linux/mm/slab.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/slab.c
   4 * Written by Mark Hemment, 1996/97.
   5 * (markhe@nextd.demon.co.uk)
   6 *
   7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   8 *
   9 * Major cleanup, different bufctl logic, per-cpu arrays
  10 *      (c) 2000 Manfred Spraul
  11 *
  12 * Cleanup, make the head arrays unconditional, preparation for NUMA
  13 *      (c) 2002 Manfred Spraul
  14 *
  15 * An implementation of the Slab Allocator as described in outline in;
  16 *      UNIX Internals: The New Frontiers by Uresh Vahalia
  17 *      Pub: Prentice Hall      ISBN 0-13-101908-2
  18 * or with a little more detail in;
  19 *      The Slab Allocator: An Object-Caching Kernel Memory Allocator
  20 *      Jeff Bonwick (Sun Microsystems).
  21 *      Presented at: USENIX Summer 1994 Technical Conference
  22 *
  23 * The memory is organized in caches, one cache for each object type.
  24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  25 * Each cache consists out of many slabs (they are small (usually one
  26 * page long) and always contiguous), and each slab contains multiple
  27 * initialized objects.
  28 *
  29 * This means, that your constructor is used only for newly allocated
  30 * slabs and you must pass objects with the same initializations to
  31 * kmem_cache_free.
  32 *
  33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  34 * normal). If you need a special memory type, then must create a new
  35 * cache for that memory type.
  36 *
  37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  38 *   full slabs with 0 free objects
  39 *   partial slabs
  40 *   empty slabs with no allocated objects
  41 *
  42 * If partial slabs exist, then new allocations come from these slabs,
  43 * otherwise from empty slabs or new slabs are allocated.
  44 *
  45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  47 *
  48 * Each cache has a short per-cpu head array, most allocs
  49 * and frees go into that array, and if that array overflows, then 1/2
  50 * of the entries in the array are given back into the global cache.
  51 * The head array is strictly LIFO and should improve the cache hit rates.
  52 * On SMP, it additionally reduces the spinlock operations.
  53 *
  54 * The c_cpuarray may not be read with enabled local interrupts -
  55 * it's changed with a smp_call_function().
  56 *
  57 * SMP synchronization:
  58 *  constructors and destructors are called without any locking.
  59 *  Several members in struct kmem_cache and struct slab never change, they
  60 *      are accessed without any locking.
  61 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  62 *      and local interrupts are disabled so slab code is preempt-safe.
  63 *  The non-constant members are protected with a per-cache irq spinlock.
  64 *
  65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  66 * in 2000 - many ideas in the current implementation are derived from
  67 * his patch.
  68 *
  69 * Further notes from the original documentation:
  70 *
  71 * 11 April '97.  Started multi-threading - markhe
  72 *      The global cache-chain is protected by the mutex 'slab_mutex'.
  73 *      The sem is only needed when accessing/extending the cache-chain, which
  74 *      can never happen inside an interrupt (kmem_cache_create(),
  75 *      kmem_cache_shrink() and kmem_cache_reap()).
  76 *
  77 *      At present, each engine can be growing a cache.  This should be blocked.
  78 *
  79 * 15 March 2005. NUMA slab allocator.
  80 *      Shai Fultheim <shai@scalex86.org>.
  81 *      Shobhit Dayal <shobhit@calsoftinc.com>
  82 *      Alok N Kataria <alokk@calsoftinc.com>
  83 *      Christoph Lameter <christoph@lameter.com>
  84 *
  85 *      Modified the slab allocator to be node aware on NUMA systems.
  86 *      Each node has its own list of partial, free and full slabs.
  87 *      All object allocations for a node occur from node specific slab lists.
  88 */
  89
  90#include        <linux/slab.h>
  91#include        <linux/mm.h>
  92#include        <linux/poison.h>
  93#include        <linux/swap.h>
  94#include        <linux/cache.h>
  95#include        <linux/interrupt.h>
  96#include        <linux/init.h>
  97#include        <linux/compiler.h>
  98#include        <linux/cpuset.h>
  99#include        <linux/proc_fs.h>
 100#include        <linux/seq_file.h>
 101#include        <linux/notifier.h>
 102#include        <linux/kallsyms.h>
 103#include        <linux/cpu.h>
 104#include        <linux/sysctl.h>
 105#include        <linux/module.h>
 106#include        <linux/rcupdate.h>
 107#include        <linux/string.h>
 108#include        <linux/uaccess.h>
 109#include        <linux/nodemask.h>
 110#include        <linux/kmemleak.h>
 111#include        <linux/mempolicy.h>
 112#include        <linux/mutex.h>
 113#include        <linux/fault-inject.h>
 114#include        <linux/rtmutex.h>
 115#include        <linux/reciprocal_div.h>
 116#include        <linux/debugobjects.h>
 117#include        <linux/memory.h>
 118#include        <linux/prefetch.h>
 119#include        <linux/sched/task_stack.h>
 120
 121#include        <net/sock.h>
 122
 123#include        <asm/cacheflush.h>
 124#include        <asm/tlbflush.h>
 125#include        <asm/page.h>
 126
 127#include <trace/events/kmem.h>
 128
 129#include        "internal.h"
 130
 131#include        "slab.h"
 132
 133/*
 134 * DEBUG        - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 135 *                0 for faster, smaller code (especially in the critical paths).
 136 *
 137 * STATS        - 1 to collect stats for /proc/slabinfo.
 138 *                0 for faster, smaller code (especially in the critical paths).
 139 *
 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 141 */
 142
 143#ifdef CONFIG_DEBUG_SLAB
 144#define DEBUG           1
 145#define STATS           1
 146#define FORCED_DEBUG    1
 147#else
 148#define DEBUG           0
 149#define STATS           0
 150#define FORCED_DEBUG    0
 151#endif
 152
 153/* Shouldn't this be in a header file somewhere? */
 154#define BYTES_PER_WORD          sizeof(void *)
 155#define REDZONE_ALIGN           max(BYTES_PER_WORD, __alignof__(unsigned long long))
 156
 157#ifndef ARCH_KMALLOC_FLAGS
 158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 159#endif
 160
 161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 162                                <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 163
 164#if FREELIST_BYTE_INDEX
 165typedef unsigned char freelist_idx_t;
 166#else
 167typedef unsigned short freelist_idx_t;
 168#endif
 169
 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 171
 172/*
 173 * struct array_cache
 174 *
 175 * Purpose:
 176 * - LIFO ordering, to hand out cache-warm objects from _alloc
 177 * - reduce the number of linked list operations
 178 * - reduce spinlock operations
 179 *
 180 * The limit is stored in the per-cpu structure to reduce the data cache
 181 * footprint.
 182 *
 183 */
 184struct array_cache {
 185        unsigned int avail;
 186        unsigned int limit;
 187        unsigned int batchcount;
 188        unsigned int touched;
 189        void *entry[];  /*
 190                         * Must have this definition in here for the proper
 191                         * alignment of array_cache. Also simplifies accessing
 192                         * the entries.
 193                         */
 194};
 195
 196struct alien_cache {
 197        spinlock_t lock;
 198        struct array_cache ac;
 199};
 200
 201/*
 202 * Need this for bootstrapping a per node allocator.
 203 */
 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 206#define CACHE_CACHE 0
 207#define SIZE_NODE (MAX_NUMNODES)
 208
 209static int drain_freelist(struct kmem_cache *cache,
 210                        struct kmem_cache_node *n, int tofree);
 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 212                        int node, struct list_head *list);
 213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 215static void cache_reap(struct work_struct *unused);
 216
 217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 218                                                void **list);
 219static inline void fixup_slab_list(struct kmem_cache *cachep,
 220                                struct kmem_cache_node *n, struct page *page,
 221                                void **list);
 222static int slab_early_init = 1;
 223
 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 225
 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
 227{
 228        INIT_LIST_HEAD(&parent->slabs_full);
 229        INIT_LIST_HEAD(&parent->slabs_partial);
 230        INIT_LIST_HEAD(&parent->slabs_free);
 231        parent->total_slabs = 0;
 232        parent->free_slabs = 0;
 233        parent->shared = NULL;
 234        parent->alien = NULL;
 235        parent->colour_next = 0;
 236        spin_lock_init(&parent->list_lock);
 237        parent->free_objects = 0;
 238        parent->free_touched = 0;
 239}
 240
 241#define MAKE_LIST(cachep, listp, slab, nodeid)                          \
 242        do {                                                            \
 243                INIT_LIST_HEAD(listp);                                  \
 244                list_splice(&get_node(cachep, nodeid)->slab, listp);    \
 245        } while (0)
 246
 247#define MAKE_ALL_LISTS(cachep, ptr, nodeid)                             \
 248        do {                                                            \
 249        MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);  \
 250        MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 251        MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);  \
 252        } while (0)
 253
 254#define CFLGS_OBJFREELIST_SLAB  ((slab_flags_t __force)0x40000000U)
 255#define CFLGS_OFF_SLAB          ((slab_flags_t __force)0x80000000U)
 256#define OBJFREELIST_SLAB(x)     ((x)->flags & CFLGS_OBJFREELIST_SLAB)
 257#define OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
 258
 259#define BATCHREFILL_LIMIT       16
 260/*
 261 * Optimization question: fewer reaps means less probability for unnessary
 262 * cpucache drain/refill cycles.
 263 *
 264 * OTOH the cpuarrays can contain lots of objects,
 265 * which could lock up otherwise freeable slabs.
 266 */
 267#define REAPTIMEOUT_AC          (2*HZ)
 268#define REAPTIMEOUT_NODE        (4*HZ)
 269
 270#if STATS
 271#define STATS_INC_ACTIVE(x)     ((x)->num_active++)
 272#define STATS_DEC_ACTIVE(x)     ((x)->num_active--)
 273#define STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
 274#define STATS_INC_GROWN(x)      ((x)->grown++)
 275#define STATS_ADD_REAPED(x,y)   ((x)->reaped += (y))
 276#define STATS_SET_HIGH(x)                                               \
 277        do {                                                            \
 278                if ((x)->num_active > (x)->high_mark)                   \
 279                        (x)->high_mark = (x)->num_active;               \
 280        } while (0)
 281#define STATS_INC_ERR(x)        ((x)->errors++)
 282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
 283#define STATS_INC_NODEFREES(x)  ((x)->node_frees++)
 284#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 285#define STATS_SET_FREEABLE(x, i)                                        \
 286        do {                                                            \
 287                if ((x)->max_freeable < i)                              \
 288                        (x)->max_freeable = i;                          \
 289        } while (0)
 290#define STATS_INC_ALLOCHIT(x)   atomic_inc(&(x)->allochit)
 291#define STATS_INC_ALLOCMISS(x)  atomic_inc(&(x)->allocmiss)
 292#define STATS_INC_FREEHIT(x)    atomic_inc(&(x)->freehit)
 293#define STATS_INC_FREEMISS(x)   atomic_inc(&(x)->freemiss)
 294#else
 295#define STATS_INC_ACTIVE(x)     do { } while (0)
 296#define STATS_DEC_ACTIVE(x)     do { } while (0)
 297#define STATS_INC_ALLOCED(x)    do { } while (0)
 298#define STATS_INC_GROWN(x)      do { } while (0)
 299#define STATS_ADD_REAPED(x,y)   do { (void)(y); } while (0)
 300#define STATS_SET_HIGH(x)       do { } while (0)
 301#define STATS_INC_ERR(x)        do { } while (0)
 302#define STATS_INC_NODEALLOCS(x) do { } while (0)
 303#define STATS_INC_NODEFREES(x)  do { } while (0)
 304#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
 306#define STATS_INC_ALLOCHIT(x)   do { } while (0)
 307#define STATS_INC_ALLOCMISS(x)  do { } while (0)
 308#define STATS_INC_FREEHIT(x)    do { } while (0)
 309#define STATS_INC_FREEMISS(x)   do { } while (0)
 310#endif
 311
 312#if DEBUG
 313
 314/*
 315 * memory layout of objects:
 316 * 0            : objp
 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 318 *              the end of an object is aligned with the end of the real
 319 *              allocation. Catches writes behind the end of the allocation.
 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 321 *              redzone word.
 322 * cachep->obj_offset: The real object.
 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 324 * cachep->size - 1* BYTES_PER_WORD: last caller address
 325 *                                      [BYTES_PER_WORD long]
 326 */
 327static int obj_offset(struct kmem_cache *cachep)
 328{
 329        return cachep->obj_offset;
 330}
 331
 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 333{
 334        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 335        return (unsigned long long*) (objp + obj_offset(cachep) -
 336                                      sizeof(unsigned long long));
 337}
 338
 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 340{
 341        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 342        if (cachep->flags & SLAB_STORE_USER)
 343                return (unsigned long long *)(objp + cachep->size -
 344                                              sizeof(unsigned long long) -
 345                                              REDZONE_ALIGN);
 346        return (unsigned long long *) (objp + cachep->size -
 347                                       sizeof(unsigned long long));
 348}
 349
 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 351{
 352        BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 353        return (void **)(objp + cachep->size - BYTES_PER_WORD);
 354}
 355
 356#else
 357
 358#define obj_offset(x)                   0
 359#define dbg_redzone1(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 360#define dbg_redzone2(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 361#define dbg_userword(cachep, objp)      ({BUG(); (void **)NULL;})
 362
 363#endif
 364
 365#ifdef CONFIG_DEBUG_SLAB_LEAK
 366
 367static inline bool is_store_user_clean(struct kmem_cache *cachep)
 368{
 369        return atomic_read(&cachep->store_user_clean) == 1;
 370}
 371
 372static inline void set_store_user_clean(struct kmem_cache *cachep)
 373{
 374        atomic_set(&cachep->store_user_clean, 1);
 375}
 376
 377static inline void set_store_user_dirty(struct kmem_cache *cachep)
 378{
 379        if (is_store_user_clean(cachep))
 380                atomic_set(&cachep->store_user_clean, 0);
 381}
 382
 383#else
 384static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
 385
 386#endif
 387
 388/*
 389 * Do not go above this order unless 0 objects fit into the slab or
 390 * overridden on the command line.
 391 */
 392#define SLAB_MAX_ORDER_HI       1
 393#define SLAB_MAX_ORDER_LO       0
 394static int slab_max_order = SLAB_MAX_ORDER_LO;
 395static bool slab_max_order_set __initdata;
 396
 397static inline struct kmem_cache *virt_to_cache(const void *obj)
 398{
 399        struct page *page = virt_to_head_page(obj);
 400        return page->slab_cache;
 401}
 402
 403static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 404                                 unsigned int idx)
 405{
 406        return page->s_mem + cache->size * idx;
 407}
 408
 409/*
 410 * We want to avoid an expensive divide : (offset / cache->size)
 411 *   Using the fact that size is a constant for a particular cache,
 412 *   we can replace (offset / cache->size) by
 413 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 414 */
 415static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 416                                        const struct page *page, void *obj)
 417{
 418        u32 offset = (obj - page->s_mem);
 419        return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 420}
 421
 422#define BOOT_CPUCACHE_ENTRIES   1
 423/* internal cache of cache description objs */
 424static struct kmem_cache kmem_cache_boot = {
 425        .batchcount = 1,
 426        .limit = BOOT_CPUCACHE_ENTRIES,
 427        .shared = 1,
 428        .size = sizeof(struct kmem_cache),
 429        .name = "kmem_cache",
 430};
 431
 432static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 433
 434static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 435{
 436        return this_cpu_ptr(cachep->cpu_cache);
 437}
 438
 439/*
 440 * Calculate the number of objects and left-over bytes for a given buffer size.
 441 */
 442static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 443                slab_flags_t flags, size_t *left_over)
 444{
 445        unsigned int num;
 446        size_t slab_size = PAGE_SIZE << gfporder;
 447
 448        /*
 449         * The slab management structure can be either off the slab or
 450         * on it. For the latter case, the memory allocated for a
 451         * slab is used for:
 452         *
 453         * - @buffer_size bytes for each object
 454         * - One freelist_idx_t for each object
 455         *
 456         * We don't need to consider alignment of freelist because
 457         * freelist will be at the end of slab page. The objects will be
 458         * at the correct alignment.
 459         *
 460         * If the slab management structure is off the slab, then the
 461         * alignment will already be calculated into the size. Because
 462         * the slabs are all pages aligned, the objects will be at the
 463         * correct alignment when allocated.
 464         */
 465        if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 466                num = slab_size / buffer_size;
 467                *left_over = slab_size % buffer_size;
 468        } else {
 469                num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 470                *left_over = slab_size %
 471                        (buffer_size + sizeof(freelist_idx_t));
 472        }
 473
 474        return num;
 475}
 476
 477#if DEBUG
 478#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 479
 480static void __slab_error(const char *function, struct kmem_cache *cachep,
 481                        char *msg)
 482{
 483        pr_err("slab error in %s(): cache `%s': %s\n",
 484               function, cachep->name, msg);
 485        dump_stack();
 486        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 487}
 488#endif
 489
 490/*
 491 * By default on NUMA we use alien caches to stage the freeing of
 492 * objects allocated from other nodes. This causes massive memory
 493 * inefficiencies when using fake NUMA setup to split memory into a
 494 * large number of small nodes, so it can be disabled on the command
 495 * line
 496  */
 497
 498static int use_alien_caches __read_mostly = 1;
 499static int __init noaliencache_setup(char *s)
 500{
 501        use_alien_caches = 0;
 502        return 1;
 503}
 504__setup("noaliencache", noaliencache_setup);
 505
 506static int __init slab_max_order_setup(char *str)
 507{
 508        get_option(&str, &slab_max_order);
 509        slab_max_order = slab_max_order < 0 ? 0 :
 510                                min(slab_max_order, MAX_ORDER - 1);
 511        slab_max_order_set = true;
 512
 513        return 1;
 514}
 515__setup("slab_max_order=", slab_max_order_setup);
 516
 517#ifdef CONFIG_NUMA
 518/*
 519 * Special reaping functions for NUMA systems called from cache_reap().
 520 * These take care of doing round robin flushing of alien caches (containing
 521 * objects freed on different nodes from which they were allocated) and the
 522 * flushing of remote pcps by calling drain_node_pages.
 523 */
 524static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 525
 526static void init_reap_node(int cpu)
 527{
 528        per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 529                                                    node_online_map);
 530}
 531
 532static void next_reap_node(void)
 533{
 534        int node = __this_cpu_read(slab_reap_node);
 535
 536        node = next_node_in(node, node_online_map);
 537        __this_cpu_write(slab_reap_node, node);
 538}
 539
 540#else
 541#define init_reap_node(cpu) do { } while (0)
 542#define next_reap_node(void) do { } while (0)
 543#endif
 544
 545/*
 546 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 547 * via the workqueue/eventd.
 548 * Add the CPU number into the expiration time to minimize the possibility of
 549 * the CPUs getting into lockstep and contending for the global cache chain
 550 * lock.
 551 */
 552static void start_cpu_timer(int cpu)
 553{
 554        struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 555
 556        if (reap_work->work.func == NULL) {
 557                init_reap_node(cpu);
 558                INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 559                schedule_delayed_work_on(cpu, reap_work,
 560                                        __round_jiffies_relative(HZ, cpu));
 561        }
 562}
 563
 564static void init_arraycache(struct array_cache *ac, int limit, int batch)
 565{
 566        /*
 567         * The array_cache structures contain pointers to free object.
 568         * However, when such objects are allocated or transferred to another
 569         * cache the pointers are not cleared and they could be counted as
 570         * valid references during a kmemleak scan. Therefore, kmemleak must
 571         * not scan such objects.
 572         */
 573        kmemleak_no_scan(ac);
 574        if (ac) {
 575                ac->avail = 0;
 576                ac->limit = limit;
 577                ac->batchcount = batch;
 578                ac->touched = 0;
 579        }
 580}
 581
 582static struct array_cache *alloc_arraycache(int node, int entries,
 583                                            int batchcount, gfp_t gfp)
 584{
 585        size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 586        struct array_cache *ac = NULL;
 587
 588        ac = kmalloc_node(memsize, gfp, node);
 589        init_arraycache(ac, entries, batchcount);
 590        return ac;
 591}
 592
 593static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 594                                        struct page *page, void *objp)
 595{
 596        struct kmem_cache_node *n;
 597        int page_node;
 598        LIST_HEAD(list);
 599
 600        page_node = page_to_nid(page);
 601        n = get_node(cachep, page_node);
 602
 603        spin_lock(&n->list_lock);
 604        free_block(cachep, &objp, 1, page_node, &list);
 605        spin_unlock(&n->list_lock);
 606
 607        slabs_destroy(cachep, &list);
 608}
 609
 610/*
 611 * Transfer objects in one arraycache to another.
 612 * Locking must be handled by the caller.
 613 *
 614 * Return the number of entries transferred.
 615 */
 616static int transfer_objects(struct array_cache *to,
 617                struct array_cache *from, unsigned int max)
 618{
 619        /* Figure out how many entries to transfer */
 620        int nr = min3(from->avail, max, to->limit - to->avail);
 621
 622        if (!nr)
 623                return 0;
 624
 625        memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 626                        sizeof(void *) *nr);
 627
 628        from->avail -= nr;
 629        to->avail += nr;
 630        return nr;
 631}
 632
 633#ifndef CONFIG_NUMA
 634
 635#define drain_alien_cache(cachep, alien) do { } while (0)
 636#define reap_alien(cachep, n) do { } while (0)
 637
 638static inline struct alien_cache **alloc_alien_cache(int node,
 639                                                int limit, gfp_t gfp)
 640{
 641        return NULL;
 642}
 643
 644static inline void free_alien_cache(struct alien_cache **ac_ptr)
 645{
 646}
 647
 648static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 649{
 650        return 0;
 651}
 652
 653static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 654                gfp_t flags)
 655{
 656        return NULL;
 657}
 658
 659static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 660                 gfp_t flags, int nodeid)
 661{
 662        return NULL;
 663}
 664
 665static inline gfp_t gfp_exact_node(gfp_t flags)
 666{
 667        return flags & ~__GFP_NOFAIL;
 668}
 669
 670#else   /* CONFIG_NUMA */
 671
 672static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 673static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 674
 675static struct alien_cache *__alloc_alien_cache(int node, int entries,
 676                                                int batch, gfp_t gfp)
 677{
 678        size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 679        struct alien_cache *alc = NULL;
 680
 681        alc = kmalloc_node(memsize, gfp, node);
 682        init_arraycache(&alc->ac, entries, batch);
 683        spin_lock_init(&alc->lock);
 684        return alc;
 685}
 686
 687static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 688{
 689        struct alien_cache **alc_ptr;
 690        size_t memsize = sizeof(void *) * nr_node_ids;
 691        int i;
 692
 693        if (limit > 1)
 694                limit = 12;
 695        alc_ptr = kzalloc_node(memsize, gfp, node);
 696        if (!alc_ptr)
 697                return NULL;
 698
 699        for_each_node(i) {
 700                if (i == node || !node_online(i))
 701                        continue;
 702                alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 703                if (!alc_ptr[i]) {
 704                        for (i--; i >= 0; i--)
 705                                kfree(alc_ptr[i]);
 706                        kfree(alc_ptr);
 707                        return NULL;
 708                }
 709        }
 710        return alc_ptr;
 711}
 712
 713static void free_alien_cache(struct alien_cache **alc_ptr)
 714{
 715        int i;
 716
 717        if (!alc_ptr)
 718                return;
 719        for_each_node(i)
 720            kfree(alc_ptr[i]);
 721        kfree(alc_ptr);
 722}
 723
 724static void __drain_alien_cache(struct kmem_cache *cachep,
 725                                struct array_cache *ac, int node,
 726                                struct list_head *list)
 727{
 728        struct kmem_cache_node *n = get_node(cachep, node);
 729
 730        if (ac->avail) {
 731                spin_lock(&n->list_lock);
 732                /*
 733                 * Stuff objects into the remote nodes shared array first.
 734                 * That way we could avoid the overhead of putting the objects
 735                 * into the free lists and getting them back later.
 736                 */
 737                if (n->shared)
 738                        transfer_objects(n->shared, ac, ac->limit);
 739
 740                free_block(cachep, ac->entry, ac->avail, node, list);
 741                ac->avail = 0;
 742                spin_unlock(&n->list_lock);
 743        }
 744}
 745
 746/*
 747 * Called from cache_reap() to regularly drain alien caches round robin.
 748 */
 749static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 750{
 751        int node = __this_cpu_read(slab_reap_node);
 752
 753        if (n->alien) {
 754                struct alien_cache *alc = n->alien[node];
 755                struct array_cache *ac;
 756
 757                if (alc) {
 758                        ac = &alc->ac;
 759                        if (ac->avail && spin_trylock_irq(&alc->lock)) {
 760                                LIST_HEAD(list);
 761
 762                                __drain_alien_cache(cachep, ac, node, &list);
 763                                spin_unlock_irq(&alc->lock);
 764                                slabs_destroy(cachep, &list);
 765                        }
 766                }
 767        }
 768}
 769
 770static void drain_alien_cache(struct kmem_cache *cachep,
 771                                struct alien_cache **alien)
 772{
 773        int i = 0;
 774        struct alien_cache *alc;
 775        struct array_cache *ac;
 776        unsigned long flags;
 777
 778        for_each_online_node(i) {
 779                alc = alien[i];
 780                if (alc) {
 781                        LIST_HEAD(list);
 782
 783                        ac = &alc->ac;
 784                        spin_lock_irqsave(&alc->lock, flags);
 785                        __drain_alien_cache(cachep, ac, i, &list);
 786                        spin_unlock_irqrestore(&alc->lock, flags);
 787                        slabs_destroy(cachep, &list);
 788                }
 789        }
 790}
 791
 792static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 793                                int node, int page_node)
 794{
 795        struct kmem_cache_node *n;
 796        struct alien_cache *alien = NULL;
 797        struct array_cache *ac;
 798        LIST_HEAD(list);
 799
 800        n = get_node(cachep, node);
 801        STATS_INC_NODEFREES(cachep);
 802        if (n->alien && n->alien[page_node]) {
 803                alien = n->alien[page_node];
 804                ac = &alien->ac;
 805                spin_lock(&alien->lock);
 806                if (unlikely(ac->avail == ac->limit)) {
 807                        STATS_INC_ACOVERFLOW(cachep);
 808                        __drain_alien_cache(cachep, ac, page_node, &list);
 809                }
 810                ac->entry[ac->avail++] = objp;
 811                spin_unlock(&alien->lock);
 812                slabs_destroy(cachep, &list);
 813        } else {
 814                n = get_node(cachep, page_node);
 815                spin_lock(&n->list_lock);
 816                free_block(cachep, &objp, 1, page_node, &list);
 817                spin_unlock(&n->list_lock);
 818                slabs_destroy(cachep, &list);
 819        }
 820        return 1;
 821}
 822
 823static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 824{
 825        int page_node = page_to_nid(virt_to_page(objp));
 826        int node = numa_mem_id();
 827        /*
 828         * Make sure we are not freeing a object from another node to the array
 829         * cache on this cpu.
 830         */
 831        if (likely(node == page_node))
 832                return 0;
 833
 834        return __cache_free_alien(cachep, objp, node, page_node);
 835}
 836
 837/*
 838 * Construct gfp mask to allocate from a specific node but do not reclaim or
 839 * warn about failures.
 840 */
 841static inline gfp_t gfp_exact_node(gfp_t flags)
 842{
 843        return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 844}
 845#endif
 846
 847static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 848{
 849        struct kmem_cache_node *n;
 850
 851        /*
 852         * Set up the kmem_cache_node for cpu before we can
 853         * begin anything. Make sure some other cpu on this
 854         * node has not already allocated this
 855         */
 856        n = get_node(cachep, node);
 857        if (n) {
 858                spin_lock_irq(&n->list_lock);
 859                n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 860                                cachep->num;
 861                spin_unlock_irq(&n->list_lock);
 862
 863                return 0;
 864        }
 865
 866        n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 867        if (!n)
 868                return -ENOMEM;
 869
 870        kmem_cache_node_init(n);
 871        n->next_reap = jiffies + REAPTIMEOUT_NODE +
 872                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 873
 874        n->free_limit =
 875                (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 876
 877        /*
 878         * The kmem_cache_nodes don't come and go as CPUs
 879         * come and go.  slab_mutex is sufficient
 880         * protection here.
 881         */
 882        cachep->node[node] = n;
 883
 884        return 0;
 885}
 886
 887#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 888/*
 889 * Allocates and initializes node for a node on each slab cache, used for
 890 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 891 * will be allocated off-node since memory is not yet online for the new node.
 892 * When hotplugging memory or a cpu, existing node are not replaced if
 893 * already in use.
 894 *
 895 * Must hold slab_mutex.
 896 */
 897static int init_cache_node_node(int node)
 898{
 899        int ret;
 900        struct kmem_cache *cachep;
 901
 902        list_for_each_entry(cachep, &slab_caches, list) {
 903                ret = init_cache_node(cachep, node, GFP_KERNEL);
 904                if (ret)
 905                        return ret;
 906        }
 907
 908        return 0;
 909}
 910#endif
 911
 912static int setup_kmem_cache_node(struct kmem_cache *cachep,
 913                                int node, gfp_t gfp, bool force_change)
 914{
 915        int ret = -ENOMEM;
 916        struct kmem_cache_node *n;
 917        struct array_cache *old_shared = NULL;
 918        struct array_cache *new_shared = NULL;
 919        struct alien_cache **new_alien = NULL;
 920        LIST_HEAD(list);
 921
 922        if (use_alien_caches) {
 923                new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 924                if (!new_alien)
 925                        goto fail;
 926        }
 927
 928        if (cachep->shared) {
 929                new_shared = alloc_arraycache(node,
 930                        cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 931                if (!new_shared)
 932                        goto fail;
 933        }
 934
 935        ret = init_cache_node(cachep, node, gfp);
 936        if (ret)
 937                goto fail;
 938
 939        n = get_node(cachep, node);
 940        spin_lock_irq(&n->list_lock);
 941        if (n->shared && force_change) {
 942                free_block(cachep, n->shared->entry,
 943                                n->shared->avail, node, &list);
 944                n->shared->avail = 0;
 945        }
 946
 947        if (!n->shared || force_change) {
 948                old_shared = n->shared;
 949                n->shared = new_shared;
 950                new_shared = NULL;
 951        }
 952
 953        if (!n->alien) {
 954                n->alien = new_alien;
 955                new_alien = NULL;
 956        }
 957
 958        spin_unlock_irq(&n->list_lock);
 959        slabs_destroy(cachep, &list);
 960
 961        /*
 962         * To protect lockless access to n->shared during irq disabled context.
 963         * If n->shared isn't NULL in irq disabled context, accessing to it is
 964         * guaranteed to be valid until irq is re-enabled, because it will be
 965         * freed after synchronize_sched().
 966         */
 967        if (old_shared && force_change)
 968                synchronize_sched();
 969
 970fail:
 971        kfree(old_shared);
 972        kfree(new_shared);
 973        free_alien_cache(new_alien);
 974
 975        return ret;
 976}
 977
 978#ifdef CONFIG_SMP
 979
 980static void cpuup_canceled(long cpu)
 981{
 982        struct kmem_cache *cachep;
 983        struct kmem_cache_node *n = NULL;
 984        int node = cpu_to_mem(cpu);
 985        const struct cpumask *mask = cpumask_of_node(node);
 986
 987        list_for_each_entry(cachep, &slab_caches, list) {
 988                struct array_cache *nc;
 989                struct array_cache *shared;
 990                struct alien_cache **alien;
 991                LIST_HEAD(list);
 992
 993                n = get_node(cachep, node);
 994                if (!n)
 995                        continue;
 996
 997                spin_lock_irq(&n->list_lock);
 998
 999                /* Free limit for this kmem_cache_node */
1000                n->free_limit -= cachep->batchcount;
1001
1002                /* cpu is dead; no one can alloc from it. */
1003                nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004                if (nc) {
1005                        free_block(cachep, nc->entry, nc->avail, node, &list);
1006                        nc->avail = 0;
1007                }
1008
1009                if (!cpumask_empty(mask)) {
1010                        spin_unlock_irq(&n->list_lock);
1011                        goto free_slab;
1012                }
1013
1014                shared = n->shared;
1015                if (shared) {
1016                        free_block(cachep, shared->entry,
1017                                   shared->avail, node, &list);
1018                        n->shared = NULL;
1019                }
1020
1021                alien = n->alien;
1022                n->alien = NULL;
1023
1024                spin_unlock_irq(&n->list_lock);
1025
1026                kfree(shared);
1027                if (alien) {
1028                        drain_alien_cache(cachep, alien);
1029                        free_alien_cache(alien);
1030                }
1031
1032free_slab:
1033                slabs_destroy(cachep, &list);
1034        }
1035        /*
1036         * In the previous loop, all the objects were freed to
1037         * the respective cache's slabs,  now we can go ahead and
1038         * shrink each nodelist to its limit.
1039         */
1040        list_for_each_entry(cachep, &slab_caches, list) {
1041                n = get_node(cachep, node);
1042                if (!n)
1043                        continue;
1044                drain_freelist(cachep, n, INT_MAX);
1045        }
1046}
1047
1048static int cpuup_prepare(long cpu)
1049{
1050        struct kmem_cache *cachep;
1051        int node = cpu_to_mem(cpu);
1052        int err;
1053
1054        /*
1055         * We need to do this right in the beginning since
1056         * alloc_arraycache's are going to use this list.
1057         * kmalloc_node allows us to add the slab to the right
1058         * kmem_cache_node and not this cpu's kmem_cache_node
1059         */
1060        err = init_cache_node_node(node);
1061        if (err < 0)
1062                goto bad;
1063
1064        /*
1065         * Now we can go ahead with allocating the shared arrays and
1066         * array caches
1067         */
1068        list_for_each_entry(cachep, &slab_caches, list) {
1069                err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070                if (err)
1071                        goto bad;
1072        }
1073
1074        return 0;
1075bad:
1076        cpuup_canceled(cpu);
1077        return -ENOMEM;
1078}
1079
1080int slab_prepare_cpu(unsigned int cpu)
1081{
1082        int err;
1083
1084        mutex_lock(&slab_mutex);
1085        err = cpuup_prepare(cpu);
1086        mutex_unlock(&slab_mutex);
1087        return err;
1088}
1089
1090/*
1091 * This is called for a failed online attempt and for a successful
1092 * offline.
1093 *
1094 * Even if all the cpus of a node are down, we don't free the
1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096 * a kmalloc allocation from another cpu for memory from the node of
1097 * the cpu going down.  The list3 structure is usually allocated from
1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099 */
1100int slab_dead_cpu(unsigned int cpu)
1101{
1102        mutex_lock(&slab_mutex);
1103        cpuup_canceled(cpu);
1104        mutex_unlock(&slab_mutex);
1105        return 0;
1106}
1107#endif
1108
1109static int slab_online_cpu(unsigned int cpu)
1110{
1111        start_cpu_timer(cpu);
1112        return 0;
1113}
1114
1115static int slab_offline_cpu(unsigned int cpu)
1116{
1117        /*
1118         * Shutdown cache reaper. Note that the slab_mutex is held so
1119         * that if cache_reap() is invoked it cannot do anything
1120         * expensive but will only modify reap_work and reschedule the
1121         * timer.
1122         */
1123        cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124        /* Now the cache_reaper is guaranteed to be not running. */
1125        per_cpu(slab_reap_work, cpu).work.func = NULL;
1126        return 0;
1127}
1128
1129#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130/*
1131 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132 * Returns -EBUSY if all objects cannot be drained so that the node is not
1133 * removed.
1134 *
1135 * Must hold slab_mutex.
1136 */
1137static int __meminit drain_cache_node_node(int node)
1138{
1139        struct kmem_cache *cachep;
1140        int ret = 0;
1141
1142        list_for_each_entry(cachep, &slab_caches, list) {
1143                struct kmem_cache_node *n;
1144
1145                n = get_node(cachep, node);
1146                if (!n)
1147                        continue;
1148
1149                drain_freelist(cachep, n, INT_MAX);
1150
1151                if (!list_empty(&n->slabs_full) ||
1152                    !list_empty(&n->slabs_partial)) {
1153                        ret = -EBUSY;
1154                        break;
1155                }
1156        }
1157        return ret;
1158}
1159
1160static int __meminit slab_memory_callback(struct notifier_block *self,
1161                                        unsigned long action, void *arg)
1162{
1163        struct memory_notify *mnb = arg;
1164        int ret = 0;
1165        int nid;
1166
1167        nid = mnb->status_change_nid;
1168        if (nid < 0)
1169                goto out;
1170
1171        switch (action) {
1172        case MEM_GOING_ONLINE:
1173                mutex_lock(&slab_mutex);
1174                ret = init_cache_node_node(nid);
1175                mutex_unlock(&slab_mutex);
1176                break;
1177        case MEM_GOING_OFFLINE:
1178                mutex_lock(&slab_mutex);
1179                ret = drain_cache_node_node(nid);
1180                mutex_unlock(&slab_mutex);
1181                break;
1182        case MEM_ONLINE:
1183        case MEM_OFFLINE:
1184        case MEM_CANCEL_ONLINE:
1185        case MEM_CANCEL_OFFLINE:
1186                break;
1187        }
1188out:
1189        return notifier_from_errno(ret);
1190}
1191#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192
1193/*
1194 * swap the static kmem_cache_node with kmalloced memory
1195 */
1196static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197                                int nodeid)
1198{
1199        struct kmem_cache_node *ptr;
1200
1201        ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202        BUG_ON(!ptr);
1203
1204        memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205        /*
1206         * Do not assume that spinlocks can be initialized via memcpy:
1207         */
1208        spin_lock_init(&ptr->list_lock);
1209
1210        MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211        cachep->node[nodeid] = ptr;
1212}
1213
1214/*
1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216 * size of kmem_cache_node.
1217 */
1218static void __init set_up_node(struct kmem_cache *cachep, int index)
1219{
1220        int node;
1221
1222        for_each_online_node(node) {
1223                cachep->node[node] = &init_kmem_cache_node[index + node];
1224                cachep->node[node]->next_reap = jiffies +
1225                    REAPTIMEOUT_NODE +
1226                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227        }
1228}
1229
1230/*
1231 * Initialisation.  Called after the page allocator have been initialised and
1232 * before smp_init().
1233 */
1234void __init kmem_cache_init(void)
1235{
1236        int i;
1237
1238        BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1239                                        sizeof(struct rcu_head));
1240        kmem_cache = &kmem_cache_boot;
1241
1242        if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1243                use_alien_caches = 0;
1244
1245        for (i = 0; i < NUM_INIT_LISTS; i++)
1246                kmem_cache_node_init(&init_kmem_cache_node[i]);
1247
1248        /*
1249         * Fragmentation resistance on low memory - only use bigger
1250         * page orders on machines with more than 32MB of memory if
1251         * not overridden on the command line.
1252         */
1253        if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1254                slab_max_order = SLAB_MAX_ORDER_HI;
1255
1256        /* Bootstrap is tricky, because several objects are allocated
1257         * from caches that do not exist yet:
1258         * 1) initialize the kmem_cache cache: it contains the struct
1259         *    kmem_cache structures of all caches, except kmem_cache itself:
1260         *    kmem_cache is statically allocated.
1261         *    Initially an __init data area is used for the head array and the
1262         *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1263         *    array at the end of the bootstrap.
1264         * 2) Create the first kmalloc cache.
1265         *    The struct kmem_cache for the new cache is allocated normally.
1266         *    An __init data area is used for the head array.
1267         * 3) Create the remaining kmalloc caches, with minimally sized
1268         *    head arrays.
1269         * 4) Replace the __init data head arrays for kmem_cache and the first
1270         *    kmalloc cache with kmalloc allocated arrays.
1271         * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1272         *    the other cache's with kmalloc allocated memory.
1273         * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1274         */
1275
1276        /* 1) create the kmem_cache */
1277
1278        /*
1279         * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1280         */
1281        create_boot_cache(kmem_cache, "kmem_cache",
1282                offsetof(struct kmem_cache, node) +
1283                                  nr_node_ids * sizeof(struct kmem_cache_node *),
1284                                  SLAB_HWCACHE_ALIGN, 0, 0);
1285        list_add(&kmem_cache->list, &slab_caches);
1286        memcg_link_cache(kmem_cache);
1287        slab_state = PARTIAL;
1288
1289        /*
1290         * Initialize the caches that provide memory for the  kmem_cache_node
1291         * structures first.  Without this, further allocations will bug.
1292         */
1293        kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1294                                kmalloc_info[INDEX_NODE].name,
1295                                kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1296                                0, kmalloc_size(INDEX_NODE));
1297        slab_state = PARTIAL_NODE;
1298        setup_kmalloc_cache_index_table();
1299
1300        slab_early_init = 0;
1301
1302        /* 5) Replace the bootstrap kmem_cache_node */
1303        {
1304                int nid;
1305
1306                for_each_online_node(nid) {
1307                        init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1308
1309                        init_list(kmalloc_caches[INDEX_NODE],
1310                                          &init_kmem_cache_node[SIZE_NODE + nid], nid);
1311                }
1312        }
1313
1314        create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1315}
1316
1317void __init kmem_cache_init_late(void)
1318{
1319        struct kmem_cache *cachep;
1320
1321        /* 6) resize the head arrays to their final sizes */
1322        mutex_lock(&slab_mutex);
1323        list_for_each_entry(cachep, &slab_caches, list)
1324                if (enable_cpucache(cachep, GFP_NOWAIT))
1325                        BUG();
1326        mutex_unlock(&slab_mutex);
1327
1328        /* Done! */
1329        slab_state = FULL;
1330
1331#ifdef CONFIG_NUMA
1332        /*
1333         * Register a memory hotplug callback that initializes and frees
1334         * node.
1335         */
1336        hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1337#endif
1338
1339        /*
1340         * The reap timers are started later, with a module init call: That part
1341         * of the kernel is not yet operational.
1342         */
1343}
1344
1345static int __init cpucache_init(void)
1346{
1347        int ret;
1348
1349        /*
1350         * Register the timers that return unneeded pages to the page allocator
1351         */
1352        ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1353                                slab_online_cpu, slab_offline_cpu);
1354        WARN_ON(ret < 0);
1355
1356        return 0;
1357}
1358__initcall(cpucache_init);
1359
1360static noinline void
1361slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1362{
1363#if DEBUG
1364        struct kmem_cache_node *n;
1365        unsigned long flags;
1366        int node;
1367        static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1368                                      DEFAULT_RATELIMIT_BURST);
1369
1370        if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1371                return;
1372
1373        pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1374                nodeid, gfpflags, &gfpflags);
1375        pr_warn("  cache: %s, object size: %d, order: %d\n",
1376                cachep->name, cachep->size, cachep->gfporder);
1377
1378        for_each_kmem_cache_node(cachep, node, n) {
1379                unsigned long total_slabs, free_slabs, free_objs;
1380
1381                spin_lock_irqsave(&n->list_lock, flags);
1382                total_slabs = n->total_slabs;
1383                free_slabs = n->free_slabs;
1384                free_objs = n->free_objects;
1385                spin_unlock_irqrestore(&n->list_lock, flags);
1386
1387                pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1388                        node, total_slabs - free_slabs, total_slabs,
1389                        (total_slabs * cachep->num) - free_objs,
1390                        total_slabs * cachep->num);
1391        }
1392#endif
1393}
1394
1395/*
1396 * Interface to system's page allocator. No need to hold the
1397 * kmem_cache_node ->list_lock.
1398 *
1399 * If we requested dmaable memory, we will get it. Even if we
1400 * did not request dmaable memory, we might get it, but that
1401 * would be relatively rare and ignorable.
1402 */
1403static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1404                                                                int nodeid)
1405{
1406        struct page *page;
1407        int nr_pages;
1408
1409        flags |= cachep->allocflags;
1410
1411        page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1412        if (!page) {
1413                slab_out_of_memory(cachep, flags, nodeid);
1414                return NULL;
1415        }
1416
1417        if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1418                __free_pages(page, cachep->gfporder);
1419                return NULL;
1420        }
1421
1422        nr_pages = (1 << cachep->gfporder);
1423        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1424                mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1425        else
1426                mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1427
1428        __SetPageSlab(page);
1429        /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1430        if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1431                SetPageSlabPfmemalloc(page);
1432
1433        return page;
1434}
1435
1436/*
1437 * Interface to system's page release.
1438 */
1439static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1440{
1441        int order = cachep->gfporder;
1442        unsigned long nr_freed = (1 << order);
1443
1444        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1445                mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1446        else
1447                mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1448
1449        BUG_ON(!PageSlab(page));
1450        __ClearPageSlabPfmemalloc(page);
1451        __ClearPageSlab(page);
1452        page_mapcount_reset(page);
1453        page->mapping = NULL;
1454
1455        if (current->reclaim_state)
1456                current->reclaim_state->reclaimed_slab += nr_freed;
1457        memcg_uncharge_slab(page, order, cachep);
1458        __free_pages(page, order);
1459}
1460
1461static void kmem_rcu_free(struct rcu_head *head)
1462{
1463        struct kmem_cache *cachep;
1464        struct page *page;
1465
1466        page = container_of(head, struct page, rcu_head);
1467        cachep = page->slab_cache;
1468
1469        kmem_freepages(cachep, page);
1470}
1471
1472#if DEBUG
1473static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1474{
1475        if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1476                (cachep->size % PAGE_SIZE) == 0)
1477                return true;
1478
1479        return false;
1480}
1481
1482#ifdef CONFIG_DEBUG_PAGEALLOC
1483static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1484                            unsigned long caller)
1485{
1486        int size = cachep->object_size;
1487
1488        addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1489
1490        if (size < 5 * sizeof(unsigned long))
1491                return;
1492
1493        *addr++ = 0x12345678;
1494        *addr++ = caller;
1495        *addr++ = smp_processor_id();
1496        size -= 3 * sizeof(unsigned long);
1497        {
1498                unsigned long *sptr = &caller;
1499                unsigned long svalue;
1500
1501                while (!kstack_end(sptr)) {
1502                        svalue = *sptr++;
1503                        if (kernel_text_address(svalue)) {
1504                                *addr++ = svalue;
1505                                size -= sizeof(unsigned long);
1506                                if (size <= sizeof(unsigned long))
1507                                        break;
1508                        }
1509                }
1510
1511        }
1512        *addr++ = 0x87654321;
1513}
1514
1515static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1516                                int map, unsigned long caller)
1517{
1518        if (!is_debug_pagealloc_cache(cachep))
1519                return;
1520
1521        if (caller)
1522                store_stackinfo(cachep, objp, caller);
1523
1524        kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1525}
1526
1527#else
1528static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1529                                int map, unsigned long caller) {}
1530
1531#endif
1532
1533static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1534{
1535        int size = cachep->object_size;
1536        addr = &((char *)addr)[obj_offset(cachep)];
1537
1538        memset(addr, val, size);
1539        *(unsigned char *)(addr + size - 1) = POISON_END;
1540}
1541
1542static void dump_line(char *data, int offset, int limit)
1543{
1544        int i;
1545        unsigned char error = 0;
1546        int bad_count = 0;
1547
1548        pr_err("%03x: ", offset);
1549        for (i = 0; i < limit; i++) {
1550                if (data[offset + i] != POISON_FREE) {
1551                        error = data[offset + i];
1552                        bad_count++;
1553                }
1554        }
1555        print_hex_dump(KERN_CONT, "", 0, 16, 1,
1556                        &data[offset], limit, 1);
1557
1558        if (bad_count == 1) {
1559                error ^= POISON_FREE;
1560                if (!(error & (error - 1))) {
1561                        pr_err("Single bit error detected. Probably bad RAM.\n");
1562#ifdef CONFIG_X86
1563                        pr_err("Run memtest86+ or a similar memory test tool.\n");
1564#else
1565                        pr_err("Run a memory test tool.\n");
1566#endif
1567                }
1568        }
1569}
1570#endif
1571
1572#if DEBUG
1573
1574static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1575{
1576        int i, size;
1577        char *realobj;
1578
1579        if (cachep->flags & SLAB_RED_ZONE) {
1580                pr_err("Redzone: 0x%llx/0x%llx\n",
1581                       *dbg_redzone1(cachep, objp),
1582                       *dbg_redzone2(cachep, objp));
1583        }
1584
1585        if (cachep->flags & SLAB_STORE_USER)
1586                pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1587        realobj = (char *)objp + obj_offset(cachep);
1588        size = cachep->object_size;
1589        for (i = 0; i < size && lines; i += 16, lines--) {
1590                int limit;
1591                limit = 16;
1592                if (i + limit > size)
1593                        limit = size - i;
1594                dump_line(realobj, i, limit);
1595        }
1596}
1597
1598static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1599{
1600        char *realobj;
1601        int size, i;
1602        int lines = 0;
1603
1604        if (is_debug_pagealloc_cache(cachep))
1605                return;
1606
1607        realobj = (char *)objp + obj_offset(cachep);
1608        size = cachep->object_size;
1609
1610        for (i = 0; i < size; i++) {
1611                char exp = POISON_FREE;
1612                if (i == size - 1)
1613                        exp = POISON_END;
1614                if (realobj[i] != exp) {
1615                        int limit;
1616                        /* Mismatch ! */
1617                        /* Print header */
1618                        if (lines == 0) {
1619                                pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1620                                       print_tainted(), cachep->name,
1621                                       realobj, size);
1622                                print_objinfo(cachep, objp, 0);
1623                        }
1624                        /* Hexdump the affected line */
1625                        i = (i / 16) * 16;
1626                        limit = 16;
1627                        if (i + limit > size)
1628                                limit = size - i;
1629                        dump_line(realobj, i, limit);
1630                        i += 16;
1631                        lines++;
1632                        /* Limit to 5 lines */
1633                        if (lines > 5)
1634                                break;
1635                }
1636        }
1637        if (lines != 0) {
1638                /* Print some data about the neighboring objects, if they
1639                 * exist:
1640                 */
1641                struct page *page = virt_to_head_page(objp);
1642                unsigned int objnr;
1643
1644                objnr = obj_to_index(cachep, page, objp);
1645                if (objnr) {
1646                        objp = index_to_obj(cachep, page, objnr - 1);
1647                        realobj = (char *)objp + obj_offset(cachep);
1648                        pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1649                        print_objinfo(cachep, objp, 2);
1650                }
1651                if (objnr + 1 < cachep->num) {
1652                        objp = index_to_obj(cachep, page, objnr + 1);
1653                        realobj = (char *)objp + obj_offset(cachep);
1654                        pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1655                        print_objinfo(cachep, objp, 2);
1656                }
1657        }
1658}
1659#endif
1660
1661#if DEBUG
1662static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1663                                                struct page *page)
1664{
1665        int i;
1666
1667        if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1668                poison_obj(cachep, page->freelist - obj_offset(cachep),
1669                        POISON_FREE);
1670        }
1671
1672        for (i = 0; i < cachep->num; i++) {
1673                void *objp = index_to_obj(cachep, page, i);
1674
1675                if (cachep->flags & SLAB_POISON) {
1676                        check_poison_obj(cachep, objp);
1677                        slab_kernel_map(cachep, objp, 1, 0);
1678                }
1679                if (cachep->flags & SLAB_RED_ZONE) {
1680                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1681                                slab_error(cachep, "start of a freed object was overwritten");
1682                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1683                                slab_error(cachep, "end of a freed object was overwritten");
1684                }
1685        }
1686}
1687#else
1688static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1689                                                struct page *page)
1690{
1691}
1692#endif
1693
1694/**
1695 * slab_destroy - destroy and release all objects in a slab
1696 * @cachep: cache pointer being destroyed
1697 * @page: page pointer being destroyed
1698 *
1699 * Destroy all the objs in a slab page, and release the mem back to the system.
1700 * Before calling the slab page must have been unlinked from the cache. The
1701 * kmem_cache_node ->list_lock is not held/needed.
1702 */
1703static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1704{
1705        void *freelist;
1706
1707        freelist = page->freelist;
1708        slab_destroy_debugcheck(cachep, page);
1709        if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1710                call_rcu(&page->rcu_head, kmem_rcu_free);
1711        else
1712                kmem_freepages(cachep, page);
1713
1714        /*
1715         * From now on, we don't use freelist
1716         * although actual page can be freed in rcu context
1717         */
1718        if (OFF_SLAB(cachep))
1719                kmem_cache_free(cachep->freelist_cache, freelist);
1720}
1721
1722static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1723{
1724        struct page *page, *n;
1725
1726        list_for_each_entry_safe(page, n, list, lru) {
1727                list_del(&page->lru);
1728                slab_destroy(cachep, page);
1729        }
1730}
1731
1732/**
1733 * calculate_slab_order - calculate size (page order) of slabs
1734 * @cachep: pointer to the cache that is being created
1735 * @size: size of objects to be created in this cache.
1736 * @flags: slab allocation flags
1737 *
1738 * Also calculates the number of objects per slab.
1739 *
1740 * This could be made much more intelligent.  For now, try to avoid using
1741 * high order pages for slabs.  When the gfp() functions are more friendly
1742 * towards high-order requests, this should be changed.
1743 */
1744static size_t calculate_slab_order(struct kmem_cache *cachep,
1745                                size_t size, slab_flags_t flags)
1746{
1747        size_t left_over = 0;
1748        int gfporder;
1749
1750        for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1751                unsigned int num;
1752                size_t remainder;
1753
1754                num = cache_estimate(gfporder, size, flags, &remainder);
1755                if (!num)
1756                        continue;
1757
1758                /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1759                if (num > SLAB_OBJ_MAX_NUM)
1760                        break;
1761
1762                if (flags & CFLGS_OFF_SLAB) {
1763                        struct kmem_cache *freelist_cache;
1764                        size_t freelist_size;
1765
1766                        freelist_size = num * sizeof(freelist_idx_t);
1767                        freelist_cache = kmalloc_slab(freelist_size, 0u);
1768                        if (!freelist_cache)
1769                                continue;
1770
1771                        /*
1772                         * Needed to avoid possible looping condition
1773                         * in cache_grow_begin()
1774                         */
1775                        if (OFF_SLAB(freelist_cache))
1776                                continue;
1777
1778                        /* check if off slab has enough benefit */
1779                        if (freelist_cache->size > cachep->size / 2)
1780                                continue;
1781                }
1782
1783                /* Found something acceptable - save it away */
1784                cachep->num = num;
1785                cachep->gfporder = gfporder;
1786                left_over = remainder;
1787
1788                /*
1789                 * A VFS-reclaimable slab tends to have most allocations
1790                 * as GFP_NOFS and we really don't want to have to be allocating
1791                 * higher-order pages when we are unable to shrink dcache.
1792                 */
1793                if (flags & SLAB_RECLAIM_ACCOUNT)
1794                        break;
1795
1796                /*
1797                 * Large number of objects is good, but very large slabs are
1798                 * currently bad for the gfp()s.
1799                 */
1800                if (gfporder >= slab_max_order)
1801                        break;
1802
1803                /*
1804                 * Acceptable internal fragmentation?
1805                 */
1806                if (left_over * 8 <= (PAGE_SIZE << gfporder))
1807                        break;
1808        }
1809        return left_over;
1810}
1811
1812static struct array_cache __percpu *alloc_kmem_cache_cpus(
1813                struct kmem_cache *cachep, int entries, int batchcount)
1814{
1815        int cpu;
1816        size_t size;
1817        struct array_cache __percpu *cpu_cache;
1818
1819        size = sizeof(void *) * entries + sizeof(struct array_cache);
1820        cpu_cache = __alloc_percpu(size, sizeof(void *));
1821
1822        if (!cpu_cache)
1823                return NULL;
1824
1825        for_each_possible_cpu(cpu) {
1826                init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1827                                entries, batchcount);
1828        }
1829
1830        return cpu_cache;
1831}
1832
1833static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1834{
1835        if (slab_state >= FULL)
1836                return enable_cpucache(cachep, gfp);
1837
1838        cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1839        if (!cachep->cpu_cache)
1840                return 1;
1841
1842        if (slab_state == DOWN) {
1843                /* Creation of first cache (kmem_cache). */
1844                set_up_node(kmem_cache, CACHE_CACHE);
1845        } else if (slab_state == PARTIAL) {
1846                /* For kmem_cache_node */
1847                set_up_node(cachep, SIZE_NODE);
1848        } else {
1849                int node;
1850
1851                for_each_online_node(node) {
1852                        cachep->node[node] = kmalloc_node(
1853                                sizeof(struct kmem_cache_node), gfp, node);
1854                        BUG_ON(!cachep->node[node]);
1855                        kmem_cache_node_init(cachep->node[node]);
1856                }
1857        }
1858
1859        cachep->node[numa_mem_id()]->next_reap =
1860                        jiffies + REAPTIMEOUT_NODE +
1861                        ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1862
1863        cpu_cache_get(cachep)->avail = 0;
1864        cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1865        cpu_cache_get(cachep)->batchcount = 1;
1866        cpu_cache_get(cachep)->touched = 0;
1867        cachep->batchcount = 1;
1868        cachep->limit = BOOT_CPUCACHE_ENTRIES;
1869        return 0;
1870}
1871
1872slab_flags_t kmem_cache_flags(unsigned int object_size,
1873        slab_flags_t flags, const char *name,
1874        void (*ctor)(void *))
1875{
1876        return flags;
1877}
1878
1879struct kmem_cache *
1880__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1881                   slab_flags_t flags, void (*ctor)(void *))
1882{
1883        struct kmem_cache *cachep;
1884
1885        cachep = find_mergeable(size, align, flags, name, ctor);
1886        if (cachep) {
1887                cachep->refcount++;
1888
1889                /*
1890                 * Adjust the object sizes so that we clear
1891                 * the complete object on kzalloc.
1892                 */
1893                cachep->object_size = max_t(int, cachep->object_size, size);
1894        }
1895        return cachep;
1896}
1897
1898static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1899                        size_t size, slab_flags_t flags)
1900{
1901        size_t left;
1902
1903        cachep->num = 0;
1904
1905        if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1906                return false;
1907
1908        left = calculate_slab_order(cachep, size,
1909                        flags | CFLGS_OBJFREELIST_SLAB);
1910        if (!cachep->num)
1911                return false;
1912
1913        if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1914                return false;
1915
1916        cachep->colour = left / cachep->colour_off;
1917
1918        return true;
1919}
1920
1921static bool set_off_slab_cache(struct kmem_cache *cachep,
1922                        size_t size, slab_flags_t flags)
1923{
1924        size_t left;
1925
1926        cachep->num = 0;
1927
1928        /*
1929         * Always use on-slab management when SLAB_NOLEAKTRACE
1930         * to avoid recursive calls into kmemleak.
1931         */
1932        if (flags & SLAB_NOLEAKTRACE)
1933                return false;
1934
1935        /*
1936         * Size is large, assume best to place the slab management obj
1937         * off-slab (should allow better packing of objs).
1938         */
1939        left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1940        if (!cachep->num)
1941                return false;
1942
1943        /*
1944         * If the slab has been placed off-slab, and we have enough space then
1945         * move it on-slab. This is at the expense of any extra colouring.
1946         */
1947        if (left >= cachep->num * sizeof(freelist_idx_t))
1948                return false;
1949
1950        cachep->colour = left / cachep->colour_off;
1951
1952        return true;
1953}
1954
1955static bool set_on_slab_cache(struct kmem_cache *cachep,
1956                        size_t size, slab_flags_t flags)
1957{
1958        size_t left;
1959
1960        cachep->num = 0;
1961
1962        left = calculate_slab_order(cachep, size, flags);
1963        if (!cachep->num)
1964                return false;
1965
1966        cachep->colour = left / cachep->colour_off;
1967
1968        return true;
1969}
1970
1971/**
1972 * __kmem_cache_create - Create a cache.
1973 * @cachep: cache management descriptor
1974 * @flags: SLAB flags
1975 *
1976 * Returns a ptr to the cache on success, NULL on failure.
1977 * Cannot be called within a int, but can be interrupted.
1978 * The @ctor is run when new pages are allocated by the cache.
1979 *
1980 * The flags are
1981 *
1982 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1983 * to catch references to uninitialised memory.
1984 *
1985 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1986 * for buffer overruns.
1987 *
1988 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1989 * cacheline.  This can be beneficial if you're counting cycles as closely
1990 * as davem.
1991 */
1992int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1993{
1994        size_t ralign = BYTES_PER_WORD;
1995        gfp_t gfp;
1996        int err;
1997        unsigned int size = cachep->size;
1998
1999#if DEBUG
2000#if FORCED_DEBUG
2001        /*
2002         * Enable redzoning and last user accounting, except for caches with
2003         * large objects, if the increased size would increase the object size
2004         * above the next power of two: caches with object sizes just above a
2005         * power of two have a significant amount of internal fragmentation.
2006         */
2007        if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2008                                                2 * sizeof(unsigned long long)))
2009                flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2010        if (!(flags & SLAB_TYPESAFE_BY_RCU))
2011                flags |= SLAB_POISON;
2012#endif
2013#endif
2014
2015        /*
2016         * Check that size is in terms of words.  This is needed to avoid
2017         * unaligned accesses for some archs when redzoning is used, and makes
2018         * sure any on-slab bufctl's are also correctly aligned.
2019         */
2020        size = ALIGN(size, BYTES_PER_WORD);
2021
2022        if (flags & SLAB_RED_ZONE) {
2023                ralign = REDZONE_ALIGN;
2024                /* If redzoning, ensure that the second redzone is suitably
2025                 * aligned, by adjusting the object size accordingly. */
2026                size = ALIGN(size, REDZONE_ALIGN);
2027        }
2028
2029        /* 3) caller mandated alignment */
2030        if (ralign < cachep->align) {
2031                ralign = cachep->align;
2032        }
2033        /* disable debug if necessary */
2034        if (ralign > __alignof__(unsigned long long))
2035                flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2036        /*
2037         * 4) Store it.
2038         */
2039        cachep->align = ralign;
2040        cachep->colour_off = cache_line_size();
2041        /* Offset must be a multiple of the alignment. */
2042        if (cachep->colour_off < cachep->align)
2043                cachep->colour_off = cachep->align;
2044
2045        if (slab_is_available())
2046                gfp = GFP_KERNEL;
2047        else
2048                gfp = GFP_NOWAIT;
2049
2050#if DEBUG
2051
2052        /*
2053         * Both debugging options require word-alignment which is calculated
2054         * into align above.
2055         */
2056        if (flags & SLAB_RED_ZONE) {
2057                /* add space for red zone words */
2058                cachep->obj_offset += sizeof(unsigned long long);
2059                size += 2 * sizeof(unsigned long long);
2060        }
2061        if (flags & SLAB_STORE_USER) {
2062                /* user store requires one word storage behind the end of
2063                 * the real object. But if the second red zone needs to be
2064                 * aligned to 64 bits, we must allow that much space.
2065                 */
2066                if (flags & SLAB_RED_ZONE)
2067                        size += REDZONE_ALIGN;
2068                else
2069                        size += BYTES_PER_WORD;
2070        }
2071#endif
2072
2073        kasan_cache_create(cachep, &size, &flags);
2074
2075        size = ALIGN(size, cachep->align);
2076        /*
2077         * We should restrict the number of objects in a slab to implement
2078         * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2079         */
2080        if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2081                size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2082
2083#if DEBUG
2084        /*
2085         * To activate debug pagealloc, off-slab management is necessary
2086         * requirement. In early phase of initialization, small sized slab
2087         * doesn't get initialized so it would not be possible. So, we need
2088         * to check size >= 256. It guarantees that all necessary small
2089         * sized slab is initialized in current slab initialization sequence.
2090         */
2091        if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2092                size >= 256 && cachep->object_size > cache_line_size()) {
2093                if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2094                        size_t tmp_size = ALIGN(size, PAGE_SIZE);
2095
2096                        if (set_off_slab_cache(cachep, tmp_size, flags)) {
2097                                flags |= CFLGS_OFF_SLAB;
2098                                cachep->obj_offset += tmp_size - size;
2099                                size = tmp_size;
2100                                goto done;
2101                        }
2102                }
2103        }
2104#endif
2105
2106        if (set_objfreelist_slab_cache(cachep, size, flags)) {
2107                flags |= CFLGS_OBJFREELIST_SLAB;
2108                goto done;
2109        }
2110
2111        if (set_off_slab_cache(cachep, size, flags)) {
2112                flags |= CFLGS_OFF_SLAB;
2113                goto done;
2114        }
2115
2116        if (set_on_slab_cache(cachep, size, flags))
2117                goto done;
2118
2119        return -E2BIG;
2120
2121done:
2122        cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2123        cachep->flags = flags;
2124        cachep->allocflags = __GFP_COMP;
2125        if (flags & SLAB_CACHE_DMA)
2126                cachep->allocflags |= GFP_DMA;
2127        if (flags & SLAB_RECLAIM_ACCOUNT)
2128                cachep->allocflags |= __GFP_RECLAIMABLE;
2129        cachep->size = size;
2130        cachep->reciprocal_buffer_size = reciprocal_value(size);
2131
2132#if DEBUG
2133        /*
2134         * If we're going to use the generic kernel_map_pages()
2135         * poisoning, then it's going to smash the contents of
2136         * the redzone and userword anyhow, so switch them off.
2137         */
2138        if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2139                (cachep->flags & SLAB_POISON) &&
2140                is_debug_pagealloc_cache(cachep))
2141                cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2142#endif
2143
2144        if (OFF_SLAB(cachep)) {
2145                cachep->freelist_cache =
2146                        kmalloc_slab(cachep->freelist_size, 0u);
2147        }
2148
2149        err = setup_cpu_cache(cachep, gfp);
2150        if (err) {
2151                __kmem_cache_release(cachep);
2152                return err;
2153        }
2154
2155        return 0;
2156}
2157
2158#if DEBUG
2159static void check_irq_off(void)
2160{
2161        BUG_ON(!irqs_disabled());
2162}
2163
2164static void check_irq_on(void)
2165{
2166        BUG_ON(irqs_disabled());
2167}
2168
2169static void check_mutex_acquired(void)
2170{
2171        BUG_ON(!mutex_is_locked(&slab_mutex));
2172}
2173
2174static void check_spinlock_acquired(struct kmem_cache *cachep)
2175{
2176#ifdef CONFIG_SMP
2177        check_irq_off();
2178        assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2179#endif
2180}
2181
2182static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2183{
2184#ifdef CONFIG_SMP
2185        check_irq_off();
2186        assert_spin_locked(&get_node(cachep, node)->list_lock);
2187#endif
2188}
2189
2190#else
2191#define check_irq_off() do { } while(0)
2192#define check_irq_on()  do { } while(0)
2193#define check_mutex_acquired()  do { } while(0)
2194#define check_spinlock_acquired(x) do { } while(0)
2195#define check_spinlock_acquired_node(x, y) do { } while(0)
2196#endif
2197
2198static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2199                                int node, bool free_all, struct list_head *list)
2200{
2201        int tofree;
2202
2203        if (!ac || !ac->avail)
2204                return;
2205
2206        tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2207        if (tofree > ac->avail)
2208                tofree = (ac->avail + 1) / 2;
2209
2210        free_block(cachep, ac->entry, tofree, node, list);
2211        ac->avail -= tofree;
2212        memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2213}
2214
2215static void do_drain(void *arg)
2216{
2217        struct kmem_cache *cachep = arg;
2218        struct array_cache *ac;
2219        int node = numa_mem_id();
2220        struct kmem_cache_node *n;
2221        LIST_HEAD(list);
2222
2223        check_irq_off();
2224        ac = cpu_cache_get(cachep);
2225        n = get_node(cachep, node);
2226        spin_lock(&n->list_lock);
2227        free_block(cachep, ac->entry, ac->avail, node, &list);
2228        spin_unlock(&n->list_lock);
2229        slabs_destroy(cachep, &list);
2230        ac->avail = 0;
2231}
2232
2233static void drain_cpu_caches(struct kmem_cache *cachep)
2234{
2235        struct kmem_cache_node *n;
2236        int node;
2237        LIST_HEAD(list);
2238
2239        on_each_cpu(do_drain, cachep, 1);
2240        check_irq_on();
2241        for_each_kmem_cache_node(cachep, node, n)
2242                if (n->alien)
2243                        drain_alien_cache(cachep, n->alien);
2244
2245        for_each_kmem_cache_node(cachep, node, n) {
2246                spin_lock_irq(&n->list_lock);
2247                drain_array_locked(cachep, n->shared, node, true, &list);
2248                spin_unlock_irq(&n->list_lock);
2249
2250                slabs_destroy(cachep, &list);
2251        }
2252}
2253
2254/*
2255 * Remove slabs from the list of free slabs.
2256 * Specify the number of slabs to drain in tofree.
2257 *
2258 * Returns the actual number of slabs released.
2259 */
2260static int drain_freelist(struct kmem_cache *cache,
2261                        struct kmem_cache_node *n, int tofree)
2262{
2263        struct list_head *p;
2264        int nr_freed;
2265        struct page *page;
2266
2267        nr_freed = 0;
2268        while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2269
2270                spin_lock_irq(&n->list_lock);
2271                p = n->slabs_free.prev;
2272                if (p == &n->slabs_free) {
2273                        spin_unlock_irq(&n->list_lock);
2274                        goto out;
2275                }
2276
2277                page = list_entry(p, struct page, lru);
2278                list_del(&page->lru);
2279                n->free_slabs--;
2280                n->total_slabs--;
2281                /*
2282                 * Safe to drop the lock. The slab is no longer linked
2283                 * to the cache.
2284                 */
2285                n->free_objects -= cache->num;
2286                spin_unlock_irq(&n->list_lock);
2287                slab_destroy(cache, page);
2288                nr_freed++;
2289        }
2290out:
2291        return nr_freed;
2292}
2293
2294bool __kmem_cache_empty(struct kmem_cache *s)
2295{
2296        int node;
2297        struct kmem_cache_node *n;
2298
2299        for_each_kmem_cache_node(s, node, n)
2300                if (!list_empty(&n->slabs_full) ||
2301                    !list_empty(&n->slabs_partial))
2302                        return false;
2303        return true;
2304}
2305
2306int __kmem_cache_shrink(struct kmem_cache *cachep)
2307{
2308        int ret = 0;
2309        int node;
2310        struct kmem_cache_node *n;
2311
2312        drain_cpu_caches(cachep);
2313
2314        check_irq_on();
2315        for_each_kmem_cache_node(cachep, node, n) {
2316                drain_freelist(cachep, n, INT_MAX);
2317
2318                ret += !list_empty(&n->slabs_full) ||
2319                        !list_empty(&n->slabs_partial);
2320        }
2321        return (ret ? 1 : 0);
2322}
2323
2324#ifdef CONFIG_MEMCG
2325void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2326{
2327        __kmem_cache_shrink(cachep);
2328}
2329#endif
2330
2331int __kmem_cache_shutdown(struct kmem_cache *cachep)
2332{
2333        return __kmem_cache_shrink(cachep);
2334}
2335
2336void __kmem_cache_release(struct kmem_cache *cachep)
2337{
2338        int i;
2339        struct kmem_cache_node *n;
2340
2341        cache_random_seq_destroy(cachep);
2342
2343        free_percpu(cachep->cpu_cache);
2344
2345        /* NUMA: free the node structures */
2346        for_each_kmem_cache_node(cachep, i, n) {
2347                kfree(n->shared);
2348                free_alien_cache(n->alien);
2349                kfree(n);
2350                cachep->node[i] = NULL;
2351        }
2352}
2353
2354/*
2355 * Get the memory for a slab management obj.
2356 *
2357 * For a slab cache when the slab descriptor is off-slab, the
2358 * slab descriptor can't come from the same cache which is being created,
2359 * Because if it is the case, that means we defer the creation of
2360 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2361 * And we eventually call down to __kmem_cache_create(), which
2362 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2363 * This is a "chicken-and-egg" problem.
2364 *
2365 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2366 * which are all initialized during kmem_cache_init().
2367 */
2368static void *alloc_slabmgmt(struct kmem_cache *cachep,
2369                                   struct page *page, int colour_off,
2370                                   gfp_t local_flags, int nodeid)
2371{
2372        void *freelist;
2373        void *addr = page_address(page);
2374
2375        page->s_mem = addr + colour_off;
2376        page->active = 0;
2377
2378        if (OBJFREELIST_SLAB(cachep))
2379                freelist = NULL;
2380        else if (OFF_SLAB(cachep)) {
2381                /* Slab management obj is off-slab. */
2382                freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2383                                              local_flags, nodeid);
2384                if (!freelist)
2385                        return NULL;
2386        } else {
2387                /* We will use last bytes at the slab for freelist */
2388                freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2389                                cachep->freelist_size;
2390        }
2391
2392        return freelist;
2393}
2394
2395static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2396{
2397        return ((freelist_idx_t *)page->freelist)[idx];
2398}
2399
2400static inline void set_free_obj(struct page *page,
2401                                        unsigned int idx, freelist_idx_t val)
2402{
2403        ((freelist_idx_t *)(page->freelist))[idx] = val;
2404}
2405
2406static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2407{
2408#if DEBUG
2409        int i;
2410
2411        for (i = 0; i < cachep->num; i++) {
2412                void *objp = index_to_obj(cachep, page, i);
2413
2414                if (cachep->flags & SLAB_STORE_USER)
2415                        *dbg_userword(cachep, objp) = NULL;
2416
2417                if (cachep->flags & SLAB_RED_ZONE) {
2418                        *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2419                        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2420                }
2421                /*
2422                 * Constructors are not allowed to allocate memory from the same
2423                 * cache which they are a constructor for.  Otherwise, deadlock.
2424                 * They must also be threaded.
2425                 */
2426                if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2427                        kasan_unpoison_object_data(cachep,
2428                                                   objp + obj_offset(cachep));
2429                        cachep->ctor(objp + obj_offset(cachep));
2430                        kasan_poison_object_data(
2431                                cachep, objp + obj_offset(cachep));
2432                }
2433
2434                if (cachep->flags & SLAB_RED_ZONE) {
2435                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2436                                slab_error(cachep, "constructor overwrote the end of an object");
2437                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2438                                slab_error(cachep, "constructor overwrote the start of an object");
2439                }
2440                /* need to poison the objs? */
2441                if (cachep->flags & SLAB_POISON) {
2442                        poison_obj(cachep, objp, POISON_FREE);
2443                        slab_kernel_map(cachep, objp, 0, 0);
2444                }
2445        }
2446#endif
2447}
2448
2449#ifdef CONFIG_SLAB_FREELIST_RANDOM
2450/* Hold information during a freelist initialization */
2451union freelist_init_state {
2452        struct {
2453                unsigned int pos;
2454                unsigned int *list;
2455                unsigned int count;
2456        };
2457        struct rnd_state rnd_state;
2458};
2459
2460/*
2461 * Initialize the state based on the randomization methode available.
2462 * return true if the pre-computed list is available, false otherwize.
2463 */
2464static bool freelist_state_initialize(union freelist_init_state *state,
2465                                struct kmem_cache *cachep,
2466                                unsigned int count)
2467{
2468        bool ret;
2469        unsigned int rand;
2470
2471        /* Use best entropy available to define a random shift */
2472        rand = get_random_int();
2473
2474        /* Use a random state if the pre-computed list is not available */
2475        if (!cachep->random_seq) {
2476                prandom_seed_state(&state->rnd_state, rand);
2477                ret = false;
2478        } else {
2479                state->list = cachep->random_seq;
2480                state->count = count;
2481                state->pos = rand % count;
2482                ret = true;
2483        }
2484        return ret;
2485}
2486
2487/* Get the next entry on the list and randomize it using a random shift */
2488static freelist_idx_t next_random_slot(union freelist_init_state *state)
2489{
2490        if (state->pos >= state->count)
2491                state->pos = 0;
2492        return state->list[state->pos++];
2493}
2494
2495/* Swap two freelist entries */
2496static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2497{
2498        swap(((freelist_idx_t *)page->freelist)[a],
2499                ((freelist_idx_t *)page->freelist)[b]);
2500}
2501
2502/*
2503 * Shuffle the freelist initialization state based on pre-computed lists.
2504 * return true if the list was successfully shuffled, false otherwise.
2505 */
2506static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2507{
2508        unsigned int objfreelist = 0, i, rand, count = cachep->num;
2509        union freelist_init_state state;
2510        bool precomputed;
2511
2512        if (count < 2)
2513                return false;
2514
2515        precomputed = freelist_state_initialize(&state, cachep, count);
2516
2517        /* Take a random entry as the objfreelist */
2518        if (OBJFREELIST_SLAB(cachep)) {
2519                if (!precomputed)
2520                        objfreelist = count - 1;
2521                else
2522                        objfreelist = next_random_slot(&state);
2523                page->freelist = index_to_obj(cachep, page, objfreelist) +
2524                                                obj_offset(cachep);
2525                count--;
2526        }
2527
2528        /*
2529         * On early boot, generate the list dynamically.
2530         * Later use a pre-computed list for speed.
2531         */
2532        if (!precomputed) {
2533                for (i = 0; i < count; i++)
2534                        set_free_obj(page, i, i);
2535
2536                /* Fisher-Yates shuffle */
2537                for (i = count - 1; i > 0; i--) {
2538                        rand = prandom_u32_state(&state.rnd_state);
2539                        rand %= (i + 1);
2540                        swap_free_obj(page, i, rand);
2541                }
2542        } else {
2543                for (i = 0; i < count; i++)
2544                        set_free_obj(page, i, next_random_slot(&state));
2545        }
2546
2547        if (OBJFREELIST_SLAB(cachep))
2548                set_free_obj(page, cachep->num - 1, objfreelist);
2549
2550        return true;
2551}
2552#else
2553static inline bool shuffle_freelist(struct kmem_cache *cachep,
2554                                struct page *page)
2555{
2556        return false;
2557}
2558#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2559
2560static void cache_init_objs(struct kmem_cache *cachep,
2561                            struct page *page)
2562{
2563        int i;
2564        void *objp;
2565        bool shuffled;
2566
2567        cache_init_objs_debug(cachep, page);
2568
2569        /* Try to randomize the freelist if enabled */
2570        shuffled = shuffle_freelist(cachep, page);
2571
2572        if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2573                page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2574                                                obj_offset(cachep);
2575        }
2576
2577        for (i = 0; i < cachep->num; i++) {
2578                objp = index_to_obj(cachep, page, i);
2579                kasan_init_slab_obj(cachep, objp);
2580
2581                /* constructor could break poison info */
2582                if (DEBUG == 0 && cachep->ctor) {
2583                        kasan_unpoison_object_data(cachep, objp);
2584                        cachep->ctor(objp);
2585                        kasan_poison_object_data(cachep, objp);
2586                }
2587
2588                if (!shuffled)
2589                        set_free_obj(page, i, i);
2590        }
2591}
2592
2593static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2594{
2595        void *objp;
2596
2597        objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2598        page->active++;
2599
2600#if DEBUG
2601        if (cachep->flags & SLAB_STORE_USER)
2602                set_store_user_dirty(cachep);
2603#endif
2604
2605        return objp;
2606}
2607
2608static void slab_put_obj(struct kmem_cache *cachep,
2609                        struct page *page, void *objp)
2610{
2611        unsigned int objnr = obj_to_index(cachep, page, objp);
2612#if DEBUG
2613        unsigned int i;
2614
2615        /* Verify double free bug */
2616        for (i = page->active; i < cachep->num; i++) {
2617                if (get_free_obj(page, i) == objnr) {
2618                        pr_err("slab: double free detected in cache '%s', objp %px\n",
2619                               cachep->name, objp);
2620                        BUG();
2621                }
2622        }
2623#endif
2624        page->active--;
2625        if (!page->freelist)
2626                page->freelist = objp + obj_offset(cachep);
2627
2628        set_free_obj(page, page->active, objnr);
2629}
2630
2631/*
2632 * Map pages beginning at addr to the given cache and slab. This is required
2633 * for the slab allocator to be able to lookup the cache and slab of a
2634 * virtual address for kfree, ksize, and slab debugging.
2635 */
2636static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2637                           void *freelist)
2638{
2639        page->slab_cache = cache;
2640        page->freelist = freelist;
2641}
2642
2643/*
2644 * Grow (by 1) the number of slabs within a cache.  This is called by
2645 * kmem_cache_alloc() when there are no active objs left in a cache.
2646 */
2647static struct page *cache_grow_begin(struct kmem_cache *cachep,
2648                                gfp_t flags, int nodeid)
2649{
2650        void *freelist;
2651        size_t offset;
2652        gfp_t local_flags;
2653        int page_node;
2654        struct kmem_cache_node *n;
2655        struct page *page;
2656
2657        /*
2658         * Be lazy and only check for valid flags here,  keeping it out of the
2659         * critical path in kmem_cache_alloc().
2660         */
2661        if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2662                gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2663                flags &= ~GFP_SLAB_BUG_MASK;
2664                pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2665                                invalid_mask, &invalid_mask, flags, &flags);
2666                dump_stack();
2667        }
2668        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2669
2670        check_irq_off();
2671        if (gfpflags_allow_blocking(local_flags))
2672                local_irq_enable();
2673
2674        /*
2675         * Get mem for the objs.  Attempt to allocate a physical page from
2676         * 'nodeid'.
2677         */
2678        page = kmem_getpages(cachep, local_flags, nodeid);
2679        if (!page)
2680                goto failed;
2681
2682        page_node = page_to_nid(page);
2683        n = get_node(cachep, page_node);
2684
2685        /* Get colour for the slab, and cal the next value. */
2686        n->colour_next++;
2687        if (n->colour_next >= cachep->colour)
2688                n->colour_next = 0;
2689
2690        offset = n->colour_next;
2691        if (offset >= cachep->colour)
2692                offset = 0;
2693
2694        offset *= cachep->colour_off;
2695
2696        /* Get slab management. */
2697        freelist = alloc_slabmgmt(cachep, page, offset,
2698                        local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2699        if (OFF_SLAB(cachep) && !freelist)
2700                goto opps1;
2701
2702        slab_map_pages(cachep, page, freelist);
2703
2704        kasan_poison_slab(page);
2705        cache_init_objs(cachep, page);
2706
2707        if (gfpflags_allow_blocking(local_flags))
2708                local_irq_disable();
2709
2710        return page;
2711
2712opps1:
2713        kmem_freepages(cachep, page);
2714failed:
2715        if (gfpflags_allow_blocking(local_flags))
2716                local_irq_disable();
2717        return NULL;
2718}
2719
2720static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2721{
2722        struct kmem_cache_node *n;
2723        void *list = NULL;
2724
2725        check_irq_off();
2726
2727        if (!page)
2728                return;
2729
2730        INIT_LIST_HEAD(&page->lru);
2731        n = get_node(cachep, page_to_nid(page));
2732
2733        spin_lock(&n->list_lock);
2734        n->total_slabs++;
2735        if (!page->active) {
2736                list_add_tail(&page->lru, &(n->slabs_free));
2737                n->free_slabs++;
2738        } else
2739                fixup_slab_list(cachep, n, page, &list);
2740
2741        STATS_INC_GROWN(cachep);
2742        n->free_objects += cachep->num - page->active;
2743        spin_unlock(&n->list_lock);
2744
2745        fixup_objfreelist_debug(cachep, &list);
2746}
2747
2748#if DEBUG
2749
2750/*
2751 * Perform extra freeing checks:
2752 * - detect bad pointers.
2753 * - POISON/RED_ZONE checking
2754 */
2755static void kfree_debugcheck(const void *objp)
2756{
2757        if (!virt_addr_valid(objp)) {
2758                pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2759                       (unsigned long)objp);
2760                BUG();
2761        }
2762}
2763
2764static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2765{
2766        unsigned long long redzone1, redzone2;
2767
2768        redzone1 = *dbg_redzone1(cache, obj);
2769        redzone2 = *dbg_redzone2(cache, obj);
2770
2771        /*
2772         * Redzone is ok.
2773         */
2774        if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2775                return;
2776
2777        if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2778                slab_error(cache, "double free detected");
2779        else
2780                slab_error(cache, "memory outside object was overwritten");
2781
2782        pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2783               obj, redzone1, redzone2);
2784}
2785
2786static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2787                                   unsigned long caller)
2788{
2789        unsigned int objnr;
2790        struct page *page;
2791
2792        BUG_ON(virt_to_cache(objp) != cachep);
2793
2794        objp -= obj_offset(cachep);
2795        kfree_debugcheck(objp);
2796        page = virt_to_head_page(objp);
2797
2798        if (cachep->flags & SLAB_RED_ZONE) {
2799                verify_redzone_free(cachep, objp);
2800                *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2801                *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2802        }
2803        if (cachep->flags & SLAB_STORE_USER) {
2804                set_store_user_dirty(cachep);
2805                *dbg_userword(cachep, objp) = (void *)caller;
2806        }
2807
2808        objnr = obj_to_index(cachep, page, objp);
2809
2810        BUG_ON(objnr >= cachep->num);
2811        BUG_ON(objp != index_to_obj(cachep, page, objnr));
2812
2813        if (cachep->flags & SLAB_POISON) {
2814                poison_obj(cachep, objp, POISON_FREE);
2815                slab_kernel_map(cachep, objp, 0, caller);
2816        }
2817        return objp;
2818}
2819
2820#else
2821#define kfree_debugcheck(x) do { } while(0)
2822#define cache_free_debugcheck(x,objp,z) (objp)
2823#endif
2824
2825static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2826                                                void **list)
2827{
2828#if DEBUG
2829        void *next = *list;
2830        void *objp;
2831
2832        while (next) {
2833                objp = next - obj_offset(cachep);
2834                next = *(void **)next;
2835                poison_obj(cachep, objp, POISON_FREE);
2836        }
2837#endif
2838}
2839
2840static inline void fixup_slab_list(struct kmem_cache *cachep,
2841                                struct kmem_cache_node *n, struct page *page,
2842                                void **list)
2843{
2844        /* move slabp to correct slabp list: */
2845        list_del(&page->lru);
2846        if (page->active == cachep->num) {
2847                list_add(&page->lru, &n->slabs_full);
2848                if (OBJFREELIST_SLAB(cachep)) {
2849#if DEBUG
2850                        /* Poisoning will be done without holding the lock */
2851                        if (cachep->flags & SLAB_POISON) {
2852                                void **objp = page->freelist;
2853
2854                                *objp = *list;
2855                                *list = objp;
2856                        }
2857#endif
2858                        page->freelist = NULL;
2859                }
2860        } else
2861                list_add(&page->lru, &n->slabs_partial);
2862}
2863
2864/* Try to find non-pfmemalloc slab if needed */
2865static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2866                                        struct page *page, bool pfmemalloc)
2867{
2868        if (!page)
2869                return NULL;
2870
2871        if (pfmemalloc)
2872                return page;
2873
2874        if (!PageSlabPfmemalloc(page))
2875                return page;
2876
2877        /* No need to keep pfmemalloc slab if we have enough free objects */
2878        if (n->free_objects > n->free_limit) {
2879                ClearPageSlabPfmemalloc(page);
2880                return page;
2881        }
2882
2883        /* Move pfmemalloc slab to the end of list to speed up next search */
2884        list_del(&page->lru);
2885        if (!page->active) {
2886                list_add_tail(&page->lru, &n->slabs_free);
2887                n->free_slabs++;
2888        } else
2889                list_add_tail(&page->lru, &n->slabs_partial);
2890
2891        list_for_each_entry(page, &n->slabs_partial, lru) {
2892                if (!PageSlabPfmemalloc(page))
2893                        return page;
2894        }
2895
2896        n->free_touched = 1;
2897        list_for_each_entry(page, &n->slabs_free, lru) {
2898                if (!PageSlabPfmemalloc(page)) {
2899                        n->free_slabs--;
2900                        return page;
2901                }
2902        }
2903
2904        return NULL;
2905}
2906
2907static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2908{
2909        struct page *page;
2910
2911        assert_spin_locked(&n->list_lock);
2912        page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2913        if (!page) {
2914                n->free_touched = 1;
2915                page = list_first_entry_or_null(&n->slabs_free, struct page,
2916                                                lru);
2917                if (page)
2918                        n->free_slabs--;
2919        }
2920
2921        if (sk_memalloc_socks())
2922                page = get_valid_first_slab(n, page, pfmemalloc);
2923
2924        return page;
2925}
2926
2927static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2928                                struct kmem_cache_node *n, gfp_t flags)
2929{
2930        struct page *page;
2931        void *obj;
2932        void *list = NULL;
2933
2934        if (!gfp_pfmemalloc_allowed(flags))
2935                return NULL;
2936
2937        spin_lock(&n->list_lock);
2938        page = get_first_slab(n, true);
2939        if (!page) {
2940                spin_unlock(&n->list_lock);
2941                return NULL;
2942        }
2943
2944        obj = slab_get_obj(cachep, page);
2945        n->free_objects--;
2946
2947        fixup_slab_list(cachep, n, page, &list);
2948
2949        spin_unlock(&n->list_lock);
2950        fixup_objfreelist_debug(cachep, &list);
2951
2952        return obj;
2953}
2954
2955/*
2956 * Slab list should be fixed up by fixup_slab_list() for existing slab
2957 * or cache_grow_end() for new slab
2958 */
2959static __always_inline int alloc_block(struct kmem_cache *cachep,
2960                struct array_cache *ac, struct page *page, int batchcount)
2961{
2962        /*
2963         * There must be at least one object available for
2964         * allocation.
2965         */
2966        BUG_ON(page->active >= cachep->num);
2967
2968        while (page->active < cachep->num && batchcount--) {
2969                STATS_INC_ALLOCED(cachep);
2970                STATS_INC_ACTIVE(cachep);
2971                STATS_SET_HIGH(cachep);
2972
2973                ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2974        }
2975
2976        return batchcount;
2977}
2978
2979static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2980{
2981        int batchcount;
2982        struct kmem_cache_node *n;
2983        struct array_cache *ac, *shared;
2984        int node;
2985        void *list = NULL;
2986        struct page *page;
2987
2988        check_irq_off();
2989        node = numa_mem_id();
2990
2991        ac = cpu_cache_get(cachep);
2992        batchcount = ac->batchcount;
2993        if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2994                /*
2995                 * If there was little recent activity on this cache, then
2996                 * perform only a partial refill.  Otherwise we could generate
2997                 * refill bouncing.
2998                 */
2999                batchcount = BATCHREFILL_LIMIT;
3000        }
3001        n = get_node(cachep, node);
3002
3003        BUG_ON(ac->avail > 0 || !n);
3004        shared = READ_ONCE(n->shared);
3005        if (!n->free_objects && (!shared || !shared->avail))
3006                goto direct_grow;
3007
3008        spin_lock(&n->list_lock);
3009        shared = READ_ONCE(n->shared);
3010
3011        /* See if we can refill from the shared array */
3012        if (shared && transfer_objects(ac, shared, batchcount)) {
3013                shared->touched = 1;
3014                goto alloc_done;
3015        }
3016
3017        while (batchcount > 0) {
3018                /* Get slab alloc is to come from. */
3019                page = get_first_slab(n, false);
3020                if (!page)
3021                        goto must_grow;
3022
3023                check_spinlock_acquired(cachep);
3024
3025                batchcount = alloc_block(cachep, ac, page, batchcount);
3026                fixup_slab_list(cachep, n, page, &list);
3027        }
3028
3029must_grow:
3030        n->free_objects -= ac->avail;
3031alloc_done:
3032        spin_unlock(&n->list_lock);
3033        fixup_objfreelist_debug(cachep, &list);
3034
3035direct_grow:
3036        if (unlikely(!ac->avail)) {
3037                /* Check if we can use obj in pfmemalloc slab */
3038                if (sk_memalloc_socks()) {
3039                        void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3040
3041                        if (obj)
3042                                return obj;
3043                }
3044
3045                page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3046
3047                /*
3048                 * cache_grow_begin() can reenable interrupts,
3049                 * then ac could change.
3050                 */
3051                ac = cpu_cache_get(cachep);
3052                if (!ac->avail && page)
3053                        alloc_block(cachep, ac, page, batchcount);
3054                cache_grow_end(cachep, page);
3055
3056                if (!ac->avail)
3057                        return NULL;
3058        }
3059        ac->touched = 1;
3060
3061        return ac->entry[--ac->avail];
3062}
3063
3064static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3065                                                gfp_t flags)
3066{
3067        might_sleep_if(gfpflags_allow_blocking(flags));
3068}
3069
3070#if DEBUG
3071static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3072                                gfp_t flags, void *objp, unsigned long caller)
3073{
3074        if (!objp)
3075                return objp;
3076        if (cachep->flags & SLAB_POISON) {
3077                check_poison_obj(cachep, objp);
3078                slab_kernel_map(cachep, objp, 1, 0);
3079                poison_obj(cachep, objp, POISON_INUSE);
3080        }
3081        if (cachep->flags & SLAB_STORE_USER)
3082                *dbg_userword(cachep, objp) = (void *)caller;
3083
3084        if (cachep->flags & SLAB_RED_ZONE) {
3085                if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3086                                *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3087                        slab_error(cachep, "double free, or memory outside object was overwritten");
3088                        pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3089                               objp, *dbg_redzone1(cachep, objp),
3090                               *dbg_redzone2(cachep, objp));
3091                }
3092                *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3093                *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3094        }
3095
3096        objp += obj_offset(cachep);
3097        if (cachep->ctor && cachep->flags & SLAB_POISON)
3098                cachep->ctor(objp);
3099        if (ARCH_SLAB_MINALIGN &&
3100            ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3101                pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3102                       objp, (int)ARCH_SLAB_MINALIGN);
3103        }
3104        return objp;
3105}
3106#else
3107#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3108#endif
3109
3110static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3111{
3112        void *objp;
3113        struct array_cache *ac;
3114
3115        check_irq_off();
3116
3117        ac = cpu_cache_get(cachep);
3118        if (likely(ac->avail)) {
3119                ac->touched = 1;
3120                objp = ac->entry[--ac->avail];
3121
3122                STATS_INC_ALLOCHIT(cachep);
3123                goto out;
3124        }
3125
3126        STATS_INC_ALLOCMISS(cachep);
3127        objp = cache_alloc_refill(cachep, flags);
3128        /*
3129         * the 'ac' may be updated by cache_alloc_refill(),
3130         * and kmemleak_erase() requires its correct value.
3131         */
3132        ac = cpu_cache_get(cachep);
3133
3134out:
3135        /*
3136         * To avoid a false negative, if an object that is in one of the
3137         * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3138         * treat the array pointers as a reference to the object.
3139         */
3140        if (objp)
3141                kmemleak_erase(&ac->entry[ac->avail]);
3142        return objp;
3143}
3144
3145#ifdef CONFIG_NUMA
3146/*
3147 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3148 *
3149 * If we are in_interrupt, then process context, including cpusets and
3150 * mempolicy, may not apply and should not be used for allocation policy.
3151 */
3152static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3153{
3154        int nid_alloc, nid_here;
3155
3156        if (in_interrupt() || (flags & __GFP_THISNODE))
3157                return NULL;
3158        nid_alloc = nid_here = numa_mem_id();
3159        if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3160                nid_alloc = cpuset_slab_spread_node();
3161        else if (current->mempolicy)
3162                nid_alloc = mempolicy_slab_node();
3163        if (nid_alloc != nid_here)
3164                return ____cache_alloc_node(cachep, flags, nid_alloc);
3165        return NULL;
3166}
3167
3168/*
3169 * Fallback function if there was no memory available and no objects on a
3170 * certain node and fall back is permitted. First we scan all the
3171 * available node for available objects. If that fails then we
3172 * perform an allocation without specifying a node. This allows the page
3173 * allocator to do its reclaim / fallback magic. We then insert the
3174 * slab into the proper nodelist and then allocate from it.
3175 */
3176static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3177{
3178        struct zonelist *zonelist;
3179        struct zoneref *z;
3180        struct zone *zone;
3181        enum zone_type high_zoneidx = gfp_zone(flags);
3182        void *obj = NULL;
3183        struct page *page;
3184        int nid;
3185        unsigned int cpuset_mems_cookie;
3186
3187        if (flags & __GFP_THISNODE)
3188                return NULL;
3189
3190retry_cpuset:
3191        cpuset_mems_cookie = read_mems_allowed_begin();
3192        zonelist = node_zonelist(mempolicy_slab_node(), flags);
3193
3194retry:
3195        /*
3196         * Look through allowed nodes for objects available
3197         * from existing per node queues.
3198         */
3199        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3200                nid = zone_to_nid(zone);
3201
3202                if (cpuset_zone_allowed(zone, flags) &&
3203                        get_node(cache, nid) &&
3204                        get_node(cache, nid)->free_objects) {
3205                                obj = ____cache_alloc_node(cache,
3206                                        gfp_exact_node(flags), nid);
3207                                if (obj)
3208                                        break;
3209                }
3210        }
3211
3212        if (!obj) {
3213                /*
3214                 * This allocation will be performed within the constraints
3215                 * of the current cpuset / memory policy requirements.
3216                 * We may trigger various forms of reclaim on the allowed
3217                 * set and go into memory reserves if necessary.
3218                 */
3219                page = cache_grow_begin(cache, flags, numa_mem_id());
3220                cache_grow_end(cache, page);
3221                if (page) {
3222                        nid = page_to_nid(page);
3223                        obj = ____cache_alloc_node(cache,
3224                                gfp_exact_node(flags), nid);
3225
3226                        /*
3227                         * Another processor may allocate the objects in
3228                         * the slab since we are not holding any locks.
3229                         */
3230                        if (!obj)
3231                                goto retry;
3232                }
3233        }
3234
3235        if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3236                goto retry_cpuset;
3237        return obj;
3238}
3239
3240/*
3241 * A interface to enable slab creation on nodeid
3242 */
3243static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3244                                int nodeid)
3245{
3246        struct page *page;
3247        struct kmem_cache_node *n;
3248        void *obj = NULL;
3249        void *list = NULL;
3250
3251        VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3252        n = get_node(cachep, nodeid);
3253        BUG_ON(!n);
3254
3255        check_irq_off();
3256        spin_lock(&n->list_lock);
3257        page = get_first_slab(n, false);
3258        if (!page)
3259                goto must_grow;
3260
3261        check_spinlock_acquired_node(cachep, nodeid);
3262
3263        STATS_INC_NODEALLOCS(cachep);
3264        STATS_INC_ACTIVE(cachep);
3265        STATS_SET_HIGH(cachep);
3266
3267        BUG_ON(page->active == cachep->num);
3268
3269        obj = slab_get_obj(cachep, page);
3270        n->free_objects--;
3271
3272        fixup_slab_list(cachep, n, page, &list);
3273
3274        spin_unlock(&n->list_lock);
3275        fixup_objfreelist_debug(cachep, &list);
3276        return obj;
3277
3278must_grow:
3279        spin_unlock(&n->list_lock);
3280        page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3281        if (page) {
3282                /* This slab isn't counted yet so don't update free_objects */
3283                obj = slab_get_obj(cachep, page);
3284        }
3285        cache_grow_end(cachep, page);
3286
3287        return obj ? obj : fallback_alloc(cachep, flags);
3288}
3289
3290static __always_inline void *
3291slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3292                   unsigned long caller)
3293{
3294        unsigned long save_flags;
3295        void *ptr;
3296        int slab_node = numa_mem_id();
3297
3298        flags &= gfp_allowed_mask;
3299        cachep = slab_pre_alloc_hook(cachep, flags);
3300        if (unlikely(!cachep))
3301                return NULL;
3302
3303        cache_alloc_debugcheck_before(cachep, flags);
3304        local_irq_save(save_flags);
3305
3306        if (nodeid == NUMA_NO_NODE)
3307                nodeid = slab_node;
3308
3309        if (unlikely(!get_node(cachep, nodeid))) {
3310                /* Node not bootstrapped yet */
3311                ptr = fallback_alloc(cachep, flags);
3312                goto out;
3313        }
3314
3315        if (nodeid == slab_node) {
3316                /*
3317                 * Use the locally cached objects if possible.
3318                 * However ____cache_alloc does not allow fallback
3319                 * to other nodes. It may fail while we still have
3320                 * objects on other nodes available.
3321                 */
3322                ptr = ____cache_alloc(cachep, flags);
3323                if (ptr)
3324                        goto out;
3325        }
3326        /* ___cache_alloc_node can fall back to other nodes */
3327        ptr = ____cache_alloc_node(cachep, flags, nodeid);
3328  out:
3329        local_irq_restore(save_flags);
3330        ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3331
3332        if (unlikely(flags & __GFP_ZERO) && ptr)
3333                memset(ptr, 0, cachep->object_size);
3334
3335        slab_post_alloc_hook(cachep, flags, 1, &ptr);
3336        return ptr;
3337}
3338
3339static __always_inline void *
3340__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3341{
3342        void *objp;
3343
3344        if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3345                objp = alternate_node_alloc(cache, flags);
3346                if (objp)
3347                        goto out;
3348        }
3349        objp = ____cache_alloc(cache, flags);
3350
3351        /*
3352         * We may just have run out of memory on the local node.
3353         * ____cache_alloc_node() knows how to locate memory on other nodes
3354         */
3355        if (!objp)
3356                objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3357
3358  out:
3359        return objp;
3360}
3361#else
3362
3363static __always_inline void *
3364__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3365{
3366        return ____cache_alloc(cachep, flags);
3367}
3368
3369#endif /* CONFIG_NUMA */
3370
3371static __always_inline void *
3372slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3373{
3374        unsigned long save_flags;
3375        void *objp;
3376
3377        flags &= gfp_allowed_mask;
3378        cachep = slab_pre_alloc_hook(cachep, flags);
3379        if (unlikely(!cachep))
3380                return NULL;
3381
3382        cache_alloc_debugcheck_before(cachep, flags);
3383        local_irq_save(save_flags);
3384        objp = __do_cache_alloc(cachep, flags);
3385        local_irq_restore(save_flags);
3386        objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3387        prefetchw(objp);
3388
3389        if (unlikely(flags & __GFP_ZERO) && objp)
3390                memset(objp, 0, cachep->object_size);
3391
3392        slab_post_alloc_hook(cachep, flags, 1, &objp);
3393        return objp;
3394}
3395
3396/*
3397 * Caller needs to acquire correct kmem_cache_node's list_lock
3398 * @list: List of detached free slabs should be freed by caller
3399 */
3400static void free_block(struct kmem_cache *cachep, void **objpp,
3401                        int nr_objects, int node, struct list_head *list)
3402{
3403        int i;
3404        struct kmem_cache_node *n = get_node(cachep, node);
3405        struct page *page;
3406
3407        n->free_objects += nr_objects;
3408
3409        for (i = 0; i < nr_objects; i++) {
3410                void *objp;
3411                struct page *page;
3412
3413                objp = objpp[i];
3414
3415                page = virt_to_head_page(objp);
3416                list_del(&page->lru);
3417                check_spinlock_acquired_node(cachep, node);
3418                slab_put_obj(cachep, page, objp);
3419                STATS_DEC_ACTIVE(cachep);
3420
3421                /* fixup slab chains */
3422                if (page->active == 0) {
3423                        list_add(&page->lru, &n->slabs_free);
3424                        n->free_slabs++;
3425                } else {
3426                        /* Unconditionally move a slab to the end of the
3427                         * partial list on free - maximum time for the
3428                         * other objects to be freed, too.
3429                         */
3430                        list_add_tail(&page->lru, &n->slabs_partial);
3431                }
3432        }
3433
3434        while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3435                n->free_objects -= cachep->num;
3436
3437                page = list_last_entry(&n->slabs_free, struct page, lru);
3438                list_move(&page->lru, list);
3439                n->free_slabs--;
3440                n->total_slabs--;
3441        }
3442}
3443
3444static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3445{
3446        int batchcount;
3447        struct kmem_cache_node *n;
3448        int node = numa_mem_id();
3449        LIST_HEAD(list);
3450
3451        batchcount = ac->batchcount;
3452
3453        check_irq_off();
3454        n = get_node(cachep, node);
3455        spin_lock(&n->list_lock);
3456        if (n->shared) {
3457                struct array_cache *shared_array = n->shared;
3458                int max = shared_array->limit - shared_array->avail;
3459                if (max) {
3460                        if (batchcount > max)
3461                                batchcount = max;
3462                        memcpy(&(shared_array->entry[shared_array->avail]),
3463                               ac->entry, sizeof(void *) * batchcount);
3464                        shared_array->avail += batchcount;
3465                        goto free_done;
3466                }
3467        }
3468
3469        free_block(cachep, ac->entry, batchcount, node, &list);
3470free_done:
3471#if STATS
3472        {
3473                int i = 0;
3474                struct page *page;
3475
3476                list_for_each_entry(page, &n->slabs_free, lru) {
3477                        BUG_ON(page->active);
3478
3479                        i++;
3480                }
3481                STATS_SET_FREEABLE(cachep, i);
3482        }
3483#endif
3484        spin_unlock(&n->list_lock);
3485        slabs_destroy(cachep, &list);
3486        ac->avail -= batchcount;
3487        memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3488}
3489
3490/*
3491 * Release an obj back to its cache. If the obj has a constructed state, it must
3492 * be in this state _before_ it is released.  Called with disabled ints.
3493 */
3494static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3495                                         unsigned long caller)
3496{
3497        /* Put the object into the quarantine, don't touch it for now. */
3498        if (kasan_slab_free(cachep, objp, _RET_IP_))
3499                return;
3500
3501        ___cache_free(cachep, objp, caller);
3502}
3503
3504void ___cache_free(struct kmem_cache *cachep, void *objp,
3505                unsigned long caller)
3506{
3507        struct array_cache *ac = cpu_cache_get(cachep);
3508
3509        check_irq_off();
3510        kmemleak_free_recursive(objp, cachep->flags);
3511        objp = cache_free_debugcheck(cachep, objp, caller);
3512
3513        /*
3514         * Skip calling cache_free_alien() when the platform is not numa.
3515         * This will avoid cache misses that happen while accessing slabp (which
3516         * is per page memory  reference) to get nodeid. Instead use a global
3517         * variable to skip the call, which is mostly likely to be present in
3518         * the cache.
3519         */
3520        if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3521                return;
3522
3523        if (ac->avail < ac->limit) {
3524                STATS_INC_FREEHIT(cachep);
3525        } else {
3526                STATS_INC_FREEMISS(cachep);
3527                cache_flusharray(cachep, ac);
3528        }
3529
3530        if (sk_memalloc_socks()) {
3531                struct page *page = virt_to_head_page(objp);
3532
3533                if (unlikely(PageSlabPfmemalloc(page))) {
3534                        cache_free_pfmemalloc(cachep, page, objp);
3535                        return;
3536                }
3537        }
3538
3539        ac->entry[ac->avail++] = objp;
3540}
3541
3542/**
3543 * kmem_cache_alloc - Allocate an object
3544 * @cachep: The cache to allocate from.
3545 * @flags: See kmalloc().
3546 *
3547 * Allocate an object from this cache.  The flags are only relevant
3548 * if the cache has no available objects.
3549 */
3550void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3551{
3552        void *ret = slab_alloc(cachep, flags, _RET_IP_);
3553
3554        kasan_slab_alloc(cachep, ret, flags);
3555        trace_kmem_cache_alloc(_RET_IP_, ret,
3556                               cachep->object_size, cachep->size, flags);
3557
3558        return ret;
3559}
3560EXPORT_SYMBOL(kmem_cache_alloc);
3561
3562static __always_inline void
3563cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3564                                  size_t size, void **p, unsigned long caller)
3565{
3566        size_t i;
3567
3568        for (i = 0; i < size; i++)
3569                p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3570}
3571
3572int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3573                          void **p)
3574{
3575        size_t i;
3576
3577        s = slab_pre_alloc_hook(s, flags);
3578        if (!s)
3579                return 0;
3580
3581        cache_alloc_debugcheck_before(s, flags);
3582
3583        local_irq_disable();
3584        for (i = 0; i < size; i++) {
3585                void *objp = __do_cache_alloc(s, flags);
3586
3587                if (unlikely(!objp))
3588                        goto error;
3589                p[i] = objp;
3590        }
3591        local_irq_enable();
3592
3593        cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3594
3595        /* Clear memory outside IRQ disabled section */
3596        if (unlikely(flags & __GFP_ZERO))
3597                for (i = 0; i < size; i++)
3598                        memset(p[i], 0, s->object_size);
3599
3600        slab_post_alloc_hook(s, flags, size, p);
3601        /* FIXME: Trace call missing. Christoph would like a bulk variant */
3602        return size;
3603error:
3604        local_irq_enable();
3605        cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3606        slab_post_alloc_hook(s, flags, i, p);
3607        __kmem_cache_free_bulk(s, i, p);
3608        return 0;
3609}
3610EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3611
3612#ifdef CONFIG_TRACING
3613void *
3614kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3615{
3616        void *ret;
3617
3618        ret = slab_alloc(cachep, flags, _RET_IP_);
3619
3620        kasan_kmalloc(cachep, ret, size, flags);
3621        trace_kmalloc(_RET_IP_, ret,
3622                      size, cachep->size, flags);
3623        return ret;
3624}
3625EXPORT_SYMBOL(kmem_cache_alloc_trace);
3626#endif
3627
3628#ifdef CONFIG_NUMA
3629/**
3630 * kmem_cache_alloc_node - Allocate an object on the specified node
3631 * @cachep: The cache to allocate from.
3632 * @flags: See kmalloc().
3633 * @nodeid: node number of the target node.
3634 *
3635 * Identical to kmem_cache_alloc but it will allocate memory on the given
3636 * node, which can improve the performance for cpu bound structures.
3637 *
3638 * Fallback to other node is possible if __GFP_THISNODE is not set.
3639 */
3640void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3641{
3642        void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3643
3644        kasan_slab_alloc(cachep, ret, flags);
3645        trace_kmem_cache_alloc_node(_RET_IP_, ret,
3646                                    cachep->object_size, cachep->size,
3647                                    flags, nodeid);
3648
3649        return ret;
3650}
3651EXPORT_SYMBOL(kmem_cache_alloc_node);
3652
3653#ifdef CONFIG_TRACING
3654void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3655                                  gfp_t flags,
3656                                  int nodeid,
3657                                  size_t size)
3658{
3659        void *ret;
3660
3661        ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3662
3663        kasan_kmalloc(cachep, ret, size, flags);
3664        trace_kmalloc_node(_RET_IP_, ret,
3665                           size, cachep->size,
3666                           flags, nodeid);
3667        return ret;
3668}
3669EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3670#endif
3671
3672static __always_inline void *
3673__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3674{
3675        struct kmem_cache *cachep;
3676        void *ret;
3677
3678        cachep = kmalloc_slab(size, flags);
3679        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3680                return cachep;
3681        ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3682        kasan_kmalloc(cachep, ret, size, flags);
3683
3684        return ret;
3685}
3686
3687void *__kmalloc_node(size_t size, gfp_t flags, int node)
3688{
3689        return __do_kmalloc_node(size, flags, node, _RET_IP_);
3690}
3691EXPORT_SYMBOL(__kmalloc_node);
3692
3693void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3694                int node, unsigned long caller)
3695{
3696        return __do_kmalloc_node(size, flags, node, caller);
3697}
3698EXPORT_SYMBOL(__kmalloc_node_track_caller);
3699#endif /* CONFIG_NUMA */
3700
3701/**
3702 * __do_kmalloc - allocate memory
3703 * @size: how many bytes of memory are required.
3704 * @flags: the type of memory to allocate (see kmalloc).
3705 * @caller: function caller for debug tracking of the caller
3706 */
3707static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3708                                          unsigned long caller)
3709{
3710        struct kmem_cache *cachep;
3711        void *ret;
3712
3713        cachep = kmalloc_slab(size, flags);
3714        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3715                return cachep;
3716        ret = slab_alloc(cachep, flags, caller);
3717
3718        kasan_kmalloc(cachep, ret, size, flags);
3719        trace_kmalloc(caller, ret,
3720                      size, cachep->size, flags);
3721
3722        return ret;
3723}
3724
3725void *__kmalloc(size_t size, gfp_t flags)
3726{
3727        return __do_kmalloc(size, flags, _RET_IP_);
3728}
3729EXPORT_SYMBOL(__kmalloc);
3730
3731void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3732{
3733        return __do_kmalloc(size, flags, caller);
3734}
3735EXPORT_SYMBOL(__kmalloc_track_caller);
3736
3737/**
3738 * kmem_cache_free - Deallocate an object
3739 * @cachep: The cache the allocation was from.
3740 * @objp: The previously allocated object.
3741 *
3742 * Free an object which was previously allocated from this
3743 * cache.
3744 */
3745void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3746{
3747        unsigned long flags;
3748        cachep = cache_from_obj(cachep, objp);
3749        if (!cachep)
3750                return;
3751
3752        local_irq_save(flags);
3753        debug_check_no_locks_freed(objp, cachep->object_size);
3754        if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3755                debug_check_no_obj_freed(objp, cachep->object_size);
3756        __cache_free(cachep, objp, _RET_IP_);
3757        local_irq_restore(flags);
3758
3759        trace_kmem_cache_free(_RET_IP_, objp);
3760}
3761EXPORT_SYMBOL(kmem_cache_free);
3762
3763void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3764{
3765        struct kmem_cache *s;
3766        size_t i;
3767
3768        local_irq_disable();
3769        for (i = 0; i < size; i++) {
3770                void *objp = p[i];
3771
3772                if (!orig_s) /* called via kfree_bulk */
3773                        s = virt_to_cache(objp);
3774                else
3775                        s = cache_from_obj(orig_s, objp);
3776
3777                debug_check_no_locks_freed(objp, s->object_size);
3778                if (!(s->flags & SLAB_DEBUG_OBJECTS))
3779                        debug_check_no_obj_freed(objp, s->object_size);
3780
3781                __cache_free(s, objp, _RET_IP_);
3782        }
3783        local_irq_enable();
3784
3785        /* FIXME: add tracing */
3786}
3787EXPORT_SYMBOL(kmem_cache_free_bulk);
3788
3789/**
3790 * kfree - free previously allocated memory
3791 * @objp: pointer returned by kmalloc.
3792 *
3793 * If @objp is NULL, no operation is performed.
3794 *
3795 * Don't free memory not originally allocated by kmalloc()
3796 * or you will run into trouble.
3797 */
3798void kfree(const void *objp)
3799{
3800        struct kmem_cache *c;
3801        unsigned long flags;
3802
3803        trace_kfree(_RET_IP_, objp);
3804
3805        if (unlikely(ZERO_OR_NULL_PTR(objp)))
3806                return;
3807        local_irq_save(flags);
3808        kfree_debugcheck(objp);
3809        c = virt_to_cache(objp);
3810        debug_check_no_locks_freed(objp, c->object_size);
3811
3812        debug_check_no_obj_freed(objp, c->object_size);
3813        __cache_free(c, (void *)objp, _RET_IP_);
3814        local_irq_restore(flags);
3815}
3816EXPORT_SYMBOL(kfree);
3817
3818/*
3819 * This initializes kmem_cache_node or resizes various caches for all nodes.
3820 */
3821static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3822{
3823        int ret;
3824        int node;
3825        struct kmem_cache_node *n;
3826
3827        for_each_online_node(node) {
3828                ret = setup_kmem_cache_node(cachep, node, gfp, true);
3829                if (ret)
3830                        goto fail;
3831
3832        }
3833
3834        return 0;
3835
3836fail:
3837        if (!cachep->list.next) {
3838                /* Cache is not active yet. Roll back what we did */
3839                node--;
3840                while (node >= 0) {
3841                        n = get_node(cachep, node);
3842                        if (n) {
3843                                kfree(n->shared);
3844                                free_alien_cache(n->alien);
3845                                kfree(n);
3846                                cachep->node[node] = NULL;
3847                        }
3848                        node--;
3849                }
3850        }
3851        return -ENOMEM;
3852}
3853
3854/* Always called with the slab_mutex held */
3855static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3856                                int batchcount, int shared, gfp_t gfp)
3857{
3858        struct array_cache __percpu *cpu_cache, *prev;
3859        int cpu;
3860
3861        cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3862        if (!cpu_cache)
3863                return -ENOMEM;
3864
3865        prev = cachep->cpu_cache;
3866        cachep->cpu_cache = cpu_cache;
3867        /*
3868         * Without a previous cpu_cache there's no need to synchronize remote
3869         * cpus, so skip the IPIs.
3870         */
3871        if (prev)
3872                kick_all_cpus_sync();
3873
3874        check_irq_on();
3875        cachep->batchcount = batchcount;
3876        cachep->limit = limit;
3877        cachep->shared = shared;
3878
3879        if (!prev)
3880                goto setup_node;
3881
3882        for_each_online_cpu(cpu) {
3883                LIST_HEAD(list);
3884                int node;
3885                struct kmem_cache_node *n;
3886                struct array_cache *ac = per_cpu_ptr(prev, cpu);
3887
3888                node = cpu_to_mem(cpu);
3889                n = get_node(cachep, node);
3890                spin_lock_irq(&n->list_lock);
3891                free_block(cachep, ac->entry, ac->avail, node, &list);
3892                spin_unlock_irq(&n->list_lock);
3893                slabs_destroy(cachep, &list);
3894        }
3895        free_percpu(prev);
3896
3897setup_node:
3898        return setup_kmem_cache_nodes(cachep, gfp);
3899}
3900
3901static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3902                                int batchcount, int shared, gfp_t gfp)
3903{
3904        int ret;
3905        struct kmem_cache *c;
3906
3907        ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3908
3909        if (slab_state < FULL)
3910                return ret;
3911
3912        if ((ret < 0) || !is_root_cache(cachep))
3913                return ret;
3914
3915        lockdep_assert_held(&slab_mutex);
3916        for_each_memcg_cache(c, cachep) {
3917                /* return value determined by the root cache only */
3918                __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3919        }
3920
3921        return ret;
3922}
3923
3924/* Called with slab_mutex held always */
3925static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3926{
3927        int err;
3928        int limit = 0;
3929        int shared = 0;
3930        int batchcount = 0;
3931
3932        err = cache_random_seq_create(cachep, cachep->num, gfp);
3933        if (err)
3934                goto end;
3935
3936        if (!is_root_cache(cachep)) {
3937                struct kmem_cache *root = memcg_root_cache(cachep);
3938                limit = root->limit;
3939                shared = root->shared;
3940                batchcount = root->batchcount;
3941        }
3942
3943        if (limit && shared && batchcount)
3944                goto skip_setup;
3945        /*
3946         * The head array serves three purposes:
3947         * - create a LIFO ordering, i.e. return objects that are cache-warm
3948         * - reduce the number of spinlock operations.
3949         * - reduce the number of linked list operations on the slab and
3950         *   bufctl chains: array operations are cheaper.
3951         * The numbers are guessed, we should auto-tune as described by
3952         * Bonwick.
3953         */
3954        if (cachep->size > 131072)
3955                limit = 1;
3956        else if (cachep->size > PAGE_SIZE)
3957                limit = 8;
3958        else if (cachep->size > 1024)
3959                limit = 24;
3960        else if (cachep->size > 256)
3961                limit = 54;
3962        else
3963                limit = 120;
3964
3965        /*
3966         * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3967         * allocation behaviour: Most allocs on one cpu, most free operations
3968         * on another cpu. For these cases, an efficient object passing between
3969         * cpus is necessary. This is provided by a shared array. The array
3970         * replaces Bonwick's magazine layer.
3971         * On uniprocessor, it's functionally equivalent (but less efficient)
3972         * to a larger limit. Thus disabled by default.
3973         */
3974        shared = 0;
3975        if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3976                shared = 8;
3977
3978#if DEBUG
3979        /*
3980         * With debugging enabled, large batchcount lead to excessively long
3981         * periods with disabled local interrupts. Limit the batchcount
3982         */
3983        if (limit > 32)
3984                limit = 32;
3985#endif
3986        batchcount = (limit + 1) / 2;
3987skip_setup:
3988        err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3989end:
3990        if (err)
3991                pr_err("enable_cpucache failed for %s, error %d\n",
3992                       cachep->name, -err);
3993        return err;
3994}
3995
3996/*
3997 * Drain an array if it contains any elements taking the node lock only if
3998 * necessary. Note that the node listlock also protects the array_cache
3999 * if drain_array() is used on the shared array.
4000 */
4001static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4002                         struct array_cache *ac, int node)
4003{
4004        LIST_HEAD(list);
4005
4006        /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4007        check_mutex_acquired();
4008
4009        if (!ac || !ac->avail)
4010                return;
4011
4012        if (ac->touched) {
4013                ac->touched = 0;
4014                return;
4015        }
4016
4017        spin_lock_irq(&n->list_lock);
4018        drain_array_locked(cachep, ac, node, false, &list);
4019        spin_unlock_irq(&n->list_lock);
4020
4021        slabs_destroy(cachep, &list);
4022}
4023
4024/**
4025 * cache_reap - Reclaim memory from caches.
4026 * @w: work descriptor
4027 *
4028 * Called from workqueue/eventd every few seconds.
4029 * Purpose:
4030 * - clear the per-cpu caches for this CPU.
4031 * - return freeable pages to the main free memory pool.
4032 *
4033 * If we cannot acquire the cache chain mutex then just give up - we'll try
4034 * again on the next iteration.
4035 */
4036static void cache_reap(struct work_struct *w)
4037{
4038        struct kmem_cache *searchp;
4039        struct kmem_cache_node *n;
4040        int node = numa_mem_id();
4041        struct delayed_work *work = to_delayed_work(w);
4042
4043        if (!mutex_trylock(&slab_mutex))
4044                /* Give up. Setup the next iteration. */
4045                goto out;
4046
4047        list_for_each_entry(searchp, &slab_caches, list) {
4048                check_irq_on();
4049
4050                /*
4051                 * We only take the node lock if absolutely necessary and we
4052                 * have established with reasonable certainty that
4053                 * we can do some work if the lock was obtained.
4054                 */
4055                n = get_node(searchp, node);
4056
4057                reap_alien(searchp, n);
4058
4059                drain_array(searchp, n, cpu_cache_get(searchp), node);
4060
4061                /*
4062                 * These are racy checks but it does not matter
4063                 * if we skip one check or scan twice.
4064                 */
4065                if (time_after(n->next_reap, jiffies))
4066                        goto next;
4067
4068                n->next_reap = jiffies + REAPTIMEOUT_NODE;
4069
4070                drain_array(searchp, n, n->shared, node);
4071
4072                if (n->free_touched)
4073                        n->free_touched = 0;
4074                else {
4075                        int freed;
4076
4077                        freed = drain_freelist(searchp, n, (n->free_limit +
4078                                5 * searchp->num - 1) / (5 * searchp->num));
4079                        STATS_ADD_REAPED(searchp, freed);
4080                }
4081next:
4082                cond_resched();
4083        }
4084        check_irq_on();
4085        mutex_unlock(&slab_mutex);
4086        next_reap_node();
4087out:
4088        /* Set up the next iteration */
4089        schedule_delayed_work_on(smp_processor_id(), work,
4090                                round_jiffies_relative(REAPTIMEOUT_AC));
4091}
4092
4093void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4094{
4095        unsigned long active_objs, num_objs, active_slabs;
4096        unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4097        unsigned long free_slabs = 0;
4098        int node;
4099        struct kmem_cache_node *n;
4100
4101        for_each_kmem_cache_node(cachep, node, n) {
4102                check_irq_on();
4103                spin_lock_irq(&n->list_lock);
4104
4105                total_slabs += n->total_slabs;
4106                free_slabs += n->free_slabs;
4107                free_objs += n->free_objects;
4108
4109                if (n->shared)
4110                        shared_avail += n->shared->avail;
4111
4112                spin_unlock_irq(&n->list_lock);
4113        }
4114        num_objs = total_slabs * cachep->num;
4115        active_slabs = total_slabs - free_slabs;
4116        active_objs = num_objs - free_objs;
4117
4118        sinfo->active_objs = active_objs;
4119        sinfo->num_objs = num_objs;
4120        sinfo->active_slabs = active_slabs;
4121        sinfo->num_slabs = total_slabs;
4122        sinfo->shared_avail = shared_avail;
4123        sinfo->limit = cachep->limit;
4124        sinfo->batchcount = cachep->batchcount;
4125        sinfo->shared = cachep->shared;
4126        sinfo->objects_per_slab = cachep->num;
4127        sinfo->cache_order = cachep->gfporder;
4128}
4129
4130void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4131{
4132#if STATS
4133        {                       /* node stats */
4134                unsigned long high = cachep->high_mark;
4135                unsigned long allocs = cachep->num_allocations;
4136                unsigned long grown = cachep->grown;
4137                unsigned long reaped = cachep->reaped;
4138                unsigned long errors = cachep->errors;
4139                unsigned long max_freeable = cachep->max_freeable;
4140                unsigned long node_allocs = cachep->node_allocs;
4141                unsigned long node_frees = cachep->node_frees;
4142                unsigned long overflows = cachep->node_overflow;
4143
4144                seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4145                           allocs, high, grown,
4146                           reaped, errors, max_freeable, node_allocs,
4147                           node_frees, overflows);
4148        }
4149        /* cpu stats */
4150        {
4151                unsigned long allochit = atomic_read(&cachep->allochit);
4152                unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4153                unsigned long freehit = atomic_read(&cachep->freehit);
4154                unsigned long freemiss = atomic_read(&cachep->freemiss);
4155
4156                seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4157                           allochit, allocmiss, freehit, freemiss);
4158        }
4159#endif
4160}
4161
4162#define MAX_SLABINFO_WRITE 128
4163/**
4164 * slabinfo_write - Tuning for the slab allocator
4165 * @file: unused
4166 * @buffer: user buffer
4167 * @count: data length
4168 * @ppos: unused
4169 */
4170ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4171                       size_t count, loff_t *ppos)
4172{
4173        char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4174        int limit, batchcount, shared, res;
4175        struct kmem_cache *cachep;
4176
4177        if (count > MAX_SLABINFO_WRITE)
4178                return -EINVAL;
4179        if (copy_from_user(&kbuf, buffer, count))
4180                return -EFAULT;
4181        kbuf[MAX_SLABINFO_WRITE] = '\0';
4182
4183        tmp = strchr(kbuf, ' ');
4184        if (!tmp)
4185                return -EINVAL;
4186        *tmp = '\0';
4187        tmp++;
4188        if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4189                return -EINVAL;
4190
4191        /* Find the cache in the chain of caches. */
4192        mutex_lock(&slab_mutex);
4193        res = -EINVAL;
4194        list_for_each_entry(cachep, &slab_caches, list) {
4195                if (!strcmp(cachep->name, kbuf)) {
4196                        if (limit < 1 || batchcount < 1 ||
4197                                        batchcount > limit || shared < 0) {
4198                                res = 0;
4199                        } else {
4200                                res = do_tune_cpucache(cachep, limit,
4201                                                       batchcount, shared,
4202                                                       GFP_KERNEL);
4203                        }
4204                        break;
4205                }
4206        }
4207        mutex_unlock(&slab_mutex);
4208        if (res >= 0)
4209                res = count;
4210        return res;
4211}
4212
4213#ifdef CONFIG_DEBUG_SLAB_LEAK
4214
4215static inline int add_caller(unsigned long *n, unsigned long v)
4216{
4217        unsigned long *p;
4218        int l;
4219        if (!v)
4220                return 1;
4221        l = n[1];
4222        p = n + 2;
4223        while (l) {
4224                int i = l/2;
4225                unsigned long *q = p + 2 * i;
4226                if (*q == v) {
4227                        q[1]++;
4228                        return 1;
4229                }
4230                if (*q > v) {
4231                        l = i;
4232                } else {
4233                        p = q + 2;
4234                        l -= i + 1;
4235                }
4236        }
4237        if (++n[1] == n[0])
4238                return 0;
4239        memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4240        p[0] = v;
4241        p[1] = 1;
4242        return 1;
4243}
4244
4245static void handle_slab(unsigned long *n, struct kmem_cache *c,
4246                                                struct page *page)
4247{
4248        void *p;
4249        int i, j;
4250        unsigned long v;
4251
4252        if (n[0] == n[1])
4253                return;
4254        for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4255                bool active = true;
4256
4257                for (j = page->active; j < c->num; j++) {
4258                        if (get_free_obj(page, j) == i) {
4259                                active = false;
4260                                break;
4261                        }
4262                }
4263
4264                if (!active)
4265                        continue;
4266
4267                /*
4268                 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4269                 * mapping is established when actual object allocation and
4270                 * we could mistakenly access the unmapped object in the cpu
4271                 * cache.
4272                 */
4273                if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4274                        continue;
4275
4276                if (!add_caller(n, v))
4277                        return;
4278        }
4279}
4280
4281static void show_symbol(struct seq_file *m, unsigned long address)
4282{
4283#ifdef CONFIG_KALLSYMS
4284        unsigned long offset, size;
4285        char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4286
4287        if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4288                seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4289                if (modname[0])
4290                        seq_printf(m, " [%s]", modname);
4291                return;
4292        }
4293#endif
4294        seq_printf(m, "%px", (void *)address);
4295}
4296
4297static int leaks_show(struct seq_file *m, void *p)
4298{
4299        struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4300        struct page *page;
4301        struct kmem_cache_node *n;
4302        const char *name;
4303        unsigned long *x = m->private;
4304        int node;
4305        int i;
4306
4307        if (!(cachep->flags & SLAB_STORE_USER))
4308                return 0;
4309        if (!(cachep->flags & SLAB_RED_ZONE))
4310                return 0;
4311
4312        /*
4313         * Set store_user_clean and start to grab stored user information
4314         * for all objects on this cache. If some alloc/free requests comes
4315         * during the processing, information would be wrong so restart
4316         * whole processing.
4317         */
4318        do {
4319                set_store_user_clean(cachep);
4320                drain_cpu_caches(cachep);
4321
4322                x[1] = 0;
4323
4324                for_each_kmem_cache_node(cachep, node, n) {
4325
4326                        check_irq_on();
4327                        spin_lock_irq(&n->list_lock);
4328
4329                        list_for_each_entry(page, &n->slabs_full, lru)
4330                                handle_slab(x, cachep, page);
4331                        list_for_each_entry(page, &n->slabs_partial, lru)
4332                                handle_slab(x, cachep, page);
4333                        spin_unlock_irq(&n->list_lock);
4334                }
4335        } while (!is_store_user_clean(cachep));
4336
4337        name = cachep->name;
4338        if (x[0] == x[1]) {
4339                /* Increase the buffer size */
4340                mutex_unlock(&slab_mutex);
4341                m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4342                if (!m->private) {
4343                        /* Too bad, we are really out */
4344                        m->private = x;
4345                        mutex_lock(&slab_mutex);
4346                        return -ENOMEM;
4347                }
4348                *(unsigned long *)m->private = x[0] * 2;
4349                kfree(x);
4350                mutex_lock(&slab_mutex);
4351                /* Now make sure this entry will be retried */
4352                m->count = m->size;
4353                return 0;
4354        }
4355        for (i = 0; i < x[1]; i++) {
4356                seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4357                show_symbol(m, x[2*i+2]);
4358                seq_putc(m, '\n');
4359        }
4360
4361        return 0;
4362}
4363
4364static const struct seq_operations slabstats_op = {
4365        .start = slab_start,
4366        .next = slab_next,
4367        .stop = slab_stop,
4368        .show = leaks_show,
4369};
4370
4371static int slabstats_open(struct inode *inode, struct file *file)
4372{
4373        unsigned long *n;
4374
4375        n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4376        if (!n)
4377                return -ENOMEM;
4378
4379        *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4380
4381        return 0;
4382}
4383
4384static const struct file_operations proc_slabstats_operations = {
4385        .open           = slabstats_open,
4386        .read           = seq_read,
4387        .llseek         = seq_lseek,
4388        .release        = seq_release_private,
4389};
4390#endif
4391
4392static int __init slab_proc_init(void)
4393{
4394#ifdef CONFIG_DEBUG_SLAB_LEAK
4395        proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4396#endif
4397        return 0;
4398}
4399module_init(slab_proc_init);
4400
4401#ifdef CONFIG_HARDENED_USERCOPY
4402/*
4403 * Rejects incorrectly sized objects and objects that are to be copied
4404 * to/from userspace but do not fall entirely within the containing slab
4405 * cache's usercopy region.
4406 *
4407 * Returns NULL if check passes, otherwise const char * to name of cache
4408 * to indicate an error.
4409 */
4410void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4411                         bool to_user)
4412{
4413        struct kmem_cache *cachep;
4414        unsigned int objnr;
4415        unsigned long offset;
4416
4417        /* Find and validate object. */
4418        cachep = page->slab_cache;
4419        objnr = obj_to_index(cachep, page, (void *)ptr);
4420        BUG_ON(objnr >= cachep->num);
4421
4422        /* Find offset within object. */
4423        offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4424
4425        /* Allow address range falling entirely within usercopy region. */
4426        if (offset >= cachep->useroffset &&
4427            offset - cachep->useroffset <= cachep->usersize &&
4428            n <= cachep->useroffset - offset + cachep->usersize)
4429                return;
4430
4431        /*
4432         * If the copy is still within the allocated object, produce
4433         * a warning instead of rejecting the copy. This is intended
4434         * to be a temporary method to find any missing usercopy
4435         * whitelists.
4436         */
4437        if (usercopy_fallback &&
4438            offset <= cachep->object_size &&
4439            n <= cachep->object_size - offset) {
4440                usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4441                return;
4442        }
4443
4444        usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4445}
4446#endif /* CONFIG_HARDENED_USERCOPY */
4447
4448/**
4449 * ksize - get the actual amount of memory allocated for a given object
4450 * @objp: Pointer to the object
4451 *
4452 * kmalloc may internally round up allocations and return more memory
4453 * than requested. ksize() can be used to determine the actual amount of
4454 * memory allocated. The caller may use this additional memory, even though
4455 * a smaller amount of memory was initially specified with the kmalloc call.
4456 * The caller must guarantee that objp points to a valid object previously
4457 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4458 * must not be freed during the duration of the call.
4459 */
4460size_t ksize(const void *objp)
4461{
4462        size_t size;
4463
4464        BUG_ON(!objp);
4465        if (unlikely(objp == ZERO_SIZE_PTR))
4466                return 0;
4467
4468        size = virt_to_cache(objp)->object_size;
4469        /* We assume that ksize callers could use the whole allocated area,
4470         * so we need to unpoison this area.
4471         */
4472        kasan_unpoison_shadow(objp, size);
4473
4474        return size;
4475}
4476EXPORT_SYMBOL(ksize);
4477