linux/mm/zsmalloc.c
<<
>>
Prefs
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *      page->private: points to zspage
  20 *      page->freelist(index): links together all component pages of a zspage
  21 *              For the huge page, this is always 0, so we use this field
  22 *              to store handle.
  23 *      page->units: first object offset in a subpage of zspage
  24 *
  25 * Usage of struct page flags:
  26 *      PG_private: identifies the first component page
  27 *      PG_owner_priv_1: identifies the huge component page
  28 *
  29 */
  30
  31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32
  33#include <linux/module.h>
  34#include <linux/kernel.h>
  35#include <linux/sched.h>
  36#include <linux/magic.h>
  37#include <linux/bitops.h>
  38#include <linux/errno.h>
  39#include <linux/highmem.h>
  40#include <linux/string.h>
  41#include <linux/slab.h>
  42#include <asm/tlbflush.h>
  43#include <asm/pgtable.h>
  44#include <linux/cpumask.h>
  45#include <linux/cpu.h>
  46#include <linux/vmalloc.h>
  47#include <linux/preempt.h>
  48#include <linux/spinlock.h>
  49#include <linux/shrinker.h>
  50#include <linux/types.h>
  51#include <linux/debugfs.h>
  52#include <linux/zsmalloc.h>
  53#include <linux/zpool.h>
  54#include <linux/mount.h>
  55#include <linux/migrate.h>
  56#include <linux/pagemap.h>
  57#include <linux/fs.h>
  58
  59#define ZSPAGE_MAGIC    0x58
  60
  61/*
  62 * This must be power of 2 and greater than of equal to sizeof(link_free).
  63 * These two conditions ensure that any 'struct link_free' itself doesn't
  64 * span more than 1 page which avoids complex case of mapping 2 pages simply
  65 * to restore link_free pointer values.
  66 */
  67#define ZS_ALIGN                8
  68
  69/*
  70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  72 */
  73#define ZS_MAX_ZSPAGE_ORDER 2
  74#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  75
  76#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  77
  78/*
  79 * Object location (<PFN>, <obj_idx>) is encoded as
  80 * as single (unsigned long) handle value.
  81 *
  82 * Note that object index <obj_idx> starts from 0.
  83 *
  84 * This is made more complicated by various memory models and PAE.
  85 */
  86
  87#ifndef MAX_POSSIBLE_PHYSMEM_BITS
  88#ifdef MAX_PHYSMEM_BITS
  89#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
  90#else
  91/*
  92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
  93 * be PAGE_SHIFT
  94 */
  95#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
  96#endif
  97#endif
  98
  99#define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
 100
 101/*
 102 * Memory for allocating for handle keeps object position by
 103 * encoding <page, obj_idx> and the encoded value has a room
 104 * in least bit(ie, look at obj_to_location).
 105 * We use the bit to synchronize between object access by
 106 * user and migration.
 107 */
 108#define HANDLE_PIN_BIT  0
 109
 110/*
 111 * Head in allocated object should have OBJ_ALLOCATED_TAG
 112 * to identify the object was allocated or not.
 113 * It's okay to add the status bit in the least bit because
 114 * header keeps handle which is 4byte-aligned address so we
 115 * have room for two bit at least.
 116 */
 117#define OBJ_ALLOCATED_TAG 1
 118#define OBJ_TAG_BITS 1
 119#define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 120#define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 121
 122#define FULLNESS_BITS   2
 123#define CLASS_BITS      8
 124#define ISOLATED_BITS   3
 125#define MAGIC_VAL_BITS  8
 126
 127#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 128/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 129#define ZS_MIN_ALLOC_SIZE \
 130        MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 131/* each chunk includes extra space to keep handle */
 132#define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
 133
 134/*
 135 * On systems with 4K page size, this gives 255 size classes! There is a
 136 * trader-off here:
 137 *  - Large number of size classes is potentially wasteful as free page are
 138 *    spread across these classes
 139 *  - Small number of size classes causes large internal fragmentation
 140 *  - Probably its better to use specific size classes (empirically
 141 *    determined). NOTE: all those class sizes must be set as multiple of
 142 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 143 *
 144 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 145 *  (reason above)
 146 */
 147#define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
 148#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
 149                                      ZS_SIZE_CLASS_DELTA) + 1)
 150
 151enum fullness_group {
 152        ZS_EMPTY,
 153        ZS_ALMOST_EMPTY,
 154        ZS_ALMOST_FULL,
 155        ZS_FULL,
 156        NR_ZS_FULLNESS,
 157};
 158
 159enum zs_stat_type {
 160        CLASS_EMPTY,
 161        CLASS_ALMOST_EMPTY,
 162        CLASS_ALMOST_FULL,
 163        CLASS_FULL,
 164        OBJ_ALLOCATED,
 165        OBJ_USED,
 166        NR_ZS_STAT_TYPE,
 167};
 168
 169struct zs_size_stat {
 170        unsigned long objs[NR_ZS_STAT_TYPE];
 171};
 172
 173#ifdef CONFIG_ZSMALLOC_STAT
 174static struct dentry *zs_stat_root;
 175#endif
 176
 177#ifdef CONFIG_COMPACTION
 178static struct vfsmount *zsmalloc_mnt;
 179#endif
 180
 181/*
 182 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 183 *      n <= N / f, where
 184 * n = number of allocated objects
 185 * N = total number of objects zspage can store
 186 * f = fullness_threshold_frac
 187 *
 188 * Similarly, we assign zspage to:
 189 *      ZS_ALMOST_FULL  when n > N / f
 190 *      ZS_EMPTY        when n == 0
 191 *      ZS_FULL         when n == N
 192 *
 193 * (see: fix_fullness_group())
 194 */
 195static const int fullness_threshold_frac = 4;
 196static size_t huge_class_size;
 197
 198struct size_class {
 199        spinlock_t lock;
 200        struct list_head fullness_list[NR_ZS_FULLNESS];
 201        /*
 202         * Size of objects stored in this class. Must be multiple
 203         * of ZS_ALIGN.
 204         */
 205        int size;
 206        int objs_per_zspage;
 207        /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 208        int pages_per_zspage;
 209
 210        unsigned int index;
 211        struct zs_size_stat stats;
 212};
 213
 214/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 215static void SetPageHugeObject(struct page *page)
 216{
 217        SetPageOwnerPriv1(page);
 218}
 219
 220static void ClearPageHugeObject(struct page *page)
 221{
 222        ClearPageOwnerPriv1(page);
 223}
 224
 225static int PageHugeObject(struct page *page)
 226{
 227        return PageOwnerPriv1(page);
 228}
 229
 230/*
 231 * Placed within free objects to form a singly linked list.
 232 * For every zspage, zspage->freeobj gives head of this list.
 233 *
 234 * This must be power of 2 and less than or equal to ZS_ALIGN
 235 */
 236struct link_free {
 237        union {
 238                /*
 239                 * Free object index;
 240                 * It's valid for non-allocated object
 241                 */
 242                unsigned long next;
 243                /*
 244                 * Handle of allocated object.
 245                 */
 246                unsigned long handle;
 247        };
 248};
 249
 250struct zs_pool {
 251        const char *name;
 252
 253        struct size_class *size_class[ZS_SIZE_CLASSES];
 254        struct kmem_cache *handle_cachep;
 255        struct kmem_cache *zspage_cachep;
 256
 257        atomic_long_t pages_allocated;
 258
 259        struct zs_pool_stats stats;
 260
 261        /* Compact classes */
 262        struct shrinker shrinker;
 263
 264#ifdef CONFIG_ZSMALLOC_STAT
 265        struct dentry *stat_dentry;
 266#endif
 267#ifdef CONFIG_COMPACTION
 268        struct inode *inode;
 269        struct work_struct free_work;
 270#endif
 271};
 272
 273struct zspage {
 274        struct {
 275                unsigned int fullness:FULLNESS_BITS;
 276                unsigned int class:CLASS_BITS + 1;
 277                unsigned int isolated:ISOLATED_BITS;
 278                unsigned int magic:MAGIC_VAL_BITS;
 279        };
 280        unsigned int inuse;
 281        unsigned int freeobj;
 282        struct page *first_page;
 283        struct list_head list; /* fullness list */
 284#ifdef CONFIG_COMPACTION
 285        rwlock_t lock;
 286#endif
 287};
 288
 289struct mapping_area {
 290#ifdef CONFIG_PGTABLE_MAPPING
 291        struct vm_struct *vm; /* vm area for mapping object that span pages */
 292#else
 293        char *vm_buf; /* copy buffer for objects that span pages */
 294#endif
 295        char *vm_addr; /* address of kmap_atomic()'ed pages */
 296        enum zs_mapmode vm_mm; /* mapping mode */
 297};
 298
 299#ifdef CONFIG_COMPACTION
 300static int zs_register_migration(struct zs_pool *pool);
 301static void zs_unregister_migration(struct zs_pool *pool);
 302static void migrate_lock_init(struct zspage *zspage);
 303static void migrate_read_lock(struct zspage *zspage);
 304static void migrate_read_unlock(struct zspage *zspage);
 305static void kick_deferred_free(struct zs_pool *pool);
 306static void init_deferred_free(struct zs_pool *pool);
 307static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
 308#else
 309static int zsmalloc_mount(void) { return 0; }
 310static void zsmalloc_unmount(void) {}
 311static int zs_register_migration(struct zs_pool *pool) { return 0; }
 312static void zs_unregister_migration(struct zs_pool *pool) {}
 313static void migrate_lock_init(struct zspage *zspage) {}
 314static void migrate_read_lock(struct zspage *zspage) {}
 315static void migrate_read_unlock(struct zspage *zspage) {}
 316static void kick_deferred_free(struct zs_pool *pool) {}
 317static void init_deferred_free(struct zs_pool *pool) {}
 318static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
 319#endif
 320
 321static int create_cache(struct zs_pool *pool)
 322{
 323        pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 324                                        0, 0, NULL);
 325        if (!pool->handle_cachep)
 326                return 1;
 327
 328        pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
 329                                        0, 0, NULL);
 330        if (!pool->zspage_cachep) {
 331                kmem_cache_destroy(pool->handle_cachep);
 332                pool->handle_cachep = NULL;
 333                return 1;
 334        }
 335
 336        return 0;
 337}
 338
 339static void destroy_cache(struct zs_pool *pool)
 340{
 341        kmem_cache_destroy(pool->handle_cachep);
 342        kmem_cache_destroy(pool->zspage_cachep);
 343}
 344
 345static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
 346{
 347        return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 348                        gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 349}
 350
 351static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
 352{
 353        kmem_cache_free(pool->handle_cachep, (void *)handle);
 354}
 355
 356static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
 357{
 358        return kmem_cache_alloc(pool->zspage_cachep,
 359                        flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 360}
 361
 362static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
 363{
 364        kmem_cache_free(pool->zspage_cachep, zspage);
 365}
 366
 367static void record_obj(unsigned long handle, unsigned long obj)
 368{
 369        /*
 370         * lsb of @obj represents handle lock while other bits
 371         * represent object value the handle is pointing so
 372         * updating shouldn't do store tearing.
 373         */
 374        WRITE_ONCE(*(unsigned long *)handle, obj);
 375}
 376
 377/* zpool driver */
 378
 379#ifdef CONFIG_ZPOOL
 380
 381static void *zs_zpool_create(const char *name, gfp_t gfp,
 382                             const struct zpool_ops *zpool_ops,
 383                             struct zpool *zpool)
 384{
 385        /*
 386         * Ignore global gfp flags: zs_malloc() may be invoked from
 387         * different contexts and its caller must provide a valid
 388         * gfp mask.
 389         */
 390        return zs_create_pool(name);
 391}
 392
 393static void zs_zpool_destroy(void *pool)
 394{
 395        zs_destroy_pool(pool);
 396}
 397
 398static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 399                        unsigned long *handle)
 400{
 401        *handle = zs_malloc(pool, size, gfp);
 402        return *handle ? 0 : -1;
 403}
 404static void zs_zpool_free(void *pool, unsigned long handle)
 405{
 406        zs_free(pool, handle);
 407}
 408
 409static void *zs_zpool_map(void *pool, unsigned long handle,
 410                        enum zpool_mapmode mm)
 411{
 412        enum zs_mapmode zs_mm;
 413
 414        switch (mm) {
 415        case ZPOOL_MM_RO:
 416                zs_mm = ZS_MM_RO;
 417                break;
 418        case ZPOOL_MM_WO:
 419                zs_mm = ZS_MM_WO;
 420                break;
 421        case ZPOOL_MM_RW: /* fallthru */
 422        default:
 423                zs_mm = ZS_MM_RW;
 424                break;
 425        }
 426
 427        return zs_map_object(pool, handle, zs_mm);
 428}
 429static void zs_zpool_unmap(void *pool, unsigned long handle)
 430{
 431        zs_unmap_object(pool, handle);
 432}
 433
 434static u64 zs_zpool_total_size(void *pool)
 435{
 436        return zs_get_total_pages(pool) << PAGE_SHIFT;
 437}
 438
 439static struct zpool_driver zs_zpool_driver = {
 440        .type =         "zsmalloc",
 441        .owner =        THIS_MODULE,
 442        .create =       zs_zpool_create,
 443        .destroy =      zs_zpool_destroy,
 444        .malloc =       zs_zpool_malloc,
 445        .free =         zs_zpool_free,
 446        .map =          zs_zpool_map,
 447        .unmap =        zs_zpool_unmap,
 448        .total_size =   zs_zpool_total_size,
 449};
 450
 451MODULE_ALIAS("zpool-zsmalloc");
 452#endif /* CONFIG_ZPOOL */
 453
 454/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 455static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
 456
 457static bool is_zspage_isolated(struct zspage *zspage)
 458{
 459        return zspage->isolated;
 460}
 461
 462static __maybe_unused int is_first_page(struct page *page)
 463{
 464        return PagePrivate(page);
 465}
 466
 467/* Protected by class->lock */
 468static inline int get_zspage_inuse(struct zspage *zspage)
 469{
 470        return zspage->inuse;
 471}
 472
 473static inline void set_zspage_inuse(struct zspage *zspage, int val)
 474{
 475        zspage->inuse = val;
 476}
 477
 478static inline void mod_zspage_inuse(struct zspage *zspage, int val)
 479{
 480        zspage->inuse += val;
 481}
 482
 483static inline struct page *get_first_page(struct zspage *zspage)
 484{
 485        struct page *first_page = zspage->first_page;
 486
 487        VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 488        return first_page;
 489}
 490
 491static inline int get_first_obj_offset(struct page *page)
 492{
 493        return page->units;
 494}
 495
 496static inline void set_first_obj_offset(struct page *page, int offset)
 497{
 498        page->units = offset;
 499}
 500
 501static inline unsigned int get_freeobj(struct zspage *zspage)
 502{
 503        return zspage->freeobj;
 504}
 505
 506static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
 507{
 508        zspage->freeobj = obj;
 509}
 510
 511static void get_zspage_mapping(struct zspage *zspage,
 512                                unsigned int *class_idx,
 513                                enum fullness_group *fullness)
 514{
 515        BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 516
 517        *fullness = zspage->fullness;
 518        *class_idx = zspage->class;
 519}
 520
 521static void set_zspage_mapping(struct zspage *zspage,
 522                                unsigned int class_idx,
 523                                enum fullness_group fullness)
 524{
 525        zspage->class = class_idx;
 526        zspage->fullness = fullness;
 527}
 528
 529/*
 530 * zsmalloc divides the pool into various size classes where each
 531 * class maintains a list of zspages where each zspage is divided
 532 * into equal sized chunks. Each allocation falls into one of these
 533 * classes depending on its size. This function returns index of the
 534 * size class which has chunk size big enough to hold the give size.
 535 */
 536static int get_size_class_index(int size)
 537{
 538        int idx = 0;
 539
 540        if (likely(size > ZS_MIN_ALLOC_SIZE))
 541                idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 542                                ZS_SIZE_CLASS_DELTA);
 543
 544        return min_t(int, ZS_SIZE_CLASSES - 1, idx);
 545}
 546
 547/* type can be of enum type zs_stat_type or fullness_group */
 548static inline void zs_stat_inc(struct size_class *class,
 549                                int type, unsigned long cnt)
 550{
 551        class->stats.objs[type] += cnt;
 552}
 553
 554/* type can be of enum type zs_stat_type or fullness_group */
 555static inline void zs_stat_dec(struct size_class *class,
 556                                int type, unsigned long cnt)
 557{
 558        class->stats.objs[type] -= cnt;
 559}
 560
 561/* type can be of enum type zs_stat_type or fullness_group */
 562static inline unsigned long zs_stat_get(struct size_class *class,
 563                                int type)
 564{
 565        return class->stats.objs[type];
 566}
 567
 568#ifdef CONFIG_ZSMALLOC_STAT
 569
 570static void __init zs_stat_init(void)
 571{
 572        if (!debugfs_initialized()) {
 573                pr_warn("debugfs not available, stat dir not created\n");
 574                return;
 575        }
 576
 577        zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 578        if (!zs_stat_root)
 579                pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
 580}
 581
 582static void __exit zs_stat_exit(void)
 583{
 584        debugfs_remove_recursive(zs_stat_root);
 585}
 586
 587static unsigned long zs_can_compact(struct size_class *class);
 588
 589static int zs_stats_size_show(struct seq_file *s, void *v)
 590{
 591        int i;
 592        struct zs_pool *pool = s->private;
 593        struct size_class *class;
 594        int objs_per_zspage;
 595        unsigned long class_almost_full, class_almost_empty;
 596        unsigned long obj_allocated, obj_used, pages_used, freeable;
 597        unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
 598        unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 599        unsigned long total_freeable = 0;
 600
 601        seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
 602                        "class", "size", "almost_full", "almost_empty",
 603                        "obj_allocated", "obj_used", "pages_used",
 604                        "pages_per_zspage", "freeable");
 605
 606        for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 607                class = pool->size_class[i];
 608
 609                if (class->index != i)
 610                        continue;
 611
 612                spin_lock(&class->lock);
 613                class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
 614                class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
 615                obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
 616                obj_used = zs_stat_get(class, OBJ_USED);
 617                freeable = zs_can_compact(class);
 618                spin_unlock(&class->lock);
 619
 620                objs_per_zspage = class->objs_per_zspage;
 621                pages_used = obj_allocated / objs_per_zspage *
 622                                class->pages_per_zspage;
 623
 624                seq_printf(s, " %5u %5u %11lu %12lu %13lu"
 625                                " %10lu %10lu %16d %8lu\n",
 626                        i, class->size, class_almost_full, class_almost_empty,
 627                        obj_allocated, obj_used, pages_used,
 628                        class->pages_per_zspage, freeable);
 629
 630                total_class_almost_full += class_almost_full;
 631                total_class_almost_empty += class_almost_empty;
 632                total_objs += obj_allocated;
 633                total_used_objs += obj_used;
 634                total_pages += pages_used;
 635                total_freeable += freeable;
 636        }
 637
 638        seq_puts(s, "\n");
 639        seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
 640                        "Total", "", total_class_almost_full,
 641                        total_class_almost_empty, total_objs,
 642                        total_used_objs, total_pages, "", total_freeable);
 643
 644        return 0;
 645}
 646DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
 647
 648static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 649{
 650        struct dentry *entry;
 651
 652        if (!zs_stat_root) {
 653                pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
 654                return;
 655        }
 656
 657        entry = debugfs_create_dir(name, zs_stat_root);
 658        if (!entry) {
 659                pr_warn("debugfs dir <%s> creation failed\n", name);
 660                return;
 661        }
 662        pool->stat_dentry = entry;
 663
 664        entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
 665                        pool->stat_dentry, pool, &zs_stats_size_fops);
 666        if (!entry) {
 667                pr_warn("%s: debugfs file entry <%s> creation failed\n",
 668                                name, "classes");
 669                debugfs_remove_recursive(pool->stat_dentry);
 670                pool->stat_dentry = NULL;
 671        }
 672}
 673
 674static void zs_pool_stat_destroy(struct zs_pool *pool)
 675{
 676        debugfs_remove_recursive(pool->stat_dentry);
 677}
 678
 679#else /* CONFIG_ZSMALLOC_STAT */
 680static void __init zs_stat_init(void)
 681{
 682}
 683
 684static void __exit zs_stat_exit(void)
 685{
 686}
 687
 688static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 689{
 690}
 691
 692static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 693{
 694}
 695#endif
 696
 697
 698/*
 699 * For each size class, zspages are divided into different groups
 700 * depending on how "full" they are. This was done so that we could
 701 * easily find empty or nearly empty zspages when we try to shrink
 702 * the pool (not yet implemented). This function returns fullness
 703 * status of the given page.
 704 */
 705static enum fullness_group get_fullness_group(struct size_class *class,
 706                                                struct zspage *zspage)
 707{
 708        int inuse, objs_per_zspage;
 709        enum fullness_group fg;
 710
 711        inuse = get_zspage_inuse(zspage);
 712        objs_per_zspage = class->objs_per_zspage;
 713
 714        if (inuse == 0)
 715                fg = ZS_EMPTY;
 716        else if (inuse == objs_per_zspage)
 717                fg = ZS_FULL;
 718        else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
 719                fg = ZS_ALMOST_EMPTY;
 720        else
 721                fg = ZS_ALMOST_FULL;
 722
 723        return fg;
 724}
 725
 726/*
 727 * Each size class maintains various freelists and zspages are assigned
 728 * to one of these freelists based on the number of live objects they
 729 * have. This functions inserts the given zspage into the freelist
 730 * identified by <class, fullness_group>.
 731 */
 732static void insert_zspage(struct size_class *class,
 733                                struct zspage *zspage,
 734                                enum fullness_group fullness)
 735{
 736        struct zspage *head;
 737
 738        zs_stat_inc(class, fullness, 1);
 739        head = list_first_entry_or_null(&class->fullness_list[fullness],
 740                                        struct zspage, list);
 741        /*
 742         * We want to see more ZS_FULL pages and less almost empty/full.
 743         * Put pages with higher ->inuse first.
 744         */
 745        if (head) {
 746                if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
 747                        list_add(&zspage->list, &head->list);
 748                        return;
 749                }
 750        }
 751        list_add(&zspage->list, &class->fullness_list[fullness]);
 752}
 753
 754/*
 755 * This function removes the given zspage from the freelist identified
 756 * by <class, fullness_group>.
 757 */
 758static void remove_zspage(struct size_class *class,
 759                                struct zspage *zspage,
 760                                enum fullness_group fullness)
 761{
 762        VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
 763        VM_BUG_ON(is_zspage_isolated(zspage));
 764
 765        list_del_init(&zspage->list);
 766        zs_stat_dec(class, fullness, 1);
 767}
 768
 769/*
 770 * Each size class maintains zspages in different fullness groups depending
 771 * on the number of live objects they contain. When allocating or freeing
 772 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 773 * to ALMOST_EMPTY when freeing an object. This function checks if such
 774 * a status change has occurred for the given page and accordingly moves the
 775 * page from the freelist of the old fullness group to that of the new
 776 * fullness group.
 777 */
 778static enum fullness_group fix_fullness_group(struct size_class *class,
 779                                                struct zspage *zspage)
 780{
 781        int class_idx;
 782        enum fullness_group currfg, newfg;
 783
 784        get_zspage_mapping(zspage, &class_idx, &currfg);
 785        newfg = get_fullness_group(class, zspage);
 786        if (newfg == currfg)
 787                goto out;
 788
 789        if (!is_zspage_isolated(zspage)) {
 790                remove_zspage(class, zspage, currfg);
 791                insert_zspage(class, zspage, newfg);
 792        }
 793
 794        set_zspage_mapping(zspage, class_idx, newfg);
 795
 796out:
 797        return newfg;
 798}
 799
 800/*
 801 * We have to decide on how many pages to link together
 802 * to form a zspage for each size class. This is important
 803 * to reduce wastage due to unusable space left at end of
 804 * each zspage which is given as:
 805 *     wastage = Zp % class_size
 806 *     usage = Zp - wastage
 807 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 808 *
 809 * For example, for size class of 3/8 * PAGE_SIZE, we should
 810 * link together 3 PAGE_SIZE sized pages to form a zspage
 811 * since then we can perfectly fit in 8 such objects.
 812 */
 813static int get_pages_per_zspage(int class_size)
 814{
 815        int i, max_usedpc = 0;
 816        /* zspage order which gives maximum used size per KB */
 817        int max_usedpc_order = 1;
 818
 819        for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 820                int zspage_size;
 821                int waste, usedpc;
 822
 823                zspage_size = i * PAGE_SIZE;
 824                waste = zspage_size % class_size;
 825                usedpc = (zspage_size - waste) * 100 / zspage_size;
 826
 827                if (usedpc > max_usedpc) {
 828                        max_usedpc = usedpc;
 829                        max_usedpc_order = i;
 830                }
 831        }
 832
 833        return max_usedpc_order;
 834}
 835
 836static struct zspage *get_zspage(struct page *page)
 837{
 838        struct zspage *zspage = (struct zspage *)page->private;
 839
 840        BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 841        return zspage;
 842}
 843
 844static struct page *get_next_page(struct page *page)
 845{
 846        if (unlikely(PageHugeObject(page)))
 847                return NULL;
 848
 849        return page->freelist;
 850}
 851
 852/**
 853 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
 854 * @obj: the encoded object value
 855 * @page: page object resides in zspage
 856 * @obj_idx: object index
 857 */
 858static void obj_to_location(unsigned long obj, struct page **page,
 859                                unsigned int *obj_idx)
 860{
 861        obj >>= OBJ_TAG_BITS;
 862        *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 863        *obj_idx = (obj & OBJ_INDEX_MASK);
 864}
 865
 866/**
 867 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
 868 * @page: page object resides in zspage
 869 * @obj_idx: object index
 870 */
 871static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
 872{
 873        unsigned long obj;
 874
 875        obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 876        obj |= obj_idx & OBJ_INDEX_MASK;
 877        obj <<= OBJ_TAG_BITS;
 878
 879        return obj;
 880}
 881
 882static unsigned long handle_to_obj(unsigned long handle)
 883{
 884        return *(unsigned long *)handle;
 885}
 886
 887static unsigned long obj_to_head(struct page *page, void *obj)
 888{
 889        if (unlikely(PageHugeObject(page))) {
 890                VM_BUG_ON_PAGE(!is_first_page(page), page);
 891                return page->index;
 892        } else
 893                return *(unsigned long *)obj;
 894}
 895
 896static inline int testpin_tag(unsigned long handle)
 897{
 898        return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
 899}
 900
 901static inline int trypin_tag(unsigned long handle)
 902{
 903        return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
 904}
 905
 906static void pin_tag(unsigned long handle)
 907{
 908        bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
 909}
 910
 911static void unpin_tag(unsigned long handle)
 912{
 913        bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
 914}
 915
 916static void reset_page(struct page *page)
 917{
 918        __ClearPageMovable(page);
 919        ClearPagePrivate(page);
 920        set_page_private(page, 0);
 921        page_mapcount_reset(page);
 922        ClearPageHugeObject(page);
 923        page->freelist = NULL;
 924}
 925
 926/*
 927 * To prevent zspage destroy during migration, zspage freeing should
 928 * hold locks of all pages in the zspage.
 929 */
 930void lock_zspage(struct zspage *zspage)
 931{
 932        struct page *page = get_first_page(zspage);
 933
 934        do {
 935                lock_page(page);
 936        } while ((page = get_next_page(page)) != NULL);
 937}
 938
 939int trylock_zspage(struct zspage *zspage)
 940{
 941        struct page *cursor, *fail;
 942
 943        for (cursor = get_first_page(zspage); cursor != NULL; cursor =
 944                                        get_next_page(cursor)) {
 945                if (!trylock_page(cursor)) {
 946                        fail = cursor;
 947                        goto unlock;
 948                }
 949        }
 950
 951        return 1;
 952unlock:
 953        for (cursor = get_first_page(zspage); cursor != fail; cursor =
 954                                        get_next_page(cursor))
 955                unlock_page(cursor);
 956
 957        return 0;
 958}
 959
 960static void __free_zspage(struct zs_pool *pool, struct size_class *class,
 961                                struct zspage *zspage)
 962{
 963        struct page *page, *next;
 964        enum fullness_group fg;
 965        unsigned int class_idx;
 966
 967        get_zspage_mapping(zspage, &class_idx, &fg);
 968
 969        assert_spin_locked(&class->lock);
 970
 971        VM_BUG_ON(get_zspage_inuse(zspage));
 972        VM_BUG_ON(fg != ZS_EMPTY);
 973
 974        next = page = get_first_page(zspage);
 975        do {
 976                VM_BUG_ON_PAGE(!PageLocked(page), page);
 977                next = get_next_page(page);
 978                reset_page(page);
 979                unlock_page(page);
 980                dec_zone_page_state(page, NR_ZSPAGES);
 981                put_page(page);
 982                page = next;
 983        } while (page != NULL);
 984
 985        cache_free_zspage(pool, zspage);
 986
 987        zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
 988        atomic_long_sub(class->pages_per_zspage,
 989                                        &pool->pages_allocated);
 990}
 991
 992static void free_zspage(struct zs_pool *pool, struct size_class *class,
 993                                struct zspage *zspage)
 994{
 995        VM_BUG_ON(get_zspage_inuse(zspage));
 996        VM_BUG_ON(list_empty(&zspage->list));
 997
 998        if (!trylock_zspage(zspage)) {
 999                kick_deferred_free(pool);
1000                return;
1001        }
1002
1003        remove_zspage(class, zspage, ZS_EMPTY);
1004        __free_zspage(pool, class, zspage);
1005}
1006
1007/* Initialize a newly allocated zspage */
1008static void init_zspage(struct size_class *class, struct zspage *zspage)
1009{
1010        unsigned int freeobj = 1;
1011        unsigned long off = 0;
1012        struct page *page = get_first_page(zspage);
1013
1014        while (page) {
1015                struct page *next_page;
1016                struct link_free *link;
1017                void *vaddr;
1018
1019                set_first_obj_offset(page, off);
1020
1021                vaddr = kmap_atomic(page);
1022                link = (struct link_free *)vaddr + off / sizeof(*link);
1023
1024                while ((off += class->size) < PAGE_SIZE) {
1025                        link->next = freeobj++ << OBJ_TAG_BITS;
1026                        link += class->size / sizeof(*link);
1027                }
1028
1029                /*
1030                 * We now come to the last (full or partial) object on this
1031                 * page, which must point to the first object on the next
1032                 * page (if present)
1033                 */
1034                next_page = get_next_page(page);
1035                if (next_page) {
1036                        link->next = freeobj++ << OBJ_TAG_BITS;
1037                } else {
1038                        /*
1039                         * Reset OBJ_TAG_BITS bit to last link to tell
1040                         * whether it's allocated object or not.
1041                         */
1042                        link->next = -1UL << OBJ_TAG_BITS;
1043                }
1044                kunmap_atomic(vaddr);
1045                page = next_page;
1046                off %= PAGE_SIZE;
1047        }
1048
1049        set_freeobj(zspage, 0);
1050}
1051
1052static void create_page_chain(struct size_class *class, struct zspage *zspage,
1053                                struct page *pages[])
1054{
1055        int i;
1056        struct page *page;
1057        struct page *prev_page = NULL;
1058        int nr_pages = class->pages_per_zspage;
1059
1060        /*
1061         * Allocate individual pages and link them together as:
1062         * 1. all pages are linked together using page->freelist
1063         * 2. each sub-page point to zspage using page->private
1064         *
1065         * we set PG_private to identify the first page (i.e. no other sub-page
1066         * has this flag set).
1067         */
1068        for (i = 0; i < nr_pages; i++) {
1069                page = pages[i];
1070                set_page_private(page, (unsigned long)zspage);
1071                page->freelist = NULL;
1072                if (i == 0) {
1073                        zspage->first_page = page;
1074                        SetPagePrivate(page);
1075                        if (unlikely(class->objs_per_zspage == 1 &&
1076                                        class->pages_per_zspage == 1))
1077                                SetPageHugeObject(page);
1078                } else {
1079                        prev_page->freelist = page;
1080                }
1081                prev_page = page;
1082        }
1083}
1084
1085/*
1086 * Allocate a zspage for the given size class
1087 */
1088static struct zspage *alloc_zspage(struct zs_pool *pool,
1089                                        struct size_class *class,
1090                                        gfp_t gfp)
1091{
1092        int i;
1093        struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1094        struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1095
1096        if (!zspage)
1097                return NULL;
1098
1099        memset(zspage, 0, sizeof(struct zspage));
1100        zspage->magic = ZSPAGE_MAGIC;
1101        migrate_lock_init(zspage);
1102
1103        for (i = 0; i < class->pages_per_zspage; i++) {
1104                struct page *page;
1105
1106                page = alloc_page(gfp);
1107                if (!page) {
1108                        while (--i >= 0) {
1109                                dec_zone_page_state(pages[i], NR_ZSPAGES);
1110                                __free_page(pages[i]);
1111                        }
1112                        cache_free_zspage(pool, zspage);
1113                        return NULL;
1114                }
1115
1116                inc_zone_page_state(page, NR_ZSPAGES);
1117                pages[i] = page;
1118        }
1119
1120        create_page_chain(class, zspage, pages);
1121        init_zspage(class, zspage);
1122
1123        return zspage;
1124}
1125
1126static struct zspage *find_get_zspage(struct size_class *class)
1127{
1128        int i;
1129        struct zspage *zspage;
1130
1131        for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1132                zspage = list_first_entry_or_null(&class->fullness_list[i],
1133                                struct zspage, list);
1134                if (zspage)
1135                        break;
1136        }
1137
1138        return zspage;
1139}
1140
1141#ifdef CONFIG_PGTABLE_MAPPING
1142static inline int __zs_cpu_up(struct mapping_area *area)
1143{
1144        /*
1145         * Make sure we don't leak memory if a cpu UP notification
1146         * and zs_init() race and both call zs_cpu_up() on the same cpu
1147         */
1148        if (area->vm)
1149                return 0;
1150        area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1151        if (!area->vm)
1152                return -ENOMEM;
1153        return 0;
1154}
1155
1156static inline void __zs_cpu_down(struct mapping_area *area)
1157{
1158        if (area->vm)
1159                free_vm_area(area->vm);
1160        area->vm = NULL;
1161}
1162
1163static inline void *__zs_map_object(struct mapping_area *area,
1164                                struct page *pages[2], int off, int size)
1165{
1166        BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1167        area->vm_addr = area->vm->addr;
1168        return area->vm_addr + off;
1169}
1170
1171static inline void __zs_unmap_object(struct mapping_area *area,
1172                                struct page *pages[2], int off, int size)
1173{
1174        unsigned long addr = (unsigned long)area->vm_addr;
1175
1176        unmap_kernel_range(addr, PAGE_SIZE * 2);
1177}
1178
1179#else /* CONFIG_PGTABLE_MAPPING */
1180
1181static inline int __zs_cpu_up(struct mapping_area *area)
1182{
1183        /*
1184         * Make sure we don't leak memory if a cpu UP notification
1185         * and zs_init() race and both call zs_cpu_up() on the same cpu
1186         */
1187        if (area->vm_buf)
1188                return 0;
1189        area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1190        if (!area->vm_buf)
1191                return -ENOMEM;
1192        return 0;
1193}
1194
1195static inline void __zs_cpu_down(struct mapping_area *area)
1196{
1197        kfree(area->vm_buf);
1198        area->vm_buf = NULL;
1199}
1200
1201static void *__zs_map_object(struct mapping_area *area,
1202                        struct page *pages[2], int off, int size)
1203{
1204        int sizes[2];
1205        void *addr;
1206        char *buf = area->vm_buf;
1207
1208        /* disable page faults to match kmap_atomic() return conditions */
1209        pagefault_disable();
1210
1211        /* no read fastpath */
1212        if (area->vm_mm == ZS_MM_WO)
1213                goto out;
1214
1215        sizes[0] = PAGE_SIZE - off;
1216        sizes[1] = size - sizes[0];
1217
1218        /* copy object to per-cpu buffer */
1219        addr = kmap_atomic(pages[0]);
1220        memcpy(buf, addr + off, sizes[0]);
1221        kunmap_atomic(addr);
1222        addr = kmap_atomic(pages[1]);
1223        memcpy(buf + sizes[0], addr, sizes[1]);
1224        kunmap_atomic(addr);
1225out:
1226        return area->vm_buf;
1227}
1228
1229static void __zs_unmap_object(struct mapping_area *area,
1230                        struct page *pages[2], int off, int size)
1231{
1232        int sizes[2];
1233        void *addr;
1234        char *buf;
1235
1236        /* no write fastpath */
1237        if (area->vm_mm == ZS_MM_RO)
1238                goto out;
1239
1240        buf = area->vm_buf;
1241        buf = buf + ZS_HANDLE_SIZE;
1242        size -= ZS_HANDLE_SIZE;
1243        off += ZS_HANDLE_SIZE;
1244
1245        sizes[0] = PAGE_SIZE - off;
1246        sizes[1] = size - sizes[0];
1247
1248        /* copy per-cpu buffer to object */
1249        addr = kmap_atomic(pages[0]);
1250        memcpy(addr + off, buf, sizes[0]);
1251        kunmap_atomic(addr);
1252        addr = kmap_atomic(pages[1]);
1253        memcpy(addr, buf + sizes[0], sizes[1]);
1254        kunmap_atomic(addr);
1255
1256out:
1257        /* enable page faults to match kunmap_atomic() return conditions */
1258        pagefault_enable();
1259}
1260
1261#endif /* CONFIG_PGTABLE_MAPPING */
1262
1263static int zs_cpu_prepare(unsigned int cpu)
1264{
1265        struct mapping_area *area;
1266
1267        area = &per_cpu(zs_map_area, cpu);
1268        return __zs_cpu_up(area);
1269}
1270
1271static int zs_cpu_dead(unsigned int cpu)
1272{
1273        struct mapping_area *area;
1274
1275        area = &per_cpu(zs_map_area, cpu);
1276        __zs_cpu_down(area);
1277        return 0;
1278}
1279
1280static bool can_merge(struct size_class *prev, int pages_per_zspage,
1281                                        int objs_per_zspage)
1282{
1283        if (prev->pages_per_zspage == pages_per_zspage &&
1284                prev->objs_per_zspage == objs_per_zspage)
1285                return true;
1286
1287        return false;
1288}
1289
1290static bool zspage_full(struct size_class *class, struct zspage *zspage)
1291{
1292        return get_zspage_inuse(zspage) == class->objs_per_zspage;
1293}
1294
1295unsigned long zs_get_total_pages(struct zs_pool *pool)
1296{
1297        return atomic_long_read(&pool->pages_allocated);
1298}
1299EXPORT_SYMBOL_GPL(zs_get_total_pages);
1300
1301/**
1302 * zs_map_object - get address of allocated object from handle.
1303 * @pool: pool from which the object was allocated
1304 * @handle: handle returned from zs_malloc
1305 * @mm: maping mode to use
1306 *
1307 * Before using an object allocated from zs_malloc, it must be mapped using
1308 * this function. When done with the object, it must be unmapped using
1309 * zs_unmap_object.
1310 *
1311 * Only one object can be mapped per cpu at a time. There is no protection
1312 * against nested mappings.
1313 *
1314 * This function returns with preemption and page faults disabled.
1315 */
1316void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1317                        enum zs_mapmode mm)
1318{
1319        struct zspage *zspage;
1320        struct page *page;
1321        unsigned long obj, off;
1322        unsigned int obj_idx;
1323
1324        unsigned int class_idx;
1325        enum fullness_group fg;
1326        struct size_class *class;
1327        struct mapping_area *area;
1328        struct page *pages[2];
1329        void *ret;
1330
1331        /*
1332         * Because we use per-cpu mapping areas shared among the
1333         * pools/users, we can't allow mapping in interrupt context
1334         * because it can corrupt another users mappings.
1335         */
1336        BUG_ON(in_interrupt());
1337
1338        /* From now on, migration cannot move the object */
1339        pin_tag(handle);
1340
1341        obj = handle_to_obj(handle);
1342        obj_to_location(obj, &page, &obj_idx);
1343        zspage = get_zspage(page);
1344
1345        /* migration cannot move any subpage in this zspage */
1346        migrate_read_lock(zspage);
1347
1348        get_zspage_mapping(zspage, &class_idx, &fg);
1349        class = pool->size_class[class_idx];
1350        off = (class->size * obj_idx) & ~PAGE_MASK;
1351
1352        area = &get_cpu_var(zs_map_area);
1353        area->vm_mm = mm;
1354        if (off + class->size <= PAGE_SIZE) {
1355                /* this object is contained entirely within a page */
1356                area->vm_addr = kmap_atomic(page);
1357                ret = area->vm_addr + off;
1358                goto out;
1359        }
1360
1361        /* this object spans two pages */
1362        pages[0] = page;
1363        pages[1] = get_next_page(page);
1364        BUG_ON(!pages[1]);
1365
1366        ret = __zs_map_object(area, pages, off, class->size);
1367out:
1368        if (likely(!PageHugeObject(page)))
1369                ret += ZS_HANDLE_SIZE;
1370
1371        return ret;
1372}
1373EXPORT_SYMBOL_GPL(zs_map_object);
1374
1375void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1376{
1377        struct zspage *zspage;
1378        struct page *page;
1379        unsigned long obj, off;
1380        unsigned int obj_idx;
1381
1382        unsigned int class_idx;
1383        enum fullness_group fg;
1384        struct size_class *class;
1385        struct mapping_area *area;
1386
1387        obj = handle_to_obj(handle);
1388        obj_to_location(obj, &page, &obj_idx);
1389        zspage = get_zspage(page);
1390        get_zspage_mapping(zspage, &class_idx, &fg);
1391        class = pool->size_class[class_idx];
1392        off = (class->size * obj_idx) & ~PAGE_MASK;
1393
1394        area = this_cpu_ptr(&zs_map_area);
1395        if (off + class->size <= PAGE_SIZE)
1396                kunmap_atomic(area->vm_addr);
1397        else {
1398                struct page *pages[2];
1399
1400                pages[0] = page;
1401                pages[1] = get_next_page(page);
1402                BUG_ON(!pages[1]);
1403
1404                __zs_unmap_object(area, pages, off, class->size);
1405        }
1406        put_cpu_var(zs_map_area);
1407
1408        migrate_read_unlock(zspage);
1409        unpin_tag(handle);
1410}
1411EXPORT_SYMBOL_GPL(zs_unmap_object);
1412
1413/**
1414 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1415 *                        zsmalloc &size_class.
1416 * @pool: zsmalloc pool to use
1417 *
1418 * The function returns the size of the first huge class - any object of equal
1419 * or bigger size will be stored in zspage consisting of a single physical
1420 * page.
1421 *
1422 * Context: Any context.
1423 *
1424 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1425 */
1426size_t zs_huge_class_size(struct zs_pool *pool)
1427{
1428        return huge_class_size;
1429}
1430EXPORT_SYMBOL_GPL(zs_huge_class_size);
1431
1432static unsigned long obj_malloc(struct size_class *class,
1433                                struct zspage *zspage, unsigned long handle)
1434{
1435        int i, nr_page, offset;
1436        unsigned long obj;
1437        struct link_free *link;
1438
1439        struct page *m_page;
1440        unsigned long m_offset;
1441        void *vaddr;
1442
1443        handle |= OBJ_ALLOCATED_TAG;
1444        obj = get_freeobj(zspage);
1445
1446        offset = obj * class->size;
1447        nr_page = offset >> PAGE_SHIFT;
1448        m_offset = offset & ~PAGE_MASK;
1449        m_page = get_first_page(zspage);
1450
1451        for (i = 0; i < nr_page; i++)
1452                m_page = get_next_page(m_page);
1453
1454        vaddr = kmap_atomic(m_page);
1455        link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1456        set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1457        if (likely(!PageHugeObject(m_page)))
1458                /* record handle in the header of allocated chunk */
1459                link->handle = handle;
1460        else
1461                /* record handle to page->index */
1462                zspage->first_page->index = handle;
1463
1464        kunmap_atomic(vaddr);
1465        mod_zspage_inuse(zspage, 1);
1466        zs_stat_inc(class, OBJ_USED, 1);
1467
1468        obj = location_to_obj(m_page, obj);
1469
1470        return obj;
1471}
1472
1473
1474/**
1475 * zs_malloc - Allocate block of given size from pool.
1476 * @pool: pool to allocate from
1477 * @size: size of block to allocate
1478 * @gfp: gfp flags when allocating object
1479 *
1480 * On success, handle to the allocated object is returned,
1481 * otherwise 0.
1482 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1483 */
1484unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1485{
1486        unsigned long handle, obj;
1487        struct size_class *class;
1488        enum fullness_group newfg;
1489        struct zspage *zspage;
1490
1491        if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1492                return 0;
1493
1494        handle = cache_alloc_handle(pool, gfp);
1495        if (!handle)
1496                return 0;
1497
1498        /* extra space in chunk to keep the handle */
1499        size += ZS_HANDLE_SIZE;
1500        class = pool->size_class[get_size_class_index(size)];
1501
1502        spin_lock(&class->lock);
1503        zspage = find_get_zspage(class);
1504        if (likely(zspage)) {
1505                obj = obj_malloc(class, zspage, handle);
1506                /* Now move the zspage to another fullness group, if required */
1507                fix_fullness_group(class, zspage);
1508                record_obj(handle, obj);
1509                spin_unlock(&class->lock);
1510
1511                return handle;
1512        }
1513
1514        spin_unlock(&class->lock);
1515
1516        zspage = alloc_zspage(pool, class, gfp);
1517        if (!zspage) {
1518                cache_free_handle(pool, handle);
1519                return 0;
1520        }
1521
1522        spin_lock(&class->lock);
1523        obj = obj_malloc(class, zspage, handle);
1524        newfg = get_fullness_group(class, zspage);
1525        insert_zspage(class, zspage, newfg);
1526        set_zspage_mapping(zspage, class->index, newfg);
1527        record_obj(handle, obj);
1528        atomic_long_add(class->pages_per_zspage,
1529                                &pool->pages_allocated);
1530        zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1531
1532        /* We completely set up zspage so mark them as movable */
1533        SetZsPageMovable(pool, zspage);
1534        spin_unlock(&class->lock);
1535
1536        return handle;
1537}
1538EXPORT_SYMBOL_GPL(zs_malloc);
1539
1540static void obj_free(struct size_class *class, unsigned long obj)
1541{
1542        struct link_free *link;
1543        struct zspage *zspage;
1544        struct page *f_page;
1545        unsigned long f_offset;
1546        unsigned int f_objidx;
1547        void *vaddr;
1548
1549        obj &= ~OBJ_ALLOCATED_TAG;
1550        obj_to_location(obj, &f_page, &f_objidx);
1551        f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1552        zspage = get_zspage(f_page);
1553
1554        vaddr = kmap_atomic(f_page);
1555
1556        /* Insert this object in containing zspage's freelist */
1557        link = (struct link_free *)(vaddr + f_offset);
1558        link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1559        kunmap_atomic(vaddr);
1560        set_freeobj(zspage, f_objidx);
1561        mod_zspage_inuse(zspage, -1);
1562        zs_stat_dec(class, OBJ_USED, 1);
1563}
1564
1565void zs_free(struct zs_pool *pool, unsigned long handle)
1566{
1567        struct zspage *zspage;
1568        struct page *f_page;
1569        unsigned long obj;
1570        unsigned int f_objidx;
1571        int class_idx;
1572        struct size_class *class;
1573        enum fullness_group fullness;
1574        bool isolated;
1575
1576        if (unlikely(!handle))
1577                return;
1578
1579        pin_tag(handle);
1580        obj = handle_to_obj(handle);
1581        obj_to_location(obj, &f_page, &f_objidx);
1582        zspage = get_zspage(f_page);
1583
1584        migrate_read_lock(zspage);
1585
1586        get_zspage_mapping(zspage, &class_idx, &fullness);
1587        class = pool->size_class[class_idx];
1588
1589        spin_lock(&class->lock);
1590        obj_free(class, obj);
1591        fullness = fix_fullness_group(class, zspage);
1592        if (fullness != ZS_EMPTY) {
1593                migrate_read_unlock(zspage);
1594                goto out;
1595        }
1596
1597        isolated = is_zspage_isolated(zspage);
1598        migrate_read_unlock(zspage);
1599        /* If zspage is isolated, zs_page_putback will free the zspage */
1600        if (likely(!isolated))
1601                free_zspage(pool, class, zspage);
1602out:
1603
1604        spin_unlock(&class->lock);
1605        unpin_tag(handle);
1606        cache_free_handle(pool, handle);
1607}
1608EXPORT_SYMBOL_GPL(zs_free);
1609
1610static void zs_object_copy(struct size_class *class, unsigned long dst,
1611                                unsigned long src)
1612{
1613        struct page *s_page, *d_page;
1614        unsigned int s_objidx, d_objidx;
1615        unsigned long s_off, d_off;
1616        void *s_addr, *d_addr;
1617        int s_size, d_size, size;
1618        int written = 0;
1619
1620        s_size = d_size = class->size;
1621
1622        obj_to_location(src, &s_page, &s_objidx);
1623        obj_to_location(dst, &d_page, &d_objidx);
1624
1625        s_off = (class->size * s_objidx) & ~PAGE_MASK;
1626        d_off = (class->size * d_objidx) & ~PAGE_MASK;
1627
1628        if (s_off + class->size > PAGE_SIZE)
1629                s_size = PAGE_SIZE - s_off;
1630
1631        if (d_off + class->size > PAGE_SIZE)
1632                d_size = PAGE_SIZE - d_off;
1633
1634        s_addr = kmap_atomic(s_page);
1635        d_addr = kmap_atomic(d_page);
1636
1637        while (1) {
1638                size = min(s_size, d_size);
1639                memcpy(d_addr + d_off, s_addr + s_off, size);
1640                written += size;
1641
1642                if (written == class->size)
1643                        break;
1644
1645                s_off += size;
1646                s_size -= size;
1647                d_off += size;
1648                d_size -= size;
1649
1650                if (s_off >= PAGE_SIZE) {
1651                        kunmap_atomic(d_addr);
1652                        kunmap_atomic(s_addr);
1653                        s_page = get_next_page(s_page);
1654                        s_addr = kmap_atomic(s_page);
1655                        d_addr = kmap_atomic(d_page);
1656                        s_size = class->size - written;
1657                        s_off = 0;
1658                }
1659
1660                if (d_off >= PAGE_SIZE) {
1661                        kunmap_atomic(d_addr);
1662                        d_page = get_next_page(d_page);
1663                        d_addr = kmap_atomic(d_page);
1664                        d_size = class->size - written;
1665                        d_off = 0;
1666                }
1667        }
1668
1669        kunmap_atomic(d_addr);
1670        kunmap_atomic(s_addr);
1671}
1672
1673/*
1674 * Find alloced object in zspage from index object and
1675 * return handle.
1676 */
1677static unsigned long find_alloced_obj(struct size_class *class,
1678                                        struct page *page, int *obj_idx)
1679{
1680        unsigned long head;
1681        int offset = 0;
1682        int index = *obj_idx;
1683        unsigned long handle = 0;
1684        void *addr = kmap_atomic(page);
1685
1686        offset = get_first_obj_offset(page);
1687        offset += class->size * index;
1688
1689        while (offset < PAGE_SIZE) {
1690                head = obj_to_head(page, addr + offset);
1691                if (head & OBJ_ALLOCATED_TAG) {
1692                        handle = head & ~OBJ_ALLOCATED_TAG;
1693                        if (trypin_tag(handle))
1694                                break;
1695                        handle = 0;
1696                }
1697
1698                offset += class->size;
1699                index++;
1700        }
1701
1702        kunmap_atomic(addr);
1703
1704        *obj_idx = index;
1705
1706        return handle;
1707}
1708
1709struct zs_compact_control {
1710        /* Source spage for migration which could be a subpage of zspage */
1711        struct page *s_page;
1712        /* Destination page for migration which should be a first page
1713         * of zspage. */
1714        struct page *d_page;
1715         /* Starting object index within @s_page which used for live object
1716          * in the subpage. */
1717        int obj_idx;
1718};
1719
1720static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1721                                struct zs_compact_control *cc)
1722{
1723        unsigned long used_obj, free_obj;
1724        unsigned long handle;
1725        struct page *s_page = cc->s_page;
1726        struct page *d_page = cc->d_page;
1727        int obj_idx = cc->obj_idx;
1728        int ret = 0;
1729
1730        while (1) {
1731                handle = find_alloced_obj(class, s_page, &obj_idx);
1732                if (!handle) {
1733                        s_page = get_next_page(s_page);
1734                        if (!s_page)
1735                                break;
1736                        obj_idx = 0;
1737                        continue;
1738                }
1739
1740                /* Stop if there is no more space */
1741                if (zspage_full(class, get_zspage(d_page))) {
1742                        unpin_tag(handle);
1743                        ret = -ENOMEM;
1744                        break;
1745                }
1746
1747                used_obj = handle_to_obj(handle);
1748                free_obj = obj_malloc(class, get_zspage(d_page), handle);
1749                zs_object_copy(class, free_obj, used_obj);
1750                obj_idx++;
1751                /*
1752                 * record_obj updates handle's value to free_obj and it will
1753                 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1754                 * breaks synchronization using pin_tag(e,g, zs_free) so
1755                 * let's keep the lock bit.
1756                 */
1757                free_obj |= BIT(HANDLE_PIN_BIT);
1758                record_obj(handle, free_obj);
1759                unpin_tag(handle);
1760                obj_free(class, used_obj);
1761        }
1762
1763        /* Remember last position in this iteration */
1764        cc->s_page = s_page;
1765        cc->obj_idx = obj_idx;
1766
1767        return ret;
1768}
1769
1770static struct zspage *isolate_zspage(struct size_class *class, bool source)
1771{
1772        int i;
1773        struct zspage *zspage;
1774        enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1775
1776        if (!source) {
1777                fg[0] = ZS_ALMOST_FULL;
1778                fg[1] = ZS_ALMOST_EMPTY;
1779        }
1780
1781        for (i = 0; i < 2; i++) {
1782                zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1783                                                        struct zspage, list);
1784                if (zspage) {
1785                        VM_BUG_ON(is_zspage_isolated(zspage));
1786                        remove_zspage(class, zspage, fg[i]);
1787                        return zspage;
1788                }
1789        }
1790
1791        return zspage;
1792}
1793
1794/*
1795 * putback_zspage - add @zspage into right class's fullness list
1796 * @class: destination class
1797 * @zspage: target page
1798 *
1799 * Return @zspage's fullness_group
1800 */
1801static enum fullness_group putback_zspage(struct size_class *class,
1802                        struct zspage *zspage)
1803{
1804        enum fullness_group fullness;
1805
1806        VM_BUG_ON(is_zspage_isolated(zspage));
1807
1808        fullness = get_fullness_group(class, zspage);
1809        insert_zspage(class, zspage, fullness);
1810        set_zspage_mapping(zspage, class->index, fullness);
1811
1812        return fullness;
1813}
1814
1815#ifdef CONFIG_COMPACTION
1816static struct dentry *zs_mount(struct file_system_type *fs_type,
1817                                int flags, const char *dev_name, void *data)
1818{
1819        static const struct dentry_operations ops = {
1820                .d_dname = simple_dname,
1821        };
1822
1823        return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1824}
1825
1826static struct file_system_type zsmalloc_fs = {
1827        .name           = "zsmalloc",
1828        .mount          = zs_mount,
1829        .kill_sb        = kill_anon_super,
1830};
1831
1832static int zsmalloc_mount(void)
1833{
1834        int ret = 0;
1835
1836        zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1837        if (IS_ERR(zsmalloc_mnt))
1838                ret = PTR_ERR(zsmalloc_mnt);
1839
1840        return ret;
1841}
1842
1843static void zsmalloc_unmount(void)
1844{
1845        kern_unmount(zsmalloc_mnt);
1846}
1847
1848static void migrate_lock_init(struct zspage *zspage)
1849{
1850        rwlock_init(&zspage->lock);
1851}
1852
1853static void migrate_read_lock(struct zspage *zspage)
1854{
1855        read_lock(&zspage->lock);
1856}
1857
1858static void migrate_read_unlock(struct zspage *zspage)
1859{
1860        read_unlock(&zspage->lock);
1861}
1862
1863static void migrate_write_lock(struct zspage *zspage)
1864{
1865        write_lock(&zspage->lock);
1866}
1867
1868static void migrate_write_unlock(struct zspage *zspage)
1869{
1870        write_unlock(&zspage->lock);
1871}
1872
1873/* Number of isolated subpage for *page migration* in this zspage */
1874static void inc_zspage_isolation(struct zspage *zspage)
1875{
1876        zspage->isolated++;
1877}
1878
1879static void dec_zspage_isolation(struct zspage *zspage)
1880{
1881        zspage->isolated--;
1882}
1883
1884static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1885                                struct page *newpage, struct page *oldpage)
1886{
1887        struct page *page;
1888        struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1889        int idx = 0;
1890
1891        page = get_first_page(zspage);
1892        do {
1893                if (page == oldpage)
1894                        pages[idx] = newpage;
1895                else
1896                        pages[idx] = page;
1897                idx++;
1898        } while ((page = get_next_page(page)) != NULL);
1899
1900        create_page_chain(class, zspage, pages);
1901        set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1902        if (unlikely(PageHugeObject(oldpage)))
1903                newpage->index = oldpage->index;
1904        __SetPageMovable(newpage, page_mapping(oldpage));
1905}
1906
1907bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1908{
1909        struct zs_pool *pool;
1910        struct size_class *class;
1911        int class_idx;
1912        enum fullness_group fullness;
1913        struct zspage *zspage;
1914        struct address_space *mapping;
1915
1916        /*
1917         * Page is locked so zspage couldn't be destroyed. For detail, look at
1918         * lock_zspage in free_zspage.
1919         */
1920        VM_BUG_ON_PAGE(!PageMovable(page), page);
1921        VM_BUG_ON_PAGE(PageIsolated(page), page);
1922
1923        zspage = get_zspage(page);
1924
1925        /*
1926         * Without class lock, fullness could be stale while class_idx is okay
1927         * because class_idx is constant unless page is freed so we should get
1928         * fullness again under class lock.
1929         */
1930        get_zspage_mapping(zspage, &class_idx, &fullness);
1931        mapping = page_mapping(page);
1932        pool = mapping->private_data;
1933        class = pool->size_class[class_idx];
1934
1935        spin_lock(&class->lock);
1936        if (get_zspage_inuse(zspage) == 0) {
1937                spin_unlock(&class->lock);
1938                return false;
1939        }
1940
1941        /* zspage is isolated for object migration */
1942        if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1943                spin_unlock(&class->lock);
1944                return false;
1945        }
1946
1947        /*
1948         * If this is first time isolation for the zspage, isolate zspage from
1949         * size_class to prevent further object allocation from the zspage.
1950         */
1951        if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1952                get_zspage_mapping(zspage, &class_idx, &fullness);
1953                remove_zspage(class, zspage, fullness);
1954        }
1955
1956        inc_zspage_isolation(zspage);
1957        spin_unlock(&class->lock);
1958
1959        return true;
1960}
1961
1962int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1963                struct page *page, enum migrate_mode mode)
1964{
1965        struct zs_pool *pool;
1966        struct size_class *class;
1967        int class_idx;
1968        enum fullness_group fullness;
1969        struct zspage *zspage;
1970        struct page *dummy;
1971        void *s_addr, *d_addr, *addr;
1972        int offset, pos;
1973        unsigned long handle, head;
1974        unsigned long old_obj, new_obj;
1975        unsigned int obj_idx;
1976        int ret = -EAGAIN;
1977
1978        /*
1979         * We cannot support the _NO_COPY case here, because copy needs to
1980         * happen under the zs lock, which does not work with
1981         * MIGRATE_SYNC_NO_COPY workflow.
1982         */
1983        if (mode == MIGRATE_SYNC_NO_COPY)
1984                return -EINVAL;
1985
1986        VM_BUG_ON_PAGE(!PageMovable(page), page);
1987        VM_BUG_ON_PAGE(!PageIsolated(page), page);
1988
1989        zspage = get_zspage(page);
1990
1991        /* Concurrent compactor cannot migrate any subpage in zspage */
1992        migrate_write_lock(zspage);
1993        get_zspage_mapping(zspage, &class_idx, &fullness);
1994        pool = mapping->private_data;
1995        class = pool->size_class[class_idx];
1996        offset = get_first_obj_offset(page);
1997
1998        spin_lock(&class->lock);
1999        if (!get_zspage_inuse(zspage)) {
2000                /*
2001                 * Set "offset" to end of the page so that every loops
2002                 * skips unnecessary object scanning.
2003                 */
2004                offset = PAGE_SIZE;
2005        }
2006
2007        pos = offset;
2008        s_addr = kmap_atomic(page);
2009        while (pos < PAGE_SIZE) {
2010                head = obj_to_head(page, s_addr + pos);
2011                if (head & OBJ_ALLOCATED_TAG) {
2012                        handle = head & ~OBJ_ALLOCATED_TAG;
2013                        if (!trypin_tag(handle))
2014                                goto unpin_objects;
2015                }
2016                pos += class->size;
2017        }
2018
2019        /*
2020         * Here, any user cannot access all objects in the zspage so let's move.
2021         */
2022        d_addr = kmap_atomic(newpage);
2023        memcpy(d_addr, s_addr, PAGE_SIZE);
2024        kunmap_atomic(d_addr);
2025
2026        for (addr = s_addr + offset; addr < s_addr + pos;
2027                                        addr += class->size) {
2028                head = obj_to_head(page, addr);
2029                if (head & OBJ_ALLOCATED_TAG) {
2030                        handle = head & ~OBJ_ALLOCATED_TAG;
2031                        if (!testpin_tag(handle))
2032                                BUG();
2033
2034                        old_obj = handle_to_obj(handle);
2035                        obj_to_location(old_obj, &dummy, &obj_idx);
2036                        new_obj = (unsigned long)location_to_obj(newpage,
2037                                                                obj_idx);
2038                        new_obj |= BIT(HANDLE_PIN_BIT);
2039                        record_obj(handle, new_obj);
2040                }
2041        }
2042
2043        replace_sub_page(class, zspage, newpage, page);
2044        get_page(newpage);
2045
2046        dec_zspage_isolation(zspage);
2047
2048        /*
2049         * Page migration is done so let's putback isolated zspage to
2050         * the list if @page is final isolated subpage in the zspage.
2051         */
2052        if (!is_zspage_isolated(zspage))
2053                putback_zspage(class, zspage);
2054
2055        reset_page(page);
2056        put_page(page);
2057        page = newpage;
2058
2059        ret = MIGRATEPAGE_SUCCESS;
2060unpin_objects:
2061        for (addr = s_addr + offset; addr < s_addr + pos;
2062                                                addr += class->size) {
2063                head = obj_to_head(page, addr);
2064                if (head & OBJ_ALLOCATED_TAG) {
2065                        handle = head & ~OBJ_ALLOCATED_TAG;
2066                        if (!testpin_tag(handle))
2067                                BUG();
2068                        unpin_tag(handle);
2069                }
2070        }
2071        kunmap_atomic(s_addr);
2072        spin_unlock(&class->lock);
2073        migrate_write_unlock(zspage);
2074
2075        return ret;
2076}
2077
2078void zs_page_putback(struct page *page)
2079{
2080        struct zs_pool *pool;
2081        struct size_class *class;
2082        int class_idx;
2083        enum fullness_group fg;
2084        struct address_space *mapping;
2085        struct zspage *zspage;
2086
2087        VM_BUG_ON_PAGE(!PageMovable(page), page);
2088        VM_BUG_ON_PAGE(!PageIsolated(page), page);
2089
2090        zspage = get_zspage(page);
2091        get_zspage_mapping(zspage, &class_idx, &fg);
2092        mapping = page_mapping(page);
2093        pool = mapping->private_data;
2094        class = pool->size_class[class_idx];
2095
2096        spin_lock(&class->lock);
2097        dec_zspage_isolation(zspage);
2098        if (!is_zspage_isolated(zspage)) {
2099                fg = putback_zspage(class, zspage);
2100                /*
2101                 * Due to page_lock, we cannot free zspage immediately
2102                 * so let's defer.
2103                 */
2104                if (fg == ZS_EMPTY)
2105                        schedule_work(&pool->free_work);
2106        }
2107        spin_unlock(&class->lock);
2108}
2109
2110const struct address_space_operations zsmalloc_aops = {
2111        .isolate_page = zs_page_isolate,
2112        .migratepage = zs_page_migrate,
2113        .putback_page = zs_page_putback,
2114};
2115
2116static int zs_register_migration(struct zs_pool *pool)
2117{
2118        pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2119        if (IS_ERR(pool->inode)) {
2120                pool->inode = NULL;
2121                return 1;
2122        }
2123
2124        pool->inode->i_mapping->private_data = pool;
2125        pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2126        return 0;
2127}
2128
2129static void zs_unregister_migration(struct zs_pool *pool)
2130{
2131        flush_work(&pool->free_work);
2132        iput(pool->inode);
2133}
2134
2135/*
2136 * Caller should hold page_lock of all pages in the zspage
2137 * In here, we cannot use zspage meta data.
2138 */
2139static void async_free_zspage(struct work_struct *work)
2140{
2141        int i;
2142        struct size_class *class;
2143        unsigned int class_idx;
2144        enum fullness_group fullness;
2145        struct zspage *zspage, *tmp;
2146        LIST_HEAD(free_pages);
2147        struct zs_pool *pool = container_of(work, struct zs_pool,
2148                                        free_work);
2149
2150        for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2151                class = pool->size_class[i];
2152                if (class->index != i)
2153                        continue;
2154
2155                spin_lock(&class->lock);
2156                list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2157                spin_unlock(&class->lock);
2158        }
2159
2160
2161        list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2162                list_del(&zspage->list);
2163                lock_zspage(zspage);
2164
2165                get_zspage_mapping(zspage, &class_idx, &fullness);
2166                VM_BUG_ON(fullness != ZS_EMPTY);
2167                class = pool->size_class[class_idx];
2168                spin_lock(&class->lock);
2169                __free_zspage(pool, pool->size_class[class_idx], zspage);
2170                spin_unlock(&class->lock);
2171        }
2172};
2173
2174static void kick_deferred_free(struct zs_pool *pool)
2175{
2176        schedule_work(&pool->free_work);
2177}
2178
2179static void init_deferred_free(struct zs_pool *pool)
2180{
2181        INIT_WORK(&pool->free_work, async_free_zspage);
2182}
2183
2184static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2185{
2186        struct page *page = get_first_page(zspage);
2187
2188        do {
2189                WARN_ON(!trylock_page(page));
2190                __SetPageMovable(page, pool->inode->i_mapping);
2191                unlock_page(page);
2192        } while ((page = get_next_page(page)) != NULL);
2193}
2194#endif
2195
2196/*
2197 *
2198 * Based on the number of unused allocated objects calculate
2199 * and return the number of pages that we can free.
2200 */
2201static unsigned long zs_can_compact(struct size_class *class)
2202{
2203        unsigned long obj_wasted;
2204        unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2205        unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2206
2207        if (obj_allocated <= obj_used)
2208                return 0;
2209
2210        obj_wasted = obj_allocated - obj_used;
2211        obj_wasted /= class->objs_per_zspage;
2212
2213        return obj_wasted * class->pages_per_zspage;
2214}
2215
2216static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2217{
2218        struct zs_compact_control cc;
2219        struct zspage *src_zspage;
2220        struct zspage *dst_zspage = NULL;
2221
2222        spin_lock(&class->lock);
2223        while ((src_zspage = isolate_zspage(class, true))) {
2224
2225                if (!zs_can_compact(class))
2226                        break;
2227
2228                cc.obj_idx = 0;
2229                cc.s_page = get_first_page(src_zspage);
2230
2231                while ((dst_zspage = isolate_zspage(class, false))) {
2232                        cc.d_page = get_first_page(dst_zspage);
2233                        /*
2234                         * If there is no more space in dst_page, resched
2235                         * and see if anyone had allocated another zspage.
2236                         */
2237                        if (!migrate_zspage(pool, class, &cc))
2238                                break;
2239
2240                        putback_zspage(class, dst_zspage);
2241                }
2242
2243                /* Stop if we couldn't find slot */
2244                if (dst_zspage == NULL)
2245                        break;
2246
2247                putback_zspage(class, dst_zspage);
2248                if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2249                        free_zspage(pool, class, src_zspage);
2250                        pool->stats.pages_compacted += class->pages_per_zspage;
2251                }
2252                spin_unlock(&class->lock);
2253                cond_resched();
2254                spin_lock(&class->lock);
2255        }
2256
2257        if (src_zspage)
2258                putback_zspage(class, src_zspage);
2259
2260        spin_unlock(&class->lock);
2261}
2262
2263unsigned long zs_compact(struct zs_pool *pool)
2264{
2265        int i;
2266        struct size_class *class;
2267
2268        for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2269                class = pool->size_class[i];
2270                if (!class)
2271                        continue;
2272                if (class->index != i)
2273                        continue;
2274                __zs_compact(pool, class);
2275        }
2276
2277        return pool->stats.pages_compacted;
2278}
2279EXPORT_SYMBOL_GPL(zs_compact);
2280
2281void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2282{
2283        memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2284}
2285EXPORT_SYMBOL_GPL(zs_pool_stats);
2286
2287static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2288                struct shrink_control *sc)
2289{
2290        unsigned long pages_freed;
2291        struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2292                        shrinker);
2293
2294        pages_freed = pool->stats.pages_compacted;
2295        /*
2296         * Compact classes and calculate compaction delta.
2297         * Can run concurrently with a manually triggered
2298         * (by user) compaction.
2299         */
2300        pages_freed = zs_compact(pool) - pages_freed;
2301
2302        return pages_freed ? pages_freed : SHRINK_STOP;
2303}
2304
2305static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2306                struct shrink_control *sc)
2307{
2308        int i;
2309        struct size_class *class;
2310        unsigned long pages_to_free = 0;
2311        struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2312                        shrinker);
2313
2314        for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2315                class = pool->size_class[i];
2316                if (!class)
2317                        continue;
2318                if (class->index != i)
2319                        continue;
2320
2321                pages_to_free += zs_can_compact(class);
2322        }
2323
2324        return pages_to_free;
2325}
2326
2327static void zs_unregister_shrinker(struct zs_pool *pool)
2328{
2329        unregister_shrinker(&pool->shrinker);
2330}
2331
2332static int zs_register_shrinker(struct zs_pool *pool)
2333{
2334        pool->shrinker.scan_objects = zs_shrinker_scan;
2335        pool->shrinker.count_objects = zs_shrinker_count;
2336        pool->shrinker.batch = 0;
2337        pool->shrinker.seeks = DEFAULT_SEEKS;
2338
2339        return register_shrinker(&pool->shrinker);
2340}
2341
2342/**
2343 * zs_create_pool - Creates an allocation pool to work from.
2344 * @name: pool name to be created
2345 *
2346 * This function must be called before anything when using
2347 * the zsmalloc allocator.
2348 *
2349 * On success, a pointer to the newly created pool is returned,
2350 * otherwise NULL.
2351 */
2352struct zs_pool *zs_create_pool(const char *name)
2353{
2354        int i;
2355        struct zs_pool *pool;
2356        struct size_class *prev_class = NULL;
2357
2358        pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2359        if (!pool)
2360                return NULL;
2361
2362        init_deferred_free(pool);
2363
2364        pool->name = kstrdup(name, GFP_KERNEL);
2365        if (!pool->name)
2366                goto err;
2367
2368        if (create_cache(pool))
2369                goto err;
2370
2371        /*
2372         * Iterate reversely, because, size of size_class that we want to use
2373         * for merging should be larger or equal to current size.
2374         */
2375        for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2376                int size;
2377                int pages_per_zspage;
2378                int objs_per_zspage;
2379                struct size_class *class;
2380                int fullness = 0;
2381
2382                size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2383                if (size > ZS_MAX_ALLOC_SIZE)
2384                        size = ZS_MAX_ALLOC_SIZE;
2385                pages_per_zspage = get_pages_per_zspage(size);
2386                objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2387
2388                /*
2389                 * We iterate from biggest down to smallest classes,
2390                 * so huge_class_size holds the size of the first huge
2391                 * class. Any object bigger than or equal to that will
2392                 * endup in the huge class.
2393                 */
2394                if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2395                                !huge_class_size) {
2396                        huge_class_size = size;
2397                        /*
2398                         * The object uses ZS_HANDLE_SIZE bytes to store the
2399                         * handle. We need to subtract it, because zs_malloc()
2400                         * unconditionally adds handle size before it performs
2401                         * size class search - so object may be smaller than
2402                         * huge class size, yet it still can end up in the huge
2403                         * class because it grows by ZS_HANDLE_SIZE extra bytes
2404                         * right before class lookup.
2405                         */
2406                        huge_class_size -= (ZS_HANDLE_SIZE - 1);
2407                }
2408
2409                /*
2410                 * size_class is used for normal zsmalloc operation such
2411                 * as alloc/free for that size. Although it is natural that we
2412                 * have one size_class for each size, there is a chance that we
2413                 * can get more memory utilization if we use one size_class for
2414                 * many different sizes whose size_class have same
2415                 * characteristics. So, we makes size_class point to
2416                 * previous size_class if possible.
2417                 */
2418                if (prev_class) {
2419                        if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2420                                pool->size_class[i] = prev_class;
2421                                continue;
2422                        }
2423                }
2424
2425                class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2426                if (!class)
2427                        goto err;
2428
2429                class->size = size;
2430                class->index = i;
2431                class->pages_per_zspage = pages_per_zspage;
2432                class->objs_per_zspage = objs_per_zspage;
2433                spin_lock_init(&class->lock);
2434                pool->size_class[i] = class;
2435                for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2436                                                        fullness++)
2437                        INIT_LIST_HEAD(&class->fullness_list[fullness]);
2438
2439                prev_class = class;
2440        }
2441
2442        /* debug only, don't abort if it fails */
2443        zs_pool_stat_create(pool, name);
2444
2445        if (zs_register_migration(pool))
2446                goto err;
2447
2448        /*
2449         * Not critical since shrinker is only used to trigger internal
2450         * defragmentation of the pool which is pretty optional thing.  If
2451         * registration fails we still can use the pool normally and user can
2452         * trigger compaction manually. Thus, ignore return code.
2453         */
2454        zs_register_shrinker(pool);
2455
2456        return pool;
2457
2458err:
2459        zs_destroy_pool(pool);
2460        return NULL;
2461}
2462EXPORT_SYMBOL_GPL(zs_create_pool);
2463
2464void zs_destroy_pool(struct zs_pool *pool)
2465{
2466        int i;
2467
2468        zs_unregister_shrinker(pool);
2469        zs_unregister_migration(pool);
2470        zs_pool_stat_destroy(pool);
2471
2472        for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2473                int fg;
2474                struct size_class *class = pool->size_class[i];
2475
2476                if (!class)
2477                        continue;
2478
2479                if (class->index != i)
2480                        continue;
2481
2482                for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2483                        if (!list_empty(&class->fullness_list[fg])) {
2484                                pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2485                                        class->size, fg);
2486                        }
2487                }
2488                kfree(class);
2489        }
2490
2491        destroy_cache(pool);
2492        kfree(pool->name);
2493        kfree(pool);
2494}
2495EXPORT_SYMBOL_GPL(zs_destroy_pool);
2496
2497static int __init zs_init(void)
2498{
2499        int ret;
2500
2501        ret = zsmalloc_mount();
2502        if (ret)
2503                goto out;
2504
2505        ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2506                                zs_cpu_prepare, zs_cpu_dead);
2507        if (ret)
2508                goto hp_setup_fail;
2509
2510#ifdef CONFIG_ZPOOL
2511        zpool_register_driver(&zs_zpool_driver);
2512#endif
2513
2514        zs_stat_init();
2515
2516        return 0;
2517
2518hp_setup_fail:
2519        zsmalloc_unmount();
2520out:
2521        return ret;
2522}
2523
2524static void __exit zs_exit(void)
2525{
2526#ifdef CONFIG_ZPOOL
2527        zpool_unregister_driver(&zs_zpool_driver);
2528#endif
2529        zsmalloc_unmount();
2530        cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2531
2532        zs_stat_exit();
2533}
2534
2535module_init(zs_init);
2536module_exit(zs_exit);
2537
2538MODULE_LICENSE("Dual BSD/GPL");
2539MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2540