linux/net/openvswitch/actions.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2007-2017 Nicira, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public License
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16 * 02110-1301, USA
  17 */
  18
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include <linux/skbuff.h>
  22#include <linux/in.h>
  23#include <linux/ip.h>
  24#include <linux/openvswitch.h>
  25#include <linux/netfilter_ipv6.h>
  26#include <linux/sctp.h>
  27#include <linux/tcp.h>
  28#include <linux/udp.h>
  29#include <linux/in6.h>
  30#include <linux/if_arp.h>
  31#include <linux/if_vlan.h>
  32
  33#include <net/dst.h>
  34#include <net/ip.h>
  35#include <net/ipv6.h>
  36#include <net/ip6_fib.h>
  37#include <net/checksum.h>
  38#include <net/dsfield.h>
  39#include <net/mpls.h>
  40#include <net/sctp/checksum.h>
  41
  42#include "datapath.h"
  43#include "flow.h"
  44#include "conntrack.h"
  45#include "vport.h"
  46#include "flow_netlink.h"
  47
  48struct deferred_action {
  49        struct sk_buff *skb;
  50        const struct nlattr *actions;
  51        int actions_len;
  52
  53        /* Store pkt_key clone when creating deferred action. */
  54        struct sw_flow_key pkt_key;
  55};
  56
  57#define MAX_L2_LEN      (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
  58struct ovs_frag_data {
  59        unsigned long dst;
  60        struct vport *vport;
  61        struct ovs_skb_cb cb;
  62        __be16 inner_protocol;
  63        u16 network_offset;     /* valid only for MPLS */
  64        u16 vlan_tci;
  65        __be16 vlan_proto;
  66        unsigned int l2_len;
  67        u8 mac_proto;
  68        u8 l2_data[MAX_L2_LEN];
  69};
  70
  71static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
  72
  73#define DEFERRED_ACTION_FIFO_SIZE 10
  74#define OVS_RECURSION_LIMIT 5
  75#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
  76struct action_fifo {
  77        int head;
  78        int tail;
  79        /* Deferred action fifo queue storage. */
  80        struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
  81};
  82
  83struct action_flow_keys {
  84        struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
  85};
  86
  87static struct action_fifo __percpu *action_fifos;
  88static struct action_flow_keys __percpu *flow_keys;
  89static DEFINE_PER_CPU(int, exec_actions_level);
  90
  91/* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
  92 * space. Return NULL if out of key spaces.
  93 */
  94static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
  95{
  96        struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
  97        int level = this_cpu_read(exec_actions_level);
  98        struct sw_flow_key *key = NULL;
  99
 100        if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
 101                key = &keys->key[level - 1];
 102                *key = *key_;
 103        }
 104
 105        return key;
 106}
 107
 108static void action_fifo_init(struct action_fifo *fifo)
 109{
 110        fifo->head = 0;
 111        fifo->tail = 0;
 112}
 113
 114static bool action_fifo_is_empty(const struct action_fifo *fifo)
 115{
 116        return (fifo->head == fifo->tail);
 117}
 118
 119static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
 120{
 121        if (action_fifo_is_empty(fifo))
 122                return NULL;
 123
 124        return &fifo->fifo[fifo->tail++];
 125}
 126
 127static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
 128{
 129        if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
 130                return NULL;
 131
 132        return &fifo->fifo[fifo->head++];
 133}
 134
 135/* Return true if fifo is not full */
 136static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
 137                                    const struct sw_flow_key *key,
 138                                    const struct nlattr *actions,
 139                                    const int actions_len)
 140{
 141        struct action_fifo *fifo;
 142        struct deferred_action *da;
 143
 144        fifo = this_cpu_ptr(action_fifos);
 145        da = action_fifo_put(fifo);
 146        if (da) {
 147                da->skb = skb;
 148                da->actions = actions;
 149                da->actions_len = actions_len;
 150                da->pkt_key = *key;
 151        }
 152
 153        return da;
 154}
 155
 156static void invalidate_flow_key(struct sw_flow_key *key)
 157{
 158        key->mac_proto |= SW_FLOW_KEY_INVALID;
 159}
 160
 161static bool is_flow_key_valid(const struct sw_flow_key *key)
 162{
 163        return !(key->mac_proto & SW_FLOW_KEY_INVALID);
 164}
 165
 166static int clone_execute(struct datapath *dp, struct sk_buff *skb,
 167                         struct sw_flow_key *key,
 168                         u32 recirc_id,
 169                         const struct nlattr *actions, int len,
 170                         bool last, bool clone_flow_key);
 171
 172static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr,
 173                             __be16 ethertype)
 174{
 175        if (skb->ip_summed == CHECKSUM_COMPLETE) {
 176                __be16 diff[] = { ~(hdr->h_proto), ethertype };
 177
 178                skb->csum = ~csum_partial((char *)diff, sizeof(diff),
 179                                        ~skb->csum);
 180        }
 181
 182        hdr->h_proto = ethertype;
 183}
 184
 185static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 186                     const struct ovs_action_push_mpls *mpls)
 187{
 188        struct mpls_shim_hdr *new_mpls_lse;
 189
 190        /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
 191        if (skb->encapsulation)
 192                return -ENOTSUPP;
 193
 194        if (skb_cow_head(skb, MPLS_HLEN) < 0)
 195                return -ENOMEM;
 196
 197        if (!skb->inner_protocol) {
 198                skb_set_inner_network_header(skb, skb->mac_len);
 199                skb_set_inner_protocol(skb, skb->protocol);
 200        }
 201
 202        skb_push(skb, MPLS_HLEN);
 203        memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
 204                skb->mac_len);
 205        skb_reset_mac_header(skb);
 206        skb_set_network_header(skb, skb->mac_len);
 207
 208        new_mpls_lse = mpls_hdr(skb);
 209        new_mpls_lse->label_stack_entry = mpls->mpls_lse;
 210
 211        skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
 212
 213        if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET)
 214                update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype);
 215        skb->protocol = mpls->mpls_ethertype;
 216
 217        invalidate_flow_key(key);
 218        return 0;
 219}
 220
 221static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 222                    const __be16 ethertype)
 223{
 224        int err;
 225
 226        err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
 227        if (unlikely(err))
 228                return err;
 229
 230        skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
 231
 232        memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
 233                skb->mac_len);
 234
 235        __skb_pull(skb, MPLS_HLEN);
 236        skb_reset_mac_header(skb);
 237        skb_set_network_header(skb, skb->mac_len);
 238
 239        if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) {
 240                struct ethhdr *hdr;
 241
 242                /* mpls_hdr() is used to locate the ethertype field correctly in the
 243                 * presence of VLAN tags.
 244                 */
 245                hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
 246                update_ethertype(skb, hdr, ethertype);
 247        }
 248        if (eth_p_mpls(skb->protocol))
 249                skb->protocol = ethertype;
 250
 251        invalidate_flow_key(key);
 252        return 0;
 253}
 254
 255static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
 256                    const __be32 *mpls_lse, const __be32 *mask)
 257{
 258        struct mpls_shim_hdr *stack;
 259        __be32 lse;
 260        int err;
 261
 262        err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
 263        if (unlikely(err))
 264                return err;
 265
 266        stack = mpls_hdr(skb);
 267        lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
 268        if (skb->ip_summed == CHECKSUM_COMPLETE) {
 269                __be32 diff[] = { ~(stack->label_stack_entry), lse };
 270
 271                skb->csum = ~csum_partial((char *)diff, sizeof(diff),
 272                                          ~skb->csum);
 273        }
 274
 275        stack->label_stack_entry = lse;
 276        flow_key->mpls.top_lse = lse;
 277        return 0;
 278}
 279
 280static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 281{
 282        int err;
 283
 284        err = skb_vlan_pop(skb);
 285        if (skb_vlan_tag_present(skb)) {
 286                invalidate_flow_key(key);
 287        } else {
 288                key->eth.vlan.tci = 0;
 289                key->eth.vlan.tpid = 0;
 290        }
 291        return err;
 292}
 293
 294static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
 295                     const struct ovs_action_push_vlan *vlan)
 296{
 297        if (skb_vlan_tag_present(skb)) {
 298                invalidate_flow_key(key);
 299        } else {
 300                key->eth.vlan.tci = vlan->vlan_tci;
 301                key->eth.vlan.tpid = vlan->vlan_tpid;
 302        }
 303        return skb_vlan_push(skb, vlan->vlan_tpid,
 304                             ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
 305}
 306
 307/* 'src' is already properly masked. */
 308static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
 309{
 310        u16 *dst = (u16 *)dst_;
 311        const u16 *src = (const u16 *)src_;
 312        const u16 *mask = (const u16 *)mask_;
 313
 314        OVS_SET_MASKED(dst[0], src[0], mask[0]);
 315        OVS_SET_MASKED(dst[1], src[1], mask[1]);
 316        OVS_SET_MASKED(dst[2], src[2], mask[2]);
 317}
 318
 319static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
 320                        const struct ovs_key_ethernet *key,
 321                        const struct ovs_key_ethernet *mask)
 322{
 323        int err;
 324
 325        err = skb_ensure_writable(skb, ETH_HLEN);
 326        if (unlikely(err))
 327                return err;
 328
 329        skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 330
 331        ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
 332                               mask->eth_src);
 333        ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
 334                               mask->eth_dst);
 335
 336        skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 337
 338        ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
 339        ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
 340        return 0;
 341}
 342
 343/* pop_eth does not support VLAN packets as this action is never called
 344 * for them.
 345 */
 346static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
 347{
 348        skb_pull_rcsum(skb, ETH_HLEN);
 349        skb_reset_mac_header(skb);
 350        skb_reset_mac_len(skb);
 351
 352        /* safe right before invalidate_flow_key */
 353        key->mac_proto = MAC_PROTO_NONE;
 354        invalidate_flow_key(key);
 355        return 0;
 356}
 357
 358static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
 359                    const struct ovs_action_push_eth *ethh)
 360{
 361        struct ethhdr *hdr;
 362
 363        /* Add the new Ethernet header */
 364        if (skb_cow_head(skb, ETH_HLEN) < 0)
 365                return -ENOMEM;
 366
 367        skb_push(skb, ETH_HLEN);
 368        skb_reset_mac_header(skb);
 369        skb_reset_mac_len(skb);
 370
 371        hdr = eth_hdr(skb);
 372        ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
 373        ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
 374        hdr->h_proto = skb->protocol;
 375
 376        skb_postpush_rcsum(skb, hdr, ETH_HLEN);
 377
 378        /* safe right before invalidate_flow_key */
 379        key->mac_proto = MAC_PROTO_ETHERNET;
 380        invalidate_flow_key(key);
 381        return 0;
 382}
 383
 384static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
 385                    const struct nshhdr *nh)
 386{
 387        int err;
 388
 389        err = nsh_push(skb, nh);
 390        if (err)
 391                return err;
 392
 393        /* safe right before invalidate_flow_key */
 394        key->mac_proto = MAC_PROTO_NONE;
 395        invalidate_flow_key(key);
 396        return 0;
 397}
 398
 399static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
 400{
 401        int err;
 402
 403        err = nsh_pop(skb);
 404        if (err)
 405                return err;
 406
 407        /* safe right before invalidate_flow_key */
 408        if (skb->protocol == htons(ETH_P_TEB))
 409                key->mac_proto = MAC_PROTO_ETHERNET;
 410        else
 411                key->mac_proto = MAC_PROTO_NONE;
 412        invalidate_flow_key(key);
 413        return 0;
 414}
 415
 416static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
 417                                  __be32 addr, __be32 new_addr)
 418{
 419        int transport_len = skb->len - skb_transport_offset(skb);
 420
 421        if (nh->frag_off & htons(IP_OFFSET))
 422                return;
 423
 424        if (nh->protocol == IPPROTO_TCP) {
 425                if (likely(transport_len >= sizeof(struct tcphdr)))
 426                        inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
 427                                                 addr, new_addr, true);
 428        } else if (nh->protocol == IPPROTO_UDP) {
 429                if (likely(transport_len >= sizeof(struct udphdr))) {
 430                        struct udphdr *uh = udp_hdr(skb);
 431
 432                        if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 433                                inet_proto_csum_replace4(&uh->check, skb,
 434                                                         addr, new_addr, true);
 435                                if (!uh->check)
 436                                        uh->check = CSUM_MANGLED_0;
 437                        }
 438                }
 439        }
 440}
 441
 442static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
 443                        __be32 *addr, __be32 new_addr)
 444{
 445        update_ip_l4_checksum(skb, nh, *addr, new_addr);
 446        csum_replace4(&nh->check, *addr, new_addr);
 447        skb_clear_hash(skb);
 448        *addr = new_addr;
 449}
 450
 451static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
 452                                 __be32 addr[4], const __be32 new_addr[4])
 453{
 454        int transport_len = skb->len - skb_transport_offset(skb);
 455
 456        if (l4_proto == NEXTHDR_TCP) {
 457                if (likely(transport_len >= sizeof(struct tcphdr)))
 458                        inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
 459                                                  addr, new_addr, true);
 460        } else if (l4_proto == NEXTHDR_UDP) {
 461                if (likely(transport_len >= sizeof(struct udphdr))) {
 462                        struct udphdr *uh = udp_hdr(skb);
 463
 464                        if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 465                                inet_proto_csum_replace16(&uh->check, skb,
 466                                                          addr, new_addr, true);
 467                                if (!uh->check)
 468                                        uh->check = CSUM_MANGLED_0;
 469                        }
 470                }
 471        } else if (l4_proto == NEXTHDR_ICMP) {
 472                if (likely(transport_len >= sizeof(struct icmp6hdr)))
 473                        inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
 474                                                  skb, addr, new_addr, true);
 475        }
 476}
 477
 478static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
 479                           const __be32 mask[4], __be32 masked[4])
 480{
 481        masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
 482        masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
 483        masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
 484        masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
 485}
 486
 487static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
 488                          __be32 addr[4], const __be32 new_addr[4],
 489                          bool recalculate_csum)
 490{
 491        if (recalculate_csum)
 492                update_ipv6_checksum(skb, l4_proto, addr, new_addr);
 493
 494        skb_clear_hash(skb);
 495        memcpy(addr, new_addr, sizeof(__be32[4]));
 496}
 497
 498static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
 499{
 500        /* Bits 21-24 are always unmasked, so this retains their values. */
 501        OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
 502        OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
 503        OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
 504}
 505
 506static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
 507                       u8 mask)
 508{
 509        new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
 510
 511        csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
 512        nh->ttl = new_ttl;
 513}
 514
 515static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
 516                    const struct ovs_key_ipv4 *key,
 517                    const struct ovs_key_ipv4 *mask)
 518{
 519        struct iphdr *nh;
 520        __be32 new_addr;
 521        int err;
 522
 523        err = skb_ensure_writable(skb, skb_network_offset(skb) +
 524                                  sizeof(struct iphdr));
 525        if (unlikely(err))
 526                return err;
 527
 528        nh = ip_hdr(skb);
 529
 530        /* Setting an IP addresses is typically only a side effect of
 531         * matching on them in the current userspace implementation, so it
 532         * makes sense to check if the value actually changed.
 533         */
 534        if (mask->ipv4_src) {
 535                new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
 536
 537                if (unlikely(new_addr != nh->saddr)) {
 538                        set_ip_addr(skb, nh, &nh->saddr, new_addr);
 539                        flow_key->ipv4.addr.src = new_addr;
 540                }
 541        }
 542        if (mask->ipv4_dst) {
 543                new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
 544
 545                if (unlikely(new_addr != nh->daddr)) {
 546                        set_ip_addr(skb, nh, &nh->daddr, new_addr);
 547                        flow_key->ipv4.addr.dst = new_addr;
 548                }
 549        }
 550        if (mask->ipv4_tos) {
 551                ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
 552                flow_key->ip.tos = nh->tos;
 553        }
 554        if (mask->ipv4_ttl) {
 555                set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
 556                flow_key->ip.ttl = nh->ttl;
 557        }
 558
 559        return 0;
 560}
 561
 562static bool is_ipv6_mask_nonzero(const __be32 addr[4])
 563{
 564        return !!(addr[0] | addr[1] | addr[2] | addr[3]);
 565}
 566
 567static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
 568                    const struct ovs_key_ipv6 *key,
 569                    const struct ovs_key_ipv6 *mask)
 570{
 571        struct ipv6hdr *nh;
 572        int err;
 573
 574        err = skb_ensure_writable(skb, skb_network_offset(skb) +
 575                                  sizeof(struct ipv6hdr));
 576        if (unlikely(err))
 577                return err;
 578
 579        nh = ipv6_hdr(skb);
 580
 581        /* Setting an IP addresses is typically only a side effect of
 582         * matching on them in the current userspace implementation, so it
 583         * makes sense to check if the value actually changed.
 584         */
 585        if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
 586                __be32 *saddr = (__be32 *)&nh->saddr;
 587                __be32 masked[4];
 588
 589                mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
 590
 591                if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
 592                        set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
 593                                      true);
 594                        memcpy(&flow_key->ipv6.addr.src, masked,
 595                               sizeof(flow_key->ipv6.addr.src));
 596                }
 597        }
 598        if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
 599                unsigned int offset = 0;
 600                int flags = IP6_FH_F_SKIP_RH;
 601                bool recalc_csum = true;
 602                __be32 *daddr = (__be32 *)&nh->daddr;
 603                __be32 masked[4];
 604
 605                mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
 606
 607                if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
 608                        if (ipv6_ext_hdr(nh->nexthdr))
 609                                recalc_csum = (ipv6_find_hdr(skb, &offset,
 610                                                             NEXTHDR_ROUTING,
 611                                                             NULL, &flags)
 612                                               != NEXTHDR_ROUTING);
 613
 614                        set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
 615                                      recalc_csum);
 616                        memcpy(&flow_key->ipv6.addr.dst, masked,
 617                               sizeof(flow_key->ipv6.addr.dst));
 618                }
 619        }
 620        if (mask->ipv6_tclass) {
 621                ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
 622                flow_key->ip.tos = ipv6_get_dsfield(nh);
 623        }
 624        if (mask->ipv6_label) {
 625                set_ipv6_fl(nh, ntohl(key->ipv6_label),
 626                            ntohl(mask->ipv6_label));
 627                flow_key->ipv6.label =
 628                    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 629        }
 630        if (mask->ipv6_hlimit) {
 631                OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
 632                               mask->ipv6_hlimit);
 633                flow_key->ip.ttl = nh->hop_limit;
 634        }
 635        return 0;
 636}
 637
 638static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
 639                   const struct nlattr *a)
 640{
 641        struct nshhdr *nh;
 642        size_t length;
 643        int err;
 644        u8 flags;
 645        u8 ttl;
 646        int i;
 647
 648        struct ovs_key_nsh key;
 649        struct ovs_key_nsh mask;
 650
 651        err = nsh_key_from_nlattr(a, &key, &mask);
 652        if (err)
 653                return err;
 654
 655        /* Make sure the NSH base header is there */
 656        if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
 657                return -ENOMEM;
 658
 659        nh = nsh_hdr(skb);
 660        length = nsh_hdr_len(nh);
 661
 662        /* Make sure the whole NSH header is there */
 663        err = skb_ensure_writable(skb, skb_network_offset(skb) +
 664                                       length);
 665        if (unlikely(err))
 666                return err;
 667
 668        nh = nsh_hdr(skb);
 669        skb_postpull_rcsum(skb, nh, length);
 670        flags = nsh_get_flags(nh);
 671        flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
 672        flow_key->nsh.base.flags = flags;
 673        ttl = nsh_get_ttl(nh);
 674        ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
 675        flow_key->nsh.base.ttl = ttl;
 676        nsh_set_flags_and_ttl(nh, flags, ttl);
 677        nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
 678                                  mask.base.path_hdr);
 679        flow_key->nsh.base.path_hdr = nh->path_hdr;
 680        switch (nh->mdtype) {
 681        case NSH_M_TYPE1:
 682                for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
 683                        nh->md1.context[i] =
 684                            OVS_MASKED(nh->md1.context[i], key.context[i],
 685                                       mask.context[i]);
 686                }
 687                memcpy(flow_key->nsh.context, nh->md1.context,
 688                       sizeof(nh->md1.context));
 689                break;
 690        case NSH_M_TYPE2:
 691                memset(flow_key->nsh.context, 0,
 692                       sizeof(flow_key->nsh.context));
 693                break;
 694        default:
 695                return -EINVAL;
 696        }
 697        skb_postpush_rcsum(skb, nh, length);
 698        return 0;
 699}
 700
 701/* Must follow skb_ensure_writable() since that can move the skb data. */
 702static void set_tp_port(struct sk_buff *skb, __be16 *port,
 703                        __be16 new_port, __sum16 *check)
 704{
 705        inet_proto_csum_replace2(check, skb, *port, new_port, false);
 706        *port = new_port;
 707}
 708
 709static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 710                   const struct ovs_key_udp *key,
 711                   const struct ovs_key_udp *mask)
 712{
 713        struct udphdr *uh;
 714        __be16 src, dst;
 715        int err;
 716
 717        err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 718                                  sizeof(struct udphdr));
 719        if (unlikely(err))
 720                return err;
 721
 722        uh = udp_hdr(skb);
 723        /* Either of the masks is non-zero, so do not bother checking them. */
 724        src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
 725        dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
 726
 727        if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
 728                if (likely(src != uh->source)) {
 729                        set_tp_port(skb, &uh->source, src, &uh->check);
 730                        flow_key->tp.src = src;
 731                }
 732                if (likely(dst != uh->dest)) {
 733                        set_tp_port(skb, &uh->dest, dst, &uh->check);
 734                        flow_key->tp.dst = dst;
 735                }
 736
 737                if (unlikely(!uh->check))
 738                        uh->check = CSUM_MANGLED_0;
 739        } else {
 740                uh->source = src;
 741                uh->dest = dst;
 742                flow_key->tp.src = src;
 743                flow_key->tp.dst = dst;
 744        }
 745
 746        skb_clear_hash(skb);
 747
 748        return 0;
 749}
 750
 751static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 752                   const struct ovs_key_tcp *key,
 753                   const struct ovs_key_tcp *mask)
 754{
 755        struct tcphdr *th;
 756        __be16 src, dst;
 757        int err;
 758
 759        err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 760                                  sizeof(struct tcphdr));
 761        if (unlikely(err))
 762                return err;
 763
 764        th = tcp_hdr(skb);
 765        src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
 766        if (likely(src != th->source)) {
 767                set_tp_port(skb, &th->source, src, &th->check);
 768                flow_key->tp.src = src;
 769        }
 770        dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
 771        if (likely(dst != th->dest)) {
 772                set_tp_port(skb, &th->dest, dst, &th->check);
 773                flow_key->tp.dst = dst;
 774        }
 775        skb_clear_hash(skb);
 776
 777        return 0;
 778}
 779
 780static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 781                    const struct ovs_key_sctp *key,
 782                    const struct ovs_key_sctp *mask)
 783{
 784        unsigned int sctphoff = skb_transport_offset(skb);
 785        struct sctphdr *sh;
 786        __le32 old_correct_csum, new_csum, old_csum;
 787        int err;
 788
 789        err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
 790        if (unlikely(err))
 791                return err;
 792
 793        sh = sctp_hdr(skb);
 794        old_csum = sh->checksum;
 795        old_correct_csum = sctp_compute_cksum(skb, sctphoff);
 796
 797        sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
 798        sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
 799
 800        new_csum = sctp_compute_cksum(skb, sctphoff);
 801
 802        /* Carry any checksum errors through. */
 803        sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
 804
 805        skb_clear_hash(skb);
 806        flow_key->tp.src = sh->source;
 807        flow_key->tp.dst = sh->dest;
 808
 809        return 0;
 810}
 811
 812static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 813{
 814        struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
 815        struct vport *vport = data->vport;
 816
 817        if (skb_cow_head(skb, data->l2_len) < 0) {
 818                kfree_skb(skb);
 819                return -ENOMEM;
 820        }
 821
 822        __skb_dst_copy(skb, data->dst);
 823        *OVS_CB(skb) = data->cb;
 824        skb->inner_protocol = data->inner_protocol;
 825        skb->vlan_tci = data->vlan_tci;
 826        skb->vlan_proto = data->vlan_proto;
 827
 828        /* Reconstruct the MAC header.  */
 829        skb_push(skb, data->l2_len);
 830        memcpy(skb->data, &data->l2_data, data->l2_len);
 831        skb_postpush_rcsum(skb, skb->data, data->l2_len);
 832        skb_reset_mac_header(skb);
 833
 834        if (eth_p_mpls(skb->protocol)) {
 835                skb->inner_network_header = skb->network_header;
 836                skb_set_network_header(skb, data->network_offset);
 837                skb_reset_mac_len(skb);
 838        }
 839
 840        ovs_vport_send(vport, skb, data->mac_proto);
 841        return 0;
 842}
 843
 844static unsigned int
 845ovs_dst_get_mtu(const struct dst_entry *dst)
 846{
 847        return dst->dev->mtu;
 848}
 849
 850static struct dst_ops ovs_dst_ops = {
 851        .family = AF_UNSPEC,
 852        .mtu = ovs_dst_get_mtu,
 853};
 854
 855/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
 856 * ovs_vport_output(), which is called once per fragmented packet.
 857 */
 858static void prepare_frag(struct vport *vport, struct sk_buff *skb,
 859                         u16 orig_network_offset, u8 mac_proto)
 860{
 861        unsigned int hlen = skb_network_offset(skb);
 862        struct ovs_frag_data *data;
 863
 864        data = this_cpu_ptr(&ovs_frag_data_storage);
 865        data->dst = skb->_skb_refdst;
 866        data->vport = vport;
 867        data->cb = *OVS_CB(skb);
 868        data->inner_protocol = skb->inner_protocol;
 869        data->network_offset = orig_network_offset;
 870        data->vlan_tci = skb->vlan_tci;
 871        data->vlan_proto = skb->vlan_proto;
 872        data->mac_proto = mac_proto;
 873        data->l2_len = hlen;
 874        memcpy(&data->l2_data, skb->data, hlen);
 875
 876        memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 877        skb_pull(skb, hlen);
 878}
 879
 880static void ovs_fragment(struct net *net, struct vport *vport,
 881                         struct sk_buff *skb, u16 mru,
 882                         struct sw_flow_key *key)
 883{
 884        u16 orig_network_offset = 0;
 885
 886        if (eth_p_mpls(skb->protocol)) {
 887                orig_network_offset = skb_network_offset(skb);
 888                skb->network_header = skb->inner_network_header;
 889        }
 890
 891        if (skb_network_offset(skb) > MAX_L2_LEN) {
 892                OVS_NLERR(1, "L2 header too long to fragment");
 893                goto err;
 894        }
 895
 896        if (key->eth.type == htons(ETH_P_IP)) {
 897                struct dst_entry ovs_dst;
 898                unsigned long orig_dst;
 899
 900                prepare_frag(vport, skb, orig_network_offset,
 901                             ovs_key_mac_proto(key));
 902                dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
 903                         DST_OBSOLETE_NONE, DST_NOCOUNT);
 904                ovs_dst.dev = vport->dev;
 905
 906                orig_dst = skb->_skb_refdst;
 907                skb_dst_set_noref(skb, &ovs_dst);
 908                IPCB(skb)->frag_max_size = mru;
 909
 910                ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
 911                refdst_drop(orig_dst);
 912        } else if (key->eth.type == htons(ETH_P_IPV6)) {
 913                const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
 914                unsigned long orig_dst;
 915                struct rt6_info ovs_rt;
 916
 917                if (!v6ops)
 918                        goto err;
 919
 920                prepare_frag(vport, skb, orig_network_offset,
 921                             ovs_key_mac_proto(key));
 922                memset(&ovs_rt, 0, sizeof(ovs_rt));
 923                dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
 924                         DST_OBSOLETE_NONE, DST_NOCOUNT);
 925                ovs_rt.dst.dev = vport->dev;
 926
 927                orig_dst = skb->_skb_refdst;
 928                skb_dst_set_noref(skb, &ovs_rt.dst);
 929                IP6CB(skb)->frag_max_size = mru;
 930
 931                v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
 932                refdst_drop(orig_dst);
 933        } else {
 934                WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
 935                          ovs_vport_name(vport), ntohs(key->eth.type), mru,
 936                          vport->dev->mtu);
 937                goto err;
 938        }
 939
 940        return;
 941err:
 942        kfree_skb(skb);
 943}
 944
 945static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
 946                      struct sw_flow_key *key)
 947{
 948        struct vport *vport = ovs_vport_rcu(dp, out_port);
 949
 950        if (likely(vport)) {
 951                u16 mru = OVS_CB(skb)->mru;
 952                u32 cutlen = OVS_CB(skb)->cutlen;
 953
 954                if (unlikely(cutlen > 0)) {
 955                        if (skb->len - cutlen > ovs_mac_header_len(key))
 956                                pskb_trim(skb, skb->len - cutlen);
 957                        else
 958                                pskb_trim(skb, ovs_mac_header_len(key));
 959                }
 960
 961                if (likely(!mru ||
 962                           (skb->len <= mru + vport->dev->hard_header_len))) {
 963                        ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
 964                } else if (mru <= vport->dev->mtu) {
 965                        struct net *net = read_pnet(&dp->net);
 966
 967                        ovs_fragment(net, vport, skb, mru, key);
 968                } else {
 969                        kfree_skb(skb);
 970                }
 971        } else {
 972                kfree_skb(skb);
 973        }
 974}
 975
 976static int output_userspace(struct datapath *dp, struct sk_buff *skb,
 977                            struct sw_flow_key *key, const struct nlattr *attr,
 978                            const struct nlattr *actions, int actions_len,
 979                            uint32_t cutlen)
 980{
 981        struct dp_upcall_info upcall;
 982        const struct nlattr *a;
 983        int rem;
 984
 985        memset(&upcall, 0, sizeof(upcall));
 986        upcall.cmd = OVS_PACKET_CMD_ACTION;
 987        upcall.mru = OVS_CB(skb)->mru;
 988
 989        for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
 990                 a = nla_next(a, &rem)) {
 991                switch (nla_type(a)) {
 992                case OVS_USERSPACE_ATTR_USERDATA:
 993                        upcall.userdata = a;
 994                        break;
 995
 996                case OVS_USERSPACE_ATTR_PID:
 997                        upcall.portid = nla_get_u32(a);
 998                        break;
 999
1000                case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
1001                        /* Get out tunnel info. */
1002                        struct vport *vport;
1003
1004                        vport = ovs_vport_rcu(dp, nla_get_u32(a));
1005                        if (vport) {
1006                                int err;
1007
1008                                err = dev_fill_metadata_dst(vport->dev, skb);
1009                                if (!err)
1010                                        upcall.egress_tun_info = skb_tunnel_info(skb);
1011                        }
1012
1013                        break;
1014                }
1015
1016                case OVS_USERSPACE_ATTR_ACTIONS: {
1017                        /* Include actions. */
1018                        upcall.actions = actions;
1019                        upcall.actions_len = actions_len;
1020                        break;
1021                }
1022
1023                } /* End of switch. */
1024        }
1025
1026        return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1027}
1028
1029/* When 'last' is true, sample() should always consume the 'skb'.
1030 * Otherwise, sample() should keep 'skb' intact regardless what
1031 * actions are executed within sample().
1032 */
1033static int sample(struct datapath *dp, struct sk_buff *skb,
1034                  struct sw_flow_key *key, const struct nlattr *attr,
1035                  bool last)
1036{
1037        struct nlattr *actions;
1038        struct nlattr *sample_arg;
1039        int rem = nla_len(attr);
1040        const struct sample_arg *arg;
1041        bool clone_flow_key;
1042
1043        /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1044        sample_arg = nla_data(attr);
1045        arg = nla_data(sample_arg);
1046        actions = nla_next(sample_arg, &rem);
1047
1048        if ((arg->probability != U32_MAX) &&
1049            (!arg->probability || prandom_u32() > arg->probability)) {
1050                if (last)
1051                        consume_skb(skb);
1052                return 0;
1053        }
1054
1055        clone_flow_key = !arg->exec;
1056        return clone_execute(dp, skb, key, 0, actions, rem, last,
1057                             clone_flow_key);
1058}
1059
1060static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1061                         const struct nlattr *attr)
1062{
1063        struct ovs_action_hash *hash_act = nla_data(attr);
1064        u32 hash = 0;
1065
1066        /* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
1067        hash = skb_get_hash(skb);
1068        hash = jhash_1word(hash, hash_act->hash_basis);
1069        if (!hash)
1070                hash = 0x1;
1071
1072        key->ovs_flow_hash = hash;
1073}
1074
1075static int execute_set_action(struct sk_buff *skb,
1076                              struct sw_flow_key *flow_key,
1077                              const struct nlattr *a)
1078{
1079        /* Only tunnel set execution is supported without a mask. */
1080        if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1081                struct ovs_tunnel_info *tun = nla_data(a);
1082
1083                skb_dst_drop(skb);
1084                dst_hold((struct dst_entry *)tun->tun_dst);
1085                skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1086                return 0;
1087        }
1088
1089        return -EINVAL;
1090}
1091
1092/* Mask is at the midpoint of the data. */
1093#define get_mask(a, type) ((const type)nla_data(a) + 1)
1094
1095static int execute_masked_set_action(struct sk_buff *skb,
1096                                     struct sw_flow_key *flow_key,
1097                                     const struct nlattr *a)
1098{
1099        int err = 0;
1100
1101        switch (nla_type(a)) {
1102        case OVS_KEY_ATTR_PRIORITY:
1103                OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1104                               *get_mask(a, u32 *));
1105                flow_key->phy.priority = skb->priority;
1106                break;
1107
1108        case OVS_KEY_ATTR_SKB_MARK:
1109                OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1110                flow_key->phy.skb_mark = skb->mark;
1111                break;
1112
1113        case OVS_KEY_ATTR_TUNNEL_INFO:
1114                /* Masked data not supported for tunnel. */
1115                err = -EINVAL;
1116                break;
1117
1118        case OVS_KEY_ATTR_ETHERNET:
1119                err = set_eth_addr(skb, flow_key, nla_data(a),
1120                                   get_mask(a, struct ovs_key_ethernet *));
1121                break;
1122
1123        case OVS_KEY_ATTR_NSH:
1124                err = set_nsh(skb, flow_key, a);
1125                break;
1126
1127        case OVS_KEY_ATTR_IPV4:
1128                err = set_ipv4(skb, flow_key, nla_data(a),
1129                               get_mask(a, struct ovs_key_ipv4 *));
1130                break;
1131
1132        case OVS_KEY_ATTR_IPV6:
1133                err = set_ipv6(skb, flow_key, nla_data(a),
1134                               get_mask(a, struct ovs_key_ipv6 *));
1135                break;
1136
1137        case OVS_KEY_ATTR_TCP:
1138                err = set_tcp(skb, flow_key, nla_data(a),
1139                              get_mask(a, struct ovs_key_tcp *));
1140                break;
1141
1142        case OVS_KEY_ATTR_UDP:
1143                err = set_udp(skb, flow_key, nla_data(a),
1144                              get_mask(a, struct ovs_key_udp *));
1145                break;
1146
1147        case OVS_KEY_ATTR_SCTP:
1148                err = set_sctp(skb, flow_key, nla_data(a),
1149                               get_mask(a, struct ovs_key_sctp *));
1150                break;
1151
1152        case OVS_KEY_ATTR_MPLS:
1153                err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1154                                                                    __be32 *));
1155                break;
1156
1157        case OVS_KEY_ATTR_CT_STATE:
1158        case OVS_KEY_ATTR_CT_ZONE:
1159        case OVS_KEY_ATTR_CT_MARK:
1160        case OVS_KEY_ATTR_CT_LABELS:
1161        case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1162        case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1163                err = -EINVAL;
1164                break;
1165        }
1166
1167        return err;
1168}
1169
1170static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1171                          struct sw_flow_key *key,
1172                          const struct nlattr *a, bool last)
1173{
1174        u32 recirc_id;
1175
1176        if (!is_flow_key_valid(key)) {
1177                int err;
1178
1179                err = ovs_flow_key_update(skb, key);
1180                if (err)
1181                        return err;
1182        }
1183        BUG_ON(!is_flow_key_valid(key));
1184
1185        recirc_id = nla_get_u32(a);
1186        return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1187}
1188
1189/* Execute a list of actions against 'skb'. */
1190static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1191                              struct sw_flow_key *key,
1192                              const struct nlattr *attr, int len)
1193{
1194        const struct nlattr *a;
1195        int rem;
1196
1197        for (a = attr, rem = len; rem > 0;
1198             a = nla_next(a, &rem)) {
1199                int err = 0;
1200
1201                switch (nla_type(a)) {
1202                case OVS_ACTION_ATTR_OUTPUT: {
1203                        int port = nla_get_u32(a);
1204                        struct sk_buff *clone;
1205
1206                        /* Every output action needs a separate clone
1207                         * of 'skb', In case the output action is the
1208                         * last action, cloning can be avoided.
1209                         */
1210                        if (nla_is_last(a, rem)) {
1211                                do_output(dp, skb, port, key);
1212                                /* 'skb' has been used for output.
1213                                 */
1214                                return 0;
1215                        }
1216
1217                        clone = skb_clone(skb, GFP_ATOMIC);
1218                        if (clone)
1219                                do_output(dp, clone, port, key);
1220                        OVS_CB(skb)->cutlen = 0;
1221                        break;
1222                }
1223
1224                case OVS_ACTION_ATTR_TRUNC: {
1225                        struct ovs_action_trunc *trunc = nla_data(a);
1226
1227                        if (skb->len > trunc->max_len)
1228                                OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1229                        break;
1230                }
1231
1232                case OVS_ACTION_ATTR_USERSPACE:
1233                        output_userspace(dp, skb, key, a, attr,
1234                                                     len, OVS_CB(skb)->cutlen);
1235                        OVS_CB(skb)->cutlen = 0;
1236                        break;
1237
1238                case OVS_ACTION_ATTR_HASH:
1239                        execute_hash(skb, key, a);
1240                        break;
1241
1242                case OVS_ACTION_ATTR_PUSH_MPLS:
1243                        err = push_mpls(skb, key, nla_data(a));
1244                        break;
1245
1246                case OVS_ACTION_ATTR_POP_MPLS:
1247                        err = pop_mpls(skb, key, nla_get_be16(a));
1248                        break;
1249
1250                case OVS_ACTION_ATTR_PUSH_VLAN:
1251                        err = push_vlan(skb, key, nla_data(a));
1252                        break;
1253
1254                case OVS_ACTION_ATTR_POP_VLAN:
1255                        err = pop_vlan(skb, key);
1256                        break;
1257
1258                case OVS_ACTION_ATTR_RECIRC: {
1259                        bool last = nla_is_last(a, rem);
1260
1261                        err = execute_recirc(dp, skb, key, a, last);
1262                        if (last) {
1263                                /* If this is the last action, the skb has
1264                                 * been consumed or freed.
1265                                 * Return immediately.
1266                                 */
1267                                return err;
1268                        }
1269                        break;
1270                }
1271
1272                case OVS_ACTION_ATTR_SET:
1273                        err = execute_set_action(skb, key, nla_data(a));
1274                        break;
1275
1276                case OVS_ACTION_ATTR_SET_MASKED:
1277                case OVS_ACTION_ATTR_SET_TO_MASKED:
1278                        err = execute_masked_set_action(skb, key, nla_data(a));
1279                        break;
1280
1281                case OVS_ACTION_ATTR_SAMPLE: {
1282                        bool last = nla_is_last(a, rem);
1283
1284                        err = sample(dp, skb, key, a, last);
1285                        if (last)
1286                                return err;
1287
1288                        break;
1289                }
1290
1291                case OVS_ACTION_ATTR_CT:
1292                        if (!is_flow_key_valid(key)) {
1293                                err = ovs_flow_key_update(skb, key);
1294                                if (err)
1295                                        return err;
1296                        }
1297
1298                        err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1299                                             nla_data(a));
1300
1301                        /* Hide stolen IP fragments from user space. */
1302                        if (err)
1303                                return err == -EINPROGRESS ? 0 : err;
1304                        break;
1305
1306                case OVS_ACTION_ATTR_CT_CLEAR:
1307                        err = ovs_ct_clear(skb, key);
1308                        break;
1309
1310                case OVS_ACTION_ATTR_PUSH_ETH:
1311                        err = push_eth(skb, key, nla_data(a));
1312                        break;
1313
1314                case OVS_ACTION_ATTR_POP_ETH:
1315                        err = pop_eth(skb, key);
1316                        break;
1317
1318                case OVS_ACTION_ATTR_PUSH_NSH: {
1319                        u8 buffer[NSH_HDR_MAX_LEN];
1320                        struct nshhdr *nh = (struct nshhdr *)buffer;
1321
1322                        err = nsh_hdr_from_nlattr(nla_data(a), nh,
1323                                                  NSH_HDR_MAX_LEN);
1324                        if (unlikely(err))
1325                                break;
1326                        err = push_nsh(skb, key, nh);
1327                        break;
1328                }
1329
1330                case OVS_ACTION_ATTR_POP_NSH:
1331                        err = pop_nsh(skb, key);
1332                        break;
1333
1334                case OVS_ACTION_ATTR_METER:
1335                        if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1336                                consume_skb(skb);
1337                                return 0;
1338                        }
1339                }
1340
1341                if (unlikely(err)) {
1342                        kfree_skb(skb);
1343                        return err;
1344                }
1345        }
1346
1347        consume_skb(skb);
1348        return 0;
1349}
1350
1351/* Execute the actions on the clone of the packet. The effect of the
1352 * execution does not affect the original 'skb' nor the original 'key'.
1353 *
1354 * The execution may be deferred in case the actions can not be executed
1355 * immediately.
1356 */
1357static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1358                         struct sw_flow_key *key, u32 recirc_id,
1359                         const struct nlattr *actions, int len,
1360                         bool last, bool clone_flow_key)
1361{
1362        struct deferred_action *da;
1363        struct sw_flow_key *clone;
1364
1365        skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1366        if (!skb) {
1367                /* Out of memory, skip this action.
1368                 */
1369                return 0;
1370        }
1371
1372        /* When clone_flow_key is false, the 'key' will not be change
1373         * by the actions, then the 'key' can be used directly.
1374         * Otherwise, try to clone key from the next recursion level of
1375         * 'flow_keys'. If clone is successful, execute the actions
1376         * without deferring.
1377         */
1378        clone = clone_flow_key ? clone_key(key) : key;
1379        if (clone) {
1380                int err = 0;
1381
1382                if (actions) { /* Sample action */
1383                        if (clone_flow_key)
1384                                __this_cpu_inc(exec_actions_level);
1385
1386                        err = do_execute_actions(dp, skb, clone,
1387                                                 actions, len);
1388
1389                        if (clone_flow_key)
1390                                __this_cpu_dec(exec_actions_level);
1391                } else { /* Recirc action */
1392                        clone->recirc_id = recirc_id;
1393                        ovs_dp_process_packet(skb, clone);
1394                }
1395                return err;
1396        }
1397
1398        /* Out of 'flow_keys' space. Defer actions */
1399        da = add_deferred_actions(skb, key, actions, len);
1400        if (da) {
1401                if (!actions) { /* Recirc action */
1402                        key = &da->pkt_key;
1403                        key->recirc_id = recirc_id;
1404                }
1405        } else {
1406                /* Out of per CPU action FIFO space. Drop the 'skb' and
1407                 * log an error.
1408                 */
1409                kfree_skb(skb);
1410
1411                if (net_ratelimit()) {
1412                        if (actions) { /* Sample action */
1413                                pr_warn("%s: deferred action limit reached, drop sample action\n",
1414                                        ovs_dp_name(dp));
1415                        } else {  /* Recirc action */
1416                                pr_warn("%s: deferred action limit reached, drop recirc action\n",
1417                                        ovs_dp_name(dp));
1418                        }
1419                }
1420        }
1421        return 0;
1422}
1423
1424static void process_deferred_actions(struct datapath *dp)
1425{
1426        struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1427
1428        /* Do not touch the FIFO in case there is no deferred actions. */
1429        if (action_fifo_is_empty(fifo))
1430                return;
1431
1432        /* Finishing executing all deferred actions. */
1433        do {
1434                struct deferred_action *da = action_fifo_get(fifo);
1435                struct sk_buff *skb = da->skb;
1436                struct sw_flow_key *key = &da->pkt_key;
1437                const struct nlattr *actions = da->actions;
1438                int actions_len = da->actions_len;
1439
1440                if (actions)
1441                        do_execute_actions(dp, skb, key, actions, actions_len);
1442                else
1443                        ovs_dp_process_packet(skb, key);
1444        } while (!action_fifo_is_empty(fifo));
1445
1446        /* Reset FIFO for the next packet.  */
1447        action_fifo_init(fifo);
1448}
1449
1450/* Execute a list of actions against 'skb'. */
1451int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1452                        const struct sw_flow_actions *acts,
1453                        struct sw_flow_key *key)
1454{
1455        int err, level;
1456
1457        level = __this_cpu_inc_return(exec_actions_level);
1458        if (unlikely(level > OVS_RECURSION_LIMIT)) {
1459                net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1460                                     ovs_dp_name(dp));
1461                kfree_skb(skb);
1462                err = -ENETDOWN;
1463                goto out;
1464        }
1465
1466        OVS_CB(skb)->acts_origlen = acts->orig_len;
1467        err = do_execute_actions(dp, skb, key,
1468                                 acts->actions, acts->actions_len);
1469
1470        if (level == 1)
1471                process_deferred_actions(dp);
1472
1473out:
1474        __this_cpu_dec(exec_actions_level);
1475        return err;
1476}
1477
1478int action_fifos_init(void)
1479{
1480        action_fifos = alloc_percpu(struct action_fifo);
1481        if (!action_fifos)
1482                return -ENOMEM;
1483
1484        flow_keys = alloc_percpu(struct action_flow_keys);
1485        if (!flow_keys) {
1486                free_percpu(action_fifos);
1487                return -ENOMEM;
1488        }
1489
1490        return 0;
1491}
1492
1493void action_fifos_exit(void)
1494{
1495        free_percpu(action_fifos);
1496        free_percpu(flow_keys);
1497}
1498