linux/net/core/dev.c
<<
>>
Prefs
   1/*
   2 *      NET3    Protocol independent device support routines.
   3 *
   4 *              This program is free software; you can redistribute it and/or
   5 *              modify it under the terms of the GNU General Public License
   6 *              as published by the Free Software Foundation; either version
   7 *              2 of the License, or (at your option) any later version.
   8 *
   9 *      Derived from the non IP parts of dev.c 1.0.19
  10 *              Authors:        Ross Biro
  11 *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
  13 *
  14 *      Additional Authors:
  15 *              Florian la Roche <rzsfl@rz.uni-sb.de>
  16 *              Alan Cox <gw4pts@gw4pts.ampr.org>
  17 *              David Hinds <dahinds@users.sourceforge.net>
  18 *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  19 *              Adam Sulmicki <adam@cfar.umd.edu>
  20 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
  21 *
  22 *      Changes:
  23 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
  24 *                                      to 2 if register_netdev gets called
  25 *                                      before net_dev_init & also removed a
  26 *                                      few lines of code in the process.
  27 *              Alan Cox        :       device private ioctl copies fields back.
  28 *              Alan Cox        :       Transmit queue code does relevant
  29 *                                      stunts to keep the queue safe.
  30 *              Alan Cox        :       Fixed double lock.
  31 *              Alan Cox        :       Fixed promisc NULL pointer trap
  32 *              ????????        :       Support the full private ioctl range
  33 *              Alan Cox        :       Moved ioctl permission check into
  34 *                                      drivers
  35 *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
  36 *              Alan Cox        :       100 backlog just doesn't cut it when
  37 *                                      you start doing multicast video 8)
  38 *              Alan Cox        :       Rewrote net_bh and list manager.
  39 *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
  40 *              Alan Cox        :       Took out transmit every packet pass
  41 *                                      Saved a few bytes in the ioctl handler
  42 *              Alan Cox        :       Network driver sets packet type before
  43 *                                      calling netif_rx. Saves a function
  44 *                                      call a packet.
  45 *              Alan Cox        :       Hashed net_bh()
  46 *              Richard Kooijman:       Timestamp fixes.
  47 *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
  48 *              Alan Cox        :       Device lock protection.
  49 *              Alan Cox        :       Fixed nasty side effect of device close
  50 *                                      changes.
  51 *              Rudi Cilibrasi  :       Pass the right thing to
  52 *                                      set_mac_address()
  53 *              Dave Miller     :       32bit quantity for the device lock to
  54 *                                      make it work out on a Sparc.
  55 *              Bjorn Ekwall    :       Added KERNELD hack.
  56 *              Alan Cox        :       Cleaned up the backlog initialise.
  57 *              Craig Metz      :       SIOCGIFCONF fix if space for under
  58 *                                      1 device.
  59 *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
  60 *                                      is no device open function.
  61 *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
  62 *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
  63 *              Cyrus Durgin    :       Cleaned for KMOD
  64 *              Adam Sulmicki   :       Bug Fix : Network Device Unload
  65 *                                      A network device unload needs to purge
  66 *                                      the backlog queue.
  67 *      Paul Rusty Russell      :       SIOCSIFNAME
  68 *              Pekka Riikonen  :       Netdev boot-time settings code
  69 *              Andrew Morton   :       Make unregister_netdevice wait
  70 *                                      indefinitely on dev->refcnt
  71 *              J Hadi Salim    :       - Backlog queue sampling
  72 *                                      - netif_rx() feedback
  73 */
  74
  75#include <linux/uaccess.h>
  76#include <linux/bitops.h>
  77#include <linux/capability.h>
  78#include <linux/cpu.h>
  79#include <linux/types.h>
  80#include <linux/kernel.h>
  81#include <linux/hash.h>
  82#include <linux/slab.h>
  83#include <linux/sched.h>
  84#include <linux/sched/mm.h>
  85#include <linux/mutex.h>
  86#include <linux/string.h>
  87#include <linux/mm.h>
  88#include <linux/socket.h>
  89#include <linux/sockios.h>
  90#include <linux/errno.h>
  91#include <linux/interrupt.h>
  92#include <linux/if_ether.h>
  93#include <linux/netdevice.h>
  94#include <linux/etherdevice.h>
  95#include <linux/ethtool.h>
  96#include <linux/notifier.h>
  97#include <linux/skbuff.h>
  98#include <linux/bpf.h>
  99#include <linux/bpf_trace.h>
 100#include <net/net_namespace.h>
 101#include <net/sock.h>
 102#include <net/busy_poll.h>
 103#include <linux/rtnetlink.h>
 104#include <linux/stat.h>
 105#include <net/dst.h>
 106#include <net/dst_metadata.h>
 107#include <net/pkt_sched.h>
 108#include <net/pkt_cls.h>
 109#include <net/checksum.h>
 110#include <net/xfrm.h>
 111#include <linux/highmem.h>
 112#include <linux/init.h>
 113#include <linux/module.h>
 114#include <linux/netpoll.h>
 115#include <linux/rcupdate.h>
 116#include <linux/delay.h>
 117#include <net/iw_handler.h>
 118#include <asm/current.h>
 119#include <linux/audit.h>
 120#include <linux/dmaengine.h>
 121#include <linux/err.h>
 122#include <linux/ctype.h>
 123#include <linux/if_arp.h>
 124#include <linux/if_vlan.h>
 125#include <linux/ip.h>
 126#include <net/ip.h>
 127#include <net/mpls.h>
 128#include <linux/ipv6.h>
 129#include <linux/in.h>
 130#include <linux/jhash.h>
 131#include <linux/random.h>
 132#include <trace/events/napi.h>
 133#include <trace/events/net.h>
 134#include <trace/events/skb.h>
 135#include <linux/pci.h>
 136#include <linux/inetdevice.h>
 137#include <linux/cpu_rmap.h>
 138#include <linux/static_key.h>
 139#include <linux/hashtable.h>
 140#include <linux/vmalloc.h>
 141#include <linux/if_macvlan.h>
 142#include <linux/errqueue.h>
 143#include <linux/hrtimer.h>
 144#include <linux/netfilter_ingress.h>
 145#include <linux/crash_dump.h>
 146#include <linux/sctp.h>
 147#include <net/udp_tunnel.h>
 148#include <linux/net_namespace.h>
 149
 150#include "net-sysfs.h"
 151
 152/* Instead of increasing this, you should create a hash table. */
 153#define MAX_GRO_SKBS 8
 154
 155/* This should be increased if a protocol with a bigger head is added. */
 156#define GRO_MAX_HEAD (MAX_HEADER + 128)
 157
 158static DEFINE_SPINLOCK(ptype_lock);
 159static DEFINE_SPINLOCK(offload_lock);
 160struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
 161struct list_head ptype_all __read_mostly;       /* Taps */
 162static struct list_head offload_base __read_mostly;
 163
 164static int netif_rx_internal(struct sk_buff *skb);
 165static int call_netdevice_notifiers_info(unsigned long val,
 166                                         struct netdev_notifier_info *info);
 167static struct napi_struct *napi_by_id(unsigned int napi_id);
 168
 169/*
 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
 171 * semaphore.
 172 *
 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
 174 *
 175 * Writers must hold the rtnl semaphore while they loop through the
 176 * dev_base_head list, and hold dev_base_lock for writing when they do the
 177 * actual updates.  This allows pure readers to access the list even
 178 * while a writer is preparing to update it.
 179 *
 180 * To put it another way, dev_base_lock is held for writing only to
 181 * protect against pure readers; the rtnl semaphore provides the
 182 * protection against other writers.
 183 *
 184 * See, for example usages, register_netdevice() and
 185 * unregister_netdevice(), which must be called with the rtnl
 186 * semaphore held.
 187 */
 188DEFINE_RWLOCK(dev_base_lock);
 189EXPORT_SYMBOL(dev_base_lock);
 190
 191static DEFINE_MUTEX(ifalias_mutex);
 192
 193/* protects napi_hash addition/deletion and napi_gen_id */
 194static DEFINE_SPINLOCK(napi_hash_lock);
 195
 196static unsigned int napi_gen_id = NR_CPUS;
 197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
 198
 199static seqcount_t devnet_rename_seq;
 200
 201static inline void dev_base_seq_inc(struct net *net)
 202{
 203        while (++net->dev_base_seq == 0)
 204                ;
 205}
 206
 207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
 208{
 209        unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
 210
 211        return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
 212}
 213
 214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
 215{
 216        return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
 217}
 218
 219static inline void rps_lock(struct softnet_data *sd)
 220{
 221#ifdef CONFIG_RPS
 222        spin_lock(&sd->input_pkt_queue.lock);
 223#endif
 224}
 225
 226static inline void rps_unlock(struct softnet_data *sd)
 227{
 228#ifdef CONFIG_RPS
 229        spin_unlock(&sd->input_pkt_queue.lock);
 230#endif
 231}
 232
 233/* Device list insertion */
 234static void list_netdevice(struct net_device *dev)
 235{
 236        struct net *net = dev_net(dev);
 237
 238        ASSERT_RTNL();
 239
 240        write_lock_bh(&dev_base_lock);
 241        list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
 242        hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
 243        hlist_add_head_rcu(&dev->index_hlist,
 244                           dev_index_hash(net, dev->ifindex));
 245        write_unlock_bh(&dev_base_lock);
 246
 247        dev_base_seq_inc(net);
 248}
 249
 250/* Device list removal
 251 * caller must respect a RCU grace period before freeing/reusing dev
 252 */
 253static void unlist_netdevice(struct net_device *dev)
 254{
 255        ASSERT_RTNL();
 256
 257        /* Unlink dev from the device chain */
 258        write_lock_bh(&dev_base_lock);
 259        list_del_rcu(&dev->dev_list);
 260        hlist_del_rcu(&dev->name_hlist);
 261        hlist_del_rcu(&dev->index_hlist);
 262        write_unlock_bh(&dev_base_lock);
 263
 264        dev_base_seq_inc(dev_net(dev));
 265}
 266
 267/*
 268 *      Our notifier list
 269 */
 270
 271static RAW_NOTIFIER_HEAD(netdev_chain);
 272
 273/*
 274 *      Device drivers call our routines to queue packets here. We empty the
 275 *      queue in the local softnet handler.
 276 */
 277
 278DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
 279EXPORT_PER_CPU_SYMBOL(softnet_data);
 280
 281#ifdef CONFIG_LOCKDEP
 282/*
 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
 284 * according to dev->type
 285 */
 286static const unsigned short netdev_lock_type[] = {
 287         ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
 288         ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
 289         ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
 290         ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
 291         ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
 292         ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
 293         ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
 294         ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
 295         ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
 296         ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
 297         ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
 298         ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
 299         ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
 300         ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
 301         ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
 302
 303static const char *const netdev_lock_name[] = {
 304        "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
 305        "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
 306        "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
 307        "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
 308        "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
 309        "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
 310        "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
 311        "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
 312        "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
 313        "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
 314        "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
 315        "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
 316        "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
 317        "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
 318        "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
 319
 320static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
 321static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
 322
 323static inline unsigned short netdev_lock_pos(unsigned short dev_type)
 324{
 325        int i;
 326
 327        for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
 328                if (netdev_lock_type[i] == dev_type)
 329                        return i;
 330        /* the last key is used by default */
 331        return ARRAY_SIZE(netdev_lock_type) - 1;
 332}
 333
 334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 335                                                 unsigned short dev_type)
 336{
 337        int i;
 338
 339        i = netdev_lock_pos(dev_type);
 340        lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
 341                                   netdev_lock_name[i]);
 342}
 343
 344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 345{
 346        int i;
 347
 348        i = netdev_lock_pos(dev->type);
 349        lockdep_set_class_and_name(&dev->addr_list_lock,
 350                                   &netdev_addr_lock_key[i],
 351                                   netdev_lock_name[i]);
 352}
 353#else
 354static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 355                                                 unsigned short dev_type)
 356{
 357}
 358static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 359{
 360}
 361#endif
 362
 363/*******************************************************************************
 364 *
 365 *              Protocol management and registration routines
 366 *
 367 *******************************************************************************/
 368
 369
 370/*
 371 *      Add a protocol ID to the list. Now that the input handler is
 372 *      smarter we can dispense with all the messy stuff that used to be
 373 *      here.
 374 *
 375 *      BEWARE!!! Protocol handlers, mangling input packets,
 376 *      MUST BE last in hash buckets and checking protocol handlers
 377 *      MUST start from promiscuous ptype_all chain in net_bh.
 378 *      It is true now, do not change it.
 379 *      Explanation follows: if protocol handler, mangling packet, will
 380 *      be the first on list, it is not able to sense, that packet
 381 *      is cloned and should be copied-on-write, so that it will
 382 *      change it and subsequent readers will get broken packet.
 383 *                                                      --ANK (980803)
 384 */
 385
 386static inline struct list_head *ptype_head(const struct packet_type *pt)
 387{
 388        if (pt->type == htons(ETH_P_ALL))
 389                return pt->dev ? &pt->dev->ptype_all : &ptype_all;
 390        else
 391                return pt->dev ? &pt->dev->ptype_specific :
 392                                 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
 393}
 394
 395/**
 396 *      dev_add_pack - add packet handler
 397 *      @pt: packet type declaration
 398 *
 399 *      Add a protocol handler to the networking stack. The passed &packet_type
 400 *      is linked into kernel lists and may not be freed until it has been
 401 *      removed from the kernel lists.
 402 *
 403 *      This call does not sleep therefore it can not
 404 *      guarantee all CPU's that are in middle of receiving packets
 405 *      will see the new packet type (until the next received packet).
 406 */
 407
 408void dev_add_pack(struct packet_type *pt)
 409{
 410        struct list_head *head = ptype_head(pt);
 411
 412        spin_lock(&ptype_lock);
 413        list_add_rcu(&pt->list, head);
 414        spin_unlock(&ptype_lock);
 415}
 416EXPORT_SYMBOL(dev_add_pack);
 417
 418/**
 419 *      __dev_remove_pack        - remove packet handler
 420 *      @pt: packet type declaration
 421 *
 422 *      Remove a protocol handler that was previously added to the kernel
 423 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 424 *      from the kernel lists and can be freed or reused once this function
 425 *      returns.
 426 *
 427 *      The packet type might still be in use by receivers
 428 *      and must not be freed until after all the CPU's have gone
 429 *      through a quiescent state.
 430 */
 431void __dev_remove_pack(struct packet_type *pt)
 432{
 433        struct list_head *head = ptype_head(pt);
 434        struct packet_type *pt1;
 435
 436        spin_lock(&ptype_lock);
 437
 438        list_for_each_entry(pt1, head, list) {
 439                if (pt == pt1) {
 440                        list_del_rcu(&pt->list);
 441                        goto out;
 442                }
 443        }
 444
 445        pr_warn("dev_remove_pack: %p not found\n", pt);
 446out:
 447        spin_unlock(&ptype_lock);
 448}
 449EXPORT_SYMBOL(__dev_remove_pack);
 450
 451/**
 452 *      dev_remove_pack  - remove packet handler
 453 *      @pt: packet type declaration
 454 *
 455 *      Remove a protocol handler that was previously added to the kernel
 456 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 457 *      from the kernel lists and can be freed or reused once this function
 458 *      returns.
 459 *
 460 *      This call sleeps to guarantee that no CPU is looking at the packet
 461 *      type after return.
 462 */
 463void dev_remove_pack(struct packet_type *pt)
 464{
 465        __dev_remove_pack(pt);
 466
 467        synchronize_net();
 468}
 469EXPORT_SYMBOL(dev_remove_pack);
 470
 471
 472/**
 473 *      dev_add_offload - register offload handlers
 474 *      @po: protocol offload declaration
 475 *
 476 *      Add protocol offload handlers to the networking stack. The passed
 477 *      &proto_offload is linked into kernel lists and may not be freed until
 478 *      it has been removed from the kernel lists.
 479 *
 480 *      This call does not sleep therefore it can not
 481 *      guarantee all CPU's that are in middle of receiving packets
 482 *      will see the new offload handlers (until the next received packet).
 483 */
 484void dev_add_offload(struct packet_offload *po)
 485{
 486        struct packet_offload *elem;
 487
 488        spin_lock(&offload_lock);
 489        list_for_each_entry(elem, &offload_base, list) {
 490                if (po->priority < elem->priority)
 491                        break;
 492        }
 493        list_add_rcu(&po->list, elem->list.prev);
 494        spin_unlock(&offload_lock);
 495}
 496EXPORT_SYMBOL(dev_add_offload);
 497
 498/**
 499 *      __dev_remove_offload     - remove offload handler
 500 *      @po: packet offload declaration
 501 *
 502 *      Remove a protocol offload handler that was previously added to the
 503 *      kernel offload handlers by dev_add_offload(). The passed &offload_type
 504 *      is removed from the kernel lists and can be freed or reused once this
 505 *      function returns.
 506 *
 507 *      The packet type might still be in use by receivers
 508 *      and must not be freed until after all the CPU's have gone
 509 *      through a quiescent state.
 510 */
 511static void __dev_remove_offload(struct packet_offload *po)
 512{
 513        struct list_head *head = &offload_base;
 514        struct packet_offload *po1;
 515
 516        spin_lock(&offload_lock);
 517
 518        list_for_each_entry(po1, head, list) {
 519                if (po == po1) {
 520                        list_del_rcu(&po->list);
 521                        goto out;
 522                }
 523        }
 524
 525        pr_warn("dev_remove_offload: %p not found\n", po);
 526out:
 527        spin_unlock(&offload_lock);
 528}
 529
 530/**
 531 *      dev_remove_offload       - remove packet offload handler
 532 *      @po: packet offload declaration
 533 *
 534 *      Remove a packet offload handler that was previously added to the kernel
 535 *      offload handlers by dev_add_offload(). The passed &offload_type is
 536 *      removed from the kernel lists and can be freed or reused once this
 537 *      function returns.
 538 *
 539 *      This call sleeps to guarantee that no CPU is looking at the packet
 540 *      type after return.
 541 */
 542void dev_remove_offload(struct packet_offload *po)
 543{
 544        __dev_remove_offload(po);
 545
 546        synchronize_net();
 547}
 548EXPORT_SYMBOL(dev_remove_offload);
 549
 550/******************************************************************************
 551 *
 552 *                    Device Boot-time Settings Routines
 553 *
 554 ******************************************************************************/
 555
 556/* Boot time configuration table */
 557static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
 558
 559/**
 560 *      netdev_boot_setup_add   - add new setup entry
 561 *      @name: name of the device
 562 *      @map: configured settings for the device
 563 *
 564 *      Adds new setup entry to the dev_boot_setup list.  The function
 565 *      returns 0 on error and 1 on success.  This is a generic routine to
 566 *      all netdevices.
 567 */
 568static int netdev_boot_setup_add(char *name, struct ifmap *map)
 569{
 570        struct netdev_boot_setup *s;
 571        int i;
 572
 573        s = dev_boot_setup;
 574        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 575                if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
 576                        memset(s[i].name, 0, sizeof(s[i].name));
 577                        strlcpy(s[i].name, name, IFNAMSIZ);
 578                        memcpy(&s[i].map, map, sizeof(s[i].map));
 579                        break;
 580                }
 581        }
 582
 583        return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
 584}
 585
 586/**
 587 * netdev_boot_setup_check      - check boot time settings
 588 * @dev: the netdevice
 589 *
 590 * Check boot time settings for the device.
 591 * The found settings are set for the device to be used
 592 * later in the device probing.
 593 * Returns 0 if no settings found, 1 if they are.
 594 */
 595int netdev_boot_setup_check(struct net_device *dev)
 596{
 597        struct netdev_boot_setup *s = dev_boot_setup;
 598        int i;
 599
 600        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 601                if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
 602                    !strcmp(dev->name, s[i].name)) {
 603                        dev->irq = s[i].map.irq;
 604                        dev->base_addr = s[i].map.base_addr;
 605                        dev->mem_start = s[i].map.mem_start;
 606                        dev->mem_end = s[i].map.mem_end;
 607                        return 1;
 608                }
 609        }
 610        return 0;
 611}
 612EXPORT_SYMBOL(netdev_boot_setup_check);
 613
 614
 615/**
 616 * netdev_boot_base     - get address from boot time settings
 617 * @prefix: prefix for network device
 618 * @unit: id for network device
 619 *
 620 * Check boot time settings for the base address of device.
 621 * The found settings are set for the device to be used
 622 * later in the device probing.
 623 * Returns 0 if no settings found.
 624 */
 625unsigned long netdev_boot_base(const char *prefix, int unit)
 626{
 627        const struct netdev_boot_setup *s = dev_boot_setup;
 628        char name[IFNAMSIZ];
 629        int i;
 630
 631        sprintf(name, "%s%d", prefix, unit);
 632
 633        /*
 634         * If device already registered then return base of 1
 635         * to indicate not to probe for this interface
 636         */
 637        if (__dev_get_by_name(&init_net, name))
 638                return 1;
 639
 640        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
 641                if (!strcmp(name, s[i].name))
 642                        return s[i].map.base_addr;
 643        return 0;
 644}
 645
 646/*
 647 * Saves at boot time configured settings for any netdevice.
 648 */
 649int __init netdev_boot_setup(char *str)
 650{
 651        int ints[5];
 652        struct ifmap map;
 653
 654        str = get_options(str, ARRAY_SIZE(ints), ints);
 655        if (!str || !*str)
 656                return 0;
 657
 658        /* Save settings */
 659        memset(&map, 0, sizeof(map));
 660        if (ints[0] > 0)
 661                map.irq = ints[1];
 662        if (ints[0] > 1)
 663                map.base_addr = ints[2];
 664        if (ints[0] > 2)
 665                map.mem_start = ints[3];
 666        if (ints[0] > 3)
 667                map.mem_end = ints[4];
 668
 669        /* Add new entry to the list */
 670        return netdev_boot_setup_add(str, &map);
 671}
 672
 673__setup("netdev=", netdev_boot_setup);
 674
 675/*******************************************************************************
 676 *
 677 *                          Device Interface Subroutines
 678 *
 679 *******************************************************************************/
 680
 681/**
 682 *      dev_get_iflink  - get 'iflink' value of a interface
 683 *      @dev: targeted interface
 684 *
 685 *      Indicates the ifindex the interface is linked to.
 686 *      Physical interfaces have the same 'ifindex' and 'iflink' values.
 687 */
 688
 689int dev_get_iflink(const struct net_device *dev)
 690{
 691        if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
 692                return dev->netdev_ops->ndo_get_iflink(dev);
 693
 694        return dev->ifindex;
 695}
 696EXPORT_SYMBOL(dev_get_iflink);
 697
 698/**
 699 *      dev_fill_metadata_dst - Retrieve tunnel egress information.
 700 *      @dev: targeted interface
 701 *      @skb: The packet.
 702 *
 703 *      For better visibility of tunnel traffic OVS needs to retrieve
 704 *      egress tunnel information for a packet. Following API allows
 705 *      user to get this info.
 706 */
 707int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
 708{
 709        struct ip_tunnel_info *info;
 710
 711        if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
 712                return -EINVAL;
 713
 714        info = skb_tunnel_info_unclone(skb);
 715        if (!info)
 716                return -ENOMEM;
 717        if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
 718                return -EINVAL;
 719
 720        return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
 721}
 722EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
 723
 724/**
 725 *      __dev_get_by_name       - find a device by its name
 726 *      @net: the applicable net namespace
 727 *      @name: name to find
 728 *
 729 *      Find an interface by name. Must be called under RTNL semaphore
 730 *      or @dev_base_lock. If the name is found a pointer to the device
 731 *      is returned. If the name is not found then %NULL is returned. The
 732 *      reference counters are not incremented so the caller must be
 733 *      careful with locks.
 734 */
 735
 736struct net_device *__dev_get_by_name(struct net *net, const char *name)
 737{
 738        struct net_device *dev;
 739        struct hlist_head *head = dev_name_hash(net, name);
 740
 741        hlist_for_each_entry(dev, head, name_hlist)
 742                if (!strncmp(dev->name, name, IFNAMSIZ))
 743                        return dev;
 744
 745        return NULL;
 746}
 747EXPORT_SYMBOL(__dev_get_by_name);
 748
 749/**
 750 * dev_get_by_name_rcu  - find a device by its name
 751 * @net: the applicable net namespace
 752 * @name: name to find
 753 *
 754 * Find an interface by name.
 755 * If the name is found a pointer to the device is returned.
 756 * If the name is not found then %NULL is returned.
 757 * The reference counters are not incremented so the caller must be
 758 * careful with locks. The caller must hold RCU lock.
 759 */
 760
 761struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
 762{
 763        struct net_device *dev;
 764        struct hlist_head *head = dev_name_hash(net, name);
 765
 766        hlist_for_each_entry_rcu(dev, head, name_hlist)
 767                if (!strncmp(dev->name, name, IFNAMSIZ))
 768                        return dev;
 769
 770        return NULL;
 771}
 772EXPORT_SYMBOL(dev_get_by_name_rcu);
 773
 774/**
 775 *      dev_get_by_name         - find a device by its name
 776 *      @net: the applicable net namespace
 777 *      @name: name to find
 778 *
 779 *      Find an interface by name. This can be called from any
 780 *      context and does its own locking. The returned handle has
 781 *      the usage count incremented and the caller must use dev_put() to
 782 *      release it when it is no longer needed. %NULL is returned if no
 783 *      matching device is found.
 784 */
 785
 786struct net_device *dev_get_by_name(struct net *net, const char *name)
 787{
 788        struct net_device *dev;
 789
 790        rcu_read_lock();
 791        dev = dev_get_by_name_rcu(net, name);
 792        if (dev)
 793                dev_hold(dev);
 794        rcu_read_unlock();
 795        return dev;
 796}
 797EXPORT_SYMBOL(dev_get_by_name);
 798
 799/**
 800 *      __dev_get_by_index - find a device by its ifindex
 801 *      @net: the applicable net namespace
 802 *      @ifindex: index of device
 803 *
 804 *      Search for an interface by index. Returns %NULL if the device
 805 *      is not found or a pointer to the device. The device has not
 806 *      had its reference counter increased so the caller must be careful
 807 *      about locking. The caller must hold either the RTNL semaphore
 808 *      or @dev_base_lock.
 809 */
 810
 811struct net_device *__dev_get_by_index(struct net *net, int ifindex)
 812{
 813        struct net_device *dev;
 814        struct hlist_head *head = dev_index_hash(net, ifindex);
 815
 816        hlist_for_each_entry(dev, head, index_hlist)
 817                if (dev->ifindex == ifindex)
 818                        return dev;
 819
 820        return NULL;
 821}
 822EXPORT_SYMBOL(__dev_get_by_index);
 823
 824/**
 825 *      dev_get_by_index_rcu - find a device by its ifindex
 826 *      @net: the applicable net namespace
 827 *      @ifindex: index of device
 828 *
 829 *      Search for an interface by index. Returns %NULL if the device
 830 *      is not found or a pointer to the device. The device has not
 831 *      had its reference counter increased so the caller must be careful
 832 *      about locking. The caller must hold RCU lock.
 833 */
 834
 835struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
 836{
 837        struct net_device *dev;
 838        struct hlist_head *head = dev_index_hash(net, ifindex);
 839
 840        hlist_for_each_entry_rcu(dev, head, index_hlist)
 841                if (dev->ifindex == ifindex)
 842                        return dev;
 843
 844        return NULL;
 845}
 846EXPORT_SYMBOL(dev_get_by_index_rcu);
 847
 848
 849/**
 850 *      dev_get_by_index - find a device by its ifindex
 851 *      @net: the applicable net namespace
 852 *      @ifindex: index of device
 853 *
 854 *      Search for an interface by index. Returns NULL if the device
 855 *      is not found or a pointer to the device. The device returned has
 856 *      had a reference added and the pointer is safe until the user calls
 857 *      dev_put to indicate they have finished with it.
 858 */
 859
 860struct net_device *dev_get_by_index(struct net *net, int ifindex)
 861{
 862        struct net_device *dev;
 863
 864        rcu_read_lock();
 865        dev = dev_get_by_index_rcu(net, ifindex);
 866        if (dev)
 867                dev_hold(dev);
 868        rcu_read_unlock();
 869        return dev;
 870}
 871EXPORT_SYMBOL(dev_get_by_index);
 872
 873/**
 874 *      dev_get_by_napi_id - find a device by napi_id
 875 *      @napi_id: ID of the NAPI struct
 876 *
 877 *      Search for an interface by NAPI ID. Returns %NULL if the device
 878 *      is not found or a pointer to the device. The device has not had
 879 *      its reference counter increased so the caller must be careful
 880 *      about locking. The caller must hold RCU lock.
 881 */
 882
 883struct net_device *dev_get_by_napi_id(unsigned int napi_id)
 884{
 885        struct napi_struct *napi;
 886
 887        WARN_ON_ONCE(!rcu_read_lock_held());
 888
 889        if (napi_id < MIN_NAPI_ID)
 890                return NULL;
 891
 892        napi = napi_by_id(napi_id);
 893
 894        return napi ? napi->dev : NULL;
 895}
 896EXPORT_SYMBOL(dev_get_by_napi_id);
 897
 898/**
 899 *      netdev_get_name - get a netdevice name, knowing its ifindex.
 900 *      @net: network namespace
 901 *      @name: a pointer to the buffer where the name will be stored.
 902 *      @ifindex: the ifindex of the interface to get the name from.
 903 *
 904 *      The use of raw_seqcount_begin() and cond_resched() before
 905 *      retrying is required as we want to give the writers a chance
 906 *      to complete when CONFIG_PREEMPT is not set.
 907 */
 908int netdev_get_name(struct net *net, char *name, int ifindex)
 909{
 910        struct net_device *dev;
 911        unsigned int seq;
 912
 913retry:
 914        seq = raw_seqcount_begin(&devnet_rename_seq);
 915        rcu_read_lock();
 916        dev = dev_get_by_index_rcu(net, ifindex);
 917        if (!dev) {
 918                rcu_read_unlock();
 919                return -ENODEV;
 920        }
 921
 922        strcpy(name, dev->name);
 923        rcu_read_unlock();
 924        if (read_seqcount_retry(&devnet_rename_seq, seq)) {
 925                cond_resched();
 926                goto retry;
 927        }
 928
 929        return 0;
 930}
 931
 932/**
 933 *      dev_getbyhwaddr_rcu - find a device by its hardware address
 934 *      @net: the applicable net namespace
 935 *      @type: media type of device
 936 *      @ha: hardware address
 937 *
 938 *      Search for an interface by MAC address. Returns NULL if the device
 939 *      is not found or a pointer to the device.
 940 *      The caller must hold RCU or RTNL.
 941 *      The returned device has not had its ref count increased
 942 *      and the caller must therefore be careful about locking
 943 *
 944 */
 945
 946struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
 947                                       const char *ha)
 948{
 949        struct net_device *dev;
 950
 951        for_each_netdev_rcu(net, dev)
 952                if (dev->type == type &&
 953                    !memcmp(dev->dev_addr, ha, dev->addr_len))
 954                        return dev;
 955
 956        return NULL;
 957}
 958EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
 959
 960struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
 961{
 962        struct net_device *dev;
 963
 964        ASSERT_RTNL();
 965        for_each_netdev(net, dev)
 966                if (dev->type == type)
 967                        return dev;
 968
 969        return NULL;
 970}
 971EXPORT_SYMBOL(__dev_getfirstbyhwtype);
 972
 973struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
 974{
 975        struct net_device *dev, *ret = NULL;
 976
 977        rcu_read_lock();
 978        for_each_netdev_rcu(net, dev)
 979                if (dev->type == type) {
 980                        dev_hold(dev);
 981                        ret = dev;
 982                        break;
 983                }
 984        rcu_read_unlock();
 985        return ret;
 986}
 987EXPORT_SYMBOL(dev_getfirstbyhwtype);
 988
 989/**
 990 *      __dev_get_by_flags - find any device with given flags
 991 *      @net: the applicable net namespace
 992 *      @if_flags: IFF_* values
 993 *      @mask: bitmask of bits in if_flags to check
 994 *
 995 *      Search for any interface with the given flags. Returns NULL if a device
 996 *      is not found or a pointer to the device. Must be called inside
 997 *      rtnl_lock(), and result refcount is unchanged.
 998 */
 999
1000struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001                                      unsigned short mask)
1002{
1003        struct net_device *dev, *ret;
1004
1005        ASSERT_RTNL();
1006
1007        ret = NULL;
1008        for_each_netdev(net, dev) {
1009                if (((dev->flags ^ if_flags) & mask) == 0) {
1010                        ret = dev;
1011                        break;
1012                }
1013        }
1014        return ret;
1015}
1016EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018/**
1019 *      dev_valid_name - check if name is okay for network device
1020 *      @name: name string
1021 *
1022 *      Network device names need to be valid file names to
1023 *      to allow sysfs to work.  We also disallow any kind of
1024 *      whitespace.
1025 */
1026bool dev_valid_name(const char *name)
1027{
1028        if (*name == '\0')
1029                return false;
1030        if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1031                return false;
1032        if (!strcmp(name, ".") || !strcmp(name, ".."))
1033                return false;
1034
1035        while (*name) {
1036                if (*name == '/' || *name == ':' || isspace(*name))
1037                        return false;
1038                name++;
1039        }
1040        return true;
1041}
1042EXPORT_SYMBOL(dev_valid_name);
1043
1044/**
1045 *      __dev_alloc_name - allocate a name for a device
1046 *      @net: network namespace to allocate the device name in
1047 *      @name: name format string
1048 *      @buf:  scratch buffer and result name string
1049 *
1050 *      Passed a format string - eg "lt%d" it will try and find a suitable
1051 *      id. It scans list of devices to build up a free map, then chooses
1052 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1053 *      while allocating the name and adding the device in order to avoid
1054 *      duplicates.
1055 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 *      Returns the number of the unit assigned or a negative errno code.
1057 */
1058
1059static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060{
1061        int i = 0;
1062        const char *p;
1063        const int max_netdevices = 8*PAGE_SIZE;
1064        unsigned long *inuse;
1065        struct net_device *d;
1066
1067        if (!dev_valid_name(name))
1068                return -EINVAL;
1069
1070        p = strchr(name, '%');
1071        if (p) {
1072                /*
1073                 * Verify the string as this thing may have come from
1074                 * the user.  There must be either one "%d" and no other "%"
1075                 * characters.
1076                 */
1077                if (p[1] != 'd' || strchr(p + 2, '%'))
1078                        return -EINVAL;
1079
1080                /* Use one page as a bit array of possible slots */
1081                inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082                if (!inuse)
1083                        return -ENOMEM;
1084
1085                for_each_netdev(net, d) {
1086                        if (!sscanf(d->name, name, &i))
1087                                continue;
1088                        if (i < 0 || i >= max_netdevices)
1089                                continue;
1090
1091                        /*  avoid cases where sscanf is not exact inverse of printf */
1092                        snprintf(buf, IFNAMSIZ, name, i);
1093                        if (!strncmp(buf, d->name, IFNAMSIZ))
1094                                set_bit(i, inuse);
1095                }
1096
1097                i = find_first_zero_bit(inuse, max_netdevices);
1098                free_page((unsigned long) inuse);
1099        }
1100
1101        snprintf(buf, IFNAMSIZ, name, i);
1102        if (!__dev_get_by_name(net, buf))
1103                return i;
1104
1105        /* It is possible to run out of possible slots
1106         * when the name is long and there isn't enough space left
1107         * for the digits, or if all bits are used.
1108         */
1109        return -ENFILE;
1110}
1111
1112static int dev_alloc_name_ns(struct net *net,
1113                             struct net_device *dev,
1114                             const char *name)
1115{
1116        char buf[IFNAMSIZ];
1117        int ret;
1118
1119        BUG_ON(!net);
1120        ret = __dev_alloc_name(net, name, buf);
1121        if (ret >= 0)
1122                strlcpy(dev->name, buf, IFNAMSIZ);
1123        return ret;
1124}
1125
1126/**
1127 *      dev_alloc_name - allocate a name for a device
1128 *      @dev: device
1129 *      @name: name format string
1130 *
1131 *      Passed a format string - eg "lt%d" it will try and find a suitable
1132 *      id. It scans list of devices to build up a free map, then chooses
1133 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1134 *      while allocating the name and adding the device in order to avoid
1135 *      duplicates.
1136 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 *      Returns the number of the unit assigned or a negative errno code.
1138 */
1139
1140int dev_alloc_name(struct net_device *dev, const char *name)
1141{
1142        return dev_alloc_name_ns(dev_net(dev), dev, name);
1143}
1144EXPORT_SYMBOL(dev_alloc_name);
1145
1146int dev_get_valid_name(struct net *net, struct net_device *dev,
1147                       const char *name)
1148{
1149        BUG_ON(!net);
1150
1151        if (!dev_valid_name(name))
1152                return -EINVAL;
1153
1154        if (strchr(name, '%'))
1155                return dev_alloc_name_ns(net, dev, name);
1156        else if (__dev_get_by_name(net, name))
1157                return -EEXIST;
1158        else if (dev->name != name)
1159                strlcpy(dev->name, name, IFNAMSIZ);
1160
1161        return 0;
1162}
1163EXPORT_SYMBOL(dev_get_valid_name);
1164
1165/**
1166 *      dev_change_name - change name of a device
1167 *      @dev: device
1168 *      @newname: name (or format string) must be at least IFNAMSIZ
1169 *
1170 *      Change name of a device, can pass format strings "eth%d".
1171 *      for wildcarding.
1172 */
1173int dev_change_name(struct net_device *dev, const char *newname)
1174{
1175        unsigned char old_assign_type;
1176        char oldname[IFNAMSIZ];
1177        int err = 0;
1178        int ret;
1179        struct net *net;
1180
1181        ASSERT_RTNL();
1182        BUG_ON(!dev_net(dev));
1183
1184        net = dev_net(dev);
1185        if (dev->flags & IFF_UP)
1186                return -EBUSY;
1187
1188        write_seqcount_begin(&devnet_rename_seq);
1189
1190        if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191                write_seqcount_end(&devnet_rename_seq);
1192                return 0;
1193        }
1194
1195        memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197        err = dev_get_valid_name(net, dev, newname);
1198        if (err < 0) {
1199                write_seqcount_end(&devnet_rename_seq);
1200                return err;
1201        }
1202
1203        if (oldname[0] && !strchr(oldname, '%'))
1204                netdev_info(dev, "renamed from %s\n", oldname);
1205
1206        old_assign_type = dev->name_assign_type;
1207        dev->name_assign_type = NET_NAME_RENAMED;
1208
1209rollback:
1210        ret = device_rename(&dev->dev, dev->name);
1211        if (ret) {
1212                memcpy(dev->name, oldname, IFNAMSIZ);
1213                dev->name_assign_type = old_assign_type;
1214                write_seqcount_end(&devnet_rename_seq);
1215                return ret;
1216        }
1217
1218        write_seqcount_end(&devnet_rename_seq);
1219
1220        netdev_adjacent_rename_links(dev, oldname);
1221
1222        write_lock_bh(&dev_base_lock);
1223        hlist_del_rcu(&dev->name_hlist);
1224        write_unlock_bh(&dev_base_lock);
1225
1226        synchronize_rcu();
1227
1228        write_lock_bh(&dev_base_lock);
1229        hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230        write_unlock_bh(&dev_base_lock);
1231
1232        ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233        ret = notifier_to_errno(ret);
1234
1235        if (ret) {
1236                /* err >= 0 after dev_alloc_name() or stores the first errno */
1237                if (err >= 0) {
1238                        err = ret;
1239                        write_seqcount_begin(&devnet_rename_seq);
1240                        memcpy(dev->name, oldname, IFNAMSIZ);
1241                        memcpy(oldname, newname, IFNAMSIZ);
1242                        dev->name_assign_type = old_assign_type;
1243                        old_assign_type = NET_NAME_RENAMED;
1244                        goto rollback;
1245                } else {
1246                        pr_err("%s: name change rollback failed: %d\n",
1247                               dev->name, ret);
1248                }
1249        }
1250
1251        return err;
1252}
1253
1254/**
1255 *      dev_set_alias - change ifalias of a device
1256 *      @dev: device
1257 *      @alias: name up to IFALIASZ
1258 *      @len: limit of bytes to copy from info
1259 *
1260 *      Set ifalias for a device,
1261 */
1262int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263{
1264        struct dev_ifalias *new_alias = NULL;
1265
1266        if (len >= IFALIASZ)
1267                return -EINVAL;
1268
1269        if (len) {
1270                new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271                if (!new_alias)
1272                        return -ENOMEM;
1273
1274                memcpy(new_alias->ifalias, alias, len);
1275                new_alias->ifalias[len] = 0;
1276        }
1277
1278        mutex_lock(&ifalias_mutex);
1279        rcu_swap_protected(dev->ifalias, new_alias,
1280                           mutex_is_locked(&ifalias_mutex));
1281        mutex_unlock(&ifalias_mutex);
1282
1283        if (new_alias)
1284                kfree_rcu(new_alias, rcuhead);
1285
1286        return len;
1287}
1288
1289/**
1290 *      dev_get_alias - get ifalias of a device
1291 *      @dev: device
1292 *      @name: buffer to store name of ifalias
1293 *      @len: size of buffer
1294 *
1295 *      get ifalias for a device.  Caller must make sure dev cannot go
1296 *      away,  e.g. rcu read lock or own a reference count to device.
1297 */
1298int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299{
1300        const struct dev_ifalias *alias;
1301        int ret = 0;
1302
1303        rcu_read_lock();
1304        alias = rcu_dereference(dev->ifalias);
1305        if (alias)
1306                ret = snprintf(name, len, "%s", alias->ifalias);
1307        rcu_read_unlock();
1308
1309        return ret;
1310}
1311
1312/**
1313 *      netdev_features_change - device changes features
1314 *      @dev: device to cause notification
1315 *
1316 *      Called to indicate a device has changed features.
1317 */
1318void netdev_features_change(struct net_device *dev)
1319{
1320        call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321}
1322EXPORT_SYMBOL(netdev_features_change);
1323
1324/**
1325 *      netdev_state_change - device changes state
1326 *      @dev: device to cause notification
1327 *
1328 *      Called to indicate a device has changed state. This function calls
1329 *      the notifier chains for netdev_chain and sends a NEWLINK message
1330 *      to the routing socket.
1331 */
1332void netdev_state_change(struct net_device *dev)
1333{
1334        if (dev->flags & IFF_UP) {
1335                struct netdev_notifier_change_info change_info = {
1336                        .info.dev = dev,
1337                };
1338
1339                call_netdevice_notifiers_info(NETDEV_CHANGE,
1340                                              &change_info.info);
1341                rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342        }
1343}
1344EXPORT_SYMBOL(netdev_state_change);
1345
1346/**
1347 * netdev_notify_peers - notify network peers about existence of @dev
1348 * @dev: network device
1349 *
1350 * Generate traffic such that interested network peers are aware of
1351 * @dev, such as by generating a gratuitous ARP. This may be used when
1352 * a device wants to inform the rest of the network about some sort of
1353 * reconfiguration such as a failover event or virtual machine
1354 * migration.
1355 */
1356void netdev_notify_peers(struct net_device *dev)
1357{
1358        rtnl_lock();
1359        call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360        call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361        rtnl_unlock();
1362}
1363EXPORT_SYMBOL(netdev_notify_peers);
1364
1365static int __dev_open(struct net_device *dev)
1366{
1367        const struct net_device_ops *ops = dev->netdev_ops;
1368        int ret;
1369
1370        ASSERT_RTNL();
1371
1372        if (!netif_device_present(dev))
1373                return -ENODEV;
1374
1375        /* Block netpoll from trying to do any rx path servicing.
1376         * If we don't do this there is a chance ndo_poll_controller
1377         * or ndo_poll may be running while we open the device
1378         */
1379        netpoll_poll_disable(dev);
1380
1381        ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382        ret = notifier_to_errno(ret);
1383        if (ret)
1384                return ret;
1385
1386        set_bit(__LINK_STATE_START, &dev->state);
1387
1388        if (ops->ndo_validate_addr)
1389                ret = ops->ndo_validate_addr(dev);
1390
1391        if (!ret && ops->ndo_open)
1392                ret = ops->ndo_open(dev);
1393
1394        netpoll_poll_enable(dev);
1395
1396        if (ret)
1397                clear_bit(__LINK_STATE_START, &dev->state);
1398        else {
1399                dev->flags |= IFF_UP;
1400                dev_set_rx_mode(dev);
1401                dev_activate(dev);
1402                add_device_randomness(dev->dev_addr, dev->addr_len);
1403        }
1404
1405        return ret;
1406}
1407
1408/**
1409 *      dev_open        - prepare an interface for use.
1410 *      @dev:   device to open
1411 *
1412 *      Takes a device from down to up state. The device's private open
1413 *      function is invoked and then the multicast lists are loaded. Finally
1414 *      the device is moved into the up state and a %NETDEV_UP message is
1415 *      sent to the netdev notifier chain.
1416 *
1417 *      Calling this function on an active interface is a nop. On a failure
1418 *      a negative errno code is returned.
1419 */
1420int dev_open(struct net_device *dev)
1421{
1422        int ret;
1423
1424        if (dev->flags & IFF_UP)
1425                return 0;
1426
1427        ret = __dev_open(dev);
1428        if (ret < 0)
1429                return ret;
1430
1431        rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432        call_netdevice_notifiers(NETDEV_UP, dev);
1433
1434        return ret;
1435}
1436EXPORT_SYMBOL(dev_open);
1437
1438static void __dev_close_many(struct list_head *head)
1439{
1440        struct net_device *dev;
1441
1442        ASSERT_RTNL();
1443        might_sleep();
1444
1445        list_for_each_entry(dev, head, close_list) {
1446                /* Temporarily disable netpoll until the interface is down */
1447                netpoll_poll_disable(dev);
1448
1449                call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450
1451                clear_bit(__LINK_STATE_START, &dev->state);
1452
1453                /* Synchronize to scheduled poll. We cannot touch poll list, it
1454                 * can be even on different cpu. So just clear netif_running().
1455                 *
1456                 * dev->stop() will invoke napi_disable() on all of it's
1457                 * napi_struct instances on this device.
1458                 */
1459                smp_mb__after_atomic(); /* Commit netif_running(). */
1460        }
1461
1462        dev_deactivate_many(head);
1463
1464        list_for_each_entry(dev, head, close_list) {
1465                const struct net_device_ops *ops = dev->netdev_ops;
1466
1467                /*
1468                 *      Call the device specific close. This cannot fail.
1469                 *      Only if device is UP
1470                 *
1471                 *      We allow it to be called even after a DETACH hot-plug
1472                 *      event.
1473                 */
1474                if (ops->ndo_stop)
1475                        ops->ndo_stop(dev);
1476
1477                dev->flags &= ~IFF_UP;
1478                netpoll_poll_enable(dev);
1479        }
1480}
1481
1482static void __dev_close(struct net_device *dev)
1483{
1484        LIST_HEAD(single);
1485
1486        list_add(&dev->close_list, &single);
1487        __dev_close_many(&single);
1488        list_del(&single);
1489}
1490
1491void dev_close_many(struct list_head *head, bool unlink)
1492{
1493        struct net_device *dev, *tmp;
1494
1495        /* Remove the devices that don't need to be closed */
1496        list_for_each_entry_safe(dev, tmp, head, close_list)
1497                if (!(dev->flags & IFF_UP))
1498                        list_del_init(&dev->close_list);
1499
1500        __dev_close_many(head);
1501
1502        list_for_each_entry_safe(dev, tmp, head, close_list) {
1503                rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504                call_netdevice_notifiers(NETDEV_DOWN, dev);
1505                if (unlink)
1506                        list_del_init(&dev->close_list);
1507        }
1508}
1509EXPORT_SYMBOL(dev_close_many);
1510
1511/**
1512 *      dev_close - shutdown an interface.
1513 *      @dev: device to shutdown
1514 *
1515 *      This function moves an active device into down state. A
1516 *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517 *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518 *      chain.
1519 */
1520void dev_close(struct net_device *dev)
1521{
1522        if (dev->flags & IFF_UP) {
1523                LIST_HEAD(single);
1524
1525                list_add(&dev->close_list, &single);
1526                dev_close_many(&single, true);
1527                list_del(&single);
1528        }
1529}
1530EXPORT_SYMBOL(dev_close);
1531
1532
1533/**
1534 *      dev_disable_lro - disable Large Receive Offload on a device
1535 *      @dev: device
1536 *
1537 *      Disable Large Receive Offload (LRO) on a net device.  Must be
1538 *      called under RTNL.  This is needed if received packets may be
1539 *      forwarded to another interface.
1540 */
1541void dev_disable_lro(struct net_device *dev)
1542{
1543        struct net_device *lower_dev;
1544        struct list_head *iter;
1545
1546        dev->wanted_features &= ~NETIF_F_LRO;
1547        netdev_update_features(dev);
1548
1549        if (unlikely(dev->features & NETIF_F_LRO))
1550                netdev_WARN(dev, "failed to disable LRO!\n");
1551
1552        netdev_for_each_lower_dev(dev, lower_dev, iter)
1553                dev_disable_lro(lower_dev);
1554}
1555EXPORT_SYMBOL(dev_disable_lro);
1556
1557/**
1558 *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559 *      @dev: device
1560 *
1561 *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1562 *      called under RTNL.  This is needed if Generic XDP is installed on
1563 *      the device.
1564 */
1565static void dev_disable_gro_hw(struct net_device *dev)
1566{
1567        dev->wanted_features &= ~NETIF_F_GRO_HW;
1568        netdev_update_features(dev);
1569
1570        if (unlikely(dev->features & NETIF_F_GRO_HW))
1571                netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572}
1573
1574const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1575{
1576#define N(val)                                          \
1577        case NETDEV_##val:                              \
1578                return "NETDEV_" __stringify(val);
1579        switch (cmd) {
1580        N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1581        N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1582        N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1583        N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1584        N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1585        N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1586        N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1587        N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1588        N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1589        };
1590#undef N
1591        return "UNKNOWN_NETDEV_EVENT";
1592}
1593EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1594
1595static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1596                                   struct net_device *dev)
1597{
1598        struct netdev_notifier_info info = {
1599                .dev = dev,
1600        };
1601
1602        return nb->notifier_call(nb, val, &info);
1603}
1604
1605static int dev_boot_phase = 1;
1606
1607/**
1608 * register_netdevice_notifier - register a network notifier block
1609 * @nb: notifier
1610 *
1611 * Register a notifier to be called when network device events occur.
1612 * The notifier passed is linked into the kernel structures and must
1613 * not be reused until it has been unregistered. A negative errno code
1614 * is returned on a failure.
1615 *
1616 * When registered all registration and up events are replayed
1617 * to the new notifier to allow device to have a race free
1618 * view of the network device list.
1619 */
1620
1621int register_netdevice_notifier(struct notifier_block *nb)
1622{
1623        struct net_device *dev;
1624        struct net_device *last;
1625        struct net *net;
1626        int err;
1627
1628        /* Close race with setup_net() and cleanup_net() */
1629        down_write(&pernet_ops_rwsem);
1630        rtnl_lock();
1631        err = raw_notifier_chain_register(&netdev_chain, nb);
1632        if (err)
1633                goto unlock;
1634        if (dev_boot_phase)
1635                goto unlock;
1636        for_each_net(net) {
1637                for_each_netdev(net, dev) {
1638                        err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639                        err = notifier_to_errno(err);
1640                        if (err)
1641                                goto rollback;
1642
1643                        if (!(dev->flags & IFF_UP))
1644                                continue;
1645
1646                        call_netdevice_notifier(nb, NETDEV_UP, dev);
1647                }
1648        }
1649
1650unlock:
1651        rtnl_unlock();
1652        up_write(&pernet_ops_rwsem);
1653        return err;
1654
1655rollback:
1656        last = dev;
1657        for_each_net(net) {
1658                for_each_netdev(net, dev) {
1659                        if (dev == last)
1660                                goto outroll;
1661
1662                        if (dev->flags & IFF_UP) {
1663                                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1664                                                        dev);
1665                                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1666                        }
1667                        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1668                }
1669        }
1670
1671outroll:
1672        raw_notifier_chain_unregister(&netdev_chain, nb);
1673        goto unlock;
1674}
1675EXPORT_SYMBOL(register_netdevice_notifier);
1676
1677/**
1678 * unregister_netdevice_notifier - unregister a network notifier block
1679 * @nb: notifier
1680 *
1681 * Unregister a notifier previously registered by
1682 * register_netdevice_notifier(). The notifier is unlinked into the
1683 * kernel structures and may then be reused. A negative errno code
1684 * is returned on a failure.
1685 *
1686 * After unregistering unregister and down device events are synthesized
1687 * for all devices on the device list to the removed notifier to remove
1688 * the need for special case cleanup code.
1689 */
1690
1691int unregister_netdevice_notifier(struct notifier_block *nb)
1692{
1693        struct net_device *dev;
1694        struct net *net;
1695        int err;
1696
1697        /* Close race with setup_net() and cleanup_net() */
1698        down_write(&pernet_ops_rwsem);
1699        rtnl_lock();
1700        err = raw_notifier_chain_unregister(&netdev_chain, nb);
1701        if (err)
1702                goto unlock;
1703
1704        for_each_net(net) {
1705                for_each_netdev(net, dev) {
1706                        if (dev->flags & IFF_UP) {
1707                                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1708                                                        dev);
1709                                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1710                        }
1711                        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1712                }
1713        }
1714unlock:
1715        rtnl_unlock();
1716        up_write(&pernet_ops_rwsem);
1717        return err;
1718}
1719EXPORT_SYMBOL(unregister_netdevice_notifier);
1720
1721/**
1722 *      call_netdevice_notifiers_info - call all network notifier blocks
1723 *      @val: value passed unmodified to notifier function
1724 *      @info: notifier information data
1725 *
1726 *      Call all network notifier blocks.  Parameters and return value
1727 *      are as for raw_notifier_call_chain().
1728 */
1729
1730static int call_netdevice_notifiers_info(unsigned long val,
1731                                         struct netdev_notifier_info *info)
1732{
1733        ASSERT_RTNL();
1734        return raw_notifier_call_chain(&netdev_chain, val, info);
1735}
1736
1737/**
1738 *      call_netdevice_notifiers - call all network notifier blocks
1739 *      @val: value passed unmodified to notifier function
1740 *      @dev: net_device pointer passed unmodified to notifier function
1741 *
1742 *      Call all network notifier blocks.  Parameters and return value
1743 *      are as for raw_notifier_call_chain().
1744 */
1745
1746int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1747{
1748        struct netdev_notifier_info info = {
1749                .dev = dev,
1750        };
1751
1752        return call_netdevice_notifiers_info(val, &info);
1753}
1754EXPORT_SYMBOL(call_netdevice_notifiers);
1755
1756#ifdef CONFIG_NET_INGRESS
1757static struct static_key ingress_needed __read_mostly;
1758
1759void net_inc_ingress_queue(void)
1760{
1761        static_key_slow_inc(&ingress_needed);
1762}
1763EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1764
1765void net_dec_ingress_queue(void)
1766{
1767        static_key_slow_dec(&ingress_needed);
1768}
1769EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1770#endif
1771
1772#ifdef CONFIG_NET_EGRESS
1773static struct static_key egress_needed __read_mostly;
1774
1775void net_inc_egress_queue(void)
1776{
1777        static_key_slow_inc(&egress_needed);
1778}
1779EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1780
1781void net_dec_egress_queue(void)
1782{
1783        static_key_slow_dec(&egress_needed);
1784}
1785EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1786#endif
1787
1788static struct static_key netstamp_needed __read_mostly;
1789#ifdef HAVE_JUMP_LABEL
1790static atomic_t netstamp_needed_deferred;
1791static atomic_t netstamp_wanted;
1792static void netstamp_clear(struct work_struct *work)
1793{
1794        int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1795        int wanted;
1796
1797        wanted = atomic_add_return(deferred, &netstamp_wanted);
1798        if (wanted > 0)
1799                static_key_enable(&netstamp_needed);
1800        else
1801                static_key_disable(&netstamp_needed);
1802}
1803static DECLARE_WORK(netstamp_work, netstamp_clear);
1804#endif
1805
1806void net_enable_timestamp(void)
1807{
1808#ifdef HAVE_JUMP_LABEL
1809        int wanted;
1810
1811        while (1) {
1812                wanted = atomic_read(&netstamp_wanted);
1813                if (wanted <= 0)
1814                        break;
1815                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1816                        return;
1817        }
1818        atomic_inc(&netstamp_needed_deferred);
1819        schedule_work(&netstamp_work);
1820#else
1821        static_key_slow_inc(&netstamp_needed);
1822#endif
1823}
1824EXPORT_SYMBOL(net_enable_timestamp);
1825
1826void net_disable_timestamp(void)
1827{
1828#ifdef HAVE_JUMP_LABEL
1829        int wanted;
1830
1831        while (1) {
1832                wanted = atomic_read(&netstamp_wanted);
1833                if (wanted <= 1)
1834                        break;
1835                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1836                        return;
1837        }
1838        atomic_dec(&netstamp_needed_deferred);
1839        schedule_work(&netstamp_work);
1840#else
1841        static_key_slow_dec(&netstamp_needed);
1842#endif
1843}
1844EXPORT_SYMBOL(net_disable_timestamp);
1845
1846static inline void net_timestamp_set(struct sk_buff *skb)
1847{
1848        skb->tstamp = 0;
1849        if (static_key_false(&netstamp_needed))
1850                __net_timestamp(skb);
1851}
1852
1853#define net_timestamp_check(COND, SKB)                  \
1854        if (static_key_false(&netstamp_needed)) {               \
1855                if ((COND) && !(SKB)->tstamp)   \
1856                        __net_timestamp(SKB);           \
1857        }                                               \
1858
1859bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1860{
1861        unsigned int len;
1862
1863        if (!(dev->flags & IFF_UP))
1864                return false;
1865
1866        len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1867        if (skb->len <= len)
1868                return true;
1869
1870        /* if TSO is enabled, we don't care about the length as the packet
1871         * could be forwarded without being segmented before
1872         */
1873        if (skb_is_gso(skb))
1874                return true;
1875
1876        return false;
1877}
1878EXPORT_SYMBOL_GPL(is_skb_forwardable);
1879
1880int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1881{
1882        int ret = ____dev_forward_skb(dev, skb);
1883
1884        if (likely(!ret)) {
1885                skb->protocol = eth_type_trans(skb, dev);
1886                skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1887        }
1888
1889        return ret;
1890}
1891EXPORT_SYMBOL_GPL(__dev_forward_skb);
1892
1893/**
1894 * dev_forward_skb - loopback an skb to another netif
1895 *
1896 * @dev: destination network device
1897 * @skb: buffer to forward
1898 *
1899 * return values:
1900 *      NET_RX_SUCCESS  (no congestion)
1901 *      NET_RX_DROP     (packet was dropped, but freed)
1902 *
1903 * dev_forward_skb can be used for injecting an skb from the
1904 * start_xmit function of one device into the receive queue
1905 * of another device.
1906 *
1907 * The receiving device may be in another namespace, so
1908 * we have to clear all information in the skb that could
1909 * impact namespace isolation.
1910 */
1911int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1912{
1913        return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1914}
1915EXPORT_SYMBOL_GPL(dev_forward_skb);
1916
1917static inline int deliver_skb(struct sk_buff *skb,
1918                              struct packet_type *pt_prev,
1919                              struct net_device *orig_dev)
1920{
1921        if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1922                return -ENOMEM;
1923        refcount_inc(&skb->users);
1924        return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1925}
1926
1927static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1928                                          struct packet_type **pt,
1929                                          struct net_device *orig_dev,
1930                                          __be16 type,
1931                                          struct list_head *ptype_list)
1932{
1933        struct packet_type *ptype, *pt_prev = *pt;
1934
1935        list_for_each_entry_rcu(ptype, ptype_list, list) {
1936                if (ptype->type != type)
1937                        continue;
1938                if (pt_prev)
1939                        deliver_skb(skb, pt_prev, orig_dev);
1940                pt_prev = ptype;
1941        }
1942        *pt = pt_prev;
1943}
1944
1945static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1946{
1947        if (!ptype->af_packet_priv || !skb->sk)
1948                return false;
1949
1950        if (ptype->id_match)
1951                return ptype->id_match(ptype, skb->sk);
1952        else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1953                return true;
1954
1955        return false;
1956}
1957
1958/*
1959 *      Support routine. Sends outgoing frames to any network
1960 *      taps currently in use.
1961 */
1962
1963void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1964{
1965        struct packet_type *ptype;
1966        struct sk_buff *skb2 = NULL;
1967        struct packet_type *pt_prev = NULL;
1968        struct list_head *ptype_list = &ptype_all;
1969
1970        rcu_read_lock();
1971again:
1972        list_for_each_entry_rcu(ptype, ptype_list, list) {
1973                /* Never send packets back to the socket
1974                 * they originated from - MvS (miquels@drinkel.ow.org)
1975                 */
1976                if (skb_loop_sk(ptype, skb))
1977                        continue;
1978
1979                if (pt_prev) {
1980                        deliver_skb(skb2, pt_prev, skb->dev);
1981                        pt_prev = ptype;
1982                        continue;
1983                }
1984
1985                /* need to clone skb, done only once */
1986                skb2 = skb_clone(skb, GFP_ATOMIC);
1987                if (!skb2)
1988                        goto out_unlock;
1989
1990                net_timestamp_set(skb2);
1991
1992                /* skb->nh should be correctly
1993                 * set by sender, so that the second statement is
1994                 * just protection against buggy protocols.
1995                 */
1996                skb_reset_mac_header(skb2);
1997
1998                if (skb_network_header(skb2) < skb2->data ||
1999                    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2000                        net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2001                                             ntohs(skb2->protocol),
2002                                             dev->name);
2003                        skb_reset_network_header(skb2);
2004                }
2005
2006                skb2->transport_header = skb2->network_header;
2007                skb2->pkt_type = PACKET_OUTGOING;
2008                pt_prev = ptype;
2009        }
2010
2011        if (ptype_list == &ptype_all) {
2012                ptype_list = &dev->ptype_all;
2013                goto again;
2014        }
2015out_unlock:
2016        if (pt_prev) {
2017                if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2018                        pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2019                else
2020                        kfree_skb(skb2);
2021        }
2022        rcu_read_unlock();
2023}
2024EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2025
2026/**
2027 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2028 * @dev: Network device
2029 * @txq: number of queues available
2030 *
2031 * If real_num_tx_queues is changed the tc mappings may no longer be
2032 * valid. To resolve this verify the tc mapping remains valid and if
2033 * not NULL the mapping. With no priorities mapping to this
2034 * offset/count pair it will no longer be used. In the worst case TC0
2035 * is invalid nothing can be done so disable priority mappings. If is
2036 * expected that drivers will fix this mapping if they can before
2037 * calling netif_set_real_num_tx_queues.
2038 */
2039static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2040{
2041        int i;
2042        struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2043
2044        /* If TC0 is invalidated disable TC mapping */
2045        if (tc->offset + tc->count > txq) {
2046                pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2047                dev->num_tc = 0;
2048                return;
2049        }
2050
2051        /* Invalidated prio to tc mappings set to TC0 */
2052        for (i = 1; i < TC_BITMASK + 1; i++) {
2053                int q = netdev_get_prio_tc_map(dev, i);
2054
2055                tc = &dev->tc_to_txq[q];
2056                if (tc->offset + tc->count > txq) {
2057                        pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2058                                i, q);
2059                        netdev_set_prio_tc_map(dev, i, 0);
2060                }
2061        }
2062}
2063
2064int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2065{
2066        if (dev->num_tc) {
2067                struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2068                int i;
2069
2070                for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2071                        if ((txq - tc->offset) < tc->count)
2072                                return i;
2073                }
2074
2075                return -1;
2076        }
2077
2078        return 0;
2079}
2080EXPORT_SYMBOL(netdev_txq_to_tc);
2081
2082#ifdef CONFIG_XPS
2083static DEFINE_MUTEX(xps_map_mutex);
2084#define xmap_dereference(P)             \
2085        rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2086
2087static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2088                             int tci, u16 index)
2089{
2090        struct xps_map *map = NULL;
2091        int pos;
2092
2093        if (dev_maps)
2094                map = xmap_dereference(dev_maps->cpu_map[tci]);
2095        if (!map)
2096                return false;
2097
2098        for (pos = map->len; pos--;) {
2099                if (map->queues[pos] != index)
2100                        continue;
2101
2102                if (map->len > 1) {
2103                        map->queues[pos] = map->queues[--map->len];
2104                        break;
2105                }
2106
2107                RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2108                kfree_rcu(map, rcu);
2109                return false;
2110        }
2111
2112        return true;
2113}
2114
2115static bool remove_xps_queue_cpu(struct net_device *dev,
2116                                 struct xps_dev_maps *dev_maps,
2117                                 int cpu, u16 offset, u16 count)
2118{
2119        int num_tc = dev->num_tc ? : 1;
2120        bool active = false;
2121        int tci;
2122
2123        for (tci = cpu * num_tc; num_tc--; tci++) {
2124                int i, j;
2125
2126                for (i = count, j = offset; i--; j++) {
2127                        if (!remove_xps_queue(dev_maps, tci, j))
2128                                break;
2129                }
2130
2131                active |= i < 0;
2132        }
2133
2134        return active;
2135}
2136
2137static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2138                                   u16 count)
2139{
2140        struct xps_dev_maps *dev_maps;
2141        int cpu, i;
2142        bool active = false;
2143
2144        mutex_lock(&xps_map_mutex);
2145        dev_maps = xmap_dereference(dev->xps_maps);
2146
2147        if (!dev_maps)
2148                goto out_no_maps;
2149
2150        for_each_possible_cpu(cpu)
2151                active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2152                                               offset, count);
2153
2154        if (!active) {
2155                RCU_INIT_POINTER(dev->xps_maps, NULL);
2156                kfree_rcu(dev_maps, rcu);
2157        }
2158
2159        for (i = offset + (count - 1); count--; i--)
2160                netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2161                                             NUMA_NO_NODE);
2162
2163out_no_maps:
2164        mutex_unlock(&xps_map_mutex);
2165}
2166
2167static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2168{
2169        netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2170}
2171
2172static struct xps_map *expand_xps_map(struct xps_map *map,
2173                                      int cpu, u16 index)
2174{
2175        struct xps_map *new_map;
2176        int alloc_len = XPS_MIN_MAP_ALLOC;
2177        int i, pos;
2178
2179        for (pos = 0; map && pos < map->len; pos++) {
2180                if (map->queues[pos] != index)
2181                        continue;
2182                return map;
2183        }
2184
2185        /* Need to add queue to this CPU's existing map */
2186        if (map) {
2187                if (pos < map->alloc_len)
2188                        return map;
2189
2190                alloc_len = map->alloc_len * 2;
2191        }
2192
2193        /* Need to allocate new map to store queue on this CPU's map */
2194        new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2195                               cpu_to_node(cpu));
2196        if (!new_map)
2197                return NULL;
2198
2199        for (i = 0; i < pos; i++)
2200                new_map->queues[i] = map->queues[i];
2201        new_map->alloc_len = alloc_len;
2202        new_map->len = pos;
2203
2204        return new_map;
2205}
2206
2207int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2208                        u16 index)
2209{
2210        struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2211        int i, cpu, tci, numa_node_id = -2;
2212        int maps_sz, num_tc = 1, tc = 0;
2213        struct xps_map *map, *new_map;
2214        bool active = false;
2215
2216        if (dev->num_tc) {
2217                num_tc = dev->num_tc;
2218                tc = netdev_txq_to_tc(dev, index);
2219                if (tc < 0)
2220                        return -EINVAL;
2221        }
2222
2223        maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2224        if (maps_sz < L1_CACHE_BYTES)
2225                maps_sz = L1_CACHE_BYTES;
2226
2227        mutex_lock(&xps_map_mutex);
2228
2229        dev_maps = xmap_dereference(dev->xps_maps);
2230
2231        /* allocate memory for queue storage */
2232        for_each_cpu_and(cpu, cpu_online_mask, mask) {
2233                if (!new_dev_maps)
2234                        new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2235                if (!new_dev_maps) {
2236                        mutex_unlock(&xps_map_mutex);
2237                        return -ENOMEM;
2238                }
2239
2240                tci = cpu * num_tc + tc;
2241                map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2242                                 NULL;
2243
2244                map = expand_xps_map(map, cpu, index);
2245                if (!map)
2246                        goto error;
2247
2248                RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2249        }
2250
2251        if (!new_dev_maps)
2252                goto out_no_new_maps;
2253
2254        for_each_possible_cpu(cpu) {
2255                /* copy maps belonging to foreign traffic classes */
2256                for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2257                        /* fill in the new device map from the old device map */
2258                        map = xmap_dereference(dev_maps->cpu_map[tci]);
2259                        RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2260                }
2261
2262                /* We need to explicitly update tci as prevous loop
2263                 * could break out early if dev_maps is NULL.
2264                 */
2265                tci = cpu * num_tc + tc;
2266
2267                if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2268                        /* add queue to CPU maps */
2269                        int pos = 0;
2270
2271                        map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2272                        while ((pos < map->len) && (map->queues[pos] != index))
2273                                pos++;
2274
2275                        if (pos == map->len)
2276                                map->queues[map->len++] = index;
2277#ifdef CONFIG_NUMA
2278                        if (numa_node_id == -2)
2279                                numa_node_id = cpu_to_node(cpu);
2280                        else if (numa_node_id != cpu_to_node(cpu))
2281                                numa_node_id = -1;
2282#endif
2283                } else if (dev_maps) {
2284                        /* fill in the new device map from the old device map */
2285                        map = xmap_dereference(dev_maps->cpu_map[tci]);
2286                        RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2287                }
2288
2289                /* copy maps belonging to foreign traffic classes */
2290                for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2291                        /* fill in the new device map from the old device map */
2292                        map = xmap_dereference(dev_maps->cpu_map[tci]);
2293                        RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2294                }
2295        }
2296
2297        rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2298
2299        /* Cleanup old maps */
2300        if (!dev_maps)
2301                goto out_no_old_maps;
2302
2303        for_each_possible_cpu(cpu) {
2304                for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2305                        new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2306                        map = xmap_dereference(dev_maps->cpu_map[tci]);
2307                        if (map && map != new_map)
2308                                kfree_rcu(map, rcu);
2309                }
2310        }
2311
2312        kfree_rcu(dev_maps, rcu);
2313
2314out_no_old_maps:
2315        dev_maps = new_dev_maps;
2316        active = true;
2317
2318out_no_new_maps:
2319        /* update Tx queue numa node */
2320        netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2321                                     (numa_node_id >= 0) ? numa_node_id :
2322                                     NUMA_NO_NODE);
2323
2324        if (!dev_maps)
2325                goto out_no_maps;
2326
2327        /* removes queue from unused CPUs */
2328        for_each_possible_cpu(cpu) {
2329                for (i = tc, tci = cpu * num_tc; i--; tci++)
2330                        active |= remove_xps_queue(dev_maps, tci, index);
2331                if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2332                        active |= remove_xps_queue(dev_maps, tci, index);
2333                for (i = num_tc - tc, tci++; --i; tci++)
2334                        active |= remove_xps_queue(dev_maps, tci, index);
2335        }
2336
2337        /* free map if not active */
2338        if (!active) {
2339                RCU_INIT_POINTER(dev->xps_maps, NULL);
2340                kfree_rcu(dev_maps, rcu);
2341        }
2342
2343out_no_maps:
2344        mutex_unlock(&xps_map_mutex);
2345
2346        return 0;
2347error:
2348        /* remove any maps that we added */
2349        for_each_possible_cpu(cpu) {
2350                for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2351                        new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2352                        map = dev_maps ?
2353                              xmap_dereference(dev_maps->cpu_map[tci]) :
2354                              NULL;
2355                        if (new_map && new_map != map)
2356                                kfree(new_map);
2357                }
2358        }
2359
2360        mutex_unlock(&xps_map_mutex);
2361
2362        kfree(new_dev_maps);
2363        return -ENOMEM;
2364}
2365EXPORT_SYMBOL(netif_set_xps_queue);
2366
2367#endif
2368void netdev_reset_tc(struct net_device *dev)
2369{
2370#ifdef CONFIG_XPS
2371        netif_reset_xps_queues_gt(dev, 0);
2372#endif
2373        dev->num_tc = 0;
2374        memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2375        memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2376}
2377EXPORT_SYMBOL(netdev_reset_tc);
2378
2379int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2380{
2381        if (tc >= dev->num_tc)
2382                return -EINVAL;
2383
2384#ifdef CONFIG_XPS
2385        netif_reset_xps_queues(dev, offset, count);
2386#endif
2387        dev->tc_to_txq[tc].count = count;
2388        dev->tc_to_txq[tc].offset = offset;
2389        return 0;
2390}
2391EXPORT_SYMBOL(netdev_set_tc_queue);
2392
2393int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2394{
2395        if (num_tc > TC_MAX_QUEUE)
2396                return -EINVAL;
2397
2398#ifdef CONFIG_XPS
2399        netif_reset_xps_queues_gt(dev, 0);
2400#endif
2401        dev->num_tc = num_tc;
2402        return 0;
2403}
2404EXPORT_SYMBOL(netdev_set_num_tc);
2405
2406/*
2407 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2408 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2409 */
2410int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2411{
2412        bool disabling;
2413        int rc;
2414
2415        disabling = txq < dev->real_num_tx_queues;
2416
2417        if (txq < 1 || txq > dev->num_tx_queues)
2418                return -EINVAL;
2419
2420        if (dev->reg_state == NETREG_REGISTERED ||
2421            dev->reg_state == NETREG_UNREGISTERING) {
2422                ASSERT_RTNL();
2423
2424                rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2425                                                  txq);
2426                if (rc)
2427                        return rc;
2428
2429                if (dev->num_tc)
2430                        netif_setup_tc(dev, txq);
2431
2432                dev->real_num_tx_queues = txq;
2433
2434                if (disabling) {
2435                        synchronize_net();
2436                        qdisc_reset_all_tx_gt(dev, txq);
2437#ifdef CONFIG_XPS
2438                        netif_reset_xps_queues_gt(dev, txq);
2439#endif
2440                }
2441        } else {
2442                dev->real_num_tx_queues = txq;
2443        }
2444
2445        return 0;
2446}
2447EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2448
2449#ifdef CONFIG_SYSFS
2450/**
2451 *      netif_set_real_num_rx_queues - set actual number of RX queues used
2452 *      @dev: Network device
2453 *      @rxq: Actual number of RX queues
2454 *
2455 *      This must be called either with the rtnl_lock held or before
2456 *      registration of the net device.  Returns 0 on success, or a
2457 *      negative error code.  If called before registration, it always
2458 *      succeeds.
2459 */
2460int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2461{
2462        int rc;
2463
2464        if (rxq < 1 || rxq > dev->num_rx_queues)
2465                return -EINVAL;
2466
2467        if (dev->reg_state == NETREG_REGISTERED) {
2468                ASSERT_RTNL();
2469
2470                rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2471                                                  rxq);
2472                if (rc)
2473                        return rc;
2474        }
2475
2476        dev->real_num_rx_queues = rxq;
2477        return 0;
2478}
2479EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2480#endif
2481
2482/**
2483 * netif_get_num_default_rss_queues - default number of RSS queues
2484 *
2485 * This routine should set an upper limit on the number of RSS queues
2486 * used by default by multiqueue devices.
2487 */
2488int netif_get_num_default_rss_queues(void)
2489{
2490        return is_kdump_kernel() ?
2491                1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2492}
2493EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2494
2495static void __netif_reschedule(struct Qdisc *q)
2496{
2497        struct softnet_data *sd;
2498        unsigned long flags;
2499
2500        local_irq_save(flags);
2501        sd = this_cpu_ptr(&softnet_data);
2502        q->next_sched = NULL;
2503        *sd->output_queue_tailp = q;
2504        sd->output_queue_tailp = &q->next_sched;
2505        raise_softirq_irqoff(NET_TX_SOFTIRQ);
2506        local_irq_restore(flags);
2507}
2508
2509void __netif_schedule(struct Qdisc *q)
2510{
2511        if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2512                __netif_reschedule(q);
2513}
2514EXPORT_SYMBOL(__netif_schedule);
2515
2516struct dev_kfree_skb_cb {
2517        enum skb_free_reason reason;
2518};
2519
2520static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2521{
2522        return (struct dev_kfree_skb_cb *)skb->cb;
2523}
2524
2525void netif_schedule_queue(struct netdev_queue *txq)
2526{
2527        rcu_read_lock();
2528        if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2529                struct Qdisc *q = rcu_dereference(txq->qdisc);
2530
2531                __netif_schedule(q);
2532        }
2533        rcu_read_unlock();
2534}
2535EXPORT_SYMBOL(netif_schedule_queue);
2536
2537void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2538{
2539        if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2540                struct Qdisc *q;
2541
2542                rcu_read_lock();
2543                q = rcu_dereference(dev_queue->qdisc);
2544                __netif_schedule(q);
2545                rcu_read_unlock();
2546        }
2547}
2548EXPORT_SYMBOL(netif_tx_wake_queue);
2549
2550void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2551{
2552        unsigned long flags;
2553
2554        if (unlikely(!skb))
2555                return;
2556
2557        if (likely(refcount_read(&skb->users) == 1)) {
2558                smp_rmb();
2559                refcount_set(&skb->users, 0);
2560        } else if (likely(!refcount_dec_and_test(&skb->users))) {
2561                return;
2562        }
2563        get_kfree_skb_cb(skb)->reason = reason;
2564        local_irq_save(flags);
2565        skb->next = __this_cpu_read(softnet_data.completion_queue);
2566        __this_cpu_write(softnet_data.completion_queue, skb);
2567        raise_softirq_irqoff(NET_TX_SOFTIRQ);
2568        local_irq_restore(flags);
2569}
2570EXPORT_SYMBOL(__dev_kfree_skb_irq);
2571
2572void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2573{
2574        if (in_irq() || irqs_disabled())
2575                __dev_kfree_skb_irq(skb, reason);
2576        else
2577                dev_kfree_skb(skb);
2578}
2579EXPORT_SYMBOL(__dev_kfree_skb_any);
2580
2581
2582/**
2583 * netif_device_detach - mark device as removed
2584 * @dev: network device
2585 *
2586 * Mark device as removed from system and therefore no longer available.
2587 */
2588void netif_device_detach(struct net_device *dev)
2589{
2590        if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2591            netif_running(dev)) {
2592                netif_tx_stop_all_queues(dev);
2593        }
2594}
2595EXPORT_SYMBOL(netif_device_detach);
2596
2597/**
2598 * netif_device_attach - mark device as attached
2599 * @dev: network device
2600 *
2601 * Mark device as attached from system and restart if needed.
2602 */
2603void netif_device_attach(struct net_device *dev)
2604{
2605        if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2606            netif_running(dev)) {
2607                netif_tx_wake_all_queues(dev);
2608                __netdev_watchdog_up(dev);
2609        }
2610}
2611EXPORT_SYMBOL(netif_device_attach);
2612
2613/*
2614 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2615 * to be used as a distribution range.
2616 */
2617u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2618                  unsigned int num_tx_queues)
2619{
2620        u32 hash;
2621        u16 qoffset = 0;
2622        u16 qcount = num_tx_queues;
2623
2624        if (skb_rx_queue_recorded(skb)) {
2625                hash = skb_get_rx_queue(skb);
2626                while (unlikely(hash >= num_tx_queues))
2627                        hash -= num_tx_queues;
2628                return hash;
2629        }
2630
2631        if (dev->num_tc) {
2632                u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2633
2634                qoffset = dev->tc_to_txq[tc].offset;
2635                qcount = dev->tc_to_txq[tc].count;
2636        }
2637
2638        return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2639}
2640EXPORT_SYMBOL(__skb_tx_hash);
2641
2642static void skb_warn_bad_offload(const struct sk_buff *skb)
2643{
2644        static const netdev_features_t null_features;
2645        struct net_device *dev = skb->dev;
2646        const char *name = "";
2647
2648        if (!net_ratelimit())
2649                return;
2650
2651        if (dev) {
2652                if (dev->dev.parent)
2653                        name = dev_driver_string(dev->dev.parent);
2654                else
2655                        name = netdev_name(dev);
2656        }
2657        WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2658             "gso_type=%d ip_summed=%d\n",
2659             name, dev ? &dev->features : &null_features,
2660             skb->sk ? &skb->sk->sk_route_caps : &null_features,
2661             skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2662             skb_shinfo(skb)->gso_type, skb->ip_summed);
2663}
2664
2665/*
2666 * Invalidate hardware checksum when packet is to be mangled, and
2667 * complete checksum manually on outgoing path.
2668 */
2669int skb_checksum_help(struct sk_buff *skb)
2670{
2671        __wsum csum;
2672        int ret = 0, offset;
2673
2674        if (skb->ip_summed == CHECKSUM_COMPLETE)
2675                goto out_set_summed;
2676
2677        if (unlikely(skb_shinfo(skb)->gso_size)) {
2678                skb_warn_bad_offload(skb);
2679                return -EINVAL;
2680        }
2681
2682        /* Before computing a checksum, we should make sure no frag could
2683         * be modified by an external entity : checksum could be wrong.
2684         */
2685        if (skb_has_shared_frag(skb)) {
2686                ret = __skb_linearize(skb);
2687                if (ret)
2688                        goto out;
2689        }
2690
2691        offset = skb_checksum_start_offset(skb);
2692        BUG_ON(offset >= skb_headlen(skb));
2693        csum = skb_checksum(skb, offset, skb->len - offset, 0);
2694
2695        offset += skb->csum_offset;
2696        BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2697
2698        if (skb_cloned(skb) &&
2699            !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2700                ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2701                if (ret)
2702                        goto out;
2703        }
2704
2705        *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2706out_set_summed:
2707        skb->ip_summed = CHECKSUM_NONE;
2708out:
2709        return ret;
2710}
2711EXPORT_SYMBOL(skb_checksum_help);
2712
2713int skb_crc32c_csum_help(struct sk_buff *skb)
2714{
2715        __le32 crc32c_csum;
2716        int ret = 0, offset, start;
2717
2718        if (skb->ip_summed != CHECKSUM_PARTIAL)
2719                goto out;
2720
2721        if (unlikely(skb_is_gso(skb)))
2722                goto out;
2723
2724        /* Before computing a checksum, we should make sure no frag could
2725         * be modified by an external entity : checksum could be wrong.
2726         */
2727        if (unlikely(skb_has_shared_frag(skb))) {
2728                ret = __skb_linearize(skb);
2729                if (ret)
2730                        goto out;
2731        }
2732        start = skb_checksum_start_offset(skb);
2733        offset = start + offsetof(struct sctphdr, checksum);
2734        if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2735                ret = -EINVAL;
2736                goto out;
2737        }
2738        if (skb_cloned(skb) &&
2739            !skb_clone_writable(skb, offset + sizeof(__le32))) {
2740                ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2741                if (ret)
2742                        goto out;
2743        }
2744        crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2745                                                  skb->len - start, ~(__u32)0,
2746                                                  crc32c_csum_stub));
2747        *(__le32 *)(skb->data + offset) = crc32c_csum;
2748        skb->ip_summed = CHECKSUM_NONE;
2749        skb->csum_not_inet = 0;
2750out:
2751        return ret;
2752}
2753
2754__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2755{
2756        __be16 type = skb->protocol;
2757
2758        /* Tunnel gso handlers can set protocol to ethernet. */
2759        if (type == htons(ETH_P_TEB)) {
2760                struct ethhdr *eth;
2761
2762                if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2763                        return 0;
2764
2765                eth = (struct ethhdr *)skb->data;
2766                type = eth->h_proto;
2767        }
2768
2769        return __vlan_get_protocol(skb, type, depth);
2770}
2771
2772/**
2773 *      skb_mac_gso_segment - mac layer segmentation handler.
2774 *      @skb: buffer to segment
2775 *      @features: features for the output path (see dev->features)
2776 */
2777struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2778                                    netdev_features_t features)
2779{
2780        struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2781        struct packet_offload *ptype;
2782        int vlan_depth = skb->mac_len;
2783        __be16 type = skb_network_protocol(skb, &vlan_depth);
2784
2785        if (unlikely(!type))
2786                return ERR_PTR(-EINVAL);
2787
2788        __skb_pull(skb, vlan_depth);
2789
2790        rcu_read_lock();
2791        list_for_each_entry_rcu(ptype, &offload_base, list) {
2792                if (ptype->type == type && ptype->callbacks.gso_segment) {
2793                        segs = ptype->callbacks.gso_segment(skb, features);
2794                        break;
2795                }
2796        }
2797        rcu_read_unlock();
2798
2799        __skb_push(skb, skb->data - skb_mac_header(skb));
2800
2801        return segs;
2802}
2803EXPORT_SYMBOL(skb_mac_gso_segment);
2804
2805
2806/* openvswitch calls this on rx path, so we need a different check.
2807 */
2808static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2809{
2810        if (tx_path)
2811                return skb->ip_summed != CHECKSUM_PARTIAL &&
2812                       skb->ip_summed != CHECKSUM_UNNECESSARY;
2813
2814        return skb->ip_summed == CHECKSUM_NONE;
2815}
2816
2817/**
2818 *      __skb_gso_segment - Perform segmentation on skb.
2819 *      @skb: buffer to segment
2820 *      @features: features for the output path (see dev->features)
2821 *      @tx_path: whether it is called in TX path
2822 *
2823 *      This function segments the given skb and returns a list of segments.
2824 *
2825 *      It may return NULL if the skb requires no segmentation.  This is
2826 *      only possible when GSO is used for verifying header integrity.
2827 *
2828 *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2829 */
2830struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2831                                  netdev_features_t features, bool tx_path)
2832{
2833        struct sk_buff *segs;
2834
2835        if (unlikely(skb_needs_check(skb, tx_path))) {
2836                int err;
2837
2838                /* We're going to init ->check field in TCP or UDP header */
2839                err = skb_cow_head(skb, 0);
2840                if (err < 0)
2841                        return ERR_PTR(err);
2842        }
2843
2844        /* Only report GSO partial support if it will enable us to
2845         * support segmentation on this frame without needing additional
2846         * work.
2847         */
2848        if (features & NETIF_F_GSO_PARTIAL) {
2849                netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2850                struct net_device *dev = skb->dev;
2851
2852                partial_features |= dev->features & dev->gso_partial_features;
2853                if (!skb_gso_ok(skb, features | partial_features))
2854                        features &= ~NETIF_F_GSO_PARTIAL;
2855        }
2856
2857        BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2858                     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2859
2860        SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2861        SKB_GSO_CB(skb)->encap_level = 0;
2862
2863        skb_reset_mac_header(skb);
2864        skb_reset_mac_len(skb);
2865
2866        segs = skb_mac_gso_segment(skb, features);
2867
2868        if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2869                skb_warn_bad_offload(skb);
2870
2871        return segs;
2872}
2873EXPORT_SYMBOL(__skb_gso_segment);
2874
2875/* Take action when hardware reception checksum errors are detected. */
2876#ifdef CONFIG_BUG
2877void netdev_rx_csum_fault(struct net_device *dev)
2878{
2879        if (net_ratelimit()) {
2880                pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2881                dump_stack();
2882        }
2883}
2884EXPORT_SYMBOL(netdev_rx_csum_fault);
2885#endif
2886
2887/* Actually, we should eliminate this check as soon as we know, that:
2888 * 1. IOMMU is present and allows to map all the memory.
2889 * 2. No high memory really exists on this machine.
2890 */
2891
2892static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2893{
2894#ifdef CONFIG_HIGHMEM
2895        int i;
2896
2897        if (!(dev->features & NETIF_F_HIGHDMA)) {
2898                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2899                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2900
2901                        if (PageHighMem(skb_frag_page(frag)))
2902                                return 1;
2903                }
2904        }
2905
2906        if (PCI_DMA_BUS_IS_PHYS) {
2907                struct device *pdev = dev->dev.parent;
2908
2909                if (!pdev)
2910                        return 0;
2911                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2912                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2913                        dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2914
2915                        if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2916                                return 1;
2917                }
2918        }
2919#endif
2920        return 0;
2921}
2922
2923/* If MPLS offload request, verify we are testing hardware MPLS features
2924 * instead of standard features for the netdev.
2925 */
2926#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2927static netdev_features_t net_mpls_features(struct sk_buff *skb,
2928                                           netdev_features_t features,
2929                                           __be16 type)
2930{
2931        if (eth_p_mpls(type))
2932                features &= skb->dev->mpls_features;
2933
2934        return features;
2935}
2936#else
2937static netdev_features_t net_mpls_features(struct sk_buff *skb,
2938                                           netdev_features_t features,
2939                                           __be16 type)
2940{
2941        return features;
2942}
2943#endif
2944
2945static netdev_features_t harmonize_features(struct sk_buff *skb,
2946        netdev_features_t features)
2947{
2948        int tmp;
2949        __be16 type;
2950
2951        type = skb_network_protocol(skb, &tmp);
2952        features = net_mpls_features(skb, features, type);
2953
2954        if (skb->ip_summed != CHECKSUM_NONE &&
2955            !can_checksum_protocol(features, type)) {
2956                features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2957        }
2958        if (illegal_highdma(skb->dev, skb))
2959                features &= ~NETIF_F_SG;
2960
2961        return features;
2962}
2963
2964netdev_features_t passthru_features_check(struct sk_buff *skb,
2965                                          struct net_device *dev,
2966                                          netdev_features_t features)
2967{
2968        return features;
2969}
2970EXPORT_SYMBOL(passthru_features_check);
2971
2972static netdev_features_t dflt_features_check(struct sk_buff *skb,
2973                                             struct net_device *dev,
2974                                             netdev_features_t features)
2975{
2976        return vlan_features_check(skb, features);
2977}
2978
2979static netdev_features_t gso_features_check(const struct sk_buff *skb,
2980                                            struct net_device *dev,
2981                                            netdev_features_t features)
2982{
2983        u16 gso_segs = skb_shinfo(skb)->gso_segs;
2984
2985        if (gso_segs > dev->gso_max_segs)
2986                return features & ~NETIF_F_GSO_MASK;
2987
2988        /* Support for GSO partial features requires software
2989         * intervention before we can actually process the packets
2990         * so we need to strip support for any partial features now
2991         * and we can pull them back in after we have partially
2992         * segmented the frame.
2993         */
2994        if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2995                features &= ~dev->gso_partial_features;
2996
2997        /* Make sure to clear the IPv4 ID mangling feature if the
2998         * IPv4 header has the potential to be fragmented.
2999         */
3000        if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3001                struct iphdr *iph = skb->encapsulation ?
3002                                    inner_ip_hdr(skb) : ip_hdr(skb);
3003
3004                if (!(iph->frag_off & htons(IP_DF)))
3005                        features &= ~NETIF_F_TSO_MANGLEID;
3006        }
3007
3008        return features;
3009}
3010
3011netdev_features_t netif_skb_features(struct sk_buff *skb)
3012{
3013        struct net_device *dev = skb->dev;
3014        netdev_features_t features = dev->features;
3015
3016        if (skb_is_gso(skb))
3017                features = gso_features_check(skb, dev, features);
3018
3019        /* If encapsulation offload request, verify we are testing
3020         * hardware encapsulation features instead of standard
3021         * features for the netdev
3022         */
3023        if (skb->encapsulation)
3024                features &= dev->hw_enc_features;
3025
3026        if (skb_vlan_tagged(skb))
3027                features = netdev_intersect_features(features,
3028                                                     dev->vlan_features |
3029                                                     NETIF_F_HW_VLAN_CTAG_TX |
3030                                                     NETIF_F_HW_VLAN_STAG_TX);
3031
3032        if (dev->netdev_ops->ndo_features_check)
3033                features &= dev->netdev_ops->ndo_features_check(skb, dev,
3034                                                                features);
3035        else
3036                features &= dflt_features_check(skb, dev, features);
3037
3038        return harmonize_features(skb, features);
3039}
3040EXPORT_SYMBOL(netif_skb_features);
3041
3042static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3043                    struct netdev_queue *txq, bool more)
3044{
3045        unsigned int len;
3046        int rc;
3047
3048        if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3049                dev_queue_xmit_nit(skb, dev);
3050
3051        len = skb->len;
3052        trace_net_dev_start_xmit(skb, dev);
3053        rc = netdev_start_xmit(skb, dev, txq, more);
3054        trace_net_dev_xmit(skb, rc, dev, len);
3055
3056        return rc;
3057}
3058
3059struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3060                                    struct netdev_queue *txq, int *ret)
3061{
3062        struct sk_buff *skb = first;
3063        int rc = NETDEV_TX_OK;
3064
3065        while (skb) {
3066                struct sk_buff *next = skb->next;
3067
3068                skb->next = NULL;
3069                rc = xmit_one(skb, dev, txq, next != NULL);
3070                if (unlikely(!dev_xmit_complete(rc))) {
3071                        skb->next = next;
3072                        goto out;
3073                }
3074
3075                skb = next;
3076                if (netif_xmit_stopped(txq) && skb) {
3077                        rc = NETDEV_TX_BUSY;
3078                        break;
3079                }
3080        }
3081
3082out:
3083        *ret = rc;
3084        return skb;
3085}
3086
3087static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3088                                          netdev_features_t features)
3089{
3090        if (skb_vlan_tag_present(skb) &&
3091            !vlan_hw_offload_capable(features, skb->vlan_proto))
3092                skb = __vlan_hwaccel_push_inside(skb);
3093        return skb;
3094}
3095
3096int skb_csum_hwoffload_help(struct sk_buff *skb,
3097                            const netdev_features_t features)
3098{
3099        if (unlikely(skb->csum_not_inet))
3100                return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3101                        skb_crc32c_csum_help(skb);
3102
3103        return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3104}
3105EXPORT_SYMBOL(skb_csum_hwoffload_help);
3106
3107static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3108{
3109        netdev_features_t features;
3110
3111        features = netif_skb_features(skb);
3112        skb = validate_xmit_vlan(skb, features);
3113        if (unlikely(!skb))
3114                goto out_null;
3115
3116        if (netif_needs_gso(skb, features)) {
3117                struct sk_buff *segs;
3118
3119                segs = skb_gso_segment(skb, features);
3120                if (IS_ERR(segs)) {
3121                        goto out_kfree_skb;
3122                } else if (segs) {
3123                        consume_skb(skb);
3124                        skb = segs;
3125                }
3126        } else {
3127                if (skb_needs_linearize(skb, features) &&
3128                    __skb_linearize(skb))
3129                        goto out_kfree_skb;
3130
3131                /* If packet is not checksummed and device does not
3132                 * support checksumming for this protocol, complete
3133                 * checksumming here.
3134                 */
3135                if (skb->ip_summed == CHECKSUM_PARTIAL) {
3136                        if (skb->encapsulation)
3137                                skb_set_inner_transport_header(skb,
3138                                                               skb_checksum_start_offset(skb));
3139                        else
3140                                skb_set_transport_header(skb,
3141                                                         skb_checksum_start_offset(skb));
3142                        if (skb_csum_hwoffload_help(skb, features))
3143                                goto out_kfree_skb;
3144                }
3145        }
3146
3147        skb = validate_xmit_xfrm(skb, features, again);
3148
3149        return skb;
3150
3151out_kfree_skb:
3152        kfree_skb(skb);
3153out_null:
3154        atomic_long_inc(&dev->tx_dropped);
3155        return NULL;
3156}
3157
3158struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3159{
3160        struct sk_buff *next, *head = NULL, *tail;
3161
3162        for (; skb != NULL; skb = next) {
3163                next = skb->next;
3164                skb->next = NULL;
3165
3166                /* in case skb wont be segmented, point to itself */
3167                skb->prev = skb;
3168
3169                skb = validate_xmit_skb(skb, dev, again);
3170                if (!skb)
3171                        continue;
3172
3173                if (!head)
3174                        head = skb;
3175                else
3176                        tail->next = skb;
3177                /* If skb was segmented, skb->prev points to
3178                 * the last segment. If not, it still contains skb.
3179                 */
3180                tail = skb->prev;
3181        }
3182        return head;
3183}
3184EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3185
3186static void qdisc_pkt_len_init(struct sk_buff *skb)
3187{
3188        const struct skb_shared_info *shinfo = skb_shinfo(skb);
3189
3190        qdisc_skb_cb(skb)->pkt_len = skb->len;
3191
3192        /* To get more precise estimation of bytes sent on wire,
3193         * we add to pkt_len the headers size of all segments
3194         */
3195        if (shinfo->gso_size)  {
3196                unsigned int hdr_len;
3197                u16 gso_segs = shinfo->gso_segs;
3198
3199                /* mac layer + network layer */
3200                hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3201
3202                /* + transport layer */
3203                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3204                        const struct tcphdr *th;
3205                        struct tcphdr _tcphdr;
3206
3207                        th = skb_header_pointer(skb, skb_transport_offset(skb),
3208                                                sizeof(_tcphdr), &_tcphdr);
3209                        if (likely(th))
3210                                hdr_len += __tcp_hdrlen(th);
3211                } else {
3212                        struct udphdr _udphdr;
3213
3214                        if (skb_header_pointer(skb, skb_transport_offset(skb),
3215                                               sizeof(_udphdr), &_udphdr))
3216                                hdr_len += sizeof(struct udphdr);
3217                }
3218
3219                if (shinfo->gso_type & SKB_GSO_DODGY)
3220                        gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3221                                                shinfo->gso_size);
3222
3223                qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3224        }
3225}
3226
3227static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3228                                 struct net_device *dev,
3229                                 struct netdev_queue *txq)
3230{
3231        spinlock_t *root_lock = qdisc_lock(q);
3232        struct sk_buff *to_free = NULL;
3233        bool contended;
3234        int rc;
3235
3236        qdisc_calculate_pkt_len(skb, q);
3237
3238        if (q->flags & TCQ_F_NOLOCK) {
3239                if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3240                        __qdisc_drop(skb, &to_free);
3241                        rc = NET_XMIT_DROP;
3242                } else {
3243                        rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3244                        __qdisc_run(q);
3245                }
3246
3247                if (unlikely(to_free))
3248                        kfree_skb_list(to_free);
3249                return rc;
3250        }
3251
3252        /*
3253         * Heuristic to force contended enqueues to serialize on a
3254         * separate lock before trying to get qdisc main lock.
3255         * This permits qdisc->running owner to get the lock more
3256         * often and dequeue packets faster.
3257         */
3258        contended = qdisc_is_running(q);
3259        if (unlikely(contended))
3260                spin_lock(&q->busylock);
3261
3262        spin_lock(root_lock);
3263        if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3264                __qdisc_drop(skb, &to_free);
3265                rc = NET_XMIT_DROP;
3266        } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3267                   qdisc_run_begin(q)) {
3268                /*
3269                 * This is a work-conserving queue; there are no old skbs
3270                 * waiting to be sent out; and the qdisc is not running -
3271                 * xmit the skb directly.
3272                 */
3273
3274                qdisc_bstats_update(q, skb);
3275
3276                if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3277                        if (unlikely(contended)) {
3278                                spin_unlock(&q->busylock);
3279                                contended = false;
3280                        }
3281                        __qdisc_run(q);
3282                }
3283
3284                qdisc_run_end(q);
3285                rc = NET_XMIT_SUCCESS;
3286        } else {
3287                rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3288                if (qdisc_run_begin(q)) {
3289                        if (unlikely(contended)) {
3290                                spin_unlock(&q->busylock);
3291                                contended = false;
3292                        }
3293                        __qdisc_run(q);
3294                        qdisc_run_end(q);
3295                }
3296        }
3297        spin_unlock(root_lock);
3298        if (unlikely(to_free))
3299                kfree_skb_list(to_free);
3300        if (unlikely(contended))
3301                spin_unlock(&q->busylock);
3302        return rc;
3303}
3304
3305#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3306static void skb_update_prio(struct sk_buff *skb)
3307{
3308        const struct netprio_map *map;
3309        const struct sock *sk;
3310        unsigned int prioidx;
3311
3312        if (skb->priority)
3313                return;
3314        map = rcu_dereference_bh(skb->dev->priomap);
3315        if (!map)
3316                return;
3317        sk = skb_to_full_sk(skb);
3318        if (!sk)
3319                return;
3320
3321        prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3322
3323        if (prioidx < map->priomap_len)
3324                skb->priority = map->priomap[prioidx];
3325}
3326#else
3327#define skb_update_prio(skb)
3328#endif
3329
3330DEFINE_PER_CPU(int, xmit_recursion);
3331EXPORT_SYMBOL(xmit_recursion);
3332
3333/**
3334 *      dev_loopback_xmit - loop back @skb
3335 *      @net: network namespace this loopback is happening in
3336 *      @sk:  sk needed to be a netfilter okfn
3337 *      @skb: buffer to transmit
3338 */
3339int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3340{
3341        skb_reset_mac_header(skb);
3342        __skb_pull(skb, skb_network_offset(skb));
3343        skb->pkt_type = PACKET_LOOPBACK;
3344        skb->ip_summed = CHECKSUM_UNNECESSARY;
3345        WARN_ON(!skb_dst(skb));
3346        skb_dst_force(skb);
3347        netif_rx_ni(skb);
3348        return 0;
3349}
3350EXPORT_SYMBOL(dev_loopback_xmit);
3351
3352#ifdef CONFIG_NET_EGRESS
3353static struct sk_buff *
3354sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3355{
3356        struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3357        struct tcf_result cl_res;
3358
3359        if (!miniq)
3360                return skb;
3361
3362        /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3363        mini_qdisc_bstats_cpu_update(miniq, skb);
3364
3365        switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3366        case TC_ACT_OK:
3367        case TC_ACT_RECLASSIFY:
3368                skb->tc_index = TC_H_MIN(cl_res.classid);
3369                break;
3370        case TC_ACT_SHOT:
3371                mini_qdisc_qstats_cpu_drop(miniq);
3372                *ret = NET_XMIT_DROP;
3373                kfree_skb(skb);
3374                return NULL;
3375        case TC_ACT_STOLEN:
3376        case TC_ACT_QUEUED:
3377        case TC_ACT_TRAP:
3378                *ret = NET_XMIT_SUCCESS;
3379                consume_skb(skb);
3380                return NULL;
3381        case TC_ACT_REDIRECT:
3382                /* No need to push/pop skb's mac_header here on egress! */
3383                skb_do_redirect(skb);
3384                *ret = NET_XMIT_SUCCESS;
3385                return NULL;
3386        default:
3387                break;
3388        }
3389
3390        return skb;
3391}
3392#endif /* CONFIG_NET_EGRESS */
3393
3394static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3395{
3396#ifdef CONFIG_XPS
3397        struct xps_dev_maps *dev_maps;
3398        struct xps_map *map;
3399        int queue_index = -1;
3400
3401        rcu_read_lock();
3402        dev_maps = rcu_dereference(dev->xps_maps);
3403        if (dev_maps) {
3404                unsigned int tci = skb->sender_cpu - 1;
3405
3406                if (dev->num_tc) {
3407                        tci *= dev->num_tc;
3408                        tci += netdev_get_prio_tc_map(dev, skb->priority);
3409                }
3410
3411                map = rcu_dereference(dev_maps->cpu_map[tci]);
3412                if (map) {
3413                        if (map->len == 1)
3414                                queue_index = map->queues[0];
3415                        else
3416                                queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3417                                                                           map->len)];
3418                        if (unlikely(queue_index >= dev->real_num_tx_queues))
3419                                queue_index = -1;
3420                }
3421        }
3422        rcu_read_unlock();
3423
3424        return queue_index;
3425#else
3426        return -1;
3427#endif
3428}
3429
3430static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3431{
3432        struct sock *sk = skb->sk;
3433        int queue_index = sk_tx_queue_get(sk);
3434
3435        if (queue_index < 0 || skb->ooo_okay ||
3436            queue_index >= dev->real_num_tx_queues) {
3437                int new_index = get_xps_queue(dev, skb);
3438
3439                if (new_index < 0)
3440                        new_index = skb_tx_hash(dev, skb);
3441
3442                if (queue_index != new_index && sk &&
3443                    sk_fullsock(sk) &&
3444                    rcu_access_pointer(sk->sk_dst_cache))
3445                        sk_tx_queue_set(sk, new_index);
3446
3447                queue_index = new_index;
3448        }
3449
3450        return queue_index;
3451}
3452
3453struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3454                                    struct sk_buff *skb,
3455                                    void *accel_priv)
3456{
3457        int queue_index = 0;
3458
3459#ifdef CONFIG_XPS
3460        u32 sender_cpu = skb->sender_cpu - 1;
3461
3462        if (sender_cpu >= (u32)NR_CPUS)
3463                skb->sender_cpu = raw_smp_processor_id() + 1;
3464#endif
3465
3466        if (dev->real_num_tx_queues != 1) {
3467                const struct net_device_ops *ops = dev->netdev_ops;
3468
3469                if (ops->ndo_select_queue)
3470                        queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3471                                                            __netdev_pick_tx);
3472                else
3473                        queue_index = __netdev_pick_tx(dev, skb);
3474
3475                queue_index = netdev_cap_txqueue(dev, queue_index);
3476        }
3477
3478        skb_set_queue_mapping(skb, queue_index);
3479        return netdev_get_tx_queue(dev, queue_index);
3480}
3481
3482/**
3483 *      __dev_queue_xmit - transmit a buffer
3484 *      @skb: buffer to transmit
3485 *      @accel_priv: private data used for L2 forwarding offload
3486 *
3487 *      Queue a buffer for transmission to a network device. The caller must
3488 *      have set the device and priority and built the buffer before calling
3489 *      this function. The function can be called from an interrupt.
3490 *
3491 *      A negative errno code is returned on a failure. A success does not
3492 *      guarantee the frame will be transmitted as it may be dropped due
3493 *      to congestion or traffic shaping.
3494 *
3495 * -----------------------------------------------------------------------------------
3496 *      I notice this method can also return errors from the queue disciplines,
3497 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3498 *      be positive.
3499 *
3500 *      Regardless of the return value, the skb is consumed, so it is currently
3501 *      difficult to retry a send to this method.  (You can bump the ref count
3502 *      before sending to hold a reference for retry if you are careful.)
3503 *
3504 *      When calling this method, interrupts MUST be enabled.  This is because
3505 *      the BH enable code must have IRQs enabled so that it will not deadlock.
3506 *          --BLG
3507 */
3508static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3509{
3510        struct net_device *dev = skb->dev;
3511        struct netdev_queue *txq;
3512        struct Qdisc *q;
3513        int rc = -ENOMEM;
3514        bool again = false;
3515
3516        skb_reset_mac_header(skb);
3517
3518        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3519                __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3520
3521        /* Disable soft irqs for various locks below. Also
3522         * stops preemption for RCU.
3523         */
3524        rcu_read_lock_bh();
3525
3526        skb_update_prio(skb);
3527
3528        qdisc_pkt_len_init(skb);
3529#ifdef CONFIG_NET_CLS_ACT
3530        skb->tc_at_ingress = 0;
3531# ifdef CONFIG_NET_EGRESS
3532        if (static_key_false(&egress_needed)) {
3533                skb = sch_handle_egress(skb, &rc, dev);
3534                if (!skb)
3535                        goto out;
3536        }
3537# endif
3538#endif
3539        /* If device/qdisc don't need skb->dst, release it right now while
3540         * its hot in this cpu cache.
3541         */
3542        if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3543                skb_dst_drop(skb);
3544        else
3545                skb_dst_force(skb);
3546
3547        txq = netdev_pick_tx(dev, skb, accel_priv);
3548        q = rcu_dereference_bh(txq->qdisc);
3549
3550        trace_net_dev_queue(skb);
3551        if (q->enqueue) {
3552                rc = __dev_xmit_skb(skb, q, dev, txq);
3553                goto out;
3554        }
3555
3556        /* The device has no queue. Common case for software devices:
3557         * loopback, all the sorts of tunnels...
3558
3559         * Really, it is unlikely that netif_tx_lock protection is necessary
3560         * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3561         * counters.)
3562         * However, it is possible, that they rely on protection
3563         * made by us here.
3564
3565         * Check this and shot the lock. It is not prone from deadlocks.
3566         *Either shot noqueue qdisc, it is even simpler 8)
3567         */
3568        if (dev->flags & IFF_UP) {
3569                int cpu = smp_processor_id(); /* ok because BHs are off */
3570
3571                if (txq->xmit_lock_owner != cpu) {
3572                        if (unlikely(__this_cpu_read(xmit_recursion) >
3573                                     XMIT_RECURSION_LIMIT))
3574                                goto recursion_alert;
3575
3576                        skb = validate_xmit_skb(skb, dev, &again);
3577                        if (!skb)
3578                                goto out;
3579
3580                        HARD_TX_LOCK(dev, txq, cpu);
3581
3582                        if (!netif_xmit_stopped(txq)) {
3583                                __this_cpu_inc(xmit_recursion);
3584                                skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3585                                __this_cpu_dec(xmit_recursion);
3586                                if (dev_xmit_complete(rc)) {
3587                                        HARD_TX_UNLOCK(dev, txq);
3588                                        goto out;
3589                                }
3590                        }
3591                        HARD_TX_UNLOCK(dev, txq);
3592                        net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3593                                             dev->name);
3594                } else {
3595                        /* Recursion is detected! It is possible,
3596                         * unfortunately
3597                         */
3598recursion_alert:
3599                        net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3600                                             dev->name);
3601                }
3602        }
3603
3604        rc = -ENETDOWN;
3605        rcu_read_unlock_bh();
3606
3607        atomic_long_inc(&dev->tx_dropped);
3608        kfree_skb_list(skb);
3609        return rc;
3610out:
3611        rcu_read_unlock_bh();
3612        return rc;
3613}
3614
3615int dev_queue_xmit(struct sk_buff *skb)
3616{
3617        return __dev_queue_xmit(skb, NULL);
3618}
3619EXPORT_SYMBOL(dev_queue_xmit);
3620
3621int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3622{
3623        return __dev_queue_xmit(skb, accel_priv);
3624}
3625EXPORT_SYMBOL(dev_queue_xmit_accel);
3626
3627
3628/*************************************************************************
3629 *                      Receiver routines
3630 *************************************************************************/
3631
3632int netdev_max_backlog __read_mostly = 1000;
3633EXPORT_SYMBOL(netdev_max_backlog);
3634
3635int netdev_tstamp_prequeue __read_mostly = 1;
3636int netdev_budget __read_mostly = 300;
3637unsigned int __read_mostly netdev_budget_usecs = 2000;
3638int weight_p __read_mostly = 64;           /* old backlog weight */
3639int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3640int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3641int dev_rx_weight __read_mostly = 64;
3642int dev_tx_weight __read_mostly = 64;
3643
3644/* Called with irq disabled */
3645static inline void ____napi_schedule(struct softnet_data *sd,
3646                                     struct napi_struct *napi)
3647{
3648        list_add_tail(&napi->poll_list, &sd->poll_list);
3649        __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3650}
3651
3652#ifdef CONFIG_RPS
3653
3654/* One global table that all flow-based protocols share. */
3655struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3656EXPORT_SYMBOL(rps_sock_flow_table);
3657u32 rps_cpu_mask __read_mostly;
3658EXPORT_SYMBOL(rps_cpu_mask);
3659
3660struct static_key rps_needed __read_mostly;
3661EXPORT_SYMBOL(rps_needed);
3662struct static_key rfs_needed __read_mostly;
3663EXPORT_SYMBOL(rfs_needed);
3664
3665static struct rps_dev_flow *
3666set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3667            struct rps_dev_flow *rflow, u16 next_cpu)
3668{
3669        if (next_cpu < nr_cpu_ids) {
3670#ifdef CONFIG_RFS_ACCEL
3671                struct netdev_rx_queue *rxqueue;
3672                struct rps_dev_flow_table *flow_table;
3673                struct rps_dev_flow *old_rflow;
3674                u32 flow_id;
3675                u16 rxq_index;
3676                int rc;
3677
3678                /* Should we steer this flow to a different hardware queue? */
3679                if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3680                    !(dev->features & NETIF_F_NTUPLE))
3681                        goto out;
3682                rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3683                if (rxq_index == skb_get_rx_queue(skb))
3684                        goto out;
3685
3686                rxqueue = dev->_rx + rxq_index;
3687                flow_table = rcu_dereference(rxqueue->rps_flow_table);
3688                if (!flow_table)
3689                        goto out;
3690                flow_id = skb_get_hash(skb) & flow_table->mask;
3691                rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3692                                                        rxq_index, flow_id);
3693                if (rc < 0)
3694                        goto out;
3695                old_rflow = rflow;
3696                rflow = &flow_table->flows[flow_id];
3697                rflow->filter = rc;
3698                if (old_rflow->filter == rflow->filter)
3699                        old_rflow->filter = RPS_NO_FILTER;
3700        out:
3701#endif
3702                rflow->last_qtail =
3703                        per_cpu(softnet_data, next_cpu).input_queue_head;
3704        }
3705
3706        rflow->cpu = next_cpu;
3707        return rflow;
3708}
3709
3710/*
3711 * get_rps_cpu is called from netif_receive_skb and returns the target
3712 * CPU from the RPS map of the receiving queue for a given skb.
3713 * rcu_read_lock must be held on entry.
3714 */
3715static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3716                       struct rps_dev_flow **rflowp)
3717{
3718        const struct rps_sock_flow_table *sock_flow_table;
3719        struct netdev_rx_queue *rxqueue = dev->_rx;
3720        struct rps_dev_flow_table *flow_table;
3721        struct rps_map *map;
3722        int cpu = -1;
3723        u32 tcpu;
3724        u32 hash;
3725
3726        if (skb_rx_queue_recorded(skb)) {
3727                u16 index = skb_get_rx_queue(skb);
3728
3729                if (unlikely(index >= dev->real_num_rx_queues)) {
3730                        WARN_ONCE(dev->real_num_rx_queues > 1,
3731                                  "%s received packet on queue %u, but number "
3732                                  "of RX queues is %u\n",
3733                                  dev->name, index, dev->real_num_rx_queues);
3734                        goto done;
3735                }
3736                rxqueue += index;
3737        }
3738
3739        /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3740
3741        flow_table = rcu_dereference(rxqueue->rps_flow_table);
3742        map = rcu_dereference(rxqueue->rps_map);
3743        if (!flow_table && !map)
3744                goto done;
3745
3746        skb_reset_network_header(skb);
3747        hash = skb_get_hash(skb);
3748        if (!hash)
3749                goto done;
3750
3751        sock_flow_table = rcu_dereference(rps_sock_flow_table);
3752        if (flow_table && sock_flow_table) {
3753                struct rps_dev_flow *rflow;
3754                u32 next_cpu;
3755                u32 ident;
3756
3757                /* First check into global flow table if there is a match */
3758                ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3759                if ((ident ^ hash) & ~rps_cpu_mask)
3760                        goto try_rps;
3761
3762                next_cpu = ident & rps_cpu_mask;
3763
3764                /* OK, now we know there is a match,
3765                 * we can look at the local (per receive queue) flow table
3766                 */
3767                rflow = &flow_table->flows[hash & flow_table->mask];
3768                tcpu = rflow->cpu;
3769
3770                /*
3771                 * If the desired CPU (where last recvmsg was done) is
3772                 * different from current CPU (one in the rx-queue flow
3773                 * table entry), switch if one of the following holds:
3774                 *   - Current CPU is unset (>= nr_cpu_ids).
3775                 *   - Current CPU is offline.
3776                 *   - The current CPU's queue tail has advanced beyond the
3777                 *     last packet that was enqueued using this table entry.
3778                 *     This guarantees that all previous packets for the flow
3779                 *     have been dequeued, thus preserving in order delivery.
3780                 */
3781                if (unlikely(tcpu != next_cpu) &&
3782                    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3783                     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3784                      rflow->last_qtail)) >= 0)) {
3785                        tcpu = next_cpu;
3786                        rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3787                }
3788
3789                if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3790                        *rflowp = rflow;
3791                        cpu = tcpu;
3792                        goto done;
3793                }
3794        }
3795
3796try_rps:
3797
3798        if (map) {
3799                tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3800                if (cpu_online(tcpu)) {
3801                        cpu = tcpu;
3802                        goto done;
3803                }
3804        }
3805
3806done:
3807        return cpu;
3808}
3809
3810#ifdef CONFIG_RFS_ACCEL
3811
3812/**
3813 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3814 * @dev: Device on which the filter was set
3815 * @rxq_index: RX queue index
3816 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3817 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3818 *
3819 * Drivers that implement ndo_rx_flow_steer() should periodically call
3820 * this function for each installed filter and remove the filters for
3821 * which it returns %true.
3822 */
3823bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3824                         u32 flow_id, u16 filter_id)
3825{
3826        struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3827        struct rps_dev_flow_table *flow_table;
3828        struct rps_dev_flow *rflow;
3829        bool expire = true;
3830        unsigned int cpu;
3831
3832        rcu_read_lock();
3833        flow_table = rcu_dereference(rxqueue->rps_flow_table);
3834        if (flow_table && flow_id <= flow_table->mask) {
3835                rflow = &flow_table->flows[flow_id];
3836                cpu = READ_ONCE(rflow->cpu);
3837                if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3838                    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3839                           rflow->last_qtail) <
3840                     (int)(10 * flow_table->mask)))
3841                        expire = false;
3842        }
3843        rcu_read_unlock();
3844        return expire;
3845}
3846EXPORT_SYMBOL(rps_may_expire_flow);
3847
3848#endif /* CONFIG_RFS_ACCEL */
3849
3850/* Called from hardirq (IPI) context */
3851static void rps_trigger_softirq(void *data)
3852{
3853        struct softnet_data *sd = data;
3854
3855        ____napi_schedule(sd, &sd->backlog);
3856        sd->received_rps++;
3857}
3858
3859#endif /* CONFIG_RPS */
3860
3861/*
3862 * Check if this softnet_data structure is another cpu one
3863 * If yes, queue it to our IPI list and return 1
3864 * If no, return 0
3865 */
3866static int rps_ipi_queued(struct softnet_data *sd)
3867{
3868#ifdef CONFIG_RPS
3869        struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3870
3871        if (sd != mysd) {
3872                sd->rps_ipi_next = mysd->rps_ipi_list;
3873                mysd->rps_ipi_list = sd;
3874
3875                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3876                return 1;
3877        }
3878#endif /* CONFIG_RPS */
3879        return 0;
3880}
3881
3882#ifdef CONFIG_NET_FLOW_LIMIT
3883int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3884#endif
3885
3886static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3887{
3888#ifdef CONFIG_NET_FLOW_LIMIT
3889        struct sd_flow_limit *fl;
3890        struct softnet_data *sd;
3891        unsigned int old_flow, new_flow;
3892
3893        if (qlen < (netdev_max_backlog >> 1))
3894                return false;
3895
3896        sd = this_cpu_ptr(&softnet_data);
3897
3898        rcu_read_lock();
3899        fl = rcu_dereference(sd->flow_limit);
3900        if (fl) {
3901                new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3902                old_flow = fl->history[fl->history_head];
3903                fl->history[fl->history_head] = new_flow;
3904
3905                fl->history_head++;
3906                fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3907
3908                if (likely(fl->buckets[old_flow]))
3909                        fl->buckets[old_flow]--;
3910
3911                if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3912                        fl->count++;
3913                        rcu_read_unlock();
3914                        return true;
3915                }
3916        }
3917        rcu_read_unlock();
3918#endif
3919        return false;
3920}
3921
3922/*
3923 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3924 * queue (may be a remote CPU queue).
3925 */
3926static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3927                              unsigned int *qtail)
3928{
3929        struct softnet_data *sd;
3930        unsigned long flags;
3931        unsigned int qlen;
3932
3933        sd = &per_cpu(softnet_data, cpu);
3934
3935        local_irq_save(flags);
3936
3937        rps_lock(sd);
3938        if (!netif_running(skb->dev))
3939                goto drop;
3940        qlen = skb_queue_len(&sd->input_pkt_queue);
3941        if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3942                if (qlen) {
3943enqueue:
3944                        __skb_queue_tail(&sd->input_pkt_queue, skb);
3945                        input_queue_tail_incr_save(sd, qtail);
3946                        rps_unlock(sd);
3947                        local_irq_restore(flags);
3948                        return NET_RX_SUCCESS;
3949                }
3950
3951                /* Schedule NAPI for backlog device
3952                 * We can use non atomic operation since we own the queue lock
3953                 */
3954                if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3955                        if (!rps_ipi_queued(sd))
3956                                ____napi_schedule(sd, &sd->backlog);
3957                }
3958                goto enqueue;
3959        }
3960
3961drop:
3962        sd->dropped++;
3963        rps_unlock(sd);
3964
3965        local_irq_restore(flags);
3966
3967        atomic_long_inc(&skb->dev->rx_dropped);
3968        kfree_skb(skb);
3969        return NET_RX_DROP;
3970}
3971
3972static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3973{
3974        struct net_device *dev = skb->dev;
3975        struct netdev_rx_queue *rxqueue;
3976
3977        rxqueue = dev->_rx;
3978
3979        if (skb_rx_queue_recorded(skb)) {
3980                u16 index = skb_get_rx_queue(skb);
3981
3982                if (unlikely(index >= dev->real_num_rx_queues)) {
3983                        WARN_ONCE(dev->real_num_rx_queues > 1,
3984                                  "%s received packet on queue %u, but number "
3985                                  "of RX queues is %u\n",
3986                                  dev->name, index, dev->real_num_rx_queues);
3987
3988                        return rxqueue; /* Return first rxqueue */
3989                }
3990                rxqueue += index;
3991        }
3992        return rxqueue;
3993}
3994
3995static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3996                                     struct bpf_prog *xdp_prog)
3997{
3998        struct netdev_rx_queue *rxqueue;
3999        u32 metalen, act = XDP_DROP;
4000        struct xdp_buff xdp;
4001        void *orig_data;
4002        int hlen, off;
4003        u32 mac_len;
4004
4005        /* Reinjected packets coming from act_mirred or similar should
4006         * not get XDP generic processing.
4007         */
4008        if (skb_cloned(skb))
4009                return XDP_PASS;
4010
4011        /* XDP packets must be linear and must have sufficient headroom
4012         * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4013         * native XDP provides, thus we need to do it here as well.
4014         */
4015        if (skb_is_nonlinear(skb) ||
4016            skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4017                int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4018                int troom = skb->tail + skb->data_len - skb->end;
4019
4020                /* In case we have to go down the path and also linearize,
4021                 * then lets do the pskb_expand_head() work just once here.
4022                 */
4023                if (pskb_expand_head(skb,
4024                                     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4025                                     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4026                        goto do_drop;
4027                if (skb_linearize(skb))
4028                        goto do_drop;
4029        }
4030
4031        /* The XDP program wants to see the packet starting at the MAC
4032         * header.
4033         */
4034        mac_len = skb->data - skb_mac_header(skb);
4035        hlen = skb_headlen(skb) + mac_len;
4036        xdp.data = skb->data - mac_len;
4037        xdp.data_meta = xdp.data;
4038        xdp.data_end = xdp.data + hlen;
4039        xdp.data_hard_start = skb->data - skb_headroom(skb);
4040        orig_data = xdp.data;
4041
4042        rxqueue = netif_get_rxqueue(skb);
4043        xdp.rxq = &rxqueue->xdp_rxq;
4044
4045        act = bpf_prog_run_xdp(xdp_prog, &xdp);
4046
4047        off = xdp.data - orig_data;
4048        if (off > 0)
4049                __skb_pull(skb, off);
4050        else if (off < 0)
4051                __skb_push(skb, -off);
4052        skb->mac_header += off;
4053
4054        switch (act) {
4055        case XDP_REDIRECT:
4056        case XDP_TX:
4057                __skb_push(skb, mac_len);
4058                break;
4059        case XDP_PASS:
4060                metalen = xdp.data - xdp.data_meta;
4061                if (metalen)
4062                        skb_metadata_set(skb, metalen);
4063                break;
4064        default:
4065                bpf_warn_invalid_xdp_action(act);
4066                /* fall through */
4067        case XDP_ABORTED:
4068                trace_xdp_exception(skb->dev, xdp_prog, act);
4069                /* fall through */
4070        case XDP_DROP:
4071        do_drop:
4072                kfree_skb(skb);
4073                break;
4074        }
4075
4076        return act;
4077}
4078
4079/* When doing generic XDP we have to bypass the qdisc layer and the
4080 * network taps in order to match in-driver-XDP behavior.
4081 */
4082void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4083{
4084        struct net_device *dev = skb->dev;
4085        struct netdev_queue *txq;
4086        bool free_skb = true;
4087        int cpu, rc;
4088
4089        txq = netdev_pick_tx(dev, skb, NULL);
4090        cpu = smp_processor_id();
4091        HARD_TX_LOCK(dev, txq, cpu);
4092        if (!netif_xmit_stopped(txq)) {
4093                rc = netdev_start_xmit(skb, dev, txq, 0);
4094                if (dev_xmit_complete(rc))
4095                        free_skb = false;
4096        }
4097        HARD_TX_UNLOCK(dev, txq);
4098        if (free_skb) {
4099                trace_xdp_exception(dev, xdp_prog, XDP_TX);
4100                kfree_skb(skb);
4101        }
4102}
4103EXPORT_SYMBOL_GPL(generic_xdp_tx);
4104
4105static struct static_key generic_xdp_needed __read_mostly;
4106
4107int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4108{
4109        if (xdp_prog) {
4110                u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4111                int err;
4112
4113                if (act != XDP_PASS) {
4114                        switch (act) {
4115                        case XDP_REDIRECT:
4116                                err = xdp_do_generic_redirect(skb->dev, skb,
4117                                                              xdp_prog);
4118                                if (err)
4119                                        goto out_redir;
4120                        /* fallthru to submit skb */
4121                        case XDP_TX:
4122                                generic_xdp_tx(skb, xdp_prog);
4123                                break;
4124                        }
4125                        return XDP_DROP;
4126                }
4127        }
4128        return XDP_PASS;
4129out_redir:
4130        kfree_skb(skb);
4131        return XDP_DROP;
4132}
4133EXPORT_SYMBOL_GPL(do_xdp_generic);
4134
4135static int netif_rx_internal(struct sk_buff *skb)
4136{
4137        int ret;
4138
4139        net_timestamp_check(netdev_tstamp_prequeue, skb);
4140
4141        trace_netif_rx(skb);
4142
4143        if (static_key_false(&generic_xdp_needed)) {
4144                int ret;
4145
4146                preempt_disable();
4147                rcu_read_lock();
4148                ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4149                rcu_read_unlock();
4150                preempt_enable();
4151
4152                /* Consider XDP consuming the packet a success from
4153                 * the netdev point of view we do not want to count
4154                 * this as an error.
4155                 */
4156                if (ret != XDP_PASS)
4157                        return NET_RX_SUCCESS;
4158        }
4159
4160#ifdef CONFIG_RPS
4161        if (static_key_false(&rps_needed)) {
4162                struct rps_dev_flow voidflow, *rflow = &voidflow;
4163                int cpu;
4164
4165                preempt_disable();
4166                rcu_read_lock();
4167
4168                cpu = get_rps_cpu(skb->dev, skb, &rflow);
4169                if (cpu < 0)
4170                        cpu = smp_processor_id();
4171
4172                ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4173
4174                rcu_read_unlock();
4175                preempt_enable();
4176        } else
4177#endif
4178        {
4179                unsigned int qtail;
4180
4181                ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4182                put_cpu();
4183        }
4184        return ret;
4185}
4186
4187/**
4188 *      netif_rx        -       post buffer to the network code
4189 *      @skb: buffer to post
4190 *
4191 *      This function receives a packet from a device driver and queues it for
4192 *      the upper (protocol) levels to process.  It always succeeds. The buffer
4193 *      may be dropped during processing for congestion control or by the
4194 *      protocol layers.
4195 *
4196 *      return values:
4197 *      NET_RX_SUCCESS  (no congestion)
4198 *      NET_RX_DROP     (packet was dropped)
4199 *
4200 */
4201
4202int netif_rx(struct sk_buff *skb)
4203{
4204        trace_netif_rx_entry(skb);
4205
4206        return netif_rx_internal(skb);
4207}
4208EXPORT_SYMBOL(netif_rx);
4209
4210int netif_rx_ni(struct sk_buff *skb)
4211{
4212        int err;
4213
4214        trace_netif_rx_ni_entry(skb);
4215
4216        preempt_disable();
4217        err = netif_rx_internal(skb);
4218        if (local_softirq_pending())
4219                do_softirq();
4220        preempt_enable();
4221
4222        return err;
4223}
4224EXPORT_SYMBOL(netif_rx_ni);
4225
4226static __latent_entropy void net_tx_action(struct softirq_action *h)
4227{
4228        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4229
4230        if (sd->completion_queue) {
4231                struct sk_buff *clist;
4232
4233                local_irq_disable();
4234                clist = sd->completion_queue;
4235                sd->completion_queue = NULL;
4236                local_irq_enable();
4237
4238                while (clist) {
4239                        struct sk_buff *skb = clist;
4240
4241                        clist = clist->next;
4242
4243                        WARN_ON(refcount_read(&skb->users));
4244                        if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4245                                trace_consume_skb(skb);
4246                        else
4247                                trace_kfree_skb(skb, net_tx_action);
4248
4249                        if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4250                                __kfree_skb(skb);
4251                        else
4252                                __kfree_skb_defer(skb);
4253                }
4254
4255                __kfree_skb_flush();
4256        }
4257
4258        if (sd->output_queue) {
4259                struct Qdisc *head;
4260
4261                local_irq_disable();
4262                head = sd->output_queue;
4263                sd->output_queue = NULL;
4264                sd->output_queue_tailp = &sd->output_queue;
4265                local_irq_enable();
4266
4267                while (head) {
4268                        struct Qdisc *q = head;
4269                        spinlock_t *root_lock = NULL;
4270
4271                        head = head->next_sched;
4272
4273                        if (!(q->flags & TCQ_F_NOLOCK)) {
4274                                root_lock = qdisc_lock(q);
4275                                spin_lock(root_lock);
4276                        }
4277                        /* We need to make sure head->next_sched is read
4278                         * before clearing __QDISC_STATE_SCHED
4279                         */
4280                        smp_mb__before_atomic();
4281                        clear_bit(__QDISC_STATE_SCHED, &q->state);
4282                        qdisc_run(q);
4283                        if (root_lock)
4284                                spin_unlock(root_lock);
4285                }
4286        }
4287
4288        xfrm_dev_backlog(sd);
4289}
4290
4291#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4292/* This hook is defined here for ATM LANE */
4293int (*br_fdb_test_addr_hook)(struct net_device *dev,
4294                             unsigned char *addr) __read_mostly;
4295EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4296#endif
4297
4298static inline struct sk_buff *
4299sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4300                   struct net_device *orig_dev)
4301{
4302#ifdef CONFIG_NET_CLS_ACT
4303        struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4304        struct tcf_result cl_res;
4305
4306        /* If there's at least one ingress present somewhere (so
4307         * we get here via enabled static key), remaining devices
4308         * that are not configured with an ingress qdisc will bail
4309         * out here.
4310         */
4311        if (!miniq)
4312                return skb;
4313
4314        if (*pt_prev) {
4315                *ret = deliver_skb(skb, *pt_prev, orig_dev);
4316                *pt_prev = NULL;
4317        }
4318
4319        qdisc_skb_cb(skb)->pkt_len = skb->len;
4320        skb->tc_at_ingress = 1;
4321        mini_qdisc_bstats_cpu_update(miniq, skb);
4322
4323        switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4324        case TC_ACT_OK:
4325        case TC_ACT_RECLASSIFY:
4326                skb->tc_index = TC_H_MIN(cl_res.classid);
4327                break;
4328        case TC_ACT_SHOT:
4329                mini_qdisc_qstats_cpu_drop(miniq);
4330                kfree_skb(skb);
4331                return NULL;
4332        case TC_ACT_STOLEN:
4333        case TC_ACT_QUEUED:
4334        case TC_ACT_TRAP:
4335                consume_skb(skb);
4336                return NULL;
4337        case TC_ACT_REDIRECT:
4338                /* skb_mac_header check was done by cls/act_bpf, so
4339                 * we can safely push the L2 header back before
4340                 * redirecting to another netdev
4341                 */
4342                __skb_push(skb, skb->mac_len);
4343                skb_do_redirect(skb);
4344                return NULL;
4345        default:
4346                break;
4347        }
4348#endif /* CONFIG_NET_CLS_ACT */
4349        return skb;
4350}
4351
4352/**
4353 *      netdev_is_rx_handler_busy - check if receive handler is registered
4354 *      @dev: device to check
4355 *
4356 *      Check if a receive handler is already registered for a given device.
4357 *      Return true if there one.
4358 *
4359 *      The caller must hold the rtnl_mutex.
4360 */
4361bool netdev_is_rx_handler_busy(struct net_device *dev)
4362{
4363        ASSERT_RTNL();
4364        return dev && rtnl_dereference(dev->rx_handler);
4365}
4366EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4367
4368/**
4369 *      netdev_rx_handler_register - register receive handler
4370 *      @dev: device to register a handler for
4371 *      @rx_handler: receive handler to register
4372 *      @rx_handler_data: data pointer that is used by rx handler
4373 *
4374 *      Register a receive handler for a device. This handler will then be
4375 *      called from __netif_receive_skb. A negative errno code is returned
4376 *      on a failure.
4377 *
4378 *      The caller must hold the rtnl_mutex.
4379 *
4380 *      For a general description of rx_handler, see enum rx_handler_result.
4381 */
4382int netdev_rx_handler_register(struct net_device *dev,
4383                               rx_handler_func_t *rx_handler,
4384                               void *rx_handler_data)
4385{
4386        if (netdev_is_rx_handler_busy(dev))
4387                return -EBUSY;
4388
4389        if (dev->priv_flags & IFF_NO_RX_HANDLER)
4390                return -EINVAL;
4391
4392        /* Note: rx_handler_data must be set before rx_handler */
4393        rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4394        rcu_assign_pointer(dev->rx_handler, rx_handler);
4395
4396        return 0;
4397}
4398EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4399
4400/**
4401 *      netdev_rx_handler_unregister - unregister receive handler
4402 *      @dev: device to unregister a handler from
4403 *
4404 *      Unregister a receive handler from a device.
4405 *
4406 *      The caller must hold the rtnl_mutex.
4407 */
4408void netdev_rx_handler_unregister(struct net_device *dev)
4409{
4410
4411        ASSERT_RTNL();
4412        RCU_INIT_POINTER(dev->rx_handler, NULL);
4413        /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4414         * section has a guarantee to see a non NULL rx_handler_data
4415         * as well.
4416         */
4417        synchronize_net();
4418        RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4419}
4420EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4421
4422/*
4423 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4424 * the special handling of PFMEMALLOC skbs.
4425 */
4426static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4427{
4428        switch (skb->protocol) {
4429        case htons(ETH_P_ARP):
4430        case htons(ETH_P_IP):
4431        case htons(ETH_P_IPV6):
4432        case htons(ETH_P_8021Q):
4433        case htons(ETH_P_8021AD):
4434                return true;
4435        default:
4436                return false;
4437        }
4438}
4439
4440static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4441                             int *ret, struct net_device *orig_dev)
4442{
4443#ifdef CONFIG_NETFILTER_INGRESS
4444        if (nf_hook_ingress_active(skb)) {
4445                int ingress_retval;
4446
4447                if (*pt_prev) {
4448                        *ret = deliver_skb(skb, *pt_prev, orig_dev);
4449                        *pt_prev = NULL;
4450                }
4451
4452                rcu_read_lock();
4453                ingress_retval = nf_hook_ingress(skb);
4454                rcu_read_unlock();
4455                return ingress_retval;
4456        }
4457#endif /* CONFIG_NETFILTER_INGRESS */
4458        return 0;
4459}
4460
4461static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4462{
4463        struct packet_type *ptype, *pt_prev;
4464        rx_handler_func_t *rx_handler;
4465        struct net_device *orig_dev;
4466        bool deliver_exact = false;
4467        int ret = NET_RX_DROP;
4468        __be16 type;
4469
4470        net_timestamp_check(!netdev_tstamp_prequeue, skb);
4471
4472        trace_netif_receive_skb(skb);
4473
4474        orig_dev = skb->dev;
4475
4476        skb_reset_network_header(skb);
4477        if (!skb_transport_header_was_set(skb))
4478                skb_reset_transport_header(skb);
4479        skb_reset_mac_len(skb);
4480
4481        pt_prev = NULL;
4482
4483another_round:
4484        skb->skb_iif = skb->dev->ifindex;
4485
4486        __this_cpu_inc(softnet_data.processed);
4487
4488        if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4489            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4490                skb = skb_vlan_untag(skb);
4491                if (unlikely(!skb))
4492                        goto out;
4493        }
4494
4495        if (skb_skip_tc_classify(skb))
4496                goto skip_classify;
4497
4498        if (pfmemalloc)
4499                goto skip_taps;
4500
4501        list_for_each_entry_rcu(ptype, &ptype_all, list) {
4502                if (pt_prev)
4503                        ret = deliver_skb(skb, pt_prev, orig_dev);
4504                pt_prev = ptype;
4505        }
4506
4507        list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4508                if (pt_prev)
4509                        ret = deliver_skb(skb, pt_prev, orig_dev);
4510                pt_prev = ptype;
4511        }
4512
4513skip_taps:
4514#ifdef CONFIG_NET_INGRESS
4515        if (static_key_false(&ingress_needed)) {
4516                skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4517                if (!skb)
4518                        goto out;
4519
4520                if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4521                        goto out;
4522        }
4523#endif
4524        skb_reset_tc(skb);
4525skip_classify:
4526        if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4527                goto drop;
4528
4529        if (skb_vlan_tag_present(skb)) {
4530                if (pt_prev) {
4531                        ret = deliver_skb(skb, pt_prev, orig_dev);
4532                        pt_prev = NULL;
4533                }
4534                if (vlan_do_receive(&skb))
4535                        goto another_round;
4536                else if (unlikely(!skb))
4537                        goto out;
4538        }
4539
4540        rx_handler = rcu_dereference(skb->dev->rx_handler);
4541        if (rx_handler) {
4542                if (pt_prev) {
4543                        ret = deliver_skb(skb, pt_prev, orig_dev);
4544                        pt_prev = NULL;
4545                }
4546                switch (rx_handler(&skb)) {
4547                case RX_HANDLER_CONSUMED:
4548                        ret = NET_RX_SUCCESS;
4549                        goto out;
4550                case RX_HANDLER_ANOTHER:
4551                        goto another_round;
4552                case RX_HANDLER_EXACT:
4553                        deliver_exact = true;
4554                case RX_HANDLER_PASS:
4555                        break;
4556                default:
4557                        BUG();
4558                }
4559        }
4560
4561        if (unlikely(skb_vlan_tag_present(skb))) {
4562                if (skb_vlan_tag_get_id(skb))
4563                        skb->pkt_type = PACKET_OTHERHOST;
4564                /* Note: we might in the future use prio bits
4565                 * and set skb->priority like in vlan_do_receive()
4566                 * For the time being, just ignore Priority Code Point
4567                 */
4568                skb->vlan_tci = 0;
4569        }
4570
4571        type = skb->protocol;
4572
4573        /* deliver only exact match when indicated */
4574        if (likely(!deliver_exact)) {
4575                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4576                                       &ptype_base[ntohs(type) &
4577                                                   PTYPE_HASH_MASK]);
4578        }
4579
4580        deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4581                               &orig_dev->ptype_specific);
4582
4583        if (unlikely(skb->dev != orig_dev)) {
4584                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4585                                       &skb->dev->ptype_specific);
4586        }
4587
4588        if (pt_prev) {
4589                if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4590                        goto drop;
4591                else
4592                        ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4593        } else {
4594drop:
4595                if (!deliver_exact)
4596                        atomic_long_inc(&skb->dev->rx_dropped);
4597                else
4598                        atomic_long_inc(&skb->dev->rx_nohandler);
4599                kfree_skb(skb);
4600                /* Jamal, now you will not able to escape explaining
4601                 * me how you were going to use this. :-)
4602                 */
4603                ret = NET_RX_DROP;
4604        }
4605
4606out:
4607        return ret;
4608}
4609
4610/**
4611 *      netif_receive_skb_core - special purpose version of netif_receive_skb
4612 *      @skb: buffer to process
4613 *
4614 *      More direct receive version of netif_receive_skb().  It should
4615 *      only be used by callers that have a need to skip RPS and Generic XDP.
4616 *      Caller must also take care of handling if (page_is_)pfmemalloc.
4617 *
4618 *      This function may only be called from softirq context and interrupts
4619 *      should be enabled.
4620 *
4621 *      Return values (usually ignored):
4622 *      NET_RX_SUCCESS: no congestion
4623 *      NET_RX_DROP: packet was dropped
4624 */
4625int netif_receive_skb_core(struct sk_buff *skb)
4626{
4627        int ret;
4628
4629        rcu_read_lock();
4630        ret = __netif_receive_skb_core(skb, false);
4631        rcu_read_unlock();
4632
4633        return ret;
4634}
4635EXPORT_SYMBOL(netif_receive_skb_core);
4636
4637static int __netif_receive_skb(struct sk_buff *skb)
4638{
4639        int ret;
4640
4641        if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4642                unsigned int noreclaim_flag;
4643
4644                /*
4645                 * PFMEMALLOC skbs are special, they should
4646                 * - be delivered to SOCK_MEMALLOC sockets only
4647                 * - stay away from userspace
4648                 * - have bounded memory usage
4649                 *
4650                 * Use PF_MEMALLOC as this saves us from propagating the allocation
4651                 * context down to all allocation sites.
4652                 */
4653                noreclaim_flag = memalloc_noreclaim_save();
4654                ret = __netif_receive_skb_core(skb, true);
4655                memalloc_noreclaim_restore(noreclaim_flag);
4656        } else
4657                ret = __netif_receive_skb_core(skb, false);
4658
4659        return ret;
4660}
4661
4662static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4663{
4664        struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4665        struct bpf_prog *new = xdp->prog;
4666        int ret = 0;
4667
4668        switch (xdp->command) {
4669        case XDP_SETUP_PROG:
4670                rcu_assign_pointer(dev->xdp_prog, new);
4671                if (old)
4672                        bpf_prog_put(old);
4673
4674                if (old && !new) {
4675                        static_key_slow_dec(&generic_xdp_needed);
4676                } else if (new && !old) {
4677                        static_key_slow_inc(&generic_xdp_needed);
4678                        dev_disable_lro(dev);
4679                        dev_disable_gro_hw(dev);
4680                }
4681                break;
4682
4683        case XDP_QUERY_PROG:
4684                xdp->prog_attached = !!old;
4685                xdp->prog_id = old ? old->aux->id : 0;
4686                break;
4687
4688        default:
4689                ret = -EINVAL;
4690                break;
4691        }
4692
4693        return ret;
4694}
4695
4696static int netif_receive_skb_internal(struct sk_buff *skb)
4697{
4698        int ret;
4699
4700        net_timestamp_check(netdev_tstamp_prequeue, skb);
4701
4702        if (skb_defer_rx_timestamp(skb))
4703                return NET_RX_SUCCESS;
4704
4705        if (static_key_false(&generic_xdp_needed)) {
4706                int ret;
4707
4708                preempt_disable();
4709                rcu_read_lock();
4710                ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4711                rcu_read_unlock();
4712                preempt_enable();
4713
4714                if (ret != XDP_PASS)
4715                        return NET_RX_DROP;
4716        }
4717
4718        rcu_read_lock();
4719#ifdef CONFIG_RPS
4720        if (static_key_false(&rps_needed)) {
4721                struct rps_dev_flow voidflow, *rflow = &voidflow;
4722                int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4723
4724                if (cpu >= 0) {
4725                        ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4726                        rcu_read_unlock();
4727                        return ret;
4728                }
4729        }
4730#endif
4731        ret = __netif_receive_skb(skb);
4732        rcu_read_unlock();
4733        return ret;
4734}
4735
4736/**
4737 *      netif_receive_skb - process receive buffer from network
4738 *      @skb: buffer to process
4739 *
4740 *      netif_receive_skb() is the main receive data processing function.
4741 *      It always succeeds. The buffer may be dropped during processing
4742 *      for congestion control or by the protocol layers.
4743 *
4744 *      This function may only be called from softirq context and interrupts
4745 *      should be enabled.
4746 *
4747 *      Return values (usually ignored):
4748 *      NET_RX_SUCCESS: no congestion
4749 *      NET_RX_DROP: packet was dropped
4750 */
4751int netif_receive_skb(struct sk_buff *skb)
4752{
4753        trace_netif_receive_skb_entry(skb);
4754
4755        return netif_receive_skb_internal(skb);
4756}
4757EXPORT_SYMBOL(netif_receive_skb);
4758
4759DEFINE_PER_CPU(struct work_struct, flush_works);
4760
4761/* Network device is going away, flush any packets still pending */
4762static void flush_backlog(struct work_struct *work)
4763{
4764        struct sk_buff *skb, *tmp;
4765        struct softnet_data *sd;
4766
4767        local_bh_disable();
4768        sd = this_cpu_ptr(&softnet_data);
4769
4770        local_irq_disable();
4771        rps_lock(sd);
4772        skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4773                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4774                        __skb_unlink(skb, &sd->input_pkt_queue);
4775                        kfree_skb(skb);
4776                        input_queue_head_incr(sd);
4777                }
4778        }
4779        rps_unlock(sd);
4780        local_irq_enable();
4781
4782        skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4783                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4784                        __skb_unlink(skb, &sd->process_queue);
4785                        kfree_skb(skb);
4786                        input_queue_head_incr(sd);
4787                }
4788        }
4789        local_bh_enable();
4790}
4791
4792static void flush_all_backlogs(void)
4793{
4794        unsigned int cpu;
4795
4796        get_online_cpus();
4797
4798        for_each_online_cpu(cpu)
4799                queue_work_on(cpu, system_highpri_wq,
4800                              per_cpu_ptr(&flush_works, cpu));
4801
4802        for_each_online_cpu(cpu)
4803                flush_work(per_cpu_ptr(&flush_works, cpu));
4804
4805        put_online_cpus();
4806}
4807
4808static int napi_gro_complete(struct sk_buff *skb)
4809{
4810        struct packet_offload *ptype;
4811        __be16 type = skb->protocol;
4812        struct list_head *head = &offload_base;
4813        int err = -ENOENT;
4814
4815        BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4816
4817        if (NAPI_GRO_CB(skb)->count == 1) {
4818                skb_shinfo(skb)->gso_size = 0;
4819                goto out;
4820        }
4821
4822        rcu_read_lock();
4823        list_for_each_entry_rcu(ptype, head, list) {
4824                if (ptype->type != type || !ptype->callbacks.gro_complete)
4825                        continue;
4826
4827                err = ptype->callbacks.gro_complete(skb, 0);
4828                break;
4829        }
4830        rcu_read_unlock();
4831
4832        if (err) {
4833                WARN_ON(&ptype->list == head);
4834                kfree_skb(skb);
4835                return NET_RX_SUCCESS;
4836        }
4837
4838out:
4839        return netif_receive_skb_internal(skb);
4840}
4841
4842/* napi->gro_list contains packets ordered by age.
4843 * youngest packets at the head of it.
4844 * Complete skbs in reverse order to reduce latencies.
4845 */
4846void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4847{
4848        struct sk_buff *skb, *prev = NULL;
4849
4850        /* scan list and build reverse chain */
4851        for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4852                skb->prev = prev;
4853                prev = skb;
4854        }
4855
4856        for (skb = prev; skb; skb = prev) {
4857                skb->next = NULL;
4858
4859                if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4860                        return;
4861
4862                prev = skb->prev;
4863                napi_gro_complete(skb);
4864                napi->gro_count--;
4865        }
4866
4867        napi->gro_list = NULL;
4868}
4869EXPORT_SYMBOL(napi_gro_flush);
4870
4871static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4872{
4873        struct sk_buff *p;
4874        unsigned int maclen = skb->dev->hard_header_len;
4875        u32 hash = skb_get_hash_raw(skb);
4876
4877        for (p = napi->gro_list; p; p = p->next) {
4878                unsigned long diffs;
4879
4880                NAPI_GRO_CB(p)->flush = 0;
4881
4882                if (hash != skb_get_hash_raw(p)) {
4883                        NAPI_GRO_CB(p)->same_flow = 0;
4884                        continue;
4885                }
4886
4887                diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4888                diffs |= p->vlan_tci ^ skb->vlan_tci;
4889                diffs |= skb_metadata_dst_cmp(p, skb);
4890                diffs |= skb_metadata_differs(p, skb);
4891                if (maclen == ETH_HLEN)
4892                        diffs |= compare_ether_header(skb_mac_header(p),
4893                                                      skb_mac_header(skb));
4894                else if (!diffs)
4895                        diffs = memcmp(skb_mac_header(p),
4896                                       skb_mac_header(skb),
4897                                       maclen);
4898                NAPI_GRO_CB(p)->same_flow = !diffs;
4899        }
4900}
4901
4902static void skb_gro_reset_offset(struct sk_buff *skb)
4903{
4904        const struct skb_shared_info *pinfo = skb_shinfo(skb);
4905        const skb_frag_t *frag0 = &pinfo->frags[0];
4906
4907        NAPI_GRO_CB(skb)->data_offset = 0;
4908        NAPI_GRO_CB(skb)->frag0 = NULL;
4909        NAPI_GRO_CB(skb)->frag0_len = 0;
4910
4911        if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4912            pinfo->nr_frags &&
4913            !PageHighMem(skb_frag_page(frag0))) {
4914                NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4915                NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4916                                                    skb_frag_size(frag0),
4917                                                    skb->end - skb->tail);
4918        }
4919}
4920
4921static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4922{
4923        struct skb_shared_info *pinfo = skb_shinfo(skb);
4924
4925        BUG_ON(skb->end - skb->tail < grow);
4926
4927        memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4928
4929        skb->data_len -= grow;
4930        skb->tail += grow;
4931
4932        pinfo->frags[0].page_offset += grow;
4933        skb_frag_size_sub(&pinfo->frags[0], grow);
4934
4935        if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4936                skb_frag_unref(skb, 0);
4937                memmove(pinfo->frags, pinfo->frags + 1,
4938                        --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4939        }
4940}
4941
4942static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4943{
4944        struct sk_buff **pp = NULL;
4945        struct packet_offload *ptype;
4946        __be16 type = skb->protocol;
4947        struct list_head *head = &offload_base;
4948        int same_flow;
4949        enum gro_result ret;
4950        int grow;
4951
4952        if (netif_elide_gro(skb->dev))
4953                goto normal;
4954
4955        gro_list_prepare(napi, skb);
4956
4957        rcu_read_lock();
4958        list_for_each_entry_rcu(ptype, head, list) {
4959                if (ptype->type != type || !ptype->callbacks.gro_receive)
4960                        continue;
4961
4962                skb_set_network_header(skb, skb_gro_offset(skb));
4963                skb_reset_mac_len(skb);
4964                NAPI_GRO_CB(skb)->same_flow = 0;
4965                NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4966                NAPI_GRO_CB(skb)->free = 0;
4967                NAPI_GRO_CB(skb)->encap_mark = 0;
4968                NAPI_GRO_CB(skb)->recursion_counter = 0;
4969                NAPI_GRO_CB(skb)->is_fou = 0;
4970                NAPI_GRO_CB(skb)->is_atomic = 1;
4971                NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4972
4973                /* Setup for GRO checksum validation */
4974                switch (skb->ip_summed) {
4975                case CHECKSUM_COMPLETE:
4976                        NAPI_GRO_CB(skb)->csum = skb->csum;
4977                        NAPI_GRO_CB(skb)->csum_valid = 1;
4978                        NAPI_GRO_CB(skb)->csum_cnt = 0;
4979                        break;
4980                case CHECKSUM_UNNECESSARY:
4981                        NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4982                        NAPI_GRO_CB(skb)->csum_valid = 0;
4983                        break;
4984                default:
4985                        NAPI_GRO_CB(skb)->csum_cnt = 0;
4986                        NAPI_GRO_CB(skb)->csum_valid = 0;
4987                }
4988
4989                pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4990                break;
4991        }
4992        rcu_read_unlock();
4993
4994        if (&ptype->list == head)
4995                goto normal;
4996
4997        if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4998                ret = GRO_CONSUMED;
4999                goto ok;
5000        }
5001
5002        same_flow = NAPI_GRO_CB(skb)->same_flow;
5003        ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5004
5005        if (pp) {
5006                struct sk_buff *nskb = *pp;
5007
5008                *pp = nskb->next;
5009                nskb->next = NULL;
5010                napi_gro_complete(nskb);
5011                napi->gro_count--;
5012        }
5013
5014        if (same_flow)
5015                goto ok;
5016
5017        if (NAPI_GRO_CB(skb)->flush)
5018                goto normal;
5019
5020        if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
5021                struct sk_buff *nskb = napi->gro_list;
5022
5023                /* locate the end of the list to select the 'oldest' flow */
5024                while (nskb->next) {
5025                        pp = &nskb->next;
5026                        nskb = *pp;
5027                }
5028                *pp = NULL;
5029                nskb->next = NULL;
5030                napi_gro_complete(nskb);
5031        } else {
5032                napi->gro_count++;
5033        }
5034        NAPI_GRO_CB(skb)->count = 1;
5035        NAPI_GRO_CB(skb)->age = jiffies;
5036        NAPI_GRO_CB(skb)->last = skb;
5037        skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5038        skb->next = napi->gro_list;
5039        napi->gro_list = skb;
5040        ret = GRO_HELD;
5041
5042pull:
5043        grow = skb_gro_offset(skb) - skb_headlen(skb);
5044        if (grow > 0)
5045                gro_pull_from_frag0(skb, grow);
5046ok:
5047        return ret;
5048
5049normal:
5050        ret = GRO_NORMAL;
5051        goto pull;
5052}
5053
5054struct packet_offload *gro_find_receive_by_type(__be16 type)
5055{
5056        struct list_head *offload_head = &offload_base;
5057        struct packet_offload *ptype;
5058
5059        list_for_each_entry_rcu(ptype, offload_head, list) {
5060                if (ptype->type != type || !ptype->callbacks.gro_receive)
5061                        continue;
5062                return ptype;
5063        }
5064        return NULL;
5065}
5066EXPORT_SYMBOL(gro_find_receive_by_type);
5067
5068struct packet_offload *gro_find_complete_by_type(__be16 type)
5069{
5070        struct list_head *offload_head = &offload_base;
5071        struct packet_offload *ptype;
5072
5073        list_for_each_entry_rcu(ptype, offload_head, list) {
5074                if (ptype->type != type || !ptype->callbacks.gro_complete)
5075                        continue;
5076                return ptype;
5077        }
5078        return NULL;
5079}
5080EXPORT_SYMBOL(gro_find_complete_by_type);
5081
5082static void napi_skb_free_stolen_head(struct sk_buff *skb)
5083{
5084        skb_dst_drop(skb);
5085        secpath_reset(skb);
5086        kmem_cache_free(skbuff_head_cache, skb);
5087}
5088
5089static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5090{
5091        switch (ret) {
5092        case GRO_NORMAL:
5093                if (netif_receive_skb_internal(skb))
5094                        ret = GRO_DROP;
5095                break;
5096
5097        case GRO_DROP:
5098                kfree_skb(skb);
5099                break;
5100
5101        case GRO_MERGED_FREE:
5102                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5103                        napi_skb_free_stolen_head(skb);
5104                else
5105                        __kfree_skb(skb);
5106                break;
5107
5108        case GRO_HELD:
5109        case GRO_MERGED:
5110        case GRO_CONSUMED:
5111                break;
5112        }
5113
5114        return ret;
5115}
5116
5117gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5118{
5119        skb_mark_napi_id(skb, napi);
5120        trace_napi_gro_receive_entry(skb);
5121
5122        skb_gro_reset_offset(skb);
5123
5124        return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5125}
5126EXPORT_SYMBOL(napi_gro_receive);
5127
5128static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5129{
5130        if (unlikely(skb->pfmemalloc)) {
5131                consume_skb(skb);
5132                return;
5133        }
5134        __skb_pull(skb, skb_headlen(skb));
5135        /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5136        skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5137        skb->vlan_tci = 0;
5138        skb->dev = napi->dev;
5139        skb->skb_iif = 0;
5140        skb->encapsulation = 0;
5141        skb_shinfo(skb)->gso_type = 0;
5142        skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5143        secpath_reset(skb);
5144
5145        napi->skb = skb;
5146}
5147
5148struct sk_buff *napi_get_frags(struct napi_struct *napi)
5149{
5150        struct sk_buff *skb = napi->skb;
5151
5152        if (!skb) {
5153                skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5154                if (skb) {
5155                        napi->skb = skb;
5156                        skb_mark_napi_id(skb, napi);
5157                }
5158        }
5159        return skb;
5160}
5161EXPORT_SYMBOL(napi_get_frags);
5162
5163static gro_result_t napi_frags_finish(struct napi_struct *napi,
5164                                      struct sk_buff *skb,
5165                                      gro_result_t ret)
5166{
5167        switch (ret) {
5168        case GRO_NORMAL:
5169        case GRO_HELD:
5170                __skb_push(skb, ETH_HLEN);
5171                skb->protocol = eth_type_trans(skb, skb->dev);
5172                if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5173                        ret = GRO_DROP;
5174                break;
5175
5176        case GRO_DROP:
5177                napi_reuse_skb(napi, skb);
5178                break;
5179
5180        case GRO_MERGED_FREE:
5181                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5182                        napi_skb_free_stolen_head(skb);
5183                else
5184                        napi_reuse_skb(napi, skb);
5185                break;
5186
5187        case GRO_MERGED:
5188        case GRO_CONSUMED:
5189                break;
5190        }
5191
5192        return ret;
5193}
5194
5195/* Upper GRO stack assumes network header starts at gro_offset=0
5196 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5197 * We copy ethernet header into skb->data to have a common layout.
5198 */
5199static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5200{
5201        struct sk_buff *skb = napi->skb;
5202        const struct ethhdr *eth;
5203        unsigned int hlen = sizeof(*eth);
5204
5205        napi->skb = NULL;
5206
5207        skb_reset_mac_header(skb);
5208        skb_gro_reset_offset(skb);
5209
5210        eth = skb_gro_header_fast(skb, 0);
5211        if (unlikely(skb_gro_header_hard(skb, hlen))) {
5212                eth = skb_gro_header_slow(skb, hlen, 0);
5213                if (unlikely(!eth)) {
5214                        net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5215                                             __func__, napi->dev->name);
5216                        napi_reuse_skb(napi, skb);
5217                        return NULL;
5218                }
5219        } else {
5220                gro_pull_from_frag0(skb, hlen);
5221                NAPI_GRO_CB(skb)->frag0 += hlen;
5222                NAPI_GRO_CB(skb)->frag0_len -= hlen;
5223        }
5224        __skb_pull(skb, hlen);
5225
5226        /*
5227         * This works because the only protocols we care about don't require
5228         * special handling.
5229         * We'll fix it up properly in napi_frags_finish()
5230         */
5231        skb->protocol = eth->h_proto;
5232
5233        return skb;
5234}
5235
5236gro_result_t napi_gro_frags(struct napi_struct *napi)
5237{
5238        struct sk_buff *skb = napi_frags_skb(napi);
5239
5240        if (!skb)
5241                return GRO_DROP;
5242
5243        trace_napi_gro_frags_entry(skb);
5244
5245        return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5246}
5247EXPORT_SYMBOL(napi_gro_frags);
5248
5249/* Compute the checksum from gro_offset and return the folded value
5250 * after adding in any pseudo checksum.
5251 */
5252__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5253{
5254        __wsum wsum;
5255        __sum16 sum;
5256
5257        wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5258
5259        /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5260        sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5261        if (likely(!sum)) {
5262                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5263                    !skb->csum_complete_sw)
5264                        netdev_rx_csum_fault(skb->dev);
5265        }
5266
5267        NAPI_GRO_CB(skb)->csum = wsum;
5268        NAPI_GRO_CB(skb)->csum_valid = 1;
5269
5270        return sum;
5271}
5272EXPORT_SYMBOL(__skb_gro_checksum_complete);
5273
5274static void net_rps_send_ipi(struct softnet_data *remsd)
5275{
5276#ifdef CONFIG_RPS
5277        while (remsd) {
5278                struct softnet_data *next = remsd->rps_ipi_next;
5279
5280                if (cpu_online(remsd->cpu))
5281                        smp_call_function_single_async(remsd->cpu, &remsd->csd);
5282                remsd = next;
5283        }
5284#endif
5285}
5286
5287/*
5288 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5289 * Note: called with local irq disabled, but exits with local irq enabled.
5290 */
5291static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5292{
5293#ifdef CONFIG_RPS
5294        struct softnet_data *remsd = sd->rps_ipi_list;
5295
5296        if (remsd) {
5297                sd->rps_ipi_list = NULL;
5298
5299                local_irq_enable();
5300
5301                /* Send pending IPI's to kick RPS processing on remote cpus. */
5302                net_rps_send_ipi(remsd);
5303        } else
5304#endif
5305                local_irq_enable();
5306}
5307
5308static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5309{
5310#ifdef CONFIG_RPS
5311        return sd->rps_ipi_list != NULL;
5312#else
5313        return false;
5314#endif
5315}
5316
5317static int process_backlog(struct napi_struct *napi, int quota)
5318{
5319        struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5320        bool again = true;
5321        int work = 0;
5322
5323        /* Check if we have pending ipi, its better to send them now,
5324         * not waiting net_rx_action() end.
5325         */
5326        if (sd_has_rps_ipi_waiting(sd)) {
5327                local_irq_disable();
5328                net_rps_action_and_irq_enable(sd);
5329        }
5330
5331        napi->weight = dev_rx_weight;
5332        while (again) {
5333                struct sk_buff *skb;
5334
5335                while ((skb = __skb_dequeue(&sd->process_queue))) {
5336                        rcu_read_lock();
5337                        __netif_receive_skb(skb);
5338                        rcu_read_unlock();
5339                        input_queue_head_incr(sd);
5340                        if (++work >= quota)
5341                                return work;
5342
5343                }
5344
5345                local_irq_disable();
5346                rps_lock(sd);
5347                if (skb_queue_empty(&sd->input_pkt_queue)) {
5348                        /*
5349                         * Inline a custom version of __napi_complete().
5350                         * only current cpu owns and manipulates this napi,
5351                         * and NAPI_STATE_SCHED is the only possible flag set
5352                         * on backlog.
5353                         * We can use a plain write instead of clear_bit(),
5354                         * and we dont need an smp_mb() memory barrier.
5355                         */
5356                        napi->state = 0;
5357                        again = false;
5358                } else {
5359                        skb_queue_splice_tail_init(&sd->input_pkt_queue,
5360                                                   &sd->process_queue);
5361                }
5362                rps_unlock(sd);
5363                local_irq_enable();
5364        }
5365
5366        return work;
5367}
5368
5369/**
5370 * __napi_schedule - schedule for receive
5371 * @n: entry to schedule
5372 *
5373 * The entry's receive function will be scheduled to run.
5374 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5375 */
5376void __napi_schedule(struct napi_struct *n)
5377{
5378        unsigned long flags;
5379
5380        local_irq_save(flags);
5381        ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5382        local_irq_restore(flags);
5383}
5384EXPORT_SYMBOL(__napi_schedule);
5385
5386/**
5387 *      napi_schedule_prep - check if napi can be scheduled
5388 *      @n: napi context
5389 *
5390 * Test if NAPI routine is already running, and if not mark
5391 * it as running.  This is used as a condition variable
5392 * insure only one NAPI poll instance runs.  We also make
5393 * sure there is no pending NAPI disable.
5394 */
5395bool napi_schedule_prep(struct napi_struct *n)
5396{
5397        unsigned long val, new;
5398
5399        do {
5400                val = READ_ONCE(n->state);
5401                if (unlikely(val & NAPIF_STATE_DISABLE))
5402                        return false;
5403                new = val | NAPIF_STATE_SCHED;
5404
5405                /* Sets STATE_MISSED bit if STATE_SCHED was already set
5406                 * This was suggested by Alexander Duyck, as compiler
5407                 * emits better code than :
5408                 * if (val & NAPIF_STATE_SCHED)
5409                 *     new |= NAPIF_STATE_MISSED;
5410                 */
5411                new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5412                                                   NAPIF_STATE_MISSED;
5413        } while (cmpxchg(&n->state, val, new) != val);
5414
5415        return !(val & NAPIF_STATE_SCHED);
5416}
5417EXPORT_SYMBOL(napi_schedule_prep);
5418
5419/**
5420 * __napi_schedule_irqoff - schedule for receive
5421 * @n: entry to schedule
5422 *
5423 * Variant of __napi_schedule() assuming hard irqs are masked
5424 */
5425void __napi_schedule_irqoff(struct napi_struct *n)
5426{
5427        ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5428}
5429EXPORT_SYMBOL(__napi_schedule_irqoff);
5430
5431bool napi_complete_done(struct napi_struct *n, int work_done)
5432{
5433        unsigned long flags, val, new;
5434
5435        /*
5436         * 1) Don't let napi dequeue from the cpu poll list
5437         *    just in case its running on a different cpu.
5438         * 2) If we are busy polling, do nothing here, we have
5439         *    the guarantee we will be called later.
5440         */
5441        if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5442                                 NAPIF_STATE_IN_BUSY_POLL)))
5443                return false;
5444
5445        if (n->gro_list) {
5446                unsigned long timeout = 0;
5447
5448                if (work_done)
5449                        timeout = n->dev->gro_flush_timeout;
5450
5451                if (timeout)
5452                        hrtimer_start(&n->timer, ns_to_ktime(timeout),
5453                                      HRTIMER_MODE_REL_PINNED);
5454                else
5455                        napi_gro_flush(n, false);
5456        }
5457        if (unlikely(!list_empty(&n->poll_list))) {
5458                /* If n->poll_list is not empty, we need to mask irqs */
5459                local_irq_save(flags);
5460                list_del_init(&n->poll_list);
5461                local_irq_restore(flags);
5462        }
5463
5464        do {
5465                val = READ_ONCE(n->state);
5466
5467                WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5468
5469                new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5470
5471                /* If STATE_MISSED was set, leave STATE_SCHED set,
5472                 * because we will call napi->poll() one more time.
5473                 * This C code was suggested by Alexander Duyck to help gcc.
5474                 */
5475                new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5476                                                    NAPIF_STATE_SCHED;
5477        } while (cmpxchg(&n->state, val, new) != val);
5478
5479        if (unlikely(val & NAPIF_STATE_MISSED)) {
5480                __napi_schedule(n);
5481                return false;
5482        }
5483
5484        return true;
5485}
5486EXPORT_SYMBOL(napi_complete_done);
5487
5488/* must be called under rcu_read_lock(), as we dont take a reference */
5489static struct napi_struct *napi_by_id(unsigned int napi_id)
5490{
5491        unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5492        struct napi_struct *napi;
5493
5494        hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5495                if (napi->napi_id == napi_id)
5496                        return napi;
5497
5498        return NULL;
5499}
5500
5501#if defined(CONFIG_NET_RX_BUSY_POLL)
5502
5503#define BUSY_POLL_BUDGET 8
5504
5505static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5506{
5507        int rc;
5508
5509        /* Busy polling means there is a high chance device driver hard irq
5510         * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5511         * set in napi_schedule_prep().
5512         * Since we are about to call napi->poll() once more, we can safely
5513         * clear NAPI_STATE_MISSED.
5514         *
5515         * Note: x86 could use a single "lock and ..." instruction
5516         * to perform these two clear_bit()
5517         */
5518        clear_bit(NAPI_STATE_MISSED, &napi->state);
5519        clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5520
5521        local_bh_disable();
5522
5523        /* All we really want here is to re-enable device interrupts.
5524         * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5525         */
5526        rc = napi->poll(napi, BUSY_POLL_BUDGET);
5527        trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5528        netpoll_poll_unlock(have_poll_lock);
5529        if (rc == BUSY_POLL_BUDGET)
5530                __napi_schedule(napi);
5531        local_bh_enable();
5532}
5533
5534void napi_busy_loop(unsigned int napi_id,
5535                    bool (*loop_end)(void *, unsigned long),
5536                    void *loop_end_arg)
5537{
5538        unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5539        int (*napi_poll)(struct napi_struct *napi, int budget);
5540        void *have_poll_lock = NULL;
5541        struct napi_struct *napi;
5542
5543restart:
5544        napi_poll = NULL;
5545
5546        rcu_read_lock();
5547
5548        napi = napi_by_id(napi_id);
5549        if (!napi)
5550                goto out;
5551
5552        preempt_disable();
5553        for (;;) {
5554                int work = 0;
5555
5556                local_bh_disable();
5557                if (!napi_poll) {
5558                        unsigned long val = READ_ONCE(napi->state);
5559
5560                        /* If multiple threads are competing for this napi,
5561                         * we avoid dirtying napi->state as much as we can.
5562                         */
5563                        if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5564                                   NAPIF_STATE_IN_BUSY_POLL))
5565                                goto count;
5566                        if (cmpxchg(&napi->state, val,
5567                                    val | NAPIF_STATE_IN_BUSY_POLL |
5568                                          NAPIF_STATE_SCHED) != val)
5569                                goto count;
5570                        have_poll_lock = netpoll_poll_lock(napi);
5571                        napi_poll = napi->poll;
5572                }
5573                work = napi_poll(napi, BUSY_POLL_BUDGET);
5574                trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5575count:
5576                if (work > 0)
5577                        __NET_ADD_STATS(dev_net(napi->dev),
5578                                        LINUX_MIB_BUSYPOLLRXPACKETS, work);
5579                local_bh_enable();
5580
5581                if (!loop_end || loop_end(loop_end_arg, start_time))
5582                        break;
5583
5584                if (unlikely(need_resched())) {
5585                        if (napi_poll)
5586                                busy_poll_stop(napi, have_poll_lock);
5587                        preempt_enable();
5588                        rcu_read_unlock();
5589                        cond_resched();
5590                        if (loop_end(loop_end_arg, start_time))
5591                                return;
5592                        goto restart;
5593                }
5594                cpu_relax();
5595        }
5596        if (napi_poll)
5597                busy_poll_stop(napi, have_poll_lock);
5598        preempt_enable();
5599out:
5600        rcu_read_unlock();
5601}
5602EXPORT_SYMBOL(napi_busy_loop);
5603
5604#endif /* CONFIG_NET_RX_BUSY_POLL */
5605
5606static void napi_hash_add(struct napi_struct *napi)
5607{
5608        if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5609            test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5610                return;
5611
5612        spin_lock(&napi_hash_lock);
5613
5614        /* 0..NR_CPUS range is reserved for sender_cpu use */
5615        do {
5616                if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5617                        napi_gen_id = MIN_NAPI_ID;
5618        } while (napi_by_id(napi_gen_id));
5619        napi->napi_id = napi_gen_id;
5620
5621        hlist_add_head_rcu(&napi->napi_hash_node,
5622                           &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5623
5624        spin_unlock(&napi_hash_lock);
5625}
5626
5627/* Warning : caller is responsible to make sure rcu grace period
5628 * is respected before freeing memory containing @napi
5629 */
5630bool napi_hash_del(struct napi_struct *napi)
5631{
5632        bool rcu_sync_needed = false;
5633
5634        spin_lock(&napi_hash_lock);
5635
5636        if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5637                rcu_sync_needed = true;
5638                hlist_del_rcu(&napi->napi_hash_node);
5639        }
5640        spin_unlock(&napi_hash_lock);
5641        return rcu_sync_needed;
5642}
5643EXPORT_SYMBOL_GPL(napi_hash_del);
5644
5645static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5646{
5647        struct napi_struct *napi;
5648
5649        napi = container_of(timer, struct napi_struct, timer);
5650
5651        /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5652         * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5653         */
5654        if (napi->gro_list && !napi_disable_pending(napi) &&
5655            !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5656                __napi_schedule_irqoff(napi);
5657
5658        return HRTIMER_NORESTART;
5659}
5660
5661void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5662                    int (*poll)(struct napi_struct *, int), int weight)
5663{
5664        INIT_LIST_HEAD(&napi->poll_list);
5665        hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5666        napi->timer.function = napi_watchdog;
5667        napi->gro_count = 0;
5668        napi->gro_list = NULL;
5669        napi->skb = NULL;
5670        napi->poll = poll;
5671        if (weight > NAPI_POLL_WEIGHT)
5672                pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5673                            weight, dev->name);
5674        napi->weight = weight;
5675        list_add(&napi->dev_list, &dev->napi_list);
5676        napi->dev = dev;
5677#ifdef CONFIG_NETPOLL
5678        napi->poll_owner = -1;
5679#endif
5680        set_bit(NAPI_STATE_SCHED, &napi->state);
5681        napi_hash_add(napi);
5682}
5683EXPORT_SYMBOL(netif_napi_add);
5684
5685void napi_disable(struct napi_struct *n)
5686{
5687        might_sleep();
5688        set_bit(NAPI_STATE_DISABLE, &n->state);
5689
5690        while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5691                msleep(1);
5692        while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5693                msleep(1);
5694
5695        hrtimer_cancel(&n->timer);
5696
5697        clear_bit(NAPI_STATE_DISABLE, &n->state);
5698}
5699EXPORT_SYMBOL(napi_disable);
5700
5701/* Must be called in process context */
5702void netif_napi_del(struct napi_struct *napi)
5703{
5704        might_sleep();
5705        if (napi_hash_del(napi))
5706                synchronize_net();
5707        list_del_init(&napi->dev_list);
5708        napi_free_frags(napi);
5709
5710        kfree_skb_list(napi->gro_list);
5711        napi->gro_list = NULL;
5712        napi->gro_count = 0;
5713}
5714EXPORT_SYMBOL(netif_napi_del);
5715
5716static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5717{
5718        void *have;
5719        int work, weight;
5720
5721        list_del_init(&n->poll_list);
5722
5723        have = netpoll_poll_lock(n);
5724
5725        weight = n->weight;
5726
5727        /* This NAPI_STATE_SCHED test is for avoiding a race
5728         * with netpoll's poll_napi().  Only the entity which
5729         * obtains the lock and sees NAPI_STATE_SCHED set will
5730         * actually make the ->poll() call.  Therefore we avoid
5731         * accidentally calling ->poll() when NAPI is not scheduled.
5732         */
5733        work = 0;
5734        if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5735                work = n->poll(n, weight);
5736                trace_napi_poll(n, work, weight);
5737        }
5738
5739        WARN_ON_ONCE(work > weight);
5740
5741        if (likely(work < weight))
5742                goto out_unlock;
5743
5744        /* Drivers must not modify the NAPI state if they
5745         * consume the entire weight.  In such cases this code
5746         * still "owns" the NAPI instance and therefore can
5747         * move the instance around on the list at-will.
5748         */
5749        if (unlikely(napi_disable_pending(n))) {
5750                napi_complete(n);
5751                goto out_unlock;
5752        }
5753
5754        if (n->gro_list) {
5755                /* flush too old packets
5756                 * If HZ < 1000, flush all packets.
5757                 */
5758                napi_gro_flush(n, HZ >= 1000);
5759        }
5760
5761        /* Some drivers may have called napi_schedule
5762         * prior to exhausting their budget.
5763         */
5764        if (unlikely(!list_empty(&n->poll_list))) {
5765                pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5766                             n->dev ? n->dev->name : "backlog");
5767                goto out_unlock;
5768        }
5769
5770        list_add_tail(&n->poll_list, repoll);
5771
5772out_unlock:
5773        netpoll_poll_unlock(have);
5774
5775        return work;
5776}
5777
5778static __latent_entropy void net_rx_action(struct softirq_action *h)
5779{
5780        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5781        unsigned long time_limit = jiffies +
5782                usecs_to_jiffies(netdev_budget_usecs);
5783        int budget = netdev_budget;
5784        LIST_HEAD(list);
5785        LIST_HEAD(repoll);
5786
5787        local_irq_disable();
5788        list_splice_init(&sd->poll_list, &list);
5789        local_irq_enable();
5790
5791        for (;;) {
5792                struct napi_struct *n;
5793
5794                if (list_empty(&list)) {
5795                        if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5796                                goto out;
5797                        break;
5798                }
5799
5800                n = list_first_entry(&list, struct napi_struct, poll_list);
5801                budget -= napi_poll(n, &repoll);
5802
5803                /* If softirq window is exhausted then punt.
5804                 * Allow this to run for 2 jiffies since which will allow
5805                 * an average latency of 1.5/HZ.
5806                 */
5807                if (unlikely(budget <= 0 ||
5808                             time_after_eq(jiffies, time_limit))) {
5809                        sd->time_squeeze++;
5810                        break;
5811                }
5812        }
5813
5814        local_irq_disable();
5815
5816        list_splice_tail_init(&sd->poll_list, &list);
5817        list_splice_tail(&repoll, &list);
5818        list_splice(&list, &sd->poll_list);
5819        if (!list_empty(&sd->poll_list))
5820                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5821
5822        net_rps_action_and_irq_enable(sd);
5823out:
5824        __kfree_skb_flush();
5825}
5826
5827struct netdev_adjacent {
5828        struct net_device *dev;
5829
5830        /* upper master flag, there can only be one master device per list */
5831        bool master;
5832
5833        /* counter for the number of times this device was added to us */
5834        u16 ref_nr;
5835
5836        /* private field for the users */
5837        void *private;
5838
5839        struct list_head list;
5840        struct rcu_head rcu;
5841};
5842
5843static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5844                                                 struct list_head *adj_list)
5845{
5846        struct netdev_adjacent *adj;
5847
5848        list_for_each_entry(adj, adj_list, list) {
5849                if (adj->dev == adj_dev)
5850                        return adj;
5851        }
5852        return NULL;
5853}
5854
5855static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5856{
5857        struct net_device *dev = data;
5858
5859        return upper_dev == dev;
5860}
5861
5862/**
5863 * netdev_has_upper_dev - Check if device is linked to an upper device
5864 * @dev: device
5865 * @upper_dev: upper device to check
5866 *
5867 * Find out if a device is linked to specified upper device and return true
5868 * in case it is. Note that this checks only immediate upper device,
5869 * not through a complete stack of devices. The caller must hold the RTNL lock.
5870 */
5871bool netdev_has_upper_dev(struct net_device *dev,
5872                          struct net_device *upper_dev)
5873{
5874        ASSERT_RTNL();
5875
5876        return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5877                                             upper_dev);
5878}
5879EXPORT_SYMBOL(netdev_has_upper_dev);
5880
5881/**
5882 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5883 * @dev: device
5884 * @upper_dev: upper device to check
5885 *
5886 * Find out if a device is linked to specified upper device and return true
5887 * in case it is. Note that this checks the entire upper device chain.
5888 * The caller must hold rcu lock.
5889 */
5890
5891bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5892                                  struct net_device *upper_dev)
5893{
5894        return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5895                                               upper_dev);
5896}
5897EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5898
5899/**
5900 * netdev_has_any_upper_dev - Check if device is linked to some device
5901 * @dev: device
5902 *
5903 * Find out if a device is linked to an upper device and return true in case
5904 * it is. The caller must hold the RTNL lock.
5905 */
5906bool netdev_has_any_upper_dev(struct net_device *dev)
5907{
5908        ASSERT_RTNL();
5909
5910        return !list_empty(&dev->adj_list.upper);
5911}
5912EXPORT_SYMBOL(netdev_has_any_upper_dev);
5913
5914/**
5915 * netdev_master_upper_dev_get - Get master upper device
5916 * @dev: device
5917 *
5918 * Find a master upper device and return pointer to it or NULL in case
5919 * it's not there. The caller must hold the RTNL lock.
5920 */
5921struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5922{
5923        struct netdev_adjacent *upper;
5924
5925        ASSERT_RTNL();
5926
5927        if (list_empty(&dev->adj_list.upper))
5928                return NULL;
5929
5930        upper = list_first_entry(&dev->adj_list.upper,
5931                                 struct netdev_adjacent, list);
5932        if (likely(upper->master))
5933                return upper->dev;
5934        return NULL;
5935}
5936EXPORT_SYMBOL(netdev_master_upper_dev_get);
5937
5938/**
5939 * netdev_has_any_lower_dev - Check if device is linked to some device
5940 * @dev: device
5941 *
5942 * Find out if a device is linked to a lower device and return true in case
5943 * it is. The caller must hold the RTNL lock.
5944 */
5945static bool netdev_has_any_lower_dev(struct net_device *dev)
5946{
5947        ASSERT_RTNL();
5948
5949        return !list_empty(&dev->adj_list.lower);
5950}
5951
5952void *netdev_adjacent_get_private(struct list_head *adj_list)
5953{
5954        struct netdev_adjacent *adj;
5955
5956        adj = list_entry(adj_list, struct netdev_adjacent, list);
5957
5958        return adj->private;
5959}
5960EXPORT_SYMBOL(netdev_adjacent_get_private);
5961
5962/**
5963 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5964 * @dev: device
5965 * @iter: list_head ** of the current position
5966 *
5967 * Gets the next device from the dev's upper list, starting from iter
5968 * position. The caller must hold RCU read lock.
5969 */
5970struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5971                                                 struct list_head **iter)
5972{
5973        struct netdev_adjacent *upper;
5974
5975        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5976
5977        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5978
5979        if (&upper->list == &dev->adj_list.upper)
5980                return NULL;
5981
5982        *iter = &upper->list;
5983
5984        return upper->dev;
5985}
5986EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5987
5988static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5989                                                    struct list_head **iter)
5990{
5991        struct netdev_adjacent *upper;
5992
5993        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5994
5995        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5996
5997        if (&upper->list == &dev->adj_list.upper)
5998                return NULL;
5999
6000        *iter = &upper->list;
6001
6002        return upper->dev;
6003}
6004
6005int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6006                                  int (*fn)(struct net_device *dev,
6007                                            void *data),
6008                                  void *data)
6009{
6010        struct net_device *udev;
6011        struct list_head *iter;
6012        int ret;
6013
6014        for (iter = &dev->adj_list.upper,
6015             udev = netdev_next_upper_dev_rcu(dev, &iter);
6016             udev;
6017             udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6018                /* first is the upper device itself */
6019                ret = fn(udev, data);
6020                if (ret)
6021                        return ret;
6022
6023                /* then look at all of its upper devices */
6024                ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6025                if (ret)
6026                        return ret;
6027        }
6028
6029        return 0;
6030}
6031EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6032
6033/**
6034 * netdev_lower_get_next_private - Get the next ->private from the
6035 *                                 lower neighbour list
6036 * @dev: device
6037 * @iter: list_head ** of the current position
6038 *
6039 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6040 * list, starting from iter position. The caller must hold either hold the
6041 * RTNL lock or its own locking that guarantees that the neighbour lower
6042 * list will remain unchanged.
6043 */
6044void *netdev_lower_get_next_private(struct net_device *dev,
6045                                    struct list_head **iter)
6046{
6047        struct netdev_adjacent *lower;
6048
6049        lower = list_entry(*iter, struct netdev_adjacent, list);
6050
6051        if (&lower->list == &dev->adj_list.lower)
6052                return NULL;
6053
6054        *iter = lower->list.next;
6055
6056        return lower->private;
6057}
6058EXPORT_SYMBOL(netdev_lower_get_next_private);
6059
6060/**
6061 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6062 *                                     lower neighbour list, RCU
6063 *                                     variant
6064 * @dev: device
6065 * @iter: list_head ** of the current position
6066 *
6067 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6068 * list, starting from iter position. The caller must hold RCU read lock.
6069 */
6070void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6071                                        struct list_head **iter)
6072{
6073        struct netdev_adjacent *lower;
6074
6075        WARN_ON_ONCE(!rcu_read_lock_held());
6076
6077        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6078
6079        if (&lower->list == &dev->adj_list.lower)
6080                return NULL;
6081
6082        *iter = &lower->list;
6083
6084        return lower->private;
6085}
6086EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6087
6088/**
6089 * netdev_lower_get_next - Get the next device from the lower neighbour
6090 *                         list
6091 * @dev: device
6092 * @iter: list_head ** of the current position
6093 *
6094 * Gets the next netdev_adjacent from the dev's lower neighbour
6095 * list, starting from iter position. The caller must hold RTNL lock or
6096 * its own locking that guarantees that the neighbour lower
6097 * list will remain unchanged.
6098 */
6099void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6100{
6101        struct netdev_adjacent *lower;
6102
6103        lower = list_entry(*iter, struct netdev_adjacent, list);
6104
6105        if (&lower->list == &dev->adj_list.lower)
6106                return NULL;
6107
6108        *iter = lower->list.next;
6109
6110        return lower->dev;
6111}
6112EXPORT_SYMBOL(netdev_lower_get_next);
6113
6114static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6115                                                struct list_head **iter)
6116{
6117        struct netdev_adjacent *lower;
6118
6119        lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6120
6121        if (&lower->list == &dev->adj_list.lower)
6122                return NULL;
6123
6124        *iter = &lower->list;
6125
6126        return lower->dev;
6127}
6128
6129int netdev_walk_all_lower_dev(struct net_device *dev,
6130                              int (*fn)(struct net_device *dev,
6131                                        void *data),
6132                              void *data)
6133{
6134        struct net_device *ldev;
6135        struct list_head *iter;
6136        int ret;
6137
6138        for (iter = &dev->adj_list.lower,
6139             ldev = netdev_next_lower_dev(dev, &iter);
6140             ldev;
6141             ldev = netdev_next_lower_dev(dev, &iter)) {
6142                /* first is the lower device itself */
6143                ret = fn(ldev, data);
6144                if (ret)
6145                        return ret;
6146
6147                /* then look at all of its lower devices */
6148                ret = netdev_walk_all_lower_dev(ldev, fn, data);
6149                if (ret)
6150                        return ret;
6151        }
6152
6153        return 0;
6154}
6155EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6156
6157static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6158                                                    struct list_head **iter)
6159{
6160        struct netdev_adjacent *lower;
6161
6162        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6163        if (&lower->list == &dev->adj_list.lower)
6164                return NULL;
6165
6166        *iter = &lower->list;
6167
6168        return lower->dev;
6169}
6170
6171int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6172                                  int (*fn)(struct net_device *dev,
6173                                            void *data),
6174                                  void *data)
6175{
6176        struct net_device *ldev;
6177        struct list_head *iter;
6178        int ret;
6179
6180        for (iter = &dev->adj_list.lower,
6181             ldev = netdev_next_lower_dev_rcu(dev, &iter);
6182             ldev;
6183             ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6184                /* first is the lower device itself */
6185                ret = fn(ldev, data);
6186                if (ret)
6187                        return ret;
6188
6189                /* then look at all of its lower devices */
6190                ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6191                if (ret)
6192                        return ret;
6193        }
6194
6195        return 0;
6196}
6197EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6198
6199/**
6200 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6201 *                                     lower neighbour list, RCU
6202 *                                     variant
6203 * @dev: device
6204 *
6205 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6206 * list. The caller must hold RCU read lock.
6207 */
6208void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6209{
6210        struct netdev_adjacent *lower;
6211
6212        lower = list_first_or_null_rcu(&dev->adj_list.lower,
6213                        struct netdev_adjacent, list);
6214        if (lower)
6215                return lower->private;
6216        return NULL;
6217}
6218EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6219
6220/**
6221 * netdev_master_upper_dev_get_rcu - Get master upper device
6222 * @dev: device
6223 *
6224 * Find a master upper device and return pointer to it or NULL in case
6225 * it's not there. The caller must hold the RCU read lock.
6226 */
6227struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6228{
6229        struct netdev_adjacent *upper;
6230
6231        upper = list_first_or_null_rcu(&dev->adj_list.upper,
6232                                       struct netdev_adjacent, list);
6233        if (upper && likely(upper->master))
6234                return upper->dev;
6235        return NULL;
6236}
6237EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6238
6239static int netdev_adjacent_sysfs_add(struct net_device *dev,
6240                              struct net_device *adj_dev,
6241                              struct list_head *dev_list)
6242{
6243        char linkname[IFNAMSIZ+7];
6244
6245        sprintf(linkname, dev_list == &dev->adj_list.upper ?
6246                "upper_%s" : "lower_%s", adj_dev->name);
6247        return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6248                                 linkname);
6249}
6250static void netdev_adjacent_sysfs_del(struct net_device *dev,
6251                               char *name,
6252                               struct list_head *dev_list)
6253{
6254        char linkname[IFNAMSIZ+7];
6255
6256        sprintf(linkname, dev_list == &dev->adj_list.upper ?
6257                "upper_%s" : "lower_%s", name);
6258        sysfs_remove_link(&(dev->dev.kobj), linkname);
6259}
6260
6261static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6262                                                 struct net_device *adj_dev,
6263                                                 struct list_head *dev_list)
6264{
6265        return (dev_list == &dev->adj_list.upper ||
6266                dev_list == &dev->adj_list.lower) &&
6267                net_eq(dev_net(dev), dev_net(adj_dev));
6268}
6269
6270static int __netdev_adjacent_dev_insert(struct net_device *dev,
6271                                        struct net_device *adj_dev,
6272                                        struct list_head *dev_list,
6273                                        void *private, bool master)
6274{
6275        struct netdev_adjacent *adj;
6276        int ret;
6277
6278        adj = __netdev_find_adj(adj_dev, dev_list);
6279
6280        if (adj) {
6281                adj->ref_nr += 1;
6282                pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6283                         dev->name, adj_dev->name, adj->ref_nr);
6284
6285                return 0;
6286        }
6287
6288        adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6289        if (!adj)
6290                return -ENOMEM;
6291
6292        adj->dev = adj_dev;
6293        adj->master = master;
6294        adj->ref_nr = 1;
6295        adj->private = private;
6296        dev_hold(adj_dev);
6297
6298        pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6299                 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6300
6301        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6302                ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6303                if (ret)
6304                        goto free_adj;
6305        }
6306
6307        /* Ensure that master link is always the first item in list. */
6308        if (master) {
6309                ret = sysfs_create_link(&(dev->dev.kobj),
6310                                        &(adj_dev->dev.kobj), "master");
6311                if (ret)
6312                        goto remove_symlinks;
6313
6314                list_add_rcu(&adj->list, dev_list);
6315        } else {
6316                list_add_tail_rcu(&adj->list, dev_list);
6317        }
6318
6319        return 0;
6320
6321remove_symlinks:
6322        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6323                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6324free_adj:
6325        kfree(adj);
6326        dev_put(adj_dev);
6327
6328        return ret;
6329}
6330
6331static void __netdev_adjacent_dev_remove(struct net_device *dev,
6332                                         struct net_device *adj_dev,
6333                                         u16 ref_nr,
6334                                         struct list_head *dev_list)
6335{
6336        struct netdev_adjacent *adj;
6337
6338        pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6339                 dev->name, adj_dev->name, ref_nr);
6340
6341        adj = __netdev_find_adj(adj_dev, dev_list);
6342
6343        if (!adj) {
6344                pr_err("Adjacency does not exist for device %s from %s\n",
6345                       dev->name, adj_dev->name);
6346                WARN_ON(1);
6347                return;
6348        }
6349
6350        if (adj->ref_nr > ref_nr) {
6351                pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6352                         dev->name, adj_dev->name, ref_nr,
6353                         adj->ref_nr - ref_nr);
6354                adj->ref_nr -= ref_nr;
6355                return;
6356        }
6357
6358        if (adj->master)
6359                sysfs_remove_link(&(dev->dev.kobj), "master");
6360
6361        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6362                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6363
6364        list_del_rcu(&adj->list);
6365        pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6366                 adj_dev->name, dev->name, adj_dev->name);
6367        dev_put(adj_dev);
6368        kfree_rcu(adj, rcu);
6369}
6370
6371static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6372                                            struct net_device *upper_dev,
6373                                            struct list_head *up_list,
6374                                            struct list_head *down_list,
6375                                            void *private, bool master)
6376{
6377        int ret;
6378
6379        ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6380                                           private, master);
6381        if (ret)
6382                return ret;
6383
6384        ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6385                                           private, false);
6386        if (ret) {
6387                __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6388                return ret;
6389        }
6390
6391        return 0;
6392}
6393
6394static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6395                                               struct net_device *upper_dev,
6396                                               u16 ref_nr,
6397                                               struct list_head *up_list,
6398                                               struct list_head *down_list)
6399{
6400        __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6401        __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6402}
6403
6404static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6405                                                struct net_device *upper_dev,
6406                                                void *private, bool master)
6407{
6408        return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6409                                                &dev->adj_list.upper,
6410                                                &upper_dev->adj_list.lower,
6411                                                private, master);
6412}
6413
6414static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6415                                                   struct net_device *upper_dev)
6416{
6417        __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6418                                           &dev->adj_list.upper,
6419                                           &upper_dev->adj_list.lower);
6420}
6421
6422static int __netdev_upper_dev_link(struct net_device *dev,
6423                                   struct net_device *upper_dev, bool master,
6424                                   void *upper_priv, void *upper_info,
6425                                   struct netlink_ext_ack *extack)
6426{
6427        struct netdev_notifier_changeupper_info changeupper_info = {
6428                .info = {
6429                        .dev = dev,
6430                        .extack = extack,
6431                },
6432                .upper_dev = upper_dev,
6433                .master = master,
6434                .linking = true,
6435                .upper_info = upper_info,
6436        };
6437        struct net_device *master_dev;
6438        int ret = 0;
6439
6440        ASSERT_RTNL();
6441
6442        if (dev == upper_dev)
6443                return -EBUSY;
6444
6445        /* To prevent loops, check if dev is not upper device to upper_dev. */
6446        if (netdev_has_upper_dev(upper_dev, dev))
6447                return -EBUSY;
6448
6449        if (!master) {
6450                if (netdev_has_upper_dev(dev, upper_dev))
6451                        return -EEXIST;
6452        } else {
6453                master_dev = netdev_master_upper_dev_get(dev);
6454                if (master_dev)
6455                        return master_dev == upper_dev ? -EEXIST : -EBUSY;
6456        }
6457
6458        ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6459                                            &changeupper_info.info);
6460        ret = notifier_to_errno(ret);
6461        if (ret)
6462                return ret;
6463
6464        ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6465                                                   master);
6466        if (ret)
6467                return ret;
6468
6469        ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6470                                            &changeupper_info.info);
6471        ret = notifier_to_errno(ret);
6472        if (ret)
6473                goto rollback;
6474
6475        return 0;
6476
6477rollback:
6478        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6479
6480        return ret;
6481}
6482
6483/**
6484 * netdev_upper_dev_link - Add a link to the upper device
6485 * @dev: device
6486 * @upper_dev: new upper device
6487 * @extack: netlink extended ack
6488 *
6489 * Adds a link to device which is upper to this one. The caller must hold
6490 * the RTNL lock. On a failure a negative errno code is returned.
6491 * On success the reference counts are adjusted and the function
6492 * returns zero.
6493 */
6494int netdev_upper_dev_link(struct net_device *dev,
6495                          struct net_device *upper_dev,
6496                          struct netlink_ext_ack *extack)
6497{
6498        return __netdev_upper_dev_link(dev, upper_dev, false,
6499                                       NULL, NULL, extack);
6500}
6501EXPORT_SYMBOL(netdev_upper_dev_link);
6502
6503/**
6504 * netdev_master_upper_dev_link - Add a master link to the upper device
6505 * @dev: device
6506 * @upper_dev: new upper device
6507 * @upper_priv: upper device private
6508 * @upper_info: upper info to be passed down via notifier
6509 * @extack: netlink extended ack
6510 *
6511 * Adds a link to device which is upper to this one. In this case, only
6512 * one master upper device can be linked, although other non-master devices
6513 * might be linked as well. The caller must hold the RTNL lock.
6514 * On a failure a negative errno code is returned. On success the reference
6515 * counts are adjusted and the function returns zero.
6516 */
6517int netdev_master_upper_dev_link(struct net_device *dev,
6518                                 struct net_device *upper_dev,
6519                                 void *upper_priv, void *upper_info,
6520                                 struct netlink_ext_ack *extack)
6521{
6522        return __netdev_upper_dev_link(dev, upper_dev, true,
6523                                       upper_priv, upper_info, extack);
6524}
6525EXPORT_SYMBOL(netdev_master_upper_dev_link);
6526
6527/**
6528 * netdev_upper_dev_unlink - Removes a link to upper device
6529 * @dev: device
6530 * @upper_dev: new upper device
6531 *
6532 * Removes a link to device which is upper to this one. The caller must hold
6533 * the RTNL lock.
6534 */
6535void netdev_upper_dev_unlink(struct net_device *dev,
6536                             struct net_device *upper_dev)
6537{
6538        struct netdev_notifier_changeupper_info changeupper_info = {
6539                .info = {
6540                        .dev = dev,
6541                },
6542                .upper_dev = upper_dev,
6543                .linking = false,
6544        };
6545
6546        ASSERT_RTNL();
6547
6548        changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6549
6550        call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6551                                      &changeupper_info.info);
6552
6553        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6554
6555        call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6556                                      &changeupper_info.info);
6557}
6558EXPORT_SYMBOL(netdev_upper_dev_unlink);
6559
6560/**
6561 * netdev_bonding_info_change - Dispatch event about slave change
6562 * @dev: device
6563 * @bonding_info: info to dispatch
6564 *
6565 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6566 * The caller must hold the RTNL lock.
6567 */
6568void netdev_bonding_info_change(struct net_device *dev,
6569                                struct netdev_bonding_info *bonding_info)
6570{
6571        struct netdev_notifier_bonding_info info = {
6572                .info.dev = dev,
6573        };
6574
6575        memcpy(&info.bonding_info, bonding_info,
6576               sizeof(struct netdev_bonding_info));
6577        call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6578                                      &info.info);
6579}
6580EXPORT_SYMBOL(netdev_bonding_info_change);
6581
6582static void netdev_adjacent_add_links(struct net_device *dev)
6583{
6584        struct netdev_adjacent *iter;
6585
6586        struct net *net = dev_net(dev);
6587
6588        list_for_each_entry(iter, &dev->adj_list.upper, list) {
6589                if (!net_eq(net, dev_net(iter->dev)))
6590                        continue;
6591                netdev_adjacent_sysfs_add(iter->dev, dev,
6592                                          &iter->dev->adj_list.lower);
6593                netdev_adjacent_sysfs_add(dev, iter->dev,
6594                                          &dev->adj_list.upper);
6595        }
6596
6597        list_for_each_entry(iter, &dev->adj_list.lower, list) {
6598                if (!net_eq(net, dev_net(iter->dev)))
6599                        continue;
6600                netdev_adjacent_sysfs_add(iter->dev, dev,
6601                                          &iter->dev->adj_list.upper);
6602                netdev_adjacent_sysfs_add(dev, iter->dev,
6603                                          &dev->adj_list.lower);
6604        }
6605}
6606
6607static void netdev_adjacent_del_links(struct net_device *dev)
6608{
6609        struct netdev_adjacent *iter;
6610
6611        struct net *net = dev_net(dev);
6612
6613        list_for_each_entry(iter, &dev->adj_list.upper, list) {
6614                if (!net_eq(net, dev_net(iter->dev)))
6615                        continue;
6616                netdev_adjacent_sysfs_del(iter->dev, dev->name,
6617                                          &iter->dev->adj_list.lower);
6618                netdev_adjacent_sysfs_del(dev, iter->dev->name,
6619                                          &dev->adj_list.upper);
6620        }
6621
6622        list_for_each_entry(iter, &dev->adj_list.lower, list) {
6623                if (!net_eq(net, dev_net(iter->dev)))
6624                        continue;
6625                netdev_adjacent_sysfs_del(iter->dev, dev->name,
6626                                          &iter->dev->adj_list.upper);
6627                netdev_adjacent_sysfs_del(dev, iter->dev->name,
6628                                          &dev->adj_list.lower);
6629        }
6630}
6631
6632void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6633{
6634        struct netdev_adjacent *iter;
6635
6636        struct net *net = dev_net(dev);
6637
6638        list_for_each_entry(iter, &dev->adj_list.upper, list) {
6639                if (!net_eq(net, dev_net(iter->dev)))
6640                        continue;
6641                netdev_adjacent_sysfs_del(iter->dev, oldname,
6642                                          &iter->dev->adj_list.lower);
6643                netdev_adjacent_sysfs_add(iter->dev, dev,
6644                                          &iter->dev->adj_list.lower);
6645        }
6646
6647        list_for_each_entry(iter, &dev->adj_list.lower, list) {
6648                if (!net_eq(net, dev_net(iter->dev)))
6649                        continue;
6650                netdev_adjacent_sysfs_del(iter->dev, oldname,
6651                                          &iter->dev->adj_list.upper);
6652                netdev_adjacent_sysfs_add(iter->dev, dev,
6653                                          &iter->dev->adj_list.upper);
6654        }
6655}
6656
6657void *netdev_lower_dev_get_private(struct net_device *dev,
6658                                   struct net_device *lower_dev)
6659{
6660        struct netdev_adjacent *lower;
6661
6662        if (!lower_dev)
6663                return NULL;
6664        lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6665        if (!lower)
6666                return NULL;
6667
6668        return lower->private;
6669}
6670EXPORT_SYMBOL(netdev_lower_dev_get_private);
6671
6672
6673int dev_get_nest_level(struct net_device *dev)
6674{
6675        struct net_device *lower = NULL;
6676        struct list_head *iter;
6677        int max_nest = -1;
6678        int nest;
6679
6680        ASSERT_RTNL();
6681
6682        netdev_for_each_lower_dev(dev, lower, iter) {
6683                nest = dev_get_nest_level(lower);
6684                if (max_nest < nest)
6685                        max_nest = nest;
6686        }
6687
6688        return max_nest + 1;
6689}
6690EXPORT_SYMBOL(dev_get_nest_level);
6691
6692/**
6693 * netdev_lower_change - Dispatch event about lower device state change
6694 * @lower_dev: device
6695 * @lower_state_info: state to dispatch
6696 *
6697 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6698 * The caller must hold the RTNL lock.
6699 */
6700void netdev_lower_state_changed(struct net_device *lower_dev,
6701                                void *lower_state_info)
6702{
6703        struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6704                .info.dev = lower_dev,
6705        };
6706
6707        ASSERT_RTNL();
6708        changelowerstate_info.lower_state_info = lower_state_info;
6709        call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6710                                      &changelowerstate_info.info);
6711}
6712EXPORT_SYMBOL(netdev_lower_state_changed);
6713
6714static void dev_change_rx_flags(struct net_device *dev, int flags)
6715{
6716        const struct net_device_ops *ops = dev->netdev_ops;
6717
6718        if (ops->ndo_change_rx_flags)
6719                ops->ndo_change_rx_flags(dev, flags);
6720}
6721
6722static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6723{
6724        unsigned int old_flags = dev->flags;
6725        kuid_t uid;
6726        kgid_t gid;
6727
6728        ASSERT_RTNL();
6729
6730        dev->flags |= IFF_PROMISC;
6731        dev->promiscuity += inc;
6732        if (dev->promiscuity == 0) {
6733                /*
6734                 * Avoid overflow.
6735                 * If inc causes overflow, untouch promisc and return error.
6736                 */
6737                if (inc < 0)
6738                        dev->flags &= ~IFF_PROMISC;
6739                else {
6740                        dev->promiscuity -= inc;
6741                        pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6742                                dev->name);
6743                        return -EOVERFLOW;
6744                }
6745        }
6746        if (dev->flags != old_flags) {
6747                pr_info("device %s %s promiscuous mode\n",
6748                        dev->name,
6749                        dev->flags & IFF_PROMISC ? "entered" : "left");
6750                if (audit_enabled) {
6751                        current_uid_gid(&uid, &gid);
6752                        audit_log(current->audit_context, GFP_ATOMIC,
6753                                AUDIT_ANOM_PROMISCUOUS,
6754                                "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6755                                dev->name, (dev->flags & IFF_PROMISC),
6756                                (old_flags & IFF_PROMISC),
6757                                from_kuid(&init_user_ns, audit_get_loginuid(current)),
6758                                from_kuid(&init_user_ns, uid),
6759                                from_kgid(&init_user_ns, gid),
6760                                audit_get_sessionid(current));
6761                }
6762
6763                dev_change_rx_flags(dev, IFF_PROMISC);
6764        }
6765        if (notify)
6766                __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6767        return 0;
6768}
6769
6770/**
6771 *      dev_set_promiscuity     - update promiscuity count on a device
6772 *      @dev: device
6773 *      @inc: modifier
6774 *
6775 *      Add or remove promiscuity from a device. While the count in the device
6776 *      remains above zero the interface remains promiscuous. Once it hits zero
6777 *      the device reverts back to normal filtering operation. A negative inc
6778 *      value is used to drop promiscuity on the device.
6779 *      Return 0 if successful or a negative errno code on error.
6780 */
6781int dev_set_promiscuity(struct net_device *dev, int inc)
6782{
6783        unsigned int old_flags = dev->flags;
6784        int err;
6785
6786        err = __dev_set_promiscuity(dev, inc, true);
6787        if (err < 0)
6788                return err;
6789        if (dev->flags != old_flags)
6790                dev_set_rx_mode(dev);
6791        return err;
6792}
6793EXPORT_SYMBOL(dev_set_promiscuity);
6794
6795static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6796{
6797        unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6798
6799        ASSERT_RTNL();
6800
6801        dev->flags |= IFF_ALLMULTI;
6802        dev->allmulti += inc;
6803        if (dev->allmulti == 0) {
6804                /*
6805                 * Avoid overflow.
6806                 * If inc causes overflow, untouch allmulti and return error.
6807                 */
6808                if (inc < 0)
6809                        dev->flags &= ~IFF_ALLMULTI;
6810                else {
6811                        dev->allmulti -= inc;
6812                        pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6813                                dev->name);
6814                        return -EOVERFLOW;
6815                }
6816        }
6817        if (dev->flags ^ old_flags) {
6818                dev_change_rx_flags(dev, IFF_ALLMULTI);
6819                dev_set_rx_mode(dev);
6820                if (notify)
6821                        __dev_notify_flags(dev, old_flags,
6822                                           dev->gflags ^ old_gflags);
6823        }
6824        return 0;
6825}
6826
6827/**
6828 *      dev_set_allmulti        - update allmulti count on a device
6829 *      @dev: device
6830 *      @inc: modifier
6831 *
6832 *      Add or remove reception of all multicast frames to a device. While the
6833 *      count in the device remains above zero the interface remains listening
6834 *      to all interfaces. Once it hits zero the device reverts back to normal
6835 *      filtering operation. A negative @inc value is used to drop the counter
6836 *      when releasing a resource needing all multicasts.
6837 *      Return 0 if successful or a negative errno code on error.
6838 */
6839
6840int dev_set_allmulti(struct net_device *dev, int inc)
6841{
6842        return __dev_set_allmulti(dev, inc, true);
6843}
6844EXPORT_SYMBOL(dev_set_allmulti);
6845
6846/*
6847 *      Upload unicast and multicast address lists to device and
6848 *      configure RX filtering. When the device doesn't support unicast
6849 *      filtering it is put in promiscuous mode while unicast addresses
6850 *      are present.
6851 */
6852void __dev_set_rx_mode(struct net_device *dev)
6853{
6854        const struct net_device_ops *ops = dev->netdev_ops;
6855
6856        /* dev_open will call this function so the list will stay sane. */
6857        if (!(dev->flags&IFF_UP))
6858                return;
6859
6860        if (!netif_device_present(dev))
6861                return;
6862
6863        if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6864                /* Unicast addresses changes may only happen under the rtnl,
6865                 * therefore calling __dev_set_promiscuity here is safe.
6866                 */
6867                if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6868                        __dev_set_promiscuity(dev, 1, false);
6869                        dev->uc_promisc = true;
6870                } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6871                        __dev_set_promiscuity(dev, -1, false);
6872                        dev->uc_promisc = false;
6873                }
6874        }
6875
6876        if (ops->ndo_set_rx_mode)
6877                ops->ndo_set_rx_mode(dev);
6878}
6879
6880void dev_set_rx_mode(struct net_device *dev)
6881{
6882        netif_addr_lock_bh(dev);
6883        __dev_set_rx_mode(dev);
6884        netif_addr_unlock_bh(dev);
6885}
6886
6887/**
6888 *      dev_get_flags - get flags reported to userspace
6889 *      @dev: device
6890 *
6891 *      Get the combination of flag bits exported through APIs to userspace.
6892 */
6893unsigned int dev_get_flags(const struct net_device *dev)
6894{
6895        unsigned int flags;
6896
6897        flags = (dev->flags & ~(IFF_PROMISC |
6898                                IFF_ALLMULTI |
6899                                IFF_RUNNING |
6900                                IFF_LOWER_UP |
6901                                IFF_DORMANT)) |
6902                (dev->gflags & (IFF_PROMISC |
6903                                IFF_ALLMULTI));
6904
6905        if (netif_running(dev)) {
6906                if (netif_oper_up(dev))
6907                        flags |= IFF_RUNNING;
6908                if (netif_carrier_ok(dev))
6909                        flags |= IFF_LOWER_UP;
6910                if (netif_dormant(dev))
6911                        flags |= IFF_DORMANT;
6912        }
6913
6914        return flags;
6915}
6916EXPORT_SYMBOL(dev_get_flags);
6917
6918int __dev_change_flags(struct net_device *dev, unsigned int flags)
6919{
6920        unsigned int old_flags = dev->flags;
6921        int ret;
6922
6923        ASSERT_RTNL();
6924
6925        /*
6926         *      Set the flags on our device.
6927         */
6928
6929        dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6930                               IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6931                               IFF_AUTOMEDIA)) |
6932                     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6933                                    IFF_ALLMULTI));
6934
6935        /*
6936         *      Load in the correct multicast list now the flags have changed.
6937         */
6938
6939        if ((old_flags ^ flags) & IFF_MULTICAST)
6940                dev_change_rx_flags(dev, IFF_MULTICAST);
6941
6942        dev_set_rx_mode(dev);
6943
6944        /*
6945         *      Have we downed the interface. We handle IFF_UP ourselves
6946         *      according to user attempts to set it, rather than blindly
6947         *      setting it.
6948         */
6949
6950        ret = 0;
6951        if ((old_flags ^ flags) & IFF_UP) {
6952                if (old_flags & IFF_UP)
6953                        __dev_close(dev);
6954                else
6955                        ret = __dev_open(dev);
6956        }
6957
6958        if ((flags ^ dev->gflags) & IFF_PROMISC) {
6959                int inc = (flags & IFF_PROMISC) ? 1 : -1;
6960                unsigned int old_flags = dev->flags;
6961
6962                dev->gflags ^= IFF_PROMISC;
6963
6964                if (__dev_set_promiscuity(dev, inc, false) >= 0)
6965                        if (dev->flags != old_flags)
6966                                dev_set_rx_mode(dev);
6967        }
6968
6969        /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6970         * is important. Some (broken) drivers set IFF_PROMISC, when
6971         * IFF_ALLMULTI is requested not asking us and not reporting.
6972         */
6973        if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6974                int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6975
6976                dev->gflags ^= IFF_ALLMULTI;
6977                __dev_set_allmulti(dev, inc, false);
6978        }
6979
6980        return ret;
6981}
6982
6983void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6984                        unsigned int gchanges)
6985{
6986        unsigned int changes = dev->flags ^ old_flags;
6987
6988        if (gchanges)
6989                rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6990
6991        if (changes & IFF_UP) {
6992                if (dev->flags & IFF_UP)
6993                        call_netdevice_notifiers(NETDEV_UP, dev);
6994                else
6995                        call_netdevice_notifiers(NETDEV_DOWN, dev);
6996        }
6997
6998        if (dev->flags & IFF_UP &&
6999            (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7000                struct netdev_notifier_change_info change_info = {
7001                        .info = {
7002                                .dev = dev,
7003                        },
7004                        .flags_changed = changes,
7005                };
7006
7007                call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7008        }
7009}
7010
7011/**
7012 *      dev_change_flags - change device settings
7013 *      @dev: device
7014 *      @flags: device state flags
7015 *
7016 *      Change settings on device based state flags. The flags are
7017 *      in the userspace exported format.
7018 */
7019int dev_change_flags(struct net_device *dev, unsigned int flags)
7020{
7021        int ret;
7022        unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7023
7024        ret = __dev_change_flags(dev, flags);
7025        if (ret < 0)
7026                return ret;
7027
7028        changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7029        __dev_notify_flags(dev, old_flags, changes);
7030        return ret;
7031}
7032EXPORT_SYMBOL(dev_change_flags);
7033
7034int __dev_set_mtu(struct net_device *dev, int new_mtu)
7035{
7036        const struct net_device_ops *ops = dev->netdev_ops;
7037
7038        if (ops->ndo_change_mtu)
7039                return ops->ndo_change_mtu(dev, new_mtu);
7040
7041        dev->mtu = new_mtu;
7042        return 0;
7043}
7044EXPORT_SYMBOL(__dev_set_mtu);
7045
7046/**
7047 *      dev_set_mtu - Change maximum transfer unit
7048 *      @dev: device
7049 *      @new_mtu: new transfer unit
7050 *
7051 *      Change the maximum transfer size of the network device.
7052 */
7053int dev_set_mtu(struct net_device *dev, int new_mtu)
7054{
7055        int err, orig_mtu;
7056
7057        if (new_mtu == dev->mtu)
7058                return 0;
7059
7060        /* MTU must be positive, and in range */
7061        if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7062                net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7063                                    dev->name, new_mtu, dev->min_mtu);
7064                return -EINVAL;
7065        }
7066
7067        if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7068                net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7069                                    dev->name, new_mtu, dev->max_mtu);
7070                return -EINVAL;
7071        }
7072
7073        if (!netif_device_present(dev))
7074                return -ENODEV;
7075
7076        err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7077        err = notifier_to_errno(err);
7078        if (err)
7079                return err;
7080
7081        orig_mtu = dev->mtu;
7082        err = __dev_set_mtu(dev, new_mtu);
7083
7084        if (!err) {
7085                err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7086                err = notifier_to_errno(err);
7087                if (err) {
7088                        /* setting mtu back and notifying everyone again,
7089                         * so that they have a chance to revert changes.
7090                         */
7091                        __dev_set_mtu(dev, orig_mtu);
7092                        call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7093                }
7094        }
7095        return err;
7096}
7097EXPORT_SYMBOL(dev_set_mtu);
7098
7099/**
7100 *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7101 *      @dev: device
7102 *      @new_len: new tx queue length
7103 */
7104int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7105{
7106        unsigned int orig_len = dev->tx_queue_len;
7107        int res;
7108
7109        if (new_len != (unsigned int)new_len)
7110                return -ERANGE;
7111
7112        if (new_len != orig_len) {
7113                dev->tx_queue_len = new_len;
7114                res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7115                res = notifier_to_errno(res);
7116                if (res) {
7117                        netdev_err(dev,
7118                                   "refused to change device tx_queue_len\n");
7119                        dev->tx_queue_len = orig_len;
7120                        return res;
7121                }
7122                return dev_qdisc_change_tx_queue_len(dev);
7123        }
7124
7125        return 0;
7126}
7127
7128/**
7129 *      dev_set_group - Change group this device belongs to
7130 *      @dev: device
7131 *      @new_group: group this device should belong to
7132 */
7133void dev_set_group(struct net_device *dev, int new_group)
7134{
7135        dev->group = new_group;
7136}
7137EXPORT_SYMBOL(dev_set_group);
7138
7139/**
7140 *      dev_set_mac_address - Change Media Access Control Address
7141 *      @dev: device
7142 *      @sa: new address
7143 *
7144 *      Change the hardware (MAC) address of the device
7145 */
7146int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7147{
7148        const struct net_device_ops *ops = dev->netdev_ops;
7149        int err;
7150
7151        if (!ops->ndo_set_mac_address)
7152                return -EOPNOTSUPP;
7153        if (sa->sa_family != dev->type)
7154                return -EINVAL;
7155        if (!netif_device_present(dev))
7156                return -ENODEV;
7157        err = ops->ndo_set_mac_address(dev, sa);
7158        if (err)
7159                return err;
7160        dev->addr_assign_type = NET_ADDR_SET;
7161        call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7162        add_device_randomness(dev->dev_addr, dev->addr_len);
7163        return 0;
7164}
7165EXPORT_SYMBOL(dev_set_mac_address);
7166
7167/**
7168 *      dev_change_carrier - Change device carrier
7169 *      @dev: device
7170 *      @new_carrier: new value
7171 *
7172 *      Change device carrier
7173 */
7174int dev_change_carrier(struct net_device *dev, bool new_carrier)
7175{
7176        const struct net_device_ops *ops = dev->netdev_ops;
7177
7178        if (!ops->ndo_change_carrier)
7179                return -EOPNOTSUPP;
7180        if (!netif_device_present(dev))
7181                return -ENODEV;
7182        return ops->ndo_change_carrier(dev, new_carrier);
7183}
7184EXPORT_SYMBOL(dev_change_carrier);
7185
7186/**
7187 *      dev_get_phys_port_id - Get device physical port ID
7188 *      @dev: device
7189 *      @ppid: port ID
7190 *
7191 *      Get device physical port ID
7192 */
7193int dev_get_phys_port_id(struct net_device *dev,
7194                         struct netdev_phys_item_id *ppid)
7195{
7196        const struct net_device_ops *ops = dev->netdev_ops;
7197
7198        if (!ops->ndo_get_phys_port_id)
7199                return -EOPNOTSUPP;
7200        return ops->ndo_get_phys_port_id(dev, ppid);
7201}
7202EXPORT_SYMBOL(dev_get_phys_port_id);
7203
7204/**
7205 *      dev_get_phys_port_name - Get device physical port name
7206 *      @dev: device
7207 *      @name: port name
7208 *      @len: limit of bytes to copy to name
7209 *
7210 *      Get device physical port name
7211 */
7212int dev_get_phys_port_name(struct net_device *dev,
7213                           char *name, size_t len)
7214{
7215        const struct net_device_ops *ops = dev->netdev_ops;
7216
7217        if (!ops->ndo_get_phys_port_name)
7218                return -EOPNOTSUPP;
7219        return ops->ndo_get_phys_port_name(dev, name, len);
7220}
7221EXPORT_SYMBOL(dev_get_phys_port_name);
7222
7223/**
7224 *      dev_change_proto_down - update protocol port state information
7225 *      @dev: device
7226 *      @proto_down: new value
7227 *
7228 *      This info can be used by switch drivers to set the phys state of the
7229 *      port.
7230 */
7231int dev_change_proto_down(struct net_device *dev, bool proto_down)
7232{
7233        const struct net_device_ops *ops = dev->netdev_ops;
7234
7235        if (!ops->ndo_change_proto_down)
7236                return -EOPNOTSUPP;
7237        if (!netif_device_present(dev))
7238                return -ENODEV;
7239        return ops->ndo_change_proto_down(dev, proto_down);
7240}
7241EXPORT_SYMBOL(dev_change_proto_down);
7242
7243void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7244                     struct netdev_bpf *xdp)
7245{
7246        memset(xdp, 0, sizeof(*xdp));
7247        xdp->command = XDP_QUERY_PROG;
7248
7249        /* Query must always succeed. */
7250        WARN_ON(bpf_op(dev, xdp) < 0);
7251}
7252
7253static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7254{
7255        struct netdev_bpf xdp;
7256
7257        __dev_xdp_query(dev, bpf_op, &xdp);
7258
7259        return xdp.prog_attached;
7260}
7261
7262static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7263                           struct netlink_ext_ack *extack, u32 flags,
7264                           struct bpf_prog *prog)
7265{
7266        struct netdev_bpf xdp;
7267
7268        memset(&xdp, 0, sizeof(xdp));
7269        if (flags & XDP_FLAGS_HW_MODE)
7270                xdp.command = XDP_SETUP_PROG_HW;
7271        else
7272                xdp.command = XDP_SETUP_PROG;
7273        xdp.extack = extack;
7274        xdp.flags = flags;
7275        xdp.prog = prog;
7276
7277        return bpf_op(dev, &xdp);
7278}
7279
7280static void dev_xdp_uninstall(struct net_device *dev)
7281{
7282        struct netdev_bpf xdp;
7283        bpf_op_t ndo_bpf;
7284
7285        /* Remove generic XDP */
7286        WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7287
7288        /* Remove from the driver */
7289        ndo_bpf = dev->netdev_ops->ndo_bpf;
7290        if (!ndo_bpf)
7291                return;
7292
7293        __dev_xdp_query(dev, ndo_bpf, &xdp);
7294        if (xdp.prog_attached == XDP_ATTACHED_NONE)
7295                return;
7296
7297        /* Program removal should always succeed */
7298        WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7299}
7300
7301/**
7302 *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7303 *      @dev: device
7304 *      @extack: netlink extended ack
7305 *      @fd: new program fd or negative value to clear
7306 *      @flags: xdp-related flags
7307 *
7308 *      Set or clear a bpf program for a device
7309 */
7310int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7311                      int fd, u32 flags)
7312{
7313        const struct net_device_ops *ops = dev->netdev_ops;
7314        struct bpf_prog *prog = NULL;
7315        bpf_op_t bpf_op, bpf_chk;
7316        int err;
7317
7318        ASSERT_RTNL();
7319
7320        bpf_op = bpf_chk = ops->ndo_bpf;
7321        if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7322                return -EOPNOTSUPP;
7323        if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7324                bpf_op = generic_xdp_install;
7325        if (bpf_op == bpf_chk)
7326                bpf_chk = generic_xdp_install;
7327
7328        if (fd >= 0) {
7329                if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7330                        return -EEXIST;
7331                if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7332                    __dev_xdp_attached(dev, bpf_op))
7333                        return -EBUSY;
7334
7335                prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7336                                             bpf_op == ops->ndo_bpf);
7337                if (IS_ERR(prog))
7338                        return PTR_ERR(prog);
7339
7340                if (!(flags & XDP_FLAGS_HW_MODE) &&
7341                    bpf_prog_is_dev_bound(prog->aux)) {
7342                        NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7343                        bpf_prog_put(prog);
7344                        return -EINVAL;
7345                }
7346        }
7347
7348        err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7349        if (err < 0 && prog)
7350                bpf_prog_put(prog);
7351
7352        return err;
7353}
7354
7355/**
7356 *      dev_new_index   -       allocate an ifindex
7357 *      @net: the applicable net namespace
7358 *
7359 *      Returns a suitable unique value for a new device interface
7360 *      number.  The caller must hold the rtnl semaphore or the
7361 *      dev_base_lock to be sure it remains unique.
7362 */
7363static int dev_new_index(struct net *net)
7364{
7365        int ifindex = net->ifindex;
7366
7367        for (;;) {
7368                if (++ifindex <= 0)
7369                        ifindex = 1;
7370                if (!__dev_get_by_index(net, ifindex))
7371                        return net->ifindex = ifindex;
7372        }
7373}
7374
7375/* Delayed registration/unregisteration */
7376static LIST_HEAD(net_todo_list);
7377DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7378
7379static void net_set_todo(struct net_device *dev)
7380{
7381        list_add_tail(&dev->todo_list, &net_todo_list);
7382        dev_net(dev)->dev_unreg_count++;
7383}
7384
7385static void rollback_registered_many(struct list_head *head)
7386{
7387        struct net_device *dev, *tmp;
7388        LIST_HEAD(close_head);
7389
7390        BUG_ON(dev_boot_phase);
7391        ASSERT_RTNL();
7392
7393        list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7394                /* Some devices call without registering
7395                 * for initialization unwind. Remove those
7396                 * devices and proceed with the remaining.
7397                 */
7398                if (dev->reg_state == NETREG_UNINITIALIZED) {
7399                        pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7400                                 dev->name, dev);
7401
7402                        WARN_ON(1);
7403                        list_del(&dev->unreg_list);
7404                        continue;
7405                }
7406                dev->dismantle = true;
7407                BUG_ON(dev->reg_state != NETREG_REGISTERED);
7408        }
7409
7410        /* If device is running, close it first. */
7411        list_for_each_entry(dev, head, unreg_list)
7412                list_add_tail(&dev->close_list, &close_head);
7413        dev_close_many(&close_head, true);
7414
7415        list_for_each_entry(dev, head, unreg_list) {
7416                /* And unlink it from device chain. */
7417                unlist_netdevice(dev);
7418
7419                dev->reg_state = NETREG_UNREGISTERING;
7420        }
7421        flush_all_backlogs();
7422
7423        synchronize_net();
7424
7425        list_for_each_entry(dev, head, unreg_list) {
7426                struct sk_buff *skb = NULL;
7427
7428                /* Shutdown queueing discipline. */
7429                dev_shutdown(dev);
7430
7431                dev_xdp_uninstall(dev);
7432
7433                /* Notify protocols, that we are about to destroy
7434                 * this device. They should clean all the things.
7435                 */
7436                call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7437
7438                if (!dev->rtnl_link_ops ||
7439                    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7440                        skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7441                                                     GFP_KERNEL, NULL, 0);
7442
7443                /*
7444                 *      Flush the unicast and multicast chains
7445                 */
7446                dev_uc_flush(dev);
7447                dev_mc_flush(dev);
7448
7449                if (dev->netdev_ops->ndo_uninit)
7450                        dev->netdev_ops->ndo_uninit(dev);
7451
7452                if (skb)
7453                        rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7454
7455                /* Notifier chain MUST detach us all upper devices. */
7456                WARN_ON(netdev_has_any_upper_dev(dev));
7457                WARN_ON(netdev_has_any_lower_dev(dev));
7458
7459                /* Remove entries from kobject tree */
7460                netdev_unregister_kobject(dev);
7461#ifdef CONFIG_XPS
7462                /* Remove XPS queueing entries */
7463                netif_reset_xps_queues_gt(dev, 0);
7464#endif
7465        }
7466
7467        synchronize_net();
7468
7469        list_for_each_entry(dev, head, unreg_list)
7470                dev_put(dev);
7471}
7472
7473static void rollback_registered(struct net_device *dev)
7474{
7475        LIST_HEAD(single);
7476
7477        list_add(&dev->unreg_list, &single);
7478        rollback_registered_many(&single);
7479        list_del(&single);
7480}
7481
7482static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7483        struct net_device *upper, netdev_features_t features)
7484{
7485        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7486        netdev_features_t feature;
7487        int feature_bit;
7488
7489        for_each_netdev_feature(&upper_disables, feature_bit) {
7490                feature = __NETIF_F_BIT(feature_bit);
7491                if (!(upper->wanted_features & feature)
7492                    && (features & feature)) {
7493                        netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7494                                   &feature, upper->name);
7495                        features &= ~feature;
7496                }
7497        }
7498
7499        return features;
7500}
7501
7502static void netdev_sync_lower_features(struct net_device *upper,
7503        struct net_device *lower, netdev_features_t features)
7504{
7505        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7506        netdev_features_t feature;
7507        int feature_bit;
7508
7509        for_each_netdev_feature(&upper_disables, feature_bit) {
7510                feature = __NETIF_F_BIT(feature_bit);
7511                if (!(features & feature) && (lower->features & feature)) {
7512                        netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7513                                   &feature, lower->name);
7514                        lower->wanted_features &= ~feature;
7515                        netdev_update_features(lower);
7516
7517                        if (unlikely(lower->features & feature))
7518                                netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7519                                            &feature, lower->name);
7520                }
7521        }
7522}
7523
7524static netdev_features_t netdev_fix_features(struct net_device *dev,
7525        netdev_features_t features)
7526{
7527        /* Fix illegal checksum combinations */
7528        if ((features & NETIF_F_HW_CSUM) &&
7529            (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7530                netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7531                features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7532        }
7533
7534        /* TSO requires that SG is present as well. */
7535        if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7536                netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7537                features &= ~NETIF_F_ALL_TSO;
7538        }
7539
7540        if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7541                                        !(features & NETIF_F_IP_CSUM)) {
7542                netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7543                features &= ~NETIF_F_TSO;
7544                features &= ~NETIF_F_TSO_ECN;
7545        }
7546
7547        if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7548                                         !(features & NETIF_F_IPV6_CSUM)) {
7549                netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7550                features &= ~NETIF_F_TSO6;
7551        }
7552
7553        /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7554        if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7555                features &= ~NETIF_F_TSO_MANGLEID;
7556
7557        /* TSO ECN requires that TSO is present as well. */
7558        if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7559                features &= ~NETIF_F_TSO_ECN;
7560
7561        /* Software GSO depends on SG. */
7562        if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7563                netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7564                features &= ~NETIF_F_GSO;
7565        }
7566
7567        /* GSO partial features require GSO partial be set */
7568        if ((features & dev->gso_partial_features) &&
7569            !(features & NETIF_F_GSO_PARTIAL)) {
7570                netdev_dbg(dev,
7571                           "Dropping partially supported GSO features since no GSO partial.\n");
7572                features &= ~dev->gso_partial_features;
7573        }
7574
7575        if (!(features & NETIF_F_RXCSUM)) {
7576                /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7577                 * successfully merged by hardware must also have the
7578                 * checksum verified by hardware.  If the user does not
7579                 * want to enable RXCSUM, logically, we should disable GRO_HW.
7580                 */
7581                if (features & NETIF_F_GRO_HW) {
7582                        netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7583                        features &= ~NETIF_F_GRO_HW;
7584                }
7585        }
7586
7587        /* LRO/HW-GRO features cannot be combined with RX-FCS */
7588        if (features & NETIF_F_RXFCS) {
7589                if (features & NETIF_F_LRO) {
7590                        netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7591                        features &= ~NETIF_F_LRO;
7592                }
7593
7594                if (features & NETIF_F_GRO_HW) {
7595                        netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7596                        features &= ~NETIF_F_GRO_HW;
7597                }
7598        }
7599
7600        return features;
7601}
7602
7603int __netdev_update_features(struct net_device *dev)
7604{
7605        struct net_device *upper, *lower;
7606        netdev_features_t features;
7607        struct list_head *iter;
7608        int err = -1;
7609
7610        ASSERT_RTNL();
7611
7612        features = netdev_get_wanted_features(dev);
7613
7614        if (dev->netdev_ops->ndo_fix_features)
7615                features = dev->netdev_ops->ndo_fix_features(dev, features);
7616
7617        /* driver might be less strict about feature dependencies */
7618        features = netdev_fix_features(dev, features);
7619
7620        /* some features can't be enabled if they're off an an upper device */
7621        netdev_for_each_upper_dev_rcu(dev, upper, iter)
7622                features = netdev_sync_upper_features(dev, upper, features);
7623
7624        if (dev->features == features)
7625                goto sync_lower;
7626
7627        netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7628                &dev->features, &features);
7629
7630        if (dev->netdev_ops->ndo_set_features)
7631                err = dev->netdev_ops->ndo_set_features(dev, features);
7632        else
7633                err = 0;
7634
7635        if (unlikely(err < 0)) {
7636                netdev_err(dev,
7637                        "set_features() failed (%d); wanted %pNF, left %pNF\n",
7638                        err, &features, &dev->features);
7639                /* return non-0 since some features might have changed and
7640                 * it's better to fire a spurious notification than miss it
7641                 */
7642                return -1;
7643        }
7644
7645sync_lower:
7646        /* some features must be disabled on lower devices when disabled
7647         * on an upper device (think: bonding master or bridge)
7648         */
7649        netdev_for_each_lower_dev(dev, lower, iter)
7650                netdev_sync_lower_features(dev, lower, features);
7651
7652        if (!err) {
7653                netdev_features_t diff = features ^ dev->features;
7654
7655                if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7656                        /* udp_tunnel_{get,drop}_rx_info both need
7657                         * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7658                         * device, or they won't do anything.
7659                         * Thus we need to update dev->features
7660                         * *before* calling udp_tunnel_get_rx_info,
7661                         * but *after* calling udp_tunnel_drop_rx_info.
7662                         */
7663                        if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7664                                dev->features = features;
7665                                udp_tunnel_get_rx_info(dev);
7666                        } else {
7667                                udp_tunnel_drop_rx_info(dev);
7668                        }
7669                }
7670
7671                if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
7672                        if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
7673                                dev->features = features;
7674                                err |= vlan_get_rx_ctag_filter_info(dev);
7675                        } else {
7676                                vlan_drop_rx_ctag_filter_info(dev);
7677                        }
7678                }
7679
7680                if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
7681                        if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
7682                                dev->features = features;
7683                                err |= vlan_get_rx_stag_filter_info(dev);
7684                        } else {
7685                                vlan_drop_rx_stag_filter_info(dev);
7686                        }
7687                }
7688
7689                dev->features = features;
7690        }
7691
7692        return err < 0 ? 0 : 1;
7693}
7694
7695/**
7696 *      netdev_update_features - recalculate device features
7697 *      @dev: the device to check
7698 *
7699 *      Recalculate dev->features set and send notifications if it
7700 *      has changed. Should be called after driver or hardware dependent
7701 *      conditions might have changed that influence the features.
7702 */
7703void netdev_update_features(struct net_device *dev)
7704{
7705        if (__netdev_update_features(dev))
7706                netdev_features_change(dev);
7707}
7708EXPORT_SYMBOL(netdev_update_features);
7709
7710/**
7711 *      netdev_change_features - recalculate device features
7712 *      @dev: the device to check
7713 *
7714 *      Recalculate dev->features set and send notifications even
7715 *      if they have not changed. Should be called instead of
7716 *      netdev_update_features() if also dev->vlan_features might
7717 *      have changed to allow the changes to be propagated to stacked
7718 *      VLAN devices.
7719 */
7720void netdev_change_features(struct net_device *dev)
7721{
7722        __netdev_update_features(dev);
7723        netdev_features_change(dev);
7724}
7725EXPORT_SYMBOL(netdev_change_features);
7726
7727/**
7728 *      netif_stacked_transfer_operstate -      transfer operstate
7729 *      @rootdev: the root or lower level device to transfer state from
7730 *      @dev: the device to transfer operstate to
7731 *
7732 *      Transfer operational state from root to device. This is normally
7733 *      called when a stacking relationship exists between the root
7734 *      device and the device(a leaf device).
7735 */
7736void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7737                                        struct net_device *dev)
7738{
7739        if (rootdev->operstate == IF_OPER_DORMANT)
7740                netif_dormant_on(dev);
7741        else
7742                netif_dormant_off(dev);
7743
7744        if (netif_carrier_ok(rootdev))
7745                netif_carrier_on(dev);
7746        else
7747                netif_carrier_off(dev);
7748}
7749EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7750
7751static int netif_alloc_rx_queues(struct net_device *dev)
7752{
7753        unsigned int i, count = dev->num_rx_queues;
7754        struct netdev_rx_queue *rx;
7755        size_t sz = count * sizeof(*rx);
7756        int err = 0;
7757
7758        BUG_ON(count < 1);
7759
7760        rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7761        if (!rx)
7762                return -ENOMEM;
7763
7764        dev->_rx = rx;
7765
7766        for (i = 0; i < count; i++) {
7767                rx[i].dev = dev;
7768
7769                /* XDP RX-queue setup */
7770                err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7771                if (err < 0)
7772                        goto err_rxq_info;
7773        }
7774        return 0;
7775
7776err_rxq_info:
7777        /* Rollback successful reg's and free other resources */
7778        while (i--)
7779                xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7780        kvfree(dev->_rx);
7781        dev->_rx = NULL;
7782        return err;
7783}
7784
7785static void netif_free_rx_queues(struct net_device *dev)
7786{
7787        unsigned int i, count = dev->num_rx_queues;
7788
7789        /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7790        if (!dev->_rx)
7791                return;
7792
7793        for (i = 0; i < count; i++)
7794                xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7795
7796        kvfree(dev->_rx);
7797}
7798
7799static void netdev_init_one_queue(struct net_device *dev,
7800                                  struct netdev_queue *queue, void *_unused)
7801{
7802        /* Initialize queue lock */
7803        spin_lock_init(&queue->_xmit_lock);
7804        netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7805        queue->xmit_lock_owner = -1;
7806        netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7807        queue->dev = dev;
7808#ifdef CONFIG_BQL
7809        dql_init(&queue->dql, HZ);
7810#endif
7811}
7812
7813static void netif_free_tx_queues(struct net_device *dev)
7814{
7815        kvfree(dev->_tx);
7816}
7817
7818static int netif_alloc_netdev_queues(struct net_device *dev)
7819{
7820        unsigned int count = dev->num_tx_queues;
7821        struct netdev_queue *tx;
7822        size_t sz = count * sizeof(*tx);
7823
7824        if (count < 1 || count > 0xffff)
7825                return -EINVAL;
7826
7827        tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7828        if (!tx)
7829                return -ENOMEM;
7830
7831        dev->_tx = tx;
7832
7833        netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7834        spin_lock_init(&dev->tx_global_lock);
7835
7836        return 0;
7837}
7838
7839void netif_tx_stop_all_queues(struct net_device *dev)
7840{
7841        unsigned int i;
7842
7843        for (i = 0; i < dev->num_tx_queues; i++) {
7844                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7845
7846                netif_tx_stop_queue(txq);
7847        }
7848}
7849EXPORT_SYMBOL(netif_tx_stop_all_queues);
7850
7851/**
7852 *      register_netdevice      - register a network device
7853 *      @dev: device to register
7854 *
7855 *      Take a completed network device structure and add it to the kernel
7856 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7857 *      chain. 0 is returned on success. A negative errno code is returned
7858 *      on a failure to set up the device, or if the name is a duplicate.
7859 *
7860 *      Callers must hold the rtnl semaphore. You may want
7861 *      register_netdev() instead of this.
7862 *
7863 *      BUGS:
7864 *      The locking appears insufficient to guarantee two parallel registers
7865 *      will not get the same name.
7866 */
7867
7868int register_netdevice(struct net_device *dev)
7869{
7870        int ret;
7871        struct net *net = dev_net(dev);
7872
7873        BUG_ON(dev_boot_phase);
7874        ASSERT_RTNL();
7875
7876        might_sleep();
7877
7878        /* When net_device's are persistent, this will be fatal. */
7879        BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7880        BUG_ON(!net);
7881
7882        spin_lock_init(&dev->addr_list_lock);
7883        netdev_set_addr_lockdep_class(dev);
7884
7885        ret = dev_get_valid_name(net, dev, dev->name);
7886        if (ret < 0)
7887                goto out;
7888
7889        /* Init, if this function is available */
7890        if (dev->netdev_ops->ndo_init) {
7891                ret = dev->netdev_ops->ndo_init(dev);
7892                if (ret) {
7893                        if (ret > 0)
7894                                ret = -EIO;
7895                        goto out;
7896                }
7897        }
7898
7899        if (((dev->hw_features | dev->features) &
7900             NETIF_F_HW_VLAN_CTAG_FILTER) &&
7901            (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7902             !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7903                netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7904                ret = -EINVAL;
7905                goto err_uninit;
7906        }
7907
7908        ret = -EBUSY;
7909        if (!dev->ifindex)
7910                dev->ifindex = dev_new_index(net);
7911        else if (__dev_get_by_index(net, dev->ifindex))
7912                goto err_uninit;
7913
7914        /* Transfer changeable features to wanted_features and enable
7915         * software offloads (GSO and GRO).
7916         */
7917        dev->hw_features |= NETIF_F_SOFT_FEATURES;
7918        dev->features |= NETIF_F_SOFT_FEATURES;
7919
7920        if (dev->netdev_ops->ndo_udp_tunnel_add) {
7921                dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7922                dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7923        }
7924
7925        dev->wanted_features = dev->features & dev->hw_features;
7926
7927        if (!(dev->flags & IFF_LOOPBACK))
7928                dev->hw_features |= NETIF_F_NOCACHE_COPY;
7929
7930        /* If IPv4 TCP segmentation offload is supported we should also
7931         * allow the device to enable segmenting the frame with the option
7932         * of ignoring a static IP ID value.  This doesn't enable the
7933         * feature itself but allows the user to enable it later.
7934         */
7935        if (dev->hw_features & NETIF_F_TSO)
7936                dev->hw_features |= NETIF_F_TSO_MANGLEID;
7937        if (dev->vlan_features & NETIF_F_TSO)
7938                dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7939        if (dev->mpls_features & NETIF_F_TSO)
7940                dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7941        if (dev->hw_enc_features & NETIF_F_TSO)
7942                dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7943
7944        /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7945         */
7946        dev->vlan_features |= NETIF_F_HIGHDMA;
7947
7948        /* Make NETIF_F_SG inheritable to tunnel devices.
7949         */
7950        dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7951
7952        /* Make NETIF_F_SG inheritable to MPLS.
7953         */
7954        dev->mpls_features |= NETIF_F_SG;
7955
7956        ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7957        ret = notifier_to_errno(ret);
7958        if (ret)
7959                goto err_uninit;
7960
7961        ret = netdev_register_kobject(dev);
7962        if (ret)
7963                goto err_uninit;
7964        dev->reg_state = NETREG_REGISTERED;
7965
7966        __netdev_update_features(dev);
7967
7968        /*
7969         *      Default initial state at registry is that the
7970         *      device is present.
7971         */
7972
7973        set_bit(__LINK_STATE_PRESENT, &dev->state);
7974
7975        linkwatch_init_dev(dev);
7976
7977        dev_init_scheduler(dev);
7978        dev_hold(dev);
7979        list_netdevice(dev);
7980        add_device_randomness(dev->dev_addr, dev->addr_len);
7981
7982        /* If the device has permanent device address, driver should
7983         * set dev_addr and also addr_assign_type should be set to
7984         * NET_ADDR_PERM (default value).
7985         */
7986        if (dev->addr_assign_type == NET_ADDR_PERM)
7987                memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7988
7989        /* Notify protocols, that a new device appeared. */
7990        ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7991        ret = notifier_to_errno(ret);
7992        if (ret) {
7993                rollback_registered(dev);
7994                dev->reg_state = NETREG_UNREGISTERED;
7995        }
7996        /*
7997         *      Prevent userspace races by waiting until the network
7998         *      device is fully setup before sending notifications.
7999         */
8000        if (!dev->rtnl_link_ops ||
8001            dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8002                rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8003
8004out:
8005        return ret;
8006
8007err_uninit:
8008        if (dev->netdev_ops->ndo_uninit)
8009                dev->netdev_ops->ndo_uninit(dev);
8010        if (dev->priv_destructor)
8011                dev->priv_destructor(dev);
8012        goto out;
8013}
8014EXPORT_SYMBOL(register_netdevice);
8015
8016/**
8017 *      init_dummy_netdev       - init a dummy network device for NAPI
8018 *      @dev: device to init
8019 *
8020 *      This takes a network device structure and initialize the minimum
8021 *      amount of fields so it can be used to schedule NAPI polls without
8022 *      registering a full blown interface. This is to be used by drivers
8023 *      that need to tie several hardware interfaces to a single NAPI
8024 *      poll scheduler due to HW limitations.
8025 */
8026int init_dummy_netdev(struct net_device *dev)
8027{
8028        /* Clear everything. Note we don't initialize spinlocks
8029         * are they aren't supposed to be taken by any of the
8030         * NAPI code and this dummy netdev is supposed to be
8031         * only ever used for NAPI polls
8032         */
8033        memset(dev, 0, sizeof(struct net_device));
8034
8035        /* make sure we BUG if trying to hit standard
8036         * register/unregister code path
8037         */
8038        dev->reg_state = NETREG_DUMMY;
8039
8040        /* NAPI wants this */
8041        INIT_LIST_HEAD(&dev->napi_list);
8042
8043        /* a dummy interface is started by default */
8044        set_bit(__LINK_STATE_PRESENT, &dev->state);
8045        set_bit(__LINK_STATE_START, &dev->state);
8046
8047        /* Note : We dont allocate pcpu_refcnt for dummy devices,
8048         * because users of this 'device' dont need to change
8049         * its refcount.
8050         */
8051
8052        return 0;
8053}
8054EXPORT_SYMBOL_GPL(init_dummy_netdev);
8055
8056
8057/**
8058 *      register_netdev - register a network device
8059 *      @dev: device to register
8060 *
8061 *      Take a completed network device structure and add it to the kernel
8062 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8063 *      chain. 0 is returned on success. A negative errno code is returned
8064 *      on a failure to set up the device, or if the name is a duplicate.
8065 *
8066 *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8067 *      and expands the device name if you passed a format string to
8068 *      alloc_netdev.
8069 */
8070int register_netdev(struct net_device *dev)
8071{
8072        int err;
8073
8074        if (rtnl_lock_killable())
8075                return -EINTR;
8076        err = register_netdevice(dev);
8077        rtnl_unlock();
8078        return err;
8079}
8080EXPORT_SYMBOL(register_netdev);
8081
8082int netdev_refcnt_read(const struct net_device *dev)
8083{
8084        int i, refcnt = 0;
8085
8086        for_each_possible_cpu(i)
8087                refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8088        return refcnt;
8089}
8090EXPORT_SYMBOL(netdev_refcnt_read);
8091
8092/**
8093 * netdev_wait_allrefs - wait until all references are gone.
8094 * @dev: target net_device
8095 *
8096 * This is called when unregistering network devices.
8097 *
8098 * Any protocol or device that holds a reference should register
8099 * for netdevice notification, and cleanup and put back the
8100 * reference if they receive an UNREGISTER event.
8101 * We can get stuck here if buggy protocols don't correctly
8102 * call dev_put.
8103 */
8104static void netdev_wait_allrefs(struct net_device *dev)
8105{
8106        unsigned long rebroadcast_time, warning_time;
8107        int refcnt;
8108
8109        linkwatch_forget_dev(dev);
8110
8111        rebroadcast_time = warning_time = jiffies;
8112        refcnt = netdev_refcnt_read(dev);
8113
8114        while (refcnt != 0) {
8115                if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8116                        rtnl_lock();
8117
8118                        /* Rebroadcast unregister notification */
8119                        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8120
8121                        __rtnl_unlock();
8122                        rcu_barrier();
8123                        rtnl_lock();
8124
8125                        if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8126                                     &dev->state)) {
8127                                /* We must not have linkwatch events
8128                                 * pending on unregister. If this
8129                                 * happens, we simply run the queue
8130                                 * unscheduled, resulting in a noop
8131                                 * for this device.
8132                                 */
8133                                linkwatch_run_queue();
8134                        }
8135
8136                        __rtnl_unlock();
8137
8138                        rebroadcast_time = jiffies;
8139                }
8140
8141                msleep(250);
8142
8143                refcnt = netdev_refcnt_read(dev);
8144
8145                if (time_after(jiffies, warning_time + 10 * HZ)) {
8146                        pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8147                                 dev->name, refcnt);
8148                        warning_time = jiffies;
8149                }
8150        }
8151}
8152
8153/* The sequence is:
8154 *
8155 *      rtnl_lock();
8156 *      ...
8157 *      register_netdevice(x1);
8158 *      register_netdevice(x2);
8159 *      ...
8160 *      unregister_netdevice(y1);
8161 *      unregister_netdevice(y2);
8162 *      ...
8163 *      rtnl_unlock();
8164 *      free_netdev(y1);
8165 *      free_netdev(y2);
8166 *
8167 * We are invoked by rtnl_unlock().
8168 * This allows us to deal with problems:
8169 * 1) We can delete sysfs objects which invoke hotplug
8170 *    without deadlocking with linkwatch via keventd.
8171 * 2) Since we run with the RTNL semaphore not held, we can sleep
8172 *    safely in order to wait for the netdev refcnt to drop to zero.
8173 *
8174 * We must not return until all unregister events added during
8175 * the interval the lock was held have been completed.
8176 */
8177void netdev_run_todo(void)
8178{
8179        struct list_head list;
8180
8181        /* Snapshot list, allow later requests */
8182        list_replace_init(&net_todo_list, &list);
8183
8184        __rtnl_unlock();
8185
8186
8187        /* Wait for rcu callbacks to finish before next phase */
8188        if (!list_empty(&list))
8189                rcu_barrier();
8190
8191        while (!list_empty(&list)) {
8192                struct net_device *dev
8193                        = list_first_entry(&list, struct net_device, todo_list);
8194                list_del(&dev->todo_list);
8195
8196                if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8197                        pr_err("network todo '%s' but state %d\n",
8198                               dev->name, dev->reg_state);
8199                        dump_stack();
8200                        continue;
8201                }
8202
8203                dev->reg_state = NETREG_UNREGISTERED;
8204
8205                netdev_wait_allrefs(dev);
8206
8207                /* paranoia */
8208                BUG_ON(netdev_refcnt_read(dev));
8209                BUG_ON(!list_empty(&dev->ptype_all));
8210                BUG_ON(!list_empty(&dev->ptype_specific));
8211                WARN_ON(rcu_access_pointer(dev->ip_ptr));
8212                WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8213#if IS_ENABLED(CONFIG_DECNET)
8214                WARN_ON(dev->dn_ptr);
8215#endif
8216                if (dev->priv_destructor)
8217                        dev->priv_destructor(dev);
8218                if (dev->needs_free_netdev)
8219                        free_netdev(dev);
8220
8221                /* Report a network device has been unregistered */
8222                rtnl_lock();
8223                dev_net(dev)->dev_unreg_count--;
8224                __rtnl_unlock();
8225                wake_up(&netdev_unregistering_wq);
8226
8227                /* Free network device */
8228                kobject_put(&dev->dev.kobj);
8229        }
8230}
8231
8232/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8233 * all the same fields in the same order as net_device_stats, with only
8234 * the type differing, but rtnl_link_stats64 may have additional fields
8235 * at the end for newer counters.
8236 */
8237void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8238                             const struct net_device_stats *netdev_stats)
8239{
8240#if BITS_PER_LONG == 64
8241        BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8242        memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8243        /* zero out counters that only exist in rtnl_link_stats64 */
8244        memset((char *)stats64 + sizeof(*netdev_stats), 0,
8245               sizeof(*stats64) - sizeof(*netdev_stats));
8246#else
8247        size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8248        const unsigned long *src = (const unsigned long *)netdev_stats;
8249        u64 *dst = (u64 *)stats64;
8250
8251        BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8252        for (i = 0; i < n; i++)
8253                dst[i] = src[i];
8254        /* zero out counters that only exist in rtnl_link_stats64 */
8255        memset((char *)stats64 + n * sizeof(u64), 0,
8256               sizeof(*stats64) - n * sizeof(u64));
8257#endif
8258}
8259EXPORT_SYMBOL(netdev_stats_to_stats64);
8260
8261/**
8262 *      dev_get_stats   - get network device statistics
8263 *      @dev: device to get statistics from
8264 *      @storage: place to store stats
8265 *
8266 *      Get network statistics from device. Return @storage.
8267 *      The device driver may provide its own method by setting
8268 *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8269 *      otherwise the internal statistics structure is used.
8270 */
8271struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8272                                        struct rtnl_link_stats64 *storage)
8273{
8274        const struct net_device_ops *ops = dev->netdev_ops;
8275
8276        if (ops->ndo_get_stats64) {
8277                memset(storage, 0, sizeof(*storage));
8278                ops->ndo_get_stats64(dev, storage);
8279        } else if (ops->ndo_get_stats) {
8280                netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8281        } else {
8282                netdev_stats_to_stats64(storage, &dev->stats);
8283        }
8284        storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8285        storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8286        storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8287        return storage;
8288}
8289EXPORT_SYMBOL(dev_get_stats);
8290
8291struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8292{
8293        struct netdev_queue *queue = dev_ingress_queue(dev);
8294
8295#ifdef CONFIG_NET_CLS_ACT
8296        if (queue)
8297                return queue;
8298        queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8299        if (!queue)
8300                return NULL;
8301        netdev_init_one_queue(dev, queue, NULL);
8302        RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8303        queue->qdisc_sleeping = &noop_qdisc;
8304        rcu_assign_pointer(dev->ingress_queue, queue);
8305#endif
8306        return queue;
8307}
8308
8309static const struct ethtool_ops default_ethtool_ops;
8310
8311void netdev_set_default_ethtool_ops(struct net_device *dev,
8312                                    const struct ethtool_ops *ops)
8313{
8314        if (dev->ethtool_ops == &default_ethtool_ops)
8315                dev->ethtool_ops = ops;
8316}
8317EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8318
8319void netdev_freemem(struct net_device *dev)
8320{
8321        char *addr = (char *)dev - dev->padded;
8322
8323        kvfree(addr);
8324}
8325
8326/**
8327 * alloc_netdev_mqs - allocate network device
8328 * @sizeof_priv: size of private data to allocate space for
8329 * @name: device name format string
8330 * @name_assign_type: origin of device name
8331 * @setup: callback to initialize device
8332 * @txqs: the number of TX subqueues to allocate
8333 * @rxqs: the number of RX subqueues to allocate
8334 *
8335 * Allocates a struct net_device with private data area for driver use
8336 * and performs basic initialization.  Also allocates subqueue structs
8337 * for each queue on the device.
8338 */
8339struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8340                unsigned char name_assign_type,
8341                void (*setup)(struct net_device *),
8342                unsigned int txqs, unsigned int rxqs)
8343{
8344        struct net_device *dev;
8345        unsigned int alloc_size;
8346        struct net_device *p;
8347
8348        BUG_ON(strlen(name) >= sizeof(dev->name));
8349
8350        if (txqs < 1) {
8351                pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8352                return NULL;
8353        }
8354
8355        if (rxqs < 1) {
8356                pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8357                return NULL;
8358        }
8359
8360        alloc_size = sizeof(struct net_device);
8361        if (sizeof_priv) {
8362                /* ensure 32-byte alignment of private area */
8363                alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8364                alloc_size += sizeof_priv;
8365        }
8366        /* ensure 32-byte alignment of whole construct */
8367        alloc_size += NETDEV_ALIGN - 1;
8368
8369        p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8370        if (!p)
8371                return NULL;
8372
8373        dev = PTR_ALIGN(p, NETDEV_ALIGN);
8374        dev->padded = (char *)dev - (char *)p;
8375
8376        dev->pcpu_refcnt = alloc_percpu(int);
8377        if (!dev->pcpu_refcnt)
8378                goto free_dev;
8379
8380        if (dev_addr_init(dev))
8381                goto free_pcpu;
8382
8383        dev_mc_init(dev);
8384        dev_uc_init(dev);
8385
8386        dev_net_set(dev, &init_net);
8387
8388        dev->gso_max_size = GSO_MAX_SIZE;
8389        dev->gso_max_segs = GSO_MAX_SEGS;
8390
8391        INIT_LIST_HEAD(&dev->napi_list);
8392        INIT_LIST_HEAD(&dev->unreg_list);
8393        INIT_LIST_HEAD(&dev->close_list);
8394        INIT_LIST_HEAD(&dev->link_watch_list);
8395        INIT_LIST_HEAD(&dev->adj_list.upper);
8396        INIT_LIST_HEAD(&dev->adj_list.lower);
8397        INIT_LIST_HEAD(&dev->ptype_all);
8398        INIT_LIST_HEAD(&dev->ptype_specific);
8399#ifdef CONFIG_NET_SCHED
8400        hash_init(dev->qdisc_hash);
8401#endif
8402        dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8403        setup(dev);
8404
8405        if (!dev->tx_queue_len) {
8406                dev->priv_flags |= IFF_NO_QUEUE;
8407                dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8408        }
8409
8410        dev->num_tx_queues = txqs;
8411        dev->real_num_tx_queues = txqs;
8412        if (netif_alloc_netdev_queues(dev))
8413                goto free_all;
8414
8415        dev->num_rx_queues = rxqs;
8416        dev->real_num_rx_queues = rxqs;
8417        if (netif_alloc_rx_queues(dev))
8418                goto free_all;
8419
8420        strcpy(dev->name, name);
8421        dev->name_assign_type = name_assign_type;
8422        dev->group = INIT_NETDEV_GROUP;
8423        if (!dev->ethtool_ops)
8424                dev->ethtool_ops = &default_ethtool_ops;
8425
8426        nf_hook_ingress_init(dev);
8427
8428        return dev;
8429
8430free_all:
8431        free_netdev(dev);
8432        return NULL;
8433
8434free_pcpu:
8435        free_percpu(dev->pcpu_refcnt);
8436free_dev:
8437        netdev_freemem(dev);
8438        return NULL;
8439}
8440EXPORT_SYMBOL(alloc_netdev_mqs);
8441
8442/**
8443 * free_netdev - free network device
8444 * @dev: device
8445 *
8446 * This function does the last stage of destroying an allocated device
8447 * interface. The reference to the device object is released. If this
8448 * is the last reference then it will be freed.Must be called in process
8449 * context.
8450 */
8451void free_netdev(struct net_device *dev)
8452{
8453        struct napi_struct *p, *n;
8454
8455        might_sleep();
8456        netif_free_tx_queues(dev);
8457        netif_free_rx_queues(dev);
8458
8459        kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8460
8461        /* Flush device addresses */
8462        dev_addr_flush(dev);
8463
8464        list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8465                netif_napi_del(p);
8466
8467        free_percpu(dev->pcpu_refcnt);
8468        dev->pcpu_refcnt = NULL;
8469
8470        /*  Compatibility with error handling in drivers */
8471        if (dev->reg_state == NETREG_UNINITIALIZED) {
8472                netdev_freemem(dev);
8473                return;
8474        }
8475
8476        BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8477        dev->reg_state = NETREG_RELEASED;
8478
8479        /* will free via device release */
8480        put_device(&dev->dev);
8481}
8482EXPORT_SYMBOL(free_netdev);
8483
8484/**
8485 *      synchronize_net -  Synchronize with packet receive processing
8486 *
8487 *      Wait for packets currently being received to be done.
8488 *      Does not block later packets from starting.
8489 */
8490void synchronize_net(void)
8491{
8492        might_sleep();
8493        if (rtnl_is_locked())
8494                synchronize_rcu_expedited();
8495        else
8496                synchronize_rcu();
8497}
8498EXPORT_SYMBOL(synchronize_net);
8499
8500/**
8501 *      unregister_netdevice_queue - remove device from the kernel
8502 *      @dev: device
8503 *      @head: list
8504 *
8505 *      This function shuts down a device interface and removes it
8506 *      from the kernel tables.
8507 *      If head not NULL, device is queued to be unregistered later.
8508 *
8509 *      Callers must hold the rtnl semaphore.  You may want
8510 *      unregister_netdev() instead of this.
8511 */
8512
8513void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8514{
8515        ASSERT_RTNL();
8516
8517        if (head) {
8518                list_move_tail(&dev->unreg_list, head);
8519        } else {
8520                rollback_registered(dev);
8521                /* Finish processing unregister after unlock */
8522                net_set_todo(dev);
8523        }
8524}
8525EXPORT_SYMBOL(unregister_netdevice_queue);
8526
8527/**
8528 *      unregister_netdevice_many - unregister many devices
8529 *      @head: list of devices
8530 *
8531 *  Note: As most callers use a stack allocated list_head,
8532 *  we force a list_del() to make sure stack wont be corrupted later.
8533 */
8534void unregister_netdevice_many(struct list_head *head)
8535{
8536        struct net_device *dev;
8537
8538        if (!list_empty(head)) {
8539                rollback_registered_many(head);
8540                list_for_each_entry(dev, head, unreg_list)
8541                        net_set_todo(dev);
8542                list_del(head);
8543        }
8544}
8545EXPORT_SYMBOL(unregister_netdevice_many);
8546
8547/**
8548 *      unregister_netdev - remove device from the kernel
8549 *      @dev: device
8550 *
8551 *      This function shuts down a device interface and removes it
8552 *      from the kernel tables.
8553 *
8554 *      This is just a wrapper for unregister_netdevice that takes
8555 *      the rtnl semaphore.  In general you want to use this and not
8556 *      unregister_netdevice.
8557 */
8558void unregister_netdev(struct net_device *dev)
8559{
8560        rtnl_lock();
8561        unregister_netdevice(dev);
8562        rtnl_unlock();
8563}
8564EXPORT_SYMBOL(unregister_netdev);
8565
8566/**
8567 *      dev_change_net_namespace - move device to different nethost namespace
8568 *      @dev: device
8569 *      @net: network namespace
8570 *      @pat: If not NULL name pattern to try if the current device name
8571 *            is already taken in the destination network namespace.
8572 *
8573 *      This function shuts down a device interface and moves it
8574 *      to a new network namespace. On success 0 is returned, on
8575 *      a failure a netagive errno code is returned.
8576 *
8577 *      Callers must hold the rtnl semaphore.
8578 */
8579
8580int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8581{
8582        int err, new_nsid, new_ifindex;
8583
8584        ASSERT_RTNL();
8585
8586        /* Don't allow namespace local devices to be moved. */
8587        err = -EINVAL;
8588        if (dev->features & NETIF_F_NETNS_LOCAL)
8589                goto out;
8590
8591        /* Ensure the device has been registrered */
8592        if (dev->reg_state != NETREG_REGISTERED)
8593                goto out;
8594
8595        /* Get out if there is nothing todo */
8596        err = 0;
8597        if (net_eq(dev_net(dev), net))
8598                goto out;
8599
8600        /* Pick the destination device name, and ensure
8601         * we can use it in the destination network namespace.
8602         */
8603        err = -EEXIST;
8604        if (__dev_get_by_name(net, dev->name)) {
8605                /* We get here if we can't use the current device name */
8606                if (!pat)
8607                        goto out;
8608                if (dev_get_valid_name(net, dev, pat) < 0)
8609                        goto out;
8610        }
8611
8612        /*
8613         * And now a mini version of register_netdevice unregister_netdevice.
8614         */
8615
8616        /* If device is running close it first. */
8617        dev_close(dev);
8618
8619        /* And unlink it from device chain */
8620        err = -ENODEV;
8621        unlist_netdevice(dev);
8622
8623        synchronize_net();
8624
8625        /* Shutdown queueing discipline. */
8626        dev_shutdown(dev);
8627
8628        /* Notify protocols, that we are about to destroy
8629         * this device. They should clean all the things.
8630         *
8631         * Note that dev->reg_state stays at NETREG_REGISTERED.
8632         * This is wanted because this way 8021q and macvlan know
8633         * the device is just moving and can keep their slaves up.
8634         */
8635        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8636        rcu_barrier();
8637
8638        new_nsid = peernet2id_alloc(dev_net(dev), net);
8639        /* If there is an ifindex conflict assign a new one */
8640        if (__dev_get_by_index(net, dev->ifindex))
8641                new_ifindex = dev_new_index(net);
8642        else
8643                new_ifindex = dev->ifindex;
8644
8645        rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8646                            new_ifindex);
8647
8648        /*
8649         *      Flush the unicast and multicast chains
8650         */
8651        dev_uc_flush(dev);
8652        dev_mc_flush(dev);
8653
8654        /* Send a netdev-removed uevent to the old namespace */
8655        kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8656        netdev_adjacent_del_links(dev);
8657
8658        /* Actually switch the network namespace */
8659        dev_net_set(dev, net);
8660        dev->ifindex = new_ifindex;
8661
8662        /* Send a netdev-add uevent to the new namespace */
8663        kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8664        netdev_adjacent_add_links(dev);
8665
8666        /* Fixup kobjects */
8667        err = device_rename(&dev->dev, dev->name);
8668        WARN_ON(err);
8669
8670        /* Add the device back in the hashes */
8671        list_netdevice(dev);
8672
8673        /* Notify protocols, that a new device appeared. */
8674        call_netdevice_notifiers(NETDEV_REGISTER, dev);
8675
8676        /*
8677         *      Prevent userspace races by waiting until the network
8678         *      device is fully setup before sending notifications.
8679         */
8680        rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8681
8682        synchronize_net();
8683        err = 0;
8684out:
8685        return err;
8686}
8687EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8688
8689static int dev_cpu_dead(unsigned int oldcpu)
8690{
8691        struct sk_buff **list_skb;
8692        struct sk_buff *skb;
8693        unsigned int cpu;
8694        struct softnet_data *sd, *oldsd, *remsd = NULL;
8695
8696        local_irq_disable();
8697        cpu = smp_processor_id();
8698        sd = &per_cpu(softnet_data, cpu);
8699        oldsd = &per_cpu(softnet_data, oldcpu);
8700
8701        /* Find end of our completion_queue. */
8702        list_skb = &sd->completion_queue;
8703        while (*list_skb)
8704                list_skb = &(*list_skb)->next;
8705        /* Append completion queue from offline CPU. */
8706        *list_skb = oldsd->completion_queue;
8707        oldsd->completion_queue = NULL;
8708
8709        /* Append output queue from offline CPU. */
8710        if (oldsd->output_queue) {
8711                *sd->output_queue_tailp = oldsd->output_queue;
8712                sd->output_queue_tailp = oldsd->output_queue_tailp;
8713                oldsd->output_queue = NULL;
8714                oldsd->output_queue_tailp = &oldsd->output_queue;
8715        }
8716        /* Append NAPI poll list from offline CPU, with one exception :
8717         * process_backlog() must be called by cpu owning percpu backlog.
8718         * We properly handle process_queue & input_pkt_queue later.
8719         */
8720        while (!list_empty(&oldsd->poll_list)) {
8721                struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8722                                                            struct napi_struct,
8723                                                            poll_list);
8724
8725                list_del_init(&napi->poll_list);
8726                if (napi->poll == process_backlog)
8727                        napi->state = 0;
8728                else
8729                        ____napi_schedule(sd, napi);
8730        }
8731
8732        raise_softirq_irqoff(NET_TX_SOFTIRQ);
8733        local_irq_enable();
8734
8735#ifdef CONFIG_RPS
8736        remsd = oldsd->rps_ipi_list;
8737        oldsd->rps_ipi_list = NULL;
8738#endif
8739        /* send out pending IPI's on offline CPU */
8740        net_rps_send_ipi(remsd);
8741
8742        /* Process offline CPU's input_pkt_queue */
8743        while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8744                netif_rx_ni(skb);
8745                input_queue_head_incr(oldsd);
8746        }
8747        while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8748                netif_rx_ni(skb);
8749                input_queue_head_incr(oldsd);
8750        }
8751
8752        return 0;
8753}
8754
8755/**
8756 *      netdev_increment_features - increment feature set by one
8757 *      @all: current feature set
8758 *      @one: new feature set
8759 *      @mask: mask feature set
8760 *
8761 *      Computes a new feature set after adding a device with feature set
8762 *      @one to the master device with current feature set @all.  Will not
8763 *      enable anything that is off in @mask. Returns the new feature set.
8764 */
8765netdev_features_t netdev_increment_features(netdev_features_t all,
8766        netdev_features_t one, netdev_features_t mask)
8767{
8768        if (mask & NETIF_F_HW_CSUM)
8769                mask |= NETIF_F_CSUM_MASK;
8770        mask |= NETIF_F_VLAN_CHALLENGED;
8771
8772        all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8773        all &= one | ~NETIF_F_ALL_FOR_ALL;
8774
8775        /* If one device supports hw checksumming, set for all. */
8776        if (all & NETIF_F_HW_CSUM)
8777                all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8778
8779        return all;
8780}
8781EXPORT_SYMBOL(netdev_increment_features);
8782
8783static struct hlist_head * __net_init netdev_create_hash(void)
8784{
8785        int i;
8786        struct hlist_head *hash;
8787
8788        hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8789        if (hash != NULL)
8790                for (i = 0; i < NETDEV_HASHENTRIES; i++)
8791                        INIT_HLIST_HEAD(&hash[i]);
8792
8793        return hash;
8794}
8795
8796/* Initialize per network namespace state */
8797static int __net_init netdev_init(struct net *net)
8798{
8799        if (net != &init_net)
8800                INIT_LIST_HEAD(&net->dev_base_head);
8801
8802        net->dev_name_head = netdev_create_hash();
8803        if (net->dev_name_head == NULL)
8804                goto err_name;
8805
8806        net->dev_index_head = netdev_create_hash();
8807        if (net->dev_index_head == NULL)
8808                goto err_idx;
8809
8810        return 0;
8811
8812err_idx:
8813        kfree(net->dev_name_head);
8814err_name:
8815        return -ENOMEM;
8816}
8817
8818/**
8819 *      netdev_drivername - network driver for the device
8820 *      @dev: network device
8821 *
8822 *      Determine network driver for device.
8823 */
8824const char *netdev_drivername(const struct net_device *dev)
8825{
8826        const struct device_driver *driver;
8827        const struct device *parent;
8828        const char *empty = "";
8829
8830        parent = dev->dev.parent;
8831        if (!parent)
8832                return empty;
8833
8834        driver = parent->driver;
8835        if (driver && driver->name)
8836                return driver->name;
8837        return empty;
8838}
8839
8840static void __netdev_printk(const char *level, const struct net_device *dev,
8841                            struct va_format *vaf)
8842{
8843        if (dev && dev->dev.parent) {
8844                dev_printk_emit(level[1] - '0',
8845                                dev->dev.parent,
8846                                "%s %s %s%s: %pV",
8847                                dev_driver_string(dev->dev.parent),
8848                                dev_name(dev->dev.parent),
8849                                netdev_name(dev), netdev_reg_state(dev),
8850                                vaf);
8851        } else if (dev) {
8852                printk("%s%s%s: %pV",
8853                       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8854        } else {
8855                printk("%s(NULL net_device): %pV", level, vaf);
8856        }
8857}
8858
8859void netdev_printk(const char *level, const struct net_device *dev,
8860                   const char *format, ...)
8861{
8862        struct va_format vaf;
8863        va_list args;
8864
8865        va_start(args, format);
8866
8867        vaf.fmt = format;
8868        vaf.va = &args;
8869
8870        __netdev_printk(level, dev, &vaf);
8871
8872        va_end(args);
8873}
8874EXPORT_SYMBOL(netdev_printk);
8875
8876#define define_netdev_printk_level(func, level)                 \
8877void func(const struct net_device *dev, const char *fmt, ...)   \
8878{                                                               \
8879        struct va_format vaf;                                   \
8880        va_list args;                                           \
8881                                                                \
8882        va_start(args, fmt);                                    \
8883                                                                \
8884        vaf.fmt = fmt;                                          \
8885        vaf.va = &args;                                         \
8886                                                                \
8887        __netdev_printk(level, dev, &vaf);                      \
8888                                                                \
8889        va_end(args);                                           \
8890}                                                               \
8891EXPORT_SYMBOL(func);
8892
8893define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8894define_netdev_printk_level(netdev_alert, KERN_ALERT);
8895define_netdev_printk_level(netdev_crit, KERN_CRIT);
8896define_netdev_printk_level(netdev_err, KERN_ERR);
8897define_netdev_printk_level(netdev_warn, KERN_WARNING);
8898define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8899define_netdev_printk_level(netdev_info, KERN_INFO);
8900
8901static void __net_exit netdev_exit(struct net *net)
8902{
8903        kfree(net->dev_name_head);
8904        kfree(net->dev_index_head);
8905        if (net != &init_net)
8906                WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8907}
8908
8909static struct pernet_operations __net_initdata netdev_net_ops = {
8910        .init = netdev_init,
8911        .exit = netdev_exit,
8912};
8913
8914static void __net_exit default_device_exit(struct net *net)
8915{
8916        struct net_device *dev, *aux;
8917        /*
8918         * Push all migratable network devices back to the
8919         * initial network namespace
8920         */
8921        rtnl_lock();
8922        for_each_netdev_safe(net, dev, aux) {
8923                int err;
8924                char fb_name[IFNAMSIZ];
8925
8926                /* Ignore unmoveable devices (i.e. loopback) */
8927                if (dev->features & NETIF_F_NETNS_LOCAL)
8928                        continue;
8929
8930                /* Leave virtual devices for the generic cleanup */
8931                if (dev->rtnl_link_ops)
8932                        continue;
8933
8934                /* Push remaining network devices to init_net */
8935                snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8936                err = dev_change_net_namespace(dev, &init_net, fb_name);
8937                if (err) {
8938                        pr_emerg("%s: failed to move %s to init_net: %d\n",
8939                                 __func__, dev->name, err);
8940                        BUG();
8941                }
8942        }
8943        rtnl_unlock();
8944}
8945
8946static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8947{
8948        /* Return with the rtnl_lock held when there are no network
8949         * devices unregistering in any network namespace in net_list.
8950         */
8951        struct net *net;
8952        bool unregistering;
8953        DEFINE_WAIT_FUNC(wait, woken_wake_function);
8954
8955        add_wait_queue(&netdev_unregistering_wq, &wait);
8956        for (;;) {
8957                unregistering = false;
8958                rtnl_lock();
8959                list_for_each_entry(net, net_list, exit_list) {
8960                        if (net->dev_unreg_count > 0) {
8961                                unregistering = true;
8962                                break;
8963                        }
8964                }
8965                if (!unregistering)
8966                        break;
8967                __rtnl_unlock();
8968
8969                wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8970        }
8971        remove_wait_queue(&netdev_unregistering_wq, &wait);
8972}
8973
8974static void __net_exit default_device_exit_batch(struct list_head *net_list)
8975{
8976        /* At exit all network devices most be removed from a network
8977         * namespace.  Do this in the reverse order of registration.
8978         * Do this across as many network namespaces as possible to
8979         * improve batching efficiency.
8980         */
8981        struct net_device *dev;
8982        struct net *net;
8983        LIST_HEAD(dev_kill_list);
8984
8985        /* To prevent network device cleanup code from dereferencing
8986         * loopback devices or network devices that have been freed
8987         * wait here for all pending unregistrations to complete,
8988         * before unregistring the loopback device and allowing the
8989         * network namespace be freed.
8990         *
8991         * The netdev todo list containing all network devices
8992         * unregistrations that happen in default_device_exit_batch
8993         * will run in the rtnl_unlock() at the end of
8994         * default_device_exit_batch.
8995         */
8996        rtnl_lock_unregistering(net_list);
8997        list_for_each_entry(net, net_list, exit_list) {
8998                for_each_netdev_reverse(net, dev) {
8999                        if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9000                                dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9001                        else
9002                                unregister_netdevice_queue(dev, &dev_kill_list);
9003                }
9004        }
9005        unregister_netdevice_many(&dev_kill_list);
9006        rtnl_unlock();
9007}
9008
9009static struct pernet_operations __net_initdata default_device_ops = {
9010        .exit = default_device_exit,
9011        .exit_batch = default_device_exit_batch,
9012};
9013
9014/*
9015 *      Initialize the DEV module. At boot time this walks the device list and
9016 *      unhooks any devices that fail to initialise (normally hardware not
9017 *      present) and leaves us with a valid list of present and active devices.
9018 *
9019 */
9020
9021/*
9022 *       This is called single threaded during boot, so no need
9023 *       to take the rtnl semaphore.
9024 */
9025static int __init net_dev_init(void)
9026{
9027        int i, rc = -ENOMEM;
9028
9029        BUG_ON(!dev_boot_phase);
9030
9031        if (dev_proc_init())
9032                goto out;
9033
9034        if (netdev_kobject_init())
9035                goto out;
9036
9037        INIT_LIST_HEAD(&ptype_all);
9038        for (i = 0; i < PTYPE_HASH_SIZE; i++)
9039                INIT_LIST_HEAD(&ptype_base[i]);
9040
9041        INIT_LIST_HEAD(&offload_base);
9042
9043        if (register_pernet_subsys(&netdev_net_ops))
9044                goto out;
9045
9046        /*
9047         *      Initialise the packet receive queues.
9048         */
9049
9050        for_each_possible_cpu(i) {
9051                struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9052                struct softnet_data *sd = &per_cpu(softnet_data, i);
9053
9054                INIT_WORK(flush, flush_backlog);
9055
9056                skb_queue_head_init(&sd->input_pkt_queue);
9057                skb_queue_head_init(&sd->process_queue);
9058#ifdef CONFIG_XFRM_OFFLOAD
9059                skb_queue_head_init(&sd->xfrm_backlog);
9060#endif
9061                INIT_LIST_HEAD(&sd->poll_list);
9062                sd->output_queue_tailp = &sd->output_queue;
9063#ifdef CONFIG_RPS
9064                sd->csd.func = rps_trigger_softirq;
9065                sd->csd.info = sd;
9066                sd->cpu = i;
9067#endif
9068
9069                sd->backlog.poll = process_backlog;
9070                sd->backlog.weight = weight_p;
9071        }
9072
9073        dev_boot_phase = 0;
9074
9075        /* The loopback device is special if any other network devices
9076         * is present in a network namespace the loopback device must
9077         * be present. Since we now dynamically allocate and free the
9078         * loopback device ensure this invariant is maintained by
9079         * keeping the loopback device as the first device on the
9080         * list of network devices.  Ensuring the loopback devices
9081         * is the first device that appears and the last network device
9082         * that disappears.
9083         */
9084        if (register_pernet_device(&loopback_net_ops))
9085                goto out;
9086
9087        if (register_pernet_device(&default_device_ops))
9088                goto out;
9089
9090        open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9091        open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9092
9093        rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9094                                       NULL, dev_cpu_dead);
9095        WARN_ON(rc < 0);
9096        rc = 0;
9097out:
9098        return rc;
9099}
9100
9101subsys_initcall(net_dev_init);
9102