linux/mm/zpool.c
<<
>>
Prefs
   1/*
   2 * zpool memory storage api
   3 *
   4 * Copyright (C) 2014 Dan Streetman
   5 *
   6 * This is a common frontend for memory storage pool implementations.
   7 * Typically, this is used to store compressed memory.
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/list.h>
  13#include <linux/types.h>
  14#include <linux/mm.h>
  15#include <linux/slab.h>
  16#include <linux/spinlock.h>
  17#include <linux/module.h>
  18#include <linux/zpool.h>
  19
  20struct zpool {
  21        struct zpool_driver *driver;
  22        void *pool;
  23        const struct zpool_ops *ops;
  24        bool evictable;
  25
  26        struct list_head list;
  27};
  28
  29static LIST_HEAD(drivers_head);
  30static DEFINE_SPINLOCK(drivers_lock);
  31
  32static LIST_HEAD(pools_head);
  33static DEFINE_SPINLOCK(pools_lock);
  34
  35/**
  36 * zpool_register_driver() - register a zpool implementation.
  37 * @driver:     driver to register
  38 */
  39void zpool_register_driver(struct zpool_driver *driver)
  40{
  41        spin_lock(&drivers_lock);
  42        atomic_set(&driver->refcount, 0);
  43        list_add(&driver->list, &drivers_head);
  44        spin_unlock(&drivers_lock);
  45}
  46EXPORT_SYMBOL(zpool_register_driver);
  47
  48/**
  49 * zpool_unregister_driver() - unregister a zpool implementation.
  50 * @driver:     driver to unregister.
  51 *
  52 * Module usage counting is used to prevent using a driver
  53 * while/after unloading, so if this is called from module
  54 * exit function, this should never fail; if called from
  55 * other than the module exit function, and this returns
  56 * failure, the driver is in use and must remain available.
  57 */
  58int zpool_unregister_driver(struct zpool_driver *driver)
  59{
  60        int ret = 0, refcount;
  61
  62        spin_lock(&drivers_lock);
  63        refcount = atomic_read(&driver->refcount);
  64        WARN_ON(refcount < 0);
  65        if (refcount > 0)
  66                ret = -EBUSY;
  67        else
  68                list_del(&driver->list);
  69        spin_unlock(&drivers_lock);
  70
  71        return ret;
  72}
  73EXPORT_SYMBOL(zpool_unregister_driver);
  74
  75/* this assumes @type is null-terminated. */
  76static struct zpool_driver *zpool_get_driver(const char *type)
  77{
  78        struct zpool_driver *driver;
  79
  80        spin_lock(&drivers_lock);
  81        list_for_each_entry(driver, &drivers_head, list) {
  82                if (!strcmp(driver->type, type)) {
  83                        bool got = try_module_get(driver->owner);
  84
  85                        if (got)
  86                                atomic_inc(&driver->refcount);
  87                        spin_unlock(&drivers_lock);
  88                        return got ? driver : NULL;
  89                }
  90        }
  91
  92        spin_unlock(&drivers_lock);
  93        return NULL;
  94}
  95
  96static void zpool_put_driver(struct zpool_driver *driver)
  97{
  98        atomic_dec(&driver->refcount);
  99        module_put(driver->owner);
 100}
 101
 102/**
 103 * zpool_has_pool() - Check if the pool driver is available
 104 * @type:       The type of the zpool to check (e.g. zbud, zsmalloc)
 105 *
 106 * This checks if the @type pool driver is available.  This will try to load
 107 * the requested module, if needed, but there is no guarantee the module will
 108 * still be loaded and available immediately after calling.  If this returns
 109 * true, the caller should assume the pool is available, but must be prepared
 110 * to handle the @zpool_create_pool() returning failure.  However if this
 111 * returns false, the caller should assume the requested pool type is not
 112 * available; either the requested pool type module does not exist, or could
 113 * not be loaded, and calling @zpool_create_pool() with the pool type will
 114 * fail.
 115 *
 116 * The @type string must be null-terminated.
 117 *
 118 * Returns: true if @type pool is available, false if not
 119 */
 120bool zpool_has_pool(char *type)
 121{
 122        struct zpool_driver *driver = zpool_get_driver(type);
 123
 124        if (!driver) {
 125                request_module("zpool-%s", type);
 126                driver = zpool_get_driver(type);
 127        }
 128
 129        if (!driver)
 130                return false;
 131
 132        zpool_put_driver(driver);
 133        return true;
 134}
 135EXPORT_SYMBOL(zpool_has_pool);
 136
 137/**
 138 * zpool_create_pool() - Create a new zpool
 139 * @type:       The type of the zpool to create (e.g. zbud, zsmalloc)
 140 * @name:       The name of the zpool (e.g. zram0, zswap)
 141 * @gfp:        The GFP flags to use when allocating the pool.
 142 * @ops:        The optional ops callback.
 143 *
 144 * This creates a new zpool of the specified type.  The gfp flags will be
 145 * used when allocating memory, if the implementation supports it.  If the
 146 * ops param is NULL, then the created zpool will not be evictable.
 147 *
 148 * Implementations must guarantee this to be thread-safe.
 149 *
 150 * The @type and @name strings must be null-terminated.
 151 *
 152 * Returns: New zpool on success, NULL on failure.
 153 */
 154struct zpool *zpool_create_pool(const char *type, const char *name, gfp_t gfp,
 155                const struct zpool_ops *ops)
 156{
 157        struct zpool_driver *driver;
 158        struct zpool *zpool;
 159
 160        pr_debug("creating pool type %s\n", type);
 161
 162        driver = zpool_get_driver(type);
 163
 164        if (!driver) {
 165                request_module("zpool-%s", type);
 166                driver = zpool_get_driver(type);
 167        }
 168
 169        if (!driver) {
 170                pr_err("no driver for type %s\n", type);
 171                return NULL;
 172        }
 173
 174        zpool = kmalloc(sizeof(*zpool), gfp);
 175        if (!zpool) {
 176                pr_err("couldn't create zpool - out of memory\n");
 177                zpool_put_driver(driver);
 178                return NULL;
 179        }
 180
 181        zpool->driver = driver;
 182        zpool->pool = driver->create(name, gfp, ops, zpool);
 183        zpool->ops = ops;
 184        zpool->evictable = driver->shrink && ops && ops->evict;
 185
 186        if (!zpool->pool) {
 187                pr_err("couldn't create %s pool\n", type);
 188                zpool_put_driver(driver);
 189                kfree(zpool);
 190                return NULL;
 191        }
 192
 193        pr_debug("created pool type %s\n", type);
 194
 195        spin_lock(&pools_lock);
 196        list_add(&zpool->list, &pools_head);
 197        spin_unlock(&pools_lock);
 198
 199        return zpool;
 200}
 201
 202/**
 203 * zpool_destroy_pool() - Destroy a zpool
 204 * @zpool:      The zpool to destroy.
 205 *
 206 * Implementations must guarantee this to be thread-safe,
 207 * however only when destroying different pools.  The same
 208 * pool should only be destroyed once, and should not be used
 209 * after it is destroyed.
 210 *
 211 * This destroys an existing zpool.  The zpool should not be in use.
 212 */
 213void zpool_destroy_pool(struct zpool *zpool)
 214{
 215        pr_debug("destroying pool type %s\n", zpool->driver->type);
 216
 217        spin_lock(&pools_lock);
 218        list_del(&zpool->list);
 219        spin_unlock(&pools_lock);
 220        zpool->driver->destroy(zpool->pool);
 221        zpool_put_driver(zpool->driver);
 222        kfree(zpool);
 223}
 224
 225/**
 226 * zpool_get_type() - Get the type of the zpool
 227 * @zpool:      The zpool to check
 228 *
 229 * This returns the type of the pool.
 230 *
 231 * Implementations must guarantee this to be thread-safe.
 232 *
 233 * Returns: The type of zpool.
 234 */
 235const char *zpool_get_type(struct zpool *zpool)
 236{
 237        return zpool->driver->type;
 238}
 239
 240/**
 241 * zpool_malloc() - Allocate memory
 242 * @zpool:      The zpool to allocate from.
 243 * @size:       The amount of memory to allocate.
 244 * @gfp:        The GFP flags to use when allocating memory.
 245 * @handle:     Pointer to the handle to set
 246 *
 247 * This allocates the requested amount of memory from the pool.
 248 * The gfp flags will be used when allocating memory, if the
 249 * implementation supports it.  The provided @handle will be
 250 * set to the allocated object handle.
 251 *
 252 * Implementations must guarantee this to be thread-safe.
 253 *
 254 * Returns: 0 on success, negative value on error.
 255 */
 256int zpool_malloc(struct zpool *zpool, size_t size, gfp_t gfp,
 257                        unsigned long *handle)
 258{
 259        return zpool->driver->malloc(zpool->pool, size, gfp, handle);
 260}
 261
 262/**
 263 * zpool_free() - Free previously allocated memory
 264 * @zpool:      The zpool that allocated the memory.
 265 * @handle:     The handle to the memory to free.
 266 *
 267 * This frees previously allocated memory.  This does not guarantee
 268 * that the pool will actually free memory, only that the memory
 269 * in the pool will become available for use by the pool.
 270 *
 271 * Implementations must guarantee this to be thread-safe,
 272 * however only when freeing different handles.  The same
 273 * handle should only be freed once, and should not be used
 274 * after freeing.
 275 */
 276void zpool_free(struct zpool *zpool, unsigned long handle)
 277{
 278        zpool->driver->free(zpool->pool, handle);
 279}
 280
 281/**
 282 * zpool_shrink() - Shrink the pool size
 283 * @zpool:      The zpool to shrink.
 284 * @pages:      The number of pages to shrink the pool.
 285 * @reclaimed:  The number of pages successfully evicted.
 286 *
 287 * This attempts to shrink the actual memory size of the pool
 288 * by evicting currently used handle(s).  If the pool was
 289 * created with no zpool_ops, or the evict call fails for any
 290 * of the handles, this will fail.  If non-NULL, the @reclaimed
 291 * parameter will be set to the number of pages reclaimed,
 292 * which may be more than the number of pages requested.
 293 *
 294 * Implementations must guarantee this to be thread-safe.
 295 *
 296 * Returns: 0 on success, negative value on error/failure.
 297 */
 298int zpool_shrink(struct zpool *zpool, unsigned int pages,
 299                        unsigned int *reclaimed)
 300{
 301        return zpool->driver->shrink ?
 302               zpool->driver->shrink(zpool->pool, pages, reclaimed) : -EINVAL;
 303}
 304
 305/**
 306 * zpool_map_handle() - Map a previously allocated handle into memory
 307 * @zpool:      The zpool that the handle was allocated from
 308 * @handle:     The handle to map
 309 * @mapmode:    How the memory should be mapped
 310 *
 311 * This maps a previously allocated handle into memory.  The @mapmode
 312 * param indicates to the implementation how the memory will be
 313 * used, i.e. read-only, write-only, read-write.  If the
 314 * implementation does not support it, the memory will be treated
 315 * as read-write.
 316 *
 317 * This may hold locks, disable interrupts, and/or preemption,
 318 * and the zpool_unmap_handle() must be called to undo those
 319 * actions.  The code that uses the mapped handle should complete
 320 * its operatons on the mapped handle memory quickly and unmap
 321 * as soon as possible.  As the implementation may use per-cpu
 322 * data, multiple handles should not be mapped concurrently on
 323 * any cpu.
 324 *
 325 * Returns: A pointer to the handle's mapped memory area.
 326 */
 327void *zpool_map_handle(struct zpool *zpool, unsigned long handle,
 328                        enum zpool_mapmode mapmode)
 329{
 330        return zpool->driver->map(zpool->pool, handle, mapmode);
 331}
 332
 333/**
 334 * zpool_unmap_handle() - Unmap a previously mapped handle
 335 * @zpool:      The zpool that the handle was allocated from
 336 * @handle:     The handle to unmap
 337 *
 338 * This unmaps a previously mapped handle.  Any locks or other
 339 * actions that the implementation took in zpool_map_handle()
 340 * will be undone here.  The memory area returned from
 341 * zpool_map_handle() should no longer be used after this.
 342 */
 343void zpool_unmap_handle(struct zpool *zpool, unsigned long handle)
 344{
 345        zpool->driver->unmap(zpool->pool, handle);
 346}
 347
 348/**
 349 * zpool_get_total_size() - The total size of the pool
 350 * @zpool:      The zpool to check
 351 *
 352 * This returns the total size in bytes of the pool.
 353 *
 354 * Returns: Total size of the zpool in bytes.
 355 */
 356u64 zpool_get_total_size(struct zpool *zpool)
 357{
 358        return zpool->driver->total_size(zpool->pool);
 359}
 360
 361/**
 362 * zpool_evictable() - Test if zpool is potentially evictable
 363 * @zpool:      The zpool to test
 364 *
 365 * Zpool is only potentially evictable when it's created with struct
 366 * zpool_ops.evict and its driver implements struct zpool_driver.shrink.
 367 *
 368 * However, it doesn't necessarily mean driver will use zpool_ops.evict
 369 * in its implementation of zpool_driver.shrink. It could do internal
 370 * defragmentation instead.
 371 *
 372 * Returns: true if potentially evictable; false otherwise.
 373 */
 374bool zpool_evictable(struct zpool *zpool)
 375{
 376        return zpool->evictable;
 377}
 378
 379MODULE_LICENSE("GPL");
 380MODULE_AUTHOR("Dan Streetman <ddstreet@ieee.org>");
 381MODULE_DESCRIPTION("Common API for compressed memory storage");
 382