linux/mm/vmscan.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/vmscan.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  Swap reorganised 29.12.95, Stephen Tweedie.
   8 *  kswapd added: 7.1.96  sct
   9 *  Removed kswapd_ctl limits, and swap out as many pages as needed
  10 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  11 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  12 *  Multiqueue VM started 5.8.00, Rik van Riel.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/mm.h>
  18#include <linux/sched/mm.h>
  19#include <linux/module.h>
  20#include <linux/gfp.h>
  21#include <linux/kernel_stat.h>
  22#include <linux/swap.h>
  23#include <linux/pagemap.h>
  24#include <linux/init.h>
  25#include <linux/highmem.h>
  26#include <linux/vmpressure.h>
  27#include <linux/vmstat.h>
  28#include <linux/file.h>
  29#include <linux/writeback.h>
  30#include <linux/blkdev.h>
  31#include <linux/buffer_head.h>  /* for try_to_release_page(),
  32                                        buffer_heads_over_limit */
  33#include <linux/mm_inline.h>
  34#include <linux/backing-dev.h>
  35#include <linux/rmap.h>
  36#include <linux/topology.h>
  37#include <linux/cpu.h>
  38#include <linux/cpuset.h>
  39#include <linux/compaction.h>
  40#include <linux/notifier.h>
  41#include <linux/rwsem.h>
  42#include <linux/delay.h>
  43#include <linux/kthread.h>
  44#include <linux/freezer.h>
  45#include <linux/memcontrol.h>
  46#include <linux/delayacct.h>
  47#include <linux/sysctl.h>
  48#include <linux/oom.h>
  49#include <linux/prefetch.h>
  50#include <linux/printk.h>
  51#include <linux/dax.h>
  52
  53#include <asm/tlbflush.h>
  54#include <asm/div64.h>
  55
  56#include <linux/swapops.h>
  57#include <linux/balloon_compaction.h>
  58
  59#include "internal.h"
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/vmscan.h>
  63
  64struct scan_control {
  65        /* How many pages shrink_list() should reclaim */
  66        unsigned long nr_to_reclaim;
  67
  68        /* This context's GFP mask */
  69        gfp_t gfp_mask;
  70
  71        /* Allocation order */
  72        int order;
  73
  74        /*
  75         * Nodemask of nodes allowed by the caller. If NULL, all nodes
  76         * are scanned.
  77         */
  78        nodemask_t      *nodemask;
  79
  80        /*
  81         * The memory cgroup that hit its limit and as a result is the
  82         * primary target of this reclaim invocation.
  83         */
  84        struct mem_cgroup *target_mem_cgroup;
  85
  86        /* Scan (total_size >> priority) pages at once */
  87        int priority;
  88
  89        /* The highest zone to isolate pages for reclaim from */
  90        enum zone_type reclaim_idx;
  91
  92        /* Writepage batching in laptop mode; RECLAIM_WRITE */
  93        unsigned int may_writepage:1;
  94
  95        /* Can mapped pages be reclaimed? */
  96        unsigned int may_unmap:1;
  97
  98        /* Can pages be swapped as part of reclaim? */
  99        unsigned int may_swap:1;
 100
 101        /*
 102         * Cgroups are not reclaimed below their configured memory.low,
 103         * unless we threaten to OOM. If any cgroups are skipped due to
 104         * memory.low and nothing was reclaimed, go back for memory.low.
 105         */
 106        unsigned int memcg_low_reclaim:1;
 107        unsigned int memcg_low_skipped:1;
 108
 109        unsigned int hibernation_mode:1;
 110
 111        /* One of the zones is ready for compaction */
 112        unsigned int compaction_ready:1;
 113
 114        /* Incremented by the number of inactive pages that were scanned */
 115        unsigned long nr_scanned;
 116
 117        /* Number of pages freed so far during a call to shrink_zones() */
 118        unsigned long nr_reclaimed;
 119
 120        struct {
 121                unsigned int dirty;
 122                unsigned int unqueued_dirty;
 123                unsigned int congested;
 124                unsigned int writeback;
 125                unsigned int immediate;
 126                unsigned int file_taken;
 127                unsigned int taken;
 128        } nr;
 129};
 130
 131#ifdef ARCH_HAS_PREFETCH
 132#define prefetch_prev_lru_page(_page, _base, _field)                    \
 133        do {                                                            \
 134                if ((_page)->lru.prev != _base) {                       \
 135                        struct page *prev;                              \
 136                                                                        \
 137                        prev = lru_to_page(&(_page->lru));              \
 138                        prefetch(&prev->_field);                        \
 139                }                                                       \
 140        } while (0)
 141#else
 142#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 143#endif
 144
 145#ifdef ARCH_HAS_PREFETCHW
 146#define prefetchw_prev_lru_page(_page, _base, _field)                   \
 147        do {                                                            \
 148                if ((_page)->lru.prev != _base) {                       \
 149                        struct page *prev;                              \
 150                                                                        \
 151                        prev = lru_to_page(&(_page->lru));              \
 152                        prefetchw(&prev->_field);                       \
 153                }                                                       \
 154        } while (0)
 155#else
 156#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 157#endif
 158
 159/*
 160 * From 0 .. 100.  Higher means more swappy.
 161 */
 162int vm_swappiness = 60;
 163/*
 164 * The total number of pages which are beyond the high watermark within all
 165 * zones.
 166 */
 167unsigned long vm_total_pages;
 168
 169static LIST_HEAD(shrinker_list);
 170static DECLARE_RWSEM(shrinker_rwsem);
 171
 172#ifdef CONFIG_MEMCG
 173static bool global_reclaim(struct scan_control *sc)
 174{
 175        return !sc->target_mem_cgroup;
 176}
 177
 178/**
 179 * sane_reclaim - is the usual dirty throttling mechanism operational?
 180 * @sc: scan_control in question
 181 *
 182 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 183 * completely broken with the legacy memcg and direct stalling in
 184 * shrink_page_list() is used for throttling instead, which lacks all the
 185 * niceties such as fairness, adaptive pausing, bandwidth proportional
 186 * allocation and configurability.
 187 *
 188 * This function tests whether the vmscan currently in progress can assume
 189 * that the normal dirty throttling mechanism is operational.
 190 */
 191static bool sane_reclaim(struct scan_control *sc)
 192{
 193        struct mem_cgroup *memcg = sc->target_mem_cgroup;
 194
 195        if (!memcg)
 196                return true;
 197#ifdef CONFIG_CGROUP_WRITEBACK
 198        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 199                return true;
 200#endif
 201        return false;
 202}
 203
 204static void set_memcg_congestion(pg_data_t *pgdat,
 205                                struct mem_cgroup *memcg,
 206                                bool congested)
 207{
 208        struct mem_cgroup_per_node *mn;
 209
 210        if (!memcg)
 211                return;
 212
 213        mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 214        WRITE_ONCE(mn->congested, congested);
 215}
 216
 217static bool memcg_congested(pg_data_t *pgdat,
 218                        struct mem_cgroup *memcg)
 219{
 220        struct mem_cgroup_per_node *mn;
 221
 222        mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 223        return READ_ONCE(mn->congested);
 224
 225}
 226#else
 227static bool global_reclaim(struct scan_control *sc)
 228{
 229        return true;
 230}
 231
 232static bool sane_reclaim(struct scan_control *sc)
 233{
 234        return true;
 235}
 236
 237static inline void set_memcg_congestion(struct pglist_data *pgdat,
 238                                struct mem_cgroup *memcg, bool congested)
 239{
 240}
 241
 242static inline bool memcg_congested(struct pglist_data *pgdat,
 243                        struct mem_cgroup *memcg)
 244{
 245        return false;
 246
 247}
 248#endif
 249
 250/*
 251 * This misses isolated pages which are not accounted for to save counters.
 252 * As the data only determines if reclaim or compaction continues, it is
 253 * not expected that isolated pages will be a dominating factor.
 254 */
 255unsigned long zone_reclaimable_pages(struct zone *zone)
 256{
 257        unsigned long nr;
 258
 259        nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 260                zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 261        if (get_nr_swap_pages() > 0)
 262                nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 263                        zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 264
 265        return nr;
 266}
 267
 268/**
 269 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 270 * @lruvec: lru vector
 271 * @lru: lru to use
 272 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 273 */
 274unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
 275{
 276        unsigned long lru_size;
 277        int zid;
 278
 279        if (!mem_cgroup_disabled())
 280                lru_size = mem_cgroup_get_lru_size(lruvec, lru);
 281        else
 282                lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
 283
 284        for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
 285                struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 286                unsigned long size;
 287
 288                if (!managed_zone(zone))
 289                        continue;
 290
 291                if (!mem_cgroup_disabled())
 292                        size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 293                else
 294                        size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
 295                                       NR_ZONE_LRU_BASE + lru);
 296                lru_size -= min(size, lru_size);
 297        }
 298
 299        return lru_size;
 300
 301}
 302
 303/*
 304 * Add a shrinker callback to be called from the vm.
 305 */
 306int prealloc_shrinker(struct shrinker *shrinker)
 307{
 308        size_t size = sizeof(*shrinker->nr_deferred);
 309
 310        if (shrinker->flags & SHRINKER_NUMA_AWARE)
 311                size *= nr_node_ids;
 312
 313        shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 314        if (!shrinker->nr_deferred)
 315                return -ENOMEM;
 316        return 0;
 317}
 318
 319void free_prealloced_shrinker(struct shrinker *shrinker)
 320{
 321        kfree(shrinker->nr_deferred);
 322        shrinker->nr_deferred = NULL;
 323}
 324
 325void register_shrinker_prepared(struct shrinker *shrinker)
 326{
 327        down_write(&shrinker_rwsem);
 328        list_add_tail(&shrinker->list, &shrinker_list);
 329        up_write(&shrinker_rwsem);
 330}
 331
 332int register_shrinker(struct shrinker *shrinker)
 333{
 334        int err = prealloc_shrinker(shrinker);
 335
 336        if (err)
 337                return err;
 338        register_shrinker_prepared(shrinker);
 339        return 0;
 340}
 341EXPORT_SYMBOL(register_shrinker);
 342
 343/*
 344 * Remove one
 345 */
 346void unregister_shrinker(struct shrinker *shrinker)
 347{
 348        if (!shrinker->nr_deferred)
 349                return;
 350        down_write(&shrinker_rwsem);
 351        list_del(&shrinker->list);
 352        up_write(&shrinker_rwsem);
 353        kfree(shrinker->nr_deferred);
 354        shrinker->nr_deferred = NULL;
 355}
 356EXPORT_SYMBOL(unregister_shrinker);
 357
 358#define SHRINK_BATCH 128
 359
 360static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 361                                    struct shrinker *shrinker, int priority)
 362{
 363        unsigned long freed = 0;
 364        unsigned long long delta;
 365        long total_scan;
 366        long freeable;
 367        long nr;
 368        long new_nr;
 369        int nid = shrinkctl->nid;
 370        long batch_size = shrinker->batch ? shrinker->batch
 371                                          : SHRINK_BATCH;
 372        long scanned = 0, next_deferred;
 373
 374        freeable = shrinker->count_objects(shrinker, shrinkctl);
 375        if (freeable == 0)
 376                return 0;
 377
 378        /*
 379         * copy the current shrinker scan count into a local variable
 380         * and zero it so that other concurrent shrinker invocations
 381         * don't also do this scanning work.
 382         */
 383        nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 384
 385        total_scan = nr;
 386        delta = freeable >> priority;
 387        delta *= 4;
 388        do_div(delta, shrinker->seeks);
 389        total_scan += delta;
 390        if (total_scan < 0) {
 391                pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
 392                       shrinker->scan_objects, total_scan);
 393                total_scan = freeable;
 394                next_deferred = nr;
 395        } else
 396                next_deferred = total_scan;
 397
 398        /*
 399         * We need to avoid excessive windup on filesystem shrinkers
 400         * due to large numbers of GFP_NOFS allocations causing the
 401         * shrinkers to return -1 all the time. This results in a large
 402         * nr being built up so when a shrink that can do some work
 403         * comes along it empties the entire cache due to nr >>>
 404         * freeable. This is bad for sustaining a working set in
 405         * memory.
 406         *
 407         * Hence only allow the shrinker to scan the entire cache when
 408         * a large delta change is calculated directly.
 409         */
 410        if (delta < freeable / 4)
 411                total_scan = min(total_scan, freeable / 2);
 412
 413        /*
 414         * Avoid risking looping forever due to too large nr value:
 415         * never try to free more than twice the estimate number of
 416         * freeable entries.
 417         */
 418        if (total_scan > freeable * 2)
 419                total_scan = freeable * 2;
 420
 421        trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 422                                   freeable, delta, total_scan, priority);
 423
 424        /*
 425         * Normally, we should not scan less than batch_size objects in one
 426         * pass to avoid too frequent shrinker calls, but if the slab has less
 427         * than batch_size objects in total and we are really tight on memory,
 428         * we will try to reclaim all available objects, otherwise we can end
 429         * up failing allocations although there are plenty of reclaimable
 430         * objects spread over several slabs with usage less than the
 431         * batch_size.
 432         *
 433         * We detect the "tight on memory" situations by looking at the total
 434         * number of objects we want to scan (total_scan). If it is greater
 435         * than the total number of objects on slab (freeable), we must be
 436         * scanning at high prio and therefore should try to reclaim as much as
 437         * possible.
 438         */
 439        while (total_scan >= batch_size ||
 440               total_scan >= freeable) {
 441                unsigned long ret;
 442                unsigned long nr_to_scan = min(batch_size, total_scan);
 443
 444                shrinkctl->nr_to_scan = nr_to_scan;
 445                shrinkctl->nr_scanned = nr_to_scan;
 446                ret = shrinker->scan_objects(shrinker, shrinkctl);
 447                if (ret == SHRINK_STOP)
 448                        break;
 449                freed += ret;
 450
 451                count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
 452                total_scan -= shrinkctl->nr_scanned;
 453                scanned += shrinkctl->nr_scanned;
 454
 455                cond_resched();
 456        }
 457
 458        if (next_deferred >= scanned)
 459                next_deferred -= scanned;
 460        else
 461                next_deferred = 0;
 462        /*
 463         * move the unused scan count back into the shrinker in a
 464         * manner that handles concurrent updates. If we exhausted the
 465         * scan, there is no need to do an update.
 466         */
 467        if (next_deferred > 0)
 468                new_nr = atomic_long_add_return(next_deferred,
 469                                                &shrinker->nr_deferred[nid]);
 470        else
 471                new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 472
 473        trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
 474        return freed;
 475}
 476
 477/**
 478 * shrink_slab - shrink slab caches
 479 * @gfp_mask: allocation context
 480 * @nid: node whose slab caches to target
 481 * @memcg: memory cgroup whose slab caches to target
 482 * @priority: the reclaim priority
 483 *
 484 * Call the shrink functions to age shrinkable caches.
 485 *
 486 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 487 * unaware shrinkers will receive a node id of 0 instead.
 488 *
 489 * @memcg specifies the memory cgroup to target. If it is not NULL,
 490 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
 491 * objects from the memory cgroup specified. Otherwise, only unaware
 492 * shrinkers are called.
 493 *
 494 * @priority is sc->priority, we take the number of objects and >> by priority
 495 * in order to get the scan target.
 496 *
 497 * Returns the number of reclaimed slab objects.
 498 */
 499static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 500                                 struct mem_cgroup *memcg,
 501                                 int priority)
 502{
 503        struct shrinker *shrinker;
 504        unsigned long freed = 0;
 505
 506        if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
 507                return 0;
 508
 509        if (!down_read_trylock(&shrinker_rwsem))
 510                goto out;
 511
 512        list_for_each_entry(shrinker, &shrinker_list, list) {
 513                struct shrink_control sc = {
 514                        .gfp_mask = gfp_mask,
 515                        .nid = nid,
 516                        .memcg = memcg,
 517                };
 518
 519                /*
 520                 * If kernel memory accounting is disabled, we ignore
 521                 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
 522                 * passing NULL for memcg.
 523                 */
 524                if (memcg_kmem_enabled() &&
 525                    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
 526                        continue;
 527
 528                if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 529                        sc.nid = 0;
 530
 531                freed += do_shrink_slab(&sc, shrinker, priority);
 532                /*
 533                 * Bail out if someone want to register a new shrinker to
 534                 * prevent the regsitration from being stalled for long periods
 535                 * by parallel ongoing shrinking.
 536                 */
 537                if (rwsem_is_contended(&shrinker_rwsem)) {
 538                        freed = freed ? : 1;
 539                        break;
 540                }
 541        }
 542
 543        up_read(&shrinker_rwsem);
 544out:
 545        cond_resched();
 546        return freed;
 547}
 548
 549void drop_slab_node(int nid)
 550{
 551        unsigned long freed;
 552
 553        do {
 554                struct mem_cgroup *memcg = NULL;
 555
 556                freed = 0;
 557                do {
 558                        freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 559                } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 560        } while (freed > 10);
 561}
 562
 563void drop_slab(void)
 564{
 565        int nid;
 566
 567        for_each_online_node(nid)
 568                drop_slab_node(nid);
 569}
 570
 571static inline int is_page_cache_freeable(struct page *page)
 572{
 573        /*
 574         * A freeable page cache page is referenced only by the caller
 575         * that isolated the page, the page cache radix tree and
 576         * optional buffer heads at page->private.
 577         */
 578        int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
 579                HPAGE_PMD_NR : 1;
 580        return page_count(page) - page_has_private(page) == 1 + radix_pins;
 581}
 582
 583static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
 584{
 585        if (current->flags & PF_SWAPWRITE)
 586                return 1;
 587        if (!inode_write_congested(inode))
 588                return 1;
 589        if (inode_to_bdi(inode) == current->backing_dev_info)
 590                return 1;
 591        return 0;
 592}
 593
 594/*
 595 * We detected a synchronous write error writing a page out.  Probably
 596 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 597 * fsync(), msync() or close().
 598 *
 599 * The tricky part is that after writepage we cannot touch the mapping: nothing
 600 * prevents it from being freed up.  But we have a ref on the page and once
 601 * that page is locked, the mapping is pinned.
 602 *
 603 * We're allowed to run sleeping lock_page() here because we know the caller has
 604 * __GFP_FS.
 605 */
 606static void handle_write_error(struct address_space *mapping,
 607                                struct page *page, int error)
 608{
 609        lock_page(page);
 610        if (page_mapping(page) == mapping)
 611                mapping_set_error(mapping, error);
 612        unlock_page(page);
 613}
 614
 615/* possible outcome of pageout() */
 616typedef enum {
 617        /* failed to write page out, page is locked */
 618        PAGE_KEEP,
 619        /* move page to the active list, page is locked */
 620        PAGE_ACTIVATE,
 621        /* page has been sent to the disk successfully, page is unlocked */
 622        PAGE_SUCCESS,
 623        /* page is clean and locked */
 624        PAGE_CLEAN,
 625} pageout_t;
 626
 627/*
 628 * pageout is called by shrink_page_list() for each dirty page.
 629 * Calls ->writepage().
 630 */
 631static pageout_t pageout(struct page *page, struct address_space *mapping,
 632                         struct scan_control *sc)
 633{
 634        /*
 635         * If the page is dirty, only perform writeback if that write
 636         * will be non-blocking.  To prevent this allocation from being
 637         * stalled by pagecache activity.  But note that there may be
 638         * stalls if we need to run get_block().  We could test
 639         * PagePrivate for that.
 640         *
 641         * If this process is currently in __generic_file_write_iter() against
 642         * this page's queue, we can perform writeback even if that
 643         * will block.
 644         *
 645         * If the page is swapcache, write it back even if that would
 646         * block, for some throttling. This happens by accident, because
 647         * swap_backing_dev_info is bust: it doesn't reflect the
 648         * congestion state of the swapdevs.  Easy to fix, if needed.
 649         */
 650        if (!is_page_cache_freeable(page))
 651                return PAGE_KEEP;
 652        if (!mapping) {
 653                /*
 654                 * Some data journaling orphaned pages can have
 655                 * page->mapping == NULL while being dirty with clean buffers.
 656                 */
 657                if (page_has_private(page)) {
 658                        if (try_to_free_buffers(page)) {
 659                                ClearPageDirty(page);
 660                                pr_info("%s: orphaned page\n", __func__);
 661                                return PAGE_CLEAN;
 662                        }
 663                }
 664                return PAGE_KEEP;
 665        }
 666        if (mapping->a_ops->writepage == NULL)
 667                return PAGE_ACTIVATE;
 668        if (!may_write_to_inode(mapping->host, sc))
 669                return PAGE_KEEP;
 670
 671        if (clear_page_dirty_for_io(page)) {
 672                int res;
 673                struct writeback_control wbc = {
 674                        .sync_mode = WB_SYNC_NONE,
 675                        .nr_to_write = SWAP_CLUSTER_MAX,
 676                        .range_start = 0,
 677                        .range_end = LLONG_MAX,
 678                        .for_reclaim = 1,
 679                };
 680
 681                SetPageReclaim(page);
 682                res = mapping->a_ops->writepage(page, &wbc);
 683                if (res < 0)
 684                        handle_write_error(mapping, page, res);
 685                if (res == AOP_WRITEPAGE_ACTIVATE) {
 686                        ClearPageReclaim(page);
 687                        return PAGE_ACTIVATE;
 688                }
 689
 690                if (!PageWriteback(page)) {
 691                        /* synchronous write or broken a_ops? */
 692                        ClearPageReclaim(page);
 693                }
 694                trace_mm_vmscan_writepage(page);
 695                inc_node_page_state(page, NR_VMSCAN_WRITE);
 696                return PAGE_SUCCESS;
 697        }
 698
 699        return PAGE_CLEAN;
 700}
 701
 702/*
 703 * Same as remove_mapping, but if the page is removed from the mapping, it
 704 * gets returned with a refcount of 0.
 705 */
 706static int __remove_mapping(struct address_space *mapping, struct page *page,
 707                            bool reclaimed)
 708{
 709        unsigned long flags;
 710        int refcount;
 711
 712        BUG_ON(!PageLocked(page));
 713        BUG_ON(mapping != page_mapping(page));
 714
 715        xa_lock_irqsave(&mapping->i_pages, flags);
 716        /*
 717         * The non racy check for a busy page.
 718         *
 719         * Must be careful with the order of the tests. When someone has
 720         * a ref to the page, it may be possible that they dirty it then
 721         * drop the reference. So if PageDirty is tested before page_count
 722         * here, then the following race may occur:
 723         *
 724         * get_user_pages(&page);
 725         * [user mapping goes away]
 726         * write_to(page);
 727         *                              !PageDirty(page)    [good]
 728         * SetPageDirty(page);
 729         * put_page(page);
 730         *                              !page_count(page)   [good, discard it]
 731         *
 732         * [oops, our write_to data is lost]
 733         *
 734         * Reversing the order of the tests ensures such a situation cannot
 735         * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 736         * load is not satisfied before that of page->_refcount.
 737         *
 738         * Note that if SetPageDirty is always performed via set_page_dirty,
 739         * and thus under the i_pages lock, then this ordering is not required.
 740         */
 741        if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
 742                refcount = 1 + HPAGE_PMD_NR;
 743        else
 744                refcount = 2;
 745        if (!page_ref_freeze(page, refcount))
 746                goto cannot_free;
 747        /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 748        if (unlikely(PageDirty(page))) {
 749                page_ref_unfreeze(page, refcount);
 750                goto cannot_free;
 751        }
 752
 753        if (PageSwapCache(page)) {
 754                swp_entry_t swap = { .val = page_private(page) };
 755                mem_cgroup_swapout(page, swap);
 756                __delete_from_swap_cache(page);
 757                xa_unlock_irqrestore(&mapping->i_pages, flags);
 758                put_swap_page(page, swap);
 759        } else {
 760                void (*freepage)(struct page *);
 761                void *shadow = NULL;
 762
 763                freepage = mapping->a_ops->freepage;
 764                /*
 765                 * Remember a shadow entry for reclaimed file cache in
 766                 * order to detect refaults, thus thrashing, later on.
 767                 *
 768                 * But don't store shadows in an address space that is
 769                 * already exiting.  This is not just an optizimation,
 770                 * inode reclaim needs to empty out the radix tree or
 771                 * the nodes are lost.  Don't plant shadows behind its
 772                 * back.
 773                 *
 774                 * We also don't store shadows for DAX mappings because the
 775                 * only page cache pages found in these are zero pages
 776                 * covering holes, and because we don't want to mix DAX
 777                 * exceptional entries and shadow exceptional entries in the
 778                 * same address_space.
 779                 */
 780                if (reclaimed && page_is_file_cache(page) &&
 781                    !mapping_exiting(mapping) && !dax_mapping(mapping))
 782                        shadow = workingset_eviction(mapping, page);
 783                __delete_from_page_cache(page, shadow);
 784                xa_unlock_irqrestore(&mapping->i_pages, flags);
 785
 786                if (freepage != NULL)
 787                        freepage(page);
 788        }
 789
 790        return 1;
 791
 792cannot_free:
 793        xa_unlock_irqrestore(&mapping->i_pages, flags);
 794        return 0;
 795}
 796
 797/*
 798 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 799 * someone else has a ref on the page, abort and return 0.  If it was
 800 * successfully detached, return 1.  Assumes the caller has a single ref on
 801 * this page.
 802 */
 803int remove_mapping(struct address_space *mapping, struct page *page)
 804{
 805        if (__remove_mapping(mapping, page, false)) {
 806                /*
 807                 * Unfreezing the refcount with 1 rather than 2 effectively
 808                 * drops the pagecache ref for us without requiring another
 809                 * atomic operation.
 810                 */
 811                page_ref_unfreeze(page, 1);
 812                return 1;
 813        }
 814        return 0;
 815}
 816
 817/**
 818 * putback_lru_page - put previously isolated page onto appropriate LRU list
 819 * @page: page to be put back to appropriate lru list
 820 *
 821 * Add previously isolated @page to appropriate LRU list.
 822 * Page may still be unevictable for other reasons.
 823 *
 824 * lru_lock must not be held, interrupts must be enabled.
 825 */
 826void putback_lru_page(struct page *page)
 827{
 828        lru_cache_add(page);
 829        put_page(page);         /* drop ref from isolate */
 830}
 831
 832enum page_references {
 833        PAGEREF_RECLAIM,
 834        PAGEREF_RECLAIM_CLEAN,
 835        PAGEREF_KEEP,
 836        PAGEREF_ACTIVATE,
 837};
 838
 839static enum page_references page_check_references(struct page *page,
 840                                                  struct scan_control *sc)
 841{
 842        int referenced_ptes, referenced_page;
 843        unsigned long vm_flags;
 844
 845        referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
 846                                          &vm_flags);
 847        referenced_page = TestClearPageReferenced(page);
 848
 849        /*
 850         * Mlock lost the isolation race with us.  Let try_to_unmap()
 851         * move the page to the unevictable list.
 852         */
 853        if (vm_flags & VM_LOCKED)
 854                return PAGEREF_RECLAIM;
 855
 856        if (referenced_ptes) {
 857                if (PageSwapBacked(page))
 858                        return PAGEREF_ACTIVATE;
 859                /*
 860                 * All mapped pages start out with page table
 861                 * references from the instantiating fault, so we need
 862                 * to look twice if a mapped file page is used more
 863                 * than once.
 864                 *
 865                 * Mark it and spare it for another trip around the
 866                 * inactive list.  Another page table reference will
 867                 * lead to its activation.
 868                 *
 869                 * Note: the mark is set for activated pages as well
 870                 * so that recently deactivated but used pages are
 871                 * quickly recovered.
 872                 */
 873                SetPageReferenced(page);
 874
 875                if (referenced_page || referenced_ptes > 1)
 876                        return PAGEREF_ACTIVATE;
 877
 878                /*
 879                 * Activate file-backed executable pages after first usage.
 880                 */
 881                if (vm_flags & VM_EXEC)
 882                        return PAGEREF_ACTIVATE;
 883
 884                return PAGEREF_KEEP;
 885        }
 886
 887        /* Reclaim if clean, defer dirty pages to writeback */
 888        if (referenced_page && !PageSwapBacked(page))
 889                return PAGEREF_RECLAIM_CLEAN;
 890
 891        return PAGEREF_RECLAIM;
 892}
 893
 894/* Check if a page is dirty or under writeback */
 895static void page_check_dirty_writeback(struct page *page,
 896                                       bool *dirty, bool *writeback)
 897{
 898        struct address_space *mapping;
 899
 900        /*
 901         * Anonymous pages are not handled by flushers and must be written
 902         * from reclaim context. Do not stall reclaim based on them
 903         */
 904        if (!page_is_file_cache(page) ||
 905            (PageAnon(page) && !PageSwapBacked(page))) {
 906                *dirty = false;
 907                *writeback = false;
 908                return;
 909        }
 910
 911        /* By default assume that the page flags are accurate */
 912        *dirty = PageDirty(page);
 913        *writeback = PageWriteback(page);
 914
 915        /* Verify dirty/writeback state if the filesystem supports it */
 916        if (!page_has_private(page))
 917                return;
 918
 919        mapping = page_mapping(page);
 920        if (mapping && mapping->a_ops->is_dirty_writeback)
 921                mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
 922}
 923
 924/*
 925 * shrink_page_list() returns the number of reclaimed pages
 926 */
 927static unsigned long shrink_page_list(struct list_head *page_list,
 928                                      struct pglist_data *pgdat,
 929                                      struct scan_control *sc,
 930                                      enum ttu_flags ttu_flags,
 931                                      struct reclaim_stat *stat,
 932                                      bool force_reclaim)
 933{
 934        LIST_HEAD(ret_pages);
 935        LIST_HEAD(free_pages);
 936        int pgactivate = 0;
 937        unsigned nr_unqueued_dirty = 0;
 938        unsigned nr_dirty = 0;
 939        unsigned nr_congested = 0;
 940        unsigned nr_reclaimed = 0;
 941        unsigned nr_writeback = 0;
 942        unsigned nr_immediate = 0;
 943        unsigned nr_ref_keep = 0;
 944        unsigned nr_unmap_fail = 0;
 945
 946        cond_resched();
 947
 948        while (!list_empty(page_list)) {
 949                struct address_space *mapping;
 950                struct page *page;
 951                int may_enter_fs;
 952                enum page_references references = PAGEREF_RECLAIM_CLEAN;
 953                bool dirty, writeback;
 954
 955                cond_resched();
 956
 957                page = lru_to_page(page_list);
 958                list_del(&page->lru);
 959
 960                if (!trylock_page(page))
 961                        goto keep;
 962
 963                VM_BUG_ON_PAGE(PageActive(page), page);
 964
 965                sc->nr_scanned++;
 966
 967                if (unlikely(!page_evictable(page)))
 968                        goto activate_locked;
 969
 970                if (!sc->may_unmap && page_mapped(page))
 971                        goto keep_locked;
 972
 973                /* Double the slab pressure for mapped and swapcache pages */
 974                if ((page_mapped(page) || PageSwapCache(page)) &&
 975                    !(PageAnon(page) && !PageSwapBacked(page)))
 976                        sc->nr_scanned++;
 977
 978                may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 979                        (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 980
 981                /*
 982                 * The number of dirty pages determines if a node is marked
 983                 * reclaim_congested which affects wait_iff_congested. kswapd
 984                 * will stall and start writing pages if the tail of the LRU
 985                 * is all dirty unqueued pages.
 986                 */
 987                page_check_dirty_writeback(page, &dirty, &writeback);
 988                if (dirty || writeback)
 989                        nr_dirty++;
 990
 991                if (dirty && !writeback)
 992                        nr_unqueued_dirty++;
 993
 994                /*
 995                 * Treat this page as congested if the underlying BDI is or if
 996                 * pages are cycling through the LRU so quickly that the
 997                 * pages marked for immediate reclaim are making it to the
 998                 * end of the LRU a second time.
 999                 */
1000                mapping = page_mapping(page);
1001                if (((dirty || writeback) && mapping &&
1002                     inode_write_congested(mapping->host)) ||
1003                    (writeback && PageReclaim(page)))
1004                        nr_congested++;
1005
1006                /*
1007                 * If a page at the tail of the LRU is under writeback, there
1008                 * are three cases to consider.
1009                 *
1010                 * 1) If reclaim is encountering an excessive number of pages
1011                 *    under writeback and this page is both under writeback and
1012                 *    PageReclaim then it indicates that pages are being queued
1013                 *    for IO but are being recycled through the LRU before the
1014                 *    IO can complete. Waiting on the page itself risks an
1015                 *    indefinite stall if it is impossible to writeback the
1016                 *    page due to IO error or disconnected storage so instead
1017                 *    note that the LRU is being scanned too quickly and the
1018                 *    caller can stall after page list has been processed.
1019                 *
1020                 * 2) Global or new memcg reclaim encounters a page that is
1021                 *    not marked for immediate reclaim, or the caller does not
1022                 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1023                 *    not to fs). In this case mark the page for immediate
1024                 *    reclaim and continue scanning.
1025                 *
1026                 *    Require may_enter_fs because we would wait on fs, which
1027                 *    may not have submitted IO yet. And the loop driver might
1028                 *    enter reclaim, and deadlock if it waits on a page for
1029                 *    which it is needed to do the write (loop masks off
1030                 *    __GFP_IO|__GFP_FS for this reason); but more thought
1031                 *    would probably show more reasons.
1032                 *
1033                 * 3) Legacy memcg encounters a page that is already marked
1034                 *    PageReclaim. memcg does not have any dirty pages
1035                 *    throttling so we could easily OOM just because too many
1036                 *    pages are in writeback and there is nothing else to
1037                 *    reclaim. Wait for the writeback to complete.
1038                 *
1039                 * In cases 1) and 2) we activate the pages to get them out of
1040                 * the way while we continue scanning for clean pages on the
1041                 * inactive list and refilling from the active list. The
1042                 * observation here is that waiting for disk writes is more
1043                 * expensive than potentially causing reloads down the line.
1044                 * Since they're marked for immediate reclaim, they won't put
1045                 * memory pressure on the cache working set any longer than it
1046                 * takes to write them to disk.
1047                 */
1048                if (PageWriteback(page)) {
1049                        /* Case 1 above */
1050                        if (current_is_kswapd() &&
1051                            PageReclaim(page) &&
1052                            test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1053                                nr_immediate++;
1054                                goto activate_locked;
1055
1056                        /* Case 2 above */
1057                        } else if (sane_reclaim(sc) ||
1058                            !PageReclaim(page) || !may_enter_fs) {
1059                                /*
1060                                 * This is slightly racy - end_page_writeback()
1061                                 * might have just cleared PageReclaim, then
1062                                 * setting PageReclaim here end up interpreted
1063                                 * as PageReadahead - but that does not matter
1064                                 * enough to care.  What we do want is for this
1065                                 * page to have PageReclaim set next time memcg
1066                                 * reclaim reaches the tests above, so it will
1067                                 * then wait_on_page_writeback() to avoid OOM;
1068                                 * and it's also appropriate in global reclaim.
1069                                 */
1070                                SetPageReclaim(page);
1071                                nr_writeback++;
1072                                goto activate_locked;
1073
1074                        /* Case 3 above */
1075                        } else {
1076                                unlock_page(page);
1077                                wait_on_page_writeback(page);
1078                                /* then go back and try same page again */
1079                                list_add_tail(&page->lru, page_list);
1080                                continue;
1081                        }
1082                }
1083
1084                if (!force_reclaim)
1085                        references = page_check_references(page, sc);
1086
1087                switch (references) {
1088                case PAGEREF_ACTIVATE:
1089                        goto activate_locked;
1090                case PAGEREF_KEEP:
1091                        nr_ref_keep++;
1092                        goto keep_locked;
1093                case PAGEREF_RECLAIM:
1094                case PAGEREF_RECLAIM_CLEAN:
1095                        ; /* try to reclaim the page below */
1096                }
1097
1098                /*
1099                 * Anonymous process memory has backing store?
1100                 * Try to allocate it some swap space here.
1101                 * Lazyfree page could be freed directly
1102                 */
1103                if (PageAnon(page) && PageSwapBacked(page)) {
1104                        if (!PageSwapCache(page)) {
1105                                if (!(sc->gfp_mask & __GFP_IO))
1106                                        goto keep_locked;
1107                                if (PageTransHuge(page)) {
1108                                        /* cannot split THP, skip it */
1109                                        if (!can_split_huge_page(page, NULL))
1110                                                goto activate_locked;
1111                                        /*
1112                                         * Split pages without a PMD map right
1113                                         * away. Chances are some or all of the
1114                                         * tail pages can be freed without IO.
1115                                         */
1116                                        if (!compound_mapcount(page) &&
1117                                            split_huge_page_to_list(page,
1118                                                                    page_list))
1119                                                goto activate_locked;
1120                                }
1121                                if (!add_to_swap(page)) {
1122                                        if (!PageTransHuge(page))
1123                                                goto activate_locked;
1124                                        /* Fallback to swap normal pages */
1125                                        if (split_huge_page_to_list(page,
1126                                                                    page_list))
1127                                                goto activate_locked;
1128#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1129                                        count_vm_event(THP_SWPOUT_FALLBACK);
1130#endif
1131                                        if (!add_to_swap(page))
1132                                                goto activate_locked;
1133                                }
1134
1135                                may_enter_fs = 1;
1136
1137                                /* Adding to swap updated mapping */
1138                                mapping = page_mapping(page);
1139                        }
1140                } else if (unlikely(PageTransHuge(page))) {
1141                        /* Split file THP */
1142                        if (split_huge_page_to_list(page, page_list))
1143                                goto keep_locked;
1144                }
1145
1146                /*
1147                 * The page is mapped into the page tables of one or more
1148                 * processes. Try to unmap it here.
1149                 */
1150                if (page_mapped(page)) {
1151                        enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1152
1153                        if (unlikely(PageTransHuge(page)))
1154                                flags |= TTU_SPLIT_HUGE_PMD;
1155                        if (!try_to_unmap(page, flags)) {
1156                                nr_unmap_fail++;
1157                                goto activate_locked;
1158                        }
1159                }
1160
1161                if (PageDirty(page)) {
1162                        /*
1163                         * Only kswapd can writeback filesystem pages
1164                         * to avoid risk of stack overflow. But avoid
1165                         * injecting inefficient single-page IO into
1166                         * flusher writeback as much as possible: only
1167                         * write pages when we've encountered many
1168                         * dirty pages, and when we've already scanned
1169                         * the rest of the LRU for clean pages and see
1170                         * the same dirty pages again (PageReclaim).
1171                         */
1172                        if (page_is_file_cache(page) &&
1173                            (!current_is_kswapd() || !PageReclaim(page) ||
1174                             !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1175                                /*
1176                                 * Immediately reclaim when written back.
1177                                 * Similar in principal to deactivate_page()
1178                                 * except we already have the page isolated
1179                                 * and know it's dirty
1180                                 */
1181                                inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1182                                SetPageReclaim(page);
1183
1184                                goto activate_locked;
1185                        }
1186
1187                        if (references == PAGEREF_RECLAIM_CLEAN)
1188                                goto keep_locked;
1189                        if (!may_enter_fs)
1190                                goto keep_locked;
1191                        if (!sc->may_writepage)
1192                                goto keep_locked;
1193
1194                        /*
1195                         * Page is dirty. Flush the TLB if a writable entry
1196                         * potentially exists to avoid CPU writes after IO
1197                         * starts and then write it out here.
1198                         */
1199                        try_to_unmap_flush_dirty();
1200                        switch (pageout(page, mapping, sc)) {
1201                        case PAGE_KEEP:
1202                                goto keep_locked;
1203                        case PAGE_ACTIVATE:
1204                                goto activate_locked;
1205                        case PAGE_SUCCESS:
1206                                if (PageWriteback(page))
1207                                        goto keep;
1208                                if (PageDirty(page))
1209                                        goto keep;
1210
1211                                /*
1212                                 * A synchronous write - probably a ramdisk.  Go
1213                                 * ahead and try to reclaim the page.
1214                                 */
1215                                if (!trylock_page(page))
1216                                        goto keep;
1217                                if (PageDirty(page) || PageWriteback(page))
1218                                        goto keep_locked;
1219                                mapping = page_mapping(page);
1220                        case PAGE_CLEAN:
1221                                ; /* try to free the page below */
1222                        }
1223                }
1224
1225                /*
1226                 * If the page has buffers, try to free the buffer mappings
1227                 * associated with this page. If we succeed we try to free
1228                 * the page as well.
1229                 *
1230                 * We do this even if the page is PageDirty().
1231                 * try_to_release_page() does not perform I/O, but it is
1232                 * possible for a page to have PageDirty set, but it is actually
1233                 * clean (all its buffers are clean).  This happens if the
1234                 * buffers were written out directly, with submit_bh(). ext3
1235                 * will do this, as well as the blockdev mapping.
1236                 * try_to_release_page() will discover that cleanness and will
1237                 * drop the buffers and mark the page clean - it can be freed.
1238                 *
1239                 * Rarely, pages can have buffers and no ->mapping.  These are
1240                 * the pages which were not successfully invalidated in
1241                 * truncate_complete_page().  We try to drop those buffers here
1242                 * and if that worked, and the page is no longer mapped into
1243                 * process address space (page_count == 1) it can be freed.
1244                 * Otherwise, leave the page on the LRU so it is swappable.
1245                 */
1246                if (page_has_private(page)) {
1247                        if (!try_to_release_page(page, sc->gfp_mask))
1248                                goto activate_locked;
1249                        if (!mapping && page_count(page) == 1) {
1250                                unlock_page(page);
1251                                if (put_page_testzero(page))
1252                                        goto free_it;
1253                                else {
1254                                        /*
1255                                         * rare race with speculative reference.
1256                                         * the speculative reference will free
1257                                         * this page shortly, so we may
1258                                         * increment nr_reclaimed here (and
1259                                         * leave it off the LRU).
1260                                         */
1261                                        nr_reclaimed++;
1262                                        continue;
1263                                }
1264                        }
1265                }
1266
1267                if (PageAnon(page) && !PageSwapBacked(page)) {
1268                        /* follow __remove_mapping for reference */
1269                        if (!page_ref_freeze(page, 1))
1270                                goto keep_locked;
1271                        if (PageDirty(page)) {
1272                                page_ref_unfreeze(page, 1);
1273                                goto keep_locked;
1274                        }
1275
1276                        count_vm_event(PGLAZYFREED);
1277                        count_memcg_page_event(page, PGLAZYFREED);
1278                } else if (!mapping || !__remove_mapping(mapping, page, true))
1279                        goto keep_locked;
1280                /*
1281                 * At this point, we have no other references and there is
1282                 * no way to pick any more up (removed from LRU, removed
1283                 * from pagecache). Can use non-atomic bitops now (and
1284                 * we obviously don't have to worry about waking up a process
1285                 * waiting on the page lock, because there are no references.
1286                 */
1287                __ClearPageLocked(page);
1288free_it:
1289                nr_reclaimed++;
1290
1291                /*
1292                 * Is there need to periodically free_page_list? It would
1293                 * appear not as the counts should be low
1294                 */
1295                if (unlikely(PageTransHuge(page))) {
1296                        mem_cgroup_uncharge(page);
1297                        (*get_compound_page_dtor(page))(page);
1298                } else
1299                        list_add(&page->lru, &free_pages);
1300                continue;
1301
1302activate_locked:
1303                /* Not a candidate for swapping, so reclaim swap space. */
1304                if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1305                                                PageMlocked(page)))
1306                        try_to_free_swap(page);
1307                VM_BUG_ON_PAGE(PageActive(page), page);
1308                if (!PageMlocked(page)) {
1309                        SetPageActive(page);
1310                        pgactivate++;
1311                        count_memcg_page_event(page, PGACTIVATE);
1312                }
1313keep_locked:
1314                unlock_page(page);
1315keep:
1316                list_add(&page->lru, &ret_pages);
1317                VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1318        }
1319
1320        mem_cgroup_uncharge_list(&free_pages);
1321        try_to_unmap_flush();
1322        free_unref_page_list(&free_pages);
1323
1324        list_splice(&ret_pages, page_list);
1325        count_vm_events(PGACTIVATE, pgactivate);
1326
1327        if (stat) {
1328                stat->nr_dirty = nr_dirty;
1329                stat->nr_congested = nr_congested;
1330                stat->nr_unqueued_dirty = nr_unqueued_dirty;
1331                stat->nr_writeback = nr_writeback;
1332                stat->nr_immediate = nr_immediate;
1333                stat->nr_activate = pgactivate;
1334                stat->nr_ref_keep = nr_ref_keep;
1335                stat->nr_unmap_fail = nr_unmap_fail;
1336        }
1337        return nr_reclaimed;
1338}
1339
1340unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1341                                            struct list_head *page_list)
1342{
1343        struct scan_control sc = {
1344                .gfp_mask = GFP_KERNEL,
1345                .priority = DEF_PRIORITY,
1346                .may_unmap = 1,
1347        };
1348        unsigned long ret;
1349        struct page *page, *next;
1350        LIST_HEAD(clean_pages);
1351
1352        list_for_each_entry_safe(page, next, page_list, lru) {
1353                if (page_is_file_cache(page) && !PageDirty(page) &&
1354                    !__PageMovable(page)) {
1355                        ClearPageActive(page);
1356                        list_move(&page->lru, &clean_pages);
1357                }
1358        }
1359
1360        ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1361                        TTU_IGNORE_ACCESS, NULL, true);
1362        list_splice(&clean_pages, page_list);
1363        mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1364        return ret;
1365}
1366
1367/*
1368 * Attempt to remove the specified page from its LRU.  Only take this page
1369 * if it is of the appropriate PageActive status.  Pages which are being
1370 * freed elsewhere are also ignored.
1371 *
1372 * page:        page to consider
1373 * mode:        one of the LRU isolation modes defined above
1374 *
1375 * returns 0 on success, -ve errno on failure.
1376 */
1377int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1378{
1379        int ret = -EINVAL;
1380
1381        /* Only take pages on the LRU. */
1382        if (!PageLRU(page))
1383                return ret;
1384
1385        /* Compaction should not handle unevictable pages but CMA can do so */
1386        if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1387                return ret;
1388
1389        ret = -EBUSY;
1390
1391        /*
1392         * To minimise LRU disruption, the caller can indicate that it only
1393         * wants to isolate pages it will be able to operate on without
1394         * blocking - clean pages for the most part.
1395         *
1396         * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1397         * that it is possible to migrate without blocking
1398         */
1399        if (mode & ISOLATE_ASYNC_MIGRATE) {
1400                /* All the caller can do on PageWriteback is block */
1401                if (PageWriteback(page))
1402                        return ret;
1403
1404                if (PageDirty(page)) {
1405                        struct address_space *mapping;
1406                        bool migrate_dirty;
1407
1408                        /*
1409                         * Only pages without mappings or that have a
1410                         * ->migratepage callback are possible to migrate
1411                         * without blocking. However, we can be racing with
1412                         * truncation so it's necessary to lock the page
1413                         * to stabilise the mapping as truncation holds
1414                         * the page lock until after the page is removed
1415                         * from the page cache.
1416                         */
1417                        if (!trylock_page(page))
1418                                return ret;
1419
1420                        mapping = page_mapping(page);
1421                        migrate_dirty = !mapping || mapping->a_ops->migratepage;
1422                        unlock_page(page);
1423                        if (!migrate_dirty)
1424                                return ret;
1425                }
1426        }
1427
1428        if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1429                return ret;
1430
1431        if (likely(get_page_unless_zero(page))) {
1432                /*
1433                 * Be careful not to clear PageLRU until after we're
1434                 * sure the page is not being freed elsewhere -- the
1435                 * page release code relies on it.
1436                 */
1437                ClearPageLRU(page);
1438                ret = 0;
1439        }
1440
1441        return ret;
1442}
1443
1444
1445/*
1446 * Update LRU sizes after isolating pages. The LRU size updates must
1447 * be complete before mem_cgroup_update_lru_size due to a santity check.
1448 */
1449static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1450                        enum lru_list lru, unsigned long *nr_zone_taken)
1451{
1452        int zid;
1453
1454        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1455                if (!nr_zone_taken[zid])
1456                        continue;
1457
1458                __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1459#ifdef CONFIG_MEMCG
1460                mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1461#endif
1462        }
1463
1464}
1465
1466/*
1467 * zone_lru_lock is heavily contended.  Some of the functions that
1468 * shrink the lists perform better by taking out a batch of pages
1469 * and working on them outside the LRU lock.
1470 *
1471 * For pagecache intensive workloads, this function is the hottest
1472 * spot in the kernel (apart from copy_*_user functions).
1473 *
1474 * Appropriate locks must be held before calling this function.
1475 *
1476 * @nr_to_scan: The number of eligible pages to look through on the list.
1477 * @lruvec:     The LRU vector to pull pages from.
1478 * @dst:        The temp list to put pages on to.
1479 * @nr_scanned: The number of pages that were scanned.
1480 * @sc:         The scan_control struct for this reclaim session
1481 * @mode:       One of the LRU isolation modes
1482 * @lru:        LRU list id for isolating
1483 *
1484 * returns how many pages were moved onto *@dst.
1485 */
1486static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1487                struct lruvec *lruvec, struct list_head *dst,
1488                unsigned long *nr_scanned, struct scan_control *sc,
1489                isolate_mode_t mode, enum lru_list lru)
1490{
1491        struct list_head *src = &lruvec->lists[lru];
1492        unsigned long nr_taken = 0;
1493        unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1494        unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1495        unsigned long skipped = 0;
1496        unsigned long scan, total_scan, nr_pages;
1497        LIST_HEAD(pages_skipped);
1498
1499        scan = 0;
1500        for (total_scan = 0;
1501             scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1502             total_scan++) {
1503                struct page *page;
1504
1505                page = lru_to_page(src);
1506                prefetchw_prev_lru_page(page, src, flags);
1507
1508                VM_BUG_ON_PAGE(!PageLRU(page), page);
1509
1510                if (page_zonenum(page) > sc->reclaim_idx) {
1511                        list_move(&page->lru, &pages_skipped);
1512                        nr_skipped[page_zonenum(page)]++;
1513                        continue;
1514                }
1515
1516                /*
1517                 * Do not count skipped pages because that makes the function
1518                 * return with no isolated pages if the LRU mostly contains
1519                 * ineligible pages.  This causes the VM to not reclaim any
1520                 * pages, triggering a premature OOM.
1521                 */
1522                scan++;
1523                switch (__isolate_lru_page(page, mode)) {
1524                case 0:
1525                        nr_pages = hpage_nr_pages(page);
1526                        nr_taken += nr_pages;
1527                        nr_zone_taken[page_zonenum(page)] += nr_pages;
1528                        list_move(&page->lru, dst);
1529                        break;
1530
1531                case -EBUSY:
1532                        /* else it is being freed elsewhere */
1533                        list_move(&page->lru, src);
1534                        continue;
1535
1536                default:
1537                        BUG();
1538                }
1539        }
1540
1541        /*
1542         * Splice any skipped pages to the start of the LRU list. Note that
1543         * this disrupts the LRU order when reclaiming for lower zones but
1544         * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1545         * scanning would soon rescan the same pages to skip and put the
1546         * system at risk of premature OOM.
1547         */
1548        if (!list_empty(&pages_skipped)) {
1549                int zid;
1550
1551                list_splice(&pages_skipped, src);
1552                for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1553                        if (!nr_skipped[zid])
1554                                continue;
1555
1556                        __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1557                        skipped += nr_skipped[zid];
1558                }
1559        }
1560        *nr_scanned = total_scan;
1561        trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1562                                    total_scan, skipped, nr_taken, mode, lru);
1563        update_lru_sizes(lruvec, lru, nr_zone_taken);
1564        return nr_taken;
1565}
1566
1567/**
1568 * isolate_lru_page - tries to isolate a page from its LRU list
1569 * @page: page to isolate from its LRU list
1570 *
1571 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1572 * vmstat statistic corresponding to whatever LRU list the page was on.
1573 *
1574 * Returns 0 if the page was removed from an LRU list.
1575 * Returns -EBUSY if the page was not on an LRU list.
1576 *
1577 * The returned page will have PageLRU() cleared.  If it was found on
1578 * the active list, it will have PageActive set.  If it was found on
1579 * the unevictable list, it will have the PageUnevictable bit set. That flag
1580 * may need to be cleared by the caller before letting the page go.
1581 *
1582 * The vmstat statistic corresponding to the list on which the page was
1583 * found will be decremented.
1584 *
1585 * Restrictions:
1586 *
1587 * (1) Must be called with an elevated refcount on the page. This is a
1588 *     fundamentnal difference from isolate_lru_pages (which is called
1589 *     without a stable reference).
1590 * (2) the lru_lock must not be held.
1591 * (3) interrupts must be enabled.
1592 */
1593int isolate_lru_page(struct page *page)
1594{
1595        int ret = -EBUSY;
1596
1597        VM_BUG_ON_PAGE(!page_count(page), page);
1598        WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1599
1600        if (PageLRU(page)) {
1601                struct zone *zone = page_zone(page);
1602                struct lruvec *lruvec;
1603
1604                spin_lock_irq(zone_lru_lock(zone));
1605                lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1606                if (PageLRU(page)) {
1607                        int lru = page_lru(page);
1608                        get_page(page);
1609                        ClearPageLRU(page);
1610                        del_page_from_lru_list(page, lruvec, lru);
1611                        ret = 0;
1612                }
1613                spin_unlock_irq(zone_lru_lock(zone));
1614        }
1615        return ret;
1616}
1617
1618/*
1619 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1620 * then get resheduled. When there are massive number of tasks doing page
1621 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1622 * the LRU list will go small and be scanned faster than necessary, leading to
1623 * unnecessary swapping, thrashing and OOM.
1624 */
1625static int too_many_isolated(struct pglist_data *pgdat, int file,
1626                struct scan_control *sc)
1627{
1628        unsigned long inactive, isolated;
1629
1630        if (current_is_kswapd())
1631                return 0;
1632
1633        if (!sane_reclaim(sc))
1634                return 0;
1635
1636        if (file) {
1637                inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1638                isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1639        } else {
1640                inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1641                isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1642        }
1643
1644        /*
1645         * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1646         * won't get blocked by normal direct-reclaimers, forming a circular
1647         * deadlock.
1648         */
1649        if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1650                inactive >>= 3;
1651
1652        return isolated > inactive;
1653}
1654
1655static noinline_for_stack void
1656putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1657{
1658        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1659        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1660        LIST_HEAD(pages_to_free);
1661
1662        /*
1663         * Put back any unfreeable pages.
1664         */
1665        while (!list_empty(page_list)) {
1666                struct page *page = lru_to_page(page_list);
1667                int lru;
1668
1669                VM_BUG_ON_PAGE(PageLRU(page), page);
1670                list_del(&page->lru);
1671                if (unlikely(!page_evictable(page))) {
1672                        spin_unlock_irq(&pgdat->lru_lock);
1673                        putback_lru_page(page);
1674                        spin_lock_irq(&pgdat->lru_lock);
1675                        continue;
1676                }
1677
1678                lruvec = mem_cgroup_page_lruvec(page, pgdat);
1679
1680                SetPageLRU(page);
1681                lru = page_lru(page);
1682                add_page_to_lru_list(page, lruvec, lru);
1683
1684                if (is_active_lru(lru)) {
1685                        int file = is_file_lru(lru);
1686                        int numpages = hpage_nr_pages(page);
1687                        reclaim_stat->recent_rotated[file] += numpages;
1688                }
1689                if (put_page_testzero(page)) {
1690                        __ClearPageLRU(page);
1691                        __ClearPageActive(page);
1692                        del_page_from_lru_list(page, lruvec, lru);
1693
1694                        if (unlikely(PageCompound(page))) {
1695                                spin_unlock_irq(&pgdat->lru_lock);
1696                                mem_cgroup_uncharge(page);
1697                                (*get_compound_page_dtor(page))(page);
1698                                spin_lock_irq(&pgdat->lru_lock);
1699                        } else
1700                                list_add(&page->lru, &pages_to_free);
1701                }
1702        }
1703
1704        /*
1705         * To save our caller's stack, now use input list for pages to free.
1706         */
1707        list_splice(&pages_to_free, page_list);
1708}
1709
1710/*
1711 * If a kernel thread (such as nfsd for loop-back mounts) services
1712 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1713 * In that case we should only throttle if the backing device it is
1714 * writing to is congested.  In other cases it is safe to throttle.
1715 */
1716static int current_may_throttle(void)
1717{
1718        return !(current->flags & PF_LESS_THROTTLE) ||
1719                current->backing_dev_info == NULL ||
1720                bdi_write_congested(current->backing_dev_info);
1721}
1722
1723/*
1724 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1725 * of reclaimed pages
1726 */
1727static noinline_for_stack unsigned long
1728shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1729                     struct scan_control *sc, enum lru_list lru)
1730{
1731        LIST_HEAD(page_list);
1732        unsigned long nr_scanned;
1733        unsigned long nr_reclaimed = 0;
1734        unsigned long nr_taken;
1735        struct reclaim_stat stat = {};
1736        isolate_mode_t isolate_mode = 0;
1737        int file = is_file_lru(lru);
1738        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1739        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1740        bool stalled = false;
1741
1742        while (unlikely(too_many_isolated(pgdat, file, sc))) {
1743                if (stalled)
1744                        return 0;
1745
1746                /* wait a bit for the reclaimer. */
1747                msleep(100);
1748                stalled = true;
1749
1750                /* We are about to die and free our memory. Return now. */
1751                if (fatal_signal_pending(current))
1752                        return SWAP_CLUSTER_MAX;
1753        }
1754
1755        lru_add_drain();
1756
1757        if (!sc->may_unmap)
1758                isolate_mode |= ISOLATE_UNMAPPED;
1759
1760        spin_lock_irq(&pgdat->lru_lock);
1761
1762        nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1763                                     &nr_scanned, sc, isolate_mode, lru);
1764
1765        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1766        reclaim_stat->recent_scanned[file] += nr_taken;
1767
1768        if (current_is_kswapd()) {
1769                if (global_reclaim(sc))
1770                        __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1771                count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1772                                   nr_scanned);
1773        } else {
1774                if (global_reclaim(sc))
1775                        __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1776                count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1777                                   nr_scanned);
1778        }
1779        spin_unlock_irq(&pgdat->lru_lock);
1780
1781        if (nr_taken == 0)
1782                return 0;
1783
1784        nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1785                                &stat, false);
1786
1787        spin_lock_irq(&pgdat->lru_lock);
1788
1789        if (current_is_kswapd()) {
1790                if (global_reclaim(sc))
1791                        __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1792                count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1793                                   nr_reclaimed);
1794        } else {
1795                if (global_reclaim(sc))
1796                        __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1797                count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1798                                   nr_reclaimed);
1799        }
1800
1801        putback_inactive_pages(lruvec, &page_list);
1802
1803        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1804
1805        spin_unlock_irq(&pgdat->lru_lock);
1806
1807        mem_cgroup_uncharge_list(&page_list);
1808        free_unref_page_list(&page_list);
1809
1810        /*
1811         * If dirty pages are scanned that are not queued for IO, it
1812         * implies that flushers are not doing their job. This can
1813         * happen when memory pressure pushes dirty pages to the end of
1814         * the LRU before the dirty limits are breached and the dirty
1815         * data has expired. It can also happen when the proportion of
1816         * dirty pages grows not through writes but through memory
1817         * pressure reclaiming all the clean cache. And in some cases,
1818         * the flushers simply cannot keep up with the allocation
1819         * rate. Nudge the flusher threads in case they are asleep.
1820         */
1821        if (stat.nr_unqueued_dirty == nr_taken)
1822                wakeup_flusher_threads(WB_REASON_VMSCAN);
1823
1824        sc->nr.dirty += stat.nr_dirty;
1825        sc->nr.congested += stat.nr_congested;
1826        sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1827        sc->nr.writeback += stat.nr_writeback;
1828        sc->nr.immediate += stat.nr_immediate;
1829        sc->nr.taken += nr_taken;
1830        if (file)
1831                sc->nr.file_taken += nr_taken;
1832
1833        trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1834                        nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1835        return nr_reclaimed;
1836}
1837
1838/*
1839 * This moves pages from the active list to the inactive list.
1840 *
1841 * We move them the other way if the page is referenced by one or more
1842 * processes, from rmap.
1843 *
1844 * If the pages are mostly unmapped, the processing is fast and it is
1845 * appropriate to hold zone_lru_lock across the whole operation.  But if
1846 * the pages are mapped, the processing is slow (page_referenced()) so we
1847 * should drop zone_lru_lock around each page.  It's impossible to balance
1848 * this, so instead we remove the pages from the LRU while processing them.
1849 * It is safe to rely on PG_active against the non-LRU pages in here because
1850 * nobody will play with that bit on a non-LRU page.
1851 *
1852 * The downside is that we have to touch page->_refcount against each page.
1853 * But we had to alter page->flags anyway.
1854 *
1855 * Returns the number of pages moved to the given lru.
1856 */
1857
1858static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1859                                     struct list_head *list,
1860                                     struct list_head *pages_to_free,
1861                                     enum lru_list lru)
1862{
1863        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1864        struct page *page;
1865        int nr_pages;
1866        int nr_moved = 0;
1867
1868        while (!list_empty(list)) {
1869                page = lru_to_page(list);
1870                lruvec = mem_cgroup_page_lruvec(page, pgdat);
1871
1872                VM_BUG_ON_PAGE(PageLRU(page), page);
1873                SetPageLRU(page);
1874
1875                nr_pages = hpage_nr_pages(page);
1876                update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1877                list_move(&page->lru, &lruvec->lists[lru]);
1878
1879                if (put_page_testzero(page)) {
1880                        __ClearPageLRU(page);
1881                        __ClearPageActive(page);
1882                        del_page_from_lru_list(page, lruvec, lru);
1883
1884                        if (unlikely(PageCompound(page))) {
1885                                spin_unlock_irq(&pgdat->lru_lock);
1886                                mem_cgroup_uncharge(page);
1887                                (*get_compound_page_dtor(page))(page);
1888                                spin_lock_irq(&pgdat->lru_lock);
1889                        } else
1890                                list_add(&page->lru, pages_to_free);
1891                } else {
1892                        nr_moved += nr_pages;
1893                }
1894        }
1895
1896        if (!is_active_lru(lru)) {
1897                __count_vm_events(PGDEACTIVATE, nr_moved);
1898                count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1899                                   nr_moved);
1900        }
1901
1902        return nr_moved;
1903}
1904
1905static void shrink_active_list(unsigned long nr_to_scan,
1906                               struct lruvec *lruvec,
1907                               struct scan_control *sc,
1908                               enum lru_list lru)
1909{
1910        unsigned long nr_taken;
1911        unsigned long nr_scanned;
1912        unsigned long vm_flags;
1913        LIST_HEAD(l_hold);      /* The pages which were snipped off */
1914        LIST_HEAD(l_active);
1915        LIST_HEAD(l_inactive);
1916        struct page *page;
1917        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1918        unsigned nr_deactivate, nr_activate;
1919        unsigned nr_rotated = 0;
1920        isolate_mode_t isolate_mode = 0;
1921        int file = is_file_lru(lru);
1922        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1923
1924        lru_add_drain();
1925
1926        if (!sc->may_unmap)
1927                isolate_mode |= ISOLATE_UNMAPPED;
1928
1929        spin_lock_irq(&pgdat->lru_lock);
1930
1931        nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1932                                     &nr_scanned, sc, isolate_mode, lru);
1933
1934        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1935        reclaim_stat->recent_scanned[file] += nr_taken;
1936
1937        __count_vm_events(PGREFILL, nr_scanned);
1938        count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1939
1940        spin_unlock_irq(&pgdat->lru_lock);
1941
1942        while (!list_empty(&l_hold)) {
1943                cond_resched();
1944                page = lru_to_page(&l_hold);
1945                list_del(&page->lru);
1946
1947                if (unlikely(!page_evictable(page))) {
1948                        putback_lru_page(page);
1949                        continue;
1950                }
1951
1952                if (unlikely(buffer_heads_over_limit)) {
1953                        if (page_has_private(page) && trylock_page(page)) {
1954                                if (page_has_private(page))
1955                                        try_to_release_page(page, 0);
1956                                unlock_page(page);
1957                        }
1958                }
1959
1960                if (page_referenced(page, 0, sc->target_mem_cgroup,
1961                                    &vm_flags)) {
1962                        nr_rotated += hpage_nr_pages(page);
1963                        /*
1964                         * Identify referenced, file-backed active pages and
1965                         * give them one more trip around the active list. So
1966                         * that executable code get better chances to stay in
1967                         * memory under moderate memory pressure.  Anon pages
1968                         * are not likely to be evicted by use-once streaming
1969                         * IO, plus JVM can create lots of anon VM_EXEC pages,
1970                         * so we ignore them here.
1971                         */
1972                        if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1973                                list_add(&page->lru, &l_active);
1974                                continue;
1975                        }
1976                }
1977
1978                ClearPageActive(page);  /* we are de-activating */
1979                list_add(&page->lru, &l_inactive);
1980        }
1981
1982        /*
1983         * Move pages back to the lru list.
1984         */
1985        spin_lock_irq(&pgdat->lru_lock);
1986        /*
1987         * Count referenced pages from currently used mappings as rotated,
1988         * even though only some of them are actually re-activated.  This
1989         * helps balance scan pressure between file and anonymous pages in
1990         * get_scan_count.
1991         */
1992        reclaim_stat->recent_rotated[file] += nr_rotated;
1993
1994        nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1995        nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1996        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1997        spin_unlock_irq(&pgdat->lru_lock);
1998
1999        mem_cgroup_uncharge_list(&l_hold);
2000        free_unref_page_list(&l_hold);
2001        trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2002                        nr_deactivate, nr_rotated, sc->priority, file);
2003}
2004
2005/*
2006 * The inactive anon list should be small enough that the VM never has
2007 * to do too much work.
2008 *
2009 * The inactive file list should be small enough to leave most memory
2010 * to the established workingset on the scan-resistant active list,
2011 * but large enough to avoid thrashing the aggregate readahead window.
2012 *
2013 * Both inactive lists should also be large enough that each inactive
2014 * page has a chance to be referenced again before it is reclaimed.
2015 *
2016 * If that fails and refaulting is observed, the inactive list grows.
2017 *
2018 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2019 * on this LRU, maintained by the pageout code. An inactive_ratio
2020 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2021 *
2022 * total     target    max
2023 * memory    ratio     inactive
2024 * -------------------------------------
2025 *   10MB       1         5MB
2026 *  100MB       1        50MB
2027 *    1GB       3       250MB
2028 *   10GB      10       0.9GB
2029 *  100GB      31         3GB
2030 *    1TB     101        10GB
2031 *   10TB     320        32GB
2032 */
2033static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2034                                 struct mem_cgroup *memcg,
2035                                 struct scan_control *sc, bool actual_reclaim)
2036{
2037        enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2038        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2039        enum lru_list inactive_lru = file * LRU_FILE;
2040        unsigned long inactive, active;
2041        unsigned long inactive_ratio;
2042        unsigned long refaults;
2043        unsigned long gb;
2044
2045        /*
2046         * If we don't have swap space, anonymous page deactivation
2047         * is pointless.
2048         */
2049        if (!file && !total_swap_pages)
2050                return false;
2051
2052        inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2053        active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2054
2055        if (memcg)
2056                refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2057        else
2058                refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2059
2060        /*
2061         * When refaults are being observed, it means a new workingset
2062         * is being established. Disable active list protection to get
2063         * rid of the stale workingset quickly.
2064         */
2065        if (file && actual_reclaim && lruvec->refaults != refaults) {
2066                inactive_ratio = 0;
2067        } else {
2068                gb = (inactive + active) >> (30 - PAGE_SHIFT);
2069                if (gb)
2070                        inactive_ratio = int_sqrt(10 * gb);
2071                else
2072                        inactive_ratio = 1;
2073        }
2074
2075        if (actual_reclaim)
2076                trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2077                        lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2078                        lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2079                        inactive_ratio, file);
2080
2081        return inactive * inactive_ratio < active;
2082}
2083
2084static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2085                                 struct lruvec *lruvec, struct mem_cgroup *memcg,
2086                                 struct scan_control *sc)
2087{
2088        if (is_active_lru(lru)) {
2089                if (inactive_list_is_low(lruvec, is_file_lru(lru),
2090                                         memcg, sc, true))
2091                        shrink_active_list(nr_to_scan, lruvec, sc, lru);
2092                return 0;
2093        }
2094
2095        return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2096}
2097
2098enum scan_balance {
2099        SCAN_EQUAL,
2100        SCAN_FRACT,
2101        SCAN_ANON,
2102        SCAN_FILE,
2103};
2104
2105/*
2106 * Determine how aggressively the anon and file LRU lists should be
2107 * scanned.  The relative value of each set of LRU lists is determined
2108 * by looking at the fraction of the pages scanned we did rotate back
2109 * onto the active list instead of evict.
2110 *
2111 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2112 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2113 */
2114static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2115                           struct scan_control *sc, unsigned long *nr,
2116                           unsigned long *lru_pages)
2117{
2118        int swappiness = mem_cgroup_swappiness(memcg);
2119        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2120        u64 fraction[2];
2121        u64 denominator = 0;    /* gcc */
2122        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2123        unsigned long anon_prio, file_prio;
2124        enum scan_balance scan_balance;
2125        unsigned long anon, file;
2126        unsigned long ap, fp;
2127        enum lru_list lru;
2128
2129        /* If we have no swap space, do not bother scanning anon pages. */
2130        if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2131                scan_balance = SCAN_FILE;
2132                goto out;
2133        }
2134
2135        /*
2136         * Global reclaim will swap to prevent OOM even with no
2137         * swappiness, but memcg users want to use this knob to
2138         * disable swapping for individual groups completely when
2139         * using the memory controller's swap limit feature would be
2140         * too expensive.
2141         */
2142        if (!global_reclaim(sc) && !swappiness) {
2143                scan_balance = SCAN_FILE;
2144                goto out;
2145        }
2146
2147        /*
2148         * Do not apply any pressure balancing cleverness when the
2149         * system is close to OOM, scan both anon and file equally
2150         * (unless the swappiness setting disagrees with swapping).
2151         */
2152        if (!sc->priority && swappiness) {
2153                scan_balance = SCAN_EQUAL;
2154                goto out;
2155        }
2156
2157        /*
2158         * Prevent the reclaimer from falling into the cache trap: as
2159         * cache pages start out inactive, every cache fault will tip
2160         * the scan balance towards the file LRU.  And as the file LRU
2161         * shrinks, so does the window for rotation from references.
2162         * This means we have a runaway feedback loop where a tiny
2163         * thrashing file LRU becomes infinitely more attractive than
2164         * anon pages.  Try to detect this based on file LRU size.
2165         */
2166        if (global_reclaim(sc)) {
2167                unsigned long pgdatfile;
2168                unsigned long pgdatfree;
2169                int z;
2170                unsigned long total_high_wmark = 0;
2171
2172                pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2173                pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2174                           node_page_state(pgdat, NR_INACTIVE_FILE);
2175
2176                for (z = 0; z < MAX_NR_ZONES; z++) {
2177                        struct zone *zone = &pgdat->node_zones[z];
2178                        if (!managed_zone(zone))
2179                                continue;
2180
2181                        total_high_wmark += high_wmark_pages(zone);
2182                }
2183
2184                if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2185                        /*
2186                         * Force SCAN_ANON if there are enough inactive
2187                         * anonymous pages on the LRU in eligible zones.
2188                         * Otherwise, the small LRU gets thrashed.
2189                         */
2190                        if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2191                            lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2192                                        >> sc->priority) {
2193                                scan_balance = SCAN_ANON;
2194                                goto out;
2195                        }
2196                }
2197        }
2198
2199        /*
2200         * If there is enough inactive page cache, i.e. if the size of the
2201         * inactive list is greater than that of the active list *and* the
2202         * inactive list actually has some pages to scan on this priority, we
2203         * do not reclaim anything from the anonymous working set right now.
2204         * Without the second condition we could end up never scanning an
2205         * lruvec even if it has plenty of old anonymous pages unless the
2206         * system is under heavy pressure.
2207         */
2208        if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2209            lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2210                scan_balance = SCAN_FILE;
2211                goto out;
2212        }
2213
2214        scan_balance = SCAN_FRACT;
2215
2216        /*
2217         * With swappiness at 100, anonymous and file have the same priority.
2218         * This scanning priority is essentially the inverse of IO cost.
2219         */
2220        anon_prio = swappiness;
2221        file_prio = 200 - anon_prio;
2222
2223        /*
2224         * OK, so we have swap space and a fair amount of page cache
2225         * pages.  We use the recently rotated / recently scanned
2226         * ratios to determine how valuable each cache is.
2227         *
2228         * Because workloads change over time (and to avoid overflow)
2229         * we keep these statistics as a floating average, which ends
2230         * up weighing recent references more than old ones.
2231         *
2232         * anon in [0], file in [1]
2233         */
2234
2235        anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2236                lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2237        file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2238                lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2239
2240        spin_lock_irq(&pgdat->lru_lock);
2241        if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2242                reclaim_stat->recent_scanned[0] /= 2;
2243                reclaim_stat->recent_rotated[0] /= 2;
2244        }
2245
2246        if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2247                reclaim_stat->recent_scanned[1] /= 2;
2248                reclaim_stat->recent_rotated[1] /= 2;
2249        }
2250
2251        /*
2252         * The amount of pressure on anon vs file pages is inversely
2253         * proportional to the fraction of recently scanned pages on
2254         * each list that were recently referenced and in active use.
2255         */
2256        ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2257        ap /= reclaim_stat->recent_rotated[0] + 1;
2258
2259        fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2260        fp /= reclaim_stat->recent_rotated[1] + 1;
2261        spin_unlock_irq(&pgdat->lru_lock);
2262
2263        fraction[0] = ap;
2264        fraction[1] = fp;
2265        denominator = ap + fp + 1;
2266out:
2267        *lru_pages = 0;
2268        for_each_evictable_lru(lru) {
2269                int file = is_file_lru(lru);
2270                unsigned long size;
2271                unsigned long scan;
2272
2273                size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2274                scan = size >> sc->priority;
2275                /*
2276                 * If the cgroup's already been deleted, make sure to
2277                 * scrape out the remaining cache.
2278                 */
2279                if (!scan && !mem_cgroup_online(memcg))
2280                        scan = min(size, SWAP_CLUSTER_MAX);
2281
2282                switch (scan_balance) {
2283                case SCAN_EQUAL:
2284                        /* Scan lists relative to size */
2285                        break;
2286                case SCAN_FRACT:
2287                        /*
2288                         * Scan types proportional to swappiness and
2289                         * their relative recent reclaim efficiency.
2290                         */
2291                        scan = div64_u64(scan * fraction[file],
2292                                         denominator);
2293                        break;
2294                case SCAN_FILE:
2295                case SCAN_ANON:
2296                        /* Scan one type exclusively */
2297                        if ((scan_balance == SCAN_FILE) != file) {
2298                                size = 0;
2299                                scan = 0;
2300                        }
2301                        break;
2302                default:
2303                        /* Look ma, no brain */
2304                        BUG();
2305                }
2306
2307                *lru_pages += size;
2308                nr[lru] = scan;
2309        }
2310}
2311
2312/*
2313 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2314 */
2315static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2316                              struct scan_control *sc, unsigned long *lru_pages)
2317{
2318        struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2319        unsigned long nr[NR_LRU_LISTS];
2320        unsigned long targets[NR_LRU_LISTS];
2321        unsigned long nr_to_scan;
2322        enum lru_list lru;
2323        unsigned long nr_reclaimed = 0;
2324        unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2325        struct blk_plug plug;
2326        bool scan_adjusted;
2327
2328        get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2329
2330        /* Record the original scan target for proportional adjustments later */
2331        memcpy(targets, nr, sizeof(nr));
2332
2333        /*
2334         * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2335         * event that can occur when there is little memory pressure e.g.
2336         * multiple streaming readers/writers. Hence, we do not abort scanning
2337         * when the requested number of pages are reclaimed when scanning at
2338         * DEF_PRIORITY on the assumption that the fact we are direct
2339         * reclaiming implies that kswapd is not keeping up and it is best to
2340         * do a batch of work at once. For memcg reclaim one check is made to
2341         * abort proportional reclaim if either the file or anon lru has already
2342         * dropped to zero at the first pass.
2343         */
2344        scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2345                         sc->priority == DEF_PRIORITY);
2346
2347        blk_start_plug(&plug);
2348        while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2349                                        nr[LRU_INACTIVE_FILE]) {
2350                unsigned long nr_anon, nr_file, percentage;
2351                unsigned long nr_scanned;
2352
2353                for_each_evictable_lru(lru) {
2354                        if (nr[lru]) {
2355                                nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2356                                nr[lru] -= nr_to_scan;
2357
2358                                nr_reclaimed += shrink_list(lru, nr_to_scan,
2359                                                            lruvec, memcg, sc);
2360                        }
2361                }
2362
2363                cond_resched();
2364
2365                if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2366                        continue;
2367
2368                /*
2369                 * For kswapd and memcg, reclaim at least the number of pages
2370                 * requested. Ensure that the anon and file LRUs are scanned
2371                 * proportionally what was requested by get_scan_count(). We
2372                 * stop reclaiming one LRU and reduce the amount scanning
2373                 * proportional to the original scan target.
2374                 */
2375                nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2376                nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2377
2378                /*
2379                 * It's just vindictive to attack the larger once the smaller
2380                 * has gone to zero.  And given the way we stop scanning the
2381                 * smaller below, this makes sure that we only make one nudge
2382                 * towards proportionality once we've got nr_to_reclaim.
2383                 */
2384                if (!nr_file || !nr_anon)
2385                        break;
2386
2387                if (nr_file > nr_anon) {
2388                        unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2389                                                targets[LRU_ACTIVE_ANON] + 1;
2390                        lru = LRU_BASE;
2391                        percentage = nr_anon * 100 / scan_target;
2392                } else {
2393                        unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2394                                                targets[LRU_ACTIVE_FILE] + 1;
2395                        lru = LRU_FILE;
2396                        percentage = nr_file * 100 / scan_target;
2397                }
2398
2399                /* Stop scanning the smaller of the LRU */
2400                nr[lru] = 0;
2401                nr[lru + LRU_ACTIVE] = 0;
2402
2403                /*
2404                 * Recalculate the other LRU scan count based on its original
2405                 * scan target and the percentage scanning already complete
2406                 */
2407                lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2408                nr_scanned = targets[lru] - nr[lru];
2409                nr[lru] = targets[lru] * (100 - percentage) / 100;
2410                nr[lru] -= min(nr[lru], nr_scanned);
2411
2412                lru += LRU_ACTIVE;
2413                nr_scanned = targets[lru] - nr[lru];
2414                nr[lru] = targets[lru] * (100 - percentage) / 100;
2415                nr[lru] -= min(nr[lru], nr_scanned);
2416
2417                scan_adjusted = true;
2418        }
2419        blk_finish_plug(&plug);
2420        sc->nr_reclaimed += nr_reclaimed;
2421
2422        /*
2423         * Even if we did not try to evict anon pages at all, we want to
2424         * rebalance the anon lru active/inactive ratio.
2425         */
2426        if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2427                shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2428                                   sc, LRU_ACTIVE_ANON);
2429}
2430
2431/* Use reclaim/compaction for costly allocs or under memory pressure */
2432static bool in_reclaim_compaction(struct scan_control *sc)
2433{
2434        if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2435                        (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2436                         sc->priority < DEF_PRIORITY - 2))
2437                return true;
2438
2439        return false;
2440}
2441
2442/*
2443 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2444 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2445 * true if more pages should be reclaimed such that when the page allocator
2446 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2447 * It will give up earlier than that if there is difficulty reclaiming pages.
2448 */
2449static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2450                                        unsigned long nr_reclaimed,
2451                                        unsigned long nr_scanned,
2452                                        struct scan_control *sc)
2453{
2454        unsigned long pages_for_compaction;
2455        unsigned long inactive_lru_pages;
2456        int z;
2457
2458        /* If not in reclaim/compaction mode, stop */
2459        if (!in_reclaim_compaction(sc))
2460                return false;
2461
2462        /* Consider stopping depending on scan and reclaim activity */
2463        if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2464                /*
2465                 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2466                 * full LRU list has been scanned and we are still failing
2467                 * to reclaim pages. This full LRU scan is potentially
2468                 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2469                 */
2470                if (!nr_reclaimed && !nr_scanned)
2471                        return false;
2472        } else {
2473                /*
2474                 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2475                 * fail without consequence, stop if we failed to reclaim
2476                 * any pages from the last SWAP_CLUSTER_MAX number of
2477                 * pages that were scanned. This will return to the
2478                 * caller faster at the risk reclaim/compaction and
2479                 * the resulting allocation attempt fails
2480                 */
2481                if (!nr_reclaimed)
2482                        return false;
2483        }
2484
2485        /*
2486         * If we have not reclaimed enough pages for compaction and the
2487         * inactive lists are large enough, continue reclaiming
2488         */
2489        pages_for_compaction = compact_gap(sc->order);
2490        inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2491        if (get_nr_swap_pages() > 0)
2492                inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2493        if (sc->nr_reclaimed < pages_for_compaction &&
2494                        inactive_lru_pages > pages_for_compaction)
2495                return true;
2496
2497        /* If compaction would go ahead or the allocation would succeed, stop */
2498        for (z = 0; z <= sc->reclaim_idx; z++) {
2499                struct zone *zone = &pgdat->node_zones[z];
2500                if (!managed_zone(zone))
2501                        continue;
2502
2503                switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2504                case COMPACT_SUCCESS:
2505                case COMPACT_CONTINUE:
2506                        return false;
2507                default:
2508                        /* check next zone */
2509                        ;
2510                }
2511        }
2512        return true;
2513}
2514
2515static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2516{
2517        return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2518                (memcg && memcg_congested(pgdat, memcg));
2519}
2520
2521static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2522{
2523        struct reclaim_state *reclaim_state = current->reclaim_state;
2524        unsigned long nr_reclaimed, nr_scanned;
2525        bool reclaimable = false;
2526
2527        do {
2528                struct mem_cgroup *root = sc->target_mem_cgroup;
2529                struct mem_cgroup_reclaim_cookie reclaim = {
2530                        .pgdat = pgdat,
2531                        .priority = sc->priority,
2532                };
2533                unsigned long node_lru_pages = 0;
2534                struct mem_cgroup *memcg;
2535
2536                memset(&sc->nr, 0, sizeof(sc->nr));
2537
2538                nr_reclaimed = sc->nr_reclaimed;
2539                nr_scanned = sc->nr_scanned;
2540
2541                memcg = mem_cgroup_iter(root, NULL, &reclaim);
2542                do {
2543                        unsigned long lru_pages;
2544                        unsigned long reclaimed;
2545                        unsigned long scanned;
2546
2547                        if (mem_cgroup_low(root, memcg)) {
2548                                if (!sc->memcg_low_reclaim) {
2549                                        sc->memcg_low_skipped = 1;
2550                                        continue;
2551                                }
2552                                memcg_memory_event(memcg, MEMCG_LOW);
2553                        }
2554
2555                        reclaimed = sc->nr_reclaimed;
2556                        scanned = sc->nr_scanned;
2557                        shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2558                        node_lru_pages += lru_pages;
2559
2560                        if (memcg)
2561                                shrink_slab(sc->gfp_mask, pgdat->node_id,
2562                                            memcg, sc->priority);
2563
2564                        /* Record the group's reclaim efficiency */
2565                        vmpressure(sc->gfp_mask, memcg, false,
2566                                   sc->nr_scanned - scanned,
2567                                   sc->nr_reclaimed - reclaimed);
2568
2569                        /*
2570                         * Direct reclaim and kswapd have to scan all memory
2571                         * cgroups to fulfill the overall scan target for the
2572                         * node.
2573                         *
2574                         * Limit reclaim, on the other hand, only cares about
2575                         * nr_to_reclaim pages to be reclaimed and it will
2576                         * retry with decreasing priority if one round over the
2577                         * whole hierarchy is not sufficient.
2578                         */
2579                        if (!global_reclaim(sc) &&
2580                                        sc->nr_reclaimed >= sc->nr_to_reclaim) {
2581                                mem_cgroup_iter_break(root, memcg);
2582                                break;
2583                        }
2584                } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2585
2586                if (global_reclaim(sc))
2587                        shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2588                                    sc->priority);
2589
2590                if (reclaim_state) {
2591                        sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2592                        reclaim_state->reclaimed_slab = 0;
2593                }
2594
2595                /* Record the subtree's reclaim efficiency */
2596                vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2597                           sc->nr_scanned - nr_scanned,
2598                           sc->nr_reclaimed - nr_reclaimed);
2599
2600                if (sc->nr_reclaimed - nr_reclaimed)
2601                        reclaimable = true;
2602
2603                if (current_is_kswapd()) {
2604                        /*
2605                         * If reclaim is isolating dirty pages under writeback,
2606                         * it implies that the long-lived page allocation rate
2607                         * is exceeding the page laundering rate. Either the
2608                         * global limits are not being effective at throttling
2609                         * processes due to the page distribution throughout
2610                         * zones or there is heavy usage of a slow backing
2611                         * device. The only option is to throttle from reclaim
2612                         * context which is not ideal as there is no guarantee
2613                         * the dirtying process is throttled in the same way
2614                         * balance_dirty_pages() manages.
2615                         *
2616                         * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2617                         * count the number of pages under pages flagged for
2618                         * immediate reclaim and stall if any are encountered
2619                         * in the nr_immediate check below.
2620                         */
2621                        if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2622                                set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2623
2624                        /*
2625                         * Tag a node as congested if all the dirty pages
2626                         * scanned were backed by a congested BDI and
2627                         * wait_iff_congested will stall.
2628                         */
2629                        if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2630                                set_bit(PGDAT_CONGESTED, &pgdat->flags);
2631
2632                        /* Allow kswapd to start writing pages during reclaim.*/
2633                        if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2634                                set_bit(PGDAT_DIRTY, &pgdat->flags);
2635
2636                        /*
2637                         * If kswapd scans pages marked marked for immediate
2638                         * reclaim and under writeback (nr_immediate), it
2639                         * implies that pages are cycling through the LRU
2640                         * faster than they are written so also forcibly stall.
2641                         */
2642                        if (sc->nr.immediate)
2643                                congestion_wait(BLK_RW_ASYNC, HZ/10);
2644                }
2645
2646                /*
2647                 * Legacy memcg will stall in page writeback so avoid forcibly
2648                 * stalling in wait_iff_congested().
2649                 */
2650                if (!global_reclaim(sc) && sane_reclaim(sc) &&
2651                    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2652                        set_memcg_congestion(pgdat, root, true);
2653
2654                /*
2655                 * Stall direct reclaim for IO completions if underlying BDIs
2656                 * and node is congested. Allow kswapd to continue until it
2657                 * starts encountering unqueued dirty pages or cycling through
2658                 * the LRU too quickly.
2659                 */
2660                if (!sc->hibernation_mode && !current_is_kswapd() &&
2661                   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2662                        wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2663
2664        } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2665                                         sc->nr_scanned - nr_scanned, sc));
2666
2667        /*
2668         * Kswapd gives up on balancing particular nodes after too
2669         * many failures to reclaim anything from them and goes to
2670         * sleep. On reclaim progress, reset the failure counter. A
2671         * successful direct reclaim run will revive a dormant kswapd.
2672         */
2673        if (reclaimable)
2674                pgdat->kswapd_failures = 0;
2675
2676        return reclaimable;
2677}
2678
2679/*
2680 * Returns true if compaction should go ahead for a costly-order request, or
2681 * the allocation would already succeed without compaction. Return false if we
2682 * should reclaim first.
2683 */
2684static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2685{
2686        unsigned long watermark;
2687        enum compact_result suitable;
2688
2689        suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2690        if (suitable == COMPACT_SUCCESS)
2691                /* Allocation should succeed already. Don't reclaim. */
2692                return true;
2693        if (suitable == COMPACT_SKIPPED)
2694                /* Compaction cannot yet proceed. Do reclaim. */
2695                return false;
2696
2697        /*
2698         * Compaction is already possible, but it takes time to run and there
2699         * are potentially other callers using the pages just freed. So proceed
2700         * with reclaim to make a buffer of free pages available to give
2701         * compaction a reasonable chance of completing and allocating the page.
2702         * Note that we won't actually reclaim the whole buffer in one attempt
2703         * as the target watermark in should_continue_reclaim() is lower. But if
2704         * we are already above the high+gap watermark, don't reclaim at all.
2705         */
2706        watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2707
2708        return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2709}
2710
2711/*
2712 * This is the direct reclaim path, for page-allocating processes.  We only
2713 * try to reclaim pages from zones which will satisfy the caller's allocation
2714 * request.
2715 *
2716 * If a zone is deemed to be full of pinned pages then just give it a light
2717 * scan then give up on it.
2718 */
2719static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2720{
2721        struct zoneref *z;
2722        struct zone *zone;
2723        unsigned long nr_soft_reclaimed;
2724        unsigned long nr_soft_scanned;
2725        gfp_t orig_mask;
2726        pg_data_t *last_pgdat = NULL;
2727
2728        /*
2729         * If the number of buffer_heads in the machine exceeds the maximum
2730         * allowed level, force direct reclaim to scan the highmem zone as
2731         * highmem pages could be pinning lowmem pages storing buffer_heads
2732         */
2733        orig_mask = sc->gfp_mask;
2734        if (buffer_heads_over_limit) {
2735                sc->gfp_mask |= __GFP_HIGHMEM;
2736                sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2737        }
2738
2739        for_each_zone_zonelist_nodemask(zone, z, zonelist,
2740                                        sc->reclaim_idx, sc->nodemask) {
2741                /*
2742                 * Take care memory controller reclaiming has small influence
2743                 * to global LRU.
2744                 */
2745                if (global_reclaim(sc)) {
2746                        if (!cpuset_zone_allowed(zone,
2747                                                 GFP_KERNEL | __GFP_HARDWALL))
2748                                continue;
2749
2750                        /*
2751                         * If we already have plenty of memory free for
2752                         * compaction in this zone, don't free any more.
2753                         * Even though compaction is invoked for any
2754                         * non-zero order, only frequent costly order
2755                         * reclamation is disruptive enough to become a
2756                         * noticeable problem, like transparent huge
2757                         * page allocations.
2758                         */
2759                        if (IS_ENABLED(CONFIG_COMPACTION) &&
2760                            sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2761                            compaction_ready(zone, sc)) {
2762                                sc->compaction_ready = true;
2763                                continue;
2764                        }
2765
2766                        /*
2767                         * Shrink each node in the zonelist once. If the
2768                         * zonelist is ordered by zone (not the default) then a
2769                         * node may be shrunk multiple times but in that case
2770                         * the user prefers lower zones being preserved.
2771                         */
2772                        if (zone->zone_pgdat == last_pgdat)
2773                                continue;
2774
2775                        /*
2776                         * This steals pages from memory cgroups over softlimit
2777                         * and returns the number of reclaimed pages and
2778                         * scanned pages. This works for global memory pressure
2779                         * and balancing, not for a memcg's limit.
2780                         */
2781                        nr_soft_scanned = 0;
2782                        nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2783                                                sc->order, sc->gfp_mask,
2784                                                &nr_soft_scanned);
2785                        sc->nr_reclaimed += nr_soft_reclaimed;
2786                        sc->nr_scanned += nr_soft_scanned;
2787                        /* need some check for avoid more shrink_zone() */
2788                }
2789
2790                /* See comment about same check for global reclaim above */
2791                if (zone->zone_pgdat == last_pgdat)
2792                        continue;
2793                last_pgdat = zone->zone_pgdat;
2794                shrink_node(zone->zone_pgdat, sc);
2795        }
2796
2797        /*
2798         * Restore to original mask to avoid the impact on the caller if we
2799         * promoted it to __GFP_HIGHMEM.
2800         */
2801        sc->gfp_mask = orig_mask;
2802}
2803
2804static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2805{
2806        struct mem_cgroup *memcg;
2807
2808        memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2809        do {
2810                unsigned long refaults;
2811                struct lruvec *lruvec;
2812
2813                if (memcg)
2814                        refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2815                else
2816                        refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2817
2818                lruvec = mem_cgroup_lruvec(pgdat, memcg);
2819                lruvec->refaults = refaults;
2820        } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2821}
2822
2823/*
2824 * This is the main entry point to direct page reclaim.
2825 *
2826 * If a full scan of the inactive list fails to free enough memory then we
2827 * are "out of memory" and something needs to be killed.
2828 *
2829 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2830 * high - the zone may be full of dirty or under-writeback pages, which this
2831 * caller can't do much about.  We kick the writeback threads and take explicit
2832 * naps in the hope that some of these pages can be written.  But if the
2833 * allocating task holds filesystem locks which prevent writeout this might not
2834 * work, and the allocation attempt will fail.
2835 *
2836 * returns:     0, if no pages reclaimed
2837 *              else, the number of pages reclaimed
2838 */
2839static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2840                                          struct scan_control *sc)
2841{
2842        int initial_priority = sc->priority;
2843        pg_data_t *last_pgdat;
2844        struct zoneref *z;
2845        struct zone *zone;
2846retry:
2847        delayacct_freepages_start();
2848
2849        if (global_reclaim(sc))
2850                __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2851
2852        do {
2853                vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2854                                sc->priority);
2855                sc->nr_scanned = 0;
2856                shrink_zones(zonelist, sc);
2857
2858                if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2859                        break;
2860
2861                if (sc->compaction_ready)
2862                        break;
2863
2864                /*
2865                 * If we're getting trouble reclaiming, start doing
2866                 * writepage even in laptop mode.
2867                 */
2868                if (sc->priority < DEF_PRIORITY - 2)
2869                        sc->may_writepage = 1;
2870        } while (--sc->priority >= 0);
2871
2872        last_pgdat = NULL;
2873        for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2874                                        sc->nodemask) {
2875                if (zone->zone_pgdat == last_pgdat)
2876                        continue;
2877                last_pgdat = zone->zone_pgdat;
2878                snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2879                set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2880        }
2881
2882        delayacct_freepages_end();
2883
2884        if (sc->nr_reclaimed)
2885                return sc->nr_reclaimed;
2886
2887        /* Aborted reclaim to try compaction? don't OOM, then */
2888        if (sc->compaction_ready)
2889                return 1;
2890
2891        /* Untapped cgroup reserves?  Don't OOM, retry. */
2892        if (sc->memcg_low_skipped) {
2893                sc->priority = initial_priority;
2894                sc->memcg_low_reclaim = 1;
2895                sc->memcg_low_skipped = 0;
2896                goto retry;
2897        }
2898
2899        return 0;
2900}
2901
2902static bool allow_direct_reclaim(pg_data_t *pgdat)
2903{
2904        struct zone *zone;
2905        unsigned long pfmemalloc_reserve = 0;
2906        unsigned long free_pages = 0;
2907        int i;
2908        bool wmark_ok;
2909
2910        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2911                return true;
2912
2913        for (i = 0; i <= ZONE_NORMAL; i++) {
2914                zone = &pgdat->node_zones[i];
2915                if (!managed_zone(zone))
2916                        continue;
2917
2918                if (!zone_reclaimable_pages(zone))
2919                        continue;
2920
2921                pfmemalloc_reserve += min_wmark_pages(zone);
2922                free_pages += zone_page_state(zone, NR_FREE_PAGES);
2923        }
2924
2925        /* If there are no reserves (unexpected config) then do not throttle */
2926        if (!pfmemalloc_reserve)
2927                return true;
2928
2929        wmark_ok = free_pages > pfmemalloc_reserve / 2;
2930
2931        /* kswapd must be awake if processes are being throttled */
2932        if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2933                pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2934                                                (enum zone_type)ZONE_NORMAL);
2935                wake_up_interruptible(&pgdat->kswapd_wait);
2936        }
2937
2938        return wmark_ok;
2939}
2940
2941/*
2942 * Throttle direct reclaimers if backing storage is backed by the network
2943 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2944 * depleted. kswapd will continue to make progress and wake the processes
2945 * when the low watermark is reached.
2946 *
2947 * Returns true if a fatal signal was delivered during throttling. If this
2948 * happens, the page allocator should not consider triggering the OOM killer.
2949 */
2950static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2951                                        nodemask_t *nodemask)
2952{
2953        struct zoneref *z;
2954        struct zone *zone;
2955        pg_data_t *pgdat = NULL;
2956
2957        /*
2958         * Kernel threads should not be throttled as they may be indirectly
2959         * responsible for cleaning pages necessary for reclaim to make forward
2960         * progress. kjournald for example may enter direct reclaim while
2961         * committing a transaction where throttling it could forcing other
2962         * processes to block on log_wait_commit().
2963         */
2964        if (current->flags & PF_KTHREAD)
2965                goto out;
2966
2967        /*
2968         * If a fatal signal is pending, this process should not throttle.
2969         * It should return quickly so it can exit and free its memory
2970         */
2971        if (fatal_signal_pending(current))
2972                goto out;
2973
2974        /*
2975         * Check if the pfmemalloc reserves are ok by finding the first node
2976         * with a usable ZONE_NORMAL or lower zone. The expectation is that
2977         * GFP_KERNEL will be required for allocating network buffers when
2978         * swapping over the network so ZONE_HIGHMEM is unusable.
2979         *
2980         * Throttling is based on the first usable node and throttled processes
2981         * wait on a queue until kswapd makes progress and wakes them. There
2982         * is an affinity then between processes waking up and where reclaim
2983         * progress has been made assuming the process wakes on the same node.
2984         * More importantly, processes running on remote nodes will not compete
2985         * for remote pfmemalloc reserves and processes on different nodes
2986         * should make reasonable progress.
2987         */
2988        for_each_zone_zonelist_nodemask(zone, z, zonelist,
2989                                        gfp_zone(gfp_mask), nodemask) {
2990                if (zone_idx(zone) > ZONE_NORMAL)
2991                        continue;
2992
2993                /* Throttle based on the first usable node */
2994                pgdat = zone->zone_pgdat;
2995                if (allow_direct_reclaim(pgdat))
2996                        goto out;
2997                break;
2998        }
2999
3000        /* If no zone was usable by the allocation flags then do not throttle */
3001        if (!pgdat)
3002                goto out;
3003
3004        /* Account for the throttling */
3005        count_vm_event(PGSCAN_DIRECT_THROTTLE);
3006
3007        /*
3008         * If the caller cannot enter the filesystem, it's possible that it
3009         * is due to the caller holding an FS lock or performing a journal
3010         * transaction in the case of a filesystem like ext[3|4]. In this case,
3011         * it is not safe to block on pfmemalloc_wait as kswapd could be
3012         * blocked waiting on the same lock. Instead, throttle for up to a
3013         * second before continuing.
3014         */
3015        if (!(gfp_mask & __GFP_FS)) {
3016                wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3017                        allow_direct_reclaim(pgdat), HZ);
3018
3019                goto check_pending;
3020        }
3021
3022        /* Throttle until kswapd wakes the process */
3023        wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3024                allow_direct_reclaim(pgdat));
3025
3026check_pending:
3027        if (fatal_signal_pending(current))
3028                return true;
3029
3030out:
3031        return false;
3032}
3033
3034unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3035                                gfp_t gfp_mask, nodemask_t *nodemask)
3036{
3037        unsigned long nr_reclaimed;
3038        struct scan_control sc = {
3039                .nr_to_reclaim = SWAP_CLUSTER_MAX,
3040                .gfp_mask = current_gfp_context(gfp_mask),
3041                .reclaim_idx = gfp_zone(gfp_mask),
3042                .order = order,
3043                .nodemask = nodemask,
3044                .priority = DEF_PRIORITY,
3045                .may_writepage = !laptop_mode,
3046                .may_unmap = 1,
3047                .may_swap = 1,
3048        };
3049
3050        /*
3051         * Do not enter reclaim if fatal signal was delivered while throttled.
3052         * 1 is returned so that the page allocator does not OOM kill at this
3053         * point.
3054         */
3055        if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3056                return 1;
3057
3058        trace_mm_vmscan_direct_reclaim_begin(order,
3059                                sc.may_writepage,
3060                                sc.gfp_mask,
3061                                sc.reclaim_idx);
3062
3063        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3064
3065        trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3066
3067        return nr_reclaimed;
3068}
3069
3070#ifdef CONFIG_MEMCG
3071
3072unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3073                                                gfp_t gfp_mask, bool noswap,
3074                                                pg_data_t *pgdat,
3075                                                unsigned long *nr_scanned)
3076{
3077        struct scan_control sc = {
3078                .nr_to_reclaim = SWAP_CLUSTER_MAX,
3079                .target_mem_cgroup = memcg,
3080                .may_writepage = !laptop_mode,
3081                .may_unmap = 1,
3082                .reclaim_idx = MAX_NR_ZONES - 1,
3083                .may_swap = !noswap,
3084        };
3085        unsigned long lru_pages;
3086
3087        sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3088                        (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3089
3090        trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3091                                                      sc.may_writepage,
3092                                                      sc.gfp_mask,
3093                                                      sc.reclaim_idx);
3094
3095        /*
3096         * NOTE: Although we can get the priority field, using it
3097         * here is not a good idea, since it limits the pages we can scan.
3098         * if we don't reclaim here, the shrink_node from balance_pgdat
3099         * will pick up pages from other mem cgroup's as well. We hack
3100         * the priority and make it zero.
3101         */
3102        shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3103
3104        trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3105
3106        *nr_scanned = sc.nr_scanned;
3107        return sc.nr_reclaimed;
3108}
3109
3110unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3111                                           unsigned long nr_pages,
3112                                           gfp_t gfp_mask,
3113                                           bool may_swap)
3114{
3115        struct zonelist *zonelist;
3116        unsigned long nr_reclaimed;
3117        int nid;
3118        unsigned int noreclaim_flag;
3119        struct scan_control sc = {
3120                .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3121                .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3122                                (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3123                .reclaim_idx = MAX_NR_ZONES - 1,
3124                .target_mem_cgroup = memcg,
3125                .priority = DEF_PRIORITY,
3126                .may_writepage = !laptop_mode,
3127                .may_unmap = 1,
3128                .may_swap = may_swap,
3129        };
3130
3131        /*
3132         * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3133         * take care of from where we get pages. So the node where we start the
3134         * scan does not need to be the current node.
3135         */
3136        nid = mem_cgroup_select_victim_node(memcg);
3137
3138        zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3139
3140        trace_mm_vmscan_memcg_reclaim_begin(0,
3141                                            sc.may_writepage,
3142                                            sc.gfp_mask,
3143                                            sc.reclaim_idx);
3144
3145        noreclaim_flag = memalloc_noreclaim_save();
3146        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3147        memalloc_noreclaim_restore(noreclaim_flag);
3148
3149        trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3150
3151        return nr_reclaimed;
3152}
3153#endif
3154
3155static void age_active_anon(struct pglist_data *pgdat,
3156                                struct scan_control *sc)
3157{
3158        struct mem_cgroup *memcg;
3159
3160        if (!total_swap_pages)
3161                return;
3162
3163        memcg = mem_cgroup_iter(NULL, NULL, NULL);
3164        do {
3165                struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3166
3167                if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3168                        shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3169                                           sc, LRU_ACTIVE_ANON);
3170
3171                memcg = mem_cgroup_iter(NULL, memcg, NULL);
3172        } while (memcg);
3173}
3174
3175/*
3176 * Returns true if there is an eligible zone balanced for the request order
3177 * and classzone_idx
3178 */
3179static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3180{
3181        int i;
3182        unsigned long mark = -1;
3183        struct zone *zone;
3184
3185        for (i = 0; i <= classzone_idx; i++) {
3186                zone = pgdat->node_zones + i;
3187
3188                if (!managed_zone(zone))
3189                        continue;
3190
3191                mark = high_wmark_pages(zone);
3192                if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3193                        return true;
3194        }
3195
3196        /*
3197         * If a node has no populated zone within classzone_idx, it does not
3198         * need balancing by definition. This can happen if a zone-restricted
3199         * allocation tries to wake a remote kswapd.
3200         */
3201        if (mark == -1)
3202                return true;
3203
3204        return false;
3205}
3206
3207/* Clear pgdat state for congested, dirty or under writeback. */
3208static void clear_pgdat_congested(pg_data_t *pgdat)
3209{
3210        clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3211        clear_bit(PGDAT_DIRTY, &pgdat->flags);
3212        clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3213}
3214
3215/*
3216 * Prepare kswapd for sleeping. This verifies that there are no processes
3217 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3218 *
3219 * Returns true if kswapd is ready to sleep
3220 */
3221static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3222{
3223        /*
3224         * The throttled processes are normally woken up in balance_pgdat() as
3225         * soon as allow_direct_reclaim() is true. But there is a potential
3226         * race between when kswapd checks the watermarks and a process gets
3227         * throttled. There is also a potential race if processes get
3228         * throttled, kswapd wakes, a large process exits thereby balancing the
3229         * zones, which causes kswapd to exit balance_pgdat() before reaching
3230         * the wake up checks. If kswapd is going to sleep, no process should
3231         * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3232         * the wake up is premature, processes will wake kswapd and get
3233         * throttled again. The difference from wake ups in balance_pgdat() is
3234         * that here we are under prepare_to_wait().
3235         */
3236        if (waitqueue_active(&pgdat->pfmemalloc_wait))
3237                wake_up_all(&pgdat->pfmemalloc_wait);
3238
3239        /* Hopeless node, leave it to direct reclaim */
3240        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3241                return true;
3242
3243        if (pgdat_balanced(pgdat, order, classzone_idx)) {
3244                clear_pgdat_congested(pgdat);
3245                return true;
3246        }
3247
3248        return false;
3249}
3250
3251/*
3252 * kswapd shrinks a node of pages that are at or below the highest usable
3253 * zone that is currently unbalanced.
3254 *
3255 * Returns true if kswapd scanned at least the requested number of pages to
3256 * reclaim or if the lack of progress was due to pages under writeback.
3257 * This is used to determine if the scanning priority needs to be raised.
3258 */
3259static bool kswapd_shrink_node(pg_data_t *pgdat,
3260                               struct scan_control *sc)
3261{
3262        struct zone *zone;
3263        int z;
3264
3265        /* Reclaim a number of pages proportional to the number of zones */
3266        sc->nr_to_reclaim = 0;
3267        for (z = 0; z <= sc->reclaim_idx; z++) {
3268                zone = pgdat->node_zones + z;
3269                if (!managed_zone(zone))
3270                        continue;
3271
3272                sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3273        }
3274
3275        /*
3276         * Historically care was taken to put equal pressure on all zones but
3277         * now pressure is applied based on node LRU order.
3278         */
3279        shrink_node(pgdat, sc);
3280
3281        /*
3282         * Fragmentation may mean that the system cannot be rebalanced for
3283         * high-order allocations. If twice the allocation size has been
3284         * reclaimed then recheck watermarks only at order-0 to prevent
3285         * excessive reclaim. Assume that a process requested a high-order
3286         * can direct reclaim/compact.
3287         */
3288        if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3289                sc->order = 0;
3290
3291        return sc->nr_scanned >= sc->nr_to_reclaim;
3292}
3293
3294/*
3295 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3296 * that are eligible for use by the caller until at least one zone is
3297 * balanced.
3298 *
3299 * Returns the order kswapd finished reclaiming at.
3300 *
3301 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3302 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3303 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3304 * or lower is eligible for reclaim until at least one usable zone is
3305 * balanced.
3306 */
3307static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3308{
3309        int i;
3310        unsigned long nr_soft_reclaimed;
3311        unsigned long nr_soft_scanned;
3312        struct zone *zone;
3313        struct scan_control sc = {
3314                .gfp_mask = GFP_KERNEL,
3315                .order = order,
3316                .priority = DEF_PRIORITY,
3317                .may_writepage = !laptop_mode,
3318                .may_unmap = 1,
3319                .may_swap = 1,
3320        };
3321        count_vm_event(PAGEOUTRUN);
3322
3323        do {
3324                unsigned long nr_reclaimed = sc.nr_reclaimed;
3325                bool raise_priority = true;
3326
3327                sc.reclaim_idx = classzone_idx;
3328
3329                /*
3330                 * If the number of buffer_heads exceeds the maximum allowed
3331                 * then consider reclaiming from all zones. This has a dual
3332                 * purpose -- on 64-bit systems it is expected that
3333                 * buffer_heads are stripped during active rotation. On 32-bit
3334                 * systems, highmem pages can pin lowmem memory and shrinking
3335                 * buffers can relieve lowmem pressure. Reclaim may still not
3336                 * go ahead if all eligible zones for the original allocation
3337                 * request are balanced to avoid excessive reclaim from kswapd.
3338                 */
3339                if (buffer_heads_over_limit) {
3340                        for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3341                                zone = pgdat->node_zones + i;
3342                                if (!managed_zone(zone))
3343                                        continue;
3344
3345                                sc.reclaim_idx = i;
3346                                break;
3347                        }
3348                }
3349
3350                /*
3351                 * Only reclaim if there are no eligible zones. Note that
3352                 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3353                 * have adjusted it.
3354                 */
3355                if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3356                        goto out;
3357
3358                /*
3359                 * Do some background aging of the anon list, to give
3360                 * pages a chance to be referenced before reclaiming. All
3361                 * pages are rotated regardless of classzone as this is
3362                 * about consistent aging.
3363                 */
3364                age_active_anon(pgdat, &sc);
3365
3366                /*
3367                 * If we're getting trouble reclaiming, start doing writepage
3368                 * even in laptop mode.
3369                 */
3370                if (sc.priority < DEF_PRIORITY - 2)
3371                        sc.may_writepage = 1;
3372
3373                /* Call soft limit reclaim before calling shrink_node. */
3374                sc.nr_scanned = 0;
3375                nr_soft_scanned = 0;
3376                nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3377                                                sc.gfp_mask, &nr_soft_scanned);
3378                sc.nr_reclaimed += nr_soft_reclaimed;
3379
3380                /*
3381                 * There should be no need to raise the scanning priority if
3382                 * enough pages are already being scanned that that high
3383                 * watermark would be met at 100% efficiency.
3384                 */
3385                if (kswapd_shrink_node(pgdat, &sc))
3386                        raise_priority = false;
3387
3388                /*
3389                 * If the low watermark is met there is no need for processes
3390                 * to be throttled on pfmemalloc_wait as they should not be
3391                 * able to safely make forward progress. Wake them
3392                 */
3393                if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3394                                allow_direct_reclaim(pgdat))
3395                        wake_up_all(&pgdat->pfmemalloc_wait);
3396
3397                /* Check if kswapd should be suspending */
3398                if (try_to_freeze() || kthread_should_stop())
3399                        break;
3400
3401                /*
3402                 * Raise priority if scanning rate is too low or there was no
3403                 * progress in reclaiming pages
3404                 */
3405                nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3406                if (raise_priority || !nr_reclaimed)
3407                        sc.priority--;
3408        } while (sc.priority >= 1);
3409
3410        if (!sc.nr_reclaimed)
3411                pgdat->kswapd_failures++;
3412
3413out:
3414        snapshot_refaults(NULL, pgdat);
3415        /*
3416         * Return the order kswapd stopped reclaiming at as
3417         * prepare_kswapd_sleep() takes it into account. If another caller
3418         * entered the allocator slow path while kswapd was awake, order will
3419         * remain at the higher level.
3420         */
3421        return sc.order;
3422}
3423
3424/*
3425 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3426 * allocation request woke kswapd for. When kswapd has not woken recently,
3427 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3428 * given classzone and returns it or the highest classzone index kswapd
3429 * was recently woke for.
3430 */
3431static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3432                                           enum zone_type classzone_idx)
3433{
3434        if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3435                return classzone_idx;
3436
3437        return max(pgdat->kswapd_classzone_idx, classzone_idx);
3438}
3439
3440static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3441                                unsigned int classzone_idx)
3442{
3443        long remaining = 0;
3444        DEFINE_WAIT(wait);
3445
3446        if (freezing(current) || kthread_should_stop())
3447                return;
3448
3449        prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3450
3451        /*
3452         * Try to sleep for a short interval. Note that kcompactd will only be
3453         * woken if it is possible to sleep for a short interval. This is
3454         * deliberate on the assumption that if reclaim cannot keep an
3455         * eligible zone balanced that it's also unlikely that compaction will
3456         * succeed.
3457         */
3458        if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3459                /*
3460                 * Compaction records what page blocks it recently failed to
3461                 * isolate pages from and skips them in the future scanning.
3462                 * When kswapd is going to sleep, it is reasonable to assume
3463                 * that pages and compaction may succeed so reset the cache.
3464                 */
3465                reset_isolation_suitable(pgdat);
3466
3467                /*
3468                 * We have freed the memory, now we should compact it to make
3469                 * allocation of the requested order possible.
3470                 */
3471                wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3472
3473                remaining = schedule_timeout(HZ/10);
3474
3475                /*
3476                 * If woken prematurely then reset kswapd_classzone_idx and
3477                 * order. The values will either be from a wakeup request or
3478                 * the previous request that slept prematurely.
3479                 */
3480                if (remaining) {
3481                        pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3482                        pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3483                }
3484
3485                finish_wait(&pgdat->kswapd_wait, &wait);
3486                prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3487        }
3488
3489        /*
3490         * After a short sleep, check if it was a premature sleep. If not, then
3491         * go fully to sleep until explicitly woken up.
3492         */
3493        if (!remaining &&
3494            prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3495                trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3496
3497                /*
3498                 * vmstat counters are not perfectly accurate and the estimated
3499                 * value for counters such as NR_FREE_PAGES can deviate from the
3500                 * true value by nr_online_cpus * threshold. To avoid the zone
3501                 * watermarks being breached while under pressure, we reduce the
3502                 * per-cpu vmstat threshold while kswapd is awake and restore
3503                 * them before going back to sleep.
3504                 */
3505                set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3506
3507                if (!kthread_should_stop())
3508                        schedule();
3509
3510                set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3511        } else {
3512                if (remaining)
3513                        count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3514                else
3515                        count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3516        }
3517        finish_wait(&pgdat->kswapd_wait, &wait);
3518}
3519
3520/*
3521 * The background pageout daemon, started as a kernel thread
3522 * from the init process.
3523 *
3524 * This basically trickles out pages so that we have _some_
3525 * free memory available even if there is no other activity
3526 * that frees anything up. This is needed for things like routing
3527 * etc, where we otherwise might have all activity going on in
3528 * asynchronous contexts that cannot page things out.
3529 *
3530 * If there are applications that are active memory-allocators
3531 * (most normal use), this basically shouldn't matter.
3532 */
3533static int kswapd(void *p)
3534{
3535        unsigned int alloc_order, reclaim_order;
3536        unsigned int classzone_idx = MAX_NR_ZONES - 1;
3537        pg_data_t *pgdat = (pg_data_t*)p;
3538        struct task_struct *tsk = current;
3539
3540        struct reclaim_state reclaim_state = {
3541                .reclaimed_slab = 0,
3542        };
3543        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3544
3545        if (!cpumask_empty(cpumask))
3546                set_cpus_allowed_ptr(tsk, cpumask);
3547        current->reclaim_state = &reclaim_state;
3548
3549        /*
3550         * Tell the memory management that we're a "memory allocator",
3551         * and that if we need more memory we should get access to it
3552         * regardless (see "__alloc_pages()"). "kswapd" should
3553         * never get caught in the normal page freeing logic.
3554         *
3555         * (Kswapd normally doesn't need memory anyway, but sometimes
3556         * you need a small amount of memory in order to be able to
3557         * page out something else, and this flag essentially protects
3558         * us from recursively trying to free more memory as we're
3559         * trying to free the first piece of memory in the first place).
3560         */
3561        tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3562        set_freezable();
3563
3564        pgdat->kswapd_order = 0;
3565        pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3566        for ( ; ; ) {
3567                bool ret;
3568
3569                alloc_order = reclaim_order = pgdat->kswapd_order;
3570                classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3571
3572kswapd_try_sleep:
3573                kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3574                                        classzone_idx);
3575
3576                /* Read the new order and classzone_idx */
3577                alloc_order = reclaim_order = pgdat->kswapd_order;
3578                classzone_idx = kswapd_classzone_idx(pgdat, 0);
3579                pgdat->kswapd_order = 0;
3580                pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3581
3582                ret = try_to_freeze();
3583                if (kthread_should_stop())
3584                        break;
3585
3586                /*
3587                 * We can speed up thawing tasks if we don't call balance_pgdat
3588                 * after returning from the refrigerator
3589                 */
3590                if (ret)
3591                        continue;
3592
3593                /*
3594                 * Reclaim begins at the requested order but if a high-order
3595                 * reclaim fails then kswapd falls back to reclaiming for
3596                 * order-0. If that happens, kswapd will consider sleeping
3597                 * for the order it finished reclaiming at (reclaim_order)
3598                 * but kcompactd is woken to compact for the original
3599                 * request (alloc_order).
3600                 */
3601                trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3602                                                alloc_order);
3603                fs_reclaim_acquire(GFP_KERNEL);
3604                reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3605                fs_reclaim_release(GFP_KERNEL);
3606                if (reclaim_order < alloc_order)
3607                        goto kswapd_try_sleep;
3608        }
3609
3610        tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3611        current->reclaim_state = NULL;
3612
3613        return 0;
3614}
3615
3616/*
3617 * A zone is low on free memory or too fragmented for high-order memory.  If
3618 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3619 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3620 * has failed or is not needed, still wake up kcompactd if only compaction is
3621 * needed.
3622 */
3623void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3624                   enum zone_type classzone_idx)
3625{
3626        pg_data_t *pgdat;
3627
3628        if (!managed_zone(zone))
3629                return;
3630
3631        if (!cpuset_zone_allowed(zone, gfp_flags))
3632                return;
3633        pgdat = zone->zone_pgdat;
3634        pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3635                                                           classzone_idx);
3636        pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3637        if (!waitqueue_active(&pgdat->kswapd_wait))
3638                return;
3639
3640        /* Hopeless node, leave it to direct reclaim if possible */
3641        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3642            pgdat_balanced(pgdat, order, classzone_idx)) {
3643                /*
3644                 * There may be plenty of free memory available, but it's too
3645                 * fragmented for high-order allocations.  Wake up kcompactd
3646                 * and rely on compaction_suitable() to determine if it's
3647                 * needed.  If it fails, it will defer subsequent attempts to
3648                 * ratelimit its work.
3649                 */
3650                if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3651                        wakeup_kcompactd(pgdat, order, classzone_idx);
3652                return;
3653        }
3654
3655        trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3656                                      gfp_flags);
3657        wake_up_interruptible(&pgdat->kswapd_wait);
3658}
3659
3660#ifdef CONFIG_HIBERNATION
3661/*
3662 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3663 * freed pages.
3664 *
3665 * Rather than trying to age LRUs the aim is to preserve the overall
3666 * LRU order by reclaiming preferentially
3667 * inactive > active > active referenced > active mapped
3668 */
3669unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3670{
3671        struct reclaim_state reclaim_state;
3672        struct scan_control sc = {
3673                .nr_to_reclaim = nr_to_reclaim,
3674                .gfp_mask = GFP_HIGHUSER_MOVABLE,
3675                .reclaim_idx = MAX_NR_ZONES - 1,
3676                .priority = DEF_PRIORITY,
3677                .may_writepage = 1,
3678                .may_unmap = 1,
3679                .may_swap = 1,
3680                .hibernation_mode = 1,
3681        };
3682        struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3683        struct task_struct *p = current;
3684        unsigned long nr_reclaimed;
3685        unsigned int noreclaim_flag;
3686
3687        noreclaim_flag = memalloc_noreclaim_save();
3688        fs_reclaim_acquire(sc.gfp_mask);
3689        reclaim_state.reclaimed_slab = 0;
3690        p->reclaim_state = &reclaim_state;
3691
3692        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3693
3694        p->reclaim_state = NULL;
3695        fs_reclaim_release(sc.gfp_mask);
3696        memalloc_noreclaim_restore(noreclaim_flag);
3697
3698        return nr_reclaimed;
3699}
3700#endif /* CONFIG_HIBERNATION */
3701
3702/* It's optimal to keep kswapds on the same CPUs as their memory, but
3703   not required for correctness.  So if the last cpu in a node goes
3704   away, we get changed to run anywhere: as the first one comes back,
3705   restore their cpu bindings. */
3706static int kswapd_cpu_online(unsigned int cpu)
3707{
3708        int nid;
3709
3710        for_each_node_state(nid, N_MEMORY) {
3711                pg_data_t *pgdat = NODE_DATA(nid);
3712                const struct cpumask *mask;
3713
3714                mask = cpumask_of_node(pgdat->node_id);
3715
3716                if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3717                        /* One of our CPUs online: restore mask */
3718                        set_cpus_allowed_ptr(pgdat->kswapd, mask);
3719        }
3720        return 0;
3721}
3722
3723/*
3724 * This kswapd start function will be called by init and node-hot-add.
3725 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3726 */
3727int kswapd_run(int nid)
3728{
3729        pg_data_t *pgdat = NODE_DATA(nid);
3730        int ret = 0;
3731
3732        if (pgdat->kswapd)
3733                return 0;
3734
3735        pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3736        if (IS_ERR(pgdat->kswapd)) {
3737                /* failure at boot is fatal */
3738                BUG_ON(system_state < SYSTEM_RUNNING);
3739                pr_err("Failed to start kswapd on node %d\n", nid);
3740                ret = PTR_ERR(pgdat->kswapd);
3741                pgdat->kswapd = NULL;
3742        }
3743        return ret;
3744}
3745
3746/*
3747 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3748 * hold mem_hotplug_begin/end().
3749 */
3750void kswapd_stop(int nid)
3751{
3752        struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3753
3754        if (kswapd) {
3755                kthread_stop(kswapd);
3756                NODE_DATA(nid)->kswapd = NULL;
3757        }
3758}
3759
3760static int __init kswapd_init(void)
3761{
3762        int nid, ret;
3763
3764        swap_setup();
3765        for_each_node_state(nid, N_MEMORY)
3766                kswapd_run(nid);
3767        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3768                                        "mm/vmscan:online", kswapd_cpu_online,
3769                                        NULL);
3770        WARN_ON(ret < 0);
3771        return 0;
3772}
3773
3774module_init(kswapd_init)
3775
3776#ifdef CONFIG_NUMA
3777/*
3778 * Node reclaim mode
3779 *
3780 * If non-zero call node_reclaim when the number of free pages falls below
3781 * the watermarks.
3782 */
3783int node_reclaim_mode __read_mostly;
3784
3785#define RECLAIM_OFF 0
3786#define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3787#define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3788#define RECLAIM_UNMAP (1<<2)    /* Unmap pages during reclaim */
3789
3790/*
3791 * Priority for NODE_RECLAIM. This determines the fraction of pages
3792 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3793 * a zone.
3794 */
3795#define NODE_RECLAIM_PRIORITY 4
3796
3797/*
3798 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3799 * occur.
3800 */
3801int sysctl_min_unmapped_ratio = 1;
3802
3803/*
3804 * If the number of slab pages in a zone grows beyond this percentage then
3805 * slab reclaim needs to occur.
3806 */
3807int sysctl_min_slab_ratio = 5;
3808
3809static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3810{
3811        unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3812        unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3813                node_page_state(pgdat, NR_ACTIVE_FILE);
3814
3815        /*
3816         * It's possible for there to be more file mapped pages than
3817         * accounted for by the pages on the file LRU lists because
3818         * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3819         */
3820        return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3821}
3822
3823/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3824static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3825{
3826        unsigned long nr_pagecache_reclaimable;
3827        unsigned long delta = 0;
3828
3829        /*
3830         * If RECLAIM_UNMAP is set, then all file pages are considered
3831         * potentially reclaimable. Otherwise, we have to worry about
3832         * pages like swapcache and node_unmapped_file_pages() provides
3833         * a better estimate
3834         */
3835        if (node_reclaim_mode & RECLAIM_UNMAP)
3836                nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3837        else
3838                nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3839
3840        /* If we can't clean pages, remove dirty pages from consideration */
3841        if (!(node_reclaim_mode & RECLAIM_WRITE))
3842                delta += node_page_state(pgdat, NR_FILE_DIRTY);
3843
3844        /* Watch for any possible underflows due to delta */
3845        if (unlikely(delta > nr_pagecache_reclaimable))
3846                delta = nr_pagecache_reclaimable;
3847
3848        return nr_pagecache_reclaimable - delta;
3849}
3850
3851/*
3852 * Try to free up some pages from this node through reclaim.
3853 */
3854static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3855{
3856        /* Minimum pages needed in order to stay on node */
3857        const unsigned long nr_pages = 1 << order;
3858        struct task_struct *p = current;
3859        struct reclaim_state reclaim_state;
3860        unsigned int noreclaim_flag;
3861        struct scan_control sc = {
3862                .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3863                .gfp_mask = current_gfp_context(gfp_mask),
3864                .order = order,
3865                .priority = NODE_RECLAIM_PRIORITY,
3866                .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3867                .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3868                .may_swap = 1,
3869                .reclaim_idx = gfp_zone(gfp_mask),
3870        };
3871
3872        cond_resched();
3873        /*
3874         * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3875         * and we also need to be able to write out pages for RECLAIM_WRITE
3876         * and RECLAIM_UNMAP.
3877         */
3878        noreclaim_flag = memalloc_noreclaim_save();
3879        p->flags |= PF_SWAPWRITE;
3880        fs_reclaim_acquire(sc.gfp_mask);
3881        reclaim_state.reclaimed_slab = 0;
3882        p->reclaim_state = &reclaim_state;
3883
3884        if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3885                /*
3886                 * Free memory by calling shrink node with increasing
3887                 * priorities until we have enough memory freed.
3888                 */
3889                do {
3890                        shrink_node(pgdat, &sc);
3891                } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3892        }
3893
3894        p->reclaim_state = NULL;
3895        fs_reclaim_release(gfp_mask);
3896        current->flags &= ~PF_SWAPWRITE;
3897        memalloc_noreclaim_restore(noreclaim_flag);
3898        return sc.nr_reclaimed >= nr_pages;
3899}
3900
3901int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3902{
3903        int ret;
3904
3905        /*
3906         * Node reclaim reclaims unmapped file backed pages and
3907         * slab pages if we are over the defined limits.
3908         *
3909         * A small portion of unmapped file backed pages is needed for
3910         * file I/O otherwise pages read by file I/O will be immediately
3911         * thrown out if the node is overallocated. So we do not reclaim
3912         * if less than a specified percentage of the node is used by
3913         * unmapped file backed pages.
3914         */
3915        if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3916            node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3917                return NODE_RECLAIM_FULL;
3918
3919        /*
3920         * Do not scan if the allocation should not be delayed.
3921         */
3922        if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3923                return NODE_RECLAIM_NOSCAN;
3924
3925        /*
3926         * Only run node reclaim on the local node or on nodes that do not
3927         * have associated processors. This will favor the local processor
3928         * over remote processors and spread off node memory allocations
3929         * as wide as possible.
3930         */
3931        if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3932                return NODE_RECLAIM_NOSCAN;
3933
3934        if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3935                return NODE_RECLAIM_NOSCAN;
3936
3937        ret = __node_reclaim(pgdat, gfp_mask, order);
3938        clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3939
3940        if (!ret)
3941                count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3942
3943        return ret;
3944}
3945#endif
3946
3947/*
3948 * page_evictable - test whether a page is evictable
3949 * @page: the page to test
3950 *
3951 * Test whether page is evictable--i.e., should be placed on active/inactive
3952 * lists vs unevictable list.
3953 *
3954 * Reasons page might not be evictable:
3955 * (1) page's mapping marked unevictable
3956 * (2) page is part of an mlocked VMA
3957 *
3958 */
3959int page_evictable(struct page *page)
3960{
3961        int ret;
3962
3963        /* Prevent address_space of inode and swap cache from being freed */
3964        rcu_read_lock();
3965        ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3966        rcu_read_unlock();
3967        return ret;
3968}
3969
3970#ifdef CONFIG_SHMEM
3971/**
3972 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3973 * @pages:      array of pages to check
3974 * @nr_pages:   number of pages to check
3975 *
3976 * Checks pages for evictability and moves them to the appropriate lru list.
3977 *
3978 * This function is only used for SysV IPC SHM_UNLOCK.
3979 */
3980void check_move_unevictable_pages(struct page **pages, int nr_pages)
3981{
3982        struct lruvec *lruvec;
3983        struct pglist_data *pgdat = NULL;
3984        int pgscanned = 0;
3985        int pgrescued = 0;
3986        int i;
3987
3988        for (i = 0; i < nr_pages; i++) {
3989                struct page *page = pages[i];
3990                struct pglist_data *pagepgdat = page_pgdat(page);
3991
3992                pgscanned++;
3993                if (pagepgdat != pgdat) {
3994                        if (pgdat)
3995                                spin_unlock_irq(&pgdat->lru_lock);
3996                        pgdat = pagepgdat;
3997                        spin_lock_irq(&pgdat->lru_lock);
3998                }
3999                lruvec = mem_cgroup_page_lruvec(page, pgdat);
4000
4001                if (!PageLRU(page) || !PageUnevictable(page))
4002                        continue;
4003
4004                if (page_evictable(page)) {
4005                        enum lru_list lru = page_lru_base_type(page);
4006
4007                        VM_BUG_ON_PAGE(PageActive(page), page);
4008                        ClearPageUnevictable(page);
4009                        del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4010                        add_page_to_lru_list(page, lruvec, lru);
4011                        pgrescued++;
4012                }
4013        }
4014
4015        if (pgdat) {
4016                __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4017                __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4018                spin_unlock_irq(&pgdat->lru_lock);
4019        }
4020}
4021#endif /* CONFIG_SHMEM */
4022