#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1391static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1392{
1393}
1394static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1395{
1396        return NULL;
1397}
1398#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1399#ifndef CONFIG_NUMA
1400#define vm_policy vm_private_data
1401#endif
1402
1403static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1404                struct shmem_inode_info *info, pgoff_t index)
1405{
1406        /* Create a pseudo vma that just contains the policy */
1407        vma->vm_start = 0;
1408        /* Bias interleave by inode number to distribute better across nodes */
1409        vma->vm_pgoff = index + info->vfs_inode.i_ino;
1410        vma->vm_ops = NULL;
1411        vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1412}
1413
1414static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1415{
1416        /* Drop reference taken by mpol_shared_policy_lookup() */
1417        mpol_cond_put(vma->vm_policy);
1418}
1419
1420static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1421                        struct shmem_inode_info *info, pgoff_t index)
1422{
1423        struct vm_area_struct pvma;
1424        struct page *page;
1425        struct vm_fault vmf;
1426
1427        shmem_pseudo_vma_init(&pvma, info, index);
1428        vmf.vma = &pvma;
1429        vmf.address = 0;
1430        page = swap_cluster_readahead(swap, gfp, &vmf);
1431        shmem_pseudo_vma_destroy(&pvma);
1432
1433        return page;
1434}
1435
1436static struct page *shmem_alloc_hugepage(gfp_t gfp,
1437                struct shmem_inode_info *info, pgoff_t index)
1438{
1439        struct vm_area_struct pvma;
1440        struct inode *inode = &info->vfs_inode;
1441        struct address_space *mapping = inode->i_mapping;
1442        pgoff_t idx, hindex;
1443        void __rcu **results;
1444        struct page *page;
1445
1446        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1447                return NULL;
1448
1449        hindex = round_down(index, HPAGE_PMD_NR);
1450        rcu_read_lock();
1451        if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
1452                                hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1453                rcu_read_unlock();
1454                return NULL;
1455        }
1456        rcu_read_unlock();
1457
1458        shmem_pseudo_vma_init(&pvma, info, hindex);
1459        page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1460                        HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1461        shmem_pseudo_vma_destroy(&pvma);
1462        if (page)
1463                prep_transhuge_page(page);
1464        return page;
1465}
1466
1467static struct page *shmem_alloc_page(gfp_t gfp,
1468                        struct shmem_inode_info *info, pgoff_t index)
1469{
1470        struct vm_area_struct pvma;
1471        struct page *page;
1472
1473        shmem_pseudo_vma_init(&pvma, info, index);
1474        page = alloc_page_vma(gfp, &pvma, 0);
1475        shmem_pseudo_vma_destroy(&pvma);
1476
1477        return page;
1478}
1479
1480static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1481                struct inode *inode,
1482                pgoff_t index, bool huge)
1483{
1484        struct shmem_inode_info *info = SHMEM_I(inode);
1485        struct page *page;
1486        int nr;
1487        int err = -ENOSPC;
1488
1489        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1490                huge = false;
1491        nr = huge ? HPAGE_PMD_NR : 1;
1492
1493        if (!shmem_inode_acct_block(inode, nr))
1494                goto failed;
1495
1496        if (huge)
1497                page = shmem_alloc_hugepage(gfp, info, index);
1498        else
1499                page = shmem_alloc_page(gfp, info, index);
1500        if (page) {
1501                __SetPageLocked(page);
1502                __SetPageSwapBacked(page);
1503                return page;
1504        }
1505
1506        err = -ENOMEM;
1507        shmem_inode_unacct_blocks(inode, nr);
1508failed:
1509        return ERR_PTR(err);
1510}
1511
1512/*
1513 * When a page is moved from swapcache to shmem filecache (either by the
1514 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1515 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1516 * ignorance of the mapping it belongs to.  If that mapping has special
1517 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1518 * we may need to copy to a suitable page before moving to filecache.
1519 *
1520 * In a future release, this may well be extended to respect cpuset and
1521 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1522 * but for now it is a simple matter of zone.
1523 */
1524static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1525{
1526        return page_zonenum(page) > gfp_zone(gfp);
1527}
1528
1529static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1530                                struct shmem_inode_info *info, pgoff_t index)
1531{
1532        struct page *oldpage, *newpage;
1533        struct address_space *swap_mapping;
1534        pgoff_t swap_index;
1535        int error;
1536
1537        oldpage = *pagep;
1538        swap_index = page_private(oldpage);
1539        swap_mapping = page_mapping(oldpage);
1540
1541        /*
1542         * We have arrived here because our zones are constrained, so don't
1543         * limit chance of success by further cpuset and node constraints.
1544         */
1545        gfp &= ~GFP_CONSTRAINT_MASK;
1546        newpage = shmem_alloc_page(gfp, info, index);
1547        if (!newpage)
1548                return -ENOMEM;
1549
1550        get_page(newpage);
1551        copy_highpage(newpage, oldpage);
1552        flush_dcache_page(newpage);
1553
1554        __SetPageLocked(newpage);
1555        __SetPageSwapBacked(newpage);
1556        SetPageUptodate(newpage);
1557        set_page_private(newpage, swap_index);
1558        SetPageSwapCache(newpage);
1559
1560        /*
1561         * Our caller will very soon move newpage out of swapcache, but it's
1562         * a nice clean interface for us to replace oldpage by newpage there.
1563         */
1564        xa_lock_irq(&swap_mapping->i_pages);
1565        error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1566                                                                   newpage);
1567        if (!error) {
1568                __inc_node_page_state(newpage, NR_FILE_PAGES);
1569                __dec_node_page_state(oldpage, NR_FILE_PAGES);
1570        }
1571        xa_unlock_irq(&swap_mapping->i_pages);
1572
1573        if (unlikely(error)) {
1574                /*
1575                 * Is this possible?  I think not, now that our callers check
1576                 * both PageSwapCache and page_private after getting page lock;
1577                 * but be defensive.  Reverse old to newpage for clear and free.
1578                 */
1579                oldpage = newpage;
1580        } else {
1581                mem_cgroup_migrate(oldpage, newpage);
1582                lru_cache_add_anon(newpage);
1583                *pagep = newpage;
1584        }
1585
1586        ClearPageSwapCache(oldpage);
1587        set_page_private(oldpage, 0);
1588
1589        unlock_page(oldpage);
1590        put_page(oldpage);
1591        put_page(oldpage);
1592        return error;
1593}
1594
1595/*
1596 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1597 *
1598 * If we allocate a new one we do not mark it dirty. That's up to the
1599 * vm. If we swap it in we mark it dirty since we also free the swap
1600 * entry since a page cannot live in both the swap and page cache.
1601 *
1602 * fault_mm and fault_type are only supplied by shmem_fault:
1603 * otherwise they are NULL.
1604 */
1605static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1606        struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1607        struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1608{
1609        struct address_space *mapping = inode->i_mapping;
1610        struct shmem_inode_info *info = SHMEM_I(inode);
1611        struct shmem_sb_info *sbinfo;
1612        struct mm_struct *charge_mm;
1613        struct mem_cgroup *memcg;
1614        struct page *page;
1615        swp_entry_t swap;
1616        enum sgp_type sgp_huge = sgp;
1617        pgoff_t hindex = index;
1618        int error;
1619        int once = 0;
1620        int alloced = 0;
1621
1622        if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1623                return -EFBIG;
1624        if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1625                sgp = SGP_CACHE;
1626repeat:
1627        swap.val = 0;
1628        page = find_lock_entry(mapping, index);
1629        if (radix_tree_exceptional_entry(page)) {
1630                swap = radix_to_swp_entry(page);
1631                page = NULL;
1632        }
1633
1634        if (sgp <= SGP_CACHE &&
1635            ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1636                error = -EINVAL;
1637                goto unlock;
1638        }
1639
1640        if (page && sgp == SGP_WRITE)
1641                mark_page_accessed(page);
1642
1643        /* fallocated page? */
1644        if (page && !PageUptodate(page)) {
1645                if (sgp != SGP_READ)
1646                        goto clear;
1647                unlock_page(page);
1648                put_page(page);
1649                page = NULL;
1650        }
1651        if (page || (sgp == SGP_READ && !swap.val)) {
1652                *pagep = page;
1653                return 0;
1654        }
1655
1656        /*
1657         * Fast cache lookup did not find it:
1658         * bring it back from swap or allocate.
1659         */
1660        sbinfo = SHMEM_SB(inode->i_sb);
1661        charge_mm = vma ? vma->vm_mm : current->mm;
1662
1663        if (swap.val) {
1664                /* Look it up and read it in.. */
1665                page = lookup_swap_cache(swap, NULL, 0);
1666                if (!page) {
1667                        /* Or update major stats only when swapin succeeds?? */
1668                        if (fault_type) {
1669                                *fault_type |= VM_FAULT_MAJOR;
1670                                count_vm_event(PGMAJFAULT);
1671                                count_memcg_event_mm(charge_mm, PGMAJFAULT);
1672                        }
1673                        /* Here we actually start the io */
1674                        page = shmem_swapin(swap, gfp, info, index);
1675                        if (!page) {
1676                                error = -ENOMEM;
1677                                goto failed;
1678                        }
1679                }
1680
1681                /* We have to do this with page locked to prevent races */
1682                lock_page(page);
1683                if (!PageSwapCache(page) || page_private(page) != swap.val ||
1684                    !shmem_confirm_swap(mapping, index, swap)) {
1685                        error = -EEXIST;        /* try again */
1686                        goto unlock;
1687                }
1688                if (!PageUptodate(page)) {
1689                        error = -EIO;
1690                        goto failed;
1691                }
1692                wait_on_page_writeback(page);
1693
1694                if (shmem_should_replace_page(page, gfp)) {
1695                        error = shmem_replace_page(&page, gfp, info, index);
1696                        if (error)
1697                                goto failed;
1698                }
1699
1700                error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1701                                false);
1702                if (!error) {
1703                        error = shmem_add_to_page_cache(page, mapping, index,
1704                                                swp_to_radix_entry(swap));
1705                        /*
1706                         * We already confirmed swap under page lock, and make
1707                         * no memory allocation here, so usually no possibility
1708                         * of error; but free_swap_and_cache() only trylocks a
1709                         * page, so it is just possible that the entry has been
1710                         * truncated or holepunched since swap was confirmed.
1711                         * shmem_undo_range() will have done some of the
1712                         * unaccounting, now delete_from_swap_cache() will do
1713                         * the rest.
1714                         * Reset swap.val? No, leave it so "failed" goes back to
1715                         * "repeat": reading a hole and writing should succeed.
1716                         */
1717                        if (error) {
1718                                mem_cgroup_cancel_charge(page, memcg, false);
1719                                delete_from_swap_cache(page);
1720                        }
1721                }
1722                if (error)
1723                        goto failed;
1724
1725                mem_cgroup_commit_charge(page, memcg, true, false);
1726
1727                spin_lock_irq(&info->lock);
1728                info->swapped--;
1729                shmem_recalc_inode(inode);
1730                spin_unlock_irq(&info->lock);
1731
1732                if (sgp == SGP_WRITE)
1733                        mark_page_accessed(page);
1734
1735                delete_from_swap_cache(page);
1736                set_page_dirty(page);
1737                swap_free(swap);
1738
1739        } else {
1740                if (vma && userfaultfd_missing(vma)) {
1741                        *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1742                        return 0;
1743                }
1744
1745                /* shmem_symlink() */
1746                if (mapping->a_ops != &shmem_aops)
1747                        goto alloc_nohuge;
1748                if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1749                        goto alloc_nohuge;
1750                if (shmem_huge == SHMEM_HUGE_FORCE)
1751                        goto alloc_huge;
1752                switch (sbinfo->huge) {
1753                        loff_t i_size;
1754                        pgoff_t off;
1755                case SHMEM_HUGE_NEVER:
1756                        goto alloc_nohuge;
1757                case SHMEM_HUGE_WITHIN_SIZE:
1758                        off = round_up(index, HPAGE_PMD_NR);
1759                        i_size = round_up(i_size_read(inode), PAGE_SIZE);
1760                        if (i_size >= HPAGE_PMD_SIZE &&
1761                                        i_size >> PAGE_SHIFT >= off)
1762                                goto alloc_huge;
1763                        /* fallthrough */
1764                case SHMEM_HUGE_ADVISE:
1765                        if (sgp_huge == SGP_HUGE)
1766                                goto alloc_huge;
1767                        /* TODO: implement fadvise() hints */
1768                        goto alloc_nohuge;
1769                }
1770
1771alloc_huge:
1772                page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1773                if (IS_ERR(page)) {
1774alloc_nohuge:           page = shmem_alloc_and_acct_page(gfp, inode,
1775                                        index, false);
1776                }
1777                if (IS_ERR(page)) {
1778                        int retry = 5;
1779                        error = PTR_ERR(page);
1780                        page = NULL;
1781                        if (error != -ENOSPC)
1782                                goto failed;
1783                        /*
1784                         * Try to reclaim some spece by splitting a huge page
1785                         * beyond i_size on the filesystem.
1786                         */
1787                        while (retry--) {
1788                                int ret;
1789                                ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1790                                if (ret == SHRINK_STOP)
1791                                        break;
1792                                if (ret)
1793                                        goto alloc_nohuge;
1794                        }
1795                        goto failed;
1796                }
1797
1798                if (PageTransHuge(page))
1799                        hindex = round_down(index, HPAGE_PMD_NR);
1800                else
1801                        hindex = index;
1802
1803                if (sgp == SGP_WRITE)
1804                        __SetPageReferenced(page);
1805
1806                error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1807                                PageTransHuge(page));
1808                if (error)
1809                        goto unacct;
1810                error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1811                                compound_order(page));
1812                if (!error) {
1813                        error = shmem_add_to_page_cache(page, mapping, hindex,
1814                                                        NULL);
1815                        radix_tree_preload_end();
1816                }
1817                if (error) {
1818                        mem_cgroup_cancel_charge(page, memcg,
1819                                        PageTransHuge(page));
1820                        goto unacct;
1821                }
1822                mem_cgroup_commit_charge(page, memcg, false,
1823                                PageTransHuge(page));
1824                lru_cache_add_anon(page);
1825
1826                spin_lock_irq(&info->lock);
1827                info->alloced += 1 << compound_order(page);
1828                inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1829                shmem_recalc_inode(inode);
1830                spin_unlock_irq(&info->lock);
1831                alloced = true;
1832
1833                if (PageTransHuge(page) &&
1834                                DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1835                                hindex + HPAGE_PMD_NR - 1) {
1836                        /*
1837                         * Part of the huge page is beyond i_size: subject
1838                         * to shrink under memory pressure.
1839                         */
1840                        spin_lock(&sbinfo->shrinklist_lock);
1841                        /*
1842                         * _careful to defend against unlocked access to
1843                         * ->shrink_list in shmem_unused_huge_shrink()
1844                         */
1845                        if (list_empty_careful(&info->shrinklist)) {
1846                                list_add_tail(&info->shrinklist,
1847                                                &sbinfo->shrinklist);
1848                                sbinfo->shrinklist_len++;
1849                        }
1850                        spin_unlock(&sbinfo->shrinklist_lock);
1851                }
1852
1853                /*
1854                 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1855                 */
1856                if (sgp == SGP_FALLOC)
1857                        sgp = SGP_WRITE;
1858clear:
1859                /*
1860                 * Let SGP_WRITE caller clear ends if write does not fill page;
1861                 * but SGP_FALLOC on a page fallocated earlier must initialize
1862                 * it now, lest undo on failure cancel our earlier guarantee.
1863                 */
1864                if (sgp != SGP_WRITE && !PageUptodate(page)) {
1865                        struct page *head = compound_head(page);
1866                        int i;
1867
1868                        for (i = 0; i < (1 << compound_order(head)); i++) {
1869                                clear_highpage(head + i);
1870                                flush_dcache_page(head + i);
1871                        }
1872                        SetPageUptodate(head);
1873                }
1874        }
1875
1876        /* Perhaps the file has been truncated since we checked */
1877        if (sgp <= SGP_CACHE &&
1878            ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1879                if (alloced) {
1880                        ClearPageDirty(page);
1881                        delete_from_page_cache(page);
1882                        spin_lock_irq(&info->lock);
1883                        shmem_recalc_inode(inode);
1884                        spin_unlock_irq(&info->lock);
1885                }
1886                error = -EINVAL;
1887                goto unlock;
1888        }
1889        *pagep = page + index - hindex;
1890        return 0;
1891
1892        /*
1893         * Error recovery.
1894         */
1895unacct:
1896        shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1897
1898        if (PageTransHuge(page)) {
1899                unlock_page(page);
1900                put_page(page);
1901                goto alloc_nohuge;
1902        }
1903failed:
1904        if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1905                error = -EEXIST;
1906unlock:
1907        if (page) {
1908                unlock_page(page);
1909                put_page(page);
1910        }
1911        if (error == -ENOSPC && !once++) {
1912                spin_lock_irq(&info->lock);
1913                shmem_recalc_inode(inode);
1914                spin_unlock_irq(&info->lock);
1915                goto repeat;
1916        }
1917        if (error == -EEXIST)   /* from above or from radix_tree_insert */
1918                goto repeat;
1919        return error;
1920}
1921
1922/*
1923 * This is like autoremove_wake_function, but it removes the wait queue
1924 * entry unconditionally - even if something else had already woken the
1925 * target.
1926 */
1927static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1928{
1929        int ret = default_wake_function(wait, mode, sync, key);
1930        list_del_init(&wait->entry);
1931        return ret;
1932}
1933
1934static int shmem_fault(struct vm_fault *vmf)
1935{
1936        struct vm_area_struct *vma = vmf->vma;
1937        struct inode *inode = file_inode(vma->vm_file);
1938        gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1939        enum sgp_type sgp;
1940        int error;
1941        int ret = VM_FAULT_LOCKED;
1942
1943        /*
1944         * Trinity finds that probing a hole which tmpfs is punching can
1945         * prevent the hole-punch from ever completing: which in turn
1946         * locks writers out with its hold on i_mutex.  So refrain from
1947         * faulting pages into the hole while it's being punched.  Although
1948         * shmem_undo_range() does remove the additions, it may be unable to
1949         * keep up, as each new page needs its own unmap_mapping_range() call,
1950         * and the i_mmap tree grows ever slower to scan if new vmas are added.
1951         *
1952         * It does not matter if we sometimes reach this check just before the
1953         * hole-punch begins, so that one fault then races with the punch:
1954         * we just need to make racing faults a rare case.
1955         *
1956         * The implementation below would be much simpler if we just used a
1957         * standard mutex or completion: but we cannot take i_mutex in fault,
1958         * and bloating every shmem inode for this unlikely case would be sad.
1959         */
1960        if (unlikely(inode->i_private)) {
1961                struct shmem_falloc *shmem_falloc;
1962
1963                spin_lock(&inode->i_lock);
1964                shmem_falloc = inode->i_private;
1965                if (shmem_falloc &&
1966                    shmem_falloc->waitq &&
1967                    vmf->pgoff >= shmem_falloc->start &&
1968                    vmf->pgoff < shmem_falloc->next) {
1969                        wait_queue_head_t *shmem_falloc_waitq;
1970                        DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1971
1972                        ret = VM_FAULT_NOPAGE;
1973                        if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1974                           !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1975                                /* It's polite to up mmap_sem if we can */
1976                                up_read(&vma->vm_mm->mmap_sem);
1977                                ret = VM_FAULT_RETRY;
1978                        }
1979
1980                        shmem_falloc_waitq = shmem_falloc->waitq;
1981                        prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1982                                        TASK_UNINTERRUPTIBLE);
1983                        spin_unlock(&inode->i_lock);
1984                        schedule();
1985
1986                        /*
1987                         * shmem_falloc_waitq points into the shmem_fallocate()
1988                         * stack of the hole-punching task: shmem_falloc_waitq
1989                         * is usually invalid by the time we reach here, but
1990                         * finish_wait() does not dereference it in that case;
1991                         * though i_lock needed lest racing with wake_up_all().
1992                         */
1993                        spin_lock(&inode->i_lock);
1994                        finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1995                        spin_unlock(&inode->i_lock);
1996                        return ret;
1997                }
1998                spin_unlock(&inode->i_lock);
1999        }
2000
2001        sgp = SGP_CACHE;
2002
2003        if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2004            test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2005                sgp = SGP_NOHUGE;
2006        else if (vma->vm_flags & VM_HUGEPAGE)
2007                sgp = SGP_HUGE;
2008
2009        error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2010                                  gfp, vma, vmf, &ret);
2011        if (error)
2012                return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
2013        return ret;
2014}
2015
2016unsigned long shmem_get_unmapped_area(struct file *file,
2017                                      unsigned long uaddr, unsigned long len,
2018                                      unsigned long pgoff, unsigned long flags)
2019{
2020        unsigned long (*get_area)(struct file *,
2021                unsigned long, unsigned long, unsigned long, unsigned long);
2022        unsigned long addr;
2023        unsigned long offset;
2024        unsigned long inflated_len;
2025        unsigned long inflated_addr;
2026        unsigned long inflated_offset;
2027
2028        if (len > TASK_SIZE)
2029                return -ENOMEM;
2030
2031        get_area = current->mm->get_unmapped_area;
2032        addr = get_area(file, uaddr, len, pgoff, flags);
2033
2034        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2035                return addr;
2036        if (IS_ERR_VALUE(addr))
2037                return addr;
2038        if (addr & ~PAGE_MASK)
2039                return addr;
2040        if (addr > TASK_SIZE - len)
2041                return addr;
2042
2043        if (shmem_huge == SHMEM_HUGE_DENY)
2044                return addr;
2045        if (len < HPAGE_PMD_SIZE)
2046                return addr;
2047        if (flags & MAP_FIXED)
2048                return addr;
2049        /*
2050         * Our priority is to support MAP_SHARED mapped hugely;
2051         * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2052         * But if caller specified an address hint, respect that as before.
2053         */
2054        if (uaddr)
2055                return addr;
2056
2057        if (shmem_huge != SHMEM_HUGE_FORCE) {
2058                struct super_block *sb;
2059
2060                if (file) {
2061                        VM_BUG_ON(file->f_op != &shmem_file_operations);
2062                        sb = file_inode(file)->i_sb;
2063                } else {
2064                        /*
2065                         * Called directly from mm/mmap.c, or drivers/char/mem.c
2066                         * for "/dev/zero", to create a shared anonymous object.
2067                         */
2068                        if (IS_ERR(shm_mnt))
2069                                return addr;
2070                        sb = shm_mnt->mnt_sb;
2071                }
2072                if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2073                        return addr;
2074        }
2075
2076        offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2077        if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2078                return addr;
2079        if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2080                return addr;
2081
2082        inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2083        if (inflated_len > TASK_SIZE)
2084                return addr;
2085        if (inflated_len < len)
2086                return addr;
2087
2088        inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2089        if (IS_ERR_VALUE(inflated_addr))
2090                return addr;
2091        if (inflated_addr & ~PAGE_MASK)
2092                return addr;
2093
2094        inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2095        inflated_addr += offset - inflated_offset;
2096        if (inflated_offset > offset)
2097                inflated_addr += HPAGE_PMD_SIZE;
2098
2099        if (inflated_addr > TASK_SIZE - len)
2100                return addr;
2101        return inflated_addr;
2102}
2103
2104#ifdef CONFIG_NUMA
2105static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2106{
2107        struct inode *inode = file_inode(vma->vm_file);
2108        return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2109}
2110
2111static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2112                                          unsigned long addr)
2113{
2114        struct inode *inode = file_inode(vma->vm_file);
2115        pgoff_t index;
2116
2117        index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2118        return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2119}
2120#endif
2121
2122int shmem_lock(struct file *file, int lock, struct user_struct *user)
2123{
2124        struct inode *inode = file_inode(file);
2125        struct shmem_inode_info *info = SHMEM_I(inode);
2126        int retval = -ENOMEM;
2127
2128        spin_lock_irq(&info->lock);
2129        if (lock && !(info->flags & VM_LOCKED)) {
2130                if (!user_shm_lock(inode->i_size, user))
2131                        goto out_nomem;
2132                info->flags |= VM_LOCKED;
2133                mapping_set_unevictable(file->f_mapping);
2134        }
2135        if (!lock && (info->flags & VM_LOCKED) && user) {
2136                user_shm_unlock(inode->i_size, user);
2137                info->flags &= ~VM_LOCKED;
2138                mapping_clear_unevictable(file->f_mapping);
2139        }
2140        retval = 0;
2141
2142out_nomem:
2143        spin_unlock_irq(&info->lock);
2144        return retval;
2145}
2146
2147static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2148{
2149        file_accessed(file);
2150        vma->vm_ops = &shmem_vm_ops;
2151        if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2152                        ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2153                        (vma->vm_end & HPAGE_PMD_MASK)) {
2154                khugepaged_enter(vma, vma->vm_flags);
2155        }
2156        return 0;
2157}
2158
2159static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2160                                     umode_t mode, dev_t dev, unsigned long flags)
2161{
2162        struct inode *inode;
2163        struct shmem_inode_info *info;
2164        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2165
2166        if (shmem_reserve_inode(sb))
2167                return NULL;
2168
2169        inode = new_inode(sb);
2170        if (inode) {
2171                inode->i_ino = get_next_ino();
2172                inode_init_owner(inode, dir, mode);
2173                inode->i_blocks = 0;
2174                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2175                inode->i_generation = get_seconds();
2176                info = SHMEM_I(inode);
2177                memset(info, 0, (char *)inode - (char *)info);
2178                spin_lock_init(&info->lock);
2179                info->seals = F_SEAL_SEAL;
2180                info->flags = flags & VM_NORESERVE;
2181                INIT_LIST_HEAD(&info->shrinklist);
2182                INIT_LIST_HEAD(&info->swaplist);
2183                simple_xattrs_init(&info->xattrs);
2184                cache_no_acl(inode);
2185
2186                switch (mode & S_IFMT) {
2187                default:
2188                        inode->i_op = &shmem_special_inode_operations;
2189                        init_special_inode(inode, mode, dev);
2190                        break;
2191                case S_IFREG:
2192                        inode->i_mapping->a_ops = &shmem_aops;
2193                        inode->i_op = &shmem_inode_operations;
2194                        inode->i_fop = &shmem_file_operations;
2195                        mpol_shared_policy_init(&info->policy,
2196                                                 shmem_get_sbmpol(sbinfo));
2197                        break;
2198                case S_IFDIR:
2199                        inc_nlink(inode);
2200                        /* Some things misbehave if size == 0 on a directory */
2201                        inode->i_size = 2 * BOGO_DIRENT_SIZE;
2202                        inode->i_op = &shmem_dir_inode_operations;
2203                        inode->i_fop = &simple_dir_operations;
2204                        break;
2205                case S_IFLNK:
2206                        /*
2207                         * Must not load anything in the rbtree,
2208                         * mpol_free_shared_policy will not be called.
2209                         */
2210                        mpol_shared_policy_init(&info->policy, NULL);
2211                        break;
2212                }
2213        } else
2214                shmem_free_inode(sb);
2215        return inode;
2216}
2217
2218bool shmem_mapping(struct address_space *mapping)
2219{
2220        return mapping->a_ops == &shmem_aops;
2221}
2222
2223static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2224                                  pmd_t *dst_pmd,
2225                                  struct vm_area_struct *dst_vma,
2226                                  unsigned long dst_addr,
2227                                  unsigned long src_addr,
2228                                  bool zeropage,
2229                                  struct page **pagep)
2230{
2231        struct inode *inode = file_inode(dst_vma->vm_file);
2232        struct shmem_inode_info *info = SHMEM_I(inode);
2233        struct address_space *mapping = inode->i_mapping;
2234        gfp_t gfp = mapping_gfp_mask(mapping);
2235        pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2236        struct mem_cgroup *memcg;
2237        spinlock_t *ptl;
2238        void *page_kaddr;
2239        struct page *page;
2240        pte_t _dst_pte, *dst_pte;
2241        int ret;
2242
2243        ret = -ENOMEM;
2244        if (!shmem_inode_acct_block(inode, 1))
2245                goto out;
2246
2247        if (!*pagep) {
2248                page = shmem_alloc_page(gfp, info, pgoff);
2249                if (!page)
2250                        goto out_unacct_blocks;
2251
2252                if (!zeropage) {        /* mcopy_atomic */
2253                        page_kaddr = kmap_atomic(page);
2254                        ret = copy_from_user(page_kaddr,
2255                                             (const void __user *)src_addr,
2256                                             PAGE_SIZE);
2257                        kunmap_atomic(page_kaddr);
2258
2259                        /* fallback to copy_from_user outside mmap_sem */
2260                        if (unlikely(ret)) {
2261                                *pagep = page;
2262                                shmem_inode_unacct_blocks(inode, 1);
2263                                /* don't free the page */
2264                                return -EFAULT;
2265                        }
2266                } else {                /* mfill_zeropage_atomic */
2267                        clear_highpage(page);
2268                }
2269        } else {
2270                page = *pagep;
2271                *pagep = NULL;
2272        }
2273
2274        VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2275        __SetPageLocked(page);
2276        __SetPageSwapBacked(page);
2277        __SetPageUptodate(page);
2278
2279        ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2280        if (ret)
2281                goto out_release;
2282
2283        ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2284        if (!ret) {
2285                ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2286                radix_tree_preload_end();
2287        }
2288        if (ret)
2289                goto out_release_uncharge;
2290
2291        mem_cgroup_commit_charge(page, memcg, false, false);
2292
2293        _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2294        if (dst_vma->vm_flags & VM_WRITE)
2295                _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2296
2297        ret = -EEXIST;
2298        dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2299        if (!pte_none(*dst_pte))
2300                goto out_release_uncharge_unlock;
2301
2302        lru_cache_add_anon(page);
2303
2304        spin_lock(&info->lock);
2305        info->alloced++;
2306        inode->i_blocks += BLOCKS_PER_PAGE;
2307        shmem_recalc_inode(inode);
2308        spin_unlock(&info->lock);
2309
2310        inc_mm_counter(dst_mm, mm_counter_file(page));
2311        page_add_file_rmap(page, false);
2312        set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2313
2314        /* No need to invalidate - it was non-present before */
2315        update_mmu_cache(dst_vma, dst_addr, dst_pte);
2316        unlock_page(page);
2317        pte_unmap_unlock(dst_pte, ptl);
2318        ret = 0;
2319out:
2320        return ret;
2321out_release_uncharge_unlock:
2322        pte_unmap_unlock(dst_pte, ptl);
2323out_release_uncharge:
2324        mem_cgroup_cancel_charge(page, memcg, false);
2325out_release:
2326        unlock_page(page);
2327        put_page(page);
2328out_unacct_blocks:
2329        shmem_inode_unacct_blocks(inode, 1);
2330        goto out;
2331}
2332
2333int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2334                           pmd_t *dst_pmd,
2335                           struct vm_area_struct *dst_vma,
2336                           unsigned long dst_addr,
2337                           unsigned long src_addr,
2338                           struct page **pagep)
2339{
2340        return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2341                                      dst_addr, src_addr, false, pagep);
2342}
2343
2344int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2345                             pmd_t *dst_pmd,
2346                             struct vm_area_struct *dst_vma,
2347                             unsigned long dst_addr)
2348{
2349        struct page *page = NULL;
2350
2351        return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2352                                      dst_addr, 0, true, &page);
2353}
2354
2355#ifdef CONFIG_TMPFS
2356static const struct inode_operations shmem_symlink_inode_operations;
2357static const struct inode_operations shmem_short_symlink_operations;
2358
2359#ifdef CONFIG_TMPFS_XATTR
2360static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2361#else
2362#define shmem_initxattrs NULL
2363#endif
2364
2365static int
2366shmem_write_begin(struct file *file, struct address_space *mapping,
2367                        loff_t pos, unsigned len, unsigned flags,
2368                        struct page **pagep, void **fsdata)
2369{
2370        struct inode *inode = mapping->host;
2371        struct shmem_inode_info *info = SHMEM_I(inode);
2372        pgoff_t index = pos >> PAGE_SHIFT;
2373
2374        /* i_mutex is held by caller */
2375        if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2376                if (info->seals & F_SEAL_WRITE)
2377                        return -EPERM;
2378                if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2379                        return -EPERM;
2380        }
2381
2382        return shmem_getpage(inode, index, pagep, SGP_WRITE);
2383}
2384
2385static int
2386shmem_write_end(struct file *file, struct address_space *mapping,
2387                        loff_t pos, unsigned len, unsigned copied,
2388                        struct page *page, void *fsdata)
2389{
2390        struct inode *inode = mapping->host;
2391
2392        if (pos + copied > inode->i_size)
2393                i_size_write(inode, pos + copied);
2394
2395        if (!PageUptodate(page)) {
2396                struct page *head = compound_head(page);
2397                if (PageTransCompound(page)) {
2398                        int i;
2399
2400                        for (i = 0; i < HPAGE_PMD_NR; i++) {
2401                                if (head + i == page)
2402                                        continue;
2403                                clear_highpage(head + i);
2404                                flush_dcache_page(head + i);
2405                        }
2406                }
2407                if (copied < PAGE_SIZE) {
2408                        unsigned from = pos & (PAGE_SIZE - 1);
2409                        zero_user_segments(page, 0, from,
2410                                        from + copied, PAGE_SIZE);
2411                }
2412                SetPageUptodate(head);
2413        }
2414        set_page_dirty(page);
2415        unlock_page(page);
2416        put_page(page);
2417
2418        return copied;
2419}
2420
2421static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2422{
2423        struct file *file = iocb->ki_filp;
2424        struct inode *inode = file_inode(file);
2425        struct address_space *mapping = inode->i_mapping;
2426        pgoff_t index;
2427        unsigned long offset;
2428        enum sgp_type sgp = SGP_READ;
2429        int error = 0;
2430        ssize_t retval = 0;
2431        loff_t *ppos = &iocb->ki_pos;
2432
2433        /*
2434         * Might this read be for a stacking filesystem?  Then when reading
2435         * holes of a sparse file, we actually need to allocate those pages,
2436         * and even mark them dirty, so it cannot exceed the max_blocks limit.
2437         */
2438        if (!iter_is_iovec(to))
2439                sgp = SGP_CACHE;
2440
2441        index = *ppos >> PAGE_SHIFT;
2442        offset = *ppos & ~PAGE_MASK;
2443
2444        for (;;) {
2445                struct page *page = NULL;
2446                pgoff_t end_index;
2447                unsigned long nr, ret;
2448                loff_t i_size = i_size_read(inode);
2449
2450                end_index = i_size >> PAGE_SHIFT;
2451                if (index > end_index)
2452                        break;
2453                if (index == end_index) {
2454                        nr = i_size & ~PAGE_MASK;
2455                        if (nr <= offset)
2456                                break;
2457                }
2458
2459                error = shmem_getpage(inode, index, &page, sgp);
2460                if (error) {
2461                        if (error == -EINVAL)
2462                                error = 0;
2463                        break;
2464                }
2465                if (page) {
2466                        if (sgp == SGP_CACHE)
2467                                set_page_dirty(page);
2468                        unlock_page(page);
2469                }
2470
2471                /*
2472                 * We must evaluate after, since reads (unlike writes)
2473                 * are called without i_mutex protection against truncate
2474                 */
2475                nr = PAGE_SIZE;
2476                i_size = i_size_read(inode);
2477                end_index = i_size >> PAGE_SHIFT;
2478                if (index == end_index) {
2479                        nr = i_size & ~PAGE_MASK;
2480                        if (nr <= offset) {
2481                                if (page)
2482                                        put_page(page);
2483                                break;
2484                        }
2485                }
2486                nr -= offset;
2487
2488                if (page) {
2489                        /*
2490                         * If users can be writing to this page using arbitrary
2491                         * virtual addresses, take care about potential aliasing
2492                         * before reading the page on the kernel side.
2493                         */
2494                        if (mapping_writably_mapped(mapping))
2495                                flush_dcache_page(page);
2496                        /*
2497                         * Mark the page accessed if we read the beginning.
2498                         */
2499                        if (!offset)
2500                                mark_page_accessed(page);
2501                } else {
2502                        page = ZERO_PAGE(0);
2503                        get_page(page);
2504                }
2505
2506                /*
2507                 * Ok, we have the page, and it's up-to-date, so
2508                 * now we can copy it to user space...
2509                 */
2510                ret = copy_page_to_iter(page, offset, nr, to);
2511                retval += ret;
2512                offset += ret;
2513                index += offset >> PAGE_SHIFT;
2514                offset &= ~PAGE_MASK;
2515
2516                put_page(page);
2517                if (!iov_iter_count(to))
2518                        break;
2519                if (ret < nr) {
2520                        error = -EFAULT;
2521                        break;
2522                }
2523                cond_resched();
2524        }
2525
2526        *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2527        file_accessed(file);
2528        return retval ? retval : error;
2529}
2530
2531/*
2532 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2533 */
2534static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2535                                    pgoff_t index, pgoff_t end, int whence)
2536{
2537        struct page *page;
2538        struct pagevec pvec;
2539        pgoff_t indices[PAGEVEC_SIZE];
2540        bool done = false;
2541        int i;
2542
2543        pagevec_init(&pvec);
2544        pvec.nr = 1;            /* start small: we may be there already */
2545        while (!done) {
2546                pvec.nr = find_get_entries(mapping, index,
2547                                        pvec.nr, pvec.pages, indices);
2548                if (!pvec.nr) {
2549                        if (whence == SEEK_DATA)
2550                                index = end;
2551                        break;
2552                }
2553                for (i = 0; i < pvec.nr; i++, index++) {
2554                        if (index < indices[i]) {
2555                                if (whence == SEEK_HOLE) {
2556                                        done = true;
2557                                        break;
2558                                }
2559                                index = indices[i];
2560                        }
2561                        page = pvec.pages[i];
2562                        if (page && !radix_tree_exceptional_entry(page)) {
2563                                if (!PageUptodate(page))
2564                                        page = NULL;
2565                        }
2566                        if (index >= end ||
2567                            (page && whence == SEEK_DATA) ||
2568                            (!page && whence == SEEK_HOLE)) {
2569                                done = true;
2570                                break;
2571                        }
2572                }
2573                pagevec_remove_exceptionals(&pvec);
2574                pagevec_release(&pvec);
2575                pvec.nr = PAGEVEC_SIZE;
2576                cond_resched();
2577        }
2578        return index;
2579}
2580
2581static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2582{
2583        struct address_space *mapping = file->f_mapping;
2584        struct inode *inode = mapping->host;
2585        pgoff_t start, end;
2586        loff_t new_offset;
2587
2588        if (whence != SEEK_DATA && whence != SEEK_HOLE)
2589                return generic_file_llseek_size(file, offset, whence,
2590                                        MAX_LFS_FILESIZE, i_size_read(inode));
2591        inode_lock(inode);
2592        /* We're holding i_mutex so we can access i_size directly */
2593
2594        if (offset < 0)
2595                offset = -EINVAL;
2596        else if (offset >= inode->i_size)
2597                offset = -ENXIO;
2598        else {
2599                start = offset >> PAGE_SHIFT;
2600                end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2601                new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2602                new_offset <<= PAGE_SHIFT;
2603                if (new_offset > offset) {
2604                        if (new_offset < inode->i_size)
2605                                offset = new_offset;
2606                        else if (whence == SEEK_DATA)
2607                                offset = -ENXIO;
2608                        else
2609                                offset = inode->i_size;
2610                }
2611        }
2612
2613        if (offset >= 0)
2614                offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2615        inode_unlock(inode);
2616        return offset;
2617}
2618
2619/*
2620 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2621 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2622 */
2623#define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2624#define LAST_SCAN               4       /* about 150ms max */
2625
2626static void shmem_tag_pins(struct address_space *mapping)
2627{
2628        struct radix_tree_iter iter;
2629        void **slot;
2630        pgoff_t start;
2631        struct page *page;
2632
2633        lru_add_drain();
2634        start = 0;
2635        rcu_read_lock();
2636
2637        radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
2638                page = radix_tree_deref_slot(slot);
2639                if (!page || radix_tree_exception(page)) {
2640                        if (radix_tree_deref_retry(page)) {
2641                                slot = radix_tree_iter_retry(&iter);
2642                                continue;
2643                        }
2644                } else if (page_count(page) - page_mapcount(page) > 1) {
2645                        xa_lock_irq(&mapping->i_pages);
2646                        radix_tree_tag_set(&mapping->i_pages, iter.index,
2647                                           SHMEM_TAG_PINNED);
2648                        xa_unlock_irq(&mapping->i_pages);
2649                }
2650
2651                if (need_resched()) {
2652                        slot = radix_tree_iter_resume(slot, &iter);
2653                        cond_resched_rcu();
2654                }
2655        }
2656        rcu_read_unlock();
2657}
2658
2659/*
2660 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2661 * via get_user_pages(), drivers might have some pending I/O without any active
2662 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2663 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2664 * them to be dropped.
2665 * The caller must guarantee that no new user will acquire writable references
2666 * to those pages to avoid races.
2667 */
2668static int shmem_wait_for_pins(struct address_space *mapping)
2669{
2670        struct radix_tree_iter iter;
2671        void **slot;
2672        pgoff_t start;
2673        struct page *page;
2674        int error, scan;
2675
2676        shmem_tag_pins(mapping);
2677
2678        error = 0;
2679        for (scan = 0; scan <= LAST_SCAN; scan++) {
2680                if (!radix_tree_tagged(&mapping->i_pages, SHMEM_TAG_PINNED))
2681                        break;
2682
2683                if (!scan)
2684                        lru_add_drain_all();
2685                else if (schedule_timeout_killable((HZ << scan) / 200))
2686                        scan = LAST_SCAN;
2687
2688                start = 0;
2689                rcu_read_lock();
2690                radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter,
2691                                           start, SHMEM_TAG_PINNED) {
2692
2693                        page = radix_tree_deref_slot(slot);
2694                        if (radix_tree_exception(page)) {
2695                                if (radix_tree_deref_retry(page)) {
2696                                        slot = radix_tree_iter_retry(&iter);
2697                                        continue;
2698                                }
2699
2700                                page = NULL;
2701                        }
2702
2703                        if (page &&
2704                            page_count(page) - page_mapcount(page) != 1) {
2705                                if (scan < LAST_SCAN)
2706                                        goto continue_resched;
2707
2708                                /*
2709                                 * On the last scan, we clean up all those tags
2710                                 * we inserted; but make a note that we still
2711                                 * found pages pinned.
2712                                 */
2713                                error = -EBUSY;
2714                        }
2715
2716                        xa_lock_irq(&mapping->i_pages);
2717                        radix_tree_tag_clear(&mapping->i_pages,
2718                                             iter.index, SHMEM_TAG_PINNED);
2719                        xa_unlock_irq(&mapping->i_pages);
2720continue_resched:
2721                        if (need_resched()) {
2722                                slot = radix_tree_iter_resume(slot, &iter);
2723                                cond_resched_rcu();
2724                        }
2725                }
2726                rcu_read_unlock();
2727        }
2728
2729        return error;
2730}
2731
2732static unsigned int *memfd_file_seals_ptr(struct file *file)
2733{
2734        if (file->f_op == &shmem_file_operations)
2735                return &SHMEM_I(file_inode(file))->seals;
2736
2737#ifdef CONFIG_HUGETLBFS
2738        if (file->f_op == &hugetlbfs_file_operations)
2739                return &HUGETLBFS_I(file_inode(file))->seals;
2740#endif
2741
2742        return NULL;
2743}
2744
2745#define F_ALL_SEALS (F_SEAL_SEAL | \
2746                     F_SEAL_SHRINK | \
2747                     F_SEAL_GROW | \
2748                     F_SEAL_WRITE)
2749
2750static int memfd_add_seals(struct file *file, unsigned int seals)
2751{
2752        struct inode *inode = file_inode(file);
2753        unsigned int *file_seals;
2754        int error;
2755
2756        /*
2757         * SEALING
2758         * Sealing allows multiple parties to share a shmem-file but restrict
2759         * access to a specific subset of file operations. Seals can only be
2760         * added, but never removed. This way, mutually untrusted parties can
2761         * share common memory regions with a well-defined policy. A malicious
2762         * peer can thus never perform unwanted operations on a shared object.
2763         *
2764         * Seals are only supported on special shmem-files and always affect
2765         * the whole underlying inode. Once a seal is set, it may prevent some
2766         * kinds of access to the file. Currently, the following seals are
2767         * defined:
2768         *   SEAL_SEAL: Prevent further seals from being set on this file
2769         *   SEAL_SHRINK: Prevent the file from shrinking
2770         *   SEAL_GROW: Prevent the file from growing
2771         *   SEAL_WRITE: Prevent write access to the file
2772         *
2773         * As we don't require any trust relationship between two parties, we
2774         * must prevent seals from being removed. Therefore, sealing a file
2775         * only adds a given set of seals to the file, it never touches
2776         * existing seals. Furthermore, the "setting seals"-operation can be
2777         * sealed itself, which basically prevents any further seal from being
2778         * added.
2779         *
2780         * Semantics of sealing are only defined on volatile files. Only
2781         * anonymous shmem files support sealing. More importantly, seals are
2782         * never written to disk. Therefore, there's no plan to support it on
2783         * other file types.
2784         */
2785
2786        if (!(file->f_mode & FMODE_WRITE))
2787                return -EPERM;
2788        if (seals & ~(unsigned int)F_ALL_SEALS)
2789                return -EINVAL;
2790
2791        inode_lock(inode);
2792
2793        file_seals = memfd_file_seals_ptr(file);
2794        if (!file_seals) {
2795                error = -EINVAL;
2796                goto unlock;
2797        }
2798
2799        if (*file_seals & F_SEAL_SEAL) {
2800                error = -EPERM;
2801                goto unlock;
2802        }
2803
2804        if ((seals & F_SEAL_WRITE) && !(*file_seals & F_SEAL_WRITE)) {
2805                error = mapping_deny_writable(file->f_mapping);
2806                if (error)
2807                        goto unlock;
2808
2809                error = shmem_wait_for_pins(file->f_mapping);
2810                if (error) {
2811                        mapping_allow_writable(file->f_mapping);
2812                        goto unlock;
2813                }
2814        }
2815
2816        *file_seals |= seals;
2817        error = 0;
2818
2819unlock:
2820        inode_unlock(inode);
2821        return error;
2822}
2823
2824static int memfd_get_seals(struct file *file)
2825{
2826        unsigned int *seals = memfd_file_seals_ptr(file);
2827
2828        return seals ? *seals : -EINVAL;
2829}
2830
2831long memfd_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2832{
2833        long error;
2834
2835        switch (cmd) {
2836        case F_ADD_SEALS:
2837                /* disallow upper 32bit */
2838                if (arg > UINT_MAX)
2839                        return -EINVAL;
2840
2841                error = memfd_add_seals(file, arg);
2842                break;
2843        case F_GET_SEALS:
2844                error = memfd_get_seals(file);
2845                break;
2846        default:
2847                error = -EINVAL;
2848                break;
2849        }
2850
2851        return error;
2852}
2853
2854static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2855                                                         loff_t len)
2856{
2857        struct inode *inode = file_inode(file);
2858        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2859        struct shmem_inode_info *info = SHMEM_I(inode);
2860        struct shmem_falloc shmem_falloc;
2861        pgoff_t start, index, end;
2862        int error;
2863
2864        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2865                return -EOPNOTSUPP;
2866
2867        inode_lock(inode);
2868
2869        if (mode & FALLOC_FL_PUNCH_HOLE) {
2870                struct address_space *mapping = file->f_mapping;
2871                loff_t unmap_start = round_up(offset, PAGE_SIZE);
2872                loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2873                DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2874
2875                /* protected by i_mutex */
2876                if (info->seals & F_SEAL_WRITE) {
2877                        error = -EPERM;
2878                        goto out;
2879                }
2880
2881                shmem_falloc.waitq = &shmem_falloc_waitq;
2882                shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2883                shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2884                spin_lock(&inode->i_lock);
2885                inode->i_private = &shmem_falloc;
2886                spin_unlock(&inode->i_lock);
2887
2888                if ((u64)unmap_end > (u64)unmap_start)
2889                        unmap_mapping_range(mapping, unmap_start,
2890                                            1 + unmap_end - unmap_start, 0);
2891                shmem_truncate_range(inode, offset, offset + len - 1);
2892                /* No need to unmap again: hole-punching leaves COWed pages */
2893
2894                spin_lock(&inode->i_lock);
2895                inode->i_private = NULL;
2896                wake_up_all(&shmem_falloc_waitq);
2897                WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2898                spin_unlock(&inode->i_lock);
2899                error = 0;
2900                goto out;
2901        }
2902
2903        /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2904        error = inode_newsize_ok(inode, offset + len);
2905        if (error)
2906                goto out;
2907
2908        if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2909                error = -EPERM;
2910                goto out;
2911        }
2912
2913        start = offset >> PAGE_SHIFT;
2914        end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2915        /* Try to avoid a swapstorm if len is impossible to satisfy */
2916        if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2917                error = -ENOSPC;
2918                goto out;
2919        }
2920
2921        shmem_falloc.waitq = NULL;
2922        shmem_falloc.start = start;
2923        shmem_falloc.next  = start;
2924        shmem_falloc.nr_falloced = 0;
2925        shmem_falloc.nr_unswapped = 0;
2926        spin_lock(&inode->i_lock);
2927        inode->i_private = &shmem_falloc;
2928        spin_unlock(&inode->i_lock);
2929
2930        for (index = start; index < end; index++) {
2931                struct page *page;
2932
2933                /*
2934                 * Good, the fallocate(2) manpage permits EINTR: we may have
2935                 * been interrupted because we are using up too much memory.
2936                 */
2937                if (signal_pending(current))
2938                        error = -EINTR;
2939                else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2940                        error = -ENOMEM;
2941                else
2942                        error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2943                if (error) {
2944                        /* Remove the !PageUptodate pages we added */
2945                        if (index > start) {
2946                                shmem_undo_range(inode,
2947                                    (loff_t)start << PAGE_SHIFT,
2948                                    ((loff_t)index << PAGE_SHIFT) - 1, true);
2949                        }
2950                        goto undone;
2951                }
2952
2953                /*
2954                 * Inform shmem_writepage() how far we have reached.
2955                 * No need for lock or barrier: we have the page lock.
2956                 */
2957                shmem_falloc.next++;
2958                if (!PageUptodate(page))
2959                        shmem_falloc.nr_falloced++;
2960
2961                /*
2962                 * If !PageUptodate, leave it that way so that freeable pages
2963                 * can be recognized if we need to rollback on error later.
2964                 * But set_page_dirty so that memory pressure will swap rather
2965                 * than free the pages we are allocating (and SGP_CACHE pages
2966                 * might still be clean: we now need to mark those dirty too).
2967                 */
2968                set_page_dirty(page);
2969                unlock_page(page);
2970                put_page(page);
2971                cond_resched();
2972        }
2973
2974        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2975                i_size_write(inode, offset + len);
2976        inode->i_ctime = current_time(inode);
2977undone:
2978        spin_lock(&inode->i_lock);
2979        inode->i_private = NULL;
2980        spin_unlock(&inode->i_lock);
2981out:
2982        inode_unlock(inode);
2983        return error;
2984}
2985
2986static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2987{
2988        struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2989
2990        buf->f_type = TMPFS_MAGIC;
2991        buf->f_bsize = PAGE_SIZE;
2992        buf->f_namelen = NAME_MAX;
2993        if (sbinfo->max_blocks) {
2994                buf->f_blocks = sbinfo->max_blocks;
2995                buf->f_bavail =
2996                buf->f_bfree  = sbinfo->max_blocks -
2997                                percpu_counter_sum(&sbinfo->used_blocks);
2998        }
2999        if (sbinfo->max_inodes) {
3000                buf->f_files = sbinfo->max_inodes;
3001                buf->f_ffree = sbinfo->free_inodes;
3002        }
3003        /* else leave those fields 0 like simple_statfs */
3004        return 0;
3005}
3006
3007/*
3008 * File creation. Allocate an inode, and we're done..
3009 */
3010static int
3011shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3012{
3013        struct inode *inode;
3014        int error = -ENOSPC;
3015
3016        inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3017        if (inode) {
3018                error = simple_acl_create(dir, inode);
3019                if (error)
3020                        goto out_iput;
3021                error = security_inode_init_security(inode, dir,
3022                                                     &dentry->d_name,
3023                                                     shmem_initxattrs, NULL);
3024                if (error && error != -EOPNOTSUPP)
3025                        goto out_iput;
3026
3027                error = 0;
3028                dir->i_size += BOGO_DIRENT_SIZE;
3029                dir->i_ctime = dir->i_mtime = current_time(dir);
3030                d_instantiate(dentry, inode);
3031                dget(dentry); /* Extra count - pin the dentry in core */
3032        }
3033        return error;
3034out_iput:
3035        iput(inode);
3036        return error;
3037}
3038
3039static int
3040shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3041{
3042        struct inode *inode;
3043        int error = -ENOSPC;
3044
3045        inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3046        if (inode) {
3047                error = security_inode_init_security(inode, dir,
3048                                                     NULL,
3049                                                     shmem_initxattrs, NULL);
3050                if (error && error != -EOPNOTSUPP)
3051                        goto out_iput;
3052                error = simple_acl_create(dir, inode);
3053                if (error)
3054                        goto out_iput;
3055                d_tmpfile(dentry, inode);
3056        }
3057        return error;
3058out_iput:
3059        iput(inode);
3060        return error;
3061}
3062
3063static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3064{
3065        int error;
3066
3067        if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3068                return error;
3069        inc_nlink(dir);
3070        return 0;
3071}
3072
3073static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3074                bool excl)
3075{
3076        return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3077}
3078
3079/*
3080 * Link a file..
3081 */
3082static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3083{
3084        struct inode *inode = d_inode(old_dentry);
3085        int ret;
3086
3087        /*
3088         * No ordinary (disk based) filesystem counts links as inodes;
3089         * but each new link needs a new dentry, pinning lowmem, and
3090         * tmpfs dentries cannot be pruned until they are unlinked.
3091         */
3092        ret = shmem_reserve_inode(inode->i_sb);
3093        if (ret)
3094                goto out;
3095
3096        dir->i_size += BOGO_DIRENT_SIZE;
3097        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3098        inc_nlink(inode);
3099        ihold(inode);   /* New dentry reference */
3100        dget(dentry);           /* Extra pinning count for the created dentry */
3101        d_instantiate(dentry, inode);
3102out:
3103        return ret;
3104}
3105
3106static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3107{
3108        struct inode *inode = d_inode(dentry);
3109
3110        if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3111                shmem_free_inode(inode->i_sb);
3112
3113        dir->i_size -= BOGO_DIRENT_SIZE;
3114        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3115        drop_nlink(inode);
3116        dput(dentry);   /* Undo the count from "create" - this does all the work */
3117        return 0;
3118}
3119
3120static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3121{
3122        if (!simple_empty(dentry))
3123                return -ENOTEMPTY;
3124
3125        drop_nlink(d_inode(dentry));
3126        drop_nlink(dir);
3127        return shmem_unlink(dir, dentry);
3128}
3129
3130static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3131{
3132        bool old_is_dir = d_is_dir(old_dentry);
3133        bool new_is_dir = d_is_dir(new_dentry);
3134
3135        if (old_dir != new_dir && old_is_dir != new_is_dir) {
3136                if (old_is_dir) {
3137                        drop_nlink(old_dir);
3138                        inc_nlink(new_dir);
3139                } else {
3140                        drop_nlink(new_dir);
3141                        inc_nlink(old_dir);
3142                }
3143        }
3144        old_dir->i_ctime = old_dir->i_mtime =
3145        new_dir->i_ctime = new_dir->i_mtime =
3146        d_inode(old_dentry)->i_ctime =
3147        d_inode(new_dentry)->i_ctime = current_time(old_dir);
3148
3149        return 0;
3150}
3151
3152static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3153{
3154        struct dentry *whiteout;
3155        int error;
3156
3157        whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3158        if (!whiteout)
3159                return -ENOMEM;
3160
3161        error = shmem_mknod(old_dir, whiteout,
3162                            S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3163        dput(whiteout);
3164        if (error)
3165                return error;
3166
3167        /*
3168         * Cheat and hash the whiteout while the old dentry is still in
3169         * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3170         *
3171         * d_lookup() will consistently find one of them at this point,
3172         * not sure which one, but that isn't even important.
3173         */
3174        d_rehash(whiteout);
3175        return 0;
3176}
3177
3178/*
3179 * The VFS layer already does all the dentry stuff for rename,
3180 * we just have to decrement the usage count for the target if
3181 * it exists so that the VFS layer correctly free's it when it
3182 * gets overwritten.
3183 */
3184static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3185{
3186        struct inode *inode = d_inode(old_dentry);
3187        int they_are_dirs = S_ISDIR(inode->i_mode);
3188
3189        if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3190                return -EINVAL;
3191
3192        if (flags & RENAME_EXCHANGE)
3193                return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3194
3195        if (!simple_empty(new_dentry))
3196                return -ENOTEMPTY;
3197
3198        if (flags & RENAME_WHITEOUT) {
3199                int error;
3200
3201                error = shmem_whiteout(old_dir, old_dentry);
3202                if (error)
3203                        return error;
3204        }
3205
3206        if (d_really_is_positive(new_dentry)) {
3207                (void) shmem_unlink(new_dir, new_dentry);
3208                if (they_are_dirs) {
3209                        drop_nlink(d_inode(new_dentry));
3210                        drop_nlink(old_dir);
3211                }
3212        } else if (they_are_dirs) {
3213                drop_nlink(old_dir);
3214                inc_nlink(new_dir);
3215        }
3216
3217        old_dir->i_size -= BOGO_DIRENT_SIZE;
3218        new_dir->i_size += BOGO_DIRENT_SIZE;
3219        old_dir->i_ctime = old_dir->i_mtime =
3220        new_dir->i_ctime = new_dir->i_mtime =
3221        inode->i_ctime = current_time(old_dir);
3222        return 0;
3223}
3224
3225static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3226{
3227        int error;
3228        int len;
3229        struct inode *inode;
3230        struct page *page;
3231
3232        len = strlen(symname) + 1;
3233        if (len > PAGE_SIZE)
3234                return -ENAMETOOLONG;
3235
3236        inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3237        if (!inode)
3238                return -ENOSPC;
3239
3240        error = security_inode_init_security(inode, dir, &dentry->d_name,
3241                                             shmem_initxattrs, NULL);
3242        if (error) {
3243                if (error != -EOPNOTSUPP) {
3244                        iput(inode);
3245                        return error;
3246                }
3247                error = 0;
3248        }
3249
3250        inode->i_size = len-1;
3251        if (len <= SHORT_SYMLINK_LEN) {
3252                inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3253                if (!inode->i_link) {
3254                        iput(inode);
3255                        return -ENOMEM;
3256                }
3257                inode->i_op = &shmem_short_symlink_operations;
3258        } else {
3259                inode_nohighmem(inode);
3260                error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3261                if (error) {
3262                        iput(inode);
3263                        return error;
3264                }
3265                inode->i_mapping->a_ops = &shmem_aops;
3266                inode->i_op = &shmem_symlink_inode_operations;
3267                memcpy(page_address(page), symname, len);
3268                SetPageUptodate(page);
3269                set_page_dirty(page);
3270                unlock_page(page);
3271                put_page(page);
3272        }
3273        dir->i_size += BOGO_DIRENT_SIZE;
3274        dir->i_ctime = dir->i_mtime = current_time(dir);
3275        d_instantiate(dentry, inode);
3276        dget(dentry);
3277        return 0;
3278}
3279
3280static void shmem_put_link(void *arg)
3281{
3282        mark_page_accessed(arg);
3283        put_page(arg);
3284}
3285
3286static const char *shmem_get_link(struct dentry *dentry,
3287                                  struct inode *inode,
3288                                  struct delayed_call *done)
3289{
3290        struct page *page = NULL;
3291        int error;
3292        if (!dentry) {
3293                page = find_get_page(inode->i_mapping, 0);
3294                if (!page)
3295                        return ERR_PTR(-ECHILD);
3296                if (!PageUptodate(page)) {
3297                        put_page(page);
3298                        return ERR_PTR(-ECHILD);
3299                }
3300        } else {
3301                error = shmem_getpage(inode, 0, &page, SGP_READ);
3302                if (error)
3303                        return ERR_PTR(error);
3304                unlock_page(page);
3305        }
3306        set_delayed_call(done, shmem_put_link, page);
3307        return page_address(page);
3308}
3309
3310#ifdef CONFIG_TMPFS_XATTR
3311/*
3312 * Superblocks without xattr inode operations may get some security.* xattr
3313 * support from the LSM "for free". As soon as we have any other xattrs
3314 * like ACLs, we also need to implement the security.* handlers at
3315 * filesystem level, though.
3316 */
3317
3318/*
3319 * Callback for security_inode_init_security() for acquiring xattrs.
3320 */
3321static int shmem_initxattrs(struct inode *inode,
3322                            const struct xattr *xattr_array,
3323                            void *fs_info)
3324{
3325        struct shmem_inode_info *info = SHMEM_I(inode);
3326        const struct xattr *xattr;
3327        struct simple_xattr *new_xattr;
3328        size_t len;
3329
3330        for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3331                new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3332                if (!new_xattr)
3333                        return -ENOMEM;
3334
3335                len = strlen(xattr->name) + 1;
3336                new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3337                                          GFP_KERNEL);
3338                if (!new_xattr->name) {
3339                        kfree(new_xattr);
3340                        return -ENOMEM;
3341                }
3342
3343                memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3344                       XATTR_SECURITY_PREFIX_LEN);
3345                memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3346                       xattr->name, len);
3347
3348                simple_xattr_list_add(&info->xattrs, new_xattr);
3349        }
3350
3351        return 0;
3352}
3353
3354static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3355                                   struct dentry *unused, struct inode *inode,
3356                                   const char *name, void *buffer, size_t size)
3357{
3358        struct shmem_inode_info *info = SHMEM_I(inode);
3359
3360        name = xattr_full_name(handler, name);
3361        return simple_xattr_get(&info->xattrs, name, buffer, size);
3362}
3363
3364static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3365                                   struct dentry *unused, struct inode *inode,
3366                                   const char *name, const void *value,
3367                                   size_t size, int flags)
3368{
3369        struct shmem_inode_info *info = SHMEM_I(inode);
3370
3371        name = xattr_full_name(handler, name);
3372        return simple_xattr_set(&info->xattrs, name, value, size, flags);
3373}
3374
3375static const struct xattr_handler shmem_security_xattr_handler = {
3376        .prefix = XATTR_SECURITY_PREFIX,
3377        .get = shmem_xattr_handler_get,
3378        .set = shmem_xattr_handler_set,
3379};
3380
3381static const struct xattr_handler shmem_trusted_xattr_handler = {
3382        .prefix = XATTR_TRUSTED_PREFIX,
3383        .get = shmem_xattr_handler_get,
3384        .set = shmem_xattr_handler_set,
3385};
3386
3387static const struct xattr_handler *shmem_xattr_handlers[] = {
3388#ifdef CONFIG_TMPFS_POSIX_ACL
3389        &posix_acl_access_xattr_handler,
3390        &posix_acl_default_xattr_handler,
3391#endif
3392        &shmem_security_xattr_handler,
3393        &shmem_trusted_xattr_handler,
3394        NULL
3395};
3396
3397static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3398{
3399        struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3400        return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3401}
3402#endif /* CONFIG_TMPFS_XATTR */
3403
3404static const struct inode_operations shmem_short_symlink_operations = {
3405        .get_link       = simple_get_link,
3406#ifdef CONFIG_TMPFS_XATTR
3407        .listxattr      = shmem_listxattr,
3408#endif
3409};
3410
3411static const struct inode_operations shmem_symlink_inode_operations = {
3412        .get_link       = shmem_get_link,
3413#ifdef CONFIG_TMPFS_XATTR
3414        .listxattr      = shmem_listxattr,
3415#endif
3416};
3417
3418static struct dentry *shmem_get_parent(struct dentry *child)
3419{
3420        return ERR_PTR(-ESTALE);
3421}
3422
3423static int shmem_match(struct inode *ino, void *vfh)
3424{
3425        __u32 *fh = vfh;
3426        __u64 inum = fh[2];
3427        inum = (inum << 32) | fh[1];
3428        return ino->i_ino == inum && fh[0] == ino->i_generation;
3429}
3430
3431static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3432                struct fid *fid, int fh_len, int fh_type)
3433{
3434        struct inode *inode;
3435        struct dentry *dentry = NULL;
3436        u64 inum;
3437
3438        if (fh_len < 3)
3439                return NULL;
3440
3441        inum = fid->raw[2];
3442        inum = (inum << 32) | fid->raw[1];
3443
3444        inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3445                        shmem_match, fid->raw);
3446        if (inode) {
3447                dentry = d_find_alias(inode);
3448                iput(inode);
3449        }
3450
3451        return dentry;
3452}
3453
3454static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3455                                struct inode *parent)
3456{
3457        if (*len < 3) {
3458                *len = 3;
3459                return FILEID_INVALID;
3460        }
3461
3462        if (inode_unhashed(inode)) {
3463                /* Unfortunately insert_inode_hash is not idempotent,
3464                 * so as we hash inodes here rather than at creation
3465                 * time, we need a lock to ensure we only try
3466                 * to do it once
3467                 */
3468                static DEFINE_SPINLOCK(lock);
3469                spin_lock(&lock);
3470                if (inode_unhashed(inode))
3471                        __insert_inode_hash(inode,
3472                                            inode->i_ino + inode->i_generation);
3473                spin_unlock(&lock);
3474        }
3475
3476        fh[0] = inode->i_generation;
3477        fh[1] = inode->i_ino;
3478        fh[2] = ((__u64)inode->i_ino) >> 32;
3479
3480        *len = 3;
3481        return 1;
3482}
3483
3484static const struct export_operations shmem_export_ops = {
3485        .get_parent     = shmem_get_parent,
3486        .encode_fh      = shmem_encode_fh,
3487        .fh_to_dentry   = shmem_fh_to_dentry,
3488};
3489
3490static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3491                               bool remount)
3492{
3493        char *this_char, *value, *rest;
3494        struct mempolicy *mpol = NULL;
3495        uid_t uid;
3496        gid_t gid;
3497
3498        while (options != NULL) {
3499                this_char = options;
3500                for (;;) {
3501                        /*
3502                         * NUL-terminate this option: unfortunately,
3503                         * mount options form a comma-separated list,
3504                         * but mpol's nodelist may also contain commas.
3505                         */
3506                        options = strchr(options, ',');
3507                        if (options == NULL)
3508                                break;
3509                        options++;
3510                        if (!isdigit(*options)) {
3511                                options[-1] = '\0';
3512                                break;
3513                        }
3514                }
3515                if (!*this_char)
3516                        continue;
3517                if ((value = strchr(this_char,'=')) != NULL) {
3518                        *value++ = 0;
3519                } else {
3520                        pr_err("tmpfs: No value for mount option '%s'\n",
3521                               this_char);
3522                        goto error;
3523                }
3524
3525                if (!strcmp(this_char,"size")) {
3526                        unsigned long long size;
3527                        size = memparse(value,&rest);
3528                        if (*rest == '%') {
3529                                size <<= PAGE_SHIFT;
3530                                size *= totalram_pages;
3531                                do_div(size, 100);
3532                                rest++;
3533                        }
3534                        if (*rest)
3535                                goto bad_val;
3536                        sbinfo->max_blocks =
3537                                DIV_ROUND_UP(size, PAGE_SIZE);
3538                } else if (!strcmp(this_char,"nr_blocks")) {
3539                        sbinfo->max_blocks = memparse(value, &rest);
3540                        if (*rest)
3541                                goto bad_val;
3542                } else if (!strcmp(this_char,"nr_inodes")) {
3543                        sbinfo->max_inodes = memparse(value, &rest);
3544                        if (*rest)
3545                                goto bad_val;
3546                } else if (!strcmp(this_char,"mode")) {
3547                        if (remount)
3548                                continue;
3549                        sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3550                        if (*rest)
3551                                goto bad_val;
3552                } else if (!strcmp(this_char,"uid")) {
3553                        if (remount)
3554                                continue;
3555                        uid = simple_strtoul(value, &rest, 0);
3556                        if (*rest)
3557                                goto bad_val;
3558                        sbinfo->uid = make_kuid(current_user_ns(), uid);
3559                        if (!uid_valid(sbinfo->uid))
3560                                goto bad_val;
3561                } else if (!strcmp(this_char,"gid")) {
3562                        if (remount)
3563                                continue;
3564                        gid = simple_strtoul(value, &rest, 0);
3565                        if (*rest)
3566                                goto bad_val;
3567                        sbinfo->gid = make_kgid(current_user_ns(), gid);
3568                        if (!gid_valid(sbinfo->gid))
3569                                goto bad_val;
3570#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3571                } else if (!strcmp(this_char, "huge")) {
3572                        int huge;
3573                        huge = shmem_parse_huge(value);
3574                        if (huge < 0)
3575                                goto bad_val;
3576                        if (!has_transparent_hugepage() &&
3577                                        huge != SHMEM_HUGE_NEVER)
3578                                goto bad_val;
3579                        sbinfo->huge = huge;
3580#endif
3581#ifdef CONFIG_NUMA
3582                } else if (!strcmp(this_char,"mpol")) {
3583                        mpol_put(mpol);
3584                        mpol = NULL;
3585                        if (mpol_parse_str(value, &mpol))
3586                                goto bad_val;
3587#endif
3588                } else {
3589                        pr_err("tmpfs: Bad mount option %s\n", this_char);
3590                        goto error;
3591                }
3592        }
3593        sbinfo->mpol = mpol;
3594        return 0;
3595
3596bad_val:
3597        pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3598               value, this_char);
3599error:
3600        mpol_put(mpol);
3601        return 1;
3602
3603}
3604
3605static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3606{
3607        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3608        struct shmem_sb_info config = *sbinfo;
3609        unsigned long inodes;
3610        int error = -EINVAL;
3611
3612        config.mpol = NULL;
3613        if (shmem_parse_options(data, &config, true))
3614                return error;
3615
3616        spin_lock(&sbinfo->stat_lock);
3617        inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3618        if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3619                goto out;
3620        if (config.max_inodes < inodes)
3621                goto out;
3622        /*
3623         * Those tests disallow limited->unlimited while any are in use;
3624         * but we must separately disallow unlimited->limited, because
3625         * in that case we have no record of how much is already in use.
3626         */
3627        if (config.max_blocks && !sbinfo->max_blocks)
3628                goto out;
3629        if (config.max_inodes && !sbinfo->max_inodes)
3630                goto out;
3631
3632        error = 0;
3633        sbinfo->huge = config.huge;
3634        sbinfo->max_blocks  = config.max_blocks;
3635        sbinfo->max_inodes  = config.max_inodes;
3636        sbinfo->free_inodes = config.max_inodes - inodes;
3637
3638        /*
3639         * Preserve previous mempolicy unless mpol remount option was specified.
3640         */
3641        if (config.mpol) {
3642                mpol_put(sbinfo->mpol);
3643                sbinfo->mpol = config.mpol;     /* transfers initial ref */
3644        }
3645out:
3646        spin_unlock(&sbinfo->stat_lock);
3647        return error;
3648}
3649
3650static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3651{
3652        struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3653
3654        if (sbinfo->max_blocks != shmem_default_max_blocks())
3655                seq_printf(seq, ",size=%luk",
3656                        sbinfo->max_blocks << (PAGE_SHIFT - 10));
3657        if (sbinfo->max_inodes != shmem_default_max_inodes())
3658                seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3659        if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3660                seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3661        if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3662                seq_printf(seq, ",uid=%u",
3663                                from_kuid_munged(&init_user_ns, sbinfo->uid));
3664        if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3665                seq_printf(seq, ",gid=%u",
3666                                from_kgid_munged(&init_user_ns, sbinfo->gid));
3667#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3668        /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3669        if (sbinfo->huge)
3670                seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3671#endif
3672        shmem_show_mpol(seq, sbinfo->mpol);
3673        return 0;
3674}
3675
3676#define MFD_NAME_PREFIX "memfd:"
3677#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3678#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3679
3680#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3681
3682SYSCALL_DEFINE2(memfd_create,
3683                const char __user *, uname,
3684                unsigned int, flags)
3685{
3686        unsigned int *file_seals;
3687        struct file *file;
3688        int fd, error;
3689        char *name;
3690        long len;
3691
3692        if (!(flags & MFD_HUGETLB)) {
3693                if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3694                        return -EINVAL;
3695        } else {
3696                /* Allow huge page size encoding in flags. */
3697                if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3698                                (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3699                        return -EINVAL;
3700        }
3701
3702        /* length includes terminating zero */
3703        len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3704        if (len <= 0)
3705                return -EFAULT;
3706        if (len > MFD_NAME_MAX_LEN + 1)
3707                return -EINVAL;
3708
3709        name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
3710        if (!name)
3711                return -ENOMEM;
3712
3713        strcpy(name, MFD_NAME_PREFIX);
3714        if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3715                error = -EFAULT;
3716                goto err_name;
3717        }
3718
3719        /* terminating-zero may have changed after strnlen_user() returned */
3720        if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3721                error = -EFAULT;
3722                goto err_name;
3723        }
3724
3725        fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3726        if (fd < 0) {
3727                error = fd;
3728                goto err_name;
3729        }
3730
3731        if (flags & MFD_HUGETLB) {
3732                struct user_struct *user = NULL;
3733
3734                file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3735                                        HUGETLB_ANONHUGE_INODE,
3736                                        (flags >> MFD_HUGE_SHIFT) &
3737                                        MFD_HUGE_MASK);
3738        } else
3739                file = shmem_file_setup(name, 0, VM_NORESERVE);
3740        if (IS_ERR(file)) {
3741                error = PTR_ERR(file);
3742                goto err_fd;
3743        }
3744        file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3745        file->f_flags |= O_RDWR | O_LARGEFILE;
3746
3747        if (flags & MFD_ALLOW_SEALING) {
3748                file_seals = memfd_file_seals_ptr(file);
3749                *file_seals &= ~F_SEAL_SEAL;
3750        }
3751
3752        fd_install(fd, file);
3753        kfree(name);
3754        return fd;
3755
3756err_fd:
3757        put_unused_fd(fd);
3758err_name:
3759        kfree(name);
3760        return error;
3761}
3762
3763#endif /* CONFIG_TMPFS */
3764
3765static void shmem_put_super(struct super_block *sb)
3766{
3767        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3768
3769        percpu_counter_destroy(&sbinfo->used_blocks);
3770        mpol_put(sbinfo->mpol);
3771        kfree(sbinfo);
3772        sb->s_fs_info = NULL;
3773}
3774
3775int shmem_fill_super(struct super_block *sb, void *data, int silent)
3776{
3777        struct inode *inode;
3778        struct shmem_sb_info *sbinfo;
3779        int err = -ENOMEM;
3780
3781        /* Round up to L1_CACHE_BYTES to resist false sharing */
3782        sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3783                                L1_CACHE_BYTES), GFP_KERNEL);
3784        if (!sbinfo)
3785                return -ENOMEM;
3786
3787        sbinfo->mode = S_IRWXUGO | S_ISVTX;
3788        sbinfo->uid = current_fsuid();
3789        sbinfo->gid = current_fsgid();
3790        sb->s_fs_info = sbinfo;
3791
3792#ifdef CONFIG_TMPFS
3793        /*
3794         * Per default we only allow half of the physical ram per
3795         * tmpfs instance, limiting inodes to one per page of lowmem;
3796         * but the internal instance is left unlimited.
3797         */
3798        if (!(sb->s_flags & SB_KERNMOUNT)) {
3799                sbinfo->max_blocks = shmem_default_max_blocks();
3800                sbinfo->max_inodes = shmem_default_max_inodes();
3801                if (shmem_parse_options(data, sbinfo, false)) {
3802                        err = -EINVAL;
3803                        goto failed;
3804                }
3805        } else {
3806                sb->s_flags |= SB_NOUSER;
3807        }
3808        sb->s_export_op = &shmem_export_ops;
3809        sb->s_flags |= SB_NOSEC;
3810#else
3811        sb->s_flags |= SB_NOUSER;
3812#endif
3813
3814        spin_lock_init(&sbinfo->stat_lock);
3815        if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3816                goto failed;
3817        sbinfo->free_inodes = sbinfo->max_inodes;
3818        spin_lock_init(&sbinfo->shrinklist_lock);
3819        INIT_LIST_HEAD(&sbinfo->shrinklist);
3820
3821        sb->s_maxbytes = MAX_LFS_FILESIZE;
3822        sb->s_blocksize = PAGE_SIZE;
3823        sb->s_blocksize_bits = PAGE_SHIFT;
3824        sb->s_magic = TMPFS_MAGIC;
3825        sb->s_op = &shmem_ops;
3826        sb->s_time_gran = 1;
3827#ifdef CONFIG_TMPFS_XATTR
3828        sb->s_xattr = shmem_xattr_handlers;
3829#endif
3830#ifdef CONFIG_TMPFS_POSIX_ACL
3831        sb->s_flags |= SB_POSIXACL;
3832#endif
3833        uuid_gen(&sb->s_uuid);
3834
3835        inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3836        if (!inode)
3837                goto failed;
3838        inode->i_uid = sbinfo->uid;
3839        inode->i_gid = sbinfo->gid;
3840        sb->s_root = d_make_root(inode);
3841        if (!sb->s_root)
3842                goto failed;
3843        return 0;
3844
3845failed:
3846        shmem_put_super(sb);
3847        return err;
3848}
3849
3850static struct kmem_cache *shmem_inode_cachep;
3851
3852static struct inode *shmem_alloc_inode(struct super_block *sb)
3853{
3854        struct shmem_inode_info *info;
3855        info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3856        if (!info)
3857                return NULL;
3858        return &info->vfs_inode;
3859}
3860
3861static void shmem_destroy_callback(struct rcu_head *head)
3862{
3863        struct inode *inode = container_of(head, struct inode, i_rcu);
3864        if (S_ISLNK(inode->i_mode))
3865                kfree(inode->i_link);
3866        kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3867}
3868
3869static void shmem_destroy_inode(struct inode *inode)
3870{
3871        if (S_ISREG(inode->i_mode))
3872                mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3873        call_rcu(&inode->i_rcu, shmem_destroy_callback);
3874}
3875
3876static void shmem_init_inode(void *foo)
3877{
3878        struct shmem_inode_info *info = foo;
3879        inode_init_once(&info->vfs_inode);
3880}
3881
3882static void shmem_init_inodecache(void)
3883{
3884        shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3885                                sizeof(struct shmem_inode_info),
3886                                0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3887}
3888
3889static void shmem_destroy_inodecache(void)
3890{
3891        kmem_cache_destroy(shmem_inode_cachep);
3892}
3893
3894static const struct address_space_operations shmem_aops = {
3895        .writepage      = shmem_writepage,
3896        .set_page_dirty = __set_page_dirty_no_writeback,
3897#ifdef CONFIG_TMPFS
3898        .write_begin    = shmem_write_begin,
3899        .write_end      = shmem_write_end,
3900#endif
3901#ifdef CONFIG_MIGRATION
3902        .migratepage    = migrate_page,
3903#endif
3904        .error_remove_page = generic_error_remove_page,
3905};
3906
3907static const struct file_operations shmem_file_operations = {
3908        .mmap           = shmem_mmap,
3909        .get_unmapped_area = shmem_get_unmapped_area,
3910#ifdef CONFIG_TMPFS
3911        .llseek         = shmem_file_llseek,
3912        .read_iter      = shmem_file_read_iter,
3913        .write_iter     = generic_file_write_iter,
3914        .fsync          = noop_fsync,
3915        .splice_read    = generic_file_splice_read,
3916        .splice_write   = iter_file_splice_write,
3917        .fallocate      = shmem_fallocate,
3918#endif
3919};
3920
3921static const struct inode_operations shmem_inode_operations = {
3922        .getattr        = shmem_getattr,
3923        .setattr        = shmem_setattr,
3924#ifdef CONFIG_TMPFS_XATTR
3925        .listxattr      = shmem_listxattr,
3926        .set_acl        = simple_set_acl,
3927#endif
3928};
3929
3930static const struct inode_operations shmem_dir_inode_operations = {
3931#ifdef CONFIG_TMPFS
3932        .create         = shmem_create,
3933        .lookup         = simple_lookup,
3934        .link           = shmem_link,
3935        .unlink         = shmem_unlink,
3936        .symlink        = shmem_symlink,
3937        .mkdir          = shmem_mkdir,
3938        .rmdir          = shmem_rmdir,
3939        .mknod          = shmem_mknod,
3940        .rename         = shmem_rename2,
3941        .tmpfile        = shmem_tmpfile,
3942#endif
3943#ifdef CONFIG_TMPFS_XATTR
3944        .listxattr      = shmem_listxattr,
3945#endif
3946#ifdef CONFIG_TMPFS_POSIX_ACL
3947        .setattr        = shmem_setattr,
3948        .set_acl        = simple_set_acl,
3949#endif
3950};
3951
3952static const struct inode_operations shmem_special_inode_operations = {
3953#ifdef CONFIG_TMPFS_XATTR
3954        .listxattr      = shmem_listxattr,
3955#endif
3956#ifdef CONFIG_TMPFS_POSIX_ACL
3957        .setattr        = shmem_setattr,
3958        .set_acl        = simple_set_acl,
3959#endif
3960};
3961
3962static const struct super_operations shmem_ops = {
3963        .alloc_inode    = shmem_alloc_inode,
3964        .destroy_inode  = shmem_destroy_inode,
3965#ifdef CONFIG_TMPFS
3966        .statfs         = shmem_statfs,
3967        .remount_fs     = shmem_remount_fs,
3968        .show_options   = shmem_show_options,
3969#endif
3970        .evict_inode    = shmem_evict_inode,
3971        .drop_inode     = generic_delete_inode,
3972        .put_super      = shmem_put_super,
3973#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3974        .nr_cached_objects      = shmem_unused_huge_count,
3975        .free_cached_objects    = shmem_unused_huge_scan,
3976#endif
3977};
3978
3979static const struct vm_operations_struct shmem_vm_ops = {
3980        .fault          = shmem_fault,
3981        .map_pages      = filemap_map_pages,
3982#ifdef CONFIG_NUMA
3983        .set_policy     = shmem_set_policy,
3984        .get_policy     = shmem_get_policy,
3985#endif
3986};
3987
3988static struct dentry *shmem_mount(struct file_system_type *fs_type,
3989        int flags, const char *dev_name, void *data)
3990{
3991        return mount_nodev(fs_type, flags, data, shmem_fill_super);
3992}
3993
3994static struct file_system_type shmem_fs_type = {
3995        .owner          = THIS_MODULE,
3996        .name           = "tmpfs",
3997        .mount          = shmem_mount,
3998        .kill_sb        = kill_litter_super,
3999        .fs_flags       = FS_USERNS_MOUNT,
4000};
4001
4002int __init shmem_init(void)
4003{
4004        int error;
4005
4006        /* If rootfs called this, don't re-init */
4007        if (shmem_inode_cachep)
4008                return 0;
4009
4010        shmem_init_inodecache();
4011
4012        error = register_filesystem(&shmem_fs_type);
4013        if (error) {
4014                pr_err("Could not register tmpfs\n");
4015                goto out2;
4016        }
4017
4018        shm_mnt = kern_mount(&shmem_fs_type);
4019        if (IS_ERR(shm_mnt)) {
4020                error = PTR_ERR(shm_mnt);
4021                pr_err("Could not kern_mount tmpfs\n");
4022                goto out1;
4023        }
4024
4025#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4026        if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4027                SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4028        else
4029                shmem_huge = 0; /* just in case it was patched */
4030#endif
4031        return 0;
4032
4033out1:
4034        unregister_filesystem(&shmem_fs_type);
4035out2:
4036        shmem_destroy_inodecache();
4037        shm_mnt = ERR_PTR(error);
4038        return error;
4039}
4040
4041#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4042static ssize_t shmem_enabled_show(struct kobject *kobj,
4043                struct kobj_attribute *attr, char *buf)
4044{
4045        int values[] = {
4046                SHMEM_HUGE_ALWAYS,
4047                SHMEM_HUGE_WITHIN_SIZE,
4048                SHMEM_HUGE_ADVISE,
4049                SHMEM_HUGE_NEVER,
4050                SHMEM_HUGE_DENY,
4051                SHMEM_HUGE_FORCE,
4052        };
4053        int i, count;
4054
4055        for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4056                const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4057
4058                count += sprintf(buf + count, fmt,
4059                                shmem_format_huge(values[i]));
4060        }
4061        buf[count - 1] = '\n';
4062        return count;
4063}
4064
4065static ssize_t shmem_enabled_store(struct kobject *kobj,
4066                struct kobj_attribute *attr, const char *buf, size_t count)
4067{
4068        char tmp[16];
4069        int huge;
4070
4071        if (count + 1 > sizeof(tmp))
4072                return -EINVAL;
4073        memcpy(tmp, buf, count);
4074        tmp[count] = '\0';
4075        if (count && tmp[count - 1] == '\n')
4076                tmp[count - 1] = '\0';
4077
4078        huge = shmem_parse_huge(tmp);
4079        if (huge == -EINVAL)
4080                return -EINVAL;
4081        if (!has_transparent_hugepage() &&
4082                        huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4083                return -EINVAL;
4084
4085        shmem_huge = huge;
4086        if (shmem_huge > SHMEM_HUGE_DENY)
4087                SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4088        return count;
4089}
4090
4091struct kobj_attribute shmem_enabled_attr =
4092        __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4093#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4094
4095#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4096bool shmem_huge_enabled(struct vm_area_struct *vma)
4097{
4098        struct inode *inode = file_inode(vma->vm_file);
4099        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4100        loff_t i_size;
4101        pgoff_t off;
4102
4103        if (shmem_huge == SHMEM_HUGE_FORCE)
4104                return true;
4105        if (shmem_huge == SHMEM_HUGE_DENY)
4106                return false;
4107        switch (sbinfo->huge) {
4108                case SHMEM_HUGE_NEVER:
4109                        return false;
4110                case SHMEM_HUGE_ALWAYS:
4111                        return true;
4112                case SHMEM_HUGE_WITHIN_SIZE:
4113                        off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4114                        i_size = round_up(i_size_read(inode), PAGE_SIZE);
4115                        if (i_size >= HPAGE_PMD_SIZE &&
4116                                        i_size >> PAGE_SHIFT >= off)
4117                                return true;
4118                        /* fall through */
4119                case SHMEM_HUGE_ADVISE:
4120                        /* TODO: implement fadvise() hints */
4121                        return (vma->vm_flags & VM_HUGEPAGE);
4122                default:
4123                        VM_BUG_ON(1);
4124                        return false;
4125        }
4126}
4127#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4128
4129#else /* !CONFIG_SHMEM */
4130
4131/*
4132 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4133 *
4134 * This is intended for small system where the benefits of the full
4135 * shmem code (swap-backed and resource-limited) are outweighed by
4136 * their complexity. On systems without swap this code should be
4137 * effectively equivalent, but much lighter weight.
4138 */
4139
4140static struct file_system_type shmem_fs_type = {
4141        .name           = "tmpfs",
4142        .mount          = ramfs_mount,
4143        .kill_sb        = kill_litter_super,
4144        .fs_flags       = FS_USERNS_MOUNT,
4145};
4146
4147int __init shmem_init(void)
4148{
4149        BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4150
4151        shm_mnt = kern_mount(&shmem_fs_type);
4152        BUG_ON(IS_ERR(shm_mnt));
4153
4154        return 0;
4155}
4156
4157int shmem_unuse(swp_entry_t swap, struct page *page)
4158{
4159        return 0;
4160}
4161
4162int shmem_lock(struct file *file, int lock, struct user_struct *user)
4163{
4164        return 0;
4165}
4166
4167void shmem_unlock_mapping(struct address_space *mapping)
4168{
4169}
4170
4171#ifdef CONFIG_MMU
4172unsigned long shmem_get_unmapped_area(struct file *file,
4173                                      unsigned long addr, unsigned long len,
4174                                      unsigned long pgoff, unsigned long flags)
4175{
4176        return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4177}
4178#endif
4179
4180void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4181{
4182        truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4183}
4184EXPORT_SYMBOL_GPL(shmem_truncate_range);
4185
4186#define shmem_vm_ops                            generic_file_vm_ops
4187#define shmem_file_operations                   ramfs_file_operations
4188#define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4189#define shmem_acct_size(flags, size)            0
4190#define shmem_unacct_size(flags, size)          do {} while (0)
4191
4192#endif /* CONFIG_SHMEM */
4193
4194/* common code */
4195
4196static const struct dentry_operations anon_ops = {
4197        .d_dname = simple_dname
4198};
4199
4200static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4201                                       unsigned long flags, unsigned int i_flags)
4202{
4203        struct file *res;
4204        struct inode *inode;
4205        struct path path;
4206        struct super_block *sb;
4207        struct qstr this;
4208
4209        if (IS_ERR(mnt))
4210                return ERR_CAST(mnt);
4211
4212        if (size < 0 || size > MAX_LFS_FILESIZE)
4213                return ERR_PTR(-EINVAL);
4214
4215        if (shmem_acct_size(flags, size))
4216                return ERR_PTR(-ENOMEM);
4217
4218        res = ERR_PTR(-ENOMEM);
4219        this.name = name;
4220        this.len = strlen(name);
4221        this.hash = 0; /* will go */
4222        sb = mnt->mnt_sb;
4223        path.mnt = mntget(mnt);
4224        path.dentry = d_alloc_pseudo(sb, &this);
4225        if (!path.dentry)
4226                goto put_memory;
4227        d_set_d_op(path.dentry, &anon_ops);
4228
4229        res = ERR_PTR(-ENOSPC);
4230        inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4231        if (!inode)
4232                goto put_memory;
4233
4234        inode->i_flags |= i_flags;
4235        d_instantiate(path.dentry, inode);
4236        inode->i_size = size;
4237        clear_nlink(inode);     /* It is unlinked */
4238        res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4239        if (IS_ERR(res))
4240                goto put_path;
4241
4242        res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4243                  &shmem_file_operations);
4244        if (IS_ERR(res))
4245                goto put_path;
4246
4247        return res;
4248
4249put_memory:
4250        shmem_unacct_size(flags, size);
4251put_path:
4252        path_put(&path);
4253        return res;
4254}
4255
4256/**
4257 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4258 *      kernel internal.  There will be NO LSM permission checks against the
4259 *      underlying inode.  So users of this interface must do LSM checks at a
4260 *      higher layer.  The users are the big_key and shm implementations.  LSM
4261 *      checks are provided at the key or shm level rather than the inode.
4262 * @name: name for dentry (to be seen in /proc/<pid>/maps
4263 * @size: size to be set for the file
4264 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4265 */
4266struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4267{
4268        return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4269}
4270
4271/**
4272 * shmem_file_setup - get an unlinked file living in tmpfs
4273 * @name: name for dentry (to be seen in /proc/<pid>/maps
4274 * @size: size to be set for the file
4275 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4276 */
4277struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4278{
4279        return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4280}
4281EXPORT_SYMBOL_GPL(shmem_file_setup);
4282
4283/**
4284 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4285 * @mnt: the tmpfs mount where the file will be created
4286 * @name: name for dentry (to be seen in /proc/<pid>/maps
4287 * @size: size to be set for the file
4288 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4289 */
4290struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4291                                       loff_t size, unsigned long flags)
4292{
4293        return __shmem_file_setup(mnt, name, size, flags, 0);
4294}
4295EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4296
4297/**
4298 * shmem_zero_setup - setup a shared anonymous mapping
4299 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4300 */
4301int shmem_zero_setup(struct vm_area_struct *vma)
4302{
4303        struct file *file;
4304        loff_t size = vma->vm_end - vma->vm_start;
4305
4306        /*
4307         * Cloning a new file under mmap_sem leads to a lock ordering conflict
4308         * between XFS directory reading and selinux: since this file is only
4309         * accessible to the user through its mapping, use S_PRIVATE flag to
4310         * bypass file security, in the same way as shmem_kernel_file_setup().
4311         */
4312        file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4313        if (IS_ERR(file))
4314                return PTR_ERR(file);
4315
4316        if (vma->vm_file)
4317                fput(vma->vm_file);
4318        vma->vm_file = file;
4319        vma->vm_ops = &shmem_vm_ops;
4320
4321        if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4322                        ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4323                        (vma->vm_end & HPAGE_PMD_MASK)) {
4324                khugepaged_enter(vma, vma->vm_flags);
4325        }
4326
4327        return 0;
4328}
4329
4330/**
4331 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4332 * @mapping:    the page's address_space
4333 * @index:      the page index
4334 * @gfp:        the page allocator flags to use if allocating
4335 *
4336 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4337 * with any new page allocations done using the specified allocation flags.
4338 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4339 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4340 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4341 *
4342 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4343 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4344 */
4345struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4346                                         pgoff_t index, gfp_t gfp)
4347{
4348#ifdef CONFIG_SHMEM
4349        struct inode *inode = mapping->host;
4350        struct page *page;
4351        int error;
4352
4353        BUG_ON(mapping->a_ops != &shmem_aops);
4354        error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4355                                  gfp, NULL, NULL, NULL);
4356        if (error)
4357                page = ERR_PTR(error);
4358        else
4359                unlock_page(page);
4360        return page;
4361#else
4362        /*
4363         * The tiny !SHMEM case uses ramfs without swap
4364         */
4365        return read_cache_page_gfp(mapping, index, gfp);
4366#endif
4367}
4368EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4369