linux/mm/swapfile.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/swapfile.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *  Swap reorganised 29.12.95, Stephen Tweedie
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/sched/mm.h>
  10#include <linux/sched/task.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mman.h>
  13#include <linux/slab.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/swap.h>
  16#include <linux/vmalloc.h>
  17#include <linux/pagemap.h>
  18#include <linux/namei.h>
  19#include <linux/shmem_fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/random.h>
  22#include <linux/writeback.h>
  23#include <linux/proc_fs.h>
  24#include <linux/seq_file.h>
  25#include <linux/init.h>
  26#include <linux/ksm.h>
  27#include <linux/rmap.h>
  28#include <linux/security.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mutex.h>
  31#include <linux/capability.h>
  32#include <linux/syscalls.h>
  33#include <linux/memcontrol.h>
  34#include <linux/poll.h>
  35#include <linux/oom.h>
  36#include <linux/frontswap.h>
  37#include <linux/swapfile.h>
  38#include <linux/export.h>
  39#include <linux/swap_slots.h>
  40#include <linux/sort.h>
  41
  42#include <asm/pgtable.h>
  43#include <asm/tlbflush.h>
  44#include <linux/swapops.h>
  45#include <linux/swap_cgroup.h>
  46
  47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  48                                 unsigned char);
  49static void free_swap_count_continuations(struct swap_info_struct *);
  50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
  51
  52DEFINE_SPINLOCK(swap_lock);
  53static unsigned int nr_swapfiles;
  54atomic_long_t nr_swap_pages;
  55/*
  56 * Some modules use swappable objects and may try to swap them out under
  57 * memory pressure (via the shrinker). Before doing so, they may wish to
  58 * check to see if any swap space is available.
  59 */
  60EXPORT_SYMBOL_GPL(nr_swap_pages);
  61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  62long total_swap_pages;
  63static int least_priority = -1;
  64
  65static const char Bad_file[] = "Bad swap file entry ";
  66static const char Unused_file[] = "Unused swap file entry ";
  67static const char Bad_offset[] = "Bad swap offset entry ";
  68static const char Unused_offset[] = "Unused swap offset entry ";
  69
  70/*
  71 * all active swap_info_structs
  72 * protected with swap_lock, and ordered by priority.
  73 */
  74PLIST_HEAD(swap_active_head);
  75
  76/*
  77 * all available (active, not full) swap_info_structs
  78 * protected with swap_avail_lock, ordered by priority.
  79 * This is used by get_swap_page() instead of swap_active_head
  80 * because swap_active_head includes all swap_info_structs,
  81 * but get_swap_page() doesn't need to look at full ones.
  82 * This uses its own lock instead of swap_lock because when a
  83 * swap_info_struct changes between not-full/full, it needs to
  84 * add/remove itself to/from this list, but the swap_info_struct->lock
  85 * is held and the locking order requires swap_lock to be taken
  86 * before any swap_info_struct->lock.
  87 */
  88static struct plist_head *swap_avail_heads;
  89static DEFINE_SPINLOCK(swap_avail_lock);
  90
  91struct swap_info_struct *swap_info[MAX_SWAPFILES];
  92
  93static DEFINE_MUTEX(swapon_mutex);
  94
  95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  96/* Activity counter to indicate that a swapon or swapoff has occurred */
  97static atomic_t proc_poll_event = ATOMIC_INIT(0);
  98
  99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 100
 101static inline unsigned char swap_count(unsigned char ent)
 102{
 103        return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
 104}
 105
 106/* returns 1 if swap entry is freed */
 107static int
 108__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
 109{
 110        swp_entry_t entry = swp_entry(si->type, offset);
 111        struct page *page;
 112        int ret = 0;
 113
 114        page = find_get_page(swap_address_space(entry), swp_offset(entry));
 115        if (!page)
 116                return 0;
 117        /*
 118         * This function is called from scan_swap_map() and it's called
 119         * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
 120         * We have to use trylock for avoiding deadlock. This is a special
 121         * case and you should use try_to_free_swap() with explicit lock_page()
 122         * in usual operations.
 123         */
 124        if (trylock_page(page)) {
 125                ret = try_to_free_swap(page);
 126                unlock_page(page);
 127        }
 128        put_page(page);
 129        return ret;
 130}
 131
 132/*
 133 * swapon tell device that all the old swap contents can be discarded,
 134 * to allow the swap device to optimize its wear-levelling.
 135 */
 136static int discard_swap(struct swap_info_struct *si)
 137{
 138        struct swap_extent *se;
 139        sector_t start_block;
 140        sector_t nr_blocks;
 141        int err = 0;
 142
 143        /* Do not discard the swap header page! */
 144        se = &si->first_swap_extent;
 145        start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 146        nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 147        if (nr_blocks) {
 148                err = blkdev_issue_discard(si->bdev, start_block,
 149                                nr_blocks, GFP_KERNEL, 0);
 150                if (err)
 151                        return err;
 152                cond_resched();
 153        }
 154
 155        list_for_each_entry(se, &si->first_swap_extent.list, list) {
 156                start_block = se->start_block << (PAGE_SHIFT - 9);
 157                nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 158
 159                err = blkdev_issue_discard(si->bdev, start_block,
 160                                nr_blocks, GFP_KERNEL, 0);
 161                if (err)
 162                        break;
 163
 164                cond_resched();
 165        }
 166        return err;             /* That will often be -EOPNOTSUPP */
 167}
 168
 169/*
 170 * swap allocation tell device that a cluster of swap can now be discarded,
 171 * to allow the swap device to optimize its wear-levelling.
 172 */
 173static void discard_swap_cluster(struct swap_info_struct *si,
 174                                 pgoff_t start_page, pgoff_t nr_pages)
 175{
 176        struct swap_extent *se = si->curr_swap_extent;
 177        int found_extent = 0;
 178
 179        while (nr_pages) {
 180                if (se->start_page <= start_page &&
 181                    start_page < se->start_page + se->nr_pages) {
 182                        pgoff_t offset = start_page - se->start_page;
 183                        sector_t start_block = se->start_block + offset;
 184                        sector_t nr_blocks = se->nr_pages - offset;
 185
 186                        if (nr_blocks > nr_pages)
 187                                nr_blocks = nr_pages;
 188                        start_page += nr_blocks;
 189                        nr_pages -= nr_blocks;
 190
 191                        if (!found_extent++)
 192                                si->curr_swap_extent = se;
 193
 194                        start_block <<= PAGE_SHIFT - 9;
 195                        nr_blocks <<= PAGE_SHIFT - 9;
 196                        if (blkdev_issue_discard(si->bdev, start_block,
 197                                    nr_blocks, GFP_NOIO, 0))
 198                                break;
 199                }
 200
 201                se = list_next_entry(se, list);
 202        }
 203}
 204
 205#ifdef CONFIG_THP_SWAP
 206#define SWAPFILE_CLUSTER        HPAGE_PMD_NR
 207#else
 208#define SWAPFILE_CLUSTER        256
 209#endif
 210#define LATENCY_LIMIT           256
 211
 212static inline void cluster_set_flag(struct swap_cluster_info *info,
 213        unsigned int flag)
 214{
 215        info->flags = flag;
 216}
 217
 218static inline unsigned int cluster_count(struct swap_cluster_info *info)
 219{
 220        return info->data;
 221}
 222
 223static inline void cluster_set_count(struct swap_cluster_info *info,
 224                                     unsigned int c)
 225{
 226        info->data = c;
 227}
 228
 229static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 230                                         unsigned int c, unsigned int f)
 231{
 232        info->flags = f;
 233        info->data = c;
 234}
 235
 236static inline unsigned int cluster_next(struct swap_cluster_info *info)
 237{
 238        return info->data;
 239}
 240
 241static inline void cluster_set_next(struct swap_cluster_info *info,
 242                                    unsigned int n)
 243{
 244        info->data = n;
 245}
 246
 247static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 248                                         unsigned int n, unsigned int f)
 249{
 250        info->flags = f;
 251        info->data = n;
 252}
 253
 254static inline bool cluster_is_free(struct swap_cluster_info *info)
 255{
 256        return info->flags & CLUSTER_FLAG_FREE;
 257}
 258
 259static inline bool cluster_is_null(struct swap_cluster_info *info)
 260{
 261        return info->flags & CLUSTER_FLAG_NEXT_NULL;
 262}
 263
 264static inline void cluster_set_null(struct swap_cluster_info *info)
 265{
 266        info->flags = CLUSTER_FLAG_NEXT_NULL;
 267        info->data = 0;
 268}
 269
 270static inline bool cluster_is_huge(struct swap_cluster_info *info)
 271{
 272        return info->flags & CLUSTER_FLAG_HUGE;
 273}
 274
 275static inline void cluster_clear_huge(struct swap_cluster_info *info)
 276{
 277        info->flags &= ~CLUSTER_FLAG_HUGE;
 278}
 279
 280static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 281                                                     unsigned long offset)
 282{
 283        struct swap_cluster_info *ci;
 284
 285        ci = si->cluster_info;
 286        if (ci) {
 287                ci += offset / SWAPFILE_CLUSTER;
 288                spin_lock(&ci->lock);
 289        }
 290        return ci;
 291}
 292
 293static inline void unlock_cluster(struct swap_cluster_info *ci)
 294{
 295        if (ci)
 296                spin_unlock(&ci->lock);
 297}
 298
 299static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 300        struct swap_info_struct *si,
 301        unsigned long offset)
 302{
 303        struct swap_cluster_info *ci;
 304
 305        ci = lock_cluster(si, offset);
 306        if (!ci)
 307                spin_lock(&si->lock);
 308
 309        return ci;
 310}
 311
 312static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 313                                               struct swap_cluster_info *ci)
 314{
 315        if (ci)
 316                unlock_cluster(ci);
 317        else
 318                spin_unlock(&si->lock);
 319}
 320
 321static inline bool cluster_list_empty(struct swap_cluster_list *list)
 322{
 323        return cluster_is_null(&list->head);
 324}
 325
 326static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
 327{
 328        return cluster_next(&list->head);
 329}
 330
 331static void cluster_list_init(struct swap_cluster_list *list)
 332{
 333        cluster_set_null(&list->head);
 334        cluster_set_null(&list->tail);
 335}
 336
 337static void cluster_list_add_tail(struct swap_cluster_list *list,
 338                                  struct swap_cluster_info *ci,
 339                                  unsigned int idx)
 340{
 341        if (cluster_list_empty(list)) {
 342                cluster_set_next_flag(&list->head, idx, 0);
 343                cluster_set_next_flag(&list->tail, idx, 0);
 344        } else {
 345                struct swap_cluster_info *ci_tail;
 346                unsigned int tail = cluster_next(&list->tail);
 347
 348                /*
 349                 * Nested cluster lock, but both cluster locks are
 350                 * only acquired when we held swap_info_struct->lock
 351                 */
 352                ci_tail = ci + tail;
 353                spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
 354                cluster_set_next(ci_tail, idx);
 355                spin_unlock(&ci_tail->lock);
 356                cluster_set_next_flag(&list->tail, idx, 0);
 357        }
 358}
 359
 360static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
 361                                           struct swap_cluster_info *ci)
 362{
 363        unsigned int idx;
 364
 365        idx = cluster_next(&list->head);
 366        if (cluster_next(&list->tail) == idx) {
 367                cluster_set_null(&list->head);
 368                cluster_set_null(&list->tail);
 369        } else
 370                cluster_set_next_flag(&list->head,
 371                                      cluster_next(&ci[idx]), 0);
 372
 373        return idx;
 374}
 375
 376/* Add a cluster to discard list and schedule it to do discard */
 377static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 378                unsigned int idx)
 379{
 380        /*
 381         * If scan_swap_map() can't find a free cluster, it will check
 382         * si->swap_map directly. To make sure the discarding cluster isn't
 383         * taken by scan_swap_map(), mark the swap entries bad (occupied). It
 384         * will be cleared after discard
 385         */
 386        memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 387                        SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 388
 389        cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
 390
 391        schedule_work(&si->discard_work);
 392}
 393
 394static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
 395{
 396        struct swap_cluster_info *ci = si->cluster_info;
 397
 398        cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
 399        cluster_list_add_tail(&si->free_clusters, ci, idx);
 400}
 401
 402/*
 403 * Doing discard actually. After a cluster discard is finished, the cluster
 404 * will be added to free cluster list. caller should hold si->lock.
 405*/
 406static void swap_do_scheduled_discard(struct swap_info_struct *si)
 407{
 408        struct swap_cluster_info *info, *ci;
 409        unsigned int idx;
 410
 411        info = si->cluster_info;
 412
 413        while (!cluster_list_empty(&si->discard_clusters)) {
 414                idx = cluster_list_del_first(&si->discard_clusters, info);
 415                spin_unlock(&si->lock);
 416
 417                discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 418                                SWAPFILE_CLUSTER);
 419
 420                spin_lock(&si->lock);
 421                ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
 422                __free_cluster(si, idx);
 423                memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 424                                0, SWAPFILE_CLUSTER);
 425                unlock_cluster(ci);
 426        }
 427}
 428
 429static void swap_discard_work(struct work_struct *work)
 430{
 431        struct swap_info_struct *si;
 432
 433        si = container_of(work, struct swap_info_struct, discard_work);
 434
 435        spin_lock(&si->lock);
 436        swap_do_scheduled_discard(si);
 437        spin_unlock(&si->lock);
 438}
 439
 440static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
 441{
 442        struct swap_cluster_info *ci = si->cluster_info;
 443
 444        VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
 445        cluster_list_del_first(&si->free_clusters, ci);
 446        cluster_set_count_flag(ci + idx, 0, 0);
 447}
 448
 449static void free_cluster(struct swap_info_struct *si, unsigned long idx)
 450{
 451        struct swap_cluster_info *ci = si->cluster_info + idx;
 452
 453        VM_BUG_ON(cluster_count(ci) != 0);
 454        /*
 455         * If the swap is discardable, prepare discard the cluster
 456         * instead of free it immediately. The cluster will be freed
 457         * after discard.
 458         */
 459        if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 460            (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 461                swap_cluster_schedule_discard(si, idx);
 462                return;
 463        }
 464
 465        __free_cluster(si, idx);
 466}
 467
 468/*
 469 * The cluster corresponding to page_nr will be used. The cluster will be
 470 * removed from free cluster list and its usage counter will be increased.
 471 */
 472static void inc_cluster_info_page(struct swap_info_struct *p,
 473        struct swap_cluster_info *cluster_info, unsigned long page_nr)
 474{
 475        unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 476
 477        if (!cluster_info)
 478                return;
 479        if (cluster_is_free(&cluster_info[idx]))
 480                alloc_cluster(p, idx);
 481
 482        VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 483        cluster_set_count(&cluster_info[idx],
 484                cluster_count(&cluster_info[idx]) + 1);
 485}
 486
 487/*
 488 * The cluster corresponding to page_nr decreases one usage. If the usage
 489 * counter becomes 0, which means no page in the cluster is in using, we can
 490 * optionally discard the cluster and add it to free cluster list.
 491 */
 492static void dec_cluster_info_page(struct swap_info_struct *p,
 493        struct swap_cluster_info *cluster_info, unsigned long page_nr)
 494{
 495        unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 496
 497        if (!cluster_info)
 498                return;
 499
 500        VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 501        cluster_set_count(&cluster_info[idx],
 502                cluster_count(&cluster_info[idx]) - 1);
 503
 504        if (cluster_count(&cluster_info[idx]) == 0)
 505                free_cluster(p, idx);
 506}
 507
 508/*
 509 * It's possible scan_swap_map() uses a free cluster in the middle of free
 510 * cluster list. Avoiding such abuse to avoid list corruption.
 511 */
 512static bool
 513scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 514        unsigned long offset)
 515{
 516        struct percpu_cluster *percpu_cluster;
 517        bool conflict;
 518
 519        offset /= SWAPFILE_CLUSTER;
 520        conflict = !cluster_list_empty(&si->free_clusters) &&
 521                offset != cluster_list_first(&si->free_clusters) &&
 522                cluster_is_free(&si->cluster_info[offset]);
 523
 524        if (!conflict)
 525                return false;
 526
 527        percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 528        cluster_set_null(&percpu_cluster->index);
 529        return true;
 530}
 531
 532/*
 533 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 534 * might involve allocating a new cluster for current CPU too.
 535 */
 536static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 537        unsigned long *offset, unsigned long *scan_base)
 538{
 539        struct percpu_cluster *cluster;
 540        struct swap_cluster_info *ci;
 541        bool found_free;
 542        unsigned long tmp, max;
 543
 544new_cluster:
 545        cluster = this_cpu_ptr(si->percpu_cluster);
 546        if (cluster_is_null(&cluster->index)) {
 547                if (!cluster_list_empty(&si->free_clusters)) {
 548                        cluster->index = si->free_clusters.head;
 549                        cluster->next = cluster_next(&cluster->index) *
 550                                        SWAPFILE_CLUSTER;
 551                } else if (!cluster_list_empty(&si->discard_clusters)) {
 552                        /*
 553                         * we don't have free cluster but have some clusters in
 554                         * discarding, do discard now and reclaim them
 555                         */
 556                        swap_do_scheduled_discard(si);
 557                        *scan_base = *offset = si->cluster_next;
 558                        goto new_cluster;
 559                } else
 560                        return false;
 561        }
 562
 563        found_free = false;
 564
 565        /*
 566         * Other CPUs can use our cluster if they can't find a free cluster,
 567         * check if there is still free entry in the cluster
 568         */
 569        tmp = cluster->next;
 570        max = min_t(unsigned long, si->max,
 571                    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
 572        if (tmp >= max) {
 573                cluster_set_null(&cluster->index);
 574                goto new_cluster;
 575        }
 576        ci = lock_cluster(si, tmp);
 577        while (tmp < max) {
 578                if (!si->swap_map[tmp]) {
 579                        found_free = true;
 580                        break;
 581                }
 582                tmp++;
 583        }
 584        unlock_cluster(ci);
 585        if (!found_free) {
 586                cluster_set_null(&cluster->index);
 587                goto new_cluster;
 588        }
 589        cluster->next = tmp + 1;
 590        *offset = tmp;
 591        *scan_base = tmp;
 592        return found_free;
 593}
 594
 595static void __del_from_avail_list(struct swap_info_struct *p)
 596{
 597        int nid;
 598
 599        for_each_node(nid)
 600                plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
 601}
 602
 603static void del_from_avail_list(struct swap_info_struct *p)
 604{
 605        spin_lock(&swap_avail_lock);
 606        __del_from_avail_list(p);
 607        spin_unlock(&swap_avail_lock);
 608}
 609
 610static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 611                             unsigned int nr_entries)
 612{
 613        unsigned int end = offset + nr_entries - 1;
 614
 615        if (offset == si->lowest_bit)
 616                si->lowest_bit += nr_entries;
 617        if (end == si->highest_bit)
 618                si->highest_bit -= nr_entries;
 619        si->inuse_pages += nr_entries;
 620        if (si->inuse_pages == si->pages) {
 621                si->lowest_bit = si->max;
 622                si->highest_bit = 0;
 623                del_from_avail_list(si);
 624        }
 625}
 626
 627static void add_to_avail_list(struct swap_info_struct *p)
 628{
 629        int nid;
 630
 631        spin_lock(&swap_avail_lock);
 632        for_each_node(nid) {
 633                WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
 634                plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
 635        }
 636        spin_unlock(&swap_avail_lock);
 637}
 638
 639static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 640                            unsigned int nr_entries)
 641{
 642        unsigned long end = offset + nr_entries - 1;
 643        void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 644
 645        if (offset < si->lowest_bit)
 646                si->lowest_bit = offset;
 647        if (end > si->highest_bit) {
 648                bool was_full = !si->highest_bit;
 649
 650                si->highest_bit = end;
 651                if (was_full && (si->flags & SWP_WRITEOK))
 652                        add_to_avail_list(si);
 653        }
 654        atomic_long_add(nr_entries, &nr_swap_pages);
 655        si->inuse_pages -= nr_entries;
 656        if (si->flags & SWP_BLKDEV)
 657                swap_slot_free_notify =
 658                        si->bdev->bd_disk->fops->swap_slot_free_notify;
 659        else
 660                swap_slot_free_notify = NULL;
 661        while (offset <= end) {
 662                frontswap_invalidate_page(si->type, offset);
 663                if (swap_slot_free_notify)
 664                        swap_slot_free_notify(si->bdev, offset);
 665                offset++;
 666        }
 667}
 668
 669static int scan_swap_map_slots(struct swap_info_struct *si,
 670                               unsigned char usage, int nr,
 671                               swp_entry_t slots[])
 672{
 673        struct swap_cluster_info *ci;
 674        unsigned long offset;
 675        unsigned long scan_base;
 676        unsigned long last_in_cluster = 0;
 677        int latency_ration = LATENCY_LIMIT;
 678        int n_ret = 0;
 679
 680        if (nr > SWAP_BATCH)
 681                nr = SWAP_BATCH;
 682
 683        /*
 684         * We try to cluster swap pages by allocating them sequentially
 685         * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 686         * way, however, we resort to first-free allocation, starting
 687         * a new cluster.  This prevents us from scattering swap pages
 688         * all over the entire swap partition, so that we reduce
 689         * overall disk seek times between swap pages.  -- sct
 690         * But we do now try to find an empty cluster.  -Andrea
 691         * And we let swap pages go all over an SSD partition.  Hugh
 692         */
 693
 694        si->flags += SWP_SCANNING;
 695        scan_base = offset = si->cluster_next;
 696
 697        /* SSD algorithm */
 698        if (si->cluster_info) {
 699                if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 700                        goto checks;
 701                else
 702                        goto scan;
 703        }
 704
 705        if (unlikely(!si->cluster_nr--)) {
 706                if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 707                        si->cluster_nr = SWAPFILE_CLUSTER - 1;
 708                        goto checks;
 709                }
 710
 711                spin_unlock(&si->lock);
 712
 713                /*
 714                 * If seek is expensive, start searching for new cluster from
 715                 * start of partition, to minimize the span of allocated swap.
 716                 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 717                 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 718                 */
 719                scan_base = offset = si->lowest_bit;
 720                last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 721
 722                /* Locate the first empty (unaligned) cluster */
 723                for (; last_in_cluster <= si->highest_bit; offset++) {
 724                        if (si->swap_map[offset])
 725                                last_in_cluster = offset + SWAPFILE_CLUSTER;
 726                        else if (offset == last_in_cluster) {
 727                                spin_lock(&si->lock);
 728                                offset -= SWAPFILE_CLUSTER - 1;
 729                                si->cluster_next = offset;
 730                                si->cluster_nr = SWAPFILE_CLUSTER - 1;
 731                                goto checks;
 732                        }
 733                        if (unlikely(--latency_ration < 0)) {
 734                                cond_resched();
 735                                latency_ration = LATENCY_LIMIT;
 736                        }
 737                }
 738
 739                offset = scan_base;
 740                spin_lock(&si->lock);
 741                si->cluster_nr = SWAPFILE_CLUSTER - 1;
 742        }
 743
 744checks:
 745        if (si->cluster_info) {
 746                while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
 747                /* take a break if we already got some slots */
 748                        if (n_ret)
 749                                goto done;
 750                        if (!scan_swap_map_try_ssd_cluster(si, &offset,
 751                                                        &scan_base))
 752                                goto scan;
 753                }
 754        }
 755        if (!(si->flags & SWP_WRITEOK))
 756                goto no_page;
 757        if (!si->highest_bit)
 758                goto no_page;
 759        if (offset > si->highest_bit)
 760                scan_base = offset = si->lowest_bit;
 761
 762        ci = lock_cluster(si, offset);
 763        /* reuse swap entry of cache-only swap if not busy. */
 764        if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 765                int swap_was_freed;
 766                unlock_cluster(ci);
 767                spin_unlock(&si->lock);
 768                swap_was_freed = __try_to_reclaim_swap(si, offset);
 769                spin_lock(&si->lock);
 770                /* entry was freed successfully, try to use this again */
 771                if (swap_was_freed)
 772                        goto checks;
 773                goto scan; /* check next one */
 774        }
 775
 776        if (si->swap_map[offset]) {
 777                unlock_cluster(ci);
 778                if (!n_ret)
 779                        goto scan;
 780                else
 781                        goto done;
 782        }
 783        si->swap_map[offset] = usage;
 784        inc_cluster_info_page(si, si->cluster_info, offset);
 785        unlock_cluster(ci);
 786
 787        swap_range_alloc(si, offset, 1);
 788        si->cluster_next = offset + 1;
 789        slots[n_ret++] = swp_entry(si->type, offset);
 790
 791        /* got enough slots or reach max slots? */
 792        if ((n_ret == nr) || (offset >= si->highest_bit))
 793                goto done;
 794
 795        /* search for next available slot */
 796
 797        /* time to take a break? */
 798        if (unlikely(--latency_ration < 0)) {
 799                if (n_ret)
 800                        goto done;
 801                spin_unlock(&si->lock);
 802                cond_resched();
 803                spin_lock(&si->lock);
 804                latency_ration = LATENCY_LIMIT;
 805        }
 806
 807        /* try to get more slots in cluster */
 808        if (si->cluster_info) {
 809                if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 810                        goto checks;
 811                else
 812                        goto done;
 813        }
 814        /* non-ssd case */
 815        ++offset;
 816
 817        /* non-ssd case, still more slots in cluster? */
 818        if (si->cluster_nr && !si->swap_map[offset]) {
 819                --si->cluster_nr;
 820                goto checks;
 821        }
 822
 823done:
 824        si->flags -= SWP_SCANNING;
 825        return n_ret;
 826
 827scan:
 828        spin_unlock(&si->lock);
 829        while (++offset <= si->highest_bit) {
 830                if (!si->swap_map[offset]) {
 831                        spin_lock(&si->lock);
 832                        goto checks;
 833                }
 834                if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 835                        spin_lock(&si->lock);
 836                        goto checks;
 837                }
 838                if (unlikely(--latency_ration < 0)) {
 839                        cond_resched();
 840                        latency_ration = LATENCY_LIMIT;
 841                }
 842        }
 843        offset = si->lowest_bit;
 844        while (offset < scan_base) {
 845                if (!si->swap_map[offset]) {
 846                        spin_lock(&si->lock);
 847                        goto checks;
 848                }
 849                if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 850                        spin_lock(&si->lock);
 851                        goto checks;
 852                }
 853                if (unlikely(--latency_ration < 0)) {
 854                        cond_resched();
 855                        latency_ration = LATENCY_LIMIT;
 856                }
 857                offset++;
 858        }
 859        spin_lock(&si->lock);
 860
 861no_page:
 862        si->flags -= SWP_SCANNING;
 863        return n_ret;
 864}
 865
 866#ifdef CONFIG_THP_SWAP
 867static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
 868{
 869        unsigned long idx;
 870        struct swap_cluster_info *ci;
 871        unsigned long offset, i;
 872        unsigned char *map;
 873
 874        if (cluster_list_empty(&si->free_clusters))
 875                return 0;
 876
 877        idx = cluster_list_first(&si->free_clusters);
 878        offset = idx * SWAPFILE_CLUSTER;
 879        ci = lock_cluster(si, offset);
 880        alloc_cluster(si, idx);
 881        cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
 882
 883        map = si->swap_map + offset;
 884        for (i = 0; i < SWAPFILE_CLUSTER; i++)
 885                map[i] = SWAP_HAS_CACHE;
 886        unlock_cluster(ci);
 887        swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
 888        *slot = swp_entry(si->type, offset);
 889
 890        return 1;
 891}
 892
 893static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
 894{
 895        unsigned long offset = idx * SWAPFILE_CLUSTER;
 896        struct swap_cluster_info *ci;
 897
 898        ci = lock_cluster(si, offset);
 899        cluster_set_count_flag(ci, 0, 0);
 900        free_cluster(si, idx);
 901        unlock_cluster(ci);
 902        swap_range_free(si, offset, SWAPFILE_CLUSTER);
 903}
 904#else
 905static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
 906{
 907        VM_WARN_ON_ONCE(1);
 908        return 0;
 909}
 910#endif /* CONFIG_THP_SWAP */
 911
 912static unsigned long scan_swap_map(struct swap_info_struct *si,
 913                                   unsigned char usage)
 914{
 915        swp_entry_t entry;
 916        int n_ret;
 917
 918        n_ret = scan_swap_map_slots(si, usage, 1, &entry);
 919
 920        if (n_ret)
 921                return swp_offset(entry);
 922        else
 923                return 0;
 924
 925}
 926
 927int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
 928{
 929        unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
 930        struct swap_info_struct *si, *next;
 931        long avail_pgs;
 932        int n_ret = 0;
 933        int node;
 934
 935        /* Only single cluster request supported */
 936        WARN_ON_ONCE(n_goal > 1 && cluster);
 937
 938        avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
 939        if (avail_pgs <= 0)
 940                goto noswap;
 941
 942        if (n_goal > SWAP_BATCH)
 943                n_goal = SWAP_BATCH;
 944
 945        if (n_goal > avail_pgs)
 946                n_goal = avail_pgs;
 947
 948        atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
 949
 950        spin_lock(&swap_avail_lock);
 951
 952start_over:
 953        node = numa_node_id();
 954        plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
 955                /* requeue si to after same-priority siblings */
 956                plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
 957                spin_unlock(&swap_avail_lock);
 958                spin_lock(&si->lock);
 959                if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
 960                        spin_lock(&swap_avail_lock);
 961                        if (plist_node_empty(&si->avail_lists[node])) {
 962                                spin_unlock(&si->lock);
 963                                goto nextsi;
 964                        }
 965                        WARN(!si->highest_bit,
 966                             "swap_info %d in list but !highest_bit\n",
 967                             si->type);
 968                        WARN(!(si->flags & SWP_WRITEOK),
 969                             "swap_info %d in list but !SWP_WRITEOK\n",
 970                             si->type);
 971                        __del_from_avail_list(si);
 972                        spin_unlock(&si->lock);
 973                        goto nextsi;
 974                }
 975                if (cluster) {
 976                        if (!(si->flags & SWP_FILE))
 977                                n_ret = swap_alloc_cluster(si, swp_entries);
 978                } else
 979                        n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
 980                                                    n_goal, swp_entries);
 981                spin_unlock(&si->lock);
 982                if (n_ret || cluster)
 983                        goto check_out;
 984                pr_debug("scan_swap_map of si %d failed to find offset\n",
 985                        si->type);
 986
 987                spin_lock(&swap_avail_lock);
 988nextsi:
 989                /*
 990                 * if we got here, it's likely that si was almost full before,
 991                 * and since scan_swap_map() can drop the si->lock, multiple
 992                 * callers probably all tried to get a page from the same si
 993                 * and it filled up before we could get one; or, the si filled
 994                 * up between us dropping swap_avail_lock and taking si->lock.
 995                 * Since we dropped the swap_avail_lock, the swap_avail_head
 996                 * list may have been modified; so if next is still in the
 997                 * swap_avail_head list then try it, otherwise start over
 998                 * if we have not gotten any slots.
 999                 */
1000                if (plist_node_empty(&next->avail_lists[node]))
1001                        goto start_over;
1002        }
1003
1004        spin_unlock(&swap_avail_lock);
1005
1006check_out:
1007        if (n_ret < n_goal)
1008                atomic_long_add((long)(n_goal - n_ret) * nr_pages,
1009                                &nr_swap_pages);
1010noswap:
1011        return n_ret;
1012}
1013
1014/* The only caller of this function is now suspend routine */
1015swp_entry_t get_swap_page_of_type(int type)
1016{
1017        struct swap_info_struct *si;
1018        pgoff_t offset;
1019
1020        si = swap_info[type];
1021        spin_lock(&si->lock);
1022        if (si && (si->flags & SWP_WRITEOK)) {
1023                atomic_long_dec(&nr_swap_pages);
1024                /* This is called for allocating swap entry, not cache */
1025                offset = scan_swap_map(si, 1);
1026                if (offset) {
1027                        spin_unlock(&si->lock);
1028                        return swp_entry(type, offset);
1029                }
1030                atomic_long_inc(&nr_swap_pages);
1031        }
1032        spin_unlock(&si->lock);
1033        return (swp_entry_t) {0};
1034}
1035
1036static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1037{
1038        struct swap_info_struct *p;
1039        unsigned long offset, type;
1040
1041        if (!entry.val)
1042                goto out;
1043        type = swp_type(entry);
1044        if (type >= nr_swapfiles)
1045                goto bad_nofile;
1046        p = swap_info[type];
1047        if (!(p->flags & SWP_USED))
1048                goto bad_device;
1049        offset = swp_offset(entry);
1050        if (offset >= p->max)
1051                goto bad_offset;
1052        return p;
1053
1054bad_offset:
1055        pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1056        goto out;
1057bad_device:
1058        pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1059        goto out;
1060bad_nofile:
1061        pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1062out:
1063        return NULL;
1064}
1065
1066static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1067{
1068        struct swap_info_struct *p;
1069
1070        p = __swap_info_get(entry);
1071        if (!p)
1072                goto out;
1073        if (!p->swap_map[swp_offset(entry)])
1074                goto bad_free;
1075        return p;
1076
1077bad_free:
1078        pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1079        goto out;
1080out:
1081        return NULL;
1082}
1083
1084static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1085{
1086        struct swap_info_struct *p;
1087
1088        p = _swap_info_get(entry);
1089        if (p)
1090                spin_lock(&p->lock);
1091        return p;
1092}
1093
1094static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1095                                        struct swap_info_struct *q)
1096{
1097        struct swap_info_struct *p;
1098
1099        p = _swap_info_get(entry);
1100
1101        if (p != q) {
1102                if (q != NULL)
1103                        spin_unlock(&q->lock);
1104                if (p != NULL)
1105                        spin_lock(&p->lock);
1106        }
1107        return p;
1108}
1109
1110static unsigned char __swap_entry_free(struct swap_info_struct *p,
1111                                       swp_entry_t entry, unsigned char usage)
1112{
1113        struct swap_cluster_info *ci;
1114        unsigned long offset = swp_offset(entry);
1115        unsigned char count;
1116        unsigned char has_cache;
1117
1118        ci = lock_cluster_or_swap_info(p, offset);
1119
1120        count = p->swap_map[offset];
1121
1122        has_cache = count & SWAP_HAS_CACHE;
1123        count &= ~SWAP_HAS_CACHE;
1124
1125        if (usage == SWAP_HAS_CACHE) {
1126                VM_BUG_ON(!has_cache);
1127                has_cache = 0;
1128        } else if (count == SWAP_MAP_SHMEM) {
1129                /*
1130                 * Or we could insist on shmem.c using a special
1131                 * swap_shmem_free() and free_shmem_swap_and_cache()...
1132                 */
1133                count = 0;
1134        } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1135                if (count == COUNT_CONTINUED) {
1136                        if (swap_count_continued(p, offset, count))
1137                                count = SWAP_MAP_MAX | COUNT_CONTINUED;
1138                        else
1139                                count = SWAP_MAP_MAX;
1140                } else
1141                        count--;
1142        }
1143
1144        usage = count | has_cache;
1145        p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1146
1147        unlock_cluster_or_swap_info(p, ci);
1148
1149        return usage;
1150}
1151
1152static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1153{
1154        struct swap_cluster_info *ci;
1155        unsigned long offset = swp_offset(entry);
1156        unsigned char count;
1157
1158        ci = lock_cluster(p, offset);
1159        count = p->swap_map[offset];
1160        VM_BUG_ON(count != SWAP_HAS_CACHE);
1161        p->swap_map[offset] = 0;
1162        dec_cluster_info_page(p, p->cluster_info, offset);
1163        unlock_cluster(ci);
1164
1165        mem_cgroup_uncharge_swap(entry, 1);
1166        swap_range_free(p, offset, 1);
1167}
1168
1169/*
1170 * Caller has made sure that the swap device corresponding to entry
1171 * is still around or has not been recycled.
1172 */
1173void swap_free(swp_entry_t entry)
1174{
1175        struct swap_info_struct *p;
1176
1177        p = _swap_info_get(entry);
1178        if (p) {
1179                if (!__swap_entry_free(p, entry, 1))
1180                        free_swap_slot(entry);
1181        }
1182}
1183
1184/*
1185 * Called after dropping swapcache to decrease refcnt to swap entries.
1186 */
1187static void swapcache_free(swp_entry_t entry)
1188{
1189        struct swap_info_struct *p;
1190
1191        p = _swap_info_get(entry);
1192        if (p) {
1193                if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1194                        free_swap_slot(entry);
1195        }
1196}
1197
1198#ifdef CONFIG_THP_SWAP
1199static void swapcache_free_cluster(swp_entry_t entry)
1200{
1201        unsigned long offset = swp_offset(entry);
1202        unsigned long idx = offset / SWAPFILE_CLUSTER;
1203        struct swap_cluster_info *ci;
1204        struct swap_info_struct *si;
1205        unsigned char *map;
1206        unsigned int i, free_entries = 0;
1207        unsigned char val;
1208
1209        si = _swap_info_get(entry);
1210        if (!si)
1211                return;
1212
1213        ci = lock_cluster(si, offset);
1214        VM_BUG_ON(!cluster_is_huge(ci));
1215        map = si->swap_map + offset;
1216        for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1217                val = map[i];
1218                VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1219                if (val == SWAP_HAS_CACHE)
1220                        free_entries++;
1221        }
1222        if (!free_entries) {
1223                for (i = 0; i < SWAPFILE_CLUSTER; i++)
1224                        map[i] &= ~SWAP_HAS_CACHE;
1225        }
1226        cluster_clear_huge(ci);
1227        unlock_cluster(ci);
1228        if (free_entries == SWAPFILE_CLUSTER) {
1229                spin_lock(&si->lock);
1230                ci = lock_cluster(si, offset);
1231                memset(map, 0, SWAPFILE_CLUSTER);
1232                unlock_cluster(ci);
1233                mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1234                swap_free_cluster(si, idx);
1235                spin_unlock(&si->lock);
1236        } else if (free_entries) {
1237                for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1238                        if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1239                                free_swap_slot(entry);
1240                }
1241        }
1242}
1243
1244int split_swap_cluster(swp_entry_t entry)
1245{
1246        struct swap_info_struct *si;
1247        struct swap_cluster_info *ci;
1248        unsigned long offset = swp_offset(entry);
1249
1250        si = _swap_info_get(entry);
1251        if (!si)
1252                return -EBUSY;
1253        ci = lock_cluster(si, offset);
1254        cluster_clear_huge(ci);
1255        unlock_cluster(ci);
1256        return 0;
1257}
1258#else
1259static inline void swapcache_free_cluster(swp_entry_t entry)
1260{
1261}
1262#endif /* CONFIG_THP_SWAP */
1263
1264void put_swap_page(struct page *page, swp_entry_t entry)
1265{
1266        if (!PageTransHuge(page))
1267                swapcache_free(entry);
1268        else
1269                swapcache_free_cluster(entry);
1270}
1271
1272static int swp_entry_cmp(const void *ent1, const void *ent2)
1273{
1274        const swp_entry_t *e1 = ent1, *e2 = ent2;
1275
1276        return (int)swp_type(*e1) - (int)swp_type(*e2);
1277}
1278
1279void swapcache_free_entries(swp_entry_t *entries, int n)
1280{
1281        struct swap_info_struct *p, *prev;
1282        int i;
1283
1284        if (n <= 0)
1285                return;
1286
1287        prev = NULL;
1288        p = NULL;
1289
1290        /*
1291         * Sort swap entries by swap device, so each lock is only taken once.
1292         * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1293         * so low that it isn't necessary to optimize further.
1294         */
1295        if (nr_swapfiles > 1)
1296                sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1297        for (i = 0; i < n; ++i) {
1298                p = swap_info_get_cont(entries[i], prev);
1299                if (p)
1300                        swap_entry_free(p, entries[i]);
1301                prev = p;
1302        }
1303        if (p)
1304                spin_unlock(&p->lock);
1305}
1306
1307/*
1308 * How many references to page are currently swapped out?
1309 * This does not give an exact answer when swap count is continued,
1310 * but does include the high COUNT_CONTINUED flag to allow for that.
1311 */
1312int page_swapcount(struct page *page)
1313{
1314        int count = 0;
1315        struct swap_info_struct *p;
1316        struct swap_cluster_info *ci;
1317        swp_entry_t entry;
1318        unsigned long offset;
1319
1320        entry.val = page_private(page);
1321        p = _swap_info_get(entry);
1322        if (p) {
1323                offset = swp_offset(entry);
1324                ci = lock_cluster_or_swap_info(p, offset);
1325                count = swap_count(p->swap_map[offset]);
1326                unlock_cluster_or_swap_info(p, ci);
1327        }
1328        return count;
1329}
1330
1331int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1332{
1333        pgoff_t offset = swp_offset(entry);
1334
1335        return swap_count(si->swap_map[offset]);
1336}
1337
1338static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1339{
1340        int count = 0;
1341        pgoff_t offset = swp_offset(entry);
1342        struct swap_cluster_info *ci;
1343
1344        ci = lock_cluster_or_swap_info(si, offset);
1345        count = swap_count(si->swap_map[offset]);
1346        unlock_cluster_or_swap_info(si, ci);
1347        return count;
1348}
1349
1350/*
1351 * How many references to @entry are currently swapped out?
1352 * This does not give an exact answer when swap count is continued,
1353 * but does include the high COUNT_CONTINUED flag to allow for that.
1354 */
1355int __swp_swapcount(swp_entry_t entry)
1356{
1357        int count = 0;
1358        struct swap_info_struct *si;
1359
1360        si = __swap_info_get(entry);
1361        if (si)
1362                count = swap_swapcount(si, entry);
1363        return count;
1364}
1365
1366/*
1367 * How many references to @entry are currently swapped out?
1368 * This considers COUNT_CONTINUED so it returns exact answer.
1369 */
1370int swp_swapcount(swp_entry_t entry)
1371{
1372        int count, tmp_count, n;
1373        struct swap_info_struct *p;
1374        struct swap_cluster_info *ci;
1375        struct page *page;
1376        pgoff_t offset;
1377        unsigned char *map;
1378
1379        p = _swap_info_get(entry);
1380        if (!p)
1381                return 0;
1382
1383        offset = swp_offset(entry);
1384
1385        ci = lock_cluster_or_swap_info(p, offset);
1386
1387        count = swap_count(p->swap_map[offset]);
1388        if (!(count & COUNT_CONTINUED))
1389                goto out;
1390
1391        count &= ~COUNT_CONTINUED;
1392        n = SWAP_MAP_MAX + 1;
1393
1394        page = vmalloc_to_page(p->swap_map + offset);
1395        offset &= ~PAGE_MASK;
1396        VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1397
1398        do {
1399                page = list_next_entry(page, lru);
1400                map = kmap_atomic(page);
1401                tmp_count = map[offset];
1402                kunmap_atomic(map);
1403
1404                count += (tmp_count & ~COUNT_CONTINUED) * n;
1405                n *= (SWAP_CONT_MAX + 1);
1406        } while (tmp_count & COUNT_CONTINUED);
1407out:
1408        unlock_cluster_or_swap_info(p, ci);
1409        return count;
1410}
1411
1412#ifdef CONFIG_THP_SWAP
1413static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1414                                         swp_entry_t entry)
1415{
1416        struct swap_cluster_info *ci;
1417        unsigned char *map = si->swap_map;
1418        unsigned long roffset = swp_offset(entry);
1419        unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1420        int i;
1421        bool ret = false;
1422
1423        ci = lock_cluster_or_swap_info(si, offset);
1424        if (!ci || !cluster_is_huge(ci)) {
1425                if (map[roffset] != SWAP_HAS_CACHE)
1426                        ret = true;
1427                goto unlock_out;
1428        }
1429        for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1430                if (map[offset + i] != SWAP_HAS_CACHE) {
1431                        ret = true;
1432                        break;
1433                }
1434        }
1435unlock_out:
1436        unlock_cluster_or_swap_info(si, ci);
1437        return ret;
1438}
1439
1440static bool page_swapped(struct page *page)
1441{
1442        swp_entry_t entry;
1443        struct swap_info_struct *si;
1444
1445        if (likely(!PageTransCompound(page)))
1446                return page_swapcount(page) != 0;
1447
1448        page = compound_head(page);
1449        entry.val = page_private(page);
1450        si = _swap_info_get(entry);
1451        if (si)
1452                return swap_page_trans_huge_swapped(si, entry);
1453        return false;
1454}
1455
1456static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1457                                         int *total_swapcount)
1458{
1459        int i, map_swapcount, _total_mapcount, _total_swapcount;
1460        unsigned long offset = 0;
1461        struct swap_info_struct *si;
1462        struct swap_cluster_info *ci = NULL;
1463        unsigned char *map = NULL;
1464        int mapcount, swapcount = 0;
1465
1466        /* hugetlbfs shouldn't call it */
1467        VM_BUG_ON_PAGE(PageHuge(page), page);
1468
1469        if (likely(!PageTransCompound(page))) {
1470                mapcount = atomic_read(&page->_mapcount) + 1;
1471                if (total_mapcount)
1472                        *total_mapcount = mapcount;
1473                if (PageSwapCache(page))
1474                        swapcount = page_swapcount(page);
1475                if (total_swapcount)
1476                        *total_swapcount = swapcount;
1477                return mapcount + swapcount;
1478        }
1479
1480        page = compound_head(page);
1481
1482        _total_mapcount = _total_swapcount = map_swapcount = 0;
1483        if (PageSwapCache(page)) {
1484                swp_entry_t entry;
1485
1486                entry.val = page_private(page);
1487                si = _swap_info_get(entry);
1488                if (si) {
1489                        map = si->swap_map;
1490                        offset = swp_offset(entry);
1491                }
1492        }
1493        if (map)
1494                ci = lock_cluster(si, offset);
1495        for (i = 0; i < HPAGE_PMD_NR; i++) {
1496                mapcount = atomic_read(&page[i]._mapcount) + 1;
1497                _total_mapcount += mapcount;
1498                if (map) {
1499                        swapcount = swap_count(map[offset + i]);
1500                        _total_swapcount += swapcount;
1501                }
1502                map_swapcount = max(map_swapcount, mapcount + swapcount);
1503        }
1504        unlock_cluster(ci);
1505        if (PageDoubleMap(page)) {
1506                map_swapcount -= 1;
1507                _total_mapcount -= HPAGE_PMD_NR;
1508        }
1509        mapcount = compound_mapcount(page);
1510        map_swapcount += mapcount;
1511        _total_mapcount += mapcount;
1512        if (total_mapcount)
1513                *total_mapcount = _total_mapcount;
1514        if (total_swapcount)
1515                *total_swapcount = _total_swapcount;
1516
1517        return map_swapcount;
1518}
1519#else
1520#define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry)
1521#define page_swapped(page)                      (page_swapcount(page) != 0)
1522
1523static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1524                                         int *total_swapcount)
1525{
1526        int mapcount, swapcount = 0;
1527
1528        /* hugetlbfs shouldn't call it */
1529        VM_BUG_ON_PAGE(PageHuge(page), page);
1530
1531        mapcount = page_trans_huge_mapcount(page, total_mapcount);
1532        if (PageSwapCache(page))
1533                swapcount = page_swapcount(page);
1534        if (total_swapcount)
1535                *total_swapcount = swapcount;
1536        return mapcount + swapcount;
1537}
1538#endif
1539
1540/*
1541 * We can write to an anon page without COW if there are no other references
1542 * to it.  And as a side-effect, free up its swap: because the old content
1543 * on disk will never be read, and seeking back there to write new content
1544 * later would only waste time away from clustering.
1545 *
1546 * NOTE: total_map_swapcount should not be relied upon by the caller if
1547 * reuse_swap_page() returns false, but it may be always overwritten
1548 * (see the other implementation for CONFIG_SWAP=n).
1549 */
1550bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1551{
1552        int count, total_mapcount, total_swapcount;
1553
1554        VM_BUG_ON_PAGE(!PageLocked(page), page);
1555        if (unlikely(PageKsm(page)))
1556                return false;
1557        count = page_trans_huge_map_swapcount(page, &total_mapcount,
1558                                              &total_swapcount);
1559        if (total_map_swapcount)
1560                *total_map_swapcount = total_mapcount + total_swapcount;
1561        if (count == 1 && PageSwapCache(page) &&
1562            (likely(!PageTransCompound(page)) ||
1563             /* The remaining swap count will be freed soon */
1564             total_swapcount == page_swapcount(page))) {
1565                if (!PageWriteback(page)) {
1566                        page = compound_head(page);
1567                        delete_from_swap_cache(page);
1568                        SetPageDirty(page);
1569                } else {
1570                        swp_entry_t entry;
1571                        struct swap_info_struct *p;
1572
1573                        entry.val = page_private(page);
1574                        p = swap_info_get(entry);
1575                        if (p->flags & SWP_STABLE_WRITES) {
1576                                spin_unlock(&p->lock);
1577                                return false;
1578                        }
1579                        spin_unlock(&p->lock);
1580                }
1581        }
1582
1583        return count <= 1;
1584}
1585
1586/*
1587 * If swap is getting full, or if there are no more mappings of this page,
1588 * then try_to_free_swap is called to free its swap space.
1589 */
1590int try_to_free_swap(struct page *page)
1591{
1592        VM_BUG_ON_PAGE(!PageLocked(page), page);
1593
1594        if (!PageSwapCache(page))
1595                return 0;
1596        if (PageWriteback(page))
1597                return 0;
1598        if (page_swapped(page))
1599                return 0;
1600
1601        /*
1602         * Once hibernation has begun to create its image of memory,
1603         * there's a danger that one of the calls to try_to_free_swap()
1604         * - most probably a call from __try_to_reclaim_swap() while
1605         * hibernation is allocating its own swap pages for the image,
1606         * but conceivably even a call from memory reclaim - will free
1607         * the swap from a page which has already been recorded in the
1608         * image as a clean swapcache page, and then reuse its swap for
1609         * another page of the image.  On waking from hibernation, the
1610         * original page might be freed under memory pressure, then
1611         * later read back in from swap, now with the wrong data.
1612         *
1613         * Hibernation suspends storage while it is writing the image
1614         * to disk so check that here.
1615         */
1616        if (pm_suspended_storage())
1617                return 0;
1618
1619        page = compound_head(page);
1620        delete_from_swap_cache(page);
1621        SetPageDirty(page);
1622        return 1;
1623}
1624
1625/*
1626 * Free the swap entry like above, but also try to
1627 * free the page cache entry if it is the last user.
1628 */
1629int free_swap_and_cache(swp_entry_t entry)
1630{
1631        struct swap_info_struct *p;
1632        struct page *page = NULL;
1633        unsigned char count;
1634
1635        if (non_swap_entry(entry))
1636                return 1;
1637
1638        p = _swap_info_get(entry);
1639        if (p) {
1640                count = __swap_entry_free(p, entry, 1);
1641                if (count == SWAP_HAS_CACHE &&
1642                    !swap_page_trans_huge_swapped(p, entry)) {
1643                        page = find_get_page(swap_address_space(entry),
1644                                             swp_offset(entry));
1645                        if (page && !trylock_page(page)) {
1646                                put_page(page);
1647                                page = NULL;
1648                        }
1649                } else if (!count)
1650                        free_swap_slot(entry);
1651        }
1652        if (page) {
1653                /*
1654                 * Not mapped elsewhere, or swap space full? Free it!
1655                 * Also recheck PageSwapCache now page is locked (above).
1656                 */
1657                if (PageSwapCache(page) && !PageWriteback(page) &&
1658                    (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1659                    !swap_page_trans_huge_swapped(p, entry)) {
1660                        page = compound_head(page);
1661                        delete_from_swap_cache(page);
1662                        SetPageDirty(page);
1663                }
1664                unlock_page(page);
1665                put_page(page);
1666        }
1667        return p != NULL;
1668}
1669
1670#ifdef CONFIG_HIBERNATION
1671/*
1672 * Find the swap type that corresponds to given device (if any).
1673 *
1674 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1675 * from 0, in which the swap header is expected to be located.
1676 *
1677 * This is needed for the suspend to disk (aka swsusp).
1678 */
1679int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1680{
1681        struct block_device *bdev = NULL;
1682        int type;
1683
1684        if (device)
1685                bdev = bdget(device);
1686
1687        spin_lock(&swap_lock);
1688        for (type = 0; type < nr_swapfiles; type++) {
1689                struct swap_info_struct *sis = swap_info[type];
1690
1691                if (!(sis->flags & SWP_WRITEOK))
1692                        continue;
1693
1694                if (!bdev) {
1695                        if (bdev_p)
1696                                *bdev_p = bdgrab(sis->bdev);
1697
1698                        spin_unlock(&swap_lock);
1699                        return type;
1700                }
1701                if (bdev == sis->bdev) {
1702                        struct swap_extent *se = &sis->first_swap_extent;
1703
1704                        if (se->start_block == offset) {
1705                                if (bdev_p)
1706                                        *bdev_p = bdgrab(sis->bdev);
1707
1708                                spin_unlock(&swap_lock);
1709                                bdput(bdev);
1710                                return type;
1711                        }
1712                }
1713        }
1714        spin_unlock(&swap_lock);
1715        if (bdev)
1716                bdput(bdev);
1717
1718        return -ENODEV;
1719}
1720
1721/*
1722 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1723 * corresponding to given index in swap_info (swap type).
1724 */
1725sector_t swapdev_block(int type, pgoff_t offset)
1726{
1727        struct block_device *bdev;
1728
1729        if ((unsigned int)type >= nr_swapfiles)
1730                return 0;
1731        if (!(swap_info[type]->flags & SWP_WRITEOK))
1732                return 0;
1733        return map_swap_entry(swp_entry(type, offset), &bdev);
1734}
1735
1736/*
1737 * Return either the total number of swap pages of given type, or the number
1738 * of free pages of that type (depending on @free)
1739 *
1740 * This is needed for software suspend
1741 */
1742unsigned int count_swap_pages(int type, int free)
1743{
1744        unsigned int n = 0;
1745
1746        spin_lock(&swap_lock);
1747        if ((unsigned int)type < nr_swapfiles) {
1748                struct swap_info_struct *sis = swap_info[type];
1749
1750                spin_lock(&sis->lock);
1751                if (sis->flags & SWP_WRITEOK) {
1752                        n = sis->pages;
1753                        if (free)
1754                                n -= sis->inuse_pages;
1755                }
1756                spin_unlock(&sis->lock);
1757        }
1758        spin_unlock(&swap_lock);
1759        return n;
1760}
1761#endif /* CONFIG_HIBERNATION */
1762
1763static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1764{
1765        return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1766}
1767
1768/*
1769 * No need to decide whether this PTE shares the swap entry with others,
1770 * just let do_wp_page work it out if a write is requested later - to
1771 * force COW, vm_page_prot omits write permission from any private vma.
1772 */
1773static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1774                unsigned long addr, swp_entry_t entry, struct page *page)
1775{
1776        struct page *swapcache;
1777        struct mem_cgroup *memcg;
1778        spinlock_t *ptl;
1779        pte_t *pte;
1780        int ret = 1;
1781
1782        swapcache = page;
1783        page = ksm_might_need_to_copy(page, vma, addr);
1784        if (unlikely(!page))
1785                return -ENOMEM;
1786
1787        if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1788                                &memcg, false)) {
1789                ret = -ENOMEM;
1790                goto out_nolock;
1791        }
1792
1793        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1794        if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1795                mem_cgroup_cancel_charge(page, memcg, false);
1796                ret = 0;
1797                goto out;
1798        }
1799
1800        dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1801        inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1802        get_page(page);
1803        set_pte_at(vma->vm_mm, addr, pte,
1804                   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1805        if (page == swapcache) {
1806                page_add_anon_rmap(page, vma, addr, false);
1807                mem_cgroup_commit_charge(page, memcg, true, false);
1808        } else { /* ksm created a completely new copy */
1809                page_add_new_anon_rmap(page, vma, addr, false);
1810                mem_cgroup_commit_charge(page, memcg, false, false);
1811                lru_cache_add_active_or_unevictable(page, vma);
1812        }
1813        swap_free(entry);
1814        /*
1815         * Move the page to the active list so it is not
1816         * immediately swapped out again after swapon.
1817         */
1818        activate_page(page);
1819out:
1820        pte_unmap_unlock(pte, ptl);
1821out_nolock:
1822        if (page != swapcache) {
1823                unlock_page(page);
1824                put_page(page);
1825        }
1826        return ret;
1827}
1828
1829static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1830                                unsigned long addr, unsigned long end,
1831                                swp_entry_t entry, struct page *page)
1832{
1833        pte_t swp_pte = swp_entry_to_pte(entry);
1834        pte_t *pte;
1835        int ret = 0;
1836
1837        /*
1838         * We don't actually need pte lock while scanning for swp_pte: since
1839         * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1840         * page table while we're scanning; though it could get zapped, and on
1841         * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1842         * of unmatched parts which look like swp_pte, so unuse_pte must
1843         * recheck under pte lock.  Scanning without pte lock lets it be
1844         * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1845         */
1846        pte = pte_offset_map(pmd, addr);
1847        do {
1848                /*
1849                 * swapoff spends a _lot_ of time in this loop!
1850                 * Test inline before going to call unuse_pte.
1851                 */
1852                if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1853                        pte_unmap(pte);
1854                        ret = unuse_pte(vma, pmd, addr, entry, page);
1855                        if (ret)
1856                                goto out;
1857                        pte = pte_offset_map(pmd, addr);
1858                }
1859        } while (pte++, addr += PAGE_SIZE, addr != end);
1860        pte_unmap(pte - 1);
1861out:
1862        return ret;
1863}
1864
1865static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1866                                unsigned long addr, unsigned long end,
1867                                swp_entry_t entry, struct page *page)
1868{
1869        pmd_t *pmd;
1870        unsigned long next;
1871        int ret;
1872
1873        pmd = pmd_offset(pud, addr);
1874        do {
1875                cond_resched();
1876                next = pmd_addr_end(addr, end);
1877                if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1878                        continue;
1879                ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1880                if (ret)
1881                        return ret;
1882        } while (pmd++, addr = next, addr != end);
1883        return 0;
1884}
1885
1886static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1887                                unsigned long addr, unsigned long end,
1888                                swp_entry_t entry, struct page *page)
1889{
1890        pud_t *pud;
1891        unsigned long next;
1892        int ret;
1893
1894        pud = pud_offset(p4d, addr);
1895        do {
1896                next = pud_addr_end(addr, end);
1897                if (pud_none_or_clear_bad(pud))
1898                        continue;
1899                ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1900                if (ret)
1901                        return ret;
1902        } while (pud++, addr = next, addr != end);
1903        return 0;
1904}
1905
1906static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1907                                unsigned long addr, unsigned long end,
1908                                swp_entry_t entry, struct page *page)
1909{
1910        p4d_t *p4d;
1911        unsigned long next;
1912        int ret;
1913
1914        p4d = p4d_offset(pgd, addr);
1915        do {
1916                next = p4d_addr_end(addr, end);
1917                if (p4d_none_or_clear_bad(p4d))
1918                        continue;
1919                ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1920                if (ret)
1921                        return ret;
1922        } while (p4d++, addr = next, addr != end);
1923        return 0;
1924}
1925
1926static int unuse_vma(struct vm_area_struct *vma,
1927                                swp_entry_t entry, struct page *page)
1928{
1929        pgd_t *pgd;
1930        unsigned long addr, end, next;
1931        int ret;
1932
1933        if (page_anon_vma(page)) {
1934                addr = page_address_in_vma(page, vma);
1935                if (addr == -EFAULT)
1936                        return 0;
1937                else
1938                        end = addr + PAGE_SIZE;
1939        } else {
1940                addr = vma->vm_start;
1941                end = vma->vm_end;
1942        }
1943
1944        pgd = pgd_offset(vma->vm_mm, addr);
1945        do {
1946                next = pgd_addr_end(addr, end);
1947                if (pgd_none_or_clear_bad(pgd))
1948                        continue;
1949                ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1950                if (ret)
1951                        return ret;
1952        } while (pgd++, addr = next, addr != end);
1953        return 0;
1954}
1955
1956static int unuse_mm(struct mm_struct *mm,
1957                                swp_entry_t entry, struct page *page)
1958{
1959        struct vm_area_struct *vma;
1960        int ret = 0;
1961
1962        if (!down_read_trylock(&mm->mmap_sem)) {
1963                /*
1964                 * Activate page so shrink_inactive_list is unlikely to unmap
1965                 * its ptes while lock is dropped, so swapoff can make progress.
1966                 */
1967                activate_page(page);
1968                unlock_page(page);
1969                down_read(&mm->mmap_sem);
1970                lock_page(page);
1971        }
1972        for (vma = mm->mmap; vma; vma = vma->vm_next) {
1973                if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1974                        break;
1975                cond_resched();
1976        }
1977        up_read(&mm->mmap_sem);
1978        return (ret < 0)? ret: 0;
1979}
1980
1981/*
1982 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1983 * from current position to next entry still in use.
1984 * Recycle to start on reaching the end, returning 0 when empty.
1985 */
1986static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1987                                        unsigned int prev, bool frontswap)
1988{
1989        unsigned int max = si->max;
1990        unsigned int i = prev;
1991        unsigned char count;
1992
1993        /*
1994         * No need for swap_lock here: we're just looking
1995         * for whether an entry is in use, not modifying it; false
1996         * hits are okay, and sys_swapoff() has already prevented new
1997         * allocations from this area (while holding swap_lock).
1998         */
1999        for (;;) {
2000                if (++i >= max) {
2001                        if (!prev) {
2002                                i = 0;
2003                                break;
2004                        }
2005                        /*
2006                         * No entries in use at top of swap_map,
2007                         * loop back to start and recheck there.
2008                         */
2009                        max = prev + 1;
2010                        prev = 0;
2011                        i = 1;
2012                }
2013                count = READ_ONCE(si->swap_map[i]);
2014                if (count && swap_count(count) != SWAP_MAP_BAD)
2015                        if (!frontswap || frontswap_test(si, i))
2016                                break;
2017                if ((i % LATENCY_LIMIT) == 0)
2018                        cond_resched();
2019        }
2020        return i;
2021}
2022
2023/*
2024 * We completely avoid races by reading each swap page in advance,
2025 * and then search for the process using it.  All the necessary
2026 * page table adjustments can then be made atomically.
2027 *
2028 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2029 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2030 */
2031int try_to_unuse(unsigned int type, bool frontswap,
2032                 unsigned long pages_to_unuse)
2033{
2034        struct swap_info_struct *si = swap_info[type];
2035        struct mm_struct *start_mm;
2036        volatile unsigned char *swap_map; /* swap_map is accessed without
2037                                           * locking. Mark it as volatile
2038                                           * to prevent compiler doing
2039                                           * something odd.
2040                                           */
2041        unsigned char swcount;
2042        struct page *page;
2043        swp_entry_t entry;
2044        unsigned int i = 0;
2045        int retval = 0;
2046
2047        /*
2048         * When searching mms for an entry, a good strategy is to
2049         * start at the first mm we freed the previous entry from
2050         * (though actually we don't notice whether we or coincidence
2051         * freed the entry).  Initialize this start_mm with a hold.
2052         *
2053         * A simpler strategy would be to start at the last mm we
2054         * freed the previous entry from; but that would take less
2055         * advantage of mmlist ordering, which clusters forked mms
2056         * together, child after parent.  If we race with dup_mmap(), we
2057         * prefer to resolve parent before child, lest we miss entries
2058         * duplicated after we scanned child: using last mm would invert
2059         * that.
2060         */
2061        start_mm = &init_mm;
2062        mmget(&init_mm);
2063
2064        /*
2065         * Keep on scanning until all entries have gone.  Usually,
2066         * one pass through swap_map is enough, but not necessarily:
2067         * there are races when an instance of an entry might be missed.
2068         */
2069        while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2070                if (signal_pending(current)) {
2071                        retval = -EINTR;
2072                        break;
2073                }
2074
2075                /*
2076                 * Get a page for the entry, using the existing swap
2077                 * cache page if there is one.  Otherwise, get a clean
2078                 * page and read the swap into it.
2079                 */
2080                swap_map = &si->swap_map[i];
2081                entry = swp_entry(type, i);
2082                page = read_swap_cache_async(entry,
2083                                        GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2084                if (!page) {
2085                        /*
2086                         * Either swap_duplicate() failed because entry
2087                         * has been freed independently, and will not be
2088                         * reused since sys_swapoff() already disabled
2089                         * allocation from here, or alloc_page() failed.
2090                         */
2091                        swcount = *swap_map;
2092                        /*
2093                         * We don't hold lock here, so the swap entry could be
2094                         * SWAP_MAP_BAD (when the cluster is discarding).
2095                         * Instead of fail out, We can just skip the swap
2096                         * entry because swapoff will wait for discarding
2097                         * finish anyway.
2098                         */
2099                        if (!swcount || swcount == SWAP_MAP_BAD)
2100                                continue;
2101                        retval = -ENOMEM;
2102                        break;
2103                }
2104
2105                /*
2106                 * Don't hold on to start_mm if it looks like exiting.
2107                 */
2108                if (atomic_read(&start_mm->mm_users) == 1) {
2109                        mmput(start_mm);
2110                        start_mm = &init_mm;
2111                        mmget(&init_mm);
2112                }
2113
2114                /*
2115                 * Wait for and lock page.  When do_swap_page races with
2116                 * try_to_unuse, do_swap_page can handle the fault much
2117                 * faster than try_to_unuse can locate the entry.  This
2118                 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2119                 * defer to do_swap_page in such a case - in some tests,
2120                 * do_swap_page and try_to_unuse repeatedly compete.
2121                 */
2122                wait_on_page_locked(page);
2123                wait_on_page_writeback(page);
2124                lock_page(page);
2125                wait_on_page_writeback(page);
2126
2127                /*
2128                 * Remove all references to entry.
2129                 */
2130                swcount = *swap_map;
2131                if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2132                        retval = shmem_unuse(entry, page);
2133                        /* page has already been unlocked and released */
2134                        if (retval < 0)
2135                                break;
2136                        continue;
2137                }
2138                if (swap_count(swcount) && start_mm != &init_mm)
2139                        retval = unuse_mm(start_mm, entry, page);
2140
2141                if (swap_count(*swap_map)) {
2142                        int set_start_mm = (*swap_map >= swcount);
2143                        struct list_head *p = &start_mm->mmlist;
2144                        struct mm_struct *new_start_mm = start_mm;
2145                        struct mm_struct *prev_mm = start_mm;
2146                        struct mm_struct *mm;
2147
2148                        mmget(new_start_mm);
2149                        mmget(prev_mm);
2150                        spin_lock(&mmlist_lock);
2151                        while (swap_count(*swap_map) && !retval &&
2152                                        (p = p->next) != &start_mm->mmlist) {
2153                                mm = list_entry(p, struct mm_struct, mmlist);
2154                                if (!mmget_not_zero(mm))
2155                                        continue;
2156                                spin_unlock(&mmlist_lock);
2157                                mmput(prev_mm);
2158                                prev_mm = mm;
2159
2160                                cond_resched();
2161
2162                                swcount = *swap_map;
2163                                if (!swap_count(swcount)) /* any usage ? */
2164                                        ;
2165                                else if (mm == &init_mm)
2166                                        set_start_mm = 1;
2167                                else
2168                                        retval = unuse_mm(mm, entry, page);
2169
2170                                if (set_start_mm && *swap_map < swcount) {
2171                                        mmput(new_start_mm);
2172                                        mmget(mm);
2173                                        new_start_mm = mm;
2174                                        set_start_mm = 0;
2175                                }
2176                                spin_lock(&mmlist_lock);
2177                        }
2178                        spin_unlock(&mmlist_lock);
2179                        mmput(prev_mm);
2180                        mmput(start_mm);
2181                        start_mm = new_start_mm;
2182                }
2183                if (retval) {
2184                        unlock_page(page);
2185                        put_page(page);
2186                        break;
2187                }
2188
2189                /*
2190                 * If a reference remains (rare), we would like to leave
2191                 * the page in the swap cache; but try_to_unmap could
2192                 * then re-duplicate the entry once we drop page lock,
2193                 * so we might loop indefinitely; also, that page could
2194                 * not be swapped out to other storage meanwhile.  So:
2195                 * delete from cache even if there's another reference,
2196                 * after ensuring that the data has been saved to disk -
2197                 * since if the reference remains (rarer), it will be
2198                 * read from disk into another page.  Splitting into two
2199                 * pages would be incorrect if swap supported "shared
2200                 * private" pages, but they are handled by tmpfs files.
2201                 *
2202                 * Given how unuse_vma() targets one particular offset
2203                 * in an anon_vma, once the anon_vma has been determined,
2204                 * this splitting happens to be just what is needed to
2205                 * handle where KSM pages have been swapped out: re-reading
2206                 * is unnecessarily slow, but we can fix that later on.
2207                 */
2208                if (swap_count(*swap_map) &&
2209                     PageDirty(page) && PageSwapCache(page)) {
2210                        struct writeback_control wbc = {
2211                                .sync_mode = WB_SYNC_NONE,
2212                        };
2213
2214                        swap_writepage(compound_head(page), &wbc);
2215                        lock_page(page);
2216                        wait_on_page_writeback(page);
2217                }
2218
2219                /*
2220                 * It is conceivable that a racing task removed this page from
2221                 * swap cache just before we acquired the page lock at the top,
2222                 * or while we dropped it in unuse_mm().  The page might even
2223                 * be back in swap cache on another swap area: that we must not
2224                 * delete, since it may not have been written out to swap yet.
2225                 */
2226                if (PageSwapCache(page) &&
2227                    likely(page_private(page) == entry.val) &&
2228                    !page_swapped(page))
2229                        delete_from_swap_cache(compound_head(page));
2230
2231                /*
2232                 * So we could skip searching mms once swap count went
2233                 * to 1, we did not mark any present ptes as dirty: must
2234                 * mark page dirty so shrink_page_list will preserve it.
2235                 */
2236                SetPageDirty(page);
2237                unlock_page(page);
2238                put_page(page);
2239
2240                /*
2241                 * Make sure that we aren't completely killing
2242                 * interactive performance.
2243                 */
2244                cond_resched();
2245                if (frontswap && pages_to_unuse > 0) {
2246                        if (!--pages_to_unuse)
2247                                break;
2248                }
2249        }
2250
2251        mmput(start_mm);
2252        return retval;
2253}
2254
2255/*
2256 * After a successful try_to_unuse, if no swap is now in use, we know
2257 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2258 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2259 * added to the mmlist just after page_duplicate - before would be racy.
2260 */
2261static void drain_mmlist(void)
2262{
2263        struct list_head *p, *next;
2264        unsigned int type;
2265
2266        for (type = 0; type < nr_swapfiles; type++)
2267                if (swap_info[type]->inuse_pages)
2268                        return;
2269        spin_lock(&mmlist_lock);
2270        list_for_each_safe(p, next, &init_mm.mmlist)
2271                list_del_init(p);
2272        spin_unlock(&mmlist_lock);
2273}
2274
2275/*
2276 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2277 * corresponds to page offset for the specified swap entry.
2278 * Note that the type of this function is sector_t, but it returns page offset
2279 * into the bdev, not sector offset.
2280 */
2281static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2282{
2283        struct swap_info_struct *sis;
2284        struct swap_extent *start_se;
2285        struct swap_extent *se;
2286        pgoff_t offset;
2287
2288        sis = swap_info[swp_type(entry)];
2289        *bdev = sis->bdev;
2290
2291        offset = swp_offset(entry);
2292        start_se = sis->curr_swap_extent;
2293        se = start_se;
2294
2295        for ( ; ; ) {
2296                if (se->start_page <= offset &&
2297                                offset < (se->start_page + se->nr_pages)) {
2298                        return se->start_block + (offset - se->start_page);
2299                }
2300                se = list_next_entry(se, list);
2301                sis->curr_swap_extent = se;
2302                BUG_ON(se == start_se);         /* It *must* be present */
2303        }
2304}
2305
2306/*
2307 * Returns the page offset into bdev for the specified page's swap entry.
2308 */
2309sector_t map_swap_page(struct page *page, struct block_device **bdev)
2310{
2311        swp_entry_t entry;
2312        entry.val = page_private(page);
2313        return map_swap_entry(entry, bdev);
2314}
2315
2316/*
2317 * Free all of a swapdev's extent information
2318 */
2319static void destroy_swap_extents(struct swap_info_struct *sis)
2320{
2321        while (!list_empty(&sis->first_swap_extent.list)) {
2322                struct swap_extent *se;
2323
2324                se = list_first_entry(&sis->first_swap_extent.list,
2325                                struct swap_extent, list);
2326                list_del(&se->list);
2327                kfree(se);
2328        }
2329
2330        if (sis->flags & SWP_FILE) {
2331                struct file *swap_file = sis->swap_file;
2332                struct address_space *mapping = swap_file->f_mapping;
2333
2334                sis->flags &= ~SWP_FILE;
2335                mapping->a_ops->swap_deactivate(swap_file);
2336        }
2337}
2338
2339/*
2340 * Add a block range (and the corresponding page range) into this swapdev's
2341 * extent list.  The extent list is kept sorted in page order.
2342 *
2343 * This function rather assumes that it is called in ascending page order.
2344 */
2345int
2346add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2347                unsigned long nr_pages, sector_t start_block)
2348{
2349        struct swap_extent *se;
2350        struct swap_extent *new_se;
2351        struct list_head *lh;
2352
2353        if (start_page == 0) {
2354                se = &sis->first_swap_extent;
2355                sis->curr_swap_extent = se;
2356                se->start_page = 0;
2357                se->nr_pages = nr_pages;
2358                se->start_block = start_block;
2359                return 1;
2360        } else {
2361                lh = sis->first_swap_extent.list.prev;  /* Highest extent */
2362                se = list_entry(lh, struct swap_extent, list);
2363                BUG_ON(se->start_page + se->nr_pages != start_page);
2364                if (se->start_block + se->nr_pages == start_block) {
2365                        /* Merge it */
2366                        se->nr_pages += nr_pages;
2367                        return 0;
2368                }
2369        }
2370
2371        /*
2372         * No merge.  Insert a new extent, preserving ordering.
2373         */
2374        new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2375        if (new_se == NULL)
2376                return -ENOMEM;
2377        new_se->start_page = start_page;
2378        new_se->nr_pages = nr_pages;
2379        new_se->start_block = start_block;
2380
2381        list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2382        return 1;
2383}
2384
2385/*
2386 * A `swap extent' is a simple thing which maps a contiguous range of pages
2387 * onto a contiguous range of disk blocks.  An ordered list of swap extents
2388 * is built at swapon time and is then used at swap_writepage/swap_readpage
2389 * time for locating where on disk a page belongs.
2390 *
2391 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2392 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2393 * swap files identically.
2394 *
2395 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2396 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2397 * swapfiles are handled *identically* after swapon time.
2398 *
2399 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2400 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2401 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2402 * requirements, they are simply tossed out - we will never use those blocks
2403 * for swapping.
2404 *
2405 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2406 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2407 * which will scribble on the fs.
2408 *
2409 * The amount of disk space which a single swap extent represents varies.
2410 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2411 * extents in the list.  To avoid much list walking, we cache the previous
2412 * search location in `curr_swap_extent', and start new searches from there.
2413 * This is extremely effective.  The average number of iterations in
2414 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2415 */
2416static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2417{
2418        struct file *swap_file = sis->swap_file;
2419        struct address_space *mapping = swap_file->f_mapping;
2420        struct inode *inode = mapping->host;
2421        int ret;
2422
2423        if (S_ISBLK(inode->i_mode)) {
2424                ret = add_swap_extent(sis, 0, sis->max, 0);
2425                *span = sis->pages;
2426                return ret;
2427        }
2428
2429        if (mapping->a_ops->swap_activate) {
2430                ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2431                if (!ret) {
2432                        sis->flags |= SWP_FILE;
2433                        ret = add_swap_extent(sis, 0, sis->max, 0);
2434                        *span = sis->pages;
2435                }
2436                return ret;
2437        }
2438
2439        return generic_swapfile_activate(sis, swap_file, span);
2440}
2441
2442static int swap_node(struct swap_info_struct *p)
2443{
2444        struct block_device *bdev;
2445
2446        if (p->bdev)
2447                bdev = p->bdev;
2448        else
2449                bdev = p->swap_file->f_inode->i_sb->s_bdev;
2450
2451        return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2452}
2453
2454static void _enable_swap_info(struct swap_info_struct *p, int prio,
2455                                unsigned char *swap_map,
2456                                struct swap_cluster_info *cluster_info)
2457{
2458        int i;
2459
2460        if (prio >= 0)
2461                p->prio = prio;
2462        else
2463                p->prio = --least_priority;
2464        /*
2465         * the plist prio is negated because plist ordering is
2466         * low-to-high, while swap ordering is high-to-low
2467         */
2468        p->list.prio = -p->prio;
2469        for_each_node(i) {
2470                if (p->prio >= 0)
2471                        p->avail_lists[i].prio = -p->prio;
2472                else {
2473                        if (swap_node(p) == i)
2474                                p->avail_lists[i].prio = 1;
2475                        else
2476                                p->avail_lists[i].prio = -p->prio;
2477                }
2478        }
2479        p->swap_map = swap_map;
2480        p->cluster_info = cluster_info;
2481        p->flags |= SWP_WRITEOK;
2482        atomic_long_add(p->pages, &nr_swap_pages);
2483        total_swap_pages += p->pages;
2484
2485        assert_spin_locked(&swap_lock);
2486        /*
2487         * both lists are plists, and thus priority ordered.
2488         * swap_active_head needs to be priority ordered for swapoff(),
2489         * which on removal of any swap_info_struct with an auto-assigned
2490         * (i.e. negative) priority increments the auto-assigned priority
2491         * of any lower-priority swap_info_structs.
2492         * swap_avail_head needs to be priority ordered for get_swap_page(),
2493         * which allocates swap pages from the highest available priority
2494         * swap_info_struct.
2495         */
2496        plist_add(&p->list, &swap_active_head);
2497        add_to_avail_list(p);
2498}
2499
2500static void enable_swap_info(struct swap_info_struct *p, int prio,
2501                                unsigned char *swap_map,
2502                                struct swap_cluster_info *cluster_info,
2503                                unsigned long *frontswap_map)
2504{
2505        frontswap_init(p->type, frontswap_map);
2506        spin_lock(&swap_lock);
2507        spin_lock(&p->lock);
2508         _enable_swap_info(p, prio, swap_map, cluster_info);
2509        spin_unlock(&p->lock);
2510        spin_unlock(&swap_lock);
2511}
2512
2513static void reinsert_swap_info(struct swap_info_struct *p)
2514{
2515        spin_lock(&swap_lock);
2516        spin_lock(&p->lock);
2517        _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2518        spin_unlock(&p->lock);
2519        spin_unlock(&swap_lock);
2520}
2521
2522bool has_usable_swap(void)
2523{
2524        bool ret = true;
2525
2526        spin_lock(&swap_lock);
2527        if (plist_head_empty(&swap_active_head))
2528                ret = false;
2529        spin_unlock(&swap_lock);
2530        return ret;
2531}
2532
2533SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2534{
2535        struct swap_info_struct *p = NULL;
2536        unsigned char *swap_map;
2537        struct swap_cluster_info *cluster_info;
2538        unsigned long *frontswap_map;
2539        struct file *swap_file, *victim;
2540        struct address_space *mapping;
2541        struct inode *inode;
2542        struct filename *pathname;
2543        int err, found = 0;
2544        unsigned int old_block_size;
2545
2546        if (!capable(CAP_SYS_ADMIN))
2547                return -EPERM;
2548
2549        BUG_ON(!current->mm);
2550
2551        pathname = getname(specialfile);
2552        if (IS_ERR(pathname))
2553                return PTR_ERR(pathname);
2554
2555        victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2556        err = PTR_ERR(victim);
2557        if (IS_ERR(victim))
2558                goto out;
2559
2560        mapping = victim->f_mapping;
2561        spin_lock(&swap_lock);
2562        plist_for_each_entry(p, &swap_active_head, list) {
2563                if (p->flags & SWP_WRITEOK) {
2564                        if (p->swap_file->f_mapping == mapping) {
2565                                found = 1;
2566                                break;
2567                        }
2568                }
2569        }
2570        if (!found) {
2571                err = -EINVAL;
2572                spin_unlock(&swap_lock);
2573                goto out_dput;
2574        }
2575        if (!security_vm_enough_memory_mm(current->mm, p->pages))
2576                vm_unacct_memory(p->pages);
2577        else {
2578                err = -ENOMEM;
2579                spin_unlock(&swap_lock);
2580                goto out_dput;
2581        }
2582        del_from_avail_list(p);
2583        spin_lock(&p->lock);
2584        if (p->prio < 0) {
2585                struct swap_info_struct *si = p;
2586                int nid;
2587
2588                plist_for_each_entry_continue(si, &swap_active_head, list) {
2589                        si->prio++;
2590                        si->list.prio--;
2591                        for_each_node(nid) {
2592                                if (si->avail_lists[nid].prio != 1)
2593                                        si->avail_lists[nid].prio--;
2594                        }
2595                }
2596                least_priority++;
2597        }
2598        plist_del(&p->list, &swap_active_head);
2599        atomic_long_sub(p->pages, &nr_swap_pages);
2600        total_swap_pages -= p->pages;
2601        p->flags &= ~SWP_WRITEOK;
2602        spin_unlock(&p->lock);
2603        spin_unlock(&swap_lock);
2604
2605        disable_swap_slots_cache_lock();
2606
2607        set_current_oom_origin();
2608        err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2609        clear_current_oom_origin();
2610
2611        if (err) {
2612                /* re-insert swap space back into swap_list */
2613                reinsert_swap_info(p);
2614                reenable_swap_slots_cache_unlock();
2615                goto out_dput;
2616        }
2617
2618        reenable_swap_slots_cache_unlock();
2619
2620        flush_work(&p->discard_work);
2621
2622        destroy_swap_extents(p);
2623        if (p->flags & SWP_CONTINUED)
2624                free_swap_count_continuations(p);
2625
2626        if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2627                atomic_dec(&nr_rotate_swap);
2628
2629        mutex_lock(&swapon_mutex);
2630        spin_lock(&swap_lock);
2631        spin_lock(&p->lock);
2632        drain_mmlist();
2633
2634        /* wait for anyone still in scan_swap_map */
2635        p->highest_bit = 0;             /* cuts scans short */
2636        while (p->flags >= SWP_SCANNING) {
2637                spin_unlock(&p->lock);
2638                spin_unlock(&swap_lock);
2639                schedule_timeout_uninterruptible(1);
2640                spin_lock(&swap_lock);
2641                spin_lock(&p->lock);
2642        }
2643
2644        swap_file = p->swap_file;
2645        old_block_size = p->old_block_size;
2646        p->swap_file = NULL;
2647        p->max = 0;
2648        swap_map = p->swap_map;
2649        p->swap_map = NULL;
2650        cluster_info = p->cluster_info;
2651        p->cluster_info = NULL;
2652        frontswap_map = frontswap_map_get(p);
2653        spin_unlock(&p->lock);
2654        spin_unlock(&swap_lock);
2655        frontswap_invalidate_area(p->type);
2656        frontswap_map_set(p, NULL);
2657        mutex_unlock(&swapon_mutex);
2658        free_percpu(p->percpu_cluster);
2659        p->percpu_cluster = NULL;
2660        vfree(swap_map);
2661        kvfree(cluster_info);
2662        kvfree(frontswap_map);
2663        /* Destroy swap account information */
2664        swap_cgroup_swapoff(p->type);
2665        exit_swap_address_space(p->type);
2666
2667        inode = mapping->host;
2668        if (S_ISBLK(inode->i_mode)) {
2669                struct block_device *bdev = I_BDEV(inode);
2670                set_blocksize(bdev, old_block_size);
2671                blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2672        } else {
2673                inode_lock(inode);
2674                inode->i_flags &= ~S_SWAPFILE;
2675                inode_unlock(inode);
2676        }
2677        filp_close(swap_file, NULL);
2678
2679        /*
2680         * Clear the SWP_USED flag after all resources are freed so that swapon
2681         * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2682         * not hold p->lock after we cleared its SWP_WRITEOK.
2683         */
2684        spin_lock(&swap_lock);
2685        p->flags = 0;
2686        spin_unlock(&swap_lock);
2687
2688        err = 0;
2689        atomic_inc(&proc_poll_event);
2690        wake_up_interruptible(&proc_poll_wait);
2691
2692out_dput:
2693        filp_close(victim, NULL);
2694out:
2695        putname(pathname);
2696        return err;
2697}
2698
2699#ifdef CONFIG_PROC_FS
2700static __poll_t swaps_poll(struct file *file, poll_table *wait)
2701{
2702        struct seq_file *seq = file->private_data;
2703
2704        poll_wait(file, &proc_poll_wait, wait);
2705
2706        if (seq->poll_event != atomic_read(&proc_poll_event)) {
2707                seq->poll_event = atomic_read(&proc_poll_event);
2708                return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2709        }
2710
2711        return EPOLLIN | EPOLLRDNORM;
2712}
2713
2714/* iterator */
2715static void *swap_start(struct seq_file *swap, loff_t *pos)
2716{
2717        struct swap_info_struct *si;
2718        int type;
2719        loff_t l = *pos;
2720
2721        mutex_lock(&swapon_mutex);
2722
2723        if (!l)
2724                return SEQ_START_TOKEN;
2725
2726        for (type = 0; type < nr_swapfiles; type++) {
2727                smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2728                si = swap_info[type];
2729                if (!(si->flags & SWP_USED) || !si->swap_map)
2730                        continue;
2731                if (!--l)
2732                        return si;
2733        }
2734
2735        return NULL;
2736}
2737
2738static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2739{
2740        struct swap_info_struct *si = v;
2741        int type;
2742
2743        if (v == SEQ_START_TOKEN)
2744                type = 0;
2745        else
2746                type = si->type + 1;
2747
2748        for (; type < nr_swapfiles; type++) {
2749                smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2750                si = swap_info[type];
2751                if (!(si->flags & SWP_USED) || !si->swap_map)
2752                        continue;
2753                ++*pos;
2754                return si;
2755        }
2756
2757        return NULL;
2758}
2759
2760static void swap_stop(struct seq_file *swap, void *v)
2761{
2762        mutex_unlock(&swapon_mutex);
2763}
2764
2765static int swap_show(struct seq_file *swap, void *v)
2766{
2767        struct swap_info_struct *si = v;
2768        struct file *file;
2769        int len;
2770
2771        if (si == SEQ_START_TOKEN) {
2772                seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2773                return 0;
2774        }
2775
2776        file = si->swap_file;
2777        len = seq_file_path(swap, file, " \t\n\\");
2778        seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2779                        len < 40 ? 40 - len : 1, " ",
2780                        S_ISBLK(file_inode(file)->i_mode) ?
2781                                "partition" : "file\t",
2782                        si->pages << (PAGE_SHIFT - 10),
2783                        si->inuse_pages << (PAGE_SHIFT - 10),
2784                        si->prio);
2785        return 0;
2786}
2787
2788static const struct seq_operations swaps_op = {
2789        .start =        swap_start,
2790        .next =         swap_next,
2791        .stop =         swap_stop,
2792        .show =         swap_show
2793};
2794
2795static int swaps_open(struct inode *inode, struct file *file)
2796{
2797        struct seq_file *seq;
2798        int ret;
2799
2800        ret = seq_open(file, &swaps_op);
2801        if (ret)
2802                return ret;
2803
2804        seq = file->private_data;
2805        seq->poll_event = atomic_read(&proc_poll_event);
2806        return 0;
2807}
2808
2809static const struct file_operations proc_swaps_operations = {
2810        .open           = swaps_open,
2811        .read           = seq_read,
2812        .llseek         = seq_lseek,
2813        .release        = seq_release,
2814        .poll           = swaps_poll,
2815};
2816
2817static int __init procswaps_init(void)
2818{
2819        proc_create("swaps", 0, NULL, &proc_swaps_operations);
2820        return 0;
2821}
2822__initcall(procswaps_init);
2823#endif /* CONFIG_PROC_FS */
2824
2825#ifdef MAX_SWAPFILES_CHECK
2826static int __init max_swapfiles_check(void)
2827{
2828        MAX_SWAPFILES_CHECK();
2829        return 0;
2830}
2831late_initcall(max_swapfiles_check);
2832#endif
2833
2834static struct swap_info_struct *alloc_swap_info(void)
2835{
2836        struct swap_info_struct *p;
2837        unsigned int type;
2838        int i;
2839
2840        p = kzalloc(sizeof(*p), GFP_KERNEL);
2841        if (!p)
2842                return ERR_PTR(-ENOMEM);
2843
2844        spin_lock(&swap_lock);
2845        for (type = 0; type < nr_swapfiles; type++) {
2846                if (!(swap_info[type]->flags & SWP_USED))
2847                        break;
2848        }
2849        if (type >= MAX_SWAPFILES) {
2850                spin_unlock(&swap_lock);
2851                kfree(p);
2852                return ERR_PTR(-EPERM);
2853        }
2854        if (type >= nr_swapfiles) {
2855                p->type = type;
2856                swap_info[type] = p;
2857                /*
2858                 * Write swap_info[type] before nr_swapfiles, in case a
2859                 * racing procfs swap_start() or swap_next() is reading them.
2860                 * (We never shrink nr_swapfiles, we never free this entry.)
2861                 */
2862                smp_wmb();
2863                nr_swapfiles++;
2864        } else {
2865                kfree(p);
2866                p = swap_info[type];
2867                /*
2868                 * Do not memset this entry: a racing procfs swap_next()
2869                 * would be relying on p->type to remain valid.
2870                 */
2871        }
2872        INIT_LIST_HEAD(&p->first_swap_extent.list);
2873        plist_node_init(&p->list, 0);
2874        for_each_node(i)
2875                plist_node_init(&p->avail_lists[i], 0);
2876        p->flags = SWP_USED;
2877        spin_unlock(&swap_lock);
2878        spin_lock_init(&p->lock);
2879        spin_lock_init(&p->cont_lock);
2880
2881        return p;
2882}
2883
2884static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2885{
2886        int error;
2887
2888        if (S_ISBLK(inode->i_mode)) {
2889                p->bdev = bdgrab(I_BDEV(inode));
2890                error = blkdev_get(p->bdev,
2891                                   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2892                if (error < 0) {
2893                        p->bdev = NULL;
2894                        return error;
2895                }
2896                p->old_block_size = block_size(p->bdev);
2897                error = set_blocksize(p->bdev, PAGE_SIZE);
2898                if (error < 0)
2899                        return error;
2900                p->flags |= SWP_BLKDEV;
2901        } else if (S_ISREG(inode->i_mode)) {
2902                p->bdev = inode->i_sb->s_bdev;
2903                inode_lock(inode);
2904                if (IS_SWAPFILE(inode))
2905                        return -EBUSY;
2906        } else
2907                return -EINVAL;
2908
2909        return 0;
2910}
2911
2912static unsigned long read_swap_header(struct swap_info_struct *p,
2913                                        union swap_header *swap_header,
2914                                        struct inode *inode)
2915{
2916        int i;
2917        unsigned long maxpages;
2918        unsigned long swapfilepages;
2919        unsigned long last_page;
2920
2921        if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2922                pr_err("Unable to find swap-space signature\n");
2923                return 0;
2924        }
2925
2926        /* swap partition endianess hack... */
2927        if (swab32(swap_header->info.version) == 1) {
2928                swab32s(&swap_header->info.version);
2929                swab32s(&swap_header->info.last_page);
2930                swab32s(&swap_header->info.nr_badpages);
2931                if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2932                        return 0;
2933                for (i = 0; i < swap_header->info.nr_badpages; i++)
2934                        swab32s(&swap_header->info.badpages[i]);
2935        }
2936        /* Check the swap header's sub-version */
2937        if (swap_header->info.version != 1) {
2938                pr_warn("Unable to handle swap header version %d\n",
2939                        swap_header->info.version);
2940                return 0;
2941        }
2942
2943        p->lowest_bit  = 1;
2944        p->cluster_next = 1;
2945        p->cluster_nr = 0;
2946
2947        /*
2948         * Find out how many pages are allowed for a single swap
2949         * device. There are two limiting factors: 1) the number
2950         * of bits for the swap offset in the swp_entry_t type, and
2951         * 2) the number of bits in the swap pte as defined by the
2952         * different architectures. In order to find the
2953         * largest possible bit mask, a swap entry with swap type 0
2954         * and swap offset ~0UL is created, encoded to a swap pte,
2955         * decoded to a swp_entry_t again, and finally the swap
2956         * offset is extracted. This will mask all the bits from
2957         * the initial ~0UL mask that can't be encoded in either
2958         * the swp_entry_t or the architecture definition of a
2959         * swap pte.
2960         */
2961        maxpages = swp_offset(pte_to_swp_entry(
2962                        swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2963        last_page = swap_header->info.last_page;
2964        if (!last_page) {
2965                pr_warn("Empty swap-file\n");
2966                return 0;
2967        }
2968        if (last_page > maxpages) {
2969                pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2970                        maxpages << (PAGE_SHIFT - 10),
2971                        last_page << (PAGE_SHIFT - 10));
2972        }
2973        if (maxpages > last_page) {
2974                maxpages = last_page + 1;
2975                /* p->max is an unsigned int: don't overflow it */
2976                if ((unsigned int)maxpages == 0)
2977                        maxpages = UINT_MAX;
2978        }
2979        p->highest_bit = maxpages - 1;
2980
2981        if (!maxpages)
2982                return 0;
2983        swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2984        if (swapfilepages && maxpages > swapfilepages) {
2985                pr_warn("Swap area shorter than signature indicates\n");
2986                return 0;
2987        }
2988        if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2989                return 0;
2990        if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2991                return 0;
2992
2993        return maxpages;
2994}
2995
2996#define SWAP_CLUSTER_INFO_COLS                                          \
2997        DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2998#define SWAP_CLUSTER_SPACE_COLS                                         \
2999        DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3000#define SWAP_CLUSTER_COLS                                               \
3001        max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3002
3003static int setup_swap_map_and_extents(struct swap_info_struct *p,
3004                                        union swap_header *swap_header,
3005                                        unsigned char *swap_map,
3006                                        struct swap_cluster_info *cluster_info,
3007                                        unsigned long maxpages,
3008                                        sector_t *span)
3009{
3010        unsigned int j, k;
3011        unsigned int nr_good_pages;
3012        int nr_extents;
3013        unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3014        unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3015        unsigned long i, idx;
3016
3017        nr_good_pages = maxpages - 1;   /* omit header page */
3018
3019        cluster_list_init(&p->free_clusters);
3020        cluster_list_init(&p->discard_clusters);
3021
3022        for (i = 0; i < swap_header->info.nr_badpages; i++) {
3023                unsigned int page_nr = swap_header->info.badpages[i];
3024                if (page_nr == 0 || page_nr > swap_header->info.last_page)
3025                        return -EINVAL;
3026                if (page_nr < maxpages) {
3027                        swap_map[page_nr] = SWAP_MAP_BAD;
3028                        nr_good_pages--;
3029                        /*
3030                         * Haven't marked the cluster free yet, no list
3031                         * operation involved
3032                         */
3033                        inc_cluster_info_page(p, cluster_info, page_nr);
3034                }
3035        }
3036
3037        /* Haven't marked the cluster free yet, no list operation involved */
3038        for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3039                inc_cluster_info_page(p, cluster_info, i);
3040
3041        if (nr_good_pages) {
3042                swap_map[0] = SWAP_MAP_BAD;
3043                /*
3044                 * Not mark the cluster free yet, no list
3045                 * operation involved
3046                 */
3047                inc_cluster_info_page(p, cluster_info, 0);
3048                p->max = maxpages;
3049                p->pages = nr_good_pages;
3050                nr_extents = setup_swap_extents(p, span);
3051                if (nr_extents < 0)
3052                        return nr_extents;
3053                nr_good_pages = p->pages;
3054        }
3055        if (!nr_good_pages) {
3056                pr_warn("Empty swap-file\n");
3057                return -EINVAL;
3058        }
3059
3060        if (!cluster_info)
3061                return nr_extents;
3062
3063
3064        /*
3065         * Reduce false cache line sharing between cluster_info and
3066         * sharing same address space.
3067         */
3068        for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3069                j = (k + col) % SWAP_CLUSTER_COLS;
3070                for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3071                        idx = i * SWAP_CLUSTER_COLS + j;
3072                        if (idx >= nr_clusters)
3073                                continue;
3074                        if (cluster_count(&cluster_info[idx]))
3075                                continue;
3076                        cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3077                        cluster_list_add_tail(&p->free_clusters, cluster_info,
3078                                              idx);
3079                }
3080        }
3081        return nr_extents;
3082}
3083
3084/*
3085 * Helper to sys_swapon determining if a given swap
3086 * backing device queue supports DISCARD operations.
3087 */
3088static bool swap_discardable(struct swap_info_struct *si)
3089{
3090        struct request_queue *q = bdev_get_queue(si->bdev);
3091
3092        if (!q || !blk_queue_discard(q))
3093                return false;
3094
3095        return true;
3096}
3097
3098SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3099{
3100        struct swap_info_struct *p;
3101        struct filename *name;
3102        struct file *swap_file = NULL;
3103        struct address_space *mapping;
3104        int prio;
3105        int error;
3106        union swap_header *swap_header;
3107        int nr_extents;
3108        sector_t span;
3109        unsigned long maxpages;
3110        unsigned char *swap_map = NULL;
3111        struct swap_cluster_info *cluster_info = NULL;
3112        unsigned long *frontswap_map = NULL;
3113        struct page *page = NULL;
3114        struct inode *inode = NULL;
3115        bool inced_nr_rotate_swap = false;
3116
3117        if (swap_flags & ~SWAP_FLAGS_VALID)
3118                return -EINVAL;
3119
3120        if (!capable(CAP_SYS_ADMIN))
3121                return -EPERM;
3122
3123        if (!swap_avail_heads)
3124                return -ENOMEM;
3125
3126        p = alloc_swap_info();
3127        if (IS_ERR(p))
3128                return PTR_ERR(p);
3129
3130        INIT_WORK(&p->discard_work, swap_discard_work);
3131
3132        name = getname(specialfile);
3133        if (IS_ERR(name)) {
3134                error = PTR_ERR(name);
3135                name = NULL;
3136                goto bad_swap;
3137        }
3138        swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3139        if (IS_ERR(swap_file)) {
3140                error = PTR_ERR(swap_file);
3141                swap_file = NULL;
3142                goto bad_swap;
3143        }
3144
3145        p->swap_file = swap_file;
3146        mapping = swap_file->f_mapping;
3147        inode = mapping->host;
3148
3149        /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3150        error = claim_swapfile(p, inode);
3151        if (unlikely(error))
3152                goto bad_swap;
3153
3154        /*
3155         * Read the swap header.
3156         */
3157        if (!mapping->a_ops->readpage) {
3158                error = -EINVAL;
3159                goto bad_swap;
3160        }
3161        page = read_mapping_page(mapping, 0, swap_file);
3162        if (IS_ERR(page)) {
3163                error = PTR_ERR(page);
3164                goto bad_swap;
3165        }
3166        swap_header = kmap(page);
3167
3168        maxpages = read_swap_header(p, swap_header, inode);
3169        if (unlikely(!maxpages)) {
3170                error = -EINVAL;
3171                goto bad_swap;
3172        }
3173
3174        /* OK, set up the swap map and apply the bad block list */
3175        swap_map = vzalloc(maxpages);
3176        if (!swap_map) {
3177                error = -ENOMEM;
3178                goto bad_swap;
3179        }
3180
3181        if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3182                p->flags |= SWP_STABLE_WRITES;
3183
3184        if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3185                p->flags |= SWP_SYNCHRONOUS_IO;
3186
3187        if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3188                int cpu;
3189                unsigned long ci, nr_cluster;
3190
3191                p->flags |= SWP_SOLIDSTATE;
3192                /*
3193                 * select a random position to start with to help wear leveling
3194                 * SSD
3195                 */
3196                p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3197                nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3198
3199                cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
3200                                        GFP_KERNEL);
3201                if (!cluster_info) {
3202                        error = -ENOMEM;
3203                        goto bad_swap;
3204                }
3205
3206                for (ci = 0; ci < nr_cluster; ci++)
3207                        spin_lock_init(&((cluster_info + ci)->lock));
3208
3209                p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3210                if (!p->percpu_cluster) {
3211                        error = -ENOMEM;
3212                        goto bad_swap;
3213                }
3214                for_each_possible_cpu(cpu) {
3215                        struct percpu_cluster *cluster;
3216                        cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3217                        cluster_set_null(&cluster->index);
3218                }
3219        } else {
3220                atomic_inc(&nr_rotate_swap);
3221                inced_nr_rotate_swap = true;
3222        }
3223
3224        error = swap_cgroup_swapon(p->type, maxpages);
3225        if (error)
3226                goto bad_swap;
3227
3228        nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3229                cluster_info, maxpages, &span);
3230        if (unlikely(nr_extents < 0)) {
3231                error = nr_extents;
3232                goto bad_swap;
3233        }
3234        /* frontswap enabled? set up bit-per-page map for frontswap */
3235        if (IS_ENABLED(CONFIG_FRONTSWAP))
3236                frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
3237                                         GFP_KERNEL);
3238
3239        if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3240                /*
3241                 * When discard is enabled for swap with no particular
3242                 * policy flagged, we set all swap discard flags here in
3243                 * order to sustain backward compatibility with older
3244                 * swapon(8) releases.
3245                 */
3246                p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3247                             SWP_PAGE_DISCARD);
3248
3249                /*
3250                 * By flagging sys_swapon, a sysadmin can tell us to
3251                 * either do single-time area discards only, or to just
3252                 * perform discards for released swap page-clusters.
3253                 * Now it's time to adjust the p->flags accordingly.
3254                 */
3255                if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3256                        p->flags &= ~SWP_PAGE_DISCARD;
3257                else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3258                        p->flags &= ~SWP_AREA_DISCARD;
3259
3260                /* issue a swapon-time discard if it's still required */
3261                if (p->flags & SWP_AREA_DISCARD) {
3262                        int err = discard_swap(p);
3263                        if (unlikely(err))
3264                                pr_err("swapon: discard_swap(%p): %d\n",
3265                                        p, err);
3266                }
3267        }
3268
3269        error = init_swap_address_space(p->type, maxpages);
3270        if (error)
3271                goto bad_swap;
3272
3273        mutex_lock(&swapon_mutex);
3274        prio = -1;
3275        if (swap_flags & SWAP_FLAG_PREFER)
3276                prio =
3277                  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3278        enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3279
3280        pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3281                p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3282                nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3283                (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3284                (p->flags & SWP_DISCARDABLE) ? "D" : "",
3285                (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3286                (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3287                (frontswap_map) ? "FS" : "");
3288
3289        mutex_unlock(&swapon_mutex);
3290        atomic_inc(&proc_poll_event);
3291        wake_up_interruptible(&proc_poll_wait);
3292
3293        if (S_ISREG(inode->i_mode))
3294                inode->i_flags |= S_SWAPFILE;
3295        error = 0;
3296        goto out;
3297bad_swap:
3298        free_percpu(p->percpu_cluster);
3299        p->percpu_cluster = NULL;
3300        if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3301                set_blocksize(p->bdev, p->old_block_size);
3302                blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3303        }
3304        destroy_swap_extents(p);
3305        swap_cgroup_swapoff(p->type);
3306        spin_lock(&swap_lock);
3307        p->swap_file = NULL;
3308        p->flags = 0;
3309        spin_unlock(&swap_lock);
3310        vfree(swap_map);
3311        kvfree(cluster_info);
3312        kvfree(frontswap_map);
3313        if (inced_nr_rotate_swap)
3314                atomic_dec(&nr_rotate_swap);
3315        if (swap_file) {
3316                if (inode && S_ISREG(inode->i_mode)) {
3317                        inode_unlock(inode);
3318                        inode = NULL;
3319                }
3320                filp_close(swap_file, NULL);
3321        }
3322out:
3323        if (page && !IS_ERR(page)) {
3324                kunmap(page);
3325                put_page(page);
3326        }
3327        if (name)
3328                putname(name);
3329        if (inode && S_ISREG(inode->i_mode))
3330                inode_unlock(inode);
3331        if (!error)
3332                enable_swap_slots_cache();
3333        return error;
3334}
3335
3336void si_swapinfo(struct sysinfo *val)
3337{
3338        unsigned int type;
3339        unsigned long nr_to_be_unused = 0;
3340
3341        spin_lock(&swap_lock);
3342        for (type = 0; type < nr_swapfiles; type++) {
3343                struct swap_info_struct *si = swap_info[type];
3344
3345                if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3346                        nr_to_be_unused += si->inuse_pages;
3347        }
3348        val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3349        val->totalswap = total_swap_pages + nr_to_be_unused;
3350        spin_unlock(&swap_lock);
3351}
3352
3353/*
3354 * Verify that a swap entry is valid and increment its swap map count.
3355 *
3356 * Returns error code in following case.
3357 * - success -> 0
3358 * - swp_entry is invalid -> EINVAL
3359 * - swp_entry is migration entry -> EINVAL
3360 * - swap-cache reference is requested but there is already one. -> EEXIST
3361 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3362 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3363 */
3364static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3365{
3366        struct swap_info_struct *p;
3367        struct swap_cluster_info *ci;
3368        unsigned long offset, type;
3369        unsigned char count;
3370        unsigned char has_cache;
3371        int err = -EINVAL;
3372
3373        if (non_swap_entry(entry))
3374                goto out;
3375
3376        type = swp_type(entry);
3377        if (type >= nr_swapfiles)
3378                goto bad_file;
3379        p = swap_info[type];
3380        offset = swp_offset(entry);
3381        if (unlikely(offset >= p->max))
3382                goto out;
3383
3384        ci = lock_cluster_or_swap_info(p, offset);
3385
3386        count = p->swap_map[offset];
3387
3388        /*
3389         * swapin_readahead() doesn't check if a swap entry is valid, so the
3390         * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3391         */
3392        if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3393                err = -ENOENT;
3394                goto unlock_out;
3395        }
3396
3397        has_cache = count & SWAP_HAS_CACHE;
3398        count &= ~SWAP_HAS_CACHE;
3399        err = 0;
3400
3401        if (usage == SWAP_HAS_CACHE) {
3402
3403                /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3404                if (!has_cache && count)
3405                        has_cache = SWAP_HAS_CACHE;
3406                else if (has_cache)             /* someone else added cache */
3407                        err = -EEXIST;
3408                else                            /* no users remaining */
3409                        err = -ENOENT;
3410
3411        } else if (count || has_cache) {
3412
3413                if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3414                        count += usage;
3415                else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3416                        err = -EINVAL;
3417                else if (swap_count_continued(p, offset, count))
3418                        count = COUNT_CONTINUED;
3419                else
3420                        err = -ENOMEM;
3421        } else
3422                err = -ENOENT;                  /* unused swap entry */
3423
3424        p->swap_map[offset] = count | has_cache;
3425
3426unlock_out:
3427        unlock_cluster_or_swap_info(p, ci);
3428out:
3429        return err;
3430
3431bad_file:
3432        pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3433        goto out;
3434}
3435
3436/*
3437 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3438 * (in which case its reference count is never incremented).
3439 */
3440void swap_shmem_alloc(swp_entry_t entry)
3441{
3442        __swap_duplicate(entry, SWAP_MAP_SHMEM);
3443}
3444
3445/*
3446 * Increase reference count of swap entry by 1.
3447 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3448 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3449 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3450 * might occur if a page table entry has got corrupted.
3451 */
3452int swap_duplicate(swp_entry_t entry)
3453{
3454        int err = 0;
3455
3456        while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3457                err = add_swap_count_continuation(entry, GFP_ATOMIC);
3458        return err;
3459}
3460
3461/*
3462 * @entry: swap entry for which we allocate swap cache.
3463 *
3464 * Called when allocating swap cache for existing swap entry,
3465 * This can return error codes. Returns 0 at success.
3466 * -EBUSY means there is a swap cache.
3467 * Note: return code is different from swap_duplicate().
3468 */
3469int swapcache_prepare(swp_entry_t entry)
3470{
3471        return __swap_duplicate(entry, SWAP_HAS_CACHE);
3472}
3473
3474struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3475{
3476        return swap_info[swp_type(entry)];
3477}
3478
3479struct swap_info_struct *page_swap_info(struct page *page)
3480{
3481        swp_entry_t entry = { .val = page_private(page) };
3482        return swp_swap_info(entry);
3483}
3484
3485/*
3486 * out-of-line __page_file_ methods to avoid include hell.
3487 */
3488struct address_space *__page_file_mapping(struct page *page)
3489{
3490        return page_swap_info(page)->swap_file->f_mapping;
3491}
3492EXPORT_SYMBOL_GPL(__page_file_mapping);
3493
3494pgoff_t __page_file_index(struct page *page)
3495{
3496        swp_entry_t swap = { .val = page_private(page) };
3497        return swp_offset(swap);
3498}
3499EXPORT_SYMBOL_GPL(__page_file_index);
3500
3501/*
3502 * add_swap_count_continuation - called when a swap count is duplicated
3503 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3504 * page of the original vmalloc'ed swap_map, to hold the continuation count
3505 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3506 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3507 *
3508 * These continuation pages are seldom referenced: the common paths all work
3509 * on the original swap_map, only referring to a continuation page when the
3510 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3511 *
3512 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3513 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3514 * can be called after dropping locks.
3515 */
3516int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3517{
3518        struct swap_info_struct *si;
3519        struct swap_cluster_info *ci;
3520        struct page *head;
3521        struct page *page;
3522        struct page *list_page;
3523        pgoff_t offset;
3524        unsigned char count;
3525
3526        /*
3527         * When debugging, it's easier to use __GFP_ZERO here; but it's better
3528         * for latency not to zero a page while GFP_ATOMIC and holding locks.
3529         */
3530        page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3531
3532        si = swap_info_get(entry);
3533        if (!si) {
3534                /*
3535                 * An acceptable race has occurred since the failing
3536                 * __swap_duplicate(): the swap entry has been freed,
3537                 * perhaps even the whole swap_map cleared for swapoff.
3538                 */
3539                goto outer;
3540        }
3541
3542        offset = swp_offset(entry);
3543
3544        ci = lock_cluster(si, offset);
3545
3546        count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3547
3548        if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3549                /*
3550                 * The higher the swap count, the more likely it is that tasks
3551                 * will race to add swap count continuation: we need to avoid
3552                 * over-provisioning.
3553                 */
3554                goto out;
3555        }
3556
3557        if (!page) {
3558                unlock_cluster(ci);
3559                spin_unlock(&si->lock);
3560                return -ENOMEM;
3561        }
3562
3563        /*
3564         * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3565         * no architecture is using highmem pages for kernel page tables: so it
3566         * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3567         */
3568        head = vmalloc_to_page(si->swap_map + offset);
3569        offset &= ~PAGE_MASK;
3570
3571        spin_lock(&si->cont_lock);
3572        /*
3573         * Page allocation does not initialize the page's lru field,
3574         * but it does always reset its private field.
3575         */
3576        if (!page_private(head)) {
3577                BUG_ON(count & COUNT_CONTINUED);
3578                INIT_LIST_HEAD(&head->lru);
3579                set_page_private(head, SWP_CONTINUED);
3580                si->flags |= SWP_CONTINUED;
3581        }
3582
3583        list_for_each_entry(list_page, &head->lru, lru) {
3584                unsigned char *map;
3585
3586                /*
3587                 * If the previous map said no continuation, but we've found
3588                 * a continuation page, free our allocation and use this one.
3589                 */
3590                if (!(count & COUNT_CONTINUED))
3591                        goto out_unlock_cont;
3592
3593                map = kmap_atomic(list_page) + offset;
3594                count = *map;
3595                kunmap_atomic(map);
3596
3597                /*
3598                 * If this continuation count now has some space in it,
3599                 * free our allocation and use this one.
3600                 */
3601                if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3602                        goto out_unlock_cont;
3603        }
3604
3605        list_add_tail(&page->lru, &head->lru);
3606        page = NULL;                    /* now it's attached, don't free it */
3607out_unlock_cont:
3608        spin_unlock(&si->cont_lock);
3609out:
3610        unlock_cluster(ci);
3611        spin_unlock(&si->lock);
3612outer:
3613        if (page)
3614                __free_page(page);
3615        return 0;
3616}
3617
3618/*
3619 * swap_count_continued - when the original swap_map count is incremented
3620 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3621 * into, carry if so, or else fail until a new continuation page is allocated;
3622 * when the original swap_map count is decremented from 0 with continuation,
3623 * borrow from the continuation and report whether it still holds more.
3624 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3625 * lock.
3626 */
3627static bool swap_count_continued(struct swap_info_struct *si,
3628                                 pgoff_t offset, unsigned char count)
3629{
3630        struct page *head;
3631        struct page *page;
3632        unsigned char *map;
3633        bool ret;
3634
3635        head = vmalloc_to_page(si->swap_map + offset);
3636        if (page_private(head) != SWP_CONTINUED) {
3637                BUG_ON(count & COUNT_CONTINUED);
3638                return false;           /* need to add count continuation */
3639        }
3640
3641        spin_lock(&si->cont_lock);
3642        offset &= ~PAGE_MASK;
3643        page = list_entry(head->lru.next, struct page, lru);
3644        map = kmap_atomic(page) + offset;
3645
3646        if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3647                goto init_map;          /* jump over SWAP_CONT_MAX checks */
3648
3649        if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3650                /*
3651                 * Think of how you add 1 to 999
3652                 */
3653                while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3654                        kunmap_atomic(map);
3655                        page = list_entry(page->lru.next, struct page, lru);
3656                        BUG_ON(page == head);
3657                        map = kmap_atomic(page) + offset;
3658                }
3659                if (*map == SWAP_CONT_MAX) {
3660                        kunmap_atomic(map);
3661                        page = list_entry(page->lru.next, struct page, lru);
3662                        if (page == head) {
3663                                ret = false;    /* add count continuation */
3664                                goto out;
3665                        }
3666                        map = kmap_atomic(page) + offset;
3667init_map:               *map = 0;               /* we didn't zero the page */
3668                }
3669                *map += 1;
3670                kunmap_atomic(map);
3671                page = list_entry(page->lru.prev, struct page, lru);
3672                while (page != head) {
3673                        map = kmap_atomic(page) + offset;
3674                        *map = COUNT_CONTINUED;
3675                        kunmap_atomic(map);
3676                        page = list_entry(page->lru.prev, struct page, lru);
3677                }
3678                ret = true;                     /* incremented */
3679
3680        } else {                                /* decrementing */
3681                /*
3682                 * Think of how you subtract 1 from 1000
3683                 */
3684                BUG_ON(count != COUNT_CONTINUED);
3685                while (*map == COUNT_CONTINUED) {
3686                        kunmap_atomic(map);
3687                        page = list_entry(page->lru.next, struct page, lru);
3688                        BUG_ON(page == head);
3689                        map = kmap_atomic(page) + offset;
3690                }
3691                BUG_ON(*map == 0);
3692                *map -= 1;
3693                if (*map == 0)
3694                        count = 0;
3695                kunmap_atomic(map);
3696                page = list_entry(page->lru.prev, struct page, lru);
3697                while (page != head) {
3698                        map = kmap_atomic(page) + offset;
3699                        *map = SWAP_CONT_MAX | count;
3700                        count = COUNT_CONTINUED;
3701                        kunmap_atomic(map);
3702                        page = list_entry(page->lru.prev, struct page, lru);
3703                }
3704                ret = count == COUNT_CONTINUED;
3705        }
3706out:
3707        spin_unlock(&si->cont_lock);
3708        return ret;
3709}
3710
3711/*
3712 * free_swap_count_continuations - swapoff free all the continuation pages
3713 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3714 */
3715static void free_swap_count_continuations(struct swap_info_struct *si)
3716{
3717        pgoff_t offset;
3718
3719        for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3720                struct page *head;
3721                head = vmalloc_to_page(si->swap_map + offset);
3722                if (page_private(head)) {
3723                        struct page *page, *next;
3724
3725                        list_for_each_entry_safe(page, next, &head->lru, lru) {
3726                                list_del(&page->lru);
3727                                __free_page(page);
3728                        }
3729                }
3730        }
3731}
3732
3733static int __init swapfile_init(void)
3734{
3735        int nid;
3736
3737        swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3738                                         GFP_KERNEL);
3739        if (!swap_avail_heads) {
3740                pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3741                return -ENOMEM;
3742        }
3743
3744        for_each_node(nid)
3745                plist_head_init(&swap_avail_heads[nid]);
3746
3747        return 0;
3748}
3749subsys_initcall(swapfile_init);
3750