linux/mm/swap_state.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/swap_state.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *  Swap reorganised 29.12.95, Stephen Tweedie
   7 *
   8 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
   9 */
  10#include <linux/mm.h>
  11#include <linux/gfp.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/swap.h>
  14#include <linux/swapops.h>
  15#include <linux/init.h>
  16#include <linux/pagemap.h>
  17#include <linux/backing-dev.h>
  18#include <linux/blkdev.h>
  19#include <linux/pagevec.h>
  20#include <linux/migrate.h>
  21#include <linux/vmalloc.h>
  22#include <linux/swap_slots.h>
  23#include <linux/huge_mm.h>
  24
  25#include <asm/pgtable.h>
  26
  27/*
  28 * swapper_space is a fiction, retained to simplify the path through
  29 * vmscan's shrink_page_list.
  30 */
  31static const struct address_space_operations swap_aops = {
  32        .writepage      = swap_writepage,
  33        .set_page_dirty = swap_set_page_dirty,
  34#ifdef CONFIG_MIGRATION
  35        .migratepage    = migrate_page,
  36#endif
  37};
  38
  39struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
  40static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
  41static bool enable_vma_readahead __read_mostly = true;
  42
  43#define SWAP_RA_WIN_SHIFT       (PAGE_SHIFT / 2)
  44#define SWAP_RA_HITS_MASK       ((1UL << SWAP_RA_WIN_SHIFT) - 1)
  45#define SWAP_RA_HITS_MAX        SWAP_RA_HITS_MASK
  46#define SWAP_RA_WIN_MASK        (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
  47
  48#define SWAP_RA_HITS(v)         ((v) & SWAP_RA_HITS_MASK)
  49#define SWAP_RA_WIN(v)          (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
  50#define SWAP_RA_ADDR(v)         ((v) & PAGE_MASK)
  51
  52#define SWAP_RA_VAL(addr, win, hits)                            \
  53        (((addr) & PAGE_MASK) |                                 \
  54         (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |    \
  55         ((hits) & SWAP_RA_HITS_MASK))
  56
  57/* Initial readahead hits is 4 to start up with a small window */
  58#define GET_SWAP_RA_VAL(vma)                                    \
  59        (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
  60
  61#define INC_CACHE_INFO(x)       do { swap_cache_info.x++; } while (0)
  62#define ADD_CACHE_INFO(x, nr)   do { swap_cache_info.x += (nr); } while (0)
  63
  64static struct {
  65        unsigned long add_total;
  66        unsigned long del_total;
  67        unsigned long find_success;
  68        unsigned long find_total;
  69} swap_cache_info;
  70
  71unsigned long total_swapcache_pages(void)
  72{
  73        unsigned int i, j, nr;
  74        unsigned long ret = 0;
  75        struct address_space *spaces;
  76
  77        rcu_read_lock();
  78        for (i = 0; i < MAX_SWAPFILES; i++) {
  79                /*
  80                 * The corresponding entries in nr_swapper_spaces and
  81                 * swapper_spaces will be reused only after at least
  82                 * one grace period.  So it is impossible for them
  83                 * belongs to different usage.
  84                 */
  85                nr = nr_swapper_spaces[i];
  86                spaces = rcu_dereference(swapper_spaces[i]);
  87                if (!nr || !spaces)
  88                        continue;
  89                for (j = 0; j < nr; j++)
  90                        ret += spaces[j].nrpages;
  91        }
  92        rcu_read_unlock();
  93        return ret;
  94}
  95
  96static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
  97
  98void show_swap_cache_info(void)
  99{
 100        printk("%lu pages in swap cache\n", total_swapcache_pages());
 101        printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
 102                swap_cache_info.add_total, swap_cache_info.del_total,
 103                swap_cache_info.find_success, swap_cache_info.find_total);
 104        printk("Free swap  = %ldkB\n",
 105                get_nr_swap_pages() << (PAGE_SHIFT - 10));
 106        printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
 107}
 108
 109/*
 110 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
 111 * but sets SwapCache flag and private instead of mapping and index.
 112 */
 113int __add_to_swap_cache(struct page *page, swp_entry_t entry)
 114{
 115        int error, i, nr = hpage_nr_pages(page);
 116        struct address_space *address_space;
 117        pgoff_t idx = swp_offset(entry);
 118
 119        VM_BUG_ON_PAGE(!PageLocked(page), page);
 120        VM_BUG_ON_PAGE(PageSwapCache(page), page);
 121        VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 122
 123        page_ref_add(page, nr);
 124        SetPageSwapCache(page);
 125
 126        address_space = swap_address_space(entry);
 127        xa_lock_irq(&address_space->i_pages);
 128        for (i = 0; i < nr; i++) {
 129                set_page_private(page + i, entry.val + i);
 130                error = radix_tree_insert(&address_space->i_pages,
 131                                          idx + i, page + i);
 132                if (unlikely(error))
 133                        break;
 134        }
 135        if (likely(!error)) {
 136                address_space->nrpages += nr;
 137                __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
 138                ADD_CACHE_INFO(add_total, nr);
 139        } else {
 140                /*
 141                 * Only the context which have set SWAP_HAS_CACHE flag
 142                 * would call add_to_swap_cache().
 143                 * So add_to_swap_cache() doesn't returns -EEXIST.
 144                 */
 145                VM_BUG_ON(error == -EEXIST);
 146                set_page_private(page + i, 0UL);
 147                while (i--) {
 148                        radix_tree_delete(&address_space->i_pages, idx + i);
 149                        set_page_private(page + i, 0UL);
 150                }
 151                ClearPageSwapCache(page);
 152                page_ref_sub(page, nr);
 153        }
 154        xa_unlock_irq(&address_space->i_pages);
 155
 156        return error;
 157}
 158
 159
 160int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
 161{
 162        int error;
 163
 164        error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
 165        if (!error) {
 166                error = __add_to_swap_cache(page, entry);
 167                radix_tree_preload_end();
 168        }
 169        return error;
 170}
 171
 172/*
 173 * This must be called only on pages that have
 174 * been verified to be in the swap cache.
 175 */
 176void __delete_from_swap_cache(struct page *page)
 177{
 178        struct address_space *address_space;
 179        int i, nr = hpage_nr_pages(page);
 180        swp_entry_t entry;
 181        pgoff_t idx;
 182
 183        VM_BUG_ON_PAGE(!PageLocked(page), page);
 184        VM_BUG_ON_PAGE(!PageSwapCache(page), page);
 185        VM_BUG_ON_PAGE(PageWriteback(page), page);
 186
 187        entry.val = page_private(page);
 188        address_space = swap_address_space(entry);
 189        idx = swp_offset(entry);
 190        for (i = 0; i < nr; i++) {
 191                radix_tree_delete(&address_space->i_pages, idx + i);
 192                set_page_private(page + i, 0);
 193        }
 194        ClearPageSwapCache(page);
 195        address_space->nrpages -= nr;
 196        __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 197        ADD_CACHE_INFO(del_total, nr);
 198}
 199
 200/**
 201 * add_to_swap - allocate swap space for a page
 202 * @page: page we want to move to swap
 203 *
 204 * Allocate swap space for the page and add the page to the
 205 * swap cache.  Caller needs to hold the page lock. 
 206 */
 207int add_to_swap(struct page *page)
 208{
 209        swp_entry_t entry;
 210        int err;
 211
 212        VM_BUG_ON_PAGE(!PageLocked(page), page);
 213        VM_BUG_ON_PAGE(!PageUptodate(page), page);
 214
 215        entry = get_swap_page(page);
 216        if (!entry.val)
 217                return 0;
 218
 219        if (mem_cgroup_try_charge_swap(page, entry))
 220                goto fail;
 221
 222        /*
 223         * Radix-tree node allocations from PF_MEMALLOC contexts could
 224         * completely exhaust the page allocator. __GFP_NOMEMALLOC
 225         * stops emergency reserves from being allocated.
 226         *
 227         * TODO: this could cause a theoretical memory reclaim
 228         * deadlock in the swap out path.
 229         */
 230        /*
 231         * Add it to the swap cache.
 232         */
 233        err = add_to_swap_cache(page, entry,
 234                        __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
 235        /* -ENOMEM radix-tree allocation failure */
 236        if (err)
 237                /*
 238                 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
 239                 * clear SWAP_HAS_CACHE flag.
 240                 */
 241                goto fail;
 242        /*
 243         * Normally the page will be dirtied in unmap because its pte should be
 244         * dirty. A special case is MADV_FREE page. The page'e pte could have
 245         * dirty bit cleared but the page's SwapBacked bit is still set because
 246         * clearing the dirty bit and SwapBacked bit has no lock protected. For
 247         * such page, unmap will not set dirty bit for it, so page reclaim will
 248         * not write the page out. This can cause data corruption when the page
 249         * is swap in later. Always setting the dirty bit for the page solves
 250         * the problem.
 251         */
 252        set_page_dirty(page);
 253
 254        return 1;
 255
 256fail:
 257        put_swap_page(page, entry);
 258        return 0;
 259}
 260
 261/*
 262 * This must be called only on pages that have
 263 * been verified to be in the swap cache and locked.
 264 * It will never put the page into the free list,
 265 * the caller has a reference on the page.
 266 */
 267void delete_from_swap_cache(struct page *page)
 268{
 269        swp_entry_t entry;
 270        struct address_space *address_space;
 271
 272        entry.val = page_private(page);
 273
 274        address_space = swap_address_space(entry);
 275        xa_lock_irq(&address_space->i_pages);
 276        __delete_from_swap_cache(page);
 277        xa_unlock_irq(&address_space->i_pages);
 278
 279        put_swap_page(page, entry);
 280        page_ref_sub(page, hpage_nr_pages(page));
 281}
 282
 283/* 
 284 * If we are the only user, then try to free up the swap cache. 
 285 * 
 286 * Its ok to check for PageSwapCache without the page lock
 287 * here because we are going to recheck again inside
 288 * try_to_free_swap() _with_ the lock.
 289 *                                      - Marcelo
 290 */
 291static inline void free_swap_cache(struct page *page)
 292{
 293        if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
 294                try_to_free_swap(page);
 295                unlock_page(page);
 296        }
 297}
 298
 299/* 
 300 * Perform a free_page(), also freeing any swap cache associated with
 301 * this page if it is the last user of the page.
 302 */
 303void free_page_and_swap_cache(struct page *page)
 304{
 305        free_swap_cache(page);
 306        if (!is_huge_zero_page(page))
 307                put_page(page);
 308}
 309
 310/*
 311 * Passed an array of pages, drop them all from swapcache and then release
 312 * them.  They are removed from the LRU and freed if this is their last use.
 313 */
 314void free_pages_and_swap_cache(struct page **pages, int nr)
 315{
 316        struct page **pagep = pages;
 317        int i;
 318
 319        lru_add_drain();
 320        for (i = 0; i < nr; i++)
 321                free_swap_cache(pagep[i]);
 322        release_pages(pagep, nr);
 323}
 324
 325static inline bool swap_use_vma_readahead(void)
 326{
 327        return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
 328}
 329
 330/*
 331 * Lookup a swap entry in the swap cache. A found page will be returned
 332 * unlocked and with its refcount incremented - we rely on the kernel
 333 * lock getting page table operations atomic even if we drop the page
 334 * lock before returning.
 335 */
 336struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
 337                               unsigned long addr)
 338{
 339        struct page *page;
 340
 341        page = find_get_page(swap_address_space(entry), swp_offset(entry));
 342
 343        INC_CACHE_INFO(find_total);
 344        if (page) {
 345                bool vma_ra = swap_use_vma_readahead();
 346                bool readahead;
 347
 348                INC_CACHE_INFO(find_success);
 349                /*
 350                 * At the moment, we don't support PG_readahead for anon THP
 351                 * so let's bail out rather than confusing the readahead stat.
 352                 */
 353                if (unlikely(PageTransCompound(page)))
 354                        return page;
 355
 356                readahead = TestClearPageReadahead(page);
 357                if (vma && vma_ra) {
 358                        unsigned long ra_val;
 359                        int win, hits;
 360
 361                        ra_val = GET_SWAP_RA_VAL(vma);
 362                        win = SWAP_RA_WIN(ra_val);
 363                        hits = SWAP_RA_HITS(ra_val);
 364                        if (readahead)
 365                                hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
 366                        atomic_long_set(&vma->swap_readahead_info,
 367                                        SWAP_RA_VAL(addr, win, hits));
 368                }
 369
 370                if (readahead) {
 371                        count_vm_event(SWAP_RA_HIT);
 372                        if (!vma || !vma_ra)
 373                                atomic_inc(&swapin_readahead_hits);
 374                }
 375        }
 376
 377        return page;
 378}
 379
 380struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
 381                        struct vm_area_struct *vma, unsigned long addr,
 382                        bool *new_page_allocated)
 383{
 384        struct page *found_page, *new_page = NULL;
 385        struct address_space *swapper_space = swap_address_space(entry);
 386        int err;
 387        *new_page_allocated = false;
 388
 389        do {
 390                /*
 391                 * First check the swap cache.  Since this is normally
 392                 * called after lookup_swap_cache() failed, re-calling
 393                 * that would confuse statistics.
 394                 */
 395                found_page = find_get_page(swapper_space, swp_offset(entry));
 396                if (found_page)
 397                        break;
 398
 399                /*
 400                 * Just skip read ahead for unused swap slot.
 401                 * During swap_off when swap_slot_cache is disabled,
 402                 * we have to handle the race between putting
 403                 * swap entry in swap cache and marking swap slot
 404                 * as SWAP_HAS_CACHE.  That's done in later part of code or
 405                 * else swap_off will be aborted if we return NULL.
 406                 */
 407                if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
 408                        break;
 409
 410                /*
 411                 * Get a new page to read into from swap.
 412                 */
 413                if (!new_page) {
 414                        new_page = alloc_page_vma(gfp_mask, vma, addr);
 415                        if (!new_page)
 416                                break;          /* Out of memory */
 417                }
 418
 419                /*
 420                 * call radix_tree_preload() while we can wait.
 421                 */
 422                err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
 423                if (err)
 424                        break;
 425
 426                /*
 427                 * Swap entry may have been freed since our caller observed it.
 428                 */
 429                err = swapcache_prepare(entry);
 430                if (err == -EEXIST) {
 431                        radix_tree_preload_end();
 432                        /*
 433                         * We might race against get_swap_page() and stumble
 434                         * across a SWAP_HAS_CACHE swap_map entry whose page
 435                         * has not been brought into the swapcache yet.
 436                         */
 437                        cond_resched();
 438                        continue;
 439                }
 440                if (err) {              /* swp entry is obsolete ? */
 441                        radix_tree_preload_end();
 442                        break;
 443                }
 444
 445                /* May fail (-ENOMEM) if radix-tree node allocation failed. */
 446                __SetPageLocked(new_page);
 447                __SetPageSwapBacked(new_page);
 448                err = __add_to_swap_cache(new_page, entry);
 449                if (likely(!err)) {
 450                        radix_tree_preload_end();
 451                        /*
 452                         * Initiate read into locked page and return.
 453                         */
 454                        lru_cache_add_anon(new_page);
 455                        *new_page_allocated = true;
 456                        return new_page;
 457                }
 458                radix_tree_preload_end();
 459                __ClearPageLocked(new_page);
 460                /*
 461                 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
 462                 * clear SWAP_HAS_CACHE flag.
 463                 */
 464                put_swap_page(new_page, entry);
 465        } while (err != -ENOMEM);
 466
 467        if (new_page)
 468                put_page(new_page);
 469        return found_page;
 470}
 471
 472/*
 473 * Locate a page of swap in physical memory, reserving swap cache space
 474 * and reading the disk if it is not already cached.
 475 * A failure return means that either the page allocation failed or that
 476 * the swap entry is no longer in use.
 477 */
 478struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
 479                struct vm_area_struct *vma, unsigned long addr, bool do_poll)
 480{
 481        bool page_was_allocated;
 482        struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
 483                        vma, addr, &page_was_allocated);
 484
 485        if (page_was_allocated)
 486                swap_readpage(retpage, do_poll);
 487
 488        return retpage;
 489}
 490
 491static unsigned int __swapin_nr_pages(unsigned long prev_offset,
 492                                      unsigned long offset,
 493                                      int hits,
 494                                      int max_pages,
 495                                      int prev_win)
 496{
 497        unsigned int pages, last_ra;
 498
 499        /*
 500         * This heuristic has been found to work well on both sequential and
 501         * random loads, swapping to hard disk or to SSD: please don't ask
 502         * what the "+ 2" means, it just happens to work well, that's all.
 503         */
 504        pages = hits + 2;
 505        if (pages == 2) {
 506                /*
 507                 * We can have no readahead hits to judge by: but must not get
 508                 * stuck here forever, so check for an adjacent offset instead
 509                 * (and don't even bother to check whether swap type is same).
 510                 */
 511                if (offset != prev_offset + 1 && offset != prev_offset - 1)
 512                        pages = 1;
 513        } else {
 514                unsigned int roundup = 4;
 515                while (roundup < pages)
 516                        roundup <<= 1;
 517                pages = roundup;
 518        }
 519
 520        if (pages > max_pages)
 521                pages = max_pages;
 522
 523        /* Don't shrink readahead too fast */
 524        last_ra = prev_win / 2;
 525        if (pages < last_ra)
 526                pages = last_ra;
 527
 528        return pages;
 529}
 530
 531static unsigned long swapin_nr_pages(unsigned long offset)
 532{
 533        static unsigned long prev_offset;
 534        unsigned int hits, pages, max_pages;
 535        static atomic_t last_readahead_pages;
 536
 537        max_pages = 1 << READ_ONCE(page_cluster);
 538        if (max_pages <= 1)
 539                return 1;
 540
 541        hits = atomic_xchg(&swapin_readahead_hits, 0);
 542        pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
 543                                  atomic_read(&last_readahead_pages));
 544        if (!hits)
 545                prev_offset = offset;
 546        atomic_set(&last_readahead_pages, pages);
 547
 548        return pages;
 549}
 550
 551/**
 552 * swap_cluster_readahead - swap in pages in hope we need them soon
 553 * @entry: swap entry of this memory
 554 * @gfp_mask: memory allocation flags
 555 * @vmf: fault information
 556 *
 557 * Returns the struct page for entry and addr, after queueing swapin.
 558 *
 559 * Primitive swap readahead code. We simply read an aligned block of
 560 * (1 << page_cluster) entries in the swap area. This method is chosen
 561 * because it doesn't cost us any seek time.  We also make sure to queue
 562 * the 'original' request together with the readahead ones...
 563 *
 564 * This has been extended to use the NUMA policies from the mm triggering
 565 * the readahead.
 566 *
 567 * Caller must hold down_read on the vma->vm_mm if vmf->vma is not NULL.
 568 */
 569struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
 570                                struct vm_fault *vmf)
 571{
 572        struct page *page;
 573        unsigned long entry_offset = swp_offset(entry);
 574        unsigned long offset = entry_offset;
 575        unsigned long start_offset, end_offset;
 576        unsigned long mask;
 577        struct swap_info_struct *si = swp_swap_info(entry);
 578        struct blk_plug plug;
 579        bool do_poll = true, page_allocated;
 580        struct vm_area_struct *vma = vmf->vma;
 581        unsigned long addr = vmf->address;
 582
 583        mask = swapin_nr_pages(offset) - 1;
 584        if (!mask)
 585                goto skip;
 586
 587        do_poll = false;
 588        /* Read a page_cluster sized and aligned cluster around offset. */
 589        start_offset = offset & ~mask;
 590        end_offset = offset | mask;
 591        if (!start_offset)      /* First page is swap header. */
 592                start_offset++;
 593        if (end_offset >= si->max)
 594                end_offset = si->max - 1;
 595
 596        blk_start_plug(&plug);
 597        for (offset = start_offset; offset <= end_offset ; offset++) {
 598                /* Ok, do the async read-ahead now */
 599                page = __read_swap_cache_async(
 600                        swp_entry(swp_type(entry), offset),
 601                        gfp_mask, vma, addr, &page_allocated);
 602                if (!page)
 603                        continue;
 604                if (page_allocated) {
 605                        swap_readpage(page, false);
 606                        if (offset != entry_offset) {
 607                                SetPageReadahead(page);
 608                                count_vm_event(SWAP_RA);
 609                        }
 610                }
 611                put_page(page);
 612        }
 613        blk_finish_plug(&plug);
 614
 615        lru_add_drain();        /* Push any new pages onto the LRU now */
 616skip:
 617        return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
 618}
 619
 620int init_swap_address_space(unsigned int type, unsigned long nr_pages)
 621{
 622        struct address_space *spaces, *space;
 623        unsigned int i, nr;
 624
 625        nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
 626        spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
 627        if (!spaces)
 628                return -ENOMEM;
 629        for (i = 0; i < nr; i++) {
 630                space = spaces + i;
 631                INIT_RADIX_TREE(&space->i_pages, GFP_ATOMIC|__GFP_NOWARN);
 632                atomic_set(&space->i_mmap_writable, 0);
 633                space->a_ops = &swap_aops;
 634                /* swap cache doesn't use writeback related tags */
 635                mapping_set_no_writeback_tags(space);
 636        }
 637        nr_swapper_spaces[type] = nr;
 638        rcu_assign_pointer(swapper_spaces[type], spaces);
 639
 640        return 0;
 641}
 642
 643void exit_swap_address_space(unsigned int type)
 644{
 645        struct address_space *spaces;
 646
 647        spaces = swapper_spaces[type];
 648        nr_swapper_spaces[type] = 0;
 649        rcu_assign_pointer(swapper_spaces[type], NULL);
 650        synchronize_rcu();
 651        kvfree(spaces);
 652}
 653
 654static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
 655                                     unsigned long faddr,
 656                                     unsigned long lpfn,
 657                                     unsigned long rpfn,
 658                                     unsigned long *start,
 659                                     unsigned long *end)
 660{
 661        *start = max3(lpfn, PFN_DOWN(vma->vm_start),
 662                      PFN_DOWN(faddr & PMD_MASK));
 663        *end = min3(rpfn, PFN_DOWN(vma->vm_end),
 664                    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
 665}
 666
 667static void swap_ra_info(struct vm_fault *vmf,
 668                        struct vma_swap_readahead *ra_info)
 669{
 670        struct vm_area_struct *vma = vmf->vma;
 671        unsigned long ra_val;
 672        swp_entry_t entry;
 673        unsigned long faddr, pfn, fpfn;
 674        unsigned long start, end;
 675        pte_t *pte, *orig_pte;
 676        unsigned int max_win, hits, prev_win, win, left;
 677#ifndef CONFIG_64BIT
 678        pte_t *tpte;
 679#endif
 680
 681        max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
 682                             SWAP_RA_ORDER_CEILING);
 683        if (max_win == 1) {
 684                ra_info->win = 1;
 685                return;
 686        }
 687
 688        faddr = vmf->address;
 689        orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
 690        entry = pte_to_swp_entry(*pte);
 691        if ((unlikely(non_swap_entry(entry)))) {
 692                pte_unmap(orig_pte);
 693                return;
 694        }
 695
 696        fpfn = PFN_DOWN(faddr);
 697        ra_val = GET_SWAP_RA_VAL(vma);
 698        pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
 699        prev_win = SWAP_RA_WIN(ra_val);
 700        hits = SWAP_RA_HITS(ra_val);
 701        ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
 702                                               max_win, prev_win);
 703        atomic_long_set(&vma->swap_readahead_info,
 704                        SWAP_RA_VAL(faddr, win, 0));
 705
 706        if (win == 1) {
 707                pte_unmap(orig_pte);
 708                return;
 709        }
 710
 711        /* Copy the PTEs because the page table may be unmapped */
 712        if (fpfn == pfn + 1)
 713                swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
 714        else if (pfn == fpfn + 1)
 715                swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
 716                                  &start, &end);
 717        else {
 718                left = (win - 1) / 2;
 719                swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
 720                                  &start, &end);
 721        }
 722        ra_info->nr_pte = end - start;
 723        ra_info->offset = fpfn - start;
 724        pte -= ra_info->offset;
 725#ifdef CONFIG_64BIT
 726        ra_info->ptes = pte;
 727#else
 728        tpte = ra_info->ptes;
 729        for (pfn = start; pfn != end; pfn++)
 730                *tpte++ = *pte++;
 731#endif
 732        pte_unmap(orig_pte);
 733}
 734
 735static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
 736                                       struct vm_fault *vmf)
 737{
 738        struct blk_plug plug;
 739        struct vm_area_struct *vma = vmf->vma;
 740        struct page *page;
 741        pte_t *pte, pentry;
 742        swp_entry_t entry;
 743        unsigned int i;
 744        bool page_allocated;
 745        struct vma_swap_readahead ra_info = {0,};
 746
 747        swap_ra_info(vmf, &ra_info);
 748        if (ra_info.win == 1)
 749                goto skip;
 750
 751        blk_start_plug(&plug);
 752        for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
 753             i++, pte++) {
 754                pentry = *pte;
 755                if (pte_none(pentry))
 756                        continue;
 757                if (pte_present(pentry))
 758                        continue;
 759                entry = pte_to_swp_entry(pentry);
 760                if (unlikely(non_swap_entry(entry)))
 761                        continue;
 762                page = __read_swap_cache_async(entry, gfp_mask, vma,
 763                                               vmf->address, &page_allocated);
 764                if (!page)
 765                        continue;
 766                if (page_allocated) {
 767                        swap_readpage(page, false);
 768                        if (i != ra_info.offset) {
 769                                SetPageReadahead(page);
 770                                count_vm_event(SWAP_RA);
 771                        }
 772                }
 773                put_page(page);
 774        }
 775        blk_finish_plug(&plug);
 776        lru_add_drain();
 777skip:
 778        return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
 779                                     ra_info.win == 1);
 780}
 781
 782/**
 783 * swapin_readahead - swap in pages in hope we need them soon
 784 * @entry: swap entry of this memory
 785 * @gfp_mask: memory allocation flags
 786 * @vmf: fault information
 787 *
 788 * Returns the struct page for entry and addr, after queueing swapin.
 789 *
 790 * It's a main entry function for swap readahead. By the configuration,
 791 * it will read ahead blocks by cluster-based(ie, physical disk based)
 792 * or vma-based(ie, virtual address based on faulty address) readahead.
 793 */
 794struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
 795                                struct vm_fault *vmf)
 796{
 797        return swap_use_vma_readahead() ?
 798                        swap_vma_readahead(entry, gfp_mask, vmf) :
 799                        swap_cluster_readahead(entry, gfp_mask, vmf);
 800}
 801
 802#ifdef CONFIG_SYSFS
 803static ssize_t vma_ra_enabled_show(struct kobject *kobj,
 804                                     struct kobj_attribute *attr, char *buf)
 805{
 806        return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
 807}
 808static ssize_t vma_ra_enabled_store(struct kobject *kobj,
 809                                      struct kobj_attribute *attr,
 810                                      const char *buf, size_t count)
 811{
 812        if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
 813                enable_vma_readahead = true;
 814        else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
 815                enable_vma_readahead = false;
 816        else
 817                return -EINVAL;
 818
 819        return count;
 820}
 821static struct kobj_attribute vma_ra_enabled_attr =
 822        __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
 823               vma_ra_enabled_store);
 824
 825static struct attribute *swap_attrs[] = {
 826        &vma_ra_enabled_attr.attr,
 827        NULL,
 828};
 829
 830static struct attribute_group swap_attr_group = {
 831        .attrs = swap_attrs,
 832};
 833
 834static int __init swap_init_sysfs(void)
 835{
 836        int err;
 837        struct kobject *swap_kobj;
 838
 839        swap_kobj = kobject_create_and_add("swap", mm_kobj);
 840        if (!swap_kobj) {
 841                pr_err("failed to create swap kobject\n");
 842                return -ENOMEM;
 843        }
 844        err = sysfs_create_group(swap_kobj, &swap_attr_group);
 845        if (err) {
 846                pr_err("failed to register swap group\n");
 847                goto delete_obj;
 848        }
 849        return 0;
 850
 851delete_obj:
 852        kobject_put(swap_kobj);
 853        return err;
 854}
 855subsys_initcall(swap_init_sysfs);
 856#endif
 857