linux/mm/vmstat.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmstat.c
   3 *
   4 *  Manages VM statistics
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  zoned VM statistics
   8 *  Copyright (C) 2006 Silicon Graphics, Inc.,
   9 *              Christoph Lameter <christoph@lameter.com>
  10 *  Copyright (C) 2008-2014 Christoph Lameter
  11 */
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/err.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/cpu.h>
  18#include <linux/cpumask.h>
  19#include <linux/vmstat.h>
  20#include <linux/proc_fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/debugfs.h>
  23#include <linux/sched.h>
  24#include <linux/math64.h>
  25#include <linux/writeback.h>
  26#include <linux/compaction.h>
  27#include <linux/mm_inline.h>
  28#include <linux/page_ext.h>
  29#include <linux/page_owner.h>
  30
  31#include "internal.h"
  32
  33#define NUMA_STATS_THRESHOLD (U16_MAX - 2)
  34
  35#ifdef CONFIG_NUMA
  36int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
  37
  38/* zero numa counters within a zone */
  39static void zero_zone_numa_counters(struct zone *zone)
  40{
  41        int item, cpu;
  42
  43        for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
  44                atomic_long_set(&zone->vm_numa_stat[item], 0);
  45                for_each_online_cpu(cpu)
  46                        per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
  47                                                = 0;
  48        }
  49}
  50
  51/* zero numa counters of all the populated zones */
  52static void zero_zones_numa_counters(void)
  53{
  54        struct zone *zone;
  55
  56        for_each_populated_zone(zone)
  57                zero_zone_numa_counters(zone);
  58}
  59
  60/* zero global numa counters */
  61static void zero_global_numa_counters(void)
  62{
  63        int item;
  64
  65        for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
  66                atomic_long_set(&vm_numa_stat[item], 0);
  67}
  68
  69static void invalid_numa_statistics(void)
  70{
  71        zero_zones_numa_counters();
  72        zero_global_numa_counters();
  73}
  74
  75static DEFINE_MUTEX(vm_numa_stat_lock);
  76
  77int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
  78                void __user *buffer, size_t *length, loff_t *ppos)
  79{
  80        int ret, oldval;
  81
  82        mutex_lock(&vm_numa_stat_lock);
  83        if (write)
  84                oldval = sysctl_vm_numa_stat;
  85        ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  86        if (ret || !write)
  87                goto out;
  88
  89        if (oldval == sysctl_vm_numa_stat)
  90                goto out;
  91        else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
  92                static_branch_enable(&vm_numa_stat_key);
  93                pr_info("enable numa statistics\n");
  94        } else {
  95                static_branch_disable(&vm_numa_stat_key);
  96                invalid_numa_statistics();
  97                pr_info("disable numa statistics, and clear numa counters\n");
  98        }
  99
 100out:
 101        mutex_unlock(&vm_numa_stat_lock);
 102        return ret;
 103}
 104#endif
 105
 106#ifdef CONFIG_VM_EVENT_COUNTERS
 107DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
 108EXPORT_PER_CPU_SYMBOL(vm_event_states);
 109
 110static void sum_vm_events(unsigned long *ret)
 111{
 112        int cpu;
 113        int i;
 114
 115        memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
 116
 117        for_each_online_cpu(cpu) {
 118                struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
 119
 120                for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
 121                        ret[i] += this->event[i];
 122        }
 123}
 124
 125/*
 126 * Accumulate the vm event counters across all CPUs.
 127 * The result is unavoidably approximate - it can change
 128 * during and after execution of this function.
 129*/
 130void all_vm_events(unsigned long *ret)
 131{
 132        get_online_cpus();
 133        sum_vm_events(ret);
 134        put_online_cpus();
 135}
 136EXPORT_SYMBOL_GPL(all_vm_events);
 137
 138/*
 139 * Fold the foreign cpu events into our own.
 140 *
 141 * This is adding to the events on one processor
 142 * but keeps the global counts constant.
 143 */
 144void vm_events_fold_cpu(int cpu)
 145{
 146        struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
 147        int i;
 148
 149        for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
 150                count_vm_events(i, fold_state->event[i]);
 151                fold_state->event[i] = 0;
 152        }
 153}
 154
 155#endif /* CONFIG_VM_EVENT_COUNTERS */
 156
 157/*
 158 * Manage combined zone based / global counters
 159 *
 160 * vm_stat contains the global counters
 161 */
 162atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
 163atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
 164atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
 165EXPORT_SYMBOL(vm_zone_stat);
 166EXPORT_SYMBOL(vm_numa_stat);
 167EXPORT_SYMBOL(vm_node_stat);
 168
 169#ifdef CONFIG_SMP
 170
 171int calculate_pressure_threshold(struct zone *zone)
 172{
 173        int threshold;
 174        int watermark_distance;
 175
 176        /*
 177         * As vmstats are not up to date, there is drift between the estimated
 178         * and real values. For high thresholds and a high number of CPUs, it
 179         * is possible for the min watermark to be breached while the estimated
 180         * value looks fine. The pressure threshold is a reduced value such
 181         * that even the maximum amount of drift will not accidentally breach
 182         * the min watermark
 183         */
 184        watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
 185        threshold = max(1, (int)(watermark_distance / num_online_cpus()));
 186
 187        /*
 188         * Maximum threshold is 125
 189         */
 190        threshold = min(125, threshold);
 191
 192        return threshold;
 193}
 194
 195int calculate_normal_threshold(struct zone *zone)
 196{
 197        int threshold;
 198        int mem;        /* memory in 128 MB units */
 199
 200        /*
 201         * The threshold scales with the number of processors and the amount
 202         * of memory per zone. More memory means that we can defer updates for
 203         * longer, more processors could lead to more contention.
 204         * fls() is used to have a cheap way of logarithmic scaling.
 205         *
 206         * Some sample thresholds:
 207         *
 208         * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
 209         * ------------------------------------------------------------------
 210         * 8            1               1       0.9-1 GB        4
 211         * 16           2               2       0.9-1 GB        4
 212         * 20           2               2       1-2 GB          5
 213         * 24           2               2       2-4 GB          6
 214         * 28           2               2       4-8 GB          7
 215         * 32           2               2       8-16 GB         8
 216         * 4            2               2       <128M           1
 217         * 30           4               3       2-4 GB          5
 218         * 48           4               3       8-16 GB         8
 219         * 32           8               4       1-2 GB          4
 220         * 32           8               4       0.9-1GB         4
 221         * 10           16              5       <128M           1
 222         * 40           16              5       900M            4
 223         * 70           64              7       2-4 GB          5
 224         * 84           64              7       4-8 GB          6
 225         * 108          512             9       4-8 GB          6
 226         * 125          1024            10      8-16 GB         8
 227         * 125          1024            10      16-32 GB        9
 228         */
 229
 230        mem = zone->managed_pages >> (27 - PAGE_SHIFT);
 231
 232        threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
 233
 234        /*
 235         * Maximum threshold is 125
 236         */
 237        threshold = min(125, threshold);
 238
 239        return threshold;
 240}
 241
 242/*
 243 * Refresh the thresholds for each zone.
 244 */
 245void refresh_zone_stat_thresholds(void)
 246{
 247        struct pglist_data *pgdat;
 248        struct zone *zone;
 249        int cpu;
 250        int threshold;
 251
 252        /* Zero current pgdat thresholds */
 253        for_each_online_pgdat(pgdat) {
 254                for_each_online_cpu(cpu) {
 255                        per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
 256                }
 257        }
 258
 259        for_each_populated_zone(zone) {
 260                struct pglist_data *pgdat = zone->zone_pgdat;
 261                unsigned long max_drift, tolerate_drift;
 262
 263                threshold = calculate_normal_threshold(zone);
 264
 265                for_each_online_cpu(cpu) {
 266                        int pgdat_threshold;
 267
 268                        per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 269                                                        = threshold;
 270
 271                        /* Base nodestat threshold on the largest populated zone. */
 272                        pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
 273                        per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
 274                                = max(threshold, pgdat_threshold);
 275                }
 276
 277                /*
 278                 * Only set percpu_drift_mark if there is a danger that
 279                 * NR_FREE_PAGES reports the low watermark is ok when in fact
 280                 * the min watermark could be breached by an allocation
 281                 */
 282                tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
 283                max_drift = num_online_cpus() * threshold;
 284                if (max_drift > tolerate_drift)
 285                        zone->percpu_drift_mark = high_wmark_pages(zone) +
 286                                        max_drift;
 287        }
 288}
 289
 290void set_pgdat_percpu_threshold(pg_data_t *pgdat,
 291                                int (*calculate_pressure)(struct zone *))
 292{
 293        struct zone *zone;
 294        int cpu;
 295        int threshold;
 296        int i;
 297
 298        for (i = 0; i < pgdat->nr_zones; i++) {
 299                zone = &pgdat->node_zones[i];
 300                if (!zone->percpu_drift_mark)
 301                        continue;
 302
 303                threshold = (*calculate_pressure)(zone);
 304                for_each_online_cpu(cpu)
 305                        per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 306                                                        = threshold;
 307        }
 308}
 309
 310/*
 311 * For use when we know that interrupts are disabled,
 312 * or when we know that preemption is disabled and that
 313 * particular counter cannot be updated from interrupt context.
 314 */
 315void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 316                           long delta)
 317{
 318        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 319        s8 __percpu *p = pcp->vm_stat_diff + item;
 320        long x;
 321        long t;
 322
 323        x = delta + __this_cpu_read(*p);
 324
 325        t = __this_cpu_read(pcp->stat_threshold);
 326
 327        if (unlikely(x > t || x < -t)) {
 328                zone_page_state_add(x, zone, item);
 329                x = 0;
 330        }
 331        __this_cpu_write(*p, x);
 332}
 333EXPORT_SYMBOL(__mod_zone_page_state);
 334
 335void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 336                                long delta)
 337{
 338        struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 339        s8 __percpu *p = pcp->vm_node_stat_diff + item;
 340        long x;
 341        long t;
 342
 343        x = delta + __this_cpu_read(*p);
 344
 345        t = __this_cpu_read(pcp->stat_threshold);
 346
 347        if (unlikely(x > t || x < -t)) {
 348                node_page_state_add(x, pgdat, item);
 349                x = 0;
 350        }
 351        __this_cpu_write(*p, x);
 352}
 353EXPORT_SYMBOL(__mod_node_page_state);
 354
 355/*
 356 * Optimized increment and decrement functions.
 357 *
 358 * These are only for a single page and therefore can take a struct page *
 359 * argument instead of struct zone *. This allows the inclusion of the code
 360 * generated for page_zone(page) into the optimized functions.
 361 *
 362 * No overflow check is necessary and therefore the differential can be
 363 * incremented or decremented in place which may allow the compilers to
 364 * generate better code.
 365 * The increment or decrement is known and therefore one boundary check can
 366 * be omitted.
 367 *
 368 * NOTE: These functions are very performance sensitive. Change only
 369 * with care.
 370 *
 371 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 372 * However, the code must first determine the differential location in a zone
 373 * based on the processor number and then inc/dec the counter. There is no
 374 * guarantee without disabling preemption that the processor will not change
 375 * in between and therefore the atomicity vs. interrupt cannot be exploited
 376 * in a useful way here.
 377 */
 378void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
 379{
 380        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 381        s8 __percpu *p = pcp->vm_stat_diff + item;
 382        s8 v, t;
 383
 384        v = __this_cpu_inc_return(*p);
 385        t = __this_cpu_read(pcp->stat_threshold);
 386        if (unlikely(v > t)) {
 387                s8 overstep = t >> 1;
 388
 389                zone_page_state_add(v + overstep, zone, item);
 390                __this_cpu_write(*p, -overstep);
 391        }
 392}
 393
 394void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 395{
 396        struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 397        s8 __percpu *p = pcp->vm_node_stat_diff + item;
 398        s8 v, t;
 399
 400        v = __this_cpu_inc_return(*p);
 401        t = __this_cpu_read(pcp->stat_threshold);
 402        if (unlikely(v > t)) {
 403                s8 overstep = t >> 1;
 404
 405                node_page_state_add(v + overstep, pgdat, item);
 406                __this_cpu_write(*p, -overstep);
 407        }
 408}
 409
 410void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
 411{
 412        __inc_zone_state(page_zone(page), item);
 413}
 414EXPORT_SYMBOL(__inc_zone_page_state);
 415
 416void __inc_node_page_state(struct page *page, enum node_stat_item item)
 417{
 418        __inc_node_state(page_pgdat(page), item);
 419}
 420EXPORT_SYMBOL(__inc_node_page_state);
 421
 422void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
 423{
 424        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 425        s8 __percpu *p = pcp->vm_stat_diff + item;
 426        s8 v, t;
 427
 428        v = __this_cpu_dec_return(*p);
 429        t = __this_cpu_read(pcp->stat_threshold);
 430        if (unlikely(v < - t)) {
 431                s8 overstep = t >> 1;
 432
 433                zone_page_state_add(v - overstep, zone, item);
 434                __this_cpu_write(*p, overstep);
 435        }
 436}
 437
 438void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 439{
 440        struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 441        s8 __percpu *p = pcp->vm_node_stat_diff + item;
 442        s8 v, t;
 443
 444        v = __this_cpu_dec_return(*p);
 445        t = __this_cpu_read(pcp->stat_threshold);
 446        if (unlikely(v < - t)) {
 447                s8 overstep = t >> 1;
 448
 449                node_page_state_add(v - overstep, pgdat, item);
 450                __this_cpu_write(*p, overstep);
 451        }
 452}
 453
 454void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
 455{
 456        __dec_zone_state(page_zone(page), item);
 457}
 458EXPORT_SYMBOL(__dec_zone_page_state);
 459
 460void __dec_node_page_state(struct page *page, enum node_stat_item item)
 461{
 462        __dec_node_state(page_pgdat(page), item);
 463}
 464EXPORT_SYMBOL(__dec_node_page_state);
 465
 466#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
 467/*
 468 * If we have cmpxchg_local support then we do not need to incur the overhead
 469 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 470 *
 471 * mod_state() modifies the zone counter state through atomic per cpu
 472 * operations.
 473 *
 474 * Overstep mode specifies how overstep should handled:
 475 *     0       No overstepping
 476 *     1       Overstepping half of threshold
 477 *     -1      Overstepping minus half of threshold
 478*/
 479static inline void mod_zone_state(struct zone *zone,
 480       enum zone_stat_item item, long delta, int overstep_mode)
 481{
 482        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 483        s8 __percpu *p = pcp->vm_stat_diff + item;
 484        long o, n, t, z;
 485
 486        do {
 487                z = 0;  /* overflow to zone counters */
 488
 489                /*
 490                 * The fetching of the stat_threshold is racy. We may apply
 491                 * a counter threshold to the wrong the cpu if we get
 492                 * rescheduled while executing here. However, the next
 493                 * counter update will apply the threshold again and
 494                 * therefore bring the counter under the threshold again.
 495                 *
 496                 * Most of the time the thresholds are the same anyways
 497                 * for all cpus in a zone.
 498                 */
 499                t = this_cpu_read(pcp->stat_threshold);
 500
 501                o = this_cpu_read(*p);
 502                n = delta + o;
 503
 504                if (n > t || n < -t) {
 505                        int os = overstep_mode * (t >> 1) ;
 506
 507                        /* Overflow must be added to zone counters */
 508                        z = n + os;
 509                        n = -os;
 510                }
 511        } while (this_cpu_cmpxchg(*p, o, n) != o);
 512
 513        if (z)
 514                zone_page_state_add(z, zone, item);
 515}
 516
 517void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 518                         long delta)
 519{
 520        mod_zone_state(zone, item, delta, 0);
 521}
 522EXPORT_SYMBOL(mod_zone_page_state);
 523
 524void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 525{
 526        mod_zone_state(page_zone(page), item, 1, 1);
 527}
 528EXPORT_SYMBOL(inc_zone_page_state);
 529
 530void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 531{
 532        mod_zone_state(page_zone(page), item, -1, -1);
 533}
 534EXPORT_SYMBOL(dec_zone_page_state);
 535
 536static inline void mod_node_state(struct pglist_data *pgdat,
 537       enum node_stat_item item, int delta, int overstep_mode)
 538{
 539        struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 540        s8 __percpu *p = pcp->vm_node_stat_diff + item;
 541        long o, n, t, z;
 542
 543        do {
 544                z = 0;  /* overflow to node counters */
 545
 546                /*
 547                 * The fetching of the stat_threshold is racy. We may apply
 548                 * a counter threshold to the wrong the cpu if we get
 549                 * rescheduled while executing here. However, the next
 550                 * counter update will apply the threshold again and
 551                 * therefore bring the counter under the threshold again.
 552                 *
 553                 * Most of the time the thresholds are the same anyways
 554                 * for all cpus in a node.
 555                 */
 556                t = this_cpu_read(pcp->stat_threshold);
 557
 558                o = this_cpu_read(*p);
 559                n = delta + o;
 560
 561                if (n > t || n < -t) {
 562                        int os = overstep_mode * (t >> 1) ;
 563
 564                        /* Overflow must be added to node counters */
 565                        z = n + os;
 566                        n = -os;
 567                }
 568        } while (this_cpu_cmpxchg(*p, o, n) != o);
 569
 570        if (z)
 571                node_page_state_add(z, pgdat, item);
 572}
 573
 574void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 575                                        long delta)
 576{
 577        mod_node_state(pgdat, item, delta, 0);
 578}
 579EXPORT_SYMBOL(mod_node_page_state);
 580
 581void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 582{
 583        mod_node_state(pgdat, item, 1, 1);
 584}
 585
 586void inc_node_page_state(struct page *page, enum node_stat_item item)
 587{
 588        mod_node_state(page_pgdat(page), item, 1, 1);
 589}
 590EXPORT_SYMBOL(inc_node_page_state);
 591
 592void dec_node_page_state(struct page *page, enum node_stat_item item)
 593{
 594        mod_node_state(page_pgdat(page), item, -1, -1);
 595}
 596EXPORT_SYMBOL(dec_node_page_state);
 597#else
 598/*
 599 * Use interrupt disable to serialize counter updates
 600 */
 601void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 602                         long delta)
 603{
 604        unsigned long flags;
 605
 606        local_irq_save(flags);
 607        __mod_zone_page_state(zone, item, delta);
 608        local_irq_restore(flags);
 609}
 610EXPORT_SYMBOL(mod_zone_page_state);
 611
 612void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 613{
 614        unsigned long flags;
 615        struct zone *zone;
 616
 617        zone = page_zone(page);
 618        local_irq_save(flags);
 619        __inc_zone_state(zone, item);
 620        local_irq_restore(flags);
 621}
 622EXPORT_SYMBOL(inc_zone_page_state);
 623
 624void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 625{
 626        unsigned long flags;
 627
 628        local_irq_save(flags);
 629        __dec_zone_page_state(page, item);
 630        local_irq_restore(flags);
 631}
 632EXPORT_SYMBOL(dec_zone_page_state);
 633
 634void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 635{
 636        unsigned long flags;
 637
 638        local_irq_save(flags);
 639        __inc_node_state(pgdat, item);
 640        local_irq_restore(flags);
 641}
 642EXPORT_SYMBOL(inc_node_state);
 643
 644void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 645                                        long delta)
 646{
 647        unsigned long flags;
 648
 649        local_irq_save(flags);
 650        __mod_node_page_state(pgdat, item, delta);
 651        local_irq_restore(flags);
 652}
 653EXPORT_SYMBOL(mod_node_page_state);
 654
 655void inc_node_page_state(struct page *page, enum node_stat_item item)
 656{
 657        unsigned long flags;
 658        struct pglist_data *pgdat;
 659
 660        pgdat = page_pgdat(page);
 661        local_irq_save(flags);
 662        __inc_node_state(pgdat, item);
 663        local_irq_restore(flags);
 664}
 665EXPORT_SYMBOL(inc_node_page_state);
 666
 667void dec_node_page_state(struct page *page, enum node_stat_item item)
 668{
 669        unsigned long flags;
 670
 671        local_irq_save(flags);
 672        __dec_node_page_state(page, item);
 673        local_irq_restore(flags);
 674}
 675EXPORT_SYMBOL(dec_node_page_state);
 676#endif
 677
 678/*
 679 * Fold a differential into the global counters.
 680 * Returns the number of counters updated.
 681 */
 682#ifdef CONFIG_NUMA
 683static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
 684{
 685        int i;
 686        int changes = 0;
 687
 688        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 689                if (zone_diff[i]) {
 690                        atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
 691                        changes++;
 692        }
 693
 694        for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
 695                if (numa_diff[i]) {
 696                        atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
 697                        changes++;
 698        }
 699
 700        for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 701                if (node_diff[i]) {
 702                        atomic_long_add(node_diff[i], &vm_node_stat[i]);
 703                        changes++;
 704        }
 705        return changes;
 706}
 707#else
 708static int fold_diff(int *zone_diff, int *node_diff)
 709{
 710        int i;
 711        int changes = 0;
 712
 713        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 714                if (zone_diff[i]) {
 715                        atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
 716                        changes++;
 717        }
 718
 719        for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 720                if (node_diff[i]) {
 721                        atomic_long_add(node_diff[i], &vm_node_stat[i]);
 722                        changes++;
 723        }
 724        return changes;
 725}
 726#endif /* CONFIG_NUMA */
 727
 728/*
 729 * Update the zone counters for the current cpu.
 730 *
 731 * Note that refresh_cpu_vm_stats strives to only access
 732 * node local memory. The per cpu pagesets on remote zones are placed
 733 * in the memory local to the processor using that pageset. So the
 734 * loop over all zones will access a series of cachelines local to
 735 * the processor.
 736 *
 737 * The call to zone_page_state_add updates the cachelines with the
 738 * statistics in the remote zone struct as well as the global cachelines
 739 * with the global counters. These could cause remote node cache line
 740 * bouncing and will have to be only done when necessary.
 741 *
 742 * The function returns the number of global counters updated.
 743 */
 744static int refresh_cpu_vm_stats(bool do_pagesets)
 745{
 746        struct pglist_data *pgdat;
 747        struct zone *zone;
 748        int i;
 749        int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 750#ifdef CONFIG_NUMA
 751        int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
 752#endif
 753        int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
 754        int changes = 0;
 755
 756        for_each_populated_zone(zone) {
 757                struct per_cpu_pageset __percpu *p = zone->pageset;
 758
 759                for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 760                        int v;
 761
 762                        v = this_cpu_xchg(p->vm_stat_diff[i], 0);
 763                        if (v) {
 764
 765                                atomic_long_add(v, &zone->vm_stat[i]);
 766                                global_zone_diff[i] += v;
 767#ifdef CONFIG_NUMA
 768                                /* 3 seconds idle till flush */
 769                                __this_cpu_write(p->expire, 3);
 770#endif
 771                        }
 772                }
 773#ifdef CONFIG_NUMA
 774                for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
 775                        int v;
 776
 777                        v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
 778                        if (v) {
 779
 780                                atomic_long_add(v, &zone->vm_numa_stat[i]);
 781                                global_numa_diff[i] += v;
 782                                __this_cpu_write(p->expire, 3);
 783                        }
 784                }
 785
 786                if (do_pagesets) {
 787                        cond_resched();
 788                        /*
 789                         * Deal with draining the remote pageset of this
 790                         * processor
 791                         *
 792                         * Check if there are pages remaining in this pageset
 793                         * if not then there is nothing to expire.
 794                         */
 795                        if (!__this_cpu_read(p->expire) ||
 796                               !__this_cpu_read(p->pcp.count))
 797                                continue;
 798
 799                        /*
 800                         * We never drain zones local to this processor.
 801                         */
 802                        if (zone_to_nid(zone) == numa_node_id()) {
 803                                __this_cpu_write(p->expire, 0);
 804                                continue;
 805                        }
 806
 807                        if (__this_cpu_dec_return(p->expire))
 808                                continue;
 809
 810                        if (__this_cpu_read(p->pcp.count)) {
 811                                drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
 812                                changes++;
 813                        }
 814                }
 815#endif
 816        }
 817
 818        for_each_online_pgdat(pgdat) {
 819                struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
 820
 821                for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
 822                        int v;
 823
 824                        v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
 825                        if (v) {
 826                                atomic_long_add(v, &pgdat->vm_stat[i]);
 827                                global_node_diff[i] += v;
 828                        }
 829                }
 830        }
 831
 832#ifdef CONFIG_NUMA
 833        changes += fold_diff(global_zone_diff, global_numa_diff,
 834                             global_node_diff);
 835#else
 836        changes += fold_diff(global_zone_diff, global_node_diff);
 837#endif
 838        return changes;
 839}
 840
 841/*
 842 * Fold the data for an offline cpu into the global array.
 843 * There cannot be any access by the offline cpu and therefore
 844 * synchronization is simplified.
 845 */
 846void cpu_vm_stats_fold(int cpu)
 847{
 848        struct pglist_data *pgdat;
 849        struct zone *zone;
 850        int i;
 851        int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 852#ifdef CONFIG_NUMA
 853        int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
 854#endif
 855        int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
 856
 857        for_each_populated_zone(zone) {
 858                struct per_cpu_pageset *p;
 859
 860                p = per_cpu_ptr(zone->pageset, cpu);
 861
 862                for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 863                        if (p->vm_stat_diff[i]) {
 864                                int v;
 865
 866                                v = p->vm_stat_diff[i];
 867                                p->vm_stat_diff[i] = 0;
 868                                atomic_long_add(v, &zone->vm_stat[i]);
 869                                global_zone_diff[i] += v;
 870                        }
 871
 872#ifdef CONFIG_NUMA
 873                for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
 874                        if (p->vm_numa_stat_diff[i]) {
 875                                int v;
 876
 877                                v = p->vm_numa_stat_diff[i];
 878                                p->vm_numa_stat_diff[i] = 0;
 879                                atomic_long_add(v, &zone->vm_numa_stat[i]);
 880                                global_numa_diff[i] += v;
 881                        }
 882#endif
 883        }
 884
 885        for_each_online_pgdat(pgdat) {
 886                struct per_cpu_nodestat *p;
 887
 888                p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
 889
 890                for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 891                        if (p->vm_node_stat_diff[i]) {
 892                                int v;
 893
 894                                v = p->vm_node_stat_diff[i];
 895                                p->vm_node_stat_diff[i] = 0;
 896                                atomic_long_add(v, &pgdat->vm_stat[i]);
 897                                global_node_diff[i] += v;
 898                        }
 899        }
 900
 901#ifdef CONFIG_NUMA
 902        fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
 903#else
 904        fold_diff(global_zone_diff, global_node_diff);
 905#endif
 906}
 907
 908/*
 909 * this is only called if !populated_zone(zone), which implies no other users of
 910 * pset->vm_stat_diff[] exsist.
 911 */
 912void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
 913{
 914        int i;
 915
 916        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 917                if (pset->vm_stat_diff[i]) {
 918                        int v = pset->vm_stat_diff[i];
 919                        pset->vm_stat_diff[i] = 0;
 920                        atomic_long_add(v, &zone->vm_stat[i]);
 921                        atomic_long_add(v, &vm_zone_stat[i]);
 922                }
 923
 924#ifdef CONFIG_NUMA
 925        for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
 926                if (pset->vm_numa_stat_diff[i]) {
 927                        int v = pset->vm_numa_stat_diff[i];
 928
 929                        pset->vm_numa_stat_diff[i] = 0;
 930                        atomic_long_add(v, &zone->vm_numa_stat[i]);
 931                        atomic_long_add(v, &vm_numa_stat[i]);
 932                }
 933#endif
 934}
 935#endif
 936
 937#ifdef CONFIG_NUMA
 938void __inc_numa_state(struct zone *zone,
 939                                 enum numa_stat_item item)
 940{
 941        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 942        u16 __percpu *p = pcp->vm_numa_stat_diff + item;
 943        u16 v;
 944
 945        v = __this_cpu_inc_return(*p);
 946
 947        if (unlikely(v > NUMA_STATS_THRESHOLD)) {
 948                zone_numa_state_add(v, zone, item);
 949                __this_cpu_write(*p, 0);
 950        }
 951}
 952
 953/*
 954 * Determine the per node value of a stat item. This function
 955 * is called frequently in a NUMA machine, so try to be as
 956 * frugal as possible.
 957 */
 958unsigned long sum_zone_node_page_state(int node,
 959                                 enum zone_stat_item item)
 960{
 961        struct zone *zones = NODE_DATA(node)->node_zones;
 962        int i;
 963        unsigned long count = 0;
 964
 965        for (i = 0; i < MAX_NR_ZONES; i++)
 966                count += zone_page_state(zones + i, item);
 967
 968        return count;
 969}
 970
 971/*
 972 * Determine the per node value of a numa stat item. To avoid deviation,
 973 * the per cpu stat number in vm_numa_stat_diff[] is also included.
 974 */
 975unsigned long sum_zone_numa_state(int node,
 976                                 enum numa_stat_item item)
 977{
 978        struct zone *zones = NODE_DATA(node)->node_zones;
 979        int i;
 980        unsigned long count = 0;
 981
 982        for (i = 0; i < MAX_NR_ZONES; i++)
 983                count += zone_numa_state_snapshot(zones + i, item);
 984
 985        return count;
 986}
 987
 988/*
 989 * Determine the per node value of a stat item.
 990 */
 991unsigned long node_page_state(struct pglist_data *pgdat,
 992                                enum node_stat_item item)
 993{
 994        long x = atomic_long_read(&pgdat->vm_stat[item]);
 995#ifdef CONFIG_SMP
 996        if (x < 0)
 997                x = 0;
 998#endif
 999        return x;
1000}
1001#endif
1002
1003#ifdef CONFIG_COMPACTION
1004
1005struct contig_page_info {
1006        unsigned long free_pages;
1007        unsigned long free_blocks_total;
1008        unsigned long free_blocks_suitable;
1009};
1010
1011/*
1012 * Calculate the number of free pages in a zone, how many contiguous
1013 * pages are free and how many are large enough to satisfy an allocation of
1014 * the target size. Note that this function makes no attempt to estimate
1015 * how many suitable free blocks there *might* be if MOVABLE pages were
1016 * migrated. Calculating that is possible, but expensive and can be
1017 * figured out from userspace
1018 */
1019static void fill_contig_page_info(struct zone *zone,
1020                                unsigned int suitable_order,
1021                                struct contig_page_info *info)
1022{
1023        unsigned int order;
1024
1025        info->free_pages = 0;
1026        info->free_blocks_total = 0;
1027        info->free_blocks_suitable = 0;
1028
1029        for (order = 0; order < MAX_ORDER; order++) {
1030                unsigned long blocks;
1031
1032                /* Count number of free blocks */
1033                blocks = zone->free_area[order].nr_free;
1034                info->free_blocks_total += blocks;
1035
1036                /* Count free base pages */
1037                info->free_pages += blocks << order;
1038
1039                /* Count the suitable free blocks */
1040                if (order >= suitable_order)
1041                        info->free_blocks_suitable += blocks <<
1042                                                (order - suitable_order);
1043        }
1044}
1045
1046/*
1047 * A fragmentation index only makes sense if an allocation of a requested
1048 * size would fail. If that is true, the fragmentation index indicates
1049 * whether external fragmentation or a lack of memory was the problem.
1050 * The value can be used to determine if page reclaim or compaction
1051 * should be used
1052 */
1053static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1054{
1055        unsigned long requested = 1UL << order;
1056
1057        if (WARN_ON_ONCE(order >= MAX_ORDER))
1058                return 0;
1059
1060        if (!info->free_blocks_total)
1061                return 0;
1062
1063        /* Fragmentation index only makes sense when a request would fail */
1064        if (info->free_blocks_suitable)
1065                return -1000;
1066
1067        /*
1068         * Index is between 0 and 1 so return within 3 decimal places
1069         *
1070         * 0 => allocation would fail due to lack of memory
1071         * 1 => allocation would fail due to fragmentation
1072         */
1073        return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1074}
1075
1076/* Same as __fragmentation index but allocs contig_page_info on stack */
1077int fragmentation_index(struct zone *zone, unsigned int order)
1078{
1079        struct contig_page_info info;
1080
1081        fill_contig_page_info(zone, order, &info);
1082        return __fragmentation_index(order, &info);
1083}
1084#endif
1085
1086#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
1087#ifdef CONFIG_ZONE_DMA
1088#define TEXT_FOR_DMA(xx) xx "_dma",
1089#else
1090#define TEXT_FOR_DMA(xx)
1091#endif
1092
1093#ifdef CONFIG_ZONE_DMA32
1094#define TEXT_FOR_DMA32(xx) xx "_dma32",
1095#else
1096#define TEXT_FOR_DMA32(xx)
1097#endif
1098
1099#ifdef CONFIG_HIGHMEM
1100#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1101#else
1102#define TEXT_FOR_HIGHMEM(xx)
1103#endif
1104
1105#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1106                                        TEXT_FOR_HIGHMEM(xx) xx "_movable",
1107
1108const char * const vmstat_text[] = {
1109        /* enum zone_stat_item countes */
1110        "nr_free_pages",
1111        "nr_zone_inactive_anon",
1112        "nr_zone_active_anon",
1113        "nr_zone_inactive_file",
1114        "nr_zone_active_file",
1115        "nr_zone_unevictable",
1116        "nr_zone_write_pending",
1117        "nr_mlock",
1118        "nr_page_table_pages",
1119        "nr_kernel_stack",
1120        "nr_bounce",
1121#if IS_ENABLED(CONFIG_ZSMALLOC)
1122        "nr_zspages",
1123#endif
1124        "nr_free_cma",
1125
1126        /* enum numa_stat_item counters */
1127#ifdef CONFIG_NUMA
1128        "numa_hit",
1129        "numa_miss",
1130        "numa_foreign",
1131        "numa_interleave",
1132        "numa_local",
1133        "numa_other",
1134#endif
1135
1136        /* Node-based counters */
1137        "nr_inactive_anon",
1138        "nr_active_anon",
1139        "nr_inactive_file",
1140        "nr_active_file",
1141        "nr_unevictable",
1142        "nr_slab_reclaimable",
1143        "nr_slab_unreclaimable",
1144        "nr_isolated_anon",
1145        "nr_isolated_file",
1146        "workingset_refault",
1147        "workingset_activate",
1148        "workingset_nodereclaim",
1149        "nr_anon_pages",
1150        "nr_mapped",
1151        "nr_file_pages",
1152        "nr_dirty",
1153        "nr_writeback",
1154        "nr_writeback_temp",
1155        "nr_shmem",
1156        "nr_shmem_hugepages",
1157        "nr_shmem_pmdmapped",
1158        "nr_anon_transparent_hugepages",
1159        "nr_unstable",
1160        "nr_vmscan_write",
1161        "nr_vmscan_immediate_reclaim",
1162        "nr_dirtied",
1163        "nr_written",
1164        "", /* nr_indirectly_reclaimable */
1165
1166        /* enum writeback_stat_item counters */
1167        "nr_dirty_threshold",
1168        "nr_dirty_background_threshold",
1169
1170#ifdef CONFIG_VM_EVENT_COUNTERS
1171        /* enum vm_event_item counters */
1172        "pgpgin",
1173        "pgpgout",
1174        "pswpin",
1175        "pswpout",
1176
1177        TEXTS_FOR_ZONES("pgalloc")
1178        TEXTS_FOR_ZONES("allocstall")
1179        TEXTS_FOR_ZONES("pgskip")
1180
1181        "pgfree",
1182        "pgactivate",
1183        "pgdeactivate",
1184        "pglazyfree",
1185
1186        "pgfault",
1187        "pgmajfault",
1188        "pglazyfreed",
1189
1190        "pgrefill",
1191        "pgsteal_kswapd",
1192        "pgsteal_direct",
1193        "pgscan_kswapd",
1194        "pgscan_direct",
1195        "pgscan_direct_throttle",
1196
1197#ifdef CONFIG_NUMA
1198        "zone_reclaim_failed",
1199#endif
1200        "pginodesteal",
1201        "slabs_scanned",
1202        "kswapd_inodesteal",
1203        "kswapd_low_wmark_hit_quickly",
1204        "kswapd_high_wmark_hit_quickly",
1205        "pageoutrun",
1206
1207        "pgrotated",
1208
1209        "drop_pagecache",
1210        "drop_slab",
1211        "oom_kill",
1212
1213#ifdef CONFIG_NUMA_BALANCING
1214        "numa_pte_updates",
1215        "numa_huge_pte_updates",
1216        "numa_hint_faults",
1217        "numa_hint_faults_local",
1218        "numa_pages_migrated",
1219#endif
1220#ifdef CONFIG_MIGRATION
1221        "pgmigrate_success",
1222        "pgmigrate_fail",
1223#endif
1224#ifdef CONFIG_COMPACTION
1225        "compact_migrate_scanned",
1226        "compact_free_scanned",
1227        "compact_isolated",
1228        "compact_stall",
1229        "compact_fail",
1230        "compact_success",
1231        "compact_daemon_wake",
1232        "compact_daemon_migrate_scanned",
1233        "compact_daemon_free_scanned",
1234#endif
1235
1236#ifdef CONFIG_HUGETLB_PAGE
1237        "htlb_buddy_alloc_success",
1238        "htlb_buddy_alloc_fail",
1239#endif
1240        "unevictable_pgs_culled",
1241        "unevictable_pgs_scanned",
1242        "unevictable_pgs_rescued",
1243        "unevictable_pgs_mlocked",
1244        "unevictable_pgs_munlocked",
1245        "unevictable_pgs_cleared",
1246        "unevictable_pgs_stranded",
1247
1248#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1249        "thp_fault_alloc",
1250        "thp_fault_fallback",
1251        "thp_collapse_alloc",
1252        "thp_collapse_alloc_failed",
1253        "thp_file_alloc",
1254        "thp_file_mapped",
1255        "thp_split_page",
1256        "thp_split_page_failed",
1257        "thp_deferred_split_page",
1258        "thp_split_pmd",
1259#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1260        "thp_split_pud",
1261#endif
1262        "thp_zero_page_alloc",
1263        "thp_zero_page_alloc_failed",
1264        "thp_swpout",
1265        "thp_swpout_fallback",
1266#endif
1267#ifdef CONFIG_MEMORY_BALLOON
1268        "balloon_inflate",
1269        "balloon_deflate",
1270#ifdef CONFIG_BALLOON_COMPACTION
1271        "balloon_migrate",
1272#endif
1273#endif /* CONFIG_MEMORY_BALLOON */
1274#ifdef CONFIG_DEBUG_TLBFLUSH
1275#ifdef CONFIG_SMP
1276        "nr_tlb_remote_flush",
1277        "nr_tlb_remote_flush_received",
1278#endif /* CONFIG_SMP */
1279        "nr_tlb_local_flush_all",
1280        "nr_tlb_local_flush_one",
1281#endif /* CONFIG_DEBUG_TLBFLUSH */
1282
1283#ifdef CONFIG_DEBUG_VM_VMACACHE
1284        "vmacache_find_calls",
1285        "vmacache_find_hits",
1286        "vmacache_full_flushes",
1287#endif
1288#ifdef CONFIG_SWAP
1289        "swap_ra",
1290        "swap_ra_hit",
1291#endif
1292#endif /* CONFIG_VM_EVENTS_COUNTERS */
1293};
1294#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1295
1296#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1297     defined(CONFIG_PROC_FS)
1298static void *frag_start(struct seq_file *m, loff_t *pos)
1299{
1300        pg_data_t *pgdat;
1301        loff_t node = *pos;
1302
1303        for (pgdat = first_online_pgdat();
1304             pgdat && node;
1305             pgdat = next_online_pgdat(pgdat))
1306                --node;
1307
1308        return pgdat;
1309}
1310
1311static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1312{
1313        pg_data_t *pgdat = (pg_data_t *)arg;
1314
1315        (*pos)++;
1316        return next_online_pgdat(pgdat);
1317}
1318
1319static void frag_stop(struct seq_file *m, void *arg)
1320{
1321}
1322
1323/*
1324 * Walk zones in a node and print using a callback.
1325 * If @assert_populated is true, only use callback for zones that are populated.
1326 */
1327static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1328                bool assert_populated, bool nolock,
1329                void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1330{
1331        struct zone *zone;
1332        struct zone *node_zones = pgdat->node_zones;
1333        unsigned long flags;
1334
1335        for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1336                if (assert_populated && !populated_zone(zone))
1337                        continue;
1338
1339                if (!nolock)
1340                        spin_lock_irqsave(&zone->lock, flags);
1341                print(m, pgdat, zone);
1342                if (!nolock)
1343                        spin_unlock_irqrestore(&zone->lock, flags);
1344        }
1345}
1346#endif
1347
1348#ifdef CONFIG_PROC_FS
1349static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1350                                                struct zone *zone)
1351{
1352        int order;
1353
1354        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1355        for (order = 0; order < MAX_ORDER; ++order)
1356                seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1357        seq_putc(m, '\n');
1358}
1359
1360/*
1361 * This walks the free areas for each zone.
1362 */
1363static int frag_show(struct seq_file *m, void *arg)
1364{
1365        pg_data_t *pgdat = (pg_data_t *)arg;
1366        walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1367        return 0;
1368}
1369
1370static void pagetypeinfo_showfree_print(struct seq_file *m,
1371                                        pg_data_t *pgdat, struct zone *zone)
1372{
1373        int order, mtype;
1374
1375        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1376                seq_printf(m, "Node %4d, zone %8s, type %12s ",
1377                                        pgdat->node_id,
1378                                        zone->name,
1379                                        migratetype_names[mtype]);
1380                for (order = 0; order < MAX_ORDER; ++order) {
1381                        unsigned long freecount = 0;
1382                        struct free_area *area;
1383                        struct list_head *curr;
1384
1385                        area = &(zone->free_area[order]);
1386
1387                        list_for_each(curr, &area->free_list[mtype])
1388                                freecount++;
1389                        seq_printf(m, "%6lu ", freecount);
1390                }
1391                seq_putc(m, '\n');
1392        }
1393}
1394
1395/* Print out the free pages at each order for each migatetype */
1396static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1397{
1398        int order;
1399        pg_data_t *pgdat = (pg_data_t *)arg;
1400
1401        /* Print header */
1402        seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1403        for (order = 0; order < MAX_ORDER; ++order)
1404                seq_printf(m, "%6d ", order);
1405        seq_putc(m, '\n');
1406
1407        walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1408
1409        return 0;
1410}
1411
1412static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1413                                        pg_data_t *pgdat, struct zone *zone)
1414{
1415        int mtype;
1416        unsigned long pfn;
1417        unsigned long start_pfn = zone->zone_start_pfn;
1418        unsigned long end_pfn = zone_end_pfn(zone);
1419        unsigned long count[MIGRATE_TYPES] = { 0, };
1420
1421        for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1422                struct page *page;
1423
1424                page = pfn_to_online_page(pfn);
1425                if (!page)
1426                        continue;
1427
1428                /* Watch for unexpected holes punched in the memmap */
1429                if (!memmap_valid_within(pfn, page, zone))
1430                        continue;
1431
1432                if (page_zone(page) != zone)
1433                        continue;
1434
1435                mtype = get_pageblock_migratetype(page);
1436
1437                if (mtype < MIGRATE_TYPES)
1438                        count[mtype]++;
1439        }
1440
1441        /* Print counts */
1442        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1443        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1444                seq_printf(m, "%12lu ", count[mtype]);
1445        seq_putc(m, '\n');
1446}
1447
1448/* Print out the number of pageblocks for each migratetype */
1449static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1450{
1451        int mtype;
1452        pg_data_t *pgdat = (pg_data_t *)arg;
1453
1454        seq_printf(m, "\n%-23s", "Number of blocks type ");
1455        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1456                seq_printf(m, "%12s ", migratetype_names[mtype]);
1457        seq_putc(m, '\n');
1458        walk_zones_in_node(m, pgdat, true, false,
1459                pagetypeinfo_showblockcount_print);
1460
1461        return 0;
1462}
1463
1464/*
1465 * Print out the number of pageblocks for each migratetype that contain pages
1466 * of other types. This gives an indication of how well fallbacks are being
1467 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1468 * to determine what is going on
1469 */
1470static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1471{
1472#ifdef CONFIG_PAGE_OWNER
1473        int mtype;
1474
1475        if (!static_branch_unlikely(&page_owner_inited))
1476                return;
1477
1478        drain_all_pages(NULL);
1479
1480        seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1481        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1482                seq_printf(m, "%12s ", migratetype_names[mtype]);
1483        seq_putc(m, '\n');
1484
1485        walk_zones_in_node(m, pgdat, true, true,
1486                pagetypeinfo_showmixedcount_print);
1487#endif /* CONFIG_PAGE_OWNER */
1488}
1489
1490/*
1491 * This prints out statistics in relation to grouping pages by mobility.
1492 * It is expensive to collect so do not constantly read the file.
1493 */
1494static int pagetypeinfo_show(struct seq_file *m, void *arg)
1495{
1496        pg_data_t *pgdat = (pg_data_t *)arg;
1497
1498        /* check memoryless node */
1499        if (!node_state(pgdat->node_id, N_MEMORY))
1500                return 0;
1501
1502        seq_printf(m, "Page block order: %d\n", pageblock_order);
1503        seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1504        seq_putc(m, '\n');
1505        pagetypeinfo_showfree(m, pgdat);
1506        pagetypeinfo_showblockcount(m, pgdat);
1507        pagetypeinfo_showmixedcount(m, pgdat);
1508
1509        return 0;
1510}
1511
1512static const struct seq_operations fragmentation_op = {
1513        .start  = frag_start,
1514        .next   = frag_next,
1515        .stop   = frag_stop,
1516        .show   = frag_show,
1517};
1518
1519static int fragmentation_open(struct inode *inode, struct file *file)
1520{
1521        return seq_open(file, &fragmentation_op);
1522}
1523
1524static const struct file_operations buddyinfo_file_operations = {
1525        .open           = fragmentation_open,
1526        .read           = seq_read,
1527        .llseek         = seq_lseek,
1528        .release        = seq_release,
1529};
1530
1531static const struct seq_operations pagetypeinfo_op = {
1532        .start  = frag_start,
1533        .next   = frag_next,
1534        .stop   = frag_stop,
1535        .show   = pagetypeinfo_show,
1536};
1537
1538static int pagetypeinfo_open(struct inode *inode, struct file *file)
1539{
1540        return seq_open(file, &pagetypeinfo_op);
1541}
1542
1543static const struct file_operations pagetypeinfo_file_operations = {
1544        .open           = pagetypeinfo_open,
1545        .read           = seq_read,
1546        .llseek         = seq_lseek,
1547        .release        = seq_release,
1548};
1549
1550static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1551{
1552        int zid;
1553
1554        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1555                struct zone *compare = &pgdat->node_zones[zid];
1556
1557                if (populated_zone(compare))
1558                        return zone == compare;
1559        }
1560
1561        return false;
1562}
1563
1564static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1565                                                        struct zone *zone)
1566{
1567        int i;
1568        seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1569        if (is_zone_first_populated(pgdat, zone)) {
1570                seq_printf(m, "\n  per-node stats");
1571                for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1572                        seq_printf(m, "\n      %-12s %lu",
1573                                vmstat_text[i + NR_VM_ZONE_STAT_ITEMS +
1574                                NR_VM_NUMA_STAT_ITEMS],
1575                                node_page_state(pgdat, i));
1576                }
1577        }
1578        seq_printf(m,
1579                   "\n  pages free     %lu"
1580                   "\n        min      %lu"
1581                   "\n        low      %lu"
1582                   "\n        high     %lu"
1583                   "\n        spanned  %lu"
1584                   "\n        present  %lu"
1585                   "\n        managed  %lu",
1586                   zone_page_state(zone, NR_FREE_PAGES),
1587                   min_wmark_pages(zone),
1588                   low_wmark_pages(zone),
1589                   high_wmark_pages(zone),
1590                   zone->spanned_pages,
1591                   zone->present_pages,
1592                   zone->managed_pages);
1593
1594        seq_printf(m,
1595                   "\n        protection: (%ld",
1596                   zone->lowmem_reserve[0]);
1597        for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1598                seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1599        seq_putc(m, ')');
1600
1601        /* If unpopulated, no other information is useful */
1602        if (!populated_zone(zone)) {
1603                seq_putc(m, '\n');
1604                return;
1605        }
1606
1607        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1608                seq_printf(m, "\n      %-12s %lu", vmstat_text[i],
1609                                zone_page_state(zone, i));
1610
1611#ifdef CONFIG_NUMA
1612        for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1613                seq_printf(m, "\n      %-12s %lu",
1614                                vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
1615                                zone_numa_state_snapshot(zone, i));
1616#endif
1617
1618        seq_printf(m, "\n  pagesets");
1619        for_each_online_cpu(i) {
1620                struct per_cpu_pageset *pageset;
1621
1622                pageset = per_cpu_ptr(zone->pageset, i);
1623                seq_printf(m,
1624                           "\n    cpu: %i"
1625                           "\n              count: %i"
1626                           "\n              high:  %i"
1627                           "\n              batch: %i",
1628                           i,
1629                           pageset->pcp.count,
1630                           pageset->pcp.high,
1631                           pageset->pcp.batch);
1632#ifdef CONFIG_SMP
1633                seq_printf(m, "\n  vm stats threshold: %d",
1634                                pageset->stat_threshold);
1635#endif
1636        }
1637        seq_printf(m,
1638                   "\n  node_unreclaimable:  %u"
1639                   "\n  start_pfn:           %lu",
1640                   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1641                   zone->zone_start_pfn);
1642        seq_putc(m, '\n');
1643}
1644
1645/*
1646 * Output information about zones in @pgdat.  All zones are printed regardless
1647 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1648 * set of all zones and userspace would not be aware of such zones if they are
1649 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1650 */
1651static int zoneinfo_show(struct seq_file *m, void *arg)
1652{
1653        pg_data_t *pgdat = (pg_data_t *)arg;
1654        walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1655        return 0;
1656}
1657
1658static const struct seq_operations zoneinfo_op = {
1659        .start  = frag_start, /* iterate over all zones. The same as in
1660                               * fragmentation. */
1661        .next   = frag_next,
1662        .stop   = frag_stop,
1663        .show   = zoneinfo_show,
1664};
1665
1666static int zoneinfo_open(struct inode *inode, struct file *file)
1667{
1668        return seq_open(file, &zoneinfo_op);
1669}
1670
1671static const struct file_operations zoneinfo_file_operations = {
1672        .open           = zoneinfo_open,
1673        .read           = seq_read,
1674        .llseek         = seq_lseek,
1675        .release        = seq_release,
1676};
1677
1678enum writeback_stat_item {
1679        NR_DIRTY_THRESHOLD,
1680        NR_DIRTY_BG_THRESHOLD,
1681        NR_VM_WRITEBACK_STAT_ITEMS,
1682};
1683
1684static void *vmstat_start(struct seq_file *m, loff_t *pos)
1685{
1686        unsigned long *v;
1687        int i, stat_items_size;
1688
1689        if (*pos >= ARRAY_SIZE(vmstat_text))
1690                return NULL;
1691        stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1692                          NR_VM_NUMA_STAT_ITEMS * sizeof(unsigned long) +
1693                          NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
1694                          NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1695
1696#ifdef CONFIG_VM_EVENT_COUNTERS
1697        stat_items_size += sizeof(struct vm_event_state);
1698#endif
1699
1700        v = kmalloc(stat_items_size, GFP_KERNEL);
1701        m->private = v;
1702        if (!v)
1703                return ERR_PTR(-ENOMEM);
1704        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1705                v[i] = global_zone_page_state(i);
1706        v += NR_VM_ZONE_STAT_ITEMS;
1707
1708#ifdef CONFIG_NUMA
1709        for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1710                v[i] = global_numa_state(i);
1711        v += NR_VM_NUMA_STAT_ITEMS;
1712#endif
1713
1714        for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1715                v[i] = global_node_page_state(i);
1716        v += NR_VM_NODE_STAT_ITEMS;
1717
1718        global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1719                            v + NR_DIRTY_THRESHOLD);
1720        v += NR_VM_WRITEBACK_STAT_ITEMS;
1721
1722#ifdef CONFIG_VM_EVENT_COUNTERS
1723        all_vm_events(v);
1724        v[PGPGIN] /= 2;         /* sectors -> kbytes */
1725        v[PGPGOUT] /= 2;
1726#endif
1727        return (unsigned long *)m->private + *pos;
1728}
1729
1730static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1731{
1732        (*pos)++;
1733        if (*pos >= ARRAY_SIZE(vmstat_text))
1734                return NULL;
1735        return (unsigned long *)m->private + *pos;
1736}
1737
1738static int vmstat_show(struct seq_file *m, void *arg)
1739{
1740        unsigned long *l = arg;
1741        unsigned long off = l - (unsigned long *)m->private;
1742
1743        /* Skip hidden vmstat items. */
1744        if (*vmstat_text[off] == '\0')
1745                return 0;
1746
1747        seq_puts(m, vmstat_text[off]);
1748        seq_put_decimal_ull(m, " ", *l);
1749        seq_putc(m, '\n');
1750        return 0;
1751}
1752
1753static void vmstat_stop(struct seq_file *m, void *arg)
1754{
1755        kfree(m->private);
1756        m->private = NULL;
1757}
1758
1759static const struct seq_operations vmstat_op = {
1760        .start  = vmstat_start,
1761        .next   = vmstat_next,
1762        .stop   = vmstat_stop,
1763        .show   = vmstat_show,
1764};
1765
1766static int vmstat_open(struct inode *inode, struct file *file)
1767{
1768        return seq_open(file, &vmstat_op);
1769}
1770
1771static const struct file_operations vmstat_file_operations = {
1772        .open           = vmstat_open,
1773        .read           = seq_read,
1774        .llseek         = seq_lseek,
1775        .release        = seq_release,
1776};
1777#endif /* CONFIG_PROC_FS */
1778
1779#ifdef CONFIG_SMP
1780static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1781int sysctl_stat_interval __read_mostly = HZ;
1782
1783#ifdef CONFIG_PROC_FS
1784static void refresh_vm_stats(struct work_struct *work)
1785{
1786        refresh_cpu_vm_stats(true);
1787}
1788
1789int vmstat_refresh(struct ctl_table *table, int write,
1790                   void __user *buffer, size_t *lenp, loff_t *ppos)
1791{
1792        long val;
1793        int err;
1794        int i;
1795
1796        /*
1797         * The regular update, every sysctl_stat_interval, may come later
1798         * than expected: leaving a significant amount in per_cpu buckets.
1799         * This is particularly misleading when checking a quantity of HUGE
1800         * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1801         * which can equally be echo'ed to or cat'ted from (by root),
1802         * can be used to update the stats just before reading them.
1803         *
1804         * Oh, and since global_zone_page_state() etc. are so careful to hide
1805         * transiently negative values, report an error here if any of
1806         * the stats is negative, so we know to go looking for imbalance.
1807         */
1808        err = schedule_on_each_cpu(refresh_vm_stats);
1809        if (err)
1810                return err;
1811        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1812                val = atomic_long_read(&vm_zone_stat[i]);
1813                if (val < 0) {
1814                        pr_warn("%s: %s %ld\n",
1815                                __func__, vmstat_text[i], val);
1816                        err = -EINVAL;
1817                }
1818        }
1819#ifdef CONFIG_NUMA
1820        for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
1821                val = atomic_long_read(&vm_numa_stat[i]);
1822                if (val < 0) {
1823                        pr_warn("%s: %s %ld\n",
1824                                __func__, vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], val);
1825                        err = -EINVAL;
1826                }
1827        }
1828#endif
1829        if (err)
1830                return err;
1831        if (write)
1832                *ppos += *lenp;
1833        else
1834                *lenp = 0;
1835        return 0;
1836}
1837#endif /* CONFIG_PROC_FS */
1838
1839static void vmstat_update(struct work_struct *w)
1840{
1841        if (refresh_cpu_vm_stats(true)) {
1842                /*
1843                 * Counters were updated so we expect more updates
1844                 * to occur in the future. Keep on running the
1845                 * update worker thread.
1846                 */
1847                preempt_disable();
1848                queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1849                                this_cpu_ptr(&vmstat_work),
1850                                round_jiffies_relative(sysctl_stat_interval));
1851                preempt_enable();
1852        }
1853}
1854
1855/*
1856 * Switch off vmstat processing and then fold all the remaining differentials
1857 * until the diffs stay at zero. The function is used by NOHZ and can only be
1858 * invoked when tick processing is not active.
1859 */
1860/*
1861 * Check if the diffs for a certain cpu indicate that
1862 * an update is needed.
1863 */
1864static bool need_update(int cpu)
1865{
1866        struct zone *zone;
1867
1868        for_each_populated_zone(zone) {
1869                struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1870
1871                BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1872#ifdef CONFIG_NUMA
1873                BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2);
1874#endif
1875
1876                /*
1877                 * The fast way of checking if there are any vmstat diffs.
1878                 * This works because the diffs are byte sized items.
1879                 */
1880                if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1881                        return true;
1882#ifdef CONFIG_NUMA
1883                if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS))
1884                        return true;
1885#endif
1886        }
1887        return false;
1888}
1889
1890/*
1891 * Switch off vmstat processing and then fold all the remaining differentials
1892 * until the diffs stay at zero. The function is used by NOHZ and can only be
1893 * invoked when tick processing is not active.
1894 */
1895void quiet_vmstat(void)
1896{
1897        if (system_state != SYSTEM_RUNNING)
1898                return;
1899
1900        if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1901                return;
1902
1903        if (!need_update(smp_processor_id()))
1904                return;
1905
1906        /*
1907         * Just refresh counters and do not care about the pending delayed
1908         * vmstat_update. It doesn't fire that often to matter and canceling
1909         * it would be too expensive from this path.
1910         * vmstat_shepherd will take care about that for us.
1911         */
1912        refresh_cpu_vm_stats(false);
1913}
1914
1915/*
1916 * Shepherd worker thread that checks the
1917 * differentials of processors that have their worker
1918 * threads for vm statistics updates disabled because of
1919 * inactivity.
1920 */
1921static void vmstat_shepherd(struct work_struct *w);
1922
1923static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1924
1925static void vmstat_shepherd(struct work_struct *w)
1926{
1927        int cpu;
1928
1929        get_online_cpus();
1930        /* Check processors whose vmstat worker threads have been disabled */
1931        for_each_online_cpu(cpu) {
1932                struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1933
1934                if (!delayed_work_pending(dw) && need_update(cpu))
1935                        queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1936        }
1937        put_online_cpus();
1938
1939        schedule_delayed_work(&shepherd,
1940                round_jiffies_relative(sysctl_stat_interval));
1941}
1942
1943static void __init start_shepherd_timer(void)
1944{
1945        int cpu;
1946
1947        for_each_possible_cpu(cpu)
1948                INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1949                        vmstat_update);
1950
1951        schedule_delayed_work(&shepherd,
1952                round_jiffies_relative(sysctl_stat_interval));
1953}
1954
1955static void __init init_cpu_node_state(void)
1956{
1957        int node;
1958
1959        for_each_online_node(node) {
1960                if (cpumask_weight(cpumask_of_node(node)) > 0)
1961                        node_set_state(node, N_CPU);
1962        }
1963}
1964
1965static int vmstat_cpu_online(unsigned int cpu)
1966{
1967        refresh_zone_stat_thresholds();
1968        node_set_state(cpu_to_node(cpu), N_CPU);
1969        return 0;
1970}
1971
1972static int vmstat_cpu_down_prep(unsigned int cpu)
1973{
1974        cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1975        return 0;
1976}
1977
1978static int vmstat_cpu_dead(unsigned int cpu)
1979{
1980        const struct cpumask *node_cpus;
1981        int node;
1982
1983        node = cpu_to_node(cpu);
1984
1985        refresh_zone_stat_thresholds();
1986        node_cpus = cpumask_of_node(node);
1987        if (cpumask_weight(node_cpus) > 0)
1988                return 0;
1989
1990        node_clear_state(node, N_CPU);
1991        return 0;
1992}
1993
1994#endif
1995
1996struct workqueue_struct *mm_percpu_wq;
1997
1998void __init init_mm_internals(void)
1999{
2000        int ret __maybe_unused;
2001
2002        mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2003
2004#ifdef CONFIG_SMP
2005        ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2006                                        NULL, vmstat_cpu_dead);
2007        if (ret < 0)
2008                pr_err("vmstat: failed to register 'dead' hotplug state\n");
2009
2010        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2011                                        vmstat_cpu_online,
2012                                        vmstat_cpu_down_prep);
2013        if (ret < 0)
2014                pr_err("vmstat: failed to register 'online' hotplug state\n");
2015
2016        get_online_cpus();
2017        init_cpu_node_state();
2018        put_online_cpus();
2019
2020        start_shepherd_timer();
2021#endif
2022#ifdef CONFIG_PROC_FS
2023        proc_create("buddyinfo", 0444, NULL, &buddyinfo_file_operations);
2024        proc_create("pagetypeinfo", 0444, NULL, &pagetypeinfo_file_operations);
2025        proc_create("vmstat", 0444, NULL, &vmstat_file_operations);
2026        proc_create("zoneinfo", 0444, NULL, &zoneinfo_file_operations);
2027#endif
2028}
2029
2030#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2031
2032/*
2033 * Return an index indicating how much of the available free memory is
2034 * unusable for an allocation of the requested size.
2035 */
2036static int unusable_free_index(unsigned int order,
2037                                struct contig_page_info *info)
2038{
2039        /* No free memory is interpreted as all free memory is unusable */
2040        if (info->free_pages == 0)
2041                return 1000;
2042
2043        /*
2044         * Index should be a value between 0 and 1. Return a value to 3
2045         * decimal places.
2046         *
2047         * 0 => no fragmentation
2048         * 1 => high fragmentation
2049         */
2050        return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2051
2052}
2053
2054static void unusable_show_print(struct seq_file *m,
2055                                        pg_data_t *pgdat, struct zone *zone)
2056{
2057        unsigned int order;
2058        int index;
2059        struct contig_page_info info;
2060
2061        seq_printf(m, "Node %d, zone %8s ",
2062                                pgdat->node_id,
2063                                zone->name);
2064        for (order = 0; order < MAX_ORDER; ++order) {
2065                fill_contig_page_info(zone, order, &info);
2066                index = unusable_free_index(order, &info);
2067                seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2068        }
2069
2070        seq_putc(m, '\n');
2071}
2072
2073/*
2074 * Display unusable free space index
2075 *
2076 * The unusable free space index measures how much of the available free
2077 * memory cannot be used to satisfy an allocation of a given size and is a
2078 * value between 0 and 1. The higher the value, the more of free memory is
2079 * unusable and by implication, the worse the external fragmentation is. This
2080 * can be expressed as a percentage by multiplying by 100.
2081 */
2082static int unusable_show(struct seq_file *m, void *arg)
2083{
2084        pg_data_t *pgdat = (pg_data_t *)arg;
2085
2086        /* check memoryless node */
2087        if (!node_state(pgdat->node_id, N_MEMORY))
2088                return 0;
2089
2090        walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2091
2092        return 0;
2093}
2094
2095static const struct seq_operations unusable_op = {
2096        .start  = frag_start,
2097        .next   = frag_next,
2098        .stop   = frag_stop,
2099        .show   = unusable_show,
2100};
2101
2102static int unusable_open(struct inode *inode, struct file *file)
2103{
2104        return seq_open(file, &unusable_op);
2105}
2106
2107static const struct file_operations unusable_file_ops = {
2108        .open           = unusable_open,
2109        .read           = seq_read,
2110        .llseek         = seq_lseek,
2111        .release        = seq_release,
2112};
2113
2114static void extfrag_show_print(struct seq_file *m,
2115                                        pg_data_t *pgdat, struct zone *zone)
2116{
2117        unsigned int order;
2118        int index;
2119
2120        /* Alloc on stack as interrupts are disabled for zone walk */
2121        struct contig_page_info info;
2122
2123        seq_printf(m, "Node %d, zone %8s ",
2124                                pgdat->node_id,
2125                                zone->name);
2126        for (order = 0; order < MAX_ORDER; ++order) {
2127                fill_contig_page_info(zone, order, &info);
2128                index = __fragmentation_index(order, &info);
2129                seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2130        }
2131
2132        seq_putc(m, '\n');
2133}
2134
2135/*
2136 * Display fragmentation index for orders that allocations would fail for
2137 */
2138static int extfrag_show(struct seq_file *m, void *arg)
2139{
2140        pg_data_t *pgdat = (pg_data_t *)arg;
2141
2142        walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2143
2144        return 0;
2145}
2146
2147static const struct seq_operations extfrag_op = {
2148        .start  = frag_start,
2149        .next   = frag_next,
2150        .stop   = frag_stop,
2151        .show   = extfrag_show,
2152};
2153
2154static int extfrag_open(struct inode *inode, struct file *file)
2155{
2156        return seq_open(file, &extfrag_op);
2157}
2158
2159static const struct file_operations extfrag_file_ops = {
2160        .open           = extfrag_open,
2161        .read           = seq_read,
2162        .llseek         = seq_lseek,
2163        .release        = seq_release,
2164};
2165
2166static int __init extfrag_debug_init(void)
2167{
2168        struct dentry *extfrag_debug_root;
2169
2170        extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2171        if (!extfrag_debug_root)
2172                return -ENOMEM;
2173
2174        if (!debugfs_create_file("unusable_index", 0444,
2175                        extfrag_debug_root, NULL, &unusable_file_ops))
2176                goto fail;
2177
2178        if (!debugfs_create_file("extfrag_index", 0444,
2179                        extfrag_debug_root, NULL, &extfrag_file_ops))
2180                goto fail;
2181
2182        return 0;
2183fail:
2184        debugfs_remove_recursive(extfrag_debug_root);
2185        return -ENOMEM;
2186}
2187
2188module_init(extfrag_debug_init);
2189#endif
2190