linux/mm/swap.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/swap.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * This file contains the default values for the operation of the
   9 * Linux VM subsystem. Fine-tuning documentation can be found in
  10 * Documentation/sysctl/vm.txt.
  11 * Started 18.12.91
  12 * Swap aging added 23.2.95, Stephen Tweedie.
  13 * Buffermem limits added 12.3.98, Rik van Riel.
  14 */
  15
  16#include <linux/mm.h>
  17#include <linux/sched.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/swap.h>
  20#include <linux/mman.h>
  21#include <linux/pagemap.h>
  22#include <linux/pagevec.h>
  23#include <linux/init.h>
  24#include <linux/export.h>
  25#include <linux/mm_inline.h>
  26#include <linux/percpu_counter.h>
  27#include <linux/memremap.h>
  28#include <linux/percpu.h>
  29#include <linux/cpu.h>
  30#include <linux/notifier.h>
  31#include <linux/backing-dev.h>
  32#include <linux/memcontrol.h>
  33#include <linux/gfp.h>
  34#include <linux/uio.h>
  35#include <linux/hugetlb.h>
  36#include <linux/page_idle.h>
  37
  38#include "internal.h"
  39
  40#define CREATE_TRACE_POINTS
  41#include <trace/events/pagemap.h>
  42
  43/* How many pages do we try to swap or page in/out together? */
  44int page_cluster;
  45
  46static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
  47static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
  48static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
  49static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
  50#ifdef CONFIG_SMP
  51static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
  52#endif
  53
  54/*
  55 * This path almost never happens for VM activity - pages are normally
  56 * freed via pagevecs.  But it gets used by networking.
  57 */
  58static void __page_cache_release(struct page *page)
  59{
  60        if (PageLRU(page)) {
  61                struct zone *zone = page_zone(page);
  62                struct lruvec *lruvec;
  63                unsigned long flags;
  64
  65                spin_lock_irqsave(zone_lru_lock(zone), flags);
  66                lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
  67                VM_BUG_ON_PAGE(!PageLRU(page), page);
  68                __ClearPageLRU(page);
  69                del_page_from_lru_list(page, lruvec, page_off_lru(page));
  70                spin_unlock_irqrestore(zone_lru_lock(zone), flags);
  71        }
  72        __ClearPageWaiters(page);
  73        mem_cgroup_uncharge(page);
  74}
  75
  76static void __put_single_page(struct page *page)
  77{
  78        __page_cache_release(page);
  79        free_unref_page(page);
  80}
  81
  82static void __put_compound_page(struct page *page)
  83{
  84        compound_page_dtor *dtor;
  85
  86        /*
  87         * __page_cache_release() is supposed to be called for thp, not for
  88         * hugetlb. This is because hugetlb page does never have PageLRU set
  89         * (it's never listed to any LRU lists) and no memcg routines should
  90         * be called for hugetlb (it has a separate hugetlb_cgroup.)
  91         */
  92        if (!PageHuge(page))
  93                __page_cache_release(page);
  94        dtor = get_compound_page_dtor(page);
  95        (*dtor)(page);
  96}
  97
  98void __put_page(struct page *page)
  99{
 100        if (is_zone_device_page(page)) {
 101                put_dev_pagemap(page->pgmap);
 102
 103                /*
 104                 * The page belongs to the device that created pgmap. Do
 105                 * not return it to page allocator.
 106                 */
 107                return;
 108        }
 109
 110        if (unlikely(PageCompound(page)))
 111                __put_compound_page(page);
 112        else
 113                __put_single_page(page);
 114}
 115EXPORT_SYMBOL(__put_page);
 116
 117/**
 118 * put_pages_list() - release a list of pages
 119 * @pages: list of pages threaded on page->lru
 120 *
 121 * Release a list of pages which are strung together on page.lru.  Currently
 122 * used by read_cache_pages() and related error recovery code.
 123 */
 124void put_pages_list(struct list_head *pages)
 125{
 126        while (!list_empty(pages)) {
 127                struct page *victim;
 128
 129                victim = list_entry(pages->prev, struct page, lru);
 130                list_del(&victim->lru);
 131                put_page(victim);
 132        }
 133}
 134EXPORT_SYMBOL(put_pages_list);
 135
 136/*
 137 * get_kernel_pages() - pin kernel pages in memory
 138 * @kiov:       An array of struct kvec structures
 139 * @nr_segs:    number of segments to pin
 140 * @write:      pinning for read/write, currently ignored
 141 * @pages:      array that receives pointers to the pages pinned.
 142 *              Should be at least nr_segs long.
 143 *
 144 * Returns number of pages pinned. This may be fewer than the number
 145 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 146 * were pinned, returns -errno. Each page returned must be released
 147 * with a put_page() call when it is finished with.
 148 */
 149int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 150                struct page **pages)
 151{
 152        int seg;
 153
 154        for (seg = 0; seg < nr_segs; seg++) {
 155                if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 156                        return seg;
 157
 158                pages[seg] = kmap_to_page(kiov[seg].iov_base);
 159                get_page(pages[seg]);
 160        }
 161
 162        return seg;
 163}
 164EXPORT_SYMBOL_GPL(get_kernel_pages);
 165
 166/*
 167 * get_kernel_page() - pin a kernel page in memory
 168 * @start:      starting kernel address
 169 * @write:      pinning for read/write, currently ignored
 170 * @pages:      array that receives pointer to the page pinned.
 171 *              Must be at least nr_segs long.
 172 *
 173 * Returns 1 if page is pinned. If the page was not pinned, returns
 174 * -errno. The page returned must be released with a put_page() call
 175 * when it is finished with.
 176 */
 177int get_kernel_page(unsigned long start, int write, struct page **pages)
 178{
 179        const struct kvec kiov = {
 180                .iov_base = (void *)start,
 181                .iov_len = PAGE_SIZE
 182        };
 183
 184        return get_kernel_pages(&kiov, 1, write, pages);
 185}
 186EXPORT_SYMBOL_GPL(get_kernel_page);
 187
 188static void pagevec_lru_move_fn(struct pagevec *pvec,
 189        void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
 190        void *arg)
 191{
 192        int i;
 193        struct pglist_data *pgdat = NULL;
 194        struct lruvec *lruvec;
 195        unsigned long flags = 0;
 196
 197        for (i = 0; i < pagevec_count(pvec); i++) {
 198                struct page *page = pvec->pages[i];
 199                struct pglist_data *pagepgdat = page_pgdat(page);
 200
 201                if (pagepgdat != pgdat) {
 202                        if (pgdat)
 203                                spin_unlock_irqrestore(&pgdat->lru_lock, flags);
 204                        pgdat = pagepgdat;
 205                        spin_lock_irqsave(&pgdat->lru_lock, flags);
 206                }
 207
 208                lruvec = mem_cgroup_page_lruvec(page, pgdat);
 209                (*move_fn)(page, lruvec, arg);
 210        }
 211        if (pgdat)
 212                spin_unlock_irqrestore(&pgdat->lru_lock, flags);
 213        release_pages(pvec->pages, pvec->nr);
 214        pagevec_reinit(pvec);
 215}
 216
 217static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
 218                                 void *arg)
 219{
 220        int *pgmoved = arg;
 221
 222        if (PageLRU(page) && !PageUnevictable(page)) {
 223                del_page_from_lru_list(page, lruvec, page_lru(page));
 224                ClearPageActive(page);
 225                add_page_to_lru_list_tail(page, lruvec, page_lru(page));
 226                (*pgmoved)++;
 227        }
 228}
 229
 230/*
 231 * pagevec_move_tail() must be called with IRQ disabled.
 232 * Otherwise this may cause nasty races.
 233 */
 234static void pagevec_move_tail(struct pagevec *pvec)
 235{
 236        int pgmoved = 0;
 237
 238        pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
 239        __count_vm_events(PGROTATED, pgmoved);
 240}
 241
 242/*
 243 * Writeback is about to end against a page which has been marked for immediate
 244 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 245 * inactive list.
 246 */
 247void rotate_reclaimable_page(struct page *page)
 248{
 249        if (!PageLocked(page) && !PageDirty(page) &&
 250            !PageUnevictable(page) && PageLRU(page)) {
 251                struct pagevec *pvec;
 252                unsigned long flags;
 253
 254                get_page(page);
 255                local_irq_save(flags);
 256                pvec = this_cpu_ptr(&lru_rotate_pvecs);
 257                if (!pagevec_add(pvec, page) || PageCompound(page))
 258                        pagevec_move_tail(pvec);
 259                local_irq_restore(flags);
 260        }
 261}
 262
 263static void update_page_reclaim_stat(struct lruvec *lruvec,
 264                                     int file, int rotated)
 265{
 266        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
 267
 268        reclaim_stat->recent_scanned[file]++;
 269        if (rotated)
 270                reclaim_stat->recent_rotated[file]++;
 271}
 272
 273static void __activate_page(struct page *page, struct lruvec *lruvec,
 274                            void *arg)
 275{
 276        if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 277                int file = page_is_file_cache(page);
 278                int lru = page_lru_base_type(page);
 279
 280                del_page_from_lru_list(page, lruvec, lru);
 281                SetPageActive(page);
 282                lru += LRU_ACTIVE;
 283                add_page_to_lru_list(page, lruvec, lru);
 284                trace_mm_lru_activate(page);
 285
 286                __count_vm_event(PGACTIVATE);
 287                update_page_reclaim_stat(lruvec, file, 1);
 288        }
 289}
 290
 291#ifdef CONFIG_SMP
 292static void activate_page_drain(int cpu)
 293{
 294        struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
 295
 296        if (pagevec_count(pvec))
 297                pagevec_lru_move_fn(pvec, __activate_page, NULL);
 298}
 299
 300static bool need_activate_page_drain(int cpu)
 301{
 302        return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
 303}
 304
 305void activate_page(struct page *page)
 306{
 307        page = compound_head(page);
 308        if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 309                struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
 310
 311                get_page(page);
 312                if (!pagevec_add(pvec, page) || PageCompound(page))
 313                        pagevec_lru_move_fn(pvec, __activate_page, NULL);
 314                put_cpu_var(activate_page_pvecs);
 315        }
 316}
 317
 318#else
 319static inline void activate_page_drain(int cpu)
 320{
 321}
 322
 323static bool need_activate_page_drain(int cpu)
 324{
 325        return false;
 326}
 327
 328void activate_page(struct page *page)
 329{
 330        struct zone *zone = page_zone(page);
 331
 332        page = compound_head(page);
 333        spin_lock_irq(zone_lru_lock(zone));
 334        __activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
 335        spin_unlock_irq(zone_lru_lock(zone));
 336}
 337#endif
 338
 339static void __lru_cache_activate_page(struct page *page)
 340{
 341        struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
 342        int i;
 343
 344        /*
 345         * Search backwards on the optimistic assumption that the page being
 346         * activated has just been added to this pagevec. Note that only
 347         * the local pagevec is examined as a !PageLRU page could be in the
 348         * process of being released, reclaimed, migrated or on a remote
 349         * pagevec that is currently being drained. Furthermore, marking
 350         * a remote pagevec's page PageActive potentially hits a race where
 351         * a page is marked PageActive just after it is added to the inactive
 352         * list causing accounting errors and BUG_ON checks to trigger.
 353         */
 354        for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
 355                struct page *pagevec_page = pvec->pages[i];
 356
 357                if (pagevec_page == page) {
 358                        SetPageActive(page);
 359                        break;
 360                }
 361        }
 362
 363        put_cpu_var(lru_add_pvec);
 364}
 365
 366/*
 367 * Mark a page as having seen activity.
 368 *
 369 * inactive,unreferenced        ->      inactive,referenced
 370 * inactive,referenced          ->      active,unreferenced
 371 * active,unreferenced          ->      active,referenced
 372 *
 373 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 374 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 375 */
 376void mark_page_accessed(struct page *page)
 377{
 378        page = compound_head(page);
 379        if (!PageActive(page) && !PageUnevictable(page) &&
 380                        PageReferenced(page)) {
 381
 382                /*
 383                 * If the page is on the LRU, queue it for activation via
 384                 * activate_page_pvecs. Otherwise, assume the page is on a
 385                 * pagevec, mark it active and it'll be moved to the active
 386                 * LRU on the next drain.
 387                 */
 388                if (PageLRU(page))
 389                        activate_page(page);
 390                else
 391                        __lru_cache_activate_page(page);
 392                ClearPageReferenced(page);
 393                if (page_is_file_cache(page))
 394                        workingset_activation(page);
 395        } else if (!PageReferenced(page)) {
 396                SetPageReferenced(page);
 397        }
 398        if (page_is_idle(page))
 399                clear_page_idle(page);
 400}
 401EXPORT_SYMBOL(mark_page_accessed);
 402
 403static void __lru_cache_add(struct page *page)
 404{
 405        struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
 406
 407        get_page(page);
 408        if (!pagevec_add(pvec, page) || PageCompound(page))
 409                __pagevec_lru_add(pvec);
 410        put_cpu_var(lru_add_pvec);
 411}
 412
 413/**
 414 * lru_cache_add_anon - add a page to the page lists
 415 * @page: the page to add
 416 */
 417void lru_cache_add_anon(struct page *page)
 418{
 419        if (PageActive(page))
 420                ClearPageActive(page);
 421        __lru_cache_add(page);
 422}
 423
 424void lru_cache_add_file(struct page *page)
 425{
 426        if (PageActive(page))
 427                ClearPageActive(page);
 428        __lru_cache_add(page);
 429}
 430EXPORT_SYMBOL(lru_cache_add_file);
 431
 432/**
 433 * lru_cache_add - add a page to a page list
 434 * @page: the page to be added to the LRU.
 435 *
 436 * Queue the page for addition to the LRU via pagevec. The decision on whether
 437 * to add the page to the [in]active [file|anon] list is deferred until the
 438 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
 439 * have the page added to the active list using mark_page_accessed().
 440 */
 441void lru_cache_add(struct page *page)
 442{
 443        VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
 444        VM_BUG_ON_PAGE(PageLRU(page), page);
 445        __lru_cache_add(page);
 446}
 447
 448/**
 449 * lru_cache_add_active_or_unevictable
 450 * @page:  the page to be added to LRU
 451 * @vma:   vma in which page is mapped for determining reclaimability
 452 *
 453 * Place @page on the active or unevictable LRU list, depending on its
 454 * evictability.  Note that if the page is not evictable, it goes
 455 * directly back onto it's zone's unevictable list, it does NOT use a
 456 * per cpu pagevec.
 457 */
 458void lru_cache_add_active_or_unevictable(struct page *page,
 459                                         struct vm_area_struct *vma)
 460{
 461        VM_BUG_ON_PAGE(PageLRU(page), page);
 462
 463        if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
 464                SetPageActive(page);
 465        else if (!TestSetPageMlocked(page)) {
 466                /*
 467                 * We use the irq-unsafe __mod_zone_page_stat because this
 468                 * counter is not modified from interrupt context, and the pte
 469                 * lock is held(spinlock), which implies preemption disabled.
 470                 */
 471                __mod_zone_page_state(page_zone(page), NR_MLOCK,
 472                                    hpage_nr_pages(page));
 473                count_vm_event(UNEVICTABLE_PGMLOCKED);
 474        }
 475        lru_cache_add(page);
 476}
 477
 478/*
 479 * If the page can not be invalidated, it is moved to the
 480 * inactive list to speed up its reclaim.  It is moved to the
 481 * head of the list, rather than the tail, to give the flusher
 482 * threads some time to write it out, as this is much more
 483 * effective than the single-page writeout from reclaim.
 484 *
 485 * If the page isn't page_mapped and dirty/writeback, the page
 486 * could reclaim asap using PG_reclaim.
 487 *
 488 * 1. active, mapped page -> none
 489 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
 490 * 3. inactive, mapped page -> none
 491 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
 492 * 5. inactive, clean -> inactive, tail
 493 * 6. Others -> none
 494 *
 495 * In 4, why it moves inactive's head, the VM expects the page would
 496 * be write it out by flusher threads as this is much more effective
 497 * than the single-page writeout from reclaim.
 498 */
 499static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
 500                              void *arg)
 501{
 502        int lru, file;
 503        bool active;
 504
 505        if (!PageLRU(page))
 506                return;
 507
 508        if (PageUnevictable(page))
 509                return;
 510
 511        /* Some processes are using the page */
 512        if (page_mapped(page))
 513                return;
 514
 515        active = PageActive(page);
 516        file = page_is_file_cache(page);
 517        lru = page_lru_base_type(page);
 518
 519        del_page_from_lru_list(page, lruvec, lru + active);
 520        ClearPageActive(page);
 521        ClearPageReferenced(page);
 522        add_page_to_lru_list(page, lruvec, lru);
 523
 524        if (PageWriteback(page) || PageDirty(page)) {
 525                /*
 526                 * PG_reclaim could be raced with end_page_writeback
 527                 * It can make readahead confusing.  But race window
 528                 * is _really_ small and  it's non-critical problem.
 529                 */
 530                SetPageReclaim(page);
 531        } else {
 532                /*
 533                 * The page's writeback ends up during pagevec
 534                 * We moves tha page into tail of inactive.
 535                 */
 536                list_move_tail(&page->lru, &lruvec->lists[lru]);
 537                __count_vm_event(PGROTATED);
 538        }
 539
 540        if (active)
 541                __count_vm_event(PGDEACTIVATE);
 542        update_page_reclaim_stat(lruvec, file, 0);
 543}
 544
 545
 546static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
 547                            void *arg)
 548{
 549        if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
 550            !PageSwapCache(page) && !PageUnevictable(page)) {
 551                bool active = PageActive(page);
 552
 553                del_page_from_lru_list(page, lruvec,
 554                                       LRU_INACTIVE_ANON + active);
 555                ClearPageActive(page);
 556                ClearPageReferenced(page);
 557                /*
 558                 * lazyfree pages are clean anonymous pages. They have
 559                 * SwapBacked flag cleared to distinguish normal anonymous
 560                 * pages
 561                 */
 562                ClearPageSwapBacked(page);
 563                add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
 564
 565                __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
 566                count_memcg_page_event(page, PGLAZYFREE);
 567                update_page_reclaim_stat(lruvec, 1, 0);
 568        }
 569}
 570
 571/*
 572 * Drain pages out of the cpu's pagevecs.
 573 * Either "cpu" is the current CPU, and preemption has already been
 574 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 575 */
 576void lru_add_drain_cpu(int cpu)
 577{
 578        struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
 579
 580        if (pagevec_count(pvec))
 581                __pagevec_lru_add(pvec);
 582
 583        pvec = &per_cpu(lru_rotate_pvecs, cpu);
 584        if (pagevec_count(pvec)) {
 585                unsigned long flags;
 586
 587                /* No harm done if a racing interrupt already did this */
 588                local_irq_save(flags);
 589                pagevec_move_tail(pvec);
 590                local_irq_restore(flags);
 591        }
 592
 593        pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
 594        if (pagevec_count(pvec))
 595                pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
 596
 597        pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
 598        if (pagevec_count(pvec))
 599                pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
 600
 601        activate_page_drain(cpu);
 602}
 603
 604/**
 605 * deactivate_file_page - forcefully deactivate a file page
 606 * @page: page to deactivate
 607 *
 608 * This function hints the VM that @page is a good reclaim candidate,
 609 * for example if its invalidation fails due to the page being dirty
 610 * or under writeback.
 611 */
 612void deactivate_file_page(struct page *page)
 613{
 614        /*
 615         * In a workload with many unevictable page such as mprotect,
 616         * unevictable page deactivation for accelerating reclaim is pointless.
 617         */
 618        if (PageUnevictable(page))
 619                return;
 620
 621        if (likely(get_page_unless_zero(page))) {
 622                struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
 623
 624                if (!pagevec_add(pvec, page) || PageCompound(page))
 625                        pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
 626                put_cpu_var(lru_deactivate_file_pvecs);
 627        }
 628}
 629
 630/**
 631 * mark_page_lazyfree - make an anon page lazyfree
 632 * @page: page to deactivate
 633 *
 634 * mark_page_lazyfree() moves @page to the inactive file list.
 635 * This is done to accelerate the reclaim of @page.
 636 */
 637void mark_page_lazyfree(struct page *page)
 638{
 639        if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
 640            !PageSwapCache(page) && !PageUnevictable(page)) {
 641                struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
 642
 643                get_page(page);
 644                if (!pagevec_add(pvec, page) || PageCompound(page))
 645                        pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
 646                put_cpu_var(lru_lazyfree_pvecs);
 647        }
 648}
 649
 650void lru_add_drain(void)
 651{
 652        lru_add_drain_cpu(get_cpu());
 653        put_cpu();
 654}
 655
 656static void lru_add_drain_per_cpu(struct work_struct *dummy)
 657{
 658        lru_add_drain();
 659}
 660
 661static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 662
 663/*
 664 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
 665 * kworkers being shut down before our page_alloc_cpu_dead callback is
 666 * executed on the offlined cpu.
 667 * Calling this function with cpu hotplug locks held can actually lead
 668 * to obscure indirect dependencies via WQ context.
 669 */
 670void lru_add_drain_all(void)
 671{
 672        static DEFINE_MUTEX(lock);
 673        static struct cpumask has_work;
 674        int cpu;
 675
 676        /*
 677         * Make sure nobody triggers this path before mm_percpu_wq is fully
 678         * initialized.
 679         */
 680        if (WARN_ON(!mm_percpu_wq))
 681                return;
 682
 683        mutex_lock(&lock);
 684        cpumask_clear(&has_work);
 685
 686        for_each_online_cpu(cpu) {
 687                struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 688
 689                if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
 690                    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
 691                    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
 692                    pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
 693                    need_activate_page_drain(cpu)) {
 694                        INIT_WORK(work, lru_add_drain_per_cpu);
 695                        queue_work_on(cpu, mm_percpu_wq, work);
 696                        cpumask_set_cpu(cpu, &has_work);
 697                }
 698        }
 699
 700        for_each_cpu(cpu, &has_work)
 701                flush_work(&per_cpu(lru_add_drain_work, cpu));
 702
 703        mutex_unlock(&lock);
 704}
 705
 706/**
 707 * release_pages - batched put_page()
 708 * @pages: array of pages to release
 709 * @nr: number of pages
 710 *
 711 * Decrement the reference count on all the pages in @pages.  If it
 712 * fell to zero, remove the page from the LRU and free it.
 713 */
 714void release_pages(struct page **pages, int nr)
 715{
 716        int i;
 717        LIST_HEAD(pages_to_free);
 718        struct pglist_data *locked_pgdat = NULL;
 719        struct lruvec *lruvec;
 720        unsigned long uninitialized_var(flags);
 721        unsigned int uninitialized_var(lock_batch);
 722
 723        for (i = 0; i < nr; i++) {
 724                struct page *page = pages[i];
 725
 726                /*
 727                 * Make sure the IRQ-safe lock-holding time does not get
 728                 * excessive with a continuous string of pages from the
 729                 * same pgdat. The lock is held only if pgdat != NULL.
 730                 */
 731                if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
 732                        spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
 733                        locked_pgdat = NULL;
 734                }
 735
 736                if (is_huge_zero_page(page))
 737                        continue;
 738
 739                /* Device public page can not be huge page */
 740                if (is_device_public_page(page)) {
 741                        if (locked_pgdat) {
 742                                spin_unlock_irqrestore(&locked_pgdat->lru_lock,
 743                                                       flags);
 744                                locked_pgdat = NULL;
 745                        }
 746                        put_zone_device_private_or_public_page(page);
 747                        continue;
 748                }
 749
 750                page = compound_head(page);
 751                if (!put_page_testzero(page))
 752                        continue;
 753
 754                if (PageCompound(page)) {
 755                        if (locked_pgdat) {
 756                                spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
 757                                locked_pgdat = NULL;
 758                        }
 759                        __put_compound_page(page);
 760                        continue;
 761                }
 762
 763                if (PageLRU(page)) {
 764                        struct pglist_data *pgdat = page_pgdat(page);
 765
 766                        if (pgdat != locked_pgdat) {
 767                                if (locked_pgdat)
 768                                        spin_unlock_irqrestore(&locked_pgdat->lru_lock,
 769                                                                        flags);
 770                                lock_batch = 0;
 771                                locked_pgdat = pgdat;
 772                                spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
 773                        }
 774
 775                        lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
 776                        VM_BUG_ON_PAGE(!PageLRU(page), page);
 777                        __ClearPageLRU(page);
 778                        del_page_from_lru_list(page, lruvec, page_off_lru(page));
 779                }
 780
 781                /* Clear Active bit in case of parallel mark_page_accessed */
 782                __ClearPageActive(page);
 783                __ClearPageWaiters(page);
 784
 785                list_add(&page->lru, &pages_to_free);
 786        }
 787        if (locked_pgdat)
 788                spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
 789
 790        mem_cgroup_uncharge_list(&pages_to_free);
 791        free_unref_page_list(&pages_to_free);
 792}
 793EXPORT_SYMBOL(release_pages);
 794
 795/*
 796 * The pages which we're about to release may be in the deferred lru-addition
 797 * queues.  That would prevent them from really being freed right now.  That's
 798 * OK from a correctness point of view but is inefficient - those pages may be
 799 * cache-warm and we want to give them back to the page allocator ASAP.
 800 *
 801 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 802 * and __pagevec_lru_add_active() call release_pages() directly to avoid
 803 * mutual recursion.
 804 */
 805void __pagevec_release(struct pagevec *pvec)
 806{
 807        if (!pvec->percpu_pvec_drained) {
 808                lru_add_drain();
 809                pvec->percpu_pvec_drained = true;
 810        }
 811        release_pages(pvec->pages, pagevec_count(pvec));
 812        pagevec_reinit(pvec);
 813}
 814EXPORT_SYMBOL(__pagevec_release);
 815
 816#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 817/* used by __split_huge_page_refcount() */
 818void lru_add_page_tail(struct page *page, struct page *page_tail,
 819                       struct lruvec *lruvec, struct list_head *list)
 820{
 821        const int file = 0;
 822
 823        VM_BUG_ON_PAGE(!PageHead(page), page);
 824        VM_BUG_ON_PAGE(PageCompound(page_tail), page);
 825        VM_BUG_ON_PAGE(PageLRU(page_tail), page);
 826        VM_BUG_ON(NR_CPUS != 1 &&
 827                  !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock));
 828
 829        if (!list)
 830                SetPageLRU(page_tail);
 831
 832        if (likely(PageLRU(page)))
 833                list_add_tail(&page_tail->lru, &page->lru);
 834        else if (list) {
 835                /* page reclaim is reclaiming a huge page */
 836                get_page(page_tail);
 837                list_add_tail(&page_tail->lru, list);
 838        } else {
 839                struct list_head *list_head;
 840                /*
 841                 * Head page has not yet been counted, as an hpage,
 842                 * so we must account for each subpage individually.
 843                 *
 844                 * Use the standard add function to put page_tail on the list,
 845                 * but then correct its position so they all end up in order.
 846                 */
 847                add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
 848                list_head = page_tail->lru.prev;
 849                list_move_tail(&page_tail->lru, list_head);
 850        }
 851
 852        if (!PageUnevictable(page))
 853                update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
 854}
 855#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 856
 857static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
 858                                 void *arg)
 859{
 860        enum lru_list lru;
 861        int was_unevictable = TestClearPageUnevictable(page);
 862
 863        VM_BUG_ON_PAGE(PageLRU(page), page);
 864
 865        SetPageLRU(page);
 866        /*
 867         * Page becomes evictable in two ways:
 868         * 1) Within LRU lock [munlock_vma_pages() and __munlock_pagevec()].
 869         * 2) Before acquiring LRU lock to put the page to correct LRU and then
 870         *   a) do PageLRU check with lock [check_move_unevictable_pages]
 871         *   b) do PageLRU check before lock [clear_page_mlock]
 872         *
 873         * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
 874         * following strict ordering:
 875         *
 876         * #0: __pagevec_lru_add_fn             #1: clear_page_mlock
 877         *
 878         * SetPageLRU()                         TestClearPageMlocked()
 879         * smp_mb() // explicit ordering        // above provides strict
 880         *                                      // ordering
 881         * PageMlocked()                        PageLRU()
 882         *
 883         *
 884         * if '#1' does not observe setting of PG_lru by '#0' and fails
 885         * isolation, the explicit barrier will make sure that page_evictable
 886         * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
 887         * can be reordered after PageMlocked check and can make '#1' to fail
 888         * the isolation of the page whose Mlocked bit is cleared (#0 is also
 889         * looking at the same page) and the evictable page will be stranded
 890         * in an unevictable LRU.
 891         */
 892        smp_mb();
 893
 894        if (page_evictable(page)) {
 895                lru = page_lru(page);
 896                update_page_reclaim_stat(lruvec, page_is_file_cache(page),
 897                                         PageActive(page));
 898                if (was_unevictable)
 899                        count_vm_event(UNEVICTABLE_PGRESCUED);
 900        } else {
 901                lru = LRU_UNEVICTABLE;
 902                ClearPageActive(page);
 903                SetPageUnevictable(page);
 904                if (!was_unevictable)
 905                        count_vm_event(UNEVICTABLE_PGCULLED);
 906        }
 907
 908        add_page_to_lru_list(page, lruvec, lru);
 909        trace_mm_lru_insertion(page, lru);
 910}
 911
 912/*
 913 * Add the passed pages to the LRU, then drop the caller's refcount
 914 * on them.  Reinitialises the caller's pagevec.
 915 */
 916void __pagevec_lru_add(struct pagevec *pvec)
 917{
 918        pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
 919}
 920EXPORT_SYMBOL(__pagevec_lru_add);
 921
 922/**
 923 * pagevec_lookup_entries - gang pagecache lookup
 924 * @pvec:       Where the resulting entries are placed
 925 * @mapping:    The address_space to search
 926 * @start:      The starting entry index
 927 * @nr_entries: The maximum number of pages
 928 * @indices:    The cache indices corresponding to the entries in @pvec
 929 *
 930 * pagevec_lookup_entries() will search for and return a group of up
 931 * to @nr_pages pages and shadow entries in the mapping.  All
 932 * entries are placed in @pvec.  pagevec_lookup_entries() takes a
 933 * reference against actual pages in @pvec.
 934 *
 935 * The search returns a group of mapping-contiguous entries with
 936 * ascending indexes.  There may be holes in the indices due to
 937 * not-present entries.
 938 *
 939 * pagevec_lookup_entries() returns the number of entries which were
 940 * found.
 941 */
 942unsigned pagevec_lookup_entries(struct pagevec *pvec,
 943                                struct address_space *mapping,
 944                                pgoff_t start, unsigned nr_entries,
 945                                pgoff_t *indices)
 946{
 947        pvec->nr = find_get_entries(mapping, start, nr_entries,
 948                                    pvec->pages, indices);
 949        return pagevec_count(pvec);
 950}
 951
 952/**
 953 * pagevec_remove_exceptionals - pagevec exceptionals pruning
 954 * @pvec:       The pagevec to prune
 955 *
 956 * pagevec_lookup_entries() fills both pages and exceptional radix
 957 * tree entries into the pagevec.  This function prunes all
 958 * exceptionals from @pvec without leaving holes, so that it can be
 959 * passed on to page-only pagevec operations.
 960 */
 961void pagevec_remove_exceptionals(struct pagevec *pvec)
 962{
 963        int i, j;
 964
 965        for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
 966                struct page *page = pvec->pages[i];
 967                if (!radix_tree_exceptional_entry(page))
 968                        pvec->pages[j++] = page;
 969        }
 970        pvec->nr = j;
 971}
 972
 973/**
 974 * pagevec_lookup_range - gang pagecache lookup
 975 * @pvec:       Where the resulting pages are placed
 976 * @mapping:    The address_space to search
 977 * @start:      The starting page index
 978 * @end:        The final page index
 979 *
 980 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
 981 * pages in the mapping starting from index @start and upto index @end
 982 * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
 983 * reference against the pages in @pvec.
 984 *
 985 * The search returns a group of mapping-contiguous pages with ascending
 986 * indexes.  There may be holes in the indices due to not-present pages. We
 987 * also update @start to index the next page for the traversal.
 988 *
 989 * pagevec_lookup_range() returns the number of pages which were found. If this
 990 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
 991 * reached.
 992 */
 993unsigned pagevec_lookup_range(struct pagevec *pvec,
 994                struct address_space *mapping, pgoff_t *start, pgoff_t end)
 995{
 996        pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
 997                                        pvec->pages);
 998        return pagevec_count(pvec);
 999}
1000EXPORT_SYMBOL(pagevec_lookup_range);
1001
1002unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1003                struct address_space *mapping, pgoff_t *index, pgoff_t end,
1004                int tag)
1005{
1006        pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1007                                        PAGEVEC_SIZE, pvec->pages);
1008        return pagevec_count(pvec);
1009}
1010EXPORT_SYMBOL(pagevec_lookup_range_tag);
1011
1012unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1013                struct address_space *mapping, pgoff_t *index, pgoff_t end,
1014                int tag, unsigned max_pages)
1015{
1016        pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1017                min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1018        return pagevec_count(pvec);
1019}
1020EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1021/*
1022 * Perform any setup for the swap system
1023 */
1024void __init swap_setup(void)
1025{
1026        unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1027
1028        /* Use a smaller cluster for small-memory machines */
1029        if (megs < 16)
1030                page_cluster = 2;
1031        else
1032                page_cluster = 3;
1033        /*
1034         * Right now other parts of the system means that we
1035         * _really_ don't want to cluster much more
1036         */
1037}
1038