linux/net/ipv4/fib_trie.c
<<
>>
Prefs
   1/*
   2 *   This program is free software; you can redistribute it and/or
   3 *   modify it under the terms of the GNU General Public License
   4 *   as published by the Free Software Foundation; either version
   5 *   2 of the License, or (at your option) any later version.
   6 *
   7 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   8 *     & Swedish University of Agricultural Sciences.
   9 *
  10 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
  11 *     Agricultural Sciences.
  12 *
  13 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  14 *
  15 * This work is based on the LPC-trie which is originally described in:
  16 *
  17 * An experimental study of compression methods for dynamic tries
  18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20 *
  21 *
  22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24 *
  25 *
  26 * Code from fib_hash has been reused which includes the following header:
  27 *
  28 *
  29 * INET         An implementation of the TCP/IP protocol suite for the LINUX
  30 *              operating system.  INET is implemented using the  BSD Socket
  31 *              interface as the means of communication with the user level.
  32 *
  33 *              IPv4 FIB: lookup engine and maintenance routines.
  34 *
  35 *
  36 * Authors:     Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37 *
  38 *              This program is free software; you can redistribute it and/or
  39 *              modify it under the terms of the GNU General Public License
  40 *              as published by the Free Software Foundation; either version
  41 *              2 of the License, or (at your option) any later version.
  42 *
  43 * Substantial contributions to this work comes from:
  44 *
  45 *              David S. Miller, <davem@davemloft.net>
  46 *              Stephen Hemminger <shemminger@osdl.org>
  47 *              Paul E. McKenney <paulmck@us.ibm.com>
  48 *              Patrick McHardy <kaber@trash.net>
  49 */
  50
  51#define VERSION "0.409"
  52
  53#include <linux/cache.h>
  54#include <linux/uaccess.h>
  55#include <linux/bitops.h>
  56#include <linux/types.h>
  57#include <linux/kernel.h>
  58#include <linux/mm.h>
  59#include <linux/string.h>
  60#include <linux/socket.h>
  61#include <linux/sockios.h>
  62#include <linux/errno.h>
  63#include <linux/in.h>
  64#include <linux/inet.h>
  65#include <linux/inetdevice.h>
  66#include <linux/netdevice.h>
  67#include <linux/if_arp.h>
  68#include <linux/proc_fs.h>
  69#include <linux/rcupdate.h>
  70#include <linux/skbuff.h>
  71#include <linux/netlink.h>
  72#include <linux/init.h>
  73#include <linux/list.h>
  74#include <linux/slab.h>
  75#include <linux/export.h>
  76#include <linux/vmalloc.h>
  77#include <linux/notifier.h>
  78#include <net/net_namespace.h>
  79#include <net/ip.h>
  80#include <net/protocol.h>
  81#include <net/route.h>
  82#include <net/tcp.h>
  83#include <net/sock.h>
  84#include <net/ip_fib.h>
  85#include <net/fib_notifier.h>
  86#include <trace/events/fib.h>
  87#include "fib_lookup.h"
  88
  89static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
  90                                   enum fib_event_type event_type, u32 dst,
  91                                   int dst_len, struct fib_alias *fa)
  92{
  93        struct fib_entry_notifier_info info = {
  94                .dst = dst,
  95                .dst_len = dst_len,
  96                .fi = fa->fa_info,
  97                .tos = fa->fa_tos,
  98                .type = fa->fa_type,
  99                .tb_id = fa->tb_id,
 100        };
 101        return call_fib4_notifier(nb, net, event_type, &info.info);
 102}
 103
 104static int call_fib_entry_notifiers(struct net *net,
 105                                    enum fib_event_type event_type, u32 dst,
 106                                    int dst_len, struct fib_alias *fa,
 107                                    struct netlink_ext_ack *extack)
 108{
 109        struct fib_entry_notifier_info info = {
 110                .info.extack = extack,
 111                .dst = dst,
 112                .dst_len = dst_len,
 113                .fi = fa->fa_info,
 114                .tos = fa->fa_tos,
 115                .type = fa->fa_type,
 116                .tb_id = fa->tb_id,
 117        };
 118        return call_fib4_notifiers(net, event_type, &info.info);
 119}
 120
 121#define MAX_STAT_DEPTH 32
 122
 123#define KEYLENGTH       (8*sizeof(t_key))
 124#define KEY_MAX         ((t_key)~0)
 125
 126typedef unsigned int t_key;
 127
 128#define IS_TRIE(n)      ((n)->pos >= KEYLENGTH)
 129#define IS_TNODE(n)     ((n)->bits)
 130#define IS_LEAF(n)      (!(n)->bits)
 131
 132struct key_vector {
 133        t_key key;
 134        unsigned char pos;              /* 2log(KEYLENGTH) bits needed */
 135        unsigned char bits;             /* 2log(KEYLENGTH) bits needed */
 136        unsigned char slen;
 137        union {
 138                /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 139                struct hlist_head leaf;
 140                /* This array is valid if (pos | bits) > 0 (TNODE) */
 141                struct key_vector __rcu *tnode[0];
 142        };
 143};
 144
 145struct tnode {
 146        struct rcu_head rcu;
 147        t_key empty_children;           /* KEYLENGTH bits needed */
 148        t_key full_children;            /* KEYLENGTH bits needed */
 149        struct key_vector __rcu *parent;
 150        struct key_vector kv[1];
 151#define tn_bits kv[0].bits
 152};
 153
 154#define TNODE_SIZE(n)   offsetof(struct tnode, kv[0].tnode[n])
 155#define LEAF_SIZE       TNODE_SIZE(1)
 156
 157#ifdef CONFIG_IP_FIB_TRIE_STATS
 158struct trie_use_stats {
 159        unsigned int gets;
 160        unsigned int backtrack;
 161        unsigned int semantic_match_passed;
 162        unsigned int semantic_match_miss;
 163        unsigned int null_node_hit;
 164        unsigned int resize_node_skipped;
 165};
 166#endif
 167
 168struct trie_stat {
 169        unsigned int totdepth;
 170        unsigned int maxdepth;
 171        unsigned int tnodes;
 172        unsigned int leaves;
 173        unsigned int nullpointers;
 174        unsigned int prefixes;
 175        unsigned int nodesizes[MAX_STAT_DEPTH];
 176};
 177
 178struct trie {
 179        struct key_vector kv[1];
 180#ifdef CONFIG_IP_FIB_TRIE_STATS
 181        struct trie_use_stats __percpu *stats;
 182#endif
 183};
 184
 185static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 186static size_t tnode_free_size;
 187
 188/*
 189 * synchronize_rcu after call_rcu for that many pages; it should be especially
 190 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 191 * obtained experimentally, aiming to avoid visible slowdown.
 192 */
 193static const int sync_pages = 128;
 194
 195static struct kmem_cache *fn_alias_kmem __ro_after_init;
 196static struct kmem_cache *trie_leaf_kmem __ro_after_init;
 197
 198static inline struct tnode *tn_info(struct key_vector *kv)
 199{
 200        return container_of(kv, struct tnode, kv[0]);
 201}
 202
 203/* caller must hold RTNL */
 204#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 205#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 206
 207/* caller must hold RCU read lock or RTNL */
 208#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 209#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 210
 211/* wrapper for rcu_assign_pointer */
 212static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 213{
 214        if (n)
 215                rcu_assign_pointer(tn_info(n)->parent, tp);
 216}
 217
 218#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 219
 220/* This provides us with the number of children in this node, in the case of a
 221 * leaf this will return 0 meaning none of the children are accessible.
 222 */
 223static inline unsigned long child_length(const struct key_vector *tn)
 224{
 225        return (1ul << tn->bits) & ~(1ul);
 226}
 227
 228#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 229
 230static inline unsigned long get_index(t_key key, struct key_vector *kv)
 231{
 232        unsigned long index = key ^ kv->key;
 233
 234        if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 235                return 0;
 236
 237        return index >> kv->pos;
 238}
 239
 240/* To understand this stuff, an understanding of keys and all their bits is
 241 * necessary. Every node in the trie has a key associated with it, but not
 242 * all of the bits in that key are significant.
 243 *
 244 * Consider a node 'n' and its parent 'tp'.
 245 *
 246 * If n is a leaf, every bit in its key is significant. Its presence is
 247 * necessitated by path compression, since during a tree traversal (when
 248 * searching for a leaf - unless we are doing an insertion) we will completely
 249 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 250 * a potentially successful search, that we have indeed been walking the
 251 * correct key path.
 252 *
 253 * Note that we can never "miss" the correct key in the tree if present by
 254 * following the wrong path. Path compression ensures that segments of the key
 255 * that are the same for all keys with a given prefix are skipped, but the
 256 * skipped part *is* identical for each node in the subtrie below the skipped
 257 * bit! trie_insert() in this implementation takes care of that.
 258 *
 259 * if n is an internal node - a 'tnode' here, the various parts of its key
 260 * have many different meanings.
 261 *
 262 * Example:
 263 * _________________________________________________________________
 264 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 265 * -----------------------------------------------------------------
 266 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 267 *
 268 * _________________________________________________________________
 269 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 270 * -----------------------------------------------------------------
 271 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 272 *
 273 * tp->pos = 22
 274 * tp->bits = 3
 275 * n->pos = 13
 276 * n->bits = 4
 277 *
 278 * First, let's just ignore the bits that come before the parent tp, that is
 279 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 280 * point we do not use them for anything.
 281 *
 282 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 283 * index into the parent's child array. That is, they will be used to find
 284 * 'n' among tp's children.
 285 *
 286 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 287 * for the node n.
 288 *
 289 * All the bits we have seen so far are significant to the node n. The rest
 290 * of the bits are really not needed or indeed known in n->key.
 291 *
 292 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 293 * n's child array, and will of course be different for each child.
 294 *
 295 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 296 * at this point.
 297 */
 298
 299static const int halve_threshold = 25;
 300static const int inflate_threshold = 50;
 301static const int halve_threshold_root = 15;
 302static const int inflate_threshold_root = 30;
 303
 304static void __alias_free_mem(struct rcu_head *head)
 305{
 306        struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 307        kmem_cache_free(fn_alias_kmem, fa);
 308}
 309
 310static inline void alias_free_mem_rcu(struct fib_alias *fa)
 311{
 312        call_rcu(&fa->rcu, __alias_free_mem);
 313}
 314
 315#define TNODE_KMALLOC_MAX \
 316        ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 317#define TNODE_VMALLOC_MAX \
 318        ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 319
 320static void __node_free_rcu(struct rcu_head *head)
 321{
 322        struct tnode *n = container_of(head, struct tnode, rcu);
 323
 324        if (!n->tn_bits)
 325                kmem_cache_free(trie_leaf_kmem, n);
 326        else
 327                kvfree(n);
 328}
 329
 330#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 331
 332static struct tnode *tnode_alloc(int bits)
 333{
 334        size_t size;
 335
 336        /* verify bits is within bounds */
 337        if (bits > TNODE_VMALLOC_MAX)
 338                return NULL;
 339
 340        /* determine size and verify it is non-zero and didn't overflow */
 341        size = TNODE_SIZE(1ul << bits);
 342
 343        if (size <= PAGE_SIZE)
 344                return kzalloc(size, GFP_KERNEL);
 345        else
 346                return vzalloc(size);
 347}
 348
 349static inline void empty_child_inc(struct key_vector *n)
 350{
 351        ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
 352}
 353
 354static inline void empty_child_dec(struct key_vector *n)
 355{
 356        tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
 357}
 358
 359static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 360{
 361        struct key_vector *l;
 362        struct tnode *kv;
 363
 364        kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 365        if (!kv)
 366                return NULL;
 367
 368        /* initialize key vector */
 369        l = kv->kv;
 370        l->key = key;
 371        l->pos = 0;
 372        l->bits = 0;
 373        l->slen = fa->fa_slen;
 374
 375        /* link leaf to fib alias */
 376        INIT_HLIST_HEAD(&l->leaf);
 377        hlist_add_head(&fa->fa_list, &l->leaf);
 378
 379        return l;
 380}
 381
 382static struct key_vector *tnode_new(t_key key, int pos, int bits)
 383{
 384        unsigned int shift = pos + bits;
 385        struct key_vector *tn;
 386        struct tnode *tnode;
 387
 388        /* verify bits and pos their msb bits clear and values are valid */
 389        BUG_ON(!bits || (shift > KEYLENGTH));
 390
 391        tnode = tnode_alloc(bits);
 392        if (!tnode)
 393                return NULL;
 394
 395        pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 396                 sizeof(struct key_vector *) << bits);
 397
 398        if (bits == KEYLENGTH)
 399                tnode->full_children = 1;
 400        else
 401                tnode->empty_children = 1ul << bits;
 402
 403        tn = tnode->kv;
 404        tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 405        tn->pos = pos;
 406        tn->bits = bits;
 407        tn->slen = pos;
 408
 409        return tn;
 410}
 411
 412/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 413 * and no bits are skipped. See discussion in dyntree paper p. 6
 414 */
 415static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 416{
 417        return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 418}
 419
 420/* Add a child at position i overwriting the old value.
 421 * Update the value of full_children and empty_children.
 422 */
 423static void put_child(struct key_vector *tn, unsigned long i,
 424                      struct key_vector *n)
 425{
 426        struct key_vector *chi = get_child(tn, i);
 427        int isfull, wasfull;
 428
 429        BUG_ON(i >= child_length(tn));
 430
 431        /* update emptyChildren, overflow into fullChildren */
 432        if (!n && chi)
 433                empty_child_inc(tn);
 434        if (n && !chi)
 435                empty_child_dec(tn);
 436
 437        /* update fullChildren */
 438        wasfull = tnode_full(tn, chi);
 439        isfull = tnode_full(tn, n);
 440
 441        if (wasfull && !isfull)
 442                tn_info(tn)->full_children--;
 443        else if (!wasfull && isfull)
 444                tn_info(tn)->full_children++;
 445
 446        if (n && (tn->slen < n->slen))
 447                tn->slen = n->slen;
 448
 449        rcu_assign_pointer(tn->tnode[i], n);
 450}
 451
 452static void update_children(struct key_vector *tn)
 453{
 454        unsigned long i;
 455
 456        /* update all of the child parent pointers */
 457        for (i = child_length(tn); i;) {
 458                struct key_vector *inode = get_child(tn, --i);
 459
 460                if (!inode)
 461                        continue;
 462
 463                /* Either update the children of a tnode that
 464                 * already belongs to us or update the child
 465                 * to point to ourselves.
 466                 */
 467                if (node_parent(inode) == tn)
 468                        update_children(inode);
 469                else
 470                        node_set_parent(inode, tn);
 471        }
 472}
 473
 474static inline void put_child_root(struct key_vector *tp, t_key key,
 475                                  struct key_vector *n)
 476{
 477        if (IS_TRIE(tp))
 478                rcu_assign_pointer(tp->tnode[0], n);
 479        else
 480                put_child(tp, get_index(key, tp), n);
 481}
 482
 483static inline void tnode_free_init(struct key_vector *tn)
 484{
 485        tn_info(tn)->rcu.next = NULL;
 486}
 487
 488static inline void tnode_free_append(struct key_vector *tn,
 489                                     struct key_vector *n)
 490{
 491        tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 492        tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 493}
 494
 495static void tnode_free(struct key_vector *tn)
 496{
 497        struct callback_head *head = &tn_info(tn)->rcu;
 498
 499        while (head) {
 500                head = head->next;
 501                tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 502                node_free(tn);
 503
 504                tn = container_of(head, struct tnode, rcu)->kv;
 505        }
 506
 507        if (tnode_free_size >= PAGE_SIZE * sync_pages) {
 508                tnode_free_size = 0;
 509                synchronize_rcu();
 510        }
 511}
 512
 513static struct key_vector *replace(struct trie *t,
 514                                  struct key_vector *oldtnode,
 515                                  struct key_vector *tn)
 516{
 517        struct key_vector *tp = node_parent(oldtnode);
 518        unsigned long i;
 519
 520        /* setup the parent pointer out of and back into this node */
 521        NODE_INIT_PARENT(tn, tp);
 522        put_child_root(tp, tn->key, tn);
 523
 524        /* update all of the child parent pointers */
 525        update_children(tn);
 526
 527        /* all pointers should be clean so we are done */
 528        tnode_free(oldtnode);
 529
 530        /* resize children now that oldtnode is freed */
 531        for (i = child_length(tn); i;) {
 532                struct key_vector *inode = get_child(tn, --i);
 533
 534                /* resize child node */
 535                if (tnode_full(tn, inode))
 536                        tn = resize(t, inode);
 537        }
 538
 539        return tp;
 540}
 541
 542static struct key_vector *inflate(struct trie *t,
 543                                  struct key_vector *oldtnode)
 544{
 545        struct key_vector *tn;
 546        unsigned long i;
 547        t_key m;
 548
 549        pr_debug("In inflate\n");
 550
 551        tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 552        if (!tn)
 553                goto notnode;
 554
 555        /* prepare oldtnode to be freed */
 556        tnode_free_init(oldtnode);
 557
 558        /* Assemble all of the pointers in our cluster, in this case that
 559         * represents all of the pointers out of our allocated nodes that
 560         * point to existing tnodes and the links between our allocated
 561         * nodes.
 562         */
 563        for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 564                struct key_vector *inode = get_child(oldtnode, --i);
 565                struct key_vector *node0, *node1;
 566                unsigned long j, k;
 567
 568                /* An empty child */
 569                if (!inode)
 570                        continue;
 571
 572                /* A leaf or an internal node with skipped bits */
 573                if (!tnode_full(oldtnode, inode)) {
 574                        put_child(tn, get_index(inode->key, tn), inode);
 575                        continue;
 576                }
 577
 578                /* drop the node in the old tnode free list */
 579                tnode_free_append(oldtnode, inode);
 580
 581                /* An internal node with two children */
 582                if (inode->bits == 1) {
 583                        put_child(tn, 2 * i + 1, get_child(inode, 1));
 584                        put_child(tn, 2 * i, get_child(inode, 0));
 585                        continue;
 586                }
 587
 588                /* We will replace this node 'inode' with two new
 589                 * ones, 'node0' and 'node1', each with half of the
 590                 * original children. The two new nodes will have
 591                 * a position one bit further down the key and this
 592                 * means that the "significant" part of their keys
 593                 * (see the discussion near the top of this file)
 594                 * will differ by one bit, which will be "0" in
 595                 * node0's key and "1" in node1's key. Since we are
 596                 * moving the key position by one step, the bit that
 597                 * we are moving away from - the bit at position
 598                 * (tn->pos) - is the one that will differ between
 599                 * node0 and node1. So... we synthesize that bit in the
 600                 * two new keys.
 601                 */
 602                node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 603                if (!node1)
 604                        goto nomem;
 605                node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 606
 607                tnode_free_append(tn, node1);
 608                if (!node0)
 609                        goto nomem;
 610                tnode_free_append(tn, node0);
 611
 612                /* populate child pointers in new nodes */
 613                for (k = child_length(inode), j = k / 2; j;) {
 614                        put_child(node1, --j, get_child(inode, --k));
 615                        put_child(node0, j, get_child(inode, j));
 616                        put_child(node1, --j, get_child(inode, --k));
 617                        put_child(node0, j, get_child(inode, j));
 618                }
 619
 620                /* link new nodes to parent */
 621                NODE_INIT_PARENT(node1, tn);
 622                NODE_INIT_PARENT(node0, tn);
 623
 624                /* link parent to nodes */
 625                put_child(tn, 2 * i + 1, node1);
 626                put_child(tn, 2 * i, node0);
 627        }
 628
 629        /* setup the parent pointers into and out of this node */
 630        return replace(t, oldtnode, tn);
 631nomem:
 632        /* all pointers should be clean so we are done */
 633        tnode_free(tn);
 634notnode:
 635        return NULL;
 636}
 637
 638static struct key_vector *halve(struct trie *t,
 639                                struct key_vector *oldtnode)
 640{
 641        struct key_vector *tn;
 642        unsigned long i;
 643
 644        pr_debug("In halve\n");
 645
 646        tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 647        if (!tn)
 648                goto notnode;
 649
 650        /* prepare oldtnode to be freed */
 651        tnode_free_init(oldtnode);
 652
 653        /* Assemble all of the pointers in our cluster, in this case that
 654         * represents all of the pointers out of our allocated nodes that
 655         * point to existing tnodes and the links between our allocated
 656         * nodes.
 657         */
 658        for (i = child_length(oldtnode); i;) {
 659                struct key_vector *node1 = get_child(oldtnode, --i);
 660                struct key_vector *node0 = get_child(oldtnode, --i);
 661                struct key_vector *inode;
 662
 663                /* At least one of the children is empty */
 664                if (!node1 || !node0) {
 665                        put_child(tn, i / 2, node1 ? : node0);
 666                        continue;
 667                }
 668
 669                /* Two nonempty children */
 670                inode = tnode_new(node0->key, oldtnode->pos, 1);
 671                if (!inode)
 672                        goto nomem;
 673                tnode_free_append(tn, inode);
 674
 675                /* initialize pointers out of node */
 676                put_child(inode, 1, node1);
 677                put_child(inode, 0, node0);
 678                NODE_INIT_PARENT(inode, tn);
 679
 680                /* link parent to node */
 681                put_child(tn, i / 2, inode);
 682        }
 683
 684        /* setup the parent pointers into and out of this node */
 685        return replace(t, oldtnode, tn);
 686nomem:
 687        /* all pointers should be clean so we are done */
 688        tnode_free(tn);
 689notnode:
 690        return NULL;
 691}
 692
 693static struct key_vector *collapse(struct trie *t,
 694                                   struct key_vector *oldtnode)
 695{
 696        struct key_vector *n, *tp;
 697        unsigned long i;
 698
 699        /* scan the tnode looking for that one child that might still exist */
 700        for (n = NULL, i = child_length(oldtnode); !n && i;)
 701                n = get_child(oldtnode, --i);
 702
 703        /* compress one level */
 704        tp = node_parent(oldtnode);
 705        put_child_root(tp, oldtnode->key, n);
 706        node_set_parent(n, tp);
 707
 708        /* drop dead node */
 709        node_free(oldtnode);
 710
 711        return tp;
 712}
 713
 714static unsigned char update_suffix(struct key_vector *tn)
 715{
 716        unsigned char slen = tn->pos;
 717        unsigned long stride, i;
 718        unsigned char slen_max;
 719
 720        /* only vector 0 can have a suffix length greater than or equal to
 721         * tn->pos + tn->bits, the second highest node will have a suffix
 722         * length at most of tn->pos + tn->bits - 1
 723         */
 724        slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 725
 726        /* search though the list of children looking for nodes that might
 727         * have a suffix greater than the one we currently have.  This is
 728         * why we start with a stride of 2 since a stride of 1 would
 729         * represent the nodes with suffix length equal to tn->pos
 730         */
 731        for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 732                struct key_vector *n = get_child(tn, i);
 733
 734                if (!n || (n->slen <= slen))
 735                        continue;
 736
 737                /* update stride and slen based on new value */
 738                stride <<= (n->slen - slen);
 739                slen = n->slen;
 740                i &= ~(stride - 1);
 741
 742                /* stop searching if we have hit the maximum possible value */
 743                if (slen >= slen_max)
 744                        break;
 745        }
 746
 747        tn->slen = slen;
 748
 749        return slen;
 750}
 751
 752/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 753 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 754 * Telecommunications, page 6:
 755 * "A node is doubled if the ratio of non-empty children to all
 756 * children in the *doubled* node is at least 'high'."
 757 *
 758 * 'high' in this instance is the variable 'inflate_threshold'. It
 759 * is expressed as a percentage, so we multiply it with
 760 * child_length() and instead of multiplying by 2 (since the
 761 * child array will be doubled by inflate()) and multiplying
 762 * the left-hand side by 100 (to handle the percentage thing) we
 763 * multiply the left-hand side by 50.
 764 *
 765 * The left-hand side may look a bit weird: child_length(tn)
 766 * - tn->empty_children is of course the number of non-null children
 767 * in the current node. tn->full_children is the number of "full"
 768 * children, that is non-null tnodes with a skip value of 0.
 769 * All of those will be doubled in the resulting inflated tnode, so
 770 * we just count them one extra time here.
 771 *
 772 * A clearer way to write this would be:
 773 *
 774 * to_be_doubled = tn->full_children;
 775 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 776 *     tn->full_children;
 777 *
 778 * new_child_length = child_length(tn) * 2;
 779 *
 780 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 781 *      new_child_length;
 782 * if (new_fill_factor >= inflate_threshold)
 783 *
 784 * ...and so on, tho it would mess up the while () loop.
 785 *
 786 * anyway,
 787 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 788 *      inflate_threshold
 789 *
 790 * avoid a division:
 791 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 792 *      inflate_threshold * new_child_length
 793 *
 794 * expand not_to_be_doubled and to_be_doubled, and shorten:
 795 * 100 * (child_length(tn) - tn->empty_children +
 796 *    tn->full_children) >= inflate_threshold * new_child_length
 797 *
 798 * expand new_child_length:
 799 * 100 * (child_length(tn) - tn->empty_children +
 800 *    tn->full_children) >=
 801 *      inflate_threshold * child_length(tn) * 2
 802 *
 803 * shorten again:
 804 * 50 * (tn->full_children + child_length(tn) -
 805 *    tn->empty_children) >= inflate_threshold *
 806 *    child_length(tn)
 807 *
 808 */
 809static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 810{
 811        unsigned long used = child_length(tn);
 812        unsigned long threshold = used;
 813
 814        /* Keep root node larger */
 815        threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 816        used -= tn_info(tn)->empty_children;
 817        used += tn_info(tn)->full_children;
 818
 819        /* if bits == KEYLENGTH then pos = 0, and will fail below */
 820
 821        return (used > 1) && tn->pos && ((50 * used) >= threshold);
 822}
 823
 824static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 825{
 826        unsigned long used = child_length(tn);
 827        unsigned long threshold = used;
 828
 829        /* Keep root node larger */
 830        threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 831        used -= tn_info(tn)->empty_children;
 832
 833        /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 834
 835        return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 836}
 837
 838static inline bool should_collapse(struct key_vector *tn)
 839{
 840        unsigned long used = child_length(tn);
 841
 842        used -= tn_info(tn)->empty_children;
 843
 844        /* account for bits == KEYLENGTH case */
 845        if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 846                used -= KEY_MAX;
 847
 848        /* One child or none, time to drop us from the trie */
 849        return used < 2;
 850}
 851
 852#define MAX_WORK 10
 853static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 854{
 855#ifdef CONFIG_IP_FIB_TRIE_STATS
 856        struct trie_use_stats __percpu *stats = t->stats;
 857#endif
 858        struct key_vector *tp = node_parent(tn);
 859        unsigned long cindex = get_index(tn->key, tp);
 860        int max_work = MAX_WORK;
 861
 862        pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 863                 tn, inflate_threshold, halve_threshold);
 864
 865        /* track the tnode via the pointer from the parent instead of
 866         * doing it ourselves.  This way we can let RCU fully do its
 867         * thing without us interfering
 868         */
 869        BUG_ON(tn != get_child(tp, cindex));
 870
 871        /* Double as long as the resulting node has a number of
 872         * nonempty nodes that are above the threshold.
 873         */
 874        while (should_inflate(tp, tn) && max_work) {
 875                tp = inflate(t, tn);
 876                if (!tp) {
 877#ifdef CONFIG_IP_FIB_TRIE_STATS
 878                        this_cpu_inc(stats->resize_node_skipped);
 879#endif
 880                        break;
 881                }
 882
 883                max_work--;
 884                tn = get_child(tp, cindex);
 885        }
 886
 887        /* update parent in case inflate failed */
 888        tp = node_parent(tn);
 889
 890        /* Return if at least one inflate is run */
 891        if (max_work != MAX_WORK)
 892                return tp;
 893
 894        /* Halve as long as the number of empty children in this
 895         * node is above threshold.
 896         */
 897        while (should_halve(tp, tn) && max_work) {
 898                tp = halve(t, tn);
 899                if (!tp) {
 900#ifdef CONFIG_IP_FIB_TRIE_STATS
 901                        this_cpu_inc(stats->resize_node_skipped);
 902#endif
 903                        break;
 904                }
 905
 906                max_work--;
 907                tn = get_child(tp, cindex);
 908        }
 909
 910        /* Only one child remains */
 911        if (should_collapse(tn))
 912                return collapse(t, tn);
 913
 914        /* update parent in case halve failed */
 915        return node_parent(tn);
 916}
 917
 918static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
 919{
 920        unsigned char node_slen = tn->slen;
 921
 922        while ((node_slen > tn->pos) && (node_slen > slen)) {
 923                slen = update_suffix(tn);
 924                if (node_slen == slen)
 925                        break;
 926
 927                tn = node_parent(tn);
 928                node_slen = tn->slen;
 929        }
 930}
 931
 932static void node_push_suffix(struct key_vector *tn, unsigned char slen)
 933{
 934        while (tn->slen < slen) {
 935                tn->slen = slen;
 936                tn = node_parent(tn);
 937        }
 938}
 939
 940/* rcu_read_lock needs to be hold by caller from readside */
 941static struct key_vector *fib_find_node(struct trie *t,
 942                                        struct key_vector **tp, u32 key)
 943{
 944        struct key_vector *pn, *n = t->kv;
 945        unsigned long index = 0;
 946
 947        do {
 948                pn = n;
 949                n = get_child_rcu(n, index);
 950
 951                if (!n)
 952                        break;
 953
 954                index = get_cindex(key, n);
 955
 956                /* This bit of code is a bit tricky but it combines multiple
 957                 * checks into a single check.  The prefix consists of the
 958                 * prefix plus zeros for the bits in the cindex. The index
 959                 * is the difference between the key and this value.  From
 960                 * this we can actually derive several pieces of data.
 961                 *   if (index >= (1ul << bits))
 962                 *     we have a mismatch in skip bits and failed
 963                 *   else
 964                 *     we know the value is cindex
 965                 *
 966                 * This check is safe even if bits == KEYLENGTH due to the
 967                 * fact that we can only allocate a node with 32 bits if a
 968                 * long is greater than 32 bits.
 969                 */
 970                if (index >= (1ul << n->bits)) {
 971                        n = NULL;
 972                        break;
 973                }
 974
 975                /* keep searching until we find a perfect match leaf or NULL */
 976        } while (IS_TNODE(n));
 977
 978        *tp = pn;
 979
 980        return n;
 981}
 982
 983/* Return the first fib alias matching TOS with
 984 * priority less than or equal to PRIO.
 985 */
 986static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 987                                        u8 tos, u32 prio, u32 tb_id)
 988{
 989        struct fib_alias *fa;
 990
 991        if (!fah)
 992                return NULL;
 993
 994        hlist_for_each_entry(fa, fah, fa_list) {
 995                if (fa->fa_slen < slen)
 996                        continue;
 997                if (fa->fa_slen != slen)
 998                        break;
 999                if (fa->tb_id > tb_id)
1000                        continue;
1001                if (fa->tb_id != tb_id)
1002                        break;
1003                if (fa->fa_tos > tos)
1004                        continue;
1005                if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1006                        return fa;
1007        }
1008
1009        return NULL;
1010}
1011
1012static void trie_rebalance(struct trie *t, struct key_vector *tn)
1013{
1014        while (!IS_TRIE(tn))
1015                tn = resize(t, tn);
1016}
1017
1018static int fib_insert_node(struct trie *t, struct key_vector *tp,
1019                           struct fib_alias *new, t_key key)
1020{
1021        struct key_vector *n, *l;
1022
1023        l = leaf_new(key, new);
1024        if (!l)
1025                goto noleaf;
1026
1027        /* retrieve child from parent node */
1028        n = get_child(tp, get_index(key, tp));
1029
1030        /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1031         *
1032         *  Add a new tnode here
1033         *  first tnode need some special handling
1034         *  leaves us in position for handling as case 3
1035         */
1036        if (n) {
1037                struct key_vector *tn;
1038
1039                tn = tnode_new(key, __fls(key ^ n->key), 1);
1040                if (!tn)
1041                        goto notnode;
1042
1043                /* initialize routes out of node */
1044                NODE_INIT_PARENT(tn, tp);
1045                put_child(tn, get_index(key, tn) ^ 1, n);
1046
1047                /* start adding routes into the node */
1048                put_child_root(tp, key, tn);
1049                node_set_parent(n, tn);
1050
1051                /* parent now has a NULL spot where the leaf can go */
1052                tp = tn;
1053        }
1054
1055        /* Case 3: n is NULL, and will just insert a new leaf */
1056        node_push_suffix(tp, new->fa_slen);
1057        NODE_INIT_PARENT(l, tp);
1058        put_child_root(tp, key, l);
1059        trie_rebalance(t, tp);
1060
1061        return 0;
1062notnode:
1063        node_free(l);
1064noleaf:
1065        return -ENOMEM;
1066}
1067
1068/* fib notifier for ADD is sent before calling fib_insert_alias with
1069 * the expectation that the only possible failure ENOMEM
1070 */
1071static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1072                            struct key_vector *l, struct fib_alias *new,
1073                            struct fib_alias *fa, t_key key)
1074{
1075        if (!l)
1076                return fib_insert_node(t, tp, new, key);
1077
1078        if (fa) {
1079                hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1080        } else {
1081                struct fib_alias *last;
1082
1083                hlist_for_each_entry(last, &l->leaf, fa_list) {
1084                        if (new->fa_slen < last->fa_slen)
1085                                break;
1086                        if ((new->fa_slen == last->fa_slen) &&
1087                            (new->tb_id > last->tb_id))
1088                                break;
1089                        fa = last;
1090                }
1091
1092                if (fa)
1093                        hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1094                else
1095                        hlist_add_head_rcu(&new->fa_list, &l->leaf);
1096        }
1097
1098        /* if we added to the tail node then we need to update slen */
1099        if (l->slen < new->fa_slen) {
1100                l->slen = new->fa_slen;
1101                node_push_suffix(tp, new->fa_slen);
1102        }
1103
1104        return 0;
1105}
1106
1107static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1108{
1109        if (plen > KEYLENGTH) {
1110                NL_SET_ERR_MSG(extack, "Invalid prefix length");
1111                return false;
1112        }
1113
1114        if ((plen < KEYLENGTH) && (key << plen)) {
1115                NL_SET_ERR_MSG(extack,
1116                               "Invalid prefix for given prefix length");
1117                return false;
1118        }
1119
1120        return true;
1121}
1122
1123/* Caller must hold RTNL. */
1124int fib_table_insert(struct net *net, struct fib_table *tb,
1125                     struct fib_config *cfg, struct netlink_ext_ack *extack)
1126{
1127        enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1128        struct trie *t = (struct trie *)tb->tb_data;
1129        struct fib_alias *fa, *new_fa;
1130        struct key_vector *l, *tp;
1131        u16 nlflags = NLM_F_EXCL;
1132        struct fib_info *fi;
1133        u8 plen = cfg->fc_dst_len;
1134        u8 slen = KEYLENGTH - plen;
1135        u8 tos = cfg->fc_tos;
1136        u32 key;
1137        int err;
1138
1139        key = ntohl(cfg->fc_dst);
1140
1141        if (!fib_valid_key_len(key, plen, extack))
1142                return -EINVAL;
1143
1144        pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1145
1146        fi = fib_create_info(cfg, extack);
1147        if (IS_ERR(fi)) {
1148                err = PTR_ERR(fi);
1149                goto err;
1150        }
1151
1152        l = fib_find_node(t, &tp, key);
1153        fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1154                                tb->tb_id) : NULL;
1155
1156        /* Now fa, if non-NULL, points to the first fib alias
1157         * with the same keys [prefix,tos,priority], if such key already
1158         * exists or to the node before which we will insert new one.
1159         *
1160         * If fa is NULL, we will need to allocate a new one and
1161         * insert to the tail of the section matching the suffix length
1162         * of the new alias.
1163         */
1164
1165        if (fa && fa->fa_tos == tos &&
1166            fa->fa_info->fib_priority == fi->fib_priority) {
1167                struct fib_alias *fa_first, *fa_match;
1168
1169                err = -EEXIST;
1170                if (cfg->fc_nlflags & NLM_F_EXCL)
1171                        goto out;
1172
1173                nlflags &= ~NLM_F_EXCL;
1174
1175                /* We have 2 goals:
1176                 * 1. Find exact match for type, scope, fib_info to avoid
1177                 * duplicate routes
1178                 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1179                 */
1180                fa_match = NULL;
1181                fa_first = fa;
1182                hlist_for_each_entry_from(fa, fa_list) {
1183                        if ((fa->fa_slen != slen) ||
1184                            (fa->tb_id != tb->tb_id) ||
1185                            (fa->fa_tos != tos))
1186                                break;
1187                        if (fa->fa_info->fib_priority != fi->fib_priority)
1188                                break;
1189                        if (fa->fa_type == cfg->fc_type &&
1190                            fa->fa_info == fi) {
1191                                fa_match = fa;
1192                                break;
1193                        }
1194                }
1195
1196                if (cfg->fc_nlflags & NLM_F_REPLACE) {
1197                        struct fib_info *fi_drop;
1198                        u8 state;
1199
1200                        nlflags |= NLM_F_REPLACE;
1201                        fa = fa_first;
1202                        if (fa_match) {
1203                                if (fa == fa_match)
1204                                        err = 0;
1205                                goto out;
1206                        }
1207                        err = -ENOBUFS;
1208                        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1209                        if (!new_fa)
1210                                goto out;
1211
1212                        fi_drop = fa->fa_info;
1213                        new_fa->fa_tos = fa->fa_tos;
1214                        new_fa->fa_info = fi;
1215                        new_fa->fa_type = cfg->fc_type;
1216                        state = fa->fa_state;
1217                        new_fa->fa_state = state & ~FA_S_ACCESSED;
1218                        new_fa->fa_slen = fa->fa_slen;
1219                        new_fa->tb_id = tb->tb_id;
1220                        new_fa->fa_default = -1;
1221
1222                        err = call_fib_entry_notifiers(net,
1223                                                       FIB_EVENT_ENTRY_REPLACE,
1224                                                       key, plen, new_fa,
1225                                                       extack);
1226                        if (err)
1227                                goto out_free_new_fa;
1228
1229                        rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1230                                  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1231
1232                        hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1233
1234                        alias_free_mem_rcu(fa);
1235
1236                        fib_release_info(fi_drop);
1237                        if (state & FA_S_ACCESSED)
1238                                rt_cache_flush(cfg->fc_nlinfo.nl_net);
1239
1240                        goto succeeded;
1241                }
1242                /* Error if we find a perfect match which
1243                 * uses the same scope, type, and nexthop
1244                 * information.
1245                 */
1246                if (fa_match)
1247                        goto out;
1248
1249                if (cfg->fc_nlflags & NLM_F_APPEND) {
1250                        event = FIB_EVENT_ENTRY_APPEND;
1251                        nlflags |= NLM_F_APPEND;
1252                } else {
1253                        fa = fa_first;
1254                }
1255        }
1256        err = -ENOENT;
1257        if (!(cfg->fc_nlflags & NLM_F_CREATE))
1258                goto out;
1259
1260        nlflags |= NLM_F_CREATE;
1261        err = -ENOBUFS;
1262        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1263        if (!new_fa)
1264                goto out;
1265
1266        new_fa->fa_info = fi;
1267        new_fa->fa_tos = tos;
1268        new_fa->fa_type = cfg->fc_type;
1269        new_fa->fa_state = 0;
1270        new_fa->fa_slen = slen;
1271        new_fa->tb_id = tb->tb_id;
1272        new_fa->fa_default = -1;
1273
1274        err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1275        if (err)
1276                goto out_free_new_fa;
1277
1278        /* Insert new entry to the list. */
1279        err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1280        if (err)
1281                goto out_fib_notif;
1282
1283        if (!plen)
1284                tb->tb_num_default++;
1285
1286        rt_cache_flush(cfg->fc_nlinfo.nl_net);
1287        rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1288                  &cfg->fc_nlinfo, nlflags);
1289succeeded:
1290        return 0;
1291
1292out_fib_notif:
1293        /* notifier was sent that entry would be added to trie, but
1294         * the add failed and need to recover. Only failure for
1295         * fib_insert_alias is ENOMEM.
1296         */
1297        NL_SET_ERR_MSG(extack, "Failed to insert route into trie");
1298        call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key,
1299                                 plen, new_fa, NULL);
1300out_free_new_fa:
1301        kmem_cache_free(fn_alias_kmem, new_fa);
1302out:
1303        fib_release_info(fi);
1304err:
1305        return err;
1306}
1307
1308static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1309{
1310        t_key prefix = n->key;
1311
1312        return (key ^ prefix) & (prefix | -prefix);
1313}
1314
1315/* should be called with rcu_read_lock */
1316int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1317                     struct fib_result *res, int fib_flags)
1318{
1319        struct trie *t = (struct trie *) tb->tb_data;
1320#ifdef CONFIG_IP_FIB_TRIE_STATS
1321        struct trie_use_stats __percpu *stats = t->stats;
1322#endif
1323        const t_key key = ntohl(flp->daddr);
1324        struct key_vector *n, *pn;
1325        struct fib_alias *fa;
1326        unsigned long index;
1327        t_key cindex;
1328
1329        trace_fib_table_lookup(tb->tb_id, flp);
1330
1331        pn = t->kv;
1332        cindex = 0;
1333
1334        n = get_child_rcu(pn, cindex);
1335        if (!n)
1336                return -EAGAIN;
1337
1338#ifdef CONFIG_IP_FIB_TRIE_STATS
1339        this_cpu_inc(stats->gets);
1340#endif
1341
1342        /* Step 1: Travel to the longest prefix match in the trie */
1343        for (;;) {
1344                index = get_cindex(key, n);
1345
1346                /* This bit of code is a bit tricky but it combines multiple
1347                 * checks into a single check.  The prefix consists of the
1348                 * prefix plus zeros for the "bits" in the prefix. The index
1349                 * is the difference between the key and this value.  From
1350                 * this we can actually derive several pieces of data.
1351                 *   if (index >= (1ul << bits))
1352                 *     we have a mismatch in skip bits and failed
1353                 *   else
1354                 *     we know the value is cindex
1355                 *
1356                 * This check is safe even if bits == KEYLENGTH due to the
1357                 * fact that we can only allocate a node with 32 bits if a
1358                 * long is greater than 32 bits.
1359                 */
1360                if (index >= (1ul << n->bits))
1361                        break;
1362
1363                /* we have found a leaf. Prefixes have already been compared */
1364                if (IS_LEAF(n))
1365                        goto found;
1366
1367                /* only record pn and cindex if we are going to be chopping
1368                 * bits later.  Otherwise we are just wasting cycles.
1369                 */
1370                if (n->slen > n->pos) {
1371                        pn = n;
1372                        cindex = index;
1373                }
1374
1375                n = get_child_rcu(n, index);
1376                if (unlikely(!n))
1377                        goto backtrace;
1378        }
1379
1380        /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1381        for (;;) {
1382                /* record the pointer where our next node pointer is stored */
1383                struct key_vector __rcu **cptr = n->tnode;
1384
1385                /* This test verifies that none of the bits that differ
1386                 * between the key and the prefix exist in the region of
1387                 * the lsb and higher in the prefix.
1388                 */
1389                if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1390                        goto backtrace;
1391
1392                /* exit out and process leaf */
1393                if (unlikely(IS_LEAF(n)))
1394                        break;
1395
1396                /* Don't bother recording parent info.  Since we are in
1397                 * prefix match mode we will have to come back to wherever
1398                 * we started this traversal anyway
1399                 */
1400
1401                while ((n = rcu_dereference(*cptr)) == NULL) {
1402backtrace:
1403#ifdef CONFIG_IP_FIB_TRIE_STATS
1404                        if (!n)
1405                                this_cpu_inc(stats->null_node_hit);
1406#endif
1407                        /* If we are at cindex 0 there are no more bits for
1408                         * us to strip at this level so we must ascend back
1409                         * up one level to see if there are any more bits to
1410                         * be stripped there.
1411                         */
1412                        while (!cindex) {
1413                                t_key pkey = pn->key;
1414
1415                                /* If we don't have a parent then there is
1416                                 * nothing for us to do as we do not have any
1417                                 * further nodes to parse.
1418                                 */
1419                                if (IS_TRIE(pn))
1420                                        return -EAGAIN;
1421#ifdef CONFIG_IP_FIB_TRIE_STATS
1422                                this_cpu_inc(stats->backtrack);
1423#endif
1424                                /* Get Child's index */
1425                                pn = node_parent_rcu(pn);
1426                                cindex = get_index(pkey, pn);
1427                        }
1428
1429                        /* strip the least significant bit from the cindex */
1430                        cindex &= cindex - 1;
1431
1432                        /* grab pointer for next child node */
1433                        cptr = &pn->tnode[cindex];
1434                }
1435        }
1436
1437found:
1438        /* this line carries forward the xor from earlier in the function */
1439        index = key ^ n->key;
1440
1441        /* Step 3: Process the leaf, if that fails fall back to backtracing */
1442        hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1443                struct fib_info *fi = fa->fa_info;
1444                int nhsel, err;
1445
1446                if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1447                        if (index >= (1ul << fa->fa_slen))
1448                                continue;
1449                }
1450                if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1451                        continue;
1452                if (fi->fib_dead)
1453                        continue;
1454                if (fa->fa_info->fib_scope < flp->flowi4_scope)
1455                        continue;
1456                fib_alias_accessed(fa);
1457                err = fib_props[fa->fa_type].error;
1458                if (unlikely(err < 0)) {
1459#ifdef CONFIG_IP_FIB_TRIE_STATS
1460                        this_cpu_inc(stats->semantic_match_passed);
1461#endif
1462                        return err;
1463                }
1464                if (fi->fib_flags & RTNH_F_DEAD)
1465                        continue;
1466                for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1467                        const struct fib_nh *nh = &fi->fib_nh[nhsel];
1468                        struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1469
1470                        if (nh->nh_flags & RTNH_F_DEAD)
1471                                continue;
1472                        if (in_dev &&
1473                            IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1474                            nh->nh_flags & RTNH_F_LINKDOWN &&
1475                            !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1476                                continue;
1477                        if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1478                                if (flp->flowi4_oif &&
1479                                    flp->flowi4_oif != nh->nh_oif)
1480                                        continue;
1481                        }
1482
1483                        if (!(fib_flags & FIB_LOOKUP_NOREF))
1484                                refcount_inc(&fi->fib_clntref);
1485
1486                        res->prefix = htonl(n->key);
1487                        res->prefixlen = KEYLENGTH - fa->fa_slen;
1488                        res->nh_sel = nhsel;
1489                        res->type = fa->fa_type;
1490                        res->scope = fi->fib_scope;
1491                        res->fi = fi;
1492                        res->table = tb;
1493                        res->fa_head = &n->leaf;
1494#ifdef CONFIG_IP_FIB_TRIE_STATS
1495                        this_cpu_inc(stats->semantic_match_passed);
1496#endif
1497                        trace_fib_table_lookup_nh(nh);
1498
1499                        return err;
1500                }
1501        }
1502#ifdef CONFIG_IP_FIB_TRIE_STATS
1503        this_cpu_inc(stats->semantic_match_miss);
1504#endif
1505        goto backtrace;
1506}
1507EXPORT_SYMBOL_GPL(fib_table_lookup);
1508
1509static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1510                             struct key_vector *l, struct fib_alias *old)
1511{
1512        /* record the location of the previous list_info entry */
1513        struct hlist_node **pprev = old->fa_list.pprev;
1514        struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1515
1516        /* remove the fib_alias from the list */
1517        hlist_del_rcu(&old->fa_list);
1518
1519        /* if we emptied the list this leaf will be freed and we can sort
1520         * out parent suffix lengths as a part of trie_rebalance
1521         */
1522        if (hlist_empty(&l->leaf)) {
1523                if (tp->slen == l->slen)
1524                        node_pull_suffix(tp, tp->pos);
1525                put_child_root(tp, l->key, NULL);
1526                node_free(l);
1527                trie_rebalance(t, tp);
1528                return;
1529        }
1530
1531        /* only access fa if it is pointing at the last valid hlist_node */
1532        if (*pprev)
1533                return;
1534
1535        /* update the trie with the latest suffix length */
1536        l->slen = fa->fa_slen;
1537        node_pull_suffix(tp, fa->fa_slen);
1538}
1539
1540/* Caller must hold RTNL. */
1541int fib_table_delete(struct net *net, struct fib_table *tb,
1542                     struct fib_config *cfg, struct netlink_ext_ack *extack)
1543{
1544        struct trie *t = (struct trie *) tb->tb_data;
1545        struct fib_alias *fa, *fa_to_delete;
1546        struct key_vector *l, *tp;
1547        u8 plen = cfg->fc_dst_len;
1548        u8 slen = KEYLENGTH - plen;
1549        u8 tos = cfg->fc_tos;
1550        u32 key;
1551
1552        key = ntohl(cfg->fc_dst);
1553
1554        if (!fib_valid_key_len(key, plen, extack))
1555                return -EINVAL;
1556
1557        l = fib_find_node(t, &tp, key);
1558        if (!l)
1559                return -ESRCH;
1560
1561        fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1562        if (!fa)
1563                return -ESRCH;
1564
1565        pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1566
1567        fa_to_delete = NULL;
1568        hlist_for_each_entry_from(fa, fa_list) {
1569                struct fib_info *fi = fa->fa_info;
1570
1571                if ((fa->fa_slen != slen) ||
1572                    (fa->tb_id != tb->tb_id) ||
1573                    (fa->fa_tos != tos))
1574                        break;
1575
1576                if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1577                    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1578                     fa->fa_info->fib_scope == cfg->fc_scope) &&
1579                    (!cfg->fc_prefsrc ||
1580                     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1581                    (!cfg->fc_protocol ||
1582                     fi->fib_protocol == cfg->fc_protocol) &&
1583                    fib_nh_match(cfg, fi, extack) == 0 &&
1584                    fib_metrics_match(cfg, fi)) {
1585                        fa_to_delete = fa;
1586                        break;
1587                }
1588        }
1589
1590        if (!fa_to_delete)
1591                return -ESRCH;
1592
1593        call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1594                                 fa_to_delete, extack);
1595        rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1596                  &cfg->fc_nlinfo, 0);
1597
1598        if (!plen)
1599                tb->tb_num_default--;
1600
1601        fib_remove_alias(t, tp, l, fa_to_delete);
1602
1603        if (fa_to_delete->fa_state & FA_S_ACCESSED)
1604                rt_cache_flush(cfg->fc_nlinfo.nl_net);
1605
1606        fib_release_info(fa_to_delete->fa_info);
1607        alias_free_mem_rcu(fa_to_delete);
1608        return 0;
1609}
1610
1611/* Scan for the next leaf starting at the provided key value */
1612static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1613{
1614        struct key_vector *pn, *n = *tn;
1615        unsigned long cindex;
1616
1617        /* this loop is meant to try and find the key in the trie */
1618        do {
1619                /* record parent and next child index */
1620                pn = n;
1621                cindex = (key > pn->key) ? get_index(key, pn) : 0;
1622
1623                if (cindex >> pn->bits)
1624                        break;
1625
1626                /* descend into the next child */
1627                n = get_child_rcu(pn, cindex++);
1628                if (!n)
1629                        break;
1630
1631                /* guarantee forward progress on the keys */
1632                if (IS_LEAF(n) && (n->key >= key))
1633                        goto found;
1634        } while (IS_TNODE(n));
1635
1636        /* this loop will search for the next leaf with a greater key */
1637        while (!IS_TRIE(pn)) {
1638                /* if we exhausted the parent node we will need to climb */
1639                if (cindex >= (1ul << pn->bits)) {
1640                        t_key pkey = pn->key;
1641
1642                        pn = node_parent_rcu(pn);
1643                        cindex = get_index(pkey, pn) + 1;
1644                        continue;
1645                }
1646
1647                /* grab the next available node */
1648                n = get_child_rcu(pn, cindex++);
1649                if (!n)
1650                        continue;
1651
1652                /* no need to compare keys since we bumped the index */
1653                if (IS_LEAF(n))
1654                        goto found;
1655
1656                /* Rescan start scanning in new node */
1657                pn = n;
1658                cindex = 0;
1659        }
1660
1661        *tn = pn;
1662        return NULL; /* Root of trie */
1663found:
1664        /* if we are at the limit for keys just return NULL for the tnode */
1665        *tn = pn;
1666        return n;
1667}
1668
1669static void fib_trie_free(struct fib_table *tb)
1670{
1671        struct trie *t = (struct trie *)tb->tb_data;
1672        struct key_vector *pn = t->kv;
1673        unsigned long cindex = 1;
1674        struct hlist_node *tmp;
1675        struct fib_alias *fa;
1676
1677        /* walk trie in reverse order and free everything */
1678        for (;;) {
1679                struct key_vector *n;
1680
1681                if (!(cindex--)) {
1682                        t_key pkey = pn->key;
1683
1684                        if (IS_TRIE(pn))
1685                                break;
1686
1687                        n = pn;
1688                        pn = node_parent(pn);
1689
1690                        /* drop emptied tnode */
1691                        put_child_root(pn, n->key, NULL);
1692                        node_free(n);
1693
1694                        cindex = get_index(pkey, pn);
1695
1696                        continue;
1697                }
1698
1699                /* grab the next available node */
1700                n = get_child(pn, cindex);
1701                if (!n)
1702                        continue;
1703
1704                if (IS_TNODE(n)) {
1705                        /* record pn and cindex for leaf walking */
1706                        pn = n;
1707                        cindex = 1ul << n->bits;
1708
1709                        continue;
1710                }
1711
1712                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1713                        hlist_del_rcu(&fa->fa_list);
1714                        alias_free_mem_rcu(fa);
1715                }
1716
1717                put_child_root(pn, n->key, NULL);
1718                node_free(n);
1719        }
1720
1721#ifdef CONFIG_IP_FIB_TRIE_STATS
1722        free_percpu(t->stats);
1723#endif
1724        kfree(tb);
1725}
1726
1727struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1728{
1729        struct trie *ot = (struct trie *)oldtb->tb_data;
1730        struct key_vector *l, *tp = ot->kv;
1731        struct fib_table *local_tb;
1732        struct fib_alias *fa;
1733        struct trie *lt;
1734        t_key key = 0;
1735
1736        if (oldtb->tb_data == oldtb->__data)
1737                return oldtb;
1738
1739        local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1740        if (!local_tb)
1741                return NULL;
1742
1743        lt = (struct trie *)local_tb->tb_data;
1744
1745        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1746                struct key_vector *local_l = NULL, *local_tp;
1747
1748                hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1749                        struct fib_alias *new_fa;
1750
1751                        if (local_tb->tb_id != fa->tb_id)
1752                                continue;
1753
1754                        /* clone fa for new local table */
1755                        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1756                        if (!new_fa)
1757                                goto out;
1758
1759                        memcpy(new_fa, fa, sizeof(*fa));
1760
1761                        /* insert clone into table */
1762                        if (!local_l)
1763                                local_l = fib_find_node(lt, &local_tp, l->key);
1764
1765                        if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1766                                             NULL, l->key)) {
1767                                kmem_cache_free(fn_alias_kmem, new_fa);
1768                                goto out;
1769                        }
1770                }
1771
1772                /* stop loop if key wrapped back to 0 */
1773                key = l->key + 1;
1774                if (key < l->key)
1775                        break;
1776        }
1777
1778        return local_tb;
1779out:
1780        fib_trie_free(local_tb);
1781
1782        return NULL;
1783}
1784
1785/* Caller must hold RTNL */
1786void fib_table_flush_external(struct fib_table *tb)
1787{
1788        struct trie *t = (struct trie *)tb->tb_data;
1789        struct key_vector *pn = t->kv;
1790        unsigned long cindex = 1;
1791        struct hlist_node *tmp;
1792        struct fib_alias *fa;
1793
1794        /* walk trie in reverse order */
1795        for (;;) {
1796                unsigned char slen = 0;
1797                struct key_vector *n;
1798
1799                if (!(cindex--)) {
1800                        t_key pkey = pn->key;
1801
1802                        /* cannot resize the trie vector */
1803                        if (IS_TRIE(pn))
1804                                break;
1805
1806                        /* update the suffix to address pulled leaves */
1807                        if (pn->slen > pn->pos)
1808                                update_suffix(pn);
1809
1810                        /* resize completed node */
1811                        pn = resize(t, pn);
1812                        cindex = get_index(pkey, pn);
1813
1814                        continue;
1815                }
1816
1817                /* grab the next available node */
1818                n = get_child(pn, cindex);
1819                if (!n)
1820                        continue;
1821
1822                if (IS_TNODE(n)) {
1823                        /* record pn and cindex for leaf walking */
1824                        pn = n;
1825                        cindex = 1ul << n->bits;
1826
1827                        continue;
1828                }
1829
1830                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1831                        /* if alias was cloned to local then we just
1832                         * need to remove the local copy from main
1833                         */
1834                        if (tb->tb_id != fa->tb_id) {
1835                                hlist_del_rcu(&fa->fa_list);
1836                                alias_free_mem_rcu(fa);
1837                                continue;
1838                        }
1839
1840                        /* record local slen */
1841                        slen = fa->fa_slen;
1842                }
1843
1844                /* update leaf slen */
1845                n->slen = slen;
1846
1847                if (hlist_empty(&n->leaf)) {
1848                        put_child_root(pn, n->key, NULL);
1849                        node_free(n);
1850                }
1851        }
1852}
1853
1854/* Caller must hold RTNL. */
1855int fib_table_flush(struct net *net, struct fib_table *tb)
1856{
1857        struct trie *t = (struct trie *)tb->tb_data;
1858        struct key_vector *pn = t->kv;
1859        unsigned long cindex = 1;
1860        struct hlist_node *tmp;
1861        struct fib_alias *fa;
1862        int found = 0;
1863
1864        /* walk trie in reverse order */
1865        for (;;) {
1866                unsigned char slen = 0;
1867                struct key_vector *n;
1868
1869                if (!(cindex--)) {
1870                        t_key pkey = pn->key;
1871
1872                        /* cannot resize the trie vector */
1873                        if (IS_TRIE(pn))
1874                                break;
1875
1876                        /* update the suffix to address pulled leaves */
1877                        if (pn->slen > pn->pos)
1878                                update_suffix(pn);
1879
1880                        /* resize completed node */
1881                        pn = resize(t, pn);
1882                        cindex = get_index(pkey, pn);
1883
1884                        continue;
1885                }
1886
1887                /* grab the next available node */
1888                n = get_child(pn, cindex);
1889                if (!n)
1890                        continue;
1891
1892                if (IS_TNODE(n)) {
1893                        /* record pn and cindex for leaf walking */
1894                        pn = n;
1895                        cindex = 1ul << n->bits;
1896
1897                        continue;
1898                }
1899
1900                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1901                        struct fib_info *fi = fa->fa_info;
1902
1903                        if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
1904                            tb->tb_id != fa->tb_id) {
1905                                slen = fa->fa_slen;
1906                                continue;
1907                        }
1908
1909                        call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1910                                                 n->key,
1911                                                 KEYLENGTH - fa->fa_slen, fa,
1912                                                 NULL);
1913                        hlist_del_rcu(&fa->fa_list);
1914                        fib_release_info(fa->fa_info);
1915                        alias_free_mem_rcu(fa);
1916                        found++;
1917                }
1918
1919                /* update leaf slen */
1920                n->slen = slen;
1921
1922                if (hlist_empty(&n->leaf)) {
1923                        put_child_root(pn, n->key, NULL);
1924                        node_free(n);
1925                }
1926        }
1927
1928        pr_debug("trie_flush found=%d\n", found);
1929        return found;
1930}
1931
1932static void fib_leaf_notify(struct net *net, struct key_vector *l,
1933                            struct fib_table *tb, struct notifier_block *nb)
1934{
1935        struct fib_alias *fa;
1936
1937        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1938                struct fib_info *fi = fa->fa_info;
1939
1940                if (!fi)
1941                        continue;
1942
1943                /* local and main table can share the same trie,
1944                 * so don't notify twice for the same entry.
1945                 */
1946                if (tb->tb_id != fa->tb_id)
1947                        continue;
1948
1949                call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
1950                                        KEYLENGTH - fa->fa_slen, fa);
1951        }
1952}
1953
1954static void fib_table_notify(struct net *net, struct fib_table *tb,
1955                             struct notifier_block *nb)
1956{
1957        struct trie *t = (struct trie *)tb->tb_data;
1958        struct key_vector *l, *tp = t->kv;
1959        t_key key = 0;
1960
1961        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1962                fib_leaf_notify(net, l, tb, nb);
1963
1964                key = l->key + 1;
1965                /* stop in case of wrap around */
1966                if (key < l->key)
1967                        break;
1968        }
1969}
1970
1971void fib_notify(struct net *net, struct notifier_block *nb)
1972{
1973        unsigned int h;
1974
1975        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1976                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1977                struct fib_table *tb;
1978
1979                hlist_for_each_entry_rcu(tb, head, tb_hlist)
1980                        fib_table_notify(net, tb, nb);
1981        }
1982}
1983
1984static void __trie_free_rcu(struct rcu_head *head)
1985{
1986        struct fib_table *tb = container_of(head, struct fib_table, rcu);
1987#ifdef CONFIG_IP_FIB_TRIE_STATS
1988        struct trie *t = (struct trie *)tb->tb_data;
1989
1990        if (tb->tb_data == tb->__data)
1991                free_percpu(t->stats);
1992#endif /* CONFIG_IP_FIB_TRIE_STATS */
1993        kfree(tb);
1994}
1995
1996void fib_free_table(struct fib_table *tb)
1997{
1998        call_rcu(&tb->rcu, __trie_free_rcu);
1999}
2000
2001static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2002                             struct sk_buff *skb, struct netlink_callback *cb)
2003{
2004        __be32 xkey = htonl(l->key);
2005        struct fib_alias *fa;
2006        int i, s_i;
2007
2008        s_i = cb->args[4];
2009        i = 0;
2010
2011        /* rcu_read_lock is hold by caller */
2012        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2013                int err;
2014
2015                if (i < s_i) {
2016                        i++;
2017                        continue;
2018                }
2019
2020                if (tb->tb_id != fa->tb_id) {
2021                        i++;
2022                        continue;
2023                }
2024
2025                err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2026                                    cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2027                                    tb->tb_id, fa->fa_type,
2028                                    xkey, KEYLENGTH - fa->fa_slen,
2029                                    fa->fa_tos, fa->fa_info, NLM_F_MULTI);
2030                if (err < 0) {
2031                        cb->args[4] = i;
2032                        return err;
2033                }
2034                i++;
2035        }
2036
2037        cb->args[4] = i;
2038        return skb->len;
2039}
2040
2041/* rcu_read_lock needs to be hold by caller from readside */
2042int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2043                   struct netlink_callback *cb)
2044{
2045        struct trie *t = (struct trie *)tb->tb_data;
2046        struct key_vector *l, *tp = t->kv;
2047        /* Dump starting at last key.
2048         * Note: 0.0.0.0/0 (ie default) is first key.
2049         */
2050        int count = cb->args[2];
2051        t_key key = cb->args[3];
2052
2053        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2054                int err;
2055
2056                err = fn_trie_dump_leaf(l, tb, skb, cb);
2057                if (err < 0) {
2058                        cb->args[3] = key;
2059                        cb->args[2] = count;
2060                        return err;
2061                }
2062
2063                ++count;
2064                key = l->key + 1;
2065
2066                memset(&cb->args[4], 0,
2067                       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2068
2069                /* stop loop if key wrapped back to 0 */
2070                if (key < l->key)
2071                        break;
2072        }
2073
2074        cb->args[3] = key;
2075        cb->args[2] = count;
2076
2077        return skb->len;
2078}
2079
2080void __init fib_trie_init(void)
2081{
2082        fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2083                                          sizeof(struct fib_alias),
2084                                          0, SLAB_PANIC, NULL);
2085
2086        trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2087                                           LEAF_SIZE,
2088                                           0, SLAB_PANIC, NULL);
2089}
2090
2091struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2092{
2093        struct fib_table *tb;
2094        struct trie *t;
2095        size_t sz = sizeof(*tb);
2096
2097        if (!alias)
2098                sz += sizeof(struct trie);
2099
2100        tb = kzalloc(sz, GFP_KERNEL);
2101        if (!tb)
2102                return NULL;
2103
2104        tb->tb_id = id;
2105        tb->tb_num_default = 0;
2106        tb->tb_data = (alias ? alias->__data : tb->__data);
2107
2108        if (alias)
2109                return tb;
2110
2111        t = (struct trie *) tb->tb_data;
2112        t->kv[0].pos = KEYLENGTH;
2113        t->kv[0].slen = KEYLENGTH;
2114#ifdef CONFIG_IP_FIB_TRIE_STATS
2115        t->stats = alloc_percpu(struct trie_use_stats);
2116        if (!t->stats) {
2117                kfree(tb);
2118                tb = NULL;
2119        }
2120#endif
2121
2122        return tb;
2123}
2124
2125#ifdef CONFIG_PROC_FS
2126/* Depth first Trie walk iterator */
2127struct fib_trie_iter {
2128        struct seq_net_private p;
2129        struct fib_table *tb;
2130        struct key_vector *tnode;
2131        unsigned int index;
2132        unsigned int depth;
2133};
2134
2135static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2136{
2137        unsigned long cindex = iter->index;
2138        struct key_vector *pn = iter->tnode;
2139        t_key pkey;
2140
2141        pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2142                 iter->tnode, iter->index, iter->depth);
2143
2144        while (!IS_TRIE(pn)) {
2145                while (cindex < child_length(pn)) {
2146                        struct key_vector *n = get_child_rcu(pn, cindex++);
2147
2148                        if (!n)
2149                                continue;
2150
2151                        if (IS_LEAF(n)) {
2152                                iter->tnode = pn;
2153                                iter->index = cindex;
2154                        } else {
2155                                /* push down one level */
2156                                iter->tnode = n;
2157                                iter->index = 0;
2158                                ++iter->depth;
2159                        }
2160
2161                        return n;
2162                }
2163
2164                /* Current node exhausted, pop back up */
2165                pkey = pn->key;
2166                pn = node_parent_rcu(pn);
2167                cindex = get_index(pkey, pn) + 1;
2168                --iter->depth;
2169        }
2170
2171        /* record root node so further searches know we are done */
2172        iter->tnode = pn;
2173        iter->index = 0;
2174
2175        return NULL;
2176}
2177
2178static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2179                                             struct trie *t)
2180{
2181        struct key_vector *n, *pn;
2182
2183        if (!t)
2184                return NULL;
2185
2186        pn = t->kv;
2187        n = rcu_dereference(pn->tnode[0]);
2188        if (!n)
2189                return NULL;
2190
2191        if (IS_TNODE(n)) {
2192                iter->tnode = n;
2193                iter->index = 0;
2194                iter->depth = 1;
2195        } else {
2196                iter->tnode = pn;
2197                iter->index = 0;
2198                iter->depth = 0;
2199        }
2200
2201        return n;
2202}
2203
2204static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2205{
2206        struct key_vector *n;
2207        struct fib_trie_iter iter;
2208
2209        memset(s, 0, sizeof(*s));
2210
2211        rcu_read_lock();
2212        for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2213                if (IS_LEAF(n)) {
2214                        struct fib_alias *fa;
2215
2216                        s->leaves++;
2217                        s->totdepth += iter.depth;
2218                        if (iter.depth > s->maxdepth)
2219                                s->maxdepth = iter.depth;
2220
2221                        hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2222                                ++s->prefixes;
2223                } else {
2224                        s->tnodes++;
2225                        if (n->bits < MAX_STAT_DEPTH)
2226                                s->nodesizes[n->bits]++;
2227                        s->nullpointers += tn_info(n)->empty_children;
2228                }
2229        }
2230        rcu_read_unlock();
2231}
2232
2233/*
2234 *      This outputs /proc/net/fib_triestats
2235 */
2236static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2237{
2238        unsigned int i, max, pointers, bytes, avdepth;
2239
2240        if (stat->leaves)
2241                avdepth = stat->totdepth*100 / stat->leaves;
2242        else
2243                avdepth = 0;
2244
2245        seq_printf(seq, "\tAver depth:     %u.%02d\n",
2246                   avdepth / 100, avdepth % 100);
2247        seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2248
2249        seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2250        bytes = LEAF_SIZE * stat->leaves;
2251
2252        seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2253        bytes += sizeof(struct fib_alias) * stat->prefixes;
2254
2255        seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2256        bytes += TNODE_SIZE(0) * stat->tnodes;
2257
2258        max = MAX_STAT_DEPTH;
2259        while (max > 0 && stat->nodesizes[max-1] == 0)
2260                max--;
2261
2262        pointers = 0;
2263        for (i = 1; i < max; i++)
2264                if (stat->nodesizes[i] != 0) {
2265                        seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2266                        pointers += (1<<i) * stat->nodesizes[i];
2267                }
2268        seq_putc(seq, '\n');
2269        seq_printf(seq, "\tPointers: %u\n", pointers);
2270
2271        bytes += sizeof(struct key_vector *) * pointers;
2272        seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2273        seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2274}
2275
2276#ifdef CONFIG_IP_FIB_TRIE_STATS
2277static void trie_show_usage(struct seq_file *seq,
2278                            const struct trie_use_stats __percpu *stats)
2279{
2280        struct trie_use_stats s = { 0 };
2281        int cpu;
2282
2283        /* loop through all of the CPUs and gather up the stats */
2284        for_each_possible_cpu(cpu) {
2285                const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2286
2287                s.gets += pcpu->gets;
2288                s.backtrack += pcpu->backtrack;
2289                s.semantic_match_passed += pcpu->semantic_match_passed;
2290                s.semantic_match_miss += pcpu->semantic_match_miss;
2291                s.null_node_hit += pcpu->null_node_hit;
2292                s.resize_node_skipped += pcpu->resize_node_skipped;
2293        }
2294
2295        seq_printf(seq, "\nCounters:\n---------\n");
2296        seq_printf(seq, "gets = %u\n", s.gets);
2297        seq_printf(seq, "backtracks = %u\n", s.backtrack);
2298        seq_printf(seq, "semantic match passed = %u\n",
2299                   s.semantic_match_passed);
2300        seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2301        seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2302        seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2303}
2304#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2305
2306static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2307{
2308        if (tb->tb_id == RT_TABLE_LOCAL)
2309                seq_puts(seq, "Local:\n");
2310        else if (tb->tb_id == RT_TABLE_MAIN)
2311                seq_puts(seq, "Main:\n");
2312        else
2313                seq_printf(seq, "Id %d:\n", tb->tb_id);
2314}
2315
2316
2317static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2318{
2319        struct net *net = (struct net *)seq->private;
2320        unsigned int h;
2321
2322        seq_printf(seq,
2323                   "Basic info: size of leaf:"
2324                   " %zd bytes, size of tnode: %zd bytes.\n",
2325                   LEAF_SIZE, TNODE_SIZE(0));
2326
2327        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2328                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2329                struct fib_table *tb;
2330
2331                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2332                        struct trie *t = (struct trie *) tb->tb_data;
2333                        struct trie_stat stat;
2334
2335                        if (!t)
2336                                continue;
2337
2338                        fib_table_print(seq, tb);
2339
2340                        trie_collect_stats(t, &stat);
2341                        trie_show_stats(seq, &stat);
2342#ifdef CONFIG_IP_FIB_TRIE_STATS
2343                        trie_show_usage(seq, t->stats);
2344#endif
2345                }
2346        }
2347
2348        return 0;
2349}
2350
2351static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2352{
2353        return single_open_net(inode, file, fib_triestat_seq_show);
2354}
2355
2356static const struct file_operations fib_triestat_fops = {
2357        .open   = fib_triestat_seq_open,
2358        .read   = seq_read,
2359        .llseek = seq_lseek,
2360        .release = single_release_net,
2361};
2362
2363static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2364{
2365        struct fib_trie_iter *iter = seq->private;
2366        struct net *net = seq_file_net(seq);
2367        loff_t idx = 0;
2368        unsigned int h;
2369
2370        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2371                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2372                struct fib_table *tb;
2373
2374                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2375                        struct key_vector *n;
2376
2377                        for (n = fib_trie_get_first(iter,
2378                                                    (struct trie *) tb->tb_data);
2379                             n; n = fib_trie_get_next(iter))
2380                                if (pos == idx++) {
2381                                        iter->tb = tb;
2382                                        return n;
2383                                }
2384                }
2385        }
2386
2387        return NULL;
2388}
2389
2390static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2391        __acquires(RCU)
2392{
2393        rcu_read_lock();
2394        return fib_trie_get_idx(seq, *pos);
2395}
2396
2397static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2398{
2399        struct fib_trie_iter *iter = seq->private;
2400        struct net *net = seq_file_net(seq);
2401        struct fib_table *tb = iter->tb;
2402        struct hlist_node *tb_node;
2403        unsigned int h;
2404        struct key_vector *n;
2405
2406        ++*pos;
2407        /* next node in same table */
2408        n = fib_trie_get_next(iter);
2409        if (n)
2410                return n;
2411
2412        /* walk rest of this hash chain */
2413        h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2414        while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2415                tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2416                n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2417                if (n)
2418                        goto found;
2419        }
2420
2421        /* new hash chain */
2422        while (++h < FIB_TABLE_HASHSZ) {
2423                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2424                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2425                        n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2426                        if (n)
2427                                goto found;
2428                }
2429        }
2430        return NULL;
2431
2432found:
2433        iter->tb = tb;
2434        return n;
2435}
2436
2437static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2438        __releases(RCU)
2439{
2440        rcu_read_unlock();
2441}
2442
2443static void seq_indent(struct seq_file *seq, int n)
2444{
2445        while (n-- > 0)
2446                seq_puts(seq, "   ");
2447}
2448
2449static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2450{
2451        switch (s) {
2452        case RT_SCOPE_UNIVERSE: return "universe";
2453        case RT_SCOPE_SITE:     return "site";
2454        case RT_SCOPE_LINK:     return "link";
2455        case RT_SCOPE_HOST:     return "host";
2456        case RT_SCOPE_NOWHERE:  return "nowhere";
2457        default:
2458                snprintf(buf, len, "scope=%d", s);
2459                return buf;
2460        }
2461}
2462
2463static const char *const rtn_type_names[__RTN_MAX] = {
2464        [RTN_UNSPEC] = "UNSPEC",
2465        [RTN_UNICAST] = "UNICAST",
2466        [RTN_LOCAL] = "LOCAL",
2467        [RTN_BROADCAST] = "BROADCAST",
2468        [RTN_ANYCAST] = "ANYCAST",
2469        [RTN_MULTICAST] = "MULTICAST",
2470        [RTN_BLACKHOLE] = "BLACKHOLE",
2471        [RTN_UNREACHABLE] = "UNREACHABLE",
2472        [RTN_PROHIBIT] = "PROHIBIT",
2473        [RTN_THROW] = "THROW",
2474        [RTN_NAT] = "NAT",
2475        [RTN_XRESOLVE] = "XRESOLVE",
2476};
2477
2478static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2479{
2480        if (t < __RTN_MAX && rtn_type_names[t])
2481                return rtn_type_names[t];
2482        snprintf(buf, len, "type %u", t);
2483        return buf;
2484}
2485
2486/* Pretty print the trie */
2487static int fib_trie_seq_show(struct seq_file *seq, void *v)
2488{
2489        const struct fib_trie_iter *iter = seq->private;
2490        struct key_vector *n = v;
2491
2492        if (IS_TRIE(node_parent_rcu(n)))
2493                fib_table_print(seq, iter->tb);
2494
2495        if (IS_TNODE(n)) {
2496                __be32 prf = htonl(n->key);
2497
2498                seq_indent(seq, iter->depth-1);
2499                seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2500                           &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2501                           tn_info(n)->full_children,
2502                           tn_info(n)->empty_children);
2503        } else {
2504                __be32 val = htonl(n->key);
2505                struct fib_alias *fa;
2506
2507                seq_indent(seq, iter->depth);
2508                seq_printf(seq, "  |-- %pI4\n", &val);
2509
2510                hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2511                        char buf1[32], buf2[32];
2512
2513                        seq_indent(seq, iter->depth + 1);
2514                        seq_printf(seq, "  /%zu %s %s",
2515                                   KEYLENGTH - fa->fa_slen,
2516                                   rtn_scope(buf1, sizeof(buf1),
2517                                             fa->fa_info->fib_scope),
2518                                   rtn_type(buf2, sizeof(buf2),
2519                                            fa->fa_type));
2520                        if (fa->fa_tos)
2521                                seq_printf(seq, " tos=%d", fa->fa_tos);
2522                        seq_putc(seq, '\n');
2523                }
2524        }
2525
2526        return 0;
2527}
2528
2529static const struct seq_operations fib_trie_seq_ops = {
2530        .start  = fib_trie_seq_start,
2531        .next   = fib_trie_seq_next,
2532        .stop   = fib_trie_seq_stop,
2533        .show   = fib_trie_seq_show,
2534};
2535
2536static int fib_trie_seq_open(struct inode *inode, struct file *file)
2537{
2538        return seq_open_net(inode, file, &fib_trie_seq_ops,
2539                            sizeof(struct fib_trie_iter));
2540}
2541
2542static const struct file_operations fib_trie_fops = {
2543        .open   = fib_trie_seq_open,
2544        .read   = seq_read,
2545        .llseek = seq_lseek,
2546        .release = seq_release_net,
2547};
2548
2549struct fib_route_iter {
2550        struct seq_net_private p;
2551        struct fib_table *main_tb;
2552        struct key_vector *tnode;
2553        loff_t  pos;
2554        t_key   key;
2555};
2556
2557static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2558                                            loff_t pos)
2559{
2560        struct key_vector *l, **tp = &iter->tnode;
2561        t_key key;
2562
2563        /* use cached location of previously found key */
2564        if (iter->pos > 0 && pos >= iter->pos) {
2565                key = iter->key;
2566        } else {
2567                iter->pos = 1;
2568                key = 0;
2569        }
2570
2571        pos -= iter->pos;
2572
2573        while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2574                key = l->key + 1;
2575                iter->pos++;
2576                l = NULL;
2577
2578                /* handle unlikely case of a key wrap */
2579                if (!key)
2580                        break;
2581        }
2582
2583        if (l)
2584                iter->key = l->key;     /* remember it */
2585        else
2586                iter->pos = 0;          /* forget it */
2587
2588        return l;
2589}
2590
2591static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2592        __acquires(RCU)
2593{
2594        struct fib_route_iter *iter = seq->private;
2595        struct fib_table *tb;
2596        struct trie *t;
2597
2598        rcu_read_lock();
2599
2600        tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2601        if (!tb)
2602                return NULL;
2603
2604        iter->main_tb = tb;
2605        t = (struct trie *)tb->tb_data;
2606        iter->tnode = t->kv;
2607
2608        if (*pos != 0)
2609                return fib_route_get_idx(iter, *pos);
2610
2611        iter->pos = 0;
2612        iter->key = KEY_MAX;
2613
2614        return SEQ_START_TOKEN;
2615}
2616
2617static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2618{
2619        struct fib_route_iter *iter = seq->private;
2620        struct key_vector *l = NULL;
2621        t_key key = iter->key + 1;
2622
2623        ++*pos;
2624
2625        /* only allow key of 0 for start of sequence */
2626        if ((v == SEQ_START_TOKEN) || key)
2627                l = leaf_walk_rcu(&iter->tnode, key);
2628
2629        if (l) {
2630                iter->key = l->key;
2631                iter->pos++;
2632        } else {
2633                iter->pos = 0;
2634        }
2635
2636        return l;
2637}
2638
2639static void fib_route_seq_stop(struct seq_file *seq, void *v)
2640        __releases(RCU)
2641{
2642        rcu_read_unlock();
2643}
2644
2645static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2646{
2647        unsigned int flags = 0;
2648
2649        if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2650                flags = RTF_REJECT;
2651        if (fi && fi->fib_nh->nh_gw)
2652                flags |= RTF_GATEWAY;
2653        if (mask == htonl(0xFFFFFFFF))
2654                flags |= RTF_HOST;
2655        flags |= RTF_UP;
2656        return flags;
2657}
2658
2659/*
2660 *      This outputs /proc/net/route.
2661 *      The format of the file is not supposed to be changed
2662 *      and needs to be same as fib_hash output to avoid breaking
2663 *      legacy utilities
2664 */
2665static int fib_route_seq_show(struct seq_file *seq, void *v)
2666{
2667        struct fib_route_iter *iter = seq->private;
2668        struct fib_table *tb = iter->main_tb;
2669        struct fib_alias *fa;
2670        struct key_vector *l = v;
2671        __be32 prefix;
2672
2673        if (v == SEQ_START_TOKEN) {
2674                seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2675                           "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2676                           "\tWindow\tIRTT");
2677                return 0;
2678        }
2679
2680        prefix = htonl(l->key);
2681
2682        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2683                const struct fib_info *fi = fa->fa_info;
2684                __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2685                unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2686
2687                if ((fa->fa_type == RTN_BROADCAST) ||
2688                    (fa->fa_type == RTN_MULTICAST))
2689                        continue;
2690
2691                if (fa->tb_id != tb->tb_id)
2692                        continue;
2693
2694                seq_setwidth(seq, 127);
2695
2696                if (fi)
2697                        seq_printf(seq,
2698                                   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2699                                   "%d\t%08X\t%d\t%u\t%u",
2700                                   fi->fib_dev ? fi->fib_dev->name : "*",
2701                                   prefix,
2702                                   fi->fib_nh->nh_gw, flags, 0, 0,
2703                                   fi->fib_priority,
2704                                   mask,
2705                                   (fi->fib_advmss ?
2706                                    fi->fib_advmss + 40 : 0),
2707                                   fi->fib_window,
2708                                   fi->fib_rtt >> 3);
2709                else
2710                        seq_printf(seq,
2711                                   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2712                                   "%d\t%08X\t%d\t%u\t%u",
2713                                   prefix, 0, flags, 0, 0, 0,
2714                                   mask, 0, 0, 0);
2715
2716                seq_pad(seq, '\n');
2717        }
2718
2719        return 0;
2720}
2721
2722static const struct seq_operations fib_route_seq_ops = {
2723        .start  = fib_route_seq_start,
2724        .next   = fib_route_seq_next,
2725        .stop   = fib_route_seq_stop,
2726        .show   = fib_route_seq_show,
2727};
2728
2729static int fib_route_seq_open(struct inode *inode, struct file *file)
2730{
2731        return seq_open_net(inode, file, &fib_route_seq_ops,
2732                            sizeof(struct fib_route_iter));
2733}
2734
2735static const struct file_operations fib_route_fops = {
2736        .open   = fib_route_seq_open,
2737        .read   = seq_read,
2738        .llseek = seq_lseek,
2739        .release = seq_release_net,
2740};
2741
2742int __net_init fib_proc_init(struct net *net)
2743{
2744        if (!proc_create("fib_trie", 0444, net->proc_net, &fib_trie_fops))
2745                goto out1;
2746
2747        if (!proc_create("fib_triestat", 0444, net->proc_net,
2748                         &fib_triestat_fops))
2749                goto out2;
2750
2751        if (!proc_create("route", 0444, net->proc_net, &fib_route_fops))
2752                goto out3;
2753
2754        return 0;
2755
2756out3:
2757        remove_proc_entry("fib_triestat", net->proc_net);
2758out2:
2759        remove_proc_entry("fib_trie", net->proc_net);
2760out1:
2761        return -ENOMEM;
2762}
2763
2764void __net_exit fib_proc_exit(struct net *net)
2765{
2766        remove_proc_entry("fib_trie", net->proc_net);
2767        remove_proc_entry("fib_triestat", net->proc_net);
2768        remove_proc_entry("route", net->proc_net);
2769}
2770
2771#endif /* CONFIG_PROC_FS */
2772