linux/net/ceph/messenger.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/ceph/ceph_debug.h>
   3
   4#include <linux/crc32c.h>
   5#include <linux/ctype.h>
   6#include <linux/highmem.h>
   7#include <linux/inet.h>
   8#include <linux/kthread.h>
   9#include <linux/net.h>
  10#include <linux/nsproxy.h>
  11#include <linux/sched/mm.h>
  12#include <linux/slab.h>
  13#include <linux/socket.h>
  14#include <linux/string.h>
  15#ifdef  CONFIG_BLOCK
  16#include <linux/bio.h>
  17#endif  /* CONFIG_BLOCK */
  18#include <linux/dns_resolver.h>
  19#include <net/tcp.h>
  20
  21#include <linux/ceph/ceph_features.h>
  22#include <linux/ceph/libceph.h>
  23#include <linux/ceph/messenger.h>
  24#include <linux/ceph/decode.h>
  25#include <linux/ceph/pagelist.h>
  26#include <linux/export.h>
  27
  28/*
  29 * Ceph uses the messenger to exchange ceph_msg messages with other
  30 * hosts in the system.  The messenger provides ordered and reliable
  31 * delivery.  We tolerate TCP disconnects by reconnecting (with
  32 * exponential backoff) in the case of a fault (disconnection, bad
  33 * crc, protocol error).  Acks allow sent messages to be discarded by
  34 * the sender.
  35 */
  36
  37/*
  38 * We track the state of the socket on a given connection using
  39 * values defined below.  The transition to a new socket state is
  40 * handled by a function which verifies we aren't coming from an
  41 * unexpected state.
  42 *
  43 *      --------
  44 *      | NEW* |  transient initial state
  45 *      --------
  46 *          | con_sock_state_init()
  47 *          v
  48 *      ----------
  49 *      | CLOSED |  initialized, but no socket (and no
  50 *      ----------  TCP connection)
  51 *       ^      \
  52 *       |       \ con_sock_state_connecting()
  53 *       |        ----------------------
  54 *       |                              \
  55 *       + con_sock_state_closed()       \
  56 *       |+---------------------------    \
  57 *       | \                          \    \
  58 *       |  -----------                \    \
  59 *       |  | CLOSING |  socket event;  \    \
  60 *       |  -----------  await close     \    \
  61 *       |       ^                        \   |
  62 *       |       |                         \  |
  63 *       |       + con_sock_state_closing() \ |
  64 *       |      / \                         | |
  65 *       |     /   ---------------          | |
  66 *       |    /                   \         v v
  67 *       |   /                    --------------
  68 *       |  /    -----------------| CONNECTING |  socket created, TCP
  69 *       |  |   /                 --------------  connect initiated
  70 *       |  |   | con_sock_state_connected()
  71 *       |  |   v
  72 *      -------------
  73 *      | CONNECTED |  TCP connection established
  74 *      -------------
  75 *
  76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
  77 */
  78
  79#define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
  80#define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
  81#define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
  82#define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
  83#define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
  84
  85/*
  86 * connection states
  87 */
  88#define CON_STATE_CLOSED        1  /* -> PREOPEN */
  89#define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
  90#define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
  91#define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
  92#define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
  93#define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
  94
  95/*
  96 * ceph_connection flag bits
  97 */
  98#define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
  99                                       * messages on errors */
 100#define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
 101#define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
 102#define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
 103#define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
 104
 105static bool con_flag_valid(unsigned long con_flag)
 106{
 107        switch (con_flag) {
 108        case CON_FLAG_LOSSYTX:
 109        case CON_FLAG_KEEPALIVE_PENDING:
 110        case CON_FLAG_WRITE_PENDING:
 111        case CON_FLAG_SOCK_CLOSED:
 112        case CON_FLAG_BACKOFF:
 113                return true;
 114        default:
 115                return false;
 116        }
 117}
 118
 119static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
 120{
 121        BUG_ON(!con_flag_valid(con_flag));
 122
 123        clear_bit(con_flag, &con->flags);
 124}
 125
 126static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
 127{
 128        BUG_ON(!con_flag_valid(con_flag));
 129
 130        set_bit(con_flag, &con->flags);
 131}
 132
 133static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
 134{
 135        BUG_ON(!con_flag_valid(con_flag));
 136
 137        return test_bit(con_flag, &con->flags);
 138}
 139
 140static bool con_flag_test_and_clear(struct ceph_connection *con,
 141                                        unsigned long con_flag)
 142{
 143        BUG_ON(!con_flag_valid(con_flag));
 144
 145        return test_and_clear_bit(con_flag, &con->flags);
 146}
 147
 148static bool con_flag_test_and_set(struct ceph_connection *con,
 149                                        unsigned long con_flag)
 150{
 151        BUG_ON(!con_flag_valid(con_flag));
 152
 153        return test_and_set_bit(con_flag, &con->flags);
 154}
 155
 156/* Slab caches for frequently-allocated structures */
 157
 158static struct kmem_cache        *ceph_msg_cache;
 159static struct kmem_cache        *ceph_msg_data_cache;
 160
 161/* static tag bytes (protocol control messages) */
 162static char tag_msg = CEPH_MSGR_TAG_MSG;
 163static char tag_ack = CEPH_MSGR_TAG_ACK;
 164static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
 165static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
 166
 167#ifdef CONFIG_LOCKDEP
 168static struct lock_class_key socket_class;
 169#endif
 170
 171/*
 172 * When skipping (ignoring) a block of input we read it into a "skip
 173 * buffer," which is this many bytes in size.
 174 */
 175#define SKIP_BUF_SIZE   1024
 176
 177static void queue_con(struct ceph_connection *con);
 178static void cancel_con(struct ceph_connection *con);
 179static void ceph_con_workfn(struct work_struct *);
 180static void con_fault(struct ceph_connection *con);
 181
 182/*
 183 * Nicely render a sockaddr as a string.  An array of formatted
 184 * strings is used, to approximate reentrancy.
 185 */
 186#define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
 187#define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
 188#define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
 189#define MAX_ADDR_STR_LEN        64      /* 54 is enough */
 190
 191static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
 192static atomic_t addr_str_seq = ATOMIC_INIT(0);
 193
 194static struct page *zero_page;          /* used in certain error cases */
 195
 196const char *ceph_pr_addr(const struct sockaddr_storage *ss)
 197{
 198        int i;
 199        char *s;
 200        struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
 201        struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
 202
 203        i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
 204        s = addr_str[i];
 205
 206        switch (ss->ss_family) {
 207        case AF_INET:
 208                snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
 209                         ntohs(in4->sin_port));
 210                break;
 211
 212        case AF_INET6:
 213                snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
 214                         ntohs(in6->sin6_port));
 215                break;
 216
 217        default:
 218                snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
 219                         ss->ss_family);
 220        }
 221
 222        return s;
 223}
 224EXPORT_SYMBOL(ceph_pr_addr);
 225
 226static void encode_my_addr(struct ceph_messenger *msgr)
 227{
 228        memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
 229        ceph_encode_addr(&msgr->my_enc_addr);
 230}
 231
 232/*
 233 * work queue for all reading and writing to/from the socket.
 234 */
 235static struct workqueue_struct *ceph_msgr_wq;
 236
 237static int ceph_msgr_slab_init(void)
 238{
 239        BUG_ON(ceph_msg_cache);
 240        ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
 241        if (!ceph_msg_cache)
 242                return -ENOMEM;
 243
 244        BUG_ON(ceph_msg_data_cache);
 245        ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
 246        if (ceph_msg_data_cache)
 247                return 0;
 248
 249        kmem_cache_destroy(ceph_msg_cache);
 250        ceph_msg_cache = NULL;
 251
 252        return -ENOMEM;
 253}
 254
 255static void ceph_msgr_slab_exit(void)
 256{
 257        BUG_ON(!ceph_msg_data_cache);
 258        kmem_cache_destroy(ceph_msg_data_cache);
 259        ceph_msg_data_cache = NULL;
 260
 261        BUG_ON(!ceph_msg_cache);
 262        kmem_cache_destroy(ceph_msg_cache);
 263        ceph_msg_cache = NULL;
 264}
 265
 266static void _ceph_msgr_exit(void)
 267{
 268        if (ceph_msgr_wq) {
 269                destroy_workqueue(ceph_msgr_wq);
 270                ceph_msgr_wq = NULL;
 271        }
 272
 273        BUG_ON(zero_page == NULL);
 274        put_page(zero_page);
 275        zero_page = NULL;
 276
 277        ceph_msgr_slab_exit();
 278}
 279
 280int __init ceph_msgr_init(void)
 281{
 282        if (ceph_msgr_slab_init())
 283                return -ENOMEM;
 284
 285        BUG_ON(zero_page != NULL);
 286        zero_page = ZERO_PAGE(0);
 287        get_page(zero_page);
 288
 289        /*
 290         * The number of active work items is limited by the number of
 291         * connections, so leave @max_active at default.
 292         */
 293        ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
 294        if (ceph_msgr_wq)
 295                return 0;
 296
 297        pr_err("msgr_init failed to create workqueue\n");
 298        _ceph_msgr_exit();
 299
 300        return -ENOMEM;
 301}
 302
 303void ceph_msgr_exit(void)
 304{
 305        BUG_ON(ceph_msgr_wq == NULL);
 306
 307        _ceph_msgr_exit();
 308}
 309
 310void ceph_msgr_flush(void)
 311{
 312        flush_workqueue(ceph_msgr_wq);
 313}
 314EXPORT_SYMBOL(ceph_msgr_flush);
 315
 316/* Connection socket state transition functions */
 317
 318static void con_sock_state_init(struct ceph_connection *con)
 319{
 320        int old_state;
 321
 322        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 323        if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
 324                printk("%s: unexpected old state %d\n", __func__, old_state);
 325        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 326             CON_SOCK_STATE_CLOSED);
 327}
 328
 329static void con_sock_state_connecting(struct ceph_connection *con)
 330{
 331        int old_state;
 332
 333        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
 334        if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
 335                printk("%s: unexpected old state %d\n", __func__, old_state);
 336        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 337             CON_SOCK_STATE_CONNECTING);
 338}
 339
 340static void con_sock_state_connected(struct ceph_connection *con)
 341{
 342        int old_state;
 343
 344        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
 345        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
 346                printk("%s: unexpected old state %d\n", __func__, old_state);
 347        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 348             CON_SOCK_STATE_CONNECTED);
 349}
 350
 351static void con_sock_state_closing(struct ceph_connection *con)
 352{
 353        int old_state;
 354
 355        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
 356        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
 357                        old_state != CON_SOCK_STATE_CONNECTED &&
 358                        old_state != CON_SOCK_STATE_CLOSING))
 359                printk("%s: unexpected old state %d\n", __func__, old_state);
 360        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 361             CON_SOCK_STATE_CLOSING);
 362}
 363
 364static void con_sock_state_closed(struct ceph_connection *con)
 365{
 366        int old_state;
 367
 368        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 369        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
 370                    old_state != CON_SOCK_STATE_CLOSING &&
 371                    old_state != CON_SOCK_STATE_CONNECTING &&
 372                    old_state != CON_SOCK_STATE_CLOSED))
 373                printk("%s: unexpected old state %d\n", __func__, old_state);
 374        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 375             CON_SOCK_STATE_CLOSED);
 376}
 377
 378/*
 379 * socket callback functions
 380 */
 381
 382/* data available on socket, or listen socket received a connect */
 383static void ceph_sock_data_ready(struct sock *sk)
 384{
 385        struct ceph_connection *con = sk->sk_user_data;
 386        if (atomic_read(&con->msgr->stopping)) {
 387                return;
 388        }
 389
 390        if (sk->sk_state != TCP_CLOSE_WAIT) {
 391                dout("%s on %p state = %lu, queueing work\n", __func__,
 392                     con, con->state);
 393                queue_con(con);
 394        }
 395}
 396
 397/* socket has buffer space for writing */
 398static void ceph_sock_write_space(struct sock *sk)
 399{
 400        struct ceph_connection *con = sk->sk_user_data;
 401
 402        /* only queue to workqueue if there is data we want to write,
 403         * and there is sufficient space in the socket buffer to accept
 404         * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
 405         * doesn't get called again until try_write() fills the socket
 406         * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 407         * and net/core/stream.c:sk_stream_write_space().
 408         */
 409        if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
 410                if (sk_stream_is_writeable(sk)) {
 411                        dout("%s %p queueing write work\n", __func__, con);
 412                        clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 413                        queue_con(con);
 414                }
 415        } else {
 416                dout("%s %p nothing to write\n", __func__, con);
 417        }
 418}
 419
 420/* socket's state has changed */
 421static void ceph_sock_state_change(struct sock *sk)
 422{
 423        struct ceph_connection *con = sk->sk_user_data;
 424
 425        dout("%s %p state = %lu sk_state = %u\n", __func__,
 426             con, con->state, sk->sk_state);
 427
 428        switch (sk->sk_state) {
 429        case TCP_CLOSE:
 430                dout("%s TCP_CLOSE\n", __func__);
 431                /* fall through */
 432        case TCP_CLOSE_WAIT:
 433                dout("%s TCP_CLOSE_WAIT\n", __func__);
 434                con_sock_state_closing(con);
 435                con_flag_set(con, CON_FLAG_SOCK_CLOSED);
 436                queue_con(con);
 437                break;
 438        case TCP_ESTABLISHED:
 439                dout("%s TCP_ESTABLISHED\n", __func__);
 440                con_sock_state_connected(con);
 441                queue_con(con);
 442                break;
 443        default:        /* Everything else is uninteresting */
 444                break;
 445        }
 446}
 447
 448/*
 449 * set up socket callbacks
 450 */
 451static void set_sock_callbacks(struct socket *sock,
 452                               struct ceph_connection *con)
 453{
 454        struct sock *sk = sock->sk;
 455        sk->sk_user_data = con;
 456        sk->sk_data_ready = ceph_sock_data_ready;
 457        sk->sk_write_space = ceph_sock_write_space;
 458        sk->sk_state_change = ceph_sock_state_change;
 459}
 460
 461
 462/*
 463 * socket helpers
 464 */
 465
 466/*
 467 * initiate connection to a remote socket.
 468 */
 469static int ceph_tcp_connect(struct ceph_connection *con)
 470{
 471        struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
 472        struct socket *sock;
 473        unsigned int noio_flag;
 474        int ret;
 475
 476        BUG_ON(con->sock);
 477
 478        /* sock_create_kern() allocates with GFP_KERNEL */
 479        noio_flag = memalloc_noio_save();
 480        ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
 481                               SOCK_STREAM, IPPROTO_TCP, &sock);
 482        memalloc_noio_restore(noio_flag);
 483        if (ret)
 484                return ret;
 485        sock->sk->sk_allocation = GFP_NOFS;
 486
 487#ifdef CONFIG_LOCKDEP
 488        lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 489#endif
 490
 491        set_sock_callbacks(sock, con);
 492
 493        dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
 494
 495        con_sock_state_connecting(con);
 496        ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
 497                                 O_NONBLOCK);
 498        if (ret == -EINPROGRESS) {
 499                dout("connect %s EINPROGRESS sk_state = %u\n",
 500                     ceph_pr_addr(&con->peer_addr.in_addr),
 501                     sock->sk->sk_state);
 502        } else if (ret < 0) {
 503                pr_err("connect %s error %d\n",
 504                       ceph_pr_addr(&con->peer_addr.in_addr), ret);
 505                sock_release(sock);
 506                return ret;
 507        }
 508
 509        if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
 510                int optval = 1;
 511
 512                ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
 513                                        (char *)&optval, sizeof(optval));
 514                if (ret)
 515                        pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
 516                               ret);
 517        }
 518
 519        con->sock = sock;
 520        return 0;
 521}
 522
 523static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
 524{
 525        struct kvec iov = {buf, len};
 526        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 527        int r;
 528
 529        iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
 530        r = sock_recvmsg(sock, &msg, msg.msg_flags);
 531        if (r == -EAGAIN)
 532                r = 0;
 533        return r;
 534}
 535
 536static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
 537                     int page_offset, size_t length)
 538{
 539        struct bio_vec bvec = {
 540                .bv_page = page,
 541                .bv_offset = page_offset,
 542                .bv_len = length
 543        };
 544        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 545        int r;
 546
 547        BUG_ON(page_offset + length > PAGE_SIZE);
 548        iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
 549        r = sock_recvmsg(sock, &msg, msg.msg_flags);
 550        if (r == -EAGAIN)
 551                r = 0;
 552        return r;
 553}
 554
 555/*
 556 * write something.  @more is true if caller will be sending more data
 557 * shortly.
 558 */
 559static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
 560                     size_t kvlen, size_t len, int more)
 561{
 562        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 563        int r;
 564
 565        if (more)
 566                msg.msg_flags |= MSG_MORE;
 567        else
 568                msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 569
 570        r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
 571        if (r == -EAGAIN)
 572                r = 0;
 573        return r;
 574}
 575
 576static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
 577                     int offset, size_t size, bool more)
 578{
 579        int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
 580        int ret;
 581
 582        ret = kernel_sendpage(sock, page, offset, size, flags);
 583        if (ret == -EAGAIN)
 584                ret = 0;
 585
 586        return ret;
 587}
 588
 589static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
 590                     int offset, size_t size, bool more)
 591{
 592        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 593        struct bio_vec bvec;
 594        int ret;
 595
 596        /* sendpage cannot properly handle pages with page_count == 0,
 597         * we need to fallback to sendmsg if that's the case */
 598        if (page_count(page) >= 1)
 599                return __ceph_tcp_sendpage(sock, page, offset, size, more);
 600
 601        bvec.bv_page = page;
 602        bvec.bv_offset = offset;
 603        bvec.bv_len = size;
 604
 605        if (more)
 606                msg.msg_flags |= MSG_MORE;
 607        else
 608                msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 609
 610        iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
 611        ret = sock_sendmsg(sock, &msg);
 612        if (ret == -EAGAIN)
 613                ret = 0;
 614
 615        return ret;
 616}
 617
 618/*
 619 * Shutdown/close the socket for the given connection.
 620 */
 621static int con_close_socket(struct ceph_connection *con)
 622{
 623        int rc = 0;
 624
 625        dout("con_close_socket on %p sock %p\n", con, con->sock);
 626        if (con->sock) {
 627                rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 628                sock_release(con->sock);
 629                con->sock = NULL;
 630        }
 631
 632        /*
 633         * Forcibly clear the SOCK_CLOSED flag.  It gets set
 634         * independent of the connection mutex, and we could have
 635         * received a socket close event before we had the chance to
 636         * shut the socket down.
 637         */
 638        con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
 639
 640        con_sock_state_closed(con);
 641        return rc;
 642}
 643
 644/*
 645 * Reset a connection.  Discard all incoming and outgoing messages
 646 * and clear *_seq state.
 647 */
 648static void ceph_msg_remove(struct ceph_msg *msg)
 649{
 650        list_del_init(&msg->list_head);
 651
 652        ceph_msg_put(msg);
 653}
 654static void ceph_msg_remove_list(struct list_head *head)
 655{
 656        while (!list_empty(head)) {
 657                struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 658                                                        list_head);
 659                ceph_msg_remove(msg);
 660        }
 661}
 662
 663static void reset_connection(struct ceph_connection *con)
 664{
 665        /* reset connection, out_queue, msg_ and connect_seq */
 666        /* discard existing out_queue and msg_seq */
 667        dout("reset_connection %p\n", con);
 668        ceph_msg_remove_list(&con->out_queue);
 669        ceph_msg_remove_list(&con->out_sent);
 670
 671        if (con->in_msg) {
 672                BUG_ON(con->in_msg->con != con);
 673                ceph_msg_put(con->in_msg);
 674                con->in_msg = NULL;
 675        }
 676
 677        con->connect_seq = 0;
 678        con->out_seq = 0;
 679        if (con->out_msg) {
 680                BUG_ON(con->out_msg->con != con);
 681                ceph_msg_put(con->out_msg);
 682                con->out_msg = NULL;
 683        }
 684        con->in_seq = 0;
 685        con->in_seq_acked = 0;
 686
 687        con->out_skip = 0;
 688}
 689
 690/*
 691 * mark a peer down.  drop any open connections.
 692 */
 693void ceph_con_close(struct ceph_connection *con)
 694{
 695        mutex_lock(&con->mutex);
 696        dout("con_close %p peer %s\n", con,
 697             ceph_pr_addr(&con->peer_addr.in_addr));
 698        con->state = CON_STATE_CLOSED;
 699
 700        con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
 701        con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
 702        con_flag_clear(con, CON_FLAG_WRITE_PENDING);
 703        con_flag_clear(con, CON_FLAG_BACKOFF);
 704
 705        reset_connection(con);
 706        con->peer_global_seq = 0;
 707        cancel_con(con);
 708        con_close_socket(con);
 709        mutex_unlock(&con->mutex);
 710}
 711EXPORT_SYMBOL(ceph_con_close);
 712
 713/*
 714 * Reopen a closed connection, with a new peer address.
 715 */
 716void ceph_con_open(struct ceph_connection *con,
 717                   __u8 entity_type, __u64 entity_num,
 718                   struct ceph_entity_addr *addr)
 719{
 720        mutex_lock(&con->mutex);
 721        dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
 722
 723        WARN_ON(con->state != CON_STATE_CLOSED);
 724        con->state = CON_STATE_PREOPEN;
 725
 726        con->peer_name.type = (__u8) entity_type;
 727        con->peer_name.num = cpu_to_le64(entity_num);
 728
 729        memcpy(&con->peer_addr, addr, sizeof(*addr));
 730        con->delay = 0;      /* reset backoff memory */
 731        mutex_unlock(&con->mutex);
 732        queue_con(con);
 733}
 734EXPORT_SYMBOL(ceph_con_open);
 735
 736/*
 737 * return true if this connection ever successfully opened
 738 */
 739bool ceph_con_opened(struct ceph_connection *con)
 740{
 741        return con->connect_seq > 0;
 742}
 743
 744/*
 745 * initialize a new connection.
 746 */
 747void ceph_con_init(struct ceph_connection *con, void *private,
 748        const struct ceph_connection_operations *ops,
 749        struct ceph_messenger *msgr)
 750{
 751        dout("con_init %p\n", con);
 752        memset(con, 0, sizeof(*con));
 753        con->private = private;
 754        con->ops = ops;
 755        con->msgr = msgr;
 756
 757        con_sock_state_init(con);
 758
 759        mutex_init(&con->mutex);
 760        INIT_LIST_HEAD(&con->out_queue);
 761        INIT_LIST_HEAD(&con->out_sent);
 762        INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
 763
 764        con->state = CON_STATE_CLOSED;
 765}
 766EXPORT_SYMBOL(ceph_con_init);
 767
 768
 769/*
 770 * We maintain a global counter to order connection attempts.  Get
 771 * a unique seq greater than @gt.
 772 */
 773static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
 774{
 775        u32 ret;
 776
 777        spin_lock(&msgr->global_seq_lock);
 778        if (msgr->global_seq < gt)
 779                msgr->global_seq = gt;
 780        ret = ++msgr->global_seq;
 781        spin_unlock(&msgr->global_seq_lock);
 782        return ret;
 783}
 784
 785static void con_out_kvec_reset(struct ceph_connection *con)
 786{
 787        BUG_ON(con->out_skip);
 788
 789        con->out_kvec_left = 0;
 790        con->out_kvec_bytes = 0;
 791        con->out_kvec_cur = &con->out_kvec[0];
 792}
 793
 794static void con_out_kvec_add(struct ceph_connection *con,
 795                                size_t size, void *data)
 796{
 797        int index = con->out_kvec_left;
 798
 799        BUG_ON(con->out_skip);
 800        BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
 801
 802        con->out_kvec[index].iov_len = size;
 803        con->out_kvec[index].iov_base = data;
 804        con->out_kvec_left++;
 805        con->out_kvec_bytes += size;
 806}
 807
 808/*
 809 * Chop off a kvec from the end.  Return residual number of bytes for
 810 * that kvec, i.e. how many bytes would have been written if the kvec
 811 * hadn't been nuked.
 812 */
 813static int con_out_kvec_skip(struct ceph_connection *con)
 814{
 815        int off = con->out_kvec_cur - con->out_kvec;
 816        int skip = 0;
 817
 818        if (con->out_kvec_bytes > 0) {
 819                skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
 820                BUG_ON(con->out_kvec_bytes < skip);
 821                BUG_ON(!con->out_kvec_left);
 822                con->out_kvec_bytes -= skip;
 823                con->out_kvec_left--;
 824        }
 825
 826        return skip;
 827}
 828
 829#ifdef CONFIG_BLOCK
 830
 831/*
 832 * For a bio data item, a piece is whatever remains of the next
 833 * entry in the current bio iovec, or the first entry in the next
 834 * bio in the list.
 835 */
 836static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
 837                                        size_t length)
 838{
 839        struct ceph_msg_data *data = cursor->data;
 840        struct ceph_bio_iter *it = &cursor->bio_iter;
 841
 842        cursor->resid = min_t(size_t, length, data->bio_length);
 843        *it = data->bio_pos;
 844        if (cursor->resid < it->iter.bi_size)
 845                it->iter.bi_size = cursor->resid;
 846
 847        BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
 848        cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
 849}
 850
 851static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
 852                                                size_t *page_offset,
 853                                                size_t *length)
 854{
 855        struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
 856                                           cursor->bio_iter.iter);
 857
 858        *page_offset = bv.bv_offset;
 859        *length = bv.bv_len;
 860        return bv.bv_page;
 861}
 862
 863static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
 864                                        size_t bytes)
 865{
 866        struct ceph_bio_iter *it = &cursor->bio_iter;
 867
 868        BUG_ON(bytes > cursor->resid);
 869        BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
 870        cursor->resid -= bytes;
 871        bio_advance_iter(it->bio, &it->iter, bytes);
 872
 873        if (!cursor->resid) {
 874                BUG_ON(!cursor->last_piece);
 875                return false;   /* no more data */
 876        }
 877
 878        if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done))
 879                return false;   /* more bytes to process in this segment */
 880
 881        if (!it->iter.bi_size) {
 882                it->bio = it->bio->bi_next;
 883                it->iter = it->bio->bi_iter;
 884                if (cursor->resid < it->iter.bi_size)
 885                        it->iter.bi_size = cursor->resid;
 886        }
 887
 888        BUG_ON(cursor->last_piece);
 889        BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
 890        cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
 891        return true;
 892}
 893#endif /* CONFIG_BLOCK */
 894
 895static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
 896                                        size_t length)
 897{
 898        struct ceph_msg_data *data = cursor->data;
 899        struct bio_vec *bvecs = data->bvec_pos.bvecs;
 900
 901        cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
 902        cursor->bvec_iter = data->bvec_pos.iter;
 903        cursor->bvec_iter.bi_size = cursor->resid;
 904
 905        BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
 906        cursor->last_piece =
 907            cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
 908}
 909
 910static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
 911                                                size_t *page_offset,
 912                                                size_t *length)
 913{
 914        struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
 915                                           cursor->bvec_iter);
 916
 917        *page_offset = bv.bv_offset;
 918        *length = bv.bv_len;
 919        return bv.bv_page;
 920}
 921
 922static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
 923                                        size_t bytes)
 924{
 925        struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
 926
 927        BUG_ON(bytes > cursor->resid);
 928        BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
 929        cursor->resid -= bytes;
 930        bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
 931
 932        if (!cursor->resid) {
 933                BUG_ON(!cursor->last_piece);
 934                return false;   /* no more data */
 935        }
 936
 937        if (!bytes || cursor->bvec_iter.bi_bvec_done)
 938                return false;   /* more bytes to process in this segment */
 939
 940        BUG_ON(cursor->last_piece);
 941        BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
 942        cursor->last_piece =
 943            cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
 944        return true;
 945}
 946
 947/*
 948 * For a page array, a piece comes from the first page in the array
 949 * that has not already been fully consumed.
 950 */
 951static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
 952                                        size_t length)
 953{
 954        struct ceph_msg_data *data = cursor->data;
 955        int page_count;
 956
 957        BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 958
 959        BUG_ON(!data->pages);
 960        BUG_ON(!data->length);
 961
 962        cursor->resid = min(length, data->length);
 963        page_count = calc_pages_for(data->alignment, (u64)data->length);
 964        cursor->page_offset = data->alignment & ~PAGE_MASK;
 965        cursor->page_index = 0;
 966        BUG_ON(page_count > (int)USHRT_MAX);
 967        cursor->page_count = (unsigned short)page_count;
 968        BUG_ON(length > SIZE_MAX - cursor->page_offset);
 969        cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
 970}
 971
 972static struct page *
 973ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
 974                                        size_t *page_offset, size_t *length)
 975{
 976        struct ceph_msg_data *data = cursor->data;
 977
 978        BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 979
 980        BUG_ON(cursor->page_index >= cursor->page_count);
 981        BUG_ON(cursor->page_offset >= PAGE_SIZE);
 982
 983        *page_offset = cursor->page_offset;
 984        if (cursor->last_piece)
 985                *length = cursor->resid;
 986        else
 987                *length = PAGE_SIZE - *page_offset;
 988
 989        return data->pages[cursor->page_index];
 990}
 991
 992static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
 993                                                size_t bytes)
 994{
 995        BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
 996
 997        BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
 998
 999        /* Advance the cursor page offset */
1000
1001        cursor->resid -= bytes;
1002        cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
1003        if (!bytes || cursor->page_offset)
1004                return false;   /* more bytes to process in the current page */
1005
1006        if (!cursor->resid)
1007                return false;   /* no more data */
1008
1009        /* Move on to the next page; offset is already at 0 */
1010
1011        BUG_ON(cursor->page_index >= cursor->page_count);
1012        cursor->page_index++;
1013        cursor->last_piece = cursor->resid <= PAGE_SIZE;
1014
1015        return true;
1016}
1017
1018/*
1019 * For a pagelist, a piece is whatever remains to be consumed in the
1020 * first page in the list, or the front of the next page.
1021 */
1022static void
1023ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1024                                        size_t length)
1025{
1026        struct ceph_msg_data *data = cursor->data;
1027        struct ceph_pagelist *pagelist;
1028        struct page *page;
1029
1030        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1031
1032        pagelist = data->pagelist;
1033        BUG_ON(!pagelist);
1034
1035        if (!length)
1036                return;         /* pagelist can be assigned but empty */
1037
1038        BUG_ON(list_empty(&pagelist->head));
1039        page = list_first_entry(&pagelist->head, struct page, lru);
1040
1041        cursor->resid = min(length, pagelist->length);
1042        cursor->page = page;
1043        cursor->offset = 0;
1044        cursor->last_piece = cursor->resid <= PAGE_SIZE;
1045}
1046
1047static struct page *
1048ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1049                                size_t *page_offset, size_t *length)
1050{
1051        struct ceph_msg_data *data = cursor->data;
1052        struct ceph_pagelist *pagelist;
1053
1054        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1055
1056        pagelist = data->pagelist;
1057        BUG_ON(!pagelist);
1058
1059        BUG_ON(!cursor->page);
1060        BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1061
1062        /* offset of first page in pagelist is always 0 */
1063        *page_offset = cursor->offset & ~PAGE_MASK;
1064        if (cursor->last_piece)
1065                *length = cursor->resid;
1066        else
1067                *length = PAGE_SIZE - *page_offset;
1068
1069        return cursor->page;
1070}
1071
1072static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1073                                                size_t bytes)
1074{
1075        struct ceph_msg_data *data = cursor->data;
1076        struct ceph_pagelist *pagelist;
1077
1078        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1079
1080        pagelist = data->pagelist;
1081        BUG_ON(!pagelist);
1082
1083        BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1084        BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1085
1086        /* Advance the cursor offset */
1087
1088        cursor->resid -= bytes;
1089        cursor->offset += bytes;
1090        /* offset of first page in pagelist is always 0 */
1091        if (!bytes || cursor->offset & ~PAGE_MASK)
1092                return false;   /* more bytes to process in the current page */
1093
1094        if (!cursor->resid)
1095                return false;   /* no more data */
1096
1097        /* Move on to the next page */
1098
1099        BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1100        cursor->page = list_next_entry(cursor->page, lru);
1101        cursor->last_piece = cursor->resid <= PAGE_SIZE;
1102
1103        return true;
1104}
1105
1106/*
1107 * Message data is handled (sent or received) in pieces, where each
1108 * piece resides on a single page.  The network layer might not
1109 * consume an entire piece at once.  A data item's cursor keeps
1110 * track of which piece is next to process and how much remains to
1111 * be processed in that piece.  It also tracks whether the current
1112 * piece is the last one in the data item.
1113 */
1114static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1115{
1116        size_t length = cursor->total_resid;
1117
1118        switch (cursor->data->type) {
1119        case CEPH_MSG_DATA_PAGELIST:
1120                ceph_msg_data_pagelist_cursor_init(cursor, length);
1121                break;
1122        case CEPH_MSG_DATA_PAGES:
1123                ceph_msg_data_pages_cursor_init(cursor, length);
1124                break;
1125#ifdef CONFIG_BLOCK
1126        case CEPH_MSG_DATA_BIO:
1127                ceph_msg_data_bio_cursor_init(cursor, length);
1128                break;
1129#endif /* CONFIG_BLOCK */
1130        case CEPH_MSG_DATA_BVECS:
1131                ceph_msg_data_bvecs_cursor_init(cursor, length);
1132                break;
1133        case CEPH_MSG_DATA_NONE:
1134        default:
1135                /* BUG(); */
1136                break;
1137        }
1138        cursor->need_crc = true;
1139}
1140
1141static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1142{
1143        struct ceph_msg_data_cursor *cursor = &msg->cursor;
1144        struct ceph_msg_data *data;
1145
1146        BUG_ON(!length);
1147        BUG_ON(length > msg->data_length);
1148        BUG_ON(list_empty(&msg->data));
1149
1150        cursor->data_head = &msg->data;
1151        cursor->total_resid = length;
1152        data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1153        cursor->data = data;
1154
1155        __ceph_msg_data_cursor_init(cursor);
1156}
1157
1158/*
1159 * Return the page containing the next piece to process for a given
1160 * data item, and supply the page offset and length of that piece.
1161 * Indicate whether this is the last piece in this data item.
1162 */
1163static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1164                                        size_t *page_offset, size_t *length,
1165                                        bool *last_piece)
1166{
1167        struct page *page;
1168
1169        switch (cursor->data->type) {
1170        case CEPH_MSG_DATA_PAGELIST:
1171                page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1172                break;
1173        case CEPH_MSG_DATA_PAGES:
1174                page = ceph_msg_data_pages_next(cursor, page_offset, length);
1175                break;
1176#ifdef CONFIG_BLOCK
1177        case CEPH_MSG_DATA_BIO:
1178                page = ceph_msg_data_bio_next(cursor, page_offset, length);
1179                break;
1180#endif /* CONFIG_BLOCK */
1181        case CEPH_MSG_DATA_BVECS:
1182                page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1183                break;
1184        case CEPH_MSG_DATA_NONE:
1185        default:
1186                page = NULL;
1187                break;
1188        }
1189
1190        BUG_ON(!page);
1191        BUG_ON(*page_offset + *length > PAGE_SIZE);
1192        BUG_ON(!*length);
1193        BUG_ON(*length > cursor->resid);
1194        if (last_piece)
1195                *last_piece = cursor->last_piece;
1196
1197        return page;
1198}
1199
1200/*
1201 * Returns true if the result moves the cursor on to the next piece
1202 * of the data item.
1203 */
1204static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1205                                  size_t bytes)
1206{
1207        bool new_piece;
1208
1209        BUG_ON(bytes > cursor->resid);
1210        switch (cursor->data->type) {
1211        case CEPH_MSG_DATA_PAGELIST:
1212                new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1213                break;
1214        case CEPH_MSG_DATA_PAGES:
1215                new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1216                break;
1217#ifdef CONFIG_BLOCK
1218        case CEPH_MSG_DATA_BIO:
1219                new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1220                break;
1221#endif /* CONFIG_BLOCK */
1222        case CEPH_MSG_DATA_BVECS:
1223                new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1224                break;
1225        case CEPH_MSG_DATA_NONE:
1226        default:
1227                BUG();
1228                break;
1229        }
1230        cursor->total_resid -= bytes;
1231
1232        if (!cursor->resid && cursor->total_resid) {
1233                WARN_ON(!cursor->last_piece);
1234                BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1235                cursor->data = list_next_entry(cursor->data, links);
1236                __ceph_msg_data_cursor_init(cursor);
1237                new_piece = true;
1238        }
1239        cursor->need_crc = new_piece;
1240}
1241
1242static size_t sizeof_footer(struct ceph_connection *con)
1243{
1244        return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1245            sizeof(struct ceph_msg_footer) :
1246            sizeof(struct ceph_msg_footer_old);
1247}
1248
1249static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1250{
1251        BUG_ON(!msg);
1252        BUG_ON(!data_len);
1253
1254        /* Initialize data cursor */
1255
1256        ceph_msg_data_cursor_init(msg, (size_t)data_len);
1257}
1258
1259/*
1260 * Prepare footer for currently outgoing message, and finish things
1261 * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1262 */
1263static void prepare_write_message_footer(struct ceph_connection *con)
1264{
1265        struct ceph_msg *m = con->out_msg;
1266
1267        m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1268
1269        dout("prepare_write_message_footer %p\n", con);
1270        con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1271        if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1272                if (con->ops->sign_message)
1273                        con->ops->sign_message(m);
1274                else
1275                        m->footer.sig = 0;
1276        } else {
1277                m->old_footer.flags = m->footer.flags;
1278        }
1279        con->out_more = m->more_to_follow;
1280        con->out_msg_done = true;
1281}
1282
1283/*
1284 * Prepare headers for the next outgoing message.
1285 */
1286static void prepare_write_message(struct ceph_connection *con)
1287{
1288        struct ceph_msg *m;
1289        u32 crc;
1290
1291        con_out_kvec_reset(con);
1292        con->out_msg_done = false;
1293
1294        /* Sneak an ack in there first?  If we can get it into the same
1295         * TCP packet that's a good thing. */
1296        if (con->in_seq > con->in_seq_acked) {
1297                con->in_seq_acked = con->in_seq;
1298                con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1299                con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1300                con_out_kvec_add(con, sizeof (con->out_temp_ack),
1301                        &con->out_temp_ack);
1302        }
1303
1304        BUG_ON(list_empty(&con->out_queue));
1305        m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1306        con->out_msg = m;
1307        BUG_ON(m->con != con);
1308
1309        /* put message on sent list */
1310        ceph_msg_get(m);
1311        list_move_tail(&m->list_head, &con->out_sent);
1312
1313        /*
1314         * only assign outgoing seq # if we haven't sent this message
1315         * yet.  if it is requeued, resend with it's original seq.
1316         */
1317        if (m->needs_out_seq) {
1318                m->hdr.seq = cpu_to_le64(++con->out_seq);
1319                m->needs_out_seq = false;
1320
1321                if (con->ops->reencode_message)
1322                        con->ops->reencode_message(m);
1323        }
1324
1325        dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1326             m, con->out_seq, le16_to_cpu(m->hdr.type),
1327             le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1328             m->data_length);
1329        WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1330        WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1331
1332        /* tag + hdr + front + middle */
1333        con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1334        con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1335        con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1336
1337        if (m->middle)
1338                con_out_kvec_add(con, m->middle->vec.iov_len,
1339                        m->middle->vec.iov_base);
1340
1341        /* fill in hdr crc and finalize hdr */
1342        crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1343        con->out_msg->hdr.crc = cpu_to_le32(crc);
1344        memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1345
1346        /* fill in front and middle crc, footer */
1347        crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1348        con->out_msg->footer.front_crc = cpu_to_le32(crc);
1349        if (m->middle) {
1350                crc = crc32c(0, m->middle->vec.iov_base,
1351                                m->middle->vec.iov_len);
1352                con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1353        } else
1354                con->out_msg->footer.middle_crc = 0;
1355        dout("%s front_crc %u middle_crc %u\n", __func__,
1356             le32_to_cpu(con->out_msg->footer.front_crc),
1357             le32_to_cpu(con->out_msg->footer.middle_crc));
1358        con->out_msg->footer.flags = 0;
1359
1360        /* is there a data payload? */
1361        con->out_msg->footer.data_crc = 0;
1362        if (m->data_length) {
1363                prepare_message_data(con->out_msg, m->data_length);
1364                con->out_more = 1;  /* data + footer will follow */
1365        } else {
1366                /* no, queue up footer too and be done */
1367                prepare_write_message_footer(con);
1368        }
1369
1370        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1371}
1372
1373/*
1374 * Prepare an ack.
1375 */
1376static void prepare_write_ack(struct ceph_connection *con)
1377{
1378        dout("prepare_write_ack %p %llu -> %llu\n", con,
1379             con->in_seq_acked, con->in_seq);
1380        con->in_seq_acked = con->in_seq;
1381
1382        con_out_kvec_reset(con);
1383
1384        con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1385
1386        con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1387        con_out_kvec_add(con, sizeof (con->out_temp_ack),
1388                                &con->out_temp_ack);
1389
1390        con->out_more = 1;  /* more will follow.. eventually.. */
1391        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1392}
1393
1394/*
1395 * Prepare to share the seq during handshake
1396 */
1397static void prepare_write_seq(struct ceph_connection *con)
1398{
1399        dout("prepare_write_seq %p %llu -> %llu\n", con,
1400             con->in_seq_acked, con->in_seq);
1401        con->in_seq_acked = con->in_seq;
1402
1403        con_out_kvec_reset(con);
1404
1405        con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1406        con_out_kvec_add(con, sizeof (con->out_temp_ack),
1407                         &con->out_temp_ack);
1408
1409        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1410}
1411
1412/*
1413 * Prepare to write keepalive byte.
1414 */
1415static void prepare_write_keepalive(struct ceph_connection *con)
1416{
1417        dout("prepare_write_keepalive %p\n", con);
1418        con_out_kvec_reset(con);
1419        if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1420                struct timespec now;
1421
1422                ktime_get_real_ts(&now);
1423                con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1424                ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1425                con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1426                                 &con->out_temp_keepalive2);
1427        } else {
1428                con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1429        }
1430        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1431}
1432
1433/*
1434 * Connection negotiation.
1435 */
1436
1437static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1438                                                int *auth_proto)
1439{
1440        struct ceph_auth_handshake *auth;
1441
1442        if (!con->ops->get_authorizer) {
1443                con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1444                con->out_connect.authorizer_len = 0;
1445                return NULL;
1446        }
1447
1448        auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1449        if (IS_ERR(auth))
1450                return auth;
1451
1452        con->auth_reply_buf = auth->authorizer_reply_buf;
1453        con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1454        return auth;
1455}
1456
1457/*
1458 * We connected to a peer and are saying hello.
1459 */
1460static void prepare_write_banner(struct ceph_connection *con)
1461{
1462        con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1463        con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1464                                        &con->msgr->my_enc_addr);
1465
1466        con->out_more = 0;
1467        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1468}
1469
1470static int prepare_write_connect(struct ceph_connection *con)
1471{
1472        unsigned int global_seq = get_global_seq(con->msgr, 0);
1473        int proto;
1474        int auth_proto;
1475        struct ceph_auth_handshake *auth;
1476
1477        switch (con->peer_name.type) {
1478        case CEPH_ENTITY_TYPE_MON:
1479                proto = CEPH_MONC_PROTOCOL;
1480                break;
1481        case CEPH_ENTITY_TYPE_OSD:
1482                proto = CEPH_OSDC_PROTOCOL;
1483                break;
1484        case CEPH_ENTITY_TYPE_MDS:
1485                proto = CEPH_MDSC_PROTOCOL;
1486                break;
1487        default:
1488                BUG();
1489        }
1490
1491        dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1492             con->connect_seq, global_seq, proto);
1493
1494        con->out_connect.features =
1495            cpu_to_le64(from_msgr(con->msgr)->supported_features);
1496        con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1497        con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1498        con->out_connect.global_seq = cpu_to_le32(global_seq);
1499        con->out_connect.protocol_version = cpu_to_le32(proto);
1500        con->out_connect.flags = 0;
1501
1502        auth_proto = CEPH_AUTH_UNKNOWN;
1503        auth = get_connect_authorizer(con, &auth_proto);
1504        if (IS_ERR(auth))
1505                return PTR_ERR(auth);
1506
1507        con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1508        con->out_connect.authorizer_len = auth ?
1509                cpu_to_le32(auth->authorizer_buf_len) : 0;
1510
1511        con_out_kvec_add(con, sizeof (con->out_connect),
1512                                        &con->out_connect);
1513        if (auth && auth->authorizer_buf_len)
1514                con_out_kvec_add(con, auth->authorizer_buf_len,
1515                                        auth->authorizer_buf);
1516
1517        con->out_more = 0;
1518        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1519
1520        return 0;
1521}
1522
1523/*
1524 * write as much of pending kvecs to the socket as we can.
1525 *  1 -> done
1526 *  0 -> socket full, but more to do
1527 * <0 -> error
1528 */
1529static int write_partial_kvec(struct ceph_connection *con)
1530{
1531        int ret;
1532
1533        dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1534        while (con->out_kvec_bytes > 0) {
1535                ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1536                                       con->out_kvec_left, con->out_kvec_bytes,
1537                                       con->out_more);
1538                if (ret <= 0)
1539                        goto out;
1540                con->out_kvec_bytes -= ret;
1541                if (con->out_kvec_bytes == 0)
1542                        break;            /* done */
1543
1544                /* account for full iov entries consumed */
1545                while (ret >= con->out_kvec_cur->iov_len) {
1546                        BUG_ON(!con->out_kvec_left);
1547                        ret -= con->out_kvec_cur->iov_len;
1548                        con->out_kvec_cur++;
1549                        con->out_kvec_left--;
1550                }
1551                /* and for a partially-consumed entry */
1552                if (ret) {
1553                        con->out_kvec_cur->iov_len -= ret;
1554                        con->out_kvec_cur->iov_base += ret;
1555                }
1556        }
1557        con->out_kvec_left = 0;
1558        ret = 1;
1559out:
1560        dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1561             con->out_kvec_bytes, con->out_kvec_left, ret);
1562        return ret;  /* done! */
1563}
1564
1565static u32 ceph_crc32c_page(u32 crc, struct page *page,
1566                                unsigned int page_offset,
1567                                unsigned int length)
1568{
1569        char *kaddr;
1570
1571        kaddr = kmap(page);
1572        BUG_ON(kaddr == NULL);
1573        crc = crc32c(crc, kaddr + page_offset, length);
1574        kunmap(page);
1575
1576        return crc;
1577}
1578/*
1579 * Write as much message data payload as we can.  If we finish, queue
1580 * up the footer.
1581 *  1 -> done, footer is now queued in out_kvec[].
1582 *  0 -> socket full, but more to do
1583 * <0 -> error
1584 */
1585static int write_partial_message_data(struct ceph_connection *con)
1586{
1587        struct ceph_msg *msg = con->out_msg;
1588        struct ceph_msg_data_cursor *cursor = &msg->cursor;
1589        bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1590        u32 crc;
1591
1592        dout("%s %p msg %p\n", __func__, con, msg);
1593
1594        if (list_empty(&msg->data))
1595                return -EINVAL;
1596
1597        /*
1598         * Iterate through each page that contains data to be
1599         * written, and send as much as possible for each.
1600         *
1601         * If we are calculating the data crc (the default), we will
1602         * need to map the page.  If we have no pages, they have
1603         * been revoked, so use the zero page.
1604         */
1605        crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1606        while (cursor->total_resid) {
1607                struct page *page;
1608                size_t page_offset;
1609                size_t length;
1610                bool last_piece;
1611                int ret;
1612
1613                if (!cursor->resid) {
1614                        ceph_msg_data_advance(cursor, 0);
1615                        continue;
1616                }
1617
1618                page = ceph_msg_data_next(cursor, &page_offset, &length,
1619                                          &last_piece);
1620                ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1621                                        length, !last_piece);
1622                if (ret <= 0) {
1623                        if (do_datacrc)
1624                                msg->footer.data_crc = cpu_to_le32(crc);
1625
1626                        return ret;
1627                }
1628                if (do_datacrc && cursor->need_crc)
1629                        crc = ceph_crc32c_page(crc, page, page_offset, length);
1630                ceph_msg_data_advance(cursor, (size_t)ret);
1631        }
1632
1633        dout("%s %p msg %p done\n", __func__, con, msg);
1634
1635        /* prepare and queue up footer, too */
1636        if (do_datacrc)
1637                msg->footer.data_crc = cpu_to_le32(crc);
1638        else
1639                msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1640        con_out_kvec_reset(con);
1641        prepare_write_message_footer(con);
1642
1643        return 1;       /* must return > 0 to indicate success */
1644}
1645
1646/*
1647 * write some zeros
1648 */
1649static int write_partial_skip(struct ceph_connection *con)
1650{
1651        int ret;
1652
1653        dout("%s %p %d left\n", __func__, con, con->out_skip);
1654        while (con->out_skip > 0) {
1655                size_t size = min(con->out_skip, (int) PAGE_SIZE);
1656
1657                ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1658                if (ret <= 0)
1659                        goto out;
1660                con->out_skip -= ret;
1661        }
1662        ret = 1;
1663out:
1664        return ret;
1665}
1666
1667/*
1668 * Prepare to read connection handshake, or an ack.
1669 */
1670static void prepare_read_banner(struct ceph_connection *con)
1671{
1672        dout("prepare_read_banner %p\n", con);
1673        con->in_base_pos = 0;
1674}
1675
1676static void prepare_read_connect(struct ceph_connection *con)
1677{
1678        dout("prepare_read_connect %p\n", con);
1679        con->in_base_pos = 0;
1680}
1681
1682static void prepare_read_ack(struct ceph_connection *con)
1683{
1684        dout("prepare_read_ack %p\n", con);
1685        con->in_base_pos = 0;
1686}
1687
1688static void prepare_read_seq(struct ceph_connection *con)
1689{
1690        dout("prepare_read_seq %p\n", con);
1691        con->in_base_pos = 0;
1692        con->in_tag = CEPH_MSGR_TAG_SEQ;
1693}
1694
1695static void prepare_read_tag(struct ceph_connection *con)
1696{
1697        dout("prepare_read_tag %p\n", con);
1698        con->in_base_pos = 0;
1699        con->in_tag = CEPH_MSGR_TAG_READY;
1700}
1701
1702static void prepare_read_keepalive_ack(struct ceph_connection *con)
1703{
1704        dout("prepare_read_keepalive_ack %p\n", con);
1705        con->in_base_pos = 0;
1706}
1707
1708/*
1709 * Prepare to read a message.
1710 */
1711static int prepare_read_message(struct ceph_connection *con)
1712{
1713        dout("prepare_read_message %p\n", con);
1714        BUG_ON(con->in_msg != NULL);
1715        con->in_base_pos = 0;
1716        con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1717        return 0;
1718}
1719
1720
1721static int read_partial(struct ceph_connection *con,
1722                        int end, int size, void *object)
1723{
1724        while (con->in_base_pos < end) {
1725                int left = end - con->in_base_pos;
1726                int have = size - left;
1727                int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1728                if (ret <= 0)
1729                        return ret;
1730                con->in_base_pos += ret;
1731        }
1732        return 1;
1733}
1734
1735
1736/*
1737 * Read all or part of the connect-side handshake on a new connection
1738 */
1739static int read_partial_banner(struct ceph_connection *con)
1740{
1741        int size;
1742        int end;
1743        int ret;
1744
1745        dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1746
1747        /* peer's banner */
1748        size = strlen(CEPH_BANNER);
1749        end = size;
1750        ret = read_partial(con, end, size, con->in_banner);
1751        if (ret <= 0)
1752                goto out;
1753
1754        size = sizeof (con->actual_peer_addr);
1755        end += size;
1756        ret = read_partial(con, end, size, &con->actual_peer_addr);
1757        if (ret <= 0)
1758                goto out;
1759
1760        size = sizeof (con->peer_addr_for_me);
1761        end += size;
1762        ret = read_partial(con, end, size, &con->peer_addr_for_me);
1763        if (ret <= 0)
1764                goto out;
1765
1766out:
1767        return ret;
1768}
1769
1770static int read_partial_connect(struct ceph_connection *con)
1771{
1772        int size;
1773        int end;
1774        int ret;
1775
1776        dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1777
1778        size = sizeof (con->in_reply);
1779        end = size;
1780        ret = read_partial(con, end, size, &con->in_reply);
1781        if (ret <= 0)
1782                goto out;
1783
1784        size = le32_to_cpu(con->in_reply.authorizer_len);
1785        end += size;
1786        ret = read_partial(con, end, size, con->auth_reply_buf);
1787        if (ret <= 0)
1788                goto out;
1789
1790        dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1791             con, (int)con->in_reply.tag,
1792             le32_to_cpu(con->in_reply.connect_seq),
1793             le32_to_cpu(con->in_reply.global_seq));
1794out:
1795        return ret;
1796
1797}
1798
1799/*
1800 * Verify the hello banner looks okay.
1801 */
1802static int verify_hello(struct ceph_connection *con)
1803{
1804        if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1805                pr_err("connect to %s got bad banner\n",
1806                       ceph_pr_addr(&con->peer_addr.in_addr));
1807                con->error_msg = "protocol error, bad banner";
1808                return -1;
1809        }
1810        return 0;
1811}
1812
1813static bool addr_is_blank(struct sockaddr_storage *ss)
1814{
1815        struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1816        struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1817
1818        switch (ss->ss_family) {
1819        case AF_INET:
1820                return addr->s_addr == htonl(INADDR_ANY);
1821        case AF_INET6:
1822                return ipv6_addr_any(addr6);
1823        default:
1824                return true;
1825        }
1826}
1827
1828static int addr_port(struct sockaddr_storage *ss)
1829{
1830        switch (ss->ss_family) {
1831        case AF_INET:
1832                return ntohs(((struct sockaddr_in *)ss)->sin_port);
1833        case AF_INET6:
1834                return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1835        }
1836        return 0;
1837}
1838
1839static void addr_set_port(struct sockaddr_storage *ss, int p)
1840{
1841        switch (ss->ss_family) {
1842        case AF_INET:
1843                ((struct sockaddr_in *)ss)->sin_port = htons(p);
1844                break;
1845        case AF_INET6:
1846                ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1847                break;
1848        }
1849}
1850
1851/*
1852 * Unlike other *_pton function semantics, zero indicates success.
1853 */
1854static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1855                char delim, const char **ipend)
1856{
1857        struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1858        struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1859
1860        memset(ss, 0, sizeof(*ss));
1861
1862        if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1863                ss->ss_family = AF_INET;
1864                return 0;
1865        }
1866
1867        if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1868                ss->ss_family = AF_INET6;
1869                return 0;
1870        }
1871
1872        return -EINVAL;
1873}
1874
1875/*
1876 * Extract hostname string and resolve using kernel DNS facility.
1877 */
1878#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1879static int ceph_dns_resolve_name(const char *name, size_t namelen,
1880                struct sockaddr_storage *ss, char delim, const char **ipend)
1881{
1882        const char *end, *delim_p;
1883        char *colon_p, *ip_addr = NULL;
1884        int ip_len, ret;
1885
1886        /*
1887         * The end of the hostname occurs immediately preceding the delimiter or
1888         * the port marker (':') where the delimiter takes precedence.
1889         */
1890        delim_p = memchr(name, delim, namelen);
1891        colon_p = memchr(name, ':', namelen);
1892
1893        if (delim_p && colon_p)
1894                end = delim_p < colon_p ? delim_p : colon_p;
1895        else if (!delim_p && colon_p)
1896                end = colon_p;
1897        else {
1898                end = delim_p;
1899                if (!end) /* case: hostname:/ */
1900                        end = name + namelen;
1901        }
1902
1903        if (end <= name)
1904                return -EINVAL;
1905
1906        /* do dns_resolve upcall */
1907        ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1908        if (ip_len > 0)
1909                ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1910        else
1911                ret = -ESRCH;
1912
1913        kfree(ip_addr);
1914
1915        *ipend = end;
1916
1917        pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1918                        ret, ret ? "failed" : ceph_pr_addr(ss));
1919
1920        return ret;
1921}
1922#else
1923static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1924                struct sockaddr_storage *ss, char delim, const char **ipend)
1925{
1926        return -EINVAL;
1927}
1928#endif
1929
1930/*
1931 * Parse a server name (IP or hostname). If a valid IP address is not found
1932 * then try to extract a hostname to resolve using userspace DNS upcall.
1933 */
1934static int ceph_parse_server_name(const char *name, size_t namelen,
1935                        struct sockaddr_storage *ss, char delim, const char **ipend)
1936{
1937        int ret;
1938
1939        ret = ceph_pton(name, namelen, ss, delim, ipend);
1940        if (ret)
1941                ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1942
1943        return ret;
1944}
1945
1946/*
1947 * Parse an ip[:port] list into an addr array.  Use the default
1948 * monitor port if a port isn't specified.
1949 */
1950int ceph_parse_ips(const char *c, const char *end,
1951                   struct ceph_entity_addr *addr,
1952                   int max_count, int *count)
1953{
1954        int i, ret = -EINVAL;
1955        const char *p = c;
1956
1957        dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1958        for (i = 0; i < max_count; i++) {
1959                const char *ipend;
1960                struct sockaddr_storage *ss = &addr[i].in_addr;
1961                int port;
1962                char delim = ',';
1963
1964                if (*p == '[') {
1965                        delim = ']';
1966                        p++;
1967                }
1968
1969                ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1970                if (ret)
1971                        goto bad;
1972                ret = -EINVAL;
1973
1974                p = ipend;
1975
1976                if (delim == ']') {
1977                        if (*p != ']') {
1978                                dout("missing matching ']'\n");
1979                                goto bad;
1980                        }
1981                        p++;
1982                }
1983
1984                /* port? */
1985                if (p < end && *p == ':') {
1986                        port = 0;
1987                        p++;
1988                        while (p < end && *p >= '0' && *p <= '9') {
1989                                port = (port * 10) + (*p - '0');
1990                                p++;
1991                        }
1992                        if (port == 0)
1993                                port = CEPH_MON_PORT;
1994                        else if (port > 65535)
1995                                goto bad;
1996                } else {
1997                        port = CEPH_MON_PORT;
1998                }
1999
2000                addr_set_port(ss, port);
2001
2002                dout("parse_ips got %s\n", ceph_pr_addr(ss));
2003
2004                if (p == end)
2005                        break;
2006                if (*p != ',')
2007                        goto bad;
2008                p++;
2009        }
2010
2011        if (p != end)
2012                goto bad;
2013
2014        if (count)
2015                *count = i + 1;
2016        return 0;
2017
2018bad:
2019        pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
2020        return ret;
2021}
2022EXPORT_SYMBOL(ceph_parse_ips);
2023
2024static int process_banner(struct ceph_connection *con)
2025{
2026        dout("process_banner on %p\n", con);
2027
2028        if (verify_hello(con) < 0)
2029                return -1;
2030
2031        ceph_decode_addr(&con->actual_peer_addr);
2032        ceph_decode_addr(&con->peer_addr_for_me);
2033
2034        /*
2035         * Make sure the other end is who we wanted.  note that the other
2036         * end may not yet know their ip address, so if it's 0.0.0.0, give
2037         * them the benefit of the doubt.
2038         */
2039        if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2040                   sizeof(con->peer_addr)) != 0 &&
2041            !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2042              con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2043                pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2044                        ceph_pr_addr(&con->peer_addr.in_addr),
2045                        (int)le32_to_cpu(con->peer_addr.nonce),
2046                        ceph_pr_addr(&con->actual_peer_addr.in_addr),
2047                        (int)le32_to_cpu(con->actual_peer_addr.nonce));
2048                con->error_msg = "wrong peer at address";
2049                return -1;
2050        }
2051
2052        /*
2053         * did we learn our address?
2054         */
2055        if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2056                int port = addr_port(&con->msgr->inst.addr.in_addr);
2057
2058                memcpy(&con->msgr->inst.addr.in_addr,
2059                       &con->peer_addr_for_me.in_addr,
2060                       sizeof(con->peer_addr_for_me.in_addr));
2061                addr_set_port(&con->msgr->inst.addr.in_addr, port);
2062                encode_my_addr(con->msgr);
2063                dout("process_banner learned my addr is %s\n",
2064                     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2065        }
2066
2067        return 0;
2068}
2069
2070static int process_connect(struct ceph_connection *con)
2071{
2072        u64 sup_feat = from_msgr(con->msgr)->supported_features;
2073        u64 req_feat = from_msgr(con->msgr)->required_features;
2074        u64 server_feat = le64_to_cpu(con->in_reply.features);
2075        int ret;
2076
2077        dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2078
2079        if (con->auth_reply_buf) {
2080                /*
2081                 * Any connection that defines ->get_authorizer()
2082                 * should also define ->verify_authorizer_reply().
2083                 * See get_connect_authorizer().
2084                 */
2085                ret = con->ops->verify_authorizer_reply(con);
2086                if (ret < 0) {
2087                        con->error_msg = "bad authorize reply";
2088                        return ret;
2089                }
2090        }
2091
2092        switch (con->in_reply.tag) {
2093        case CEPH_MSGR_TAG_FEATURES:
2094                pr_err("%s%lld %s feature set mismatch,"
2095                       " my %llx < server's %llx, missing %llx\n",
2096                       ENTITY_NAME(con->peer_name),
2097                       ceph_pr_addr(&con->peer_addr.in_addr),
2098                       sup_feat, server_feat, server_feat & ~sup_feat);
2099                con->error_msg = "missing required protocol features";
2100                reset_connection(con);
2101                return -1;
2102
2103        case CEPH_MSGR_TAG_BADPROTOVER:
2104                pr_err("%s%lld %s protocol version mismatch,"
2105                       " my %d != server's %d\n",
2106                       ENTITY_NAME(con->peer_name),
2107                       ceph_pr_addr(&con->peer_addr.in_addr),
2108                       le32_to_cpu(con->out_connect.protocol_version),
2109                       le32_to_cpu(con->in_reply.protocol_version));
2110                con->error_msg = "protocol version mismatch";
2111                reset_connection(con);
2112                return -1;
2113
2114        case CEPH_MSGR_TAG_BADAUTHORIZER:
2115                con->auth_retry++;
2116                dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2117                     con->auth_retry);
2118                if (con->auth_retry == 2) {
2119                        con->error_msg = "connect authorization failure";
2120                        return -1;
2121                }
2122                con_out_kvec_reset(con);
2123                ret = prepare_write_connect(con);
2124                if (ret < 0)
2125                        return ret;
2126                prepare_read_connect(con);
2127                break;
2128
2129        case CEPH_MSGR_TAG_RESETSESSION:
2130                /*
2131                 * If we connected with a large connect_seq but the peer
2132                 * has no record of a session with us (no connection, or
2133                 * connect_seq == 0), they will send RESETSESION to indicate
2134                 * that they must have reset their session, and may have
2135                 * dropped messages.
2136                 */
2137                dout("process_connect got RESET peer seq %u\n",
2138                     le32_to_cpu(con->in_reply.connect_seq));
2139                pr_err("%s%lld %s connection reset\n",
2140                       ENTITY_NAME(con->peer_name),
2141                       ceph_pr_addr(&con->peer_addr.in_addr));
2142                reset_connection(con);
2143                con_out_kvec_reset(con);
2144                ret = prepare_write_connect(con);
2145                if (ret < 0)
2146                        return ret;
2147                prepare_read_connect(con);
2148
2149                /* Tell ceph about it. */
2150                mutex_unlock(&con->mutex);
2151                pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2152                if (con->ops->peer_reset)
2153                        con->ops->peer_reset(con);
2154                mutex_lock(&con->mutex);
2155                if (con->state != CON_STATE_NEGOTIATING)
2156                        return -EAGAIN;
2157                break;
2158
2159        case CEPH_MSGR_TAG_RETRY_SESSION:
2160                /*
2161                 * If we sent a smaller connect_seq than the peer has, try
2162                 * again with a larger value.
2163                 */
2164                dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2165                     le32_to_cpu(con->out_connect.connect_seq),
2166                     le32_to_cpu(con->in_reply.connect_seq));
2167                con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2168                con_out_kvec_reset(con);
2169                ret = prepare_write_connect(con);
2170                if (ret < 0)
2171                        return ret;
2172                prepare_read_connect(con);
2173                break;
2174
2175        case CEPH_MSGR_TAG_RETRY_GLOBAL:
2176                /*
2177                 * If we sent a smaller global_seq than the peer has, try
2178                 * again with a larger value.
2179                 */
2180                dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2181                     con->peer_global_seq,
2182                     le32_to_cpu(con->in_reply.global_seq));
2183                get_global_seq(con->msgr,
2184                               le32_to_cpu(con->in_reply.global_seq));
2185                con_out_kvec_reset(con);
2186                ret = prepare_write_connect(con);
2187                if (ret < 0)
2188                        return ret;
2189                prepare_read_connect(con);
2190                break;
2191
2192        case CEPH_MSGR_TAG_SEQ:
2193        case CEPH_MSGR_TAG_READY:
2194                if (req_feat & ~server_feat) {
2195                        pr_err("%s%lld %s protocol feature mismatch,"
2196                               " my required %llx > server's %llx, need %llx\n",
2197                               ENTITY_NAME(con->peer_name),
2198                               ceph_pr_addr(&con->peer_addr.in_addr),
2199                               req_feat, server_feat, req_feat & ~server_feat);
2200                        con->error_msg = "missing required protocol features";
2201                        reset_connection(con);
2202                        return -1;
2203                }
2204
2205                WARN_ON(con->state != CON_STATE_NEGOTIATING);
2206                con->state = CON_STATE_OPEN;
2207                con->auth_retry = 0;    /* we authenticated; clear flag */
2208                con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2209                con->connect_seq++;
2210                con->peer_features = server_feat;
2211                dout("process_connect got READY gseq %d cseq %d (%d)\n",
2212                     con->peer_global_seq,
2213                     le32_to_cpu(con->in_reply.connect_seq),
2214                     con->connect_seq);
2215                WARN_ON(con->connect_seq !=
2216                        le32_to_cpu(con->in_reply.connect_seq));
2217
2218                if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2219                        con_flag_set(con, CON_FLAG_LOSSYTX);
2220
2221                con->delay = 0;      /* reset backoff memory */
2222
2223                if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2224                        prepare_write_seq(con);
2225                        prepare_read_seq(con);
2226                } else {
2227                        prepare_read_tag(con);
2228                }
2229                break;
2230
2231        case CEPH_MSGR_TAG_WAIT:
2232                /*
2233                 * If there is a connection race (we are opening
2234                 * connections to each other), one of us may just have
2235                 * to WAIT.  This shouldn't happen if we are the
2236                 * client.
2237                 */
2238                con->error_msg = "protocol error, got WAIT as client";
2239                return -1;
2240
2241        default:
2242                con->error_msg = "protocol error, garbage tag during connect";
2243                return -1;
2244        }
2245        return 0;
2246}
2247
2248
2249/*
2250 * read (part of) an ack
2251 */
2252static int read_partial_ack(struct ceph_connection *con)
2253{
2254        int size = sizeof (con->in_temp_ack);
2255        int end = size;
2256
2257        return read_partial(con, end, size, &con->in_temp_ack);
2258}
2259
2260/*
2261 * We can finally discard anything that's been acked.
2262 */
2263static void process_ack(struct ceph_connection *con)
2264{
2265        struct ceph_msg *m;
2266        u64 ack = le64_to_cpu(con->in_temp_ack);
2267        u64 seq;
2268        bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2269        struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2270
2271        /*
2272         * In the reconnect case, con_fault() has requeued messages
2273         * in out_sent. We should cleanup old messages according to
2274         * the reconnect seq.
2275         */
2276        while (!list_empty(list)) {
2277                m = list_first_entry(list, struct ceph_msg, list_head);
2278                if (reconnect && m->needs_out_seq)
2279                        break;
2280                seq = le64_to_cpu(m->hdr.seq);
2281                if (seq > ack)
2282                        break;
2283                dout("got ack for seq %llu type %d at %p\n", seq,
2284                     le16_to_cpu(m->hdr.type), m);
2285                m->ack_stamp = jiffies;
2286                ceph_msg_remove(m);
2287        }
2288
2289        prepare_read_tag(con);
2290}
2291
2292
2293static int read_partial_message_section(struct ceph_connection *con,
2294                                        struct kvec *section,
2295                                        unsigned int sec_len, u32 *crc)
2296{
2297        int ret, left;
2298
2299        BUG_ON(!section);
2300
2301        while (section->iov_len < sec_len) {
2302                BUG_ON(section->iov_base == NULL);
2303                left = sec_len - section->iov_len;
2304                ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2305                                       section->iov_len, left);
2306                if (ret <= 0)
2307                        return ret;
2308                section->iov_len += ret;
2309        }
2310        if (section->iov_len == sec_len)
2311                *crc = crc32c(0, section->iov_base, section->iov_len);
2312
2313        return 1;
2314}
2315
2316static int read_partial_msg_data(struct ceph_connection *con)
2317{
2318        struct ceph_msg *msg = con->in_msg;
2319        struct ceph_msg_data_cursor *cursor = &msg->cursor;
2320        bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2321        struct page *page;
2322        size_t page_offset;
2323        size_t length;
2324        u32 crc = 0;
2325        int ret;
2326
2327        BUG_ON(!msg);
2328        if (list_empty(&msg->data))
2329                return -EIO;
2330
2331        if (do_datacrc)
2332                crc = con->in_data_crc;
2333        while (cursor->total_resid) {
2334                if (!cursor->resid) {
2335                        ceph_msg_data_advance(cursor, 0);
2336                        continue;
2337                }
2338
2339                page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2340                ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2341                if (ret <= 0) {
2342                        if (do_datacrc)
2343                                con->in_data_crc = crc;
2344
2345                        return ret;
2346                }
2347
2348                if (do_datacrc)
2349                        crc = ceph_crc32c_page(crc, page, page_offset, ret);
2350                ceph_msg_data_advance(cursor, (size_t)ret);
2351        }
2352        if (do_datacrc)
2353                con->in_data_crc = crc;
2354
2355        return 1;       /* must return > 0 to indicate success */
2356}
2357
2358/*
2359 * read (part of) a message.
2360 */
2361static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2362
2363static int read_partial_message(struct ceph_connection *con)
2364{
2365        struct ceph_msg *m = con->in_msg;
2366        int size;
2367        int end;
2368        int ret;
2369        unsigned int front_len, middle_len, data_len;
2370        bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2371        bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2372        u64 seq;
2373        u32 crc;
2374
2375        dout("read_partial_message con %p msg %p\n", con, m);
2376
2377        /* header */
2378        size = sizeof (con->in_hdr);
2379        end = size;
2380        ret = read_partial(con, end, size, &con->in_hdr);
2381        if (ret <= 0)
2382                return ret;
2383
2384        crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2385        if (cpu_to_le32(crc) != con->in_hdr.crc) {
2386                pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2387                       crc, con->in_hdr.crc);
2388                return -EBADMSG;
2389        }
2390
2391        front_len = le32_to_cpu(con->in_hdr.front_len);
2392        if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2393                return -EIO;
2394        middle_len = le32_to_cpu(con->in_hdr.middle_len);
2395        if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2396                return -EIO;
2397        data_len = le32_to_cpu(con->in_hdr.data_len);
2398        if (data_len > CEPH_MSG_MAX_DATA_LEN)
2399                return -EIO;
2400
2401        /* verify seq# */
2402        seq = le64_to_cpu(con->in_hdr.seq);
2403        if ((s64)seq - (s64)con->in_seq < 1) {
2404                pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2405                        ENTITY_NAME(con->peer_name),
2406                        ceph_pr_addr(&con->peer_addr.in_addr),
2407                        seq, con->in_seq + 1);
2408                con->in_base_pos = -front_len - middle_len - data_len -
2409                        sizeof_footer(con);
2410                con->in_tag = CEPH_MSGR_TAG_READY;
2411                return 1;
2412        } else if ((s64)seq - (s64)con->in_seq > 1) {
2413                pr_err("read_partial_message bad seq %lld expected %lld\n",
2414                       seq, con->in_seq + 1);
2415                con->error_msg = "bad message sequence # for incoming message";
2416                return -EBADE;
2417        }
2418
2419        /* allocate message? */
2420        if (!con->in_msg) {
2421                int skip = 0;
2422
2423                dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2424                     front_len, data_len);
2425                ret = ceph_con_in_msg_alloc(con, &skip);
2426                if (ret < 0)
2427                        return ret;
2428
2429                BUG_ON(!con->in_msg ^ skip);
2430                if (skip) {
2431                        /* skip this message */
2432                        dout("alloc_msg said skip message\n");
2433                        con->in_base_pos = -front_len - middle_len - data_len -
2434                                sizeof_footer(con);
2435                        con->in_tag = CEPH_MSGR_TAG_READY;
2436                        con->in_seq++;
2437                        return 1;
2438                }
2439
2440                BUG_ON(!con->in_msg);
2441                BUG_ON(con->in_msg->con != con);
2442                m = con->in_msg;
2443                m->front.iov_len = 0;    /* haven't read it yet */
2444                if (m->middle)
2445                        m->middle->vec.iov_len = 0;
2446
2447                /* prepare for data payload, if any */
2448
2449                if (data_len)
2450                        prepare_message_data(con->in_msg, data_len);
2451        }
2452
2453        /* front */
2454        ret = read_partial_message_section(con, &m->front, front_len,
2455                                           &con->in_front_crc);
2456        if (ret <= 0)
2457                return ret;
2458
2459        /* middle */
2460        if (m->middle) {
2461                ret = read_partial_message_section(con, &m->middle->vec,
2462                                                   middle_len,
2463                                                   &con->in_middle_crc);
2464                if (ret <= 0)
2465                        return ret;
2466        }
2467
2468        /* (page) data */
2469        if (data_len) {
2470                ret = read_partial_msg_data(con);
2471                if (ret <= 0)
2472                        return ret;
2473        }
2474
2475        /* footer */
2476        size = sizeof_footer(con);
2477        end += size;
2478        ret = read_partial(con, end, size, &m->footer);
2479        if (ret <= 0)
2480                return ret;
2481
2482        if (!need_sign) {
2483                m->footer.flags = m->old_footer.flags;
2484                m->footer.sig = 0;
2485        }
2486
2487        dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2488             m, front_len, m->footer.front_crc, middle_len,
2489             m->footer.middle_crc, data_len, m->footer.data_crc);
2490
2491        /* crc ok? */
2492        if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2493                pr_err("read_partial_message %p front crc %u != exp. %u\n",
2494                       m, con->in_front_crc, m->footer.front_crc);
2495                return -EBADMSG;
2496        }
2497        if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2498                pr_err("read_partial_message %p middle crc %u != exp %u\n",
2499                       m, con->in_middle_crc, m->footer.middle_crc);
2500                return -EBADMSG;
2501        }
2502        if (do_datacrc &&
2503            (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2504            con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2505                pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2506                       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2507                return -EBADMSG;
2508        }
2509
2510        if (need_sign && con->ops->check_message_signature &&
2511            con->ops->check_message_signature(m)) {
2512                pr_err("read_partial_message %p signature check failed\n", m);
2513                return -EBADMSG;
2514        }
2515
2516        return 1; /* done! */
2517}
2518
2519/*
2520 * Process message.  This happens in the worker thread.  The callback should
2521 * be careful not to do anything that waits on other incoming messages or it
2522 * may deadlock.
2523 */
2524static void process_message(struct ceph_connection *con)
2525{
2526        struct ceph_msg *msg = con->in_msg;
2527
2528        BUG_ON(con->in_msg->con != con);
2529        con->in_msg = NULL;
2530
2531        /* if first message, set peer_name */
2532        if (con->peer_name.type == 0)
2533                con->peer_name = msg->hdr.src;
2534
2535        con->in_seq++;
2536        mutex_unlock(&con->mutex);
2537
2538        dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2539             msg, le64_to_cpu(msg->hdr.seq),
2540             ENTITY_NAME(msg->hdr.src),
2541             le16_to_cpu(msg->hdr.type),
2542             ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2543             le32_to_cpu(msg->hdr.front_len),
2544             le32_to_cpu(msg->hdr.data_len),
2545             con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2546        con->ops->dispatch(con, msg);
2547
2548        mutex_lock(&con->mutex);
2549}
2550
2551static int read_keepalive_ack(struct ceph_connection *con)
2552{
2553        struct ceph_timespec ceph_ts;
2554        size_t size = sizeof(ceph_ts);
2555        int ret = read_partial(con, size, size, &ceph_ts);
2556        if (ret <= 0)
2557                return ret;
2558        ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2559        prepare_read_tag(con);
2560        return 1;
2561}
2562
2563/*
2564 * Write something to the socket.  Called in a worker thread when the
2565 * socket appears to be writeable and we have something ready to send.
2566 */
2567static int try_write(struct ceph_connection *con)
2568{
2569        int ret = 1;
2570
2571        dout("try_write start %p state %lu\n", con, con->state);
2572        if (con->state != CON_STATE_PREOPEN &&
2573            con->state != CON_STATE_CONNECTING &&
2574            con->state != CON_STATE_NEGOTIATING &&
2575            con->state != CON_STATE_OPEN)
2576                return 0;
2577
2578more:
2579        dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2580
2581        /* open the socket first? */
2582        if (con->state == CON_STATE_PREOPEN) {
2583                BUG_ON(con->sock);
2584                con->state = CON_STATE_CONNECTING;
2585
2586                con_out_kvec_reset(con);
2587                prepare_write_banner(con);
2588                prepare_read_banner(con);
2589
2590                BUG_ON(con->in_msg);
2591                con->in_tag = CEPH_MSGR_TAG_READY;
2592                dout("try_write initiating connect on %p new state %lu\n",
2593                     con, con->state);
2594                ret = ceph_tcp_connect(con);
2595                if (ret < 0) {
2596                        con->error_msg = "connect error";
2597                        goto out;
2598                }
2599        }
2600
2601more_kvec:
2602        BUG_ON(!con->sock);
2603
2604        /* kvec data queued? */
2605        if (con->out_kvec_left) {
2606                ret = write_partial_kvec(con);
2607                if (ret <= 0)
2608                        goto out;
2609        }
2610        if (con->out_skip) {
2611                ret = write_partial_skip(con);
2612                if (ret <= 0)
2613                        goto out;
2614        }
2615
2616        /* msg pages? */
2617        if (con->out_msg) {
2618                if (con->out_msg_done) {
2619                        ceph_msg_put(con->out_msg);
2620                        con->out_msg = NULL;   /* we're done with this one */
2621                        goto do_next;
2622                }
2623
2624                ret = write_partial_message_data(con);
2625                if (ret == 1)
2626                        goto more_kvec;  /* we need to send the footer, too! */
2627                if (ret == 0)
2628                        goto out;
2629                if (ret < 0) {
2630                        dout("try_write write_partial_message_data err %d\n",
2631                             ret);
2632                        goto out;
2633                }
2634        }
2635
2636do_next:
2637        if (con->state == CON_STATE_OPEN) {
2638                if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2639                        prepare_write_keepalive(con);
2640                        goto more;
2641                }
2642                /* is anything else pending? */
2643                if (!list_empty(&con->out_queue)) {
2644                        prepare_write_message(con);
2645                        goto more;
2646                }
2647                if (con->in_seq > con->in_seq_acked) {
2648                        prepare_write_ack(con);
2649                        goto more;
2650                }
2651        }
2652
2653        /* Nothing to do! */
2654        con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2655        dout("try_write nothing else to write.\n");
2656        ret = 0;
2657out:
2658        dout("try_write done on %p ret %d\n", con, ret);
2659        return ret;
2660}
2661
2662
2663
2664/*
2665 * Read what we can from the socket.
2666 */
2667static int try_read(struct ceph_connection *con)
2668{
2669        int ret = -1;
2670
2671more:
2672        dout("try_read start on %p state %lu\n", con, con->state);
2673        if (con->state != CON_STATE_CONNECTING &&
2674            con->state != CON_STATE_NEGOTIATING &&
2675            con->state != CON_STATE_OPEN)
2676                return 0;
2677
2678        BUG_ON(!con->sock);
2679
2680        dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2681             con->in_base_pos);
2682
2683        if (con->state == CON_STATE_CONNECTING) {
2684                dout("try_read connecting\n");
2685                ret = read_partial_banner(con);
2686                if (ret <= 0)
2687                        goto out;
2688                ret = process_banner(con);
2689                if (ret < 0)
2690                        goto out;
2691
2692                con->state = CON_STATE_NEGOTIATING;
2693
2694                /*
2695                 * Received banner is good, exchange connection info.
2696                 * Do not reset out_kvec, as sending our banner raced
2697                 * with receiving peer banner after connect completed.
2698                 */
2699                ret = prepare_write_connect(con);
2700                if (ret < 0)
2701                        goto out;
2702                prepare_read_connect(con);
2703
2704                /* Send connection info before awaiting response */
2705                goto out;
2706        }
2707
2708        if (con->state == CON_STATE_NEGOTIATING) {
2709                dout("try_read negotiating\n");
2710                ret = read_partial_connect(con);
2711                if (ret <= 0)
2712                        goto out;
2713                ret = process_connect(con);
2714                if (ret < 0)
2715                        goto out;
2716                goto more;
2717        }
2718
2719        WARN_ON(con->state != CON_STATE_OPEN);
2720
2721        if (con->in_base_pos < 0) {
2722                /*
2723                 * skipping + discarding content.
2724                 *
2725                 * FIXME: there must be a better way to do this!
2726                 */
2727                static char buf[SKIP_BUF_SIZE];
2728                int skip = min((int) sizeof (buf), -con->in_base_pos);
2729
2730                dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2731                ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2732                if (ret <= 0)
2733                        goto out;
2734                con->in_base_pos += ret;
2735                if (con->in_base_pos)
2736                        goto more;
2737        }
2738        if (con->in_tag == CEPH_MSGR_TAG_READY) {
2739                /*
2740                 * what's next?
2741                 */
2742                ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2743                if (ret <= 0)
2744                        goto out;
2745                dout("try_read got tag %d\n", (int)con->in_tag);
2746                switch (con->in_tag) {
2747                case CEPH_MSGR_TAG_MSG:
2748                        prepare_read_message(con);
2749                        break;
2750                case CEPH_MSGR_TAG_ACK:
2751                        prepare_read_ack(con);
2752                        break;
2753                case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2754                        prepare_read_keepalive_ack(con);
2755                        break;
2756                case CEPH_MSGR_TAG_CLOSE:
2757                        con_close_socket(con);
2758                        con->state = CON_STATE_CLOSED;
2759                        goto out;
2760                default:
2761                        goto bad_tag;
2762                }
2763        }
2764        if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2765                ret = read_partial_message(con);
2766                if (ret <= 0) {
2767                        switch (ret) {
2768                        case -EBADMSG:
2769                                con->error_msg = "bad crc/signature";
2770                                /* fall through */
2771                        case -EBADE:
2772                                ret = -EIO;
2773                                break;
2774                        case -EIO:
2775                                con->error_msg = "io error";
2776                                break;
2777                        }
2778                        goto out;
2779                }
2780                if (con->in_tag == CEPH_MSGR_TAG_READY)
2781                        goto more;
2782                process_message(con);
2783                if (con->state == CON_STATE_OPEN)
2784                        prepare_read_tag(con);
2785                goto more;
2786        }
2787        if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2788            con->in_tag == CEPH_MSGR_TAG_SEQ) {
2789                /*
2790                 * the final handshake seq exchange is semantically
2791                 * equivalent to an ACK
2792                 */
2793                ret = read_partial_ack(con);
2794                if (ret <= 0)
2795                        goto out;
2796                process_ack(con);
2797                goto more;
2798        }
2799        if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2800                ret = read_keepalive_ack(con);
2801                if (ret <= 0)
2802                        goto out;
2803                goto more;
2804        }
2805
2806out:
2807        dout("try_read done on %p ret %d\n", con, ret);
2808        return ret;
2809
2810bad_tag:
2811        pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2812        con->error_msg = "protocol error, garbage tag";
2813        ret = -1;
2814        goto out;
2815}
2816
2817
2818/*
2819 * Atomically queue work on a connection after the specified delay.
2820 * Bump @con reference to avoid races with connection teardown.
2821 * Returns 0 if work was queued, or an error code otherwise.
2822 */
2823static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2824{
2825        if (!con->ops->get(con)) {
2826                dout("%s %p ref count 0\n", __func__, con);
2827                return -ENOENT;
2828        }
2829
2830        if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2831                dout("%s %p - already queued\n", __func__, con);
2832                con->ops->put(con);
2833                return -EBUSY;
2834        }
2835
2836        dout("%s %p %lu\n", __func__, con, delay);
2837        return 0;
2838}
2839
2840static void queue_con(struct ceph_connection *con)
2841{
2842        (void) queue_con_delay(con, 0);
2843}
2844
2845static void cancel_con(struct ceph_connection *con)
2846{
2847        if (cancel_delayed_work(&con->work)) {
2848                dout("%s %p\n", __func__, con);
2849                con->ops->put(con);
2850        }
2851}
2852
2853static bool con_sock_closed(struct ceph_connection *con)
2854{
2855        if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2856                return false;
2857
2858#define CASE(x)                                                         \
2859        case CON_STATE_ ## x:                                           \
2860                con->error_msg = "socket closed (con state " #x ")";    \
2861                break;
2862
2863        switch (con->state) {
2864        CASE(CLOSED);
2865        CASE(PREOPEN);
2866        CASE(CONNECTING);
2867        CASE(NEGOTIATING);
2868        CASE(OPEN);
2869        CASE(STANDBY);
2870        default:
2871                pr_warn("%s con %p unrecognized state %lu\n",
2872                        __func__, con, con->state);
2873                con->error_msg = "unrecognized con state";
2874                BUG();
2875                break;
2876        }
2877#undef CASE
2878
2879        return true;
2880}
2881
2882static bool con_backoff(struct ceph_connection *con)
2883{
2884        int ret;
2885
2886        if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2887                return false;
2888
2889        ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2890        if (ret) {
2891                dout("%s: con %p FAILED to back off %lu\n", __func__,
2892                        con, con->delay);
2893                BUG_ON(ret == -ENOENT);
2894                con_flag_set(con, CON_FLAG_BACKOFF);
2895        }
2896
2897        return true;
2898}
2899
2900/* Finish fault handling; con->mutex must *not* be held here */
2901
2902static void con_fault_finish(struct ceph_connection *con)
2903{
2904        dout("%s %p\n", __func__, con);
2905
2906        /*
2907         * in case we faulted due to authentication, invalidate our
2908         * current tickets so that we can get new ones.
2909         */
2910        if (con->auth_retry) {
2911                dout("auth_retry %d, invalidating\n", con->auth_retry);
2912                if (con->ops->invalidate_authorizer)
2913                        con->ops->invalidate_authorizer(con);
2914                con->auth_retry = 0;
2915        }
2916
2917        if (con->ops->fault)
2918                con->ops->fault(con);
2919}
2920
2921/*
2922 * Do some work on a connection.  Drop a connection ref when we're done.
2923 */
2924static void ceph_con_workfn(struct work_struct *work)
2925{
2926        struct ceph_connection *con = container_of(work, struct ceph_connection,
2927                                                   work.work);
2928        bool fault;
2929
2930        mutex_lock(&con->mutex);
2931        while (true) {
2932                int ret;
2933
2934                if ((fault = con_sock_closed(con))) {
2935                        dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2936                        break;
2937                }
2938                if (con_backoff(con)) {
2939                        dout("%s: con %p BACKOFF\n", __func__, con);
2940                        break;
2941                }
2942                if (con->state == CON_STATE_STANDBY) {
2943                        dout("%s: con %p STANDBY\n", __func__, con);
2944                        break;
2945                }
2946                if (con->state == CON_STATE_CLOSED) {
2947                        dout("%s: con %p CLOSED\n", __func__, con);
2948                        BUG_ON(con->sock);
2949                        break;
2950                }
2951                if (con->state == CON_STATE_PREOPEN) {
2952                        dout("%s: con %p PREOPEN\n", __func__, con);
2953                        BUG_ON(con->sock);
2954                }
2955
2956                ret = try_read(con);
2957                if (ret < 0) {
2958                        if (ret == -EAGAIN)
2959                                continue;
2960                        if (!con->error_msg)
2961                                con->error_msg = "socket error on read";
2962                        fault = true;
2963                        break;
2964                }
2965
2966                ret = try_write(con);
2967                if (ret < 0) {
2968                        if (ret == -EAGAIN)
2969                                continue;
2970                        if (!con->error_msg)
2971                                con->error_msg = "socket error on write";
2972                        fault = true;
2973                }
2974
2975                break;  /* If we make it to here, we're done */
2976        }
2977        if (fault)
2978                con_fault(con);
2979        mutex_unlock(&con->mutex);
2980
2981        if (fault)
2982                con_fault_finish(con);
2983
2984        con->ops->put(con);
2985}
2986
2987/*
2988 * Generic error/fault handler.  A retry mechanism is used with
2989 * exponential backoff
2990 */
2991static void con_fault(struct ceph_connection *con)
2992{
2993        dout("fault %p state %lu to peer %s\n",
2994             con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2995
2996        pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2997                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2998        con->error_msg = NULL;
2999
3000        WARN_ON(con->state != CON_STATE_CONNECTING &&
3001               con->state != CON_STATE_NEGOTIATING &&
3002               con->state != CON_STATE_OPEN);
3003
3004        con_close_socket(con);
3005
3006        if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
3007                dout("fault on LOSSYTX channel, marking CLOSED\n");
3008                con->state = CON_STATE_CLOSED;
3009                return;
3010        }
3011
3012        if (con->in_msg) {
3013                BUG_ON(con->in_msg->con != con);
3014                ceph_msg_put(con->in_msg);
3015                con->in_msg = NULL;
3016        }
3017
3018        /* Requeue anything that hasn't been acked */
3019        list_splice_init(&con->out_sent, &con->out_queue);
3020
3021        /* If there are no messages queued or keepalive pending, place
3022         * the connection in a STANDBY state */
3023        if (list_empty(&con->out_queue) &&
3024            !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3025                dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3026                con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3027                con->state = CON_STATE_STANDBY;
3028        } else {
3029                /* retry after a delay. */
3030                con->state = CON_STATE_PREOPEN;
3031                if (con->delay == 0)
3032                        con->delay = BASE_DELAY_INTERVAL;
3033                else if (con->delay < MAX_DELAY_INTERVAL)
3034                        con->delay *= 2;
3035                con_flag_set(con, CON_FLAG_BACKOFF);
3036                queue_con(con);
3037        }
3038}
3039
3040
3041
3042/*
3043 * initialize a new messenger instance
3044 */
3045void ceph_messenger_init(struct ceph_messenger *msgr,
3046                         struct ceph_entity_addr *myaddr)
3047{
3048        spin_lock_init(&msgr->global_seq_lock);
3049
3050        if (myaddr)
3051                msgr->inst.addr = *myaddr;
3052
3053        /* select a random nonce */
3054        msgr->inst.addr.type = 0;
3055        get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3056        encode_my_addr(msgr);
3057
3058        atomic_set(&msgr->stopping, 0);
3059        write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3060
3061        dout("%s %p\n", __func__, msgr);
3062}
3063EXPORT_SYMBOL(ceph_messenger_init);
3064
3065void ceph_messenger_fini(struct ceph_messenger *msgr)
3066{
3067        put_net(read_pnet(&msgr->net));
3068}
3069EXPORT_SYMBOL(ceph_messenger_fini);
3070
3071static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3072{
3073        if (msg->con)
3074                msg->con->ops->put(msg->con);
3075
3076        msg->con = con ? con->ops->get(con) : NULL;
3077        BUG_ON(msg->con != con);
3078}
3079
3080static void clear_standby(struct ceph_connection *con)
3081{
3082        /* come back from STANDBY? */
3083        if (con->state == CON_STATE_STANDBY) {
3084                dout("clear_standby %p and ++connect_seq\n", con);
3085                con->state = CON_STATE_PREOPEN;
3086                con->connect_seq++;
3087                WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3088                WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3089        }
3090}
3091
3092/*
3093 * Queue up an outgoing message on the given connection.
3094 */
3095void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3096{
3097        /* set src+dst */
3098        msg->hdr.src = con->msgr->inst.name;
3099        BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3100        msg->needs_out_seq = true;
3101
3102        mutex_lock(&con->mutex);
3103
3104        if (con->state == CON_STATE_CLOSED) {
3105                dout("con_send %p closed, dropping %p\n", con, msg);
3106                ceph_msg_put(msg);
3107                mutex_unlock(&con->mutex);
3108                return;
3109        }
3110
3111        msg_con_set(msg, con);
3112
3113        BUG_ON(!list_empty(&msg->list_head));
3114        list_add_tail(&msg->list_head, &con->out_queue);
3115        dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3116             ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3117             ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3118             le32_to_cpu(msg->hdr.front_len),
3119             le32_to_cpu(msg->hdr.middle_len),
3120             le32_to_cpu(msg->hdr.data_len));
3121
3122        clear_standby(con);
3123        mutex_unlock(&con->mutex);
3124
3125        /* if there wasn't anything waiting to send before, queue
3126         * new work */
3127        if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3128                queue_con(con);
3129}
3130EXPORT_SYMBOL(ceph_con_send);
3131
3132/*
3133 * Revoke a message that was previously queued for send
3134 */
3135void ceph_msg_revoke(struct ceph_msg *msg)
3136{
3137        struct ceph_connection *con = msg->con;
3138
3139        if (!con) {
3140                dout("%s msg %p null con\n", __func__, msg);
3141                return;         /* Message not in our possession */
3142        }
3143
3144        mutex_lock(&con->mutex);
3145        if (!list_empty(&msg->list_head)) {
3146                dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3147                list_del_init(&msg->list_head);
3148                msg->hdr.seq = 0;
3149
3150                ceph_msg_put(msg);
3151        }
3152        if (con->out_msg == msg) {
3153                BUG_ON(con->out_skip);
3154                /* footer */
3155                if (con->out_msg_done) {
3156                        con->out_skip += con_out_kvec_skip(con);
3157                } else {
3158                        BUG_ON(!msg->data_length);
3159                        con->out_skip += sizeof_footer(con);
3160                }
3161                /* data, middle, front */
3162                if (msg->data_length)
3163                        con->out_skip += msg->cursor.total_resid;
3164                if (msg->middle)
3165                        con->out_skip += con_out_kvec_skip(con);
3166                con->out_skip += con_out_kvec_skip(con);
3167
3168                dout("%s %p msg %p - was sending, will write %d skip %d\n",
3169                     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3170                msg->hdr.seq = 0;
3171                con->out_msg = NULL;
3172                ceph_msg_put(msg);
3173        }
3174
3175        mutex_unlock(&con->mutex);
3176}
3177
3178/*
3179 * Revoke a message that we may be reading data into
3180 */
3181void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3182{
3183        struct ceph_connection *con = msg->con;
3184
3185        if (!con) {
3186                dout("%s msg %p null con\n", __func__, msg);
3187                return;         /* Message not in our possession */
3188        }
3189
3190        mutex_lock(&con->mutex);
3191        if (con->in_msg == msg) {
3192                unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3193                unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3194                unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3195
3196                /* skip rest of message */
3197                dout("%s %p msg %p revoked\n", __func__, con, msg);
3198                con->in_base_pos = con->in_base_pos -
3199                                sizeof(struct ceph_msg_header) -
3200                                front_len -
3201                                middle_len -
3202                                data_len -
3203                                sizeof(struct ceph_msg_footer);
3204                ceph_msg_put(con->in_msg);
3205                con->in_msg = NULL;
3206                con->in_tag = CEPH_MSGR_TAG_READY;
3207                con->in_seq++;
3208        } else {
3209                dout("%s %p in_msg %p msg %p no-op\n",
3210                     __func__, con, con->in_msg, msg);
3211        }
3212        mutex_unlock(&con->mutex);
3213}
3214
3215/*
3216 * Queue a keepalive byte to ensure the tcp connection is alive.
3217 */
3218void ceph_con_keepalive(struct ceph_connection *con)
3219{
3220        dout("con_keepalive %p\n", con);
3221        mutex_lock(&con->mutex);
3222        clear_standby(con);
3223        mutex_unlock(&con->mutex);
3224        if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3225            con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3226                queue_con(con);
3227}
3228EXPORT_SYMBOL(ceph_con_keepalive);
3229
3230bool ceph_con_keepalive_expired(struct ceph_connection *con,
3231                               unsigned long interval)
3232{
3233        if (interval > 0 &&
3234            (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3235                struct timespec now;
3236                struct timespec ts;
3237                ktime_get_real_ts(&now);
3238                jiffies_to_timespec(interval, &ts);
3239                ts = timespec_add(con->last_keepalive_ack, ts);
3240                return timespec_compare(&now, &ts) >= 0;
3241        }
3242        return false;
3243}
3244
3245static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3246{
3247        struct ceph_msg_data *data;
3248
3249        if (WARN_ON(!ceph_msg_data_type_valid(type)))
3250                return NULL;
3251
3252        data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3253        if (!data)
3254                return NULL;
3255
3256        data->type = type;
3257        INIT_LIST_HEAD(&data->links);
3258
3259        return data;
3260}
3261
3262static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3263{
3264        if (!data)
3265                return;
3266
3267        WARN_ON(!list_empty(&data->links));
3268        if (data->type == CEPH_MSG_DATA_PAGELIST)
3269                ceph_pagelist_release(data->pagelist);
3270        kmem_cache_free(ceph_msg_data_cache, data);
3271}
3272
3273void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3274                size_t length, size_t alignment)
3275{
3276        struct ceph_msg_data *data;
3277
3278        BUG_ON(!pages);
3279        BUG_ON(!length);
3280
3281        data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3282        BUG_ON(!data);
3283        data->pages = pages;
3284        data->length = length;
3285        data->alignment = alignment & ~PAGE_MASK;
3286
3287        list_add_tail(&data->links, &msg->data);
3288        msg->data_length += length;
3289}
3290EXPORT_SYMBOL(ceph_msg_data_add_pages);
3291
3292void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3293                                struct ceph_pagelist *pagelist)
3294{
3295        struct ceph_msg_data *data;
3296
3297        BUG_ON(!pagelist);
3298        BUG_ON(!pagelist->length);
3299
3300        data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3301        BUG_ON(!data);
3302        data->pagelist = pagelist;
3303
3304        list_add_tail(&data->links, &msg->data);
3305        msg->data_length += pagelist->length;
3306}
3307EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3308
3309#ifdef  CONFIG_BLOCK
3310void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3311                           u32 length)
3312{
3313        struct ceph_msg_data *data;
3314
3315        data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3316        BUG_ON(!data);
3317        data->bio_pos = *bio_pos;
3318        data->bio_length = length;
3319
3320        list_add_tail(&data->links, &msg->data);
3321        msg->data_length += length;
3322}
3323EXPORT_SYMBOL(ceph_msg_data_add_bio);
3324#endif  /* CONFIG_BLOCK */
3325
3326void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3327                             struct ceph_bvec_iter *bvec_pos)
3328{
3329        struct ceph_msg_data *data;
3330
3331        data = ceph_msg_data_create(CEPH_MSG_DATA_BVECS);
3332        BUG_ON(!data);
3333        data->bvec_pos = *bvec_pos;
3334
3335        list_add_tail(&data->links, &msg->data);
3336        msg->data_length += bvec_pos->iter.bi_size;
3337}
3338EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3339
3340/*
3341 * construct a new message with given type, size
3342 * the new msg has a ref count of 1.
3343 */
3344struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3345                              bool can_fail)
3346{
3347        struct ceph_msg *m;
3348
3349        m = kmem_cache_zalloc(ceph_msg_cache, flags);
3350        if (m == NULL)
3351                goto out;
3352
3353        m->hdr.type = cpu_to_le16(type);
3354        m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3355        m->hdr.front_len = cpu_to_le32(front_len);
3356
3357        INIT_LIST_HEAD(&m->list_head);
3358        kref_init(&m->kref);
3359        INIT_LIST_HEAD(&m->data);
3360
3361        /* front */
3362        if (front_len) {
3363                m->front.iov_base = ceph_kvmalloc(front_len, flags);
3364                if (m->front.iov_base == NULL) {
3365                        dout("ceph_msg_new can't allocate %d bytes\n",
3366                             front_len);
3367                        goto out2;
3368                }
3369        } else {
3370                m->front.iov_base = NULL;
3371        }
3372        m->front_alloc_len = m->front.iov_len = front_len;
3373
3374        dout("ceph_msg_new %p front %d\n", m, front_len);
3375        return m;
3376
3377out2:
3378        ceph_msg_put(m);
3379out:
3380        if (!can_fail) {
3381                pr_err("msg_new can't create type %d front %d\n", type,
3382                       front_len);
3383                WARN_ON(1);
3384        } else {
3385                dout("msg_new can't create type %d front %d\n", type,
3386                     front_len);
3387        }
3388        return NULL;
3389}
3390EXPORT_SYMBOL(ceph_msg_new);
3391
3392/*
3393 * Allocate "middle" portion of a message, if it is needed and wasn't
3394 * allocated by alloc_msg.  This allows us to read a small fixed-size
3395 * per-type header in the front and then gracefully fail (i.e.,
3396 * propagate the error to the caller based on info in the front) when
3397 * the middle is too large.
3398 */
3399static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3400{
3401        int type = le16_to_cpu(msg->hdr.type);
3402        int middle_len = le32_to_cpu(msg->hdr.middle_len);
3403
3404        dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3405             ceph_msg_type_name(type), middle_len);
3406        BUG_ON(!middle_len);
3407        BUG_ON(msg->middle);
3408
3409        msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3410        if (!msg->middle)
3411                return -ENOMEM;
3412        return 0;
3413}
3414
3415/*
3416 * Allocate a message for receiving an incoming message on a
3417 * connection, and save the result in con->in_msg.  Uses the
3418 * connection's private alloc_msg op if available.
3419 *
3420 * Returns 0 on success, or a negative error code.
3421 *
3422 * On success, if we set *skip = 1:
3423 *  - the next message should be skipped and ignored.
3424 *  - con->in_msg == NULL
3425 * or if we set *skip = 0:
3426 *  - con->in_msg is non-null.
3427 * On error (ENOMEM, EAGAIN, ...),
3428 *  - con->in_msg == NULL
3429 */
3430static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3431{
3432        struct ceph_msg_header *hdr = &con->in_hdr;
3433        int middle_len = le32_to_cpu(hdr->middle_len);
3434        struct ceph_msg *msg;
3435        int ret = 0;
3436
3437        BUG_ON(con->in_msg != NULL);
3438        BUG_ON(!con->ops->alloc_msg);
3439
3440        mutex_unlock(&con->mutex);
3441        msg = con->ops->alloc_msg(con, hdr, skip);
3442        mutex_lock(&con->mutex);
3443        if (con->state != CON_STATE_OPEN) {
3444                if (msg)
3445                        ceph_msg_put(msg);
3446                return -EAGAIN;
3447        }
3448        if (msg) {
3449                BUG_ON(*skip);
3450                msg_con_set(msg, con);
3451                con->in_msg = msg;
3452        } else {
3453                /*
3454                 * Null message pointer means either we should skip
3455                 * this message or we couldn't allocate memory.  The
3456                 * former is not an error.
3457                 */
3458                if (*skip)
3459                        return 0;
3460
3461                con->error_msg = "error allocating memory for incoming message";
3462                return -ENOMEM;
3463        }
3464        memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3465
3466        if (middle_len && !con->in_msg->middle) {
3467                ret = ceph_alloc_middle(con, con->in_msg);
3468                if (ret < 0) {
3469                        ceph_msg_put(con->in_msg);
3470                        con->in_msg = NULL;
3471                }
3472        }
3473
3474        return ret;
3475}
3476
3477
3478/*
3479 * Free a generically kmalloc'd message.
3480 */
3481static void ceph_msg_free(struct ceph_msg *m)
3482{
3483        dout("%s %p\n", __func__, m);
3484        kvfree(m->front.iov_base);
3485        kmem_cache_free(ceph_msg_cache, m);
3486}
3487
3488static void ceph_msg_release(struct kref *kref)
3489{
3490        struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3491        struct ceph_msg_data *data, *next;
3492
3493        dout("%s %p\n", __func__, m);
3494        WARN_ON(!list_empty(&m->list_head));
3495
3496        msg_con_set(m, NULL);
3497
3498        /* drop middle, data, if any */
3499        if (m->middle) {
3500                ceph_buffer_put(m->middle);
3501                m->middle = NULL;
3502        }
3503
3504        list_for_each_entry_safe(data, next, &m->data, links) {
3505                list_del_init(&data->links);
3506                ceph_msg_data_destroy(data);
3507        }
3508        m->data_length = 0;
3509
3510        if (m->pool)
3511                ceph_msgpool_put(m->pool, m);
3512        else
3513                ceph_msg_free(m);
3514}
3515
3516struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3517{
3518        dout("%s %p (was %d)\n", __func__, msg,
3519             kref_read(&msg->kref));
3520        kref_get(&msg->kref);
3521        return msg;
3522}
3523EXPORT_SYMBOL(ceph_msg_get);
3524
3525void ceph_msg_put(struct ceph_msg *msg)
3526{
3527        dout("%s %p (was %d)\n", __func__, msg,
3528             kref_read(&msg->kref));
3529        kref_put(&msg->kref, ceph_msg_release);
3530}
3531EXPORT_SYMBOL(ceph_msg_put);
3532
3533void ceph_msg_dump(struct ceph_msg *msg)
3534{
3535        pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3536                 msg->front_alloc_len, msg->data_length);
3537        print_hex_dump(KERN_DEBUG, "header: ",
3538                       DUMP_PREFIX_OFFSET, 16, 1,
3539                       &msg->hdr, sizeof(msg->hdr), true);
3540        print_hex_dump(KERN_DEBUG, " front: ",
3541                       DUMP_PREFIX_OFFSET, 16, 1,
3542                       msg->front.iov_base, msg->front.iov_len, true);
3543        if (msg->middle)
3544                print_hex_dump(KERN_DEBUG, "middle: ",
3545                               DUMP_PREFIX_OFFSET, 16, 1,
3546                               msg->middle->vec.iov_base,
3547                               msg->middle->vec.iov_len, true);
3548        print_hex_dump(KERN_DEBUG, "footer: ",
3549                       DUMP_PREFIX_OFFSET, 16, 1,
3550                       &msg->footer, sizeof(msg->footer), true);
3551}
3552EXPORT_SYMBOL(ceph_msg_dump);
3553