linux/net/socket.c
<<
>>
Prefs
   1/*
   2 * NET          An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:     @(#)socket.c    1.1.93  18/02/95
   5 *
   6 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   7 *              Ross Biro
   8 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  12 *                                      shutdown()
  13 *              Alan Cox        :       verify_area() fixes
  14 *              Alan Cox        :       Removed DDI
  15 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  16 *              Alan Cox        :       Moved a load of checks to the very
  17 *                                      top level.
  18 *              Alan Cox        :       Move address structures to/from user
  19 *                                      mode above the protocol layers.
  20 *              Rob Janssen     :       Allow 0 length sends.
  21 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  22 *                                      tty drivers).
  23 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  24 *              Jeff Uphoff     :       Made max number of sockets command-line
  25 *                                      configurable.
  26 *              Matti Aarnio    :       Made the number of sockets dynamic,
  27 *                                      to be allocated when needed, and mr.
  28 *                                      Uphoff's max is used as max to be
  29 *                                      allowed to allocate.
  30 *              Linus           :       Argh. removed all the socket allocation
  31 *                                      altogether: it's in the inode now.
  32 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  33 *                                      for NetROM and future kernel nfsd type
  34 *                                      stuff.
  35 *              Alan Cox        :       sendmsg/recvmsg basics.
  36 *              Tom Dyas        :       Export net symbols.
  37 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  38 *              Alan Cox        :       Added thread locking to sys_* calls
  39 *                                      for sockets. May have errors at the
  40 *                                      moment.
  41 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  42 *              Andi Kleen      :       Some small cleanups, optimizations,
  43 *                                      and fixed a copy_from_user() bug.
  44 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  46 *                                      protocol-independent
  47 *
  48 *
  49 *              This program is free software; you can redistribute it and/or
  50 *              modify it under the terms of the GNU General Public License
  51 *              as published by the Free Software Foundation; either version
  52 *              2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *      This module is effectively the top level interface to the BSD socket
  56 *      paradigm.
  57 *
  58 *      Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
  92
  93#include <linux/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/sockios.h>
 107#include <net/busy_poll.h>
 108#include <linux/errqueue.h>
 109
 110#ifdef CONFIG_NET_RX_BUSY_POLL
 111unsigned int sysctl_net_busy_read __read_mostly;
 112unsigned int sysctl_net_busy_poll __read_mostly;
 113#endif
 114
 115static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 116static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 117static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 118
 119static int sock_close(struct inode *inode, struct file *file);
 120static __poll_t sock_poll(struct file *file,
 121                              struct poll_table_struct *wait);
 122static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 123#ifdef CONFIG_COMPAT
 124static long compat_sock_ioctl(struct file *file,
 125                              unsigned int cmd, unsigned long arg);
 126#endif
 127static int sock_fasync(int fd, struct file *filp, int on);
 128static ssize_t sock_sendpage(struct file *file, struct page *page,
 129                             int offset, size_t size, loff_t *ppos, int more);
 130static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 131                                struct pipe_inode_info *pipe, size_t len,
 132                                unsigned int flags);
 133
 134/*
 135 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 136 *      in the operation structures but are done directly via the socketcall() multiplexor.
 137 */
 138
 139static const struct file_operations socket_file_ops = {
 140        .owner =        THIS_MODULE,
 141        .llseek =       no_llseek,
 142        .read_iter =    sock_read_iter,
 143        .write_iter =   sock_write_iter,
 144        .poll =         sock_poll,
 145        .unlocked_ioctl = sock_ioctl,
 146#ifdef CONFIG_COMPAT
 147        .compat_ioctl = compat_sock_ioctl,
 148#endif
 149        .mmap =         sock_mmap,
 150        .release =      sock_close,
 151        .fasync =       sock_fasync,
 152        .sendpage =     sock_sendpage,
 153        .splice_write = generic_splice_sendpage,
 154        .splice_read =  sock_splice_read,
 155};
 156
 157/*
 158 *      The protocol list. Each protocol is registered in here.
 159 */
 160
 161static DEFINE_SPINLOCK(net_family_lock);
 162static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 163
 164/*
 165 * Support routines.
 166 * Move socket addresses back and forth across the kernel/user
 167 * divide and look after the messy bits.
 168 */
 169
 170/**
 171 *      move_addr_to_kernel     -       copy a socket address into kernel space
 172 *      @uaddr: Address in user space
 173 *      @kaddr: Address in kernel space
 174 *      @ulen: Length in user space
 175 *
 176 *      The address is copied into kernel space. If the provided address is
 177 *      too long an error code of -EINVAL is returned. If the copy gives
 178 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 179 */
 180
 181int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 182{
 183        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 184                return -EINVAL;
 185        if (ulen == 0)
 186                return 0;
 187        if (copy_from_user(kaddr, uaddr, ulen))
 188                return -EFAULT;
 189        return audit_sockaddr(ulen, kaddr);
 190}
 191
 192/**
 193 *      move_addr_to_user       -       copy an address to user space
 194 *      @kaddr: kernel space address
 195 *      @klen: length of address in kernel
 196 *      @uaddr: user space address
 197 *      @ulen: pointer to user length field
 198 *
 199 *      The value pointed to by ulen on entry is the buffer length available.
 200 *      This is overwritten with the buffer space used. -EINVAL is returned
 201 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 202 *      is returned if either the buffer or the length field are not
 203 *      accessible.
 204 *      After copying the data up to the limit the user specifies, the true
 205 *      length of the data is written over the length limit the user
 206 *      specified. Zero is returned for a success.
 207 */
 208
 209static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 210                             void __user *uaddr, int __user *ulen)
 211{
 212        int err;
 213        int len;
 214
 215        BUG_ON(klen > sizeof(struct sockaddr_storage));
 216        err = get_user(len, ulen);
 217        if (err)
 218                return err;
 219        if (len > klen)
 220                len = klen;
 221        if (len < 0)
 222                return -EINVAL;
 223        if (len) {
 224                if (audit_sockaddr(klen, kaddr))
 225                        return -ENOMEM;
 226                if (copy_to_user(uaddr, kaddr, len))
 227                        return -EFAULT;
 228        }
 229        /*
 230         *      "fromlen shall refer to the value before truncation.."
 231         *                      1003.1g
 232         */
 233        return __put_user(klen, ulen);
 234}
 235
 236static struct kmem_cache *sock_inode_cachep __ro_after_init;
 237
 238static struct inode *sock_alloc_inode(struct super_block *sb)
 239{
 240        struct socket_alloc *ei;
 241        struct socket_wq *wq;
 242
 243        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 244        if (!ei)
 245                return NULL;
 246        wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 247        if (!wq) {
 248                kmem_cache_free(sock_inode_cachep, ei);
 249                return NULL;
 250        }
 251        init_waitqueue_head(&wq->wait);
 252        wq->fasync_list = NULL;
 253        wq->flags = 0;
 254        RCU_INIT_POINTER(ei->socket.wq, wq);
 255
 256        ei->socket.state = SS_UNCONNECTED;
 257        ei->socket.flags = 0;
 258        ei->socket.ops = NULL;
 259        ei->socket.sk = NULL;
 260        ei->socket.file = NULL;
 261
 262        return &ei->vfs_inode;
 263}
 264
 265static void sock_destroy_inode(struct inode *inode)
 266{
 267        struct socket_alloc *ei;
 268        struct socket_wq *wq;
 269
 270        ei = container_of(inode, struct socket_alloc, vfs_inode);
 271        wq = rcu_dereference_protected(ei->socket.wq, 1);
 272        kfree_rcu(wq, rcu);
 273        kmem_cache_free(sock_inode_cachep, ei);
 274}
 275
 276static void init_once(void *foo)
 277{
 278        struct socket_alloc *ei = (struct socket_alloc *)foo;
 279
 280        inode_init_once(&ei->vfs_inode);
 281}
 282
 283static void init_inodecache(void)
 284{
 285        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 286                                              sizeof(struct socket_alloc),
 287                                              0,
 288                                              (SLAB_HWCACHE_ALIGN |
 289                                               SLAB_RECLAIM_ACCOUNT |
 290                                               SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 291                                              init_once);
 292        BUG_ON(sock_inode_cachep == NULL);
 293}
 294
 295static const struct super_operations sockfs_ops = {
 296        .alloc_inode    = sock_alloc_inode,
 297        .destroy_inode  = sock_destroy_inode,
 298        .statfs         = simple_statfs,
 299};
 300
 301/*
 302 * sockfs_dname() is called from d_path().
 303 */
 304static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 305{
 306        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 307                                d_inode(dentry)->i_ino);
 308}
 309
 310static const struct dentry_operations sockfs_dentry_operations = {
 311        .d_dname  = sockfs_dname,
 312};
 313
 314static int sockfs_xattr_get(const struct xattr_handler *handler,
 315                            struct dentry *dentry, struct inode *inode,
 316                            const char *suffix, void *value, size_t size)
 317{
 318        if (value) {
 319                if (dentry->d_name.len + 1 > size)
 320                        return -ERANGE;
 321                memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 322        }
 323        return dentry->d_name.len + 1;
 324}
 325
 326#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 327#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 328#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 329
 330static const struct xattr_handler sockfs_xattr_handler = {
 331        .name = XATTR_NAME_SOCKPROTONAME,
 332        .get = sockfs_xattr_get,
 333};
 334
 335static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 336                                     struct dentry *dentry, struct inode *inode,
 337                                     const char *suffix, const void *value,
 338                                     size_t size, int flags)
 339{
 340        /* Handled by LSM. */
 341        return -EAGAIN;
 342}
 343
 344static const struct xattr_handler sockfs_security_xattr_handler = {
 345        .prefix = XATTR_SECURITY_PREFIX,
 346        .set = sockfs_security_xattr_set,
 347};
 348
 349static const struct xattr_handler *sockfs_xattr_handlers[] = {
 350        &sockfs_xattr_handler,
 351        &sockfs_security_xattr_handler,
 352        NULL
 353};
 354
 355static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 356                         int flags, const char *dev_name, void *data)
 357{
 358        return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
 359                                  sockfs_xattr_handlers,
 360                                  &sockfs_dentry_operations, SOCKFS_MAGIC);
 361}
 362
 363static struct vfsmount *sock_mnt __read_mostly;
 364
 365static struct file_system_type sock_fs_type = {
 366        .name =         "sockfs",
 367        .mount =        sockfs_mount,
 368        .kill_sb =      kill_anon_super,
 369};
 370
 371/*
 372 *      Obtains the first available file descriptor and sets it up for use.
 373 *
 374 *      These functions create file structures and maps them to fd space
 375 *      of the current process. On success it returns file descriptor
 376 *      and file struct implicitly stored in sock->file.
 377 *      Note that another thread may close file descriptor before we return
 378 *      from this function. We use the fact that now we do not refer
 379 *      to socket after mapping. If one day we will need it, this
 380 *      function will increment ref. count on file by 1.
 381 *
 382 *      In any case returned fd MAY BE not valid!
 383 *      This race condition is unavoidable
 384 *      with shared fd spaces, we cannot solve it inside kernel,
 385 *      but we take care of internal coherence yet.
 386 */
 387
 388struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 389{
 390        struct qstr name = { .name = "" };
 391        struct path path;
 392        struct file *file;
 393
 394        if (dname) {
 395                name.name = dname;
 396                name.len = strlen(name.name);
 397        } else if (sock->sk) {
 398                name.name = sock->sk->sk_prot_creator->name;
 399                name.len = strlen(name.name);
 400        }
 401        path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 402        if (unlikely(!path.dentry)) {
 403                sock_release(sock);
 404                return ERR_PTR(-ENOMEM);
 405        }
 406        path.mnt = mntget(sock_mnt);
 407
 408        d_instantiate(path.dentry, SOCK_INODE(sock));
 409
 410        file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 411                  &socket_file_ops);
 412        if (IS_ERR(file)) {
 413                /* drop dentry, keep inode for a bit */
 414                ihold(d_inode(path.dentry));
 415                path_put(&path);
 416                /* ... and now kill it properly */
 417                sock_release(sock);
 418                return file;
 419        }
 420
 421        sock->file = file;
 422        file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 423        file->private_data = sock;
 424        return file;
 425}
 426EXPORT_SYMBOL(sock_alloc_file);
 427
 428static int sock_map_fd(struct socket *sock, int flags)
 429{
 430        struct file *newfile;
 431        int fd = get_unused_fd_flags(flags);
 432        if (unlikely(fd < 0)) {
 433                sock_release(sock);
 434                return fd;
 435        }
 436
 437        newfile = sock_alloc_file(sock, flags, NULL);
 438        if (likely(!IS_ERR(newfile))) {
 439                fd_install(fd, newfile);
 440                return fd;
 441        }
 442
 443        put_unused_fd(fd);
 444        return PTR_ERR(newfile);
 445}
 446
 447struct socket *sock_from_file(struct file *file, int *err)
 448{
 449        if (file->f_op == &socket_file_ops)
 450                return file->private_data;      /* set in sock_map_fd */
 451
 452        *err = -ENOTSOCK;
 453        return NULL;
 454}
 455EXPORT_SYMBOL(sock_from_file);
 456
 457/**
 458 *      sockfd_lookup - Go from a file number to its socket slot
 459 *      @fd: file handle
 460 *      @err: pointer to an error code return
 461 *
 462 *      The file handle passed in is locked and the socket it is bound
 463 *      to is returned. If an error occurs the err pointer is overwritten
 464 *      with a negative errno code and NULL is returned. The function checks
 465 *      for both invalid handles and passing a handle which is not a socket.
 466 *
 467 *      On a success the socket object pointer is returned.
 468 */
 469
 470struct socket *sockfd_lookup(int fd, int *err)
 471{
 472        struct file *file;
 473        struct socket *sock;
 474
 475        file = fget(fd);
 476        if (!file) {
 477                *err = -EBADF;
 478                return NULL;
 479        }
 480
 481        sock = sock_from_file(file, err);
 482        if (!sock)
 483                fput(file);
 484        return sock;
 485}
 486EXPORT_SYMBOL(sockfd_lookup);
 487
 488static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 489{
 490        struct fd f = fdget(fd);
 491        struct socket *sock;
 492
 493        *err = -EBADF;
 494        if (f.file) {
 495                sock = sock_from_file(f.file, err);
 496                if (likely(sock)) {
 497                        *fput_needed = f.flags;
 498                        return sock;
 499                }
 500                fdput(f);
 501        }
 502        return NULL;
 503}
 504
 505static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 506                                size_t size)
 507{
 508        ssize_t len;
 509        ssize_t used = 0;
 510
 511        len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 512        if (len < 0)
 513                return len;
 514        used += len;
 515        if (buffer) {
 516                if (size < used)
 517                        return -ERANGE;
 518                buffer += len;
 519        }
 520
 521        len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 522        used += len;
 523        if (buffer) {
 524                if (size < used)
 525                        return -ERANGE;
 526                memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 527                buffer += len;
 528        }
 529
 530        return used;
 531}
 532
 533static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 534{
 535        int err = simple_setattr(dentry, iattr);
 536
 537        if (!err && (iattr->ia_valid & ATTR_UID)) {
 538                struct socket *sock = SOCKET_I(d_inode(dentry));
 539
 540                sock->sk->sk_uid = iattr->ia_uid;
 541        }
 542
 543        return err;
 544}
 545
 546static const struct inode_operations sockfs_inode_ops = {
 547        .listxattr = sockfs_listxattr,
 548        .setattr = sockfs_setattr,
 549};
 550
 551/**
 552 *      sock_alloc      -       allocate a socket
 553 *
 554 *      Allocate a new inode and socket object. The two are bound together
 555 *      and initialised. The socket is then returned. If we are out of inodes
 556 *      NULL is returned.
 557 */
 558
 559struct socket *sock_alloc(void)
 560{
 561        struct inode *inode;
 562        struct socket *sock;
 563
 564        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 565        if (!inode)
 566                return NULL;
 567
 568        sock = SOCKET_I(inode);
 569
 570        inode->i_ino = get_next_ino();
 571        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 572        inode->i_uid = current_fsuid();
 573        inode->i_gid = current_fsgid();
 574        inode->i_op = &sockfs_inode_ops;
 575
 576        return sock;
 577}
 578EXPORT_SYMBOL(sock_alloc);
 579
 580/**
 581 *      sock_release    -       close a socket
 582 *      @sock: socket to close
 583 *
 584 *      The socket is released from the protocol stack if it has a release
 585 *      callback, and the inode is then released if the socket is bound to
 586 *      an inode not a file.
 587 */
 588
 589void sock_release(struct socket *sock)
 590{
 591        if (sock->ops) {
 592                struct module *owner = sock->ops->owner;
 593
 594                sock->ops->release(sock);
 595                sock->ops = NULL;
 596                module_put(owner);
 597        }
 598
 599        if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 600                pr_err("%s: fasync list not empty!\n", __func__);
 601
 602        if (!sock->file) {
 603                iput(SOCK_INODE(sock));
 604                return;
 605        }
 606        sock->file = NULL;
 607}
 608EXPORT_SYMBOL(sock_release);
 609
 610void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 611{
 612        u8 flags = *tx_flags;
 613
 614        if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 615                flags |= SKBTX_HW_TSTAMP;
 616
 617        if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 618                flags |= SKBTX_SW_TSTAMP;
 619
 620        if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 621                flags |= SKBTX_SCHED_TSTAMP;
 622
 623        *tx_flags = flags;
 624}
 625EXPORT_SYMBOL(__sock_tx_timestamp);
 626
 627static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 628{
 629        int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 630        BUG_ON(ret == -EIOCBQUEUED);
 631        return ret;
 632}
 633
 634int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 635{
 636        int err = security_socket_sendmsg(sock, msg,
 637                                          msg_data_left(msg));
 638
 639        return err ?: sock_sendmsg_nosec(sock, msg);
 640}
 641EXPORT_SYMBOL(sock_sendmsg);
 642
 643int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 644                   struct kvec *vec, size_t num, size_t size)
 645{
 646        iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 647        return sock_sendmsg(sock, msg);
 648}
 649EXPORT_SYMBOL(kernel_sendmsg);
 650
 651int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 652                          struct kvec *vec, size_t num, size_t size)
 653{
 654        struct socket *sock = sk->sk_socket;
 655
 656        if (!sock->ops->sendmsg_locked)
 657                return sock_no_sendmsg_locked(sk, msg, size);
 658
 659        iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 660
 661        return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 662}
 663EXPORT_SYMBOL(kernel_sendmsg_locked);
 664
 665static bool skb_is_err_queue(const struct sk_buff *skb)
 666{
 667        /* pkt_type of skbs enqueued on the error queue are set to
 668         * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 669         * in recvmsg, since skbs received on a local socket will never
 670         * have a pkt_type of PACKET_OUTGOING.
 671         */
 672        return skb->pkt_type == PACKET_OUTGOING;
 673}
 674
 675/* On transmit, software and hardware timestamps are returned independently.
 676 * As the two skb clones share the hardware timestamp, which may be updated
 677 * before the software timestamp is received, a hardware TX timestamp may be
 678 * returned only if there is no software TX timestamp. Ignore false software
 679 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 680 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
 681 * hardware timestamp.
 682 */
 683static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 684{
 685        return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 686}
 687
 688static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
 689{
 690        struct scm_ts_pktinfo ts_pktinfo;
 691        struct net_device *orig_dev;
 692
 693        if (!skb_mac_header_was_set(skb))
 694                return;
 695
 696        memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 697
 698        rcu_read_lock();
 699        orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 700        if (orig_dev)
 701                ts_pktinfo.if_index = orig_dev->ifindex;
 702        rcu_read_unlock();
 703
 704        ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 705        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 706                 sizeof(ts_pktinfo), &ts_pktinfo);
 707}
 708
 709/*
 710 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 711 */
 712void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 713        struct sk_buff *skb)
 714{
 715        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 716        struct scm_timestamping tss;
 717        int empty = 1, false_tstamp = 0;
 718        struct skb_shared_hwtstamps *shhwtstamps =
 719                skb_hwtstamps(skb);
 720
 721        /* Race occurred between timestamp enabling and packet
 722           receiving.  Fill in the current time for now. */
 723        if (need_software_tstamp && skb->tstamp == 0) {
 724                __net_timestamp(skb);
 725                false_tstamp = 1;
 726        }
 727
 728        if (need_software_tstamp) {
 729                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 730                        struct timeval tv;
 731                        skb_get_timestamp(skb, &tv);
 732                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 733                                 sizeof(tv), &tv);
 734                } else {
 735                        struct timespec ts;
 736                        skb_get_timestampns(skb, &ts);
 737                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 738                                 sizeof(ts), &ts);
 739                }
 740        }
 741
 742        memset(&tss, 0, sizeof(tss));
 743        if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 744            ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 745                empty = 0;
 746        if (shhwtstamps &&
 747            (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 748            !skb_is_swtx_tstamp(skb, false_tstamp) &&
 749            ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
 750                empty = 0;
 751                if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 752                    !skb_is_err_queue(skb))
 753                        put_ts_pktinfo(msg, skb);
 754        }
 755        if (!empty) {
 756                put_cmsg(msg, SOL_SOCKET,
 757                         SCM_TIMESTAMPING, sizeof(tss), &tss);
 758
 759                if (skb_is_err_queue(skb) && skb->len &&
 760                    SKB_EXT_ERR(skb)->opt_stats)
 761                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 762                                 skb->len, skb->data);
 763        }
 764}
 765EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 766
 767void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 768        struct sk_buff *skb)
 769{
 770        int ack;
 771
 772        if (!sock_flag(sk, SOCK_WIFI_STATUS))
 773                return;
 774        if (!skb->wifi_acked_valid)
 775                return;
 776
 777        ack = skb->wifi_acked;
 778
 779        put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 780}
 781EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 782
 783static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 784                                   struct sk_buff *skb)
 785{
 786        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 787                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 788                        sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 789}
 790
 791void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 792        struct sk_buff *skb)
 793{
 794        sock_recv_timestamp(msg, sk, skb);
 795        sock_recv_drops(msg, sk, skb);
 796}
 797EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 798
 799static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 800                                     int flags)
 801{
 802        return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
 803}
 804
 805int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 806{
 807        int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 808
 809        return err ?: sock_recvmsg_nosec(sock, msg, flags);
 810}
 811EXPORT_SYMBOL(sock_recvmsg);
 812
 813/**
 814 * kernel_recvmsg - Receive a message from a socket (kernel space)
 815 * @sock:       The socket to receive the message from
 816 * @msg:        Received message
 817 * @vec:        Input s/g array for message data
 818 * @num:        Size of input s/g array
 819 * @size:       Number of bytes to read
 820 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 821 *
 822 * On return the msg structure contains the scatter/gather array passed in the
 823 * vec argument. The array is modified so that it consists of the unfilled
 824 * portion of the original array.
 825 *
 826 * The returned value is the total number of bytes received, or an error.
 827 */
 828int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 829                   struct kvec *vec, size_t num, size_t size, int flags)
 830{
 831        mm_segment_t oldfs = get_fs();
 832        int result;
 833
 834        iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 835        set_fs(KERNEL_DS);
 836        result = sock_recvmsg(sock, msg, flags);
 837        set_fs(oldfs);
 838        return result;
 839}
 840EXPORT_SYMBOL(kernel_recvmsg);
 841
 842static ssize_t sock_sendpage(struct file *file, struct page *page,
 843                             int offset, size_t size, loff_t *ppos, int more)
 844{
 845        struct socket *sock;
 846        int flags;
 847
 848        sock = file->private_data;
 849
 850        flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 851        /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 852        flags |= more;
 853
 854        return kernel_sendpage(sock, page, offset, size, flags);
 855}
 856
 857static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 858                                struct pipe_inode_info *pipe, size_t len,
 859                                unsigned int flags)
 860{
 861        struct socket *sock = file->private_data;
 862
 863        if (unlikely(!sock->ops->splice_read))
 864                return -EINVAL;
 865
 866        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 867}
 868
 869static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 870{
 871        struct file *file = iocb->ki_filp;
 872        struct socket *sock = file->private_data;
 873        struct msghdr msg = {.msg_iter = *to,
 874                             .msg_iocb = iocb};
 875        ssize_t res;
 876
 877        if (file->f_flags & O_NONBLOCK)
 878                msg.msg_flags = MSG_DONTWAIT;
 879
 880        if (iocb->ki_pos != 0)
 881                return -ESPIPE;
 882
 883        if (!iov_iter_count(to))        /* Match SYS5 behaviour */
 884                return 0;
 885
 886        res = sock_recvmsg(sock, &msg, msg.msg_flags);
 887        *to = msg.msg_iter;
 888        return res;
 889}
 890
 891static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 892{
 893        struct file *file = iocb->ki_filp;
 894        struct socket *sock = file->private_data;
 895        struct msghdr msg = {.msg_iter = *from,
 896                             .msg_iocb = iocb};
 897        ssize_t res;
 898
 899        if (iocb->ki_pos != 0)
 900                return -ESPIPE;
 901
 902        if (file->f_flags & O_NONBLOCK)
 903                msg.msg_flags = MSG_DONTWAIT;
 904
 905        if (sock->type == SOCK_SEQPACKET)
 906                msg.msg_flags |= MSG_EOR;
 907
 908        res = sock_sendmsg(sock, &msg);
 909        *from = msg.msg_iter;
 910        return res;
 911}
 912
 913/*
 914 * Atomic setting of ioctl hooks to avoid race
 915 * with module unload.
 916 */
 917
 918static DEFINE_MUTEX(br_ioctl_mutex);
 919static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 920
 921void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 922{
 923        mutex_lock(&br_ioctl_mutex);
 924        br_ioctl_hook = hook;
 925        mutex_unlock(&br_ioctl_mutex);
 926}
 927EXPORT_SYMBOL(brioctl_set);
 928
 929static DEFINE_MUTEX(vlan_ioctl_mutex);
 930static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 931
 932void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 933{
 934        mutex_lock(&vlan_ioctl_mutex);
 935        vlan_ioctl_hook = hook;
 936        mutex_unlock(&vlan_ioctl_mutex);
 937}
 938EXPORT_SYMBOL(vlan_ioctl_set);
 939
 940static DEFINE_MUTEX(dlci_ioctl_mutex);
 941static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 942
 943void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 944{
 945        mutex_lock(&dlci_ioctl_mutex);
 946        dlci_ioctl_hook = hook;
 947        mutex_unlock(&dlci_ioctl_mutex);
 948}
 949EXPORT_SYMBOL(dlci_ioctl_set);
 950
 951static long sock_do_ioctl(struct net *net, struct socket *sock,
 952                                 unsigned int cmd, unsigned long arg)
 953{
 954        int err;
 955        void __user *argp = (void __user *)arg;
 956
 957        err = sock->ops->ioctl(sock, cmd, arg);
 958
 959        /*
 960         * If this ioctl is unknown try to hand it down
 961         * to the NIC driver.
 962         */
 963        if (err != -ENOIOCTLCMD)
 964                return err;
 965
 966        if (cmd == SIOCGIFCONF) {
 967                struct ifconf ifc;
 968                if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
 969                        return -EFAULT;
 970                rtnl_lock();
 971                err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
 972                rtnl_unlock();
 973                if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
 974                        err = -EFAULT;
 975        } else {
 976                struct ifreq ifr;
 977                bool need_copyout;
 978                if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
 979                        return -EFAULT;
 980                err = dev_ioctl(net, cmd, &ifr, &need_copyout);
 981                if (!err && need_copyout)
 982                        if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
 983                                return -EFAULT;
 984        }
 985        return err;
 986}
 987
 988/*
 989 *      With an ioctl, arg may well be a user mode pointer, but we don't know
 990 *      what to do with it - that's up to the protocol still.
 991 */
 992
 993struct ns_common *get_net_ns(struct ns_common *ns)
 994{
 995        return &get_net(container_of(ns, struct net, ns))->ns;
 996}
 997EXPORT_SYMBOL_GPL(get_net_ns);
 998
 999static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1000{
1001        struct socket *sock;
1002        struct sock *sk;
1003        void __user *argp = (void __user *)arg;
1004        int pid, err;
1005        struct net *net;
1006
1007        sock = file->private_data;
1008        sk = sock->sk;
1009        net = sock_net(sk);
1010        if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1011                struct ifreq ifr;
1012                bool need_copyout;
1013                if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1014                        return -EFAULT;
1015                err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1016                if (!err && need_copyout)
1017                        if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1018                                return -EFAULT;
1019        } else
1020#ifdef CONFIG_WEXT_CORE
1021        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1022                err = wext_handle_ioctl(net, cmd, argp);
1023        } else
1024#endif
1025                switch (cmd) {
1026                case FIOSETOWN:
1027                case SIOCSPGRP:
1028                        err = -EFAULT;
1029                        if (get_user(pid, (int __user *)argp))
1030                                break;
1031                        err = f_setown(sock->file, pid, 1);
1032                        break;
1033                case FIOGETOWN:
1034                case SIOCGPGRP:
1035                        err = put_user(f_getown(sock->file),
1036                                       (int __user *)argp);
1037                        break;
1038                case SIOCGIFBR:
1039                case SIOCSIFBR:
1040                case SIOCBRADDBR:
1041                case SIOCBRDELBR:
1042                        err = -ENOPKG;
1043                        if (!br_ioctl_hook)
1044                                request_module("bridge");
1045
1046                        mutex_lock(&br_ioctl_mutex);
1047                        if (br_ioctl_hook)
1048                                err = br_ioctl_hook(net, cmd, argp);
1049                        mutex_unlock(&br_ioctl_mutex);
1050                        break;
1051                case SIOCGIFVLAN:
1052                case SIOCSIFVLAN:
1053                        err = -ENOPKG;
1054                        if (!vlan_ioctl_hook)
1055                                request_module("8021q");
1056
1057                        mutex_lock(&vlan_ioctl_mutex);
1058                        if (vlan_ioctl_hook)
1059                                err = vlan_ioctl_hook(net, argp);
1060                        mutex_unlock(&vlan_ioctl_mutex);
1061                        break;
1062                case SIOCADDDLCI:
1063                case SIOCDELDLCI:
1064                        err = -ENOPKG;
1065                        if (!dlci_ioctl_hook)
1066                                request_module("dlci");
1067
1068                        mutex_lock(&dlci_ioctl_mutex);
1069                        if (dlci_ioctl_hook)
1070                                err = dlci_ioctl_hook(cmd, argp);
1071                        mutex_unlock(&dlci_ioctl_mutex);
1072                        break;
1073                case SIOCGSKNS:
1074                        err = -EPERM;
1075                        if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1076                                break;
1077
1078                        err = open_related_ns(&net->ns, get_net_ns);
1079                        break;
1080                default:
1081                        err = sock_do_ioctl(net, sock, cmd, arg);
1082                        break;
1083                }
1084        return err;
1085}
1086
1087int sock_create_lite(int family, int type, int protocol, struct socket **res)
1088{
1089        int err;
1090        struct socket *sock = NULL;
1091
1092        err = security_socket_create(family, type, protocol, 1);
1093        if (err)
1094                goto out;
1095
1096        sock = sock_alloc();
1097        if (!sock) {
1098                err = -ENOMEM;
1099                goto out;
1100        }
1101
1102        sock->type = type;
1103        err = security_socket_post_create(sock, family, type, protocol, 1);
1104        if (err)
1105                goto out_release;
1106
1107out:
1108        *res = sock;
1109        return err;
1110out_release:
1111        sock_release(sock);
1112        sock = NULL;
1113        goto out;
1114}
1115EXPORT_SYMBOL(sock_create_lite);
1116
1117/* No kernel lock held - perfect */
1118static __poll_t sock_poll(struct file *file, poll_table *wait)
1119{
1120        __poll_t busy_flag = 0;
1121        struct socket *sock;
1122
1123        /*
1124         *      We can't return errors to poll, so it's either yes or no.
1125         */
1126        sock = file->private_data;
1127
1128        if (sk_can_busy_loop(sock->sk)) {
1129                /* this socket can poll_ll so tell the system call */
1130                busy_flag = POLL_BUSY_LOOP;
1131
1132                /* once, only if requested by syscall */
1133                if (wait && (wait->_key & POLL_BUSY_LOOP))
1134                        sk_busy_loop(sock->sk, 1);
1135        }
1136
1137        return busy_flag | sock->ops->poll(file, sock, wait);
1138}
1139
1140static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1141{
1142        struct socket *sock = file->private_data;
1143
1144        return sock->ops->mmap(file, sock, vma);
1145}
1146
1147static int sock_close(struct inode *inode, struct file *filp)
1148{
1149        sock_release(SOCKET_I(inode));
1150        return 0;
1151}
1152
1153/*
1154 *      Update the socket async list
1155 *
1156 *      Fasync_list locking strategy.
1157 *
1158 *      1. fasync_list is modified only under process context socket lock
1159 *         i.e. under semaphore.
1160 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1161 *         or under socket lock
1162 */
1163
1164static int sock_fasync(int fd, struct file *filp, int on)
1165{
1166        struct socket *sock = filp->private_data;
1167        struct sock *sk = sock->sk;
1168        struct socket_wq *wq;
1169
1170        if (sk == NULL)
1171                return -EINVAL;
1172
1173        lock_sock(sk);
1174        wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1175        fasync_helper(fd, filp, on, &wq->fasync_list);
1176
1177        if (!wq->fasync_list)
1178                sock_reset_flag(sk, SOCK_FASYNC);
1179        else
1180                sock_set_flag(sk, SOCK_FASYNC);
1181
1182        release_sock(sk);
1183        return 0;
1184}
1185
1186/* This function may be called only under rcu_lock */
1187
1188int sock_wake_async(struct socket_wq *wq, int how, int band)
1189{
1190        if (!wq || !wq->fasync_list)
1191                return -1;
1192
1193        switch (how) {
1194        case SOCK_WAKE_WAITD:
1195                if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1196                        break;
1197                goto call_kill;
1198        case SOCK_WAKE_SPACE:
1199                if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1200                        break;
1201                /* fall through */
1202        case SOCK_WAKE_IO:
1203call_kill:
1204                kill_fasync(&wq->fasync_list, SIGIO, band);
1205                break;
1206        case SOCK_WAKE_URG:
1207                kill_fasync(&wq->fasync_list, SIGURG, band);
1208        }
1209
1210        return 0;
1211}
1212EXPORT_SYMBOL(sock_wake_async);
1213
1214int __sock_create(struct net *net, int family, int type, int protocol,
1215                         struct socket **res, int kern)
1216{
1217        int err;
1218        struct socket *sock;
1219        const struct net_proto_family *pf;
1220
1221        /*
1222         *      Check protocol is in range
1223         */
1224        if (family < 0 || family >= NPROTO)
1225                return -EAFNOSUPPORT;
1226        if (type < 0 || type >= SOCK_MAX)
1227                return -EINVAL;
1228
1229        /* Compatibility.
1230
1231           This uglymoron is moved from INET layer to here to avoid
1232           deadlock in module load.
1233         */
1234        if (family == PF_INET && type == SOCK_PACKET) {
1235                pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1236                             current->comm);
1237                family = PF_PACKET;
1238        }
1239
1240        err = security_socket_create(family, type, protocol, kern);
1241        if (err)
1242                return err;
1243
1244        /*
1245         *      Allocate the socket and allow the family to set things up. if
1246         *      the protocol is 0, the family is instructed to select an appropriate
1247         *      default.
1248         */
1249        sock = sock_alloc();
1250        if (!sock) {
1251                net_warn_ratelimited("socket: no more sockets\n");
1252                return -ENFILE; /* Not exactly a match, but its the
1253                                   closest posix thing */
1254        }
1255
1256        sock->type = type;
1257
1258#ifdef CONFIG_MODULES
1259        /* Attempt to load a protocol module if the find failed.
1260         *
1261         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1262         * requested real, full-featured networking support upon configuration.
1263         * Otherwise module support will break!
1264         */
1265        if (rcu_access_pointer(net_families[family]) == NULL)
1266                request_module("net-pf-%d", family);
1267#endif
1268
1269        rcu_read_lock();
1270        pf = rcu_dereference(net_families[family]);
1271        err = -EAFNOSUPPORT;
1272        if (!pf)
1273                goto out_release;
1274
1275        /*
1276         * We will call the ->create function, that possibly is in a loadable
1277         * module, so we have to bump that loadable module refcnt first.
1278         */
1279        if (!try_module_get(pf->owner))
1280                goto out_release;
1281
1282        /* Now protected by module ref count */
1283        rcu_read_unlock();
1284
1285        err = pf->create(net, sock, protocol, kern);
1286        if (err < 0)
1287                goto out_module_put;
1288
1289        /*
1290         * Now to bump the refcnt of the [loadable] module that owns this
1291         * socket at sock_release time we decrement its refcnt.
1292         */
1293        if (!try_module_get(sock->ops->owner))
1294                goto out_module_busy;
1295
1296        /*
1297         * Now that we're done with the ->create function, the [loadable]
1298         * module can have its refcnt decremented
1299         */
1300        module_put(pf->owner);
1301        err = security_socket_post_create(sock, family, type, protocol, kern);
1302        if (err)
1303                goto out_sock_release;
1304        *res = sock;
1305
1306        return 0;
1307
1308out_module_busy:
1309        err = -EAFNOSUPPORT;
1310out_module_put:
1311        sock->ops = NULL;
1312        module_put(pf->owner);
1313out_sock_release:
1314        sock_release(sock);
1315        return err;
1316
1317out_release:
1318        rcu_read_unlock();
1319        goto out_sock_release;
1320}
1321EXPORT_SYMBOL(__sock_create);
1322
1323int sock_create(int family, int type, int protocol, struct socket **res)
1324{
1325        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1326}
1327EXPORT_SYMBOL(sock_create);
1328
1329int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1330{
1331        return __sock_create(net, family, type, protocol, res, 1);
1332}
1333EXPORT_SYMBOL(sock_create_kern);
1334
1335int __sys_socket(int family, int type, int protocol)
1336{
1337        int retval;
1338        struct socket *sock;
1339        int flags;
1340
1341        /* Check the SOCK_* constants for consistency.  */
1342        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1343        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1344        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1345        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1346
1347        flags = type & ~SOCK_TYPE_MASK;
1348        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1349                return -EINVAL;
1350        type &= SOCK_TYPE_MASK;
1351
1352        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1353                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1354
1355        retval = sock_create(family, type, protocol, &sock);
1356        if (retval < 0)
1357                return retval;
1358
1359        return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1360}
1361
1362SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1363{
1364        return __sys_socket(family, type, protocol);
1365}
1366
1367/*
1368 *      Create a pair of connected sockets.
1369 */
1370
1371int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1372{
1373        struct socket *sock1, *sock2;
1374        int fd1, fd2, err;
1375        struct file *newfile1, *newfile2;
1376        int flags;
1377
1378        flags = type & ~SOCK_TYPE_MASK;
1379        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1380                return -EINVAL;
1381        type &= SOCK_TYPE_MASK;
1382
1383        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1384                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1385
1386        /*
1387         * reserve descriptors and make sure we won't fail
1388         * to return them to userland.
1389         */
1390        fd1 = get_unused_fd_flags(flags);
1391        if (unlikely(fd1 < 0))
1392                return fd1;
1393
1394        fd2 = get_unused_fd_flags(flags);
1395        if (unlikely(fd2 < 0)) {
1396                put_unused_fd(fd1);
1397                return fd2;
1398        }
1399
1400        err = put_user(fd1, &usockvec[0]);
1401        if (err)
1402                goto out;
1403
1404        err = put_user(fd2, &usockvec[1]);
1405        if (err)
1406                goto out;
1407
1408        /*
1409         * Obtain the first socket and check if the underlying protocol
1410         * supports the socketpair call.
1411         */
1412
1413        err = sock_create(family, type, protocol, &sock1);
1414        if (unlikely(err < 0))
1415                goto out;
1416
1417        err = sock_create(family, type, protocol, &sock2);
1418        if (unlikely(err < 0)) {
1419                sock_release(sock1);
1420                goto out;
1421        }
1422
1423        err = sock1->ops->socketpair(sock1, sock2);
1424        if (unlikely(err < 0)) {
1425                sock_release(sock2);
1426                sock_release(sock1);
1427                goto out;
1428        }
1429
1430        newfile1 = sock_alloc_file(sock1, flags, NULL);
1431        if (IS_ERR(newfile1)) {
1432                err = PTR_ERR(newfile1);
1433                sock_release(sock2);
1434                goto out;
1435        }
1436
1437        newfile2 = sock_alloc_file(sock2, flags, NULL);
1438        if (IS_ERR(newfile2)) {
1439                err = PTR_ERR(newfile2);
1440                fput(newfile1);
1441                goto out;
1442        }
1443
1444        audit_fd_pair(fd1, fd2);
1445
1446        fd_install(fd1, newfile1);
1447        fd_install(fd2, newfile2);
1448        return 0;
1449
1450out:
1451        put_unused_fd(fd2);
1452        put_unused_fd(fd1);
1453        return err;
1454}
1455
1456SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1457                int __user *, usockvec)
1458{
1459        return __sys_socketpair(family, type, protocol, usockvec);
1460}
1461
1462/*
1463 *      Bind a name to a socket. Nothing much to do here since it's
1464 *      the protocol's responsibility to handle the local address.
1465 *
1466 *      We move the socket address to kernel space before we call
1467 *      the protocol layer (having also checked the address is ok).
1468 */
1469
1470int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1471{
1472        struct socket *sock;
1473        struct sockaddr_storage address;
1474        int err, fput_needed;
1475
1476        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1477        if (sock) {
1478                err = move_addr_to_kernel(umyaddr, addrlen, &address);
1479                if (err >= 0) {
1480                        err = security_socket_bind(sock,
1481                                                   (struct sockaddr *)&address,
1482                                                   addrlen);
1483                        if (!err)
1484                                err = sock->ops->bind(sock,
1485                                                      (struct sockaddr *)
1486                                                      &address, addrlen);
1487                }
1488                fput_light(sock->file, fput_needed);
1489        }
1490        return err;
1491}
1492
1493SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1494{
1495        return __sys_bind(fd, umyaddr, addrlen);
1496}
1497
1498/*
1499 *      Perform a listen. Basically, we allow the protocol to do anything
1500 *      necessary for a listen, and if that works, we mark the socket as
1501 *      ready for listening.
1502 */
1503
1504int __sys_listen(int fd, int backlog)
1505{
1506        struct socket *sock;
1507        int err, fput_needed;
1508        int somaxconn;
1509
1510        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1511        if (sock) {
1512                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1513                if ((unsigned int)backlog > somaxconn)
1514                        backlog = somaxconn;
1515
1516                err = security_socket_listen(sock, backlog);
1517                if (!err)
1518                        err = sock->ops->listen(sock, backlog);
1519
1520                fput_light(sock->file, fput_needed);
1521        }
1522        return err;
1523}
1524
1525SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1526{
1527        return __sys_listen(fd, backlog);
1528}
1529
1530/*
1531 *      For accept, we attempt to create a new socket, set up the link
1532 *      with the client, wake up the client, then return the new
1533 *      connected fd. We collect the address of the connector in kernel
1534 *      space and move it to user at the very end. This is unclean because
1535 *      we open the socket then return an error.
1536 *
1537 *      1003.1g adds the ability to recvmsg() to query connection pending
1538 *      status to recvmsg. We need to add that support in a way thats
1539 *      clean when we restructure accept also.
1540 */
1541
1542int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1543                  int __user *upeer_addrlen, int flags)
1544{
1545        struct socket *sock, *newsock;
1546        struct file *newfile;
1547        int err, len, newfd, fput_needed;
1548        struct sockaddr_storage address;
1549
1550        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1551                return -EINVAL;
1552
1553        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1554                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1555
1556        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557        if (!sock)
1558                goto out;
1559
1560        err = -ENFILE;
1561        newsock = sock_alloc();
1562        if (!newsock)
1563                goto out_put;
1564
1565        newsock->type = sock->type;
1566        newsock->ops = sock->ops;
1567
1568        /*
1569         * We don't need try_module_get here, as the listening socket (sock)
1570         * has the protocol module (sock->ops->owner) held.
1571         */
1572        __module_get(newsock->ops->owner);
1573
1574        newfd = get_unused_fd_flags(flags);
1575        if (unlikely(newfd < 0)) {
1576                err = newfd;
1577                sock_release(newsock);
1578                goto out_put;
1579        }
1580        newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1581        if (IS_ERR(newfile)) {
1582                err = PTR_ERR(newfile);
1583                put_unused_fd(newfd);
1584                goto out_put;
1585        }
1586
1587        err = security_socket_accept(sock, newsock);
1588        if (err)
1589                goto out_fd;
1590
1591        err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1592        if (err < 0)
1593                goto out_fd;
1594
1595        if (upeer_sockaddr) {
1596                len = newsock->ops->getname(newsock,
1597                                        (struct sockaddr *)&address, 2);
1598                if (len < 0) {
1599                        err = -ECONNABORTED;
1600                        goto out_fd;
1601                }
1602                err = move_addr_to_user(&address,
1603                                        len, upeer_sockaddr, upeer_addrlen);
1604                if (err < 0)
1605                        goto out_fd;
1606        }
1607
1608        /* File flags are not inherited via accept() unlike another OSes. */
1609
1610        fd_install(newfd, newfile);
1611        err = newfd;
1612
1613out_put:
1614        fput_light(sock->file, fput_needed);
1615out:
1616        return err;
1617out_fd:
1618        fput(newfile);
1619        put_unused_fd(newfd);
1620        goto out_put;
1621}
1622
1623SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1624                int __user *, upeer_addrlen, int, flags)
1625{
1626        return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1627}
1628
1629SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1630                int __user *, upeer_addrlen)
1631{
1632        return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1633}
1634
1635/*
1636 *      Attempt to connect to a socket with the server address.  The address
1637 *      is in user space so we verify it is OK and move it to kernel space.
1638 *
1639 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1640 *      break bindings
1641 *
1642 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1643 *      other SEQPACKET protocols that take time to connect() as it doesn't
1644 *      include the -EINPROGRESS status for such sockets.
1645 */
1646
1647int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1648{
1649        struct socket *sock;
1650        struct sockaddr_storage address;
1651        int err, fput_needed;
1652
1653        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1654        if (!sock)
1655                goto out;
1656        err = move_addr_to_kernel(uservaddr, addrlen, &address);
1657        if (err < 0)
1658                goto out_put;
1659
1660        err =
1661            security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1662        if (err)
1663                goto out_put;
1664
1665        err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1666                                 sock->file->f_flags);
1667out_put:
1668        fput_light(sock->file, fput_needed);
1669out:
1670        return err;
1671}
1672
1673SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1674                int, addrlen)
1675{
1676        return __sys_connect(fd, uservaddr, addrlen);
1677}
1678
1679/*
1680 *      Get the local address ('name') of a socket object. Move the obtained
1681 *      name to user space.
1682 */
1683
1684int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1685                      int __user *usockaddr_len)
1686{
1687        struct socket *sock;
1688        struct sockaddr_storage address;
1689        int err, fput_needed;
1690
1691        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1692        if (!sock)
1693                goto out;
1694
1695        err = security_socket_getsockname(sock);
1696        if (err)
1697                goto out_put;
1698
1699        err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1700        if (err < 0)
1701                goto out_put;
1702        /* "err" is actually length in this case */
1703        err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1704
1705out_put:
1706        fput_light(sock->file, fput_needed);
1707out:
1708        return err;
1709}
1710
1711SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1712                int __user *, usockaddr_len)
1713{
1714        return __sys_getsockname(fd, usockaddr, usockaddr_len);
1715}
1716
1717/*
1718 *      Get the remote address ('name') of a socket object. Move the obtained
1719 *      name to user space.
1720 */
1721
1722int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1723                      int __user *usockaddr_len)
1724{
1725        struct socket *sock;
1726        struct sockaddr_storage address;
1727        int err, fput_needed;
1728
1729        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1730        if (sock != NULL) {
1731                err = security_socket_getpeername(sock);
1732                if (err) {
1733                        fput_light(sock->file, fput_needed);
1734                        return err;
1735                }
1736
1737                err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1738                if (err >= 0)
1739                        /* "err" is actually length in this case */
1740                        err = move_addr_to_user(&address, err, usockaddr,
1741                                                usockaddr_len);
1742                fput_light(sock->file, fput_needed);
1743        }
1744        return err;
1745}
1746
1747SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1748                int __user *, usockaddr_len)
1749{
1750        return __sys_getpeername(fd, usockaddr, usockaddr_len);
1751}
1752
1753/*
1754 *      Send a datagram to a given address. We move the address into kernel
1755 *      space and check the user space data area is readable before invoking
1756 *      the protocol.
1757 */
1758int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1759                 struct sockaddr __user *addr,  int addr_len)
1760{
1761        struct socket *sock;
1762        struct sockaddr_storage address;
1763        int err;
1764        struct msghdr msg;
1765        struct iovec iov;
1766        int fput_needed;
1767
1768        err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1769        if (unlikely(err))
1770                return err;
1771        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1772        if (!sock)
1773                goto out;
1774
1775        msg.msg_name = NULL;
1776        msg.msg_control = NULL;
1777        msg.msg_controllen = 0;
1778        msg.msg_namelen = 0;
1779        if (addr) {
1780                err = move_addr_to_kernel(addr, addr_len, &address);
1781                if (err < 0)
1782                        goto out_put;
1783                msg.msg_name = (struct sockaddr *)&address;
1784                msg.msg_namelen = addr_len;
1785        }
1786        if (sock->file->f_flags & O_NONBLOCK)
1787                flags |= MSG_DONTWAIT;
1788        msg.msg_flags = flags;
1789        err = sock_sendmsg(sock, &msg);
1790
1791out_put:
1792        fput_light(sock->file, fput_needed);
1793out:
1794        return err;
1795}
1796
1797SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1798                unsigned int, flags, struct sockaddr __user *, addr,
1799                int, addr_len)
1800{
1801        return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1802}
1803
1804/*
1805 *      Send a datagram down a socket.
1806 */
1807
1808SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1809                unsigned int, flags)
1810{
1811        return __sys_sendto(fd, buff, len, flags, NULL, 0);
1812}
1813
1814/*
1815 *      Receive a frame from the socket and optionally record the address of the
1816 *      sender. We verify the buffers are writable and if needed move the
1817 *      sender address from kernel to user space.
1818 */
1819int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1820                   struct sockaddr __user *addr, int __user *addr_len)
1821{
1822        struct socket *sock;
1823        struct iovec iov;
1824        struct msghdr msg;
1825        struct sockaddr_storage address;
1826        int err, err2;
1827        int fput_needed;
1828
1829        err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1830        if (unlikely(err))
1831                return err;
1832        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1833        if (!sock)
1834                goto out;
1835
1836        msg.msg_control = NULL;
1837        msg.msg_controllen = 0;
1838        /* Save some cycles and don't copy the address if not needed */
1839        msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1840        /* We assume all kernel code knows the size of sockaddr_storage */
1841        msg.msg_namelen = 0;
1842        msg.msg_iocb = NULL;
1843        msg.msg_flags = 0;
1844        if (sock->file->f_flags & O_NONBLOCK)
1845                flags |= MSG_DONTWAIT;
1846        err = sock_recvmsg(sock, &msg, flags);
1847
1848        if (err >= 0 && addr != NULL) {
1849                err2 = move_addr_to_user(&address,
1850                                         msg.msg_namelen, addr, addr_len);
1851                if (err2 < 0)
1852                        err = err2;
1853        }
1854
1855        fput_light(sock->file, fput_needed);
1856out:
1857        return err;
1858}
1859
1860SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1861                unsigned int, flags, struct sockaddr __user *, addr,
1862                int __user *, addr_len)
1863{
1864        return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1865}
1866
1867/*
1868 *      Receive a datagram from a socket.
1869 */
1870
1871SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1872                unsigned int, flags)
1873{
1874        return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1875}
1876
1877/*
1878 *      Set a socket option. Because we don't know the option lengths we have
1879 *      to pass the user mode parameter for the protocols to sort out.
1880 */
1881
1882static int __sys_setsockopt(int fd, int level, int optname,
1883                            char __user *optval, int optlen)
1884{
1885        int err, fput_needed;
1886        struct socket *sock;
1887
1888        if (optlen < 0)
1889                return -EINVAL;
1890
1891        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1892        if (sock != NULL) {
1893                err = security_socket_setsockopt(sock, level, optname);
1894                if (err)
1895                        goto out_put;
1896
1897                if (level == SOL_SOCKET)
1898                        err =
1899                            sock_setsockopt(sock, level, optname, optval,
1900                                            optlen);
1901                else
1902                        err =
1903                            sock->ops->setsockopt(sock, level, optname, optval,
1904                                                  optlen);
1905out_put:
1906                fput_light(sock->file, fput_needed);
1907        }
1908        return err;
1909}
1910
1911SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1912                char __user *, optval, int, optlen)
1913{
1914        return __sys_setsockopt(fd, level, optname, optval, optlen);
1915}
1916
1917/*
1918 *      Get a socket option. Because we don't know the option lengths we have
1919 *      to pass a user mode parameter for the protocols to sort out.
1920 */
1921
1922static int __sys_getsockopt(int fd, int level, int optname,
1923                            char __user *optval, int __user *optlen)
1924{
1925        int err, fput_needed;
1926        struct socket *sock;
1927
1928        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1929        if (sock != NULL) {
1930                err = security_socket_getsockopt(sock, level, optname);
1931                if (err)
1932                        goto out_put;
1933
1934                if (level == SOL_SOCKET)
1935                        err =
1936                            sock_getsockopt(sock, level, optname, optval,
1937                                            optlen);
1938                else
1939                        err =
1940                            sock->ops->getsockopt(sock, level, optname, optval,
1941                                                  optlen);
1942out_put:
1943                fput_light(sock->file, fput_needed);
1944        }
1945        return err;
1946}
1947
1948SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1949                char __user *, optval, int __user *, optlen)
1950{
1951        return __sys_getsockopt(fd, level, optname, optval, optlen);
1952}
1953
1954/*
1955 *      Shutdown a socket.
1956 */
1957
1958int __sys_shutdown(int fd, int how)
1959{
1960        int err, fput_needed;
1961        struct socket *sock;
1962
1963        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1964        if (sock != NULL) {
1965                err = security_socket_shutdown(sock, how);
1966                if (!err)
1967                        err = sock->ops->shutdown(sock, how);
1968                fput_light(sock->file, fput_needed);
1969        }
1970        return err;
1971}
1972
1973SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1974{
1975        return __sys_shutdown(fd, how);
1976}
1977
1978/* A couple of helpful macros for getting the address of the 32/64 bit
1979 * fields which are the same type (int / unsigned) on our platforms.
1980 */
1981#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1982#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1983#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1984
1985struct used_address {
1986        struct sockaddr_storage name;
1987        unsigned int name_len;
1988};
1989
1990static int copy_msghdr_from_user(struct msghdr *kmsg,
1991                                 struct user_msghdr __user *umsg,
1992                                 struct sockaddr __user **save_addr,
1993                                 struct iovec **iov)
1994{
1995        struct user_msghdr msg;
1996        ssize_t err;
1997
1998        if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1999                return -EFAULT;
2000
2001        kmsg->msg_control = (void __force *)msg.msg_control;
2002        kmsg->msg_controllen = msg.msg_controllen;
2003        kmsg->msg_flags = msg.msg_flags;
2004
2005        kmsg->msg_namelen = msg.msg_namelen;
2006        if (!msg.msg_name)
2007                kmsg->msg_namelen = 0;
2008
2009        if (kmsg->msg_namelen < 0)
2010                return -EINVAL;
2011
2012        if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2013                kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2014
2015        if (save_addr)
2016                *save_addr = msg.msg_name;
2017
2018        if (msg.msg_name && kmsg->msg_namelen) {
2019                if (!save_addr) {
2020                        err = move_addr_to_kernel(msg.msg_name,
2021                                                  kmsg->msg_namelen,
2022                                                  kmsg->msg_name);
2023                        if (err < 0)
2024                                return err;
2025                }
2026        } else {
2027                kmsg->msg_name = NULL;
2028                kmsg->msg_namelen = 0;
2029        }
2030
2031        if (msg.msg_iovlen > UIO_MAXIOV)
2032                return -EMSGSIZE;
2033
2034        kmsg->msg_iocb = NULL;
2035
2036        return import_iovec(save_addr ? READ : WRITE,
2037                            msg.msg_iov, msg.msg_iovlen,
2038                            UIO_FASTIOV, iov, &kmsg->msg_iter);
2039}
2040
2041static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2042                         struct msghdr *msg_sys, unsigned int flags,
2043                         struct used_address *used_address,
2044                         unsigned int allowed_msghdr_flags)
2045{
2046        struct compat_msghdr __user *msg_compat =
2047            (struct compat_msghdr __user *)msg;
2048        struct sockaddr_storage address;
2049        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2050        unsigned char ctl[sizeof(struct cmsghdr) + 20]
2051                                __aligned(sizeof(__kernel_size_t));
2052        /* 20 is size of ipv6_pktinfo */
2053        unsigned char *ctl_buf = ctl;
2054        int ctl_len;
2055        ssize_t err;
2056
2057        msg_sys->msg_name = &address;
2058
2059        if (MSG_CMSG_COMPAT & flags)
2060                err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2061        else
2062                err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2063        if (err < 0)
2064                return err;
2065
2066        err = -ENOBUFS;
2067
2068        if (msg_sys->msg_controllen > INT_MAX)
2069                goto out_freeiov;
2070        flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2071        ctl_len = msg_sys->msg_controllen;
2072        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2073                err =
2074                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2075                                                     sizeof(ctl));
2076                if (err)
2077                        goto out_freeiov;
2078                ctl_buf = msg_sys->msg_control;
2079                ctl_len = msg_sys->msg_controllen;
2080        } else if (ctl_len) {
2081                BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2082                             CMSG_ALIGN(sizeof(struct cmsghdr)));
2083                if (ctl_len > sizeof(ctl)) {
2084                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2085                        if (ctl_buf == NULL)
2086                                goto out_freeiov;
2087                }
2088                err = -EFAULT;
2089                /*
2090                 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2091                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2092                 * checking falls down on this.
2093                 */
2094                if (copy_from_user(ctl_buf,
2095                                   (void __user __force *)msg_sys->msg_control,
2096                                   ctl_len))
2097                        goto out_freectl;
2098                msg_sys->msg_control = ctl_buf;
2099        }
2100        msg_sys->msg_flags = flags;
2101
2102        if (sock->file->f_flags & O_NONBLOCK)
2103                msg_sys->msg_flags |= MSG_DONTWAIT;
2104        /*
2105         * If this is sendmmsg() and current destination address is same as
2106         * previously succeeded address, omit asking LSM's decision.
2107         * used_address->name_len is initialized to UINT_MAX so that the first
2108         * destination address never matches.
2109         */
2110        if (used_address && msg_sys->msg_name &&
2111            used_address->name_len == msg_sys->msg_namelen &&
2112            !memcmp(&used_address->name, msg_sys->msg_name,
2113                    used_address->name_len)) {
2114                err = sock_sendmsg_nosec(sock, msg_sys);
2115                goto out_freectl;
2116        }
2117        err = sock_sendmsg(sock, msg_sys);
2118        /*
2119         * If this is sendmmsg() and sending to current destination address was
2120         * successful, remember it.
2121         */
2122        if (used_address && err >= 0) {
2123                used_address->name_len = msg_sys->msg_namelen;
2124                if (msg_sys->msg_name)
2125                        memcpy(&used_address->name, msg_sys->msg_name,
2126                               used_address->name_len);
2127        }
2128
2129out_freectl:
2130        if (ctl_buf != ctl)
2131                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2132out_freeiov:
2133        kfree(iov);
2134        return err;
2135}
2136
2137/*
2138 *      BSD sendmsg interface
2139 */
2140
2141long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2142                   bool forbid_cmsg_compat)
2143{
2144        int fput_needed, err;
2145        struct msghdr msg_sys;
2146        struct socket *sock;
2147
2148        if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2149                return -EINVAL;
2150
2151        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2152        if (!sock)
2153                goto out;
2154
2155        err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2156
2157        fput_light(sock->file, fput_needed);
2158out:
2159        return err;
2160}
2161
2162SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2163{
2164        return __sys_sendmsg(fd, msg, flags, true);
2165}
2166
2167/*
2168 *      Linux sendmmsg interface
2169 */
2170
2171int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2172                   unsigned int flags, bool forbid_cmsg_compat)
2173{
2174        int fput_needed, err, datagrams;
2175        struct socket *sock;
2176        struct mmsghdr __user *entry;
2177        struct compat_mmsghdr __user *compat_entry;
2178        struct msghdr msg_sys;
2179        struct used_address used_address;
2180        unsigned int oflags = flags;
2181
2182        if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2183                return -EINVAL;
2184
2185        if (vlen > UIO_MAXIOV)
2186                vlen = UIO_MAXIOV;
2187
2188        datagrams = 0;
2189
2190        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2191        if (!sock)
2192                return err;
2193
2194        used_address.name_len = UINT_MAX;
2195        entry = mmsg;
2196        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2197        err = 0;
2198        flags |= MSG_BATCH;
2199
2200        while (datagrams < vlen) {
2201                if (datagrams == vlen - 1)
2202                        flags = oflags;
2203
2204                if (MSG_CMSG_COMPAT & flags) {
2205                        err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2206                                             &msg_sys, flags, &used_address, MSG_EOR);
2207                        if (err < 0)
2208                                break;
2209                        err = __put_user(err, &compat_entry->msg_len);
2210                        ++compat_entry;
2211                } else {
2212                        err = ___sys_sendmsg(sock,
2213                                             (struct user_msghdr __user *)entry,
2214                                             &msg_sys, flags, &used_address, MSG_EOR);
2215                        if (err < 0)
2216                                break;
2217                        err = put_user(err, &entry->msg_len);
2218                        ++entry;
2219                }
2220
2221                if (err)
2222                        break;
2223                ++datagrams;
2224                if (msg_data_left(&msg_sys))
2225                        break;
2226                cond_resched();
2227        }
2228
2229        fput_light(sock->file, fput_needed);
2230
2231        /* We only return an error if no datagrams were able to be sent */
2232        if (datagrams != 0)
2233                return datagrams;
2234
2235        return err;
2236}
2237
2238SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2239                unsigned int, vlen, unsigned int, flags)
2240{
2241        return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2242}
2243
2244static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2245                         struct msghdr *msg_sys, unsigned int flags, int nosec)
2246{
2247        struct compat_msghdr __user *msg_compat =
2248            (struct compat_msghdr __user *)msg;
2249        struct iovec iovstack[UIO_FASTIOV];
2250        struct iovec *iov = iovstack;
2251        unsigned long cmsg_ptr;
2252        int len;
2253        ssize_t err;
2254
2255        /* kernel mode address */
2256        struct sockaddr_storage addr;
2257
2258        /* user mode address pointers */
2259        struct sockaddr __user *uaddr;
2260        int __user *uaddr_len = COMPAT_NAMELEN(msg);
2261
2262        msg_sys->msg_name = &addr;
2263
2264        if (MSG_CMSG_COMPAT & flags)
2265                err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2266        else
2267                err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2268        if (err < 0)
2269                return err;
2270
2271        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2272        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2273
2274        /* We assume all kernel code knows the size of sockaddr_storage */
2275        msg_sys->msg_namelen = 0;
2276
2277        if (sock->file->f_flags & O_NONBLOCK)
2278                flags |= MSG_DONTWAIT;
2279        err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2280        if (err < 0)
2281                goto out_freeiov;
2282        len = err;
2283
2284        if (uaddr != NULL) {
2285                err = move_addr_to_user(&addr,
2286                                        msg_sys->msg_namelen, uaddr,
2287                                        uaddr_len);
2288                if (err < 0)
2289                        goto out_freeiov;
2290        }
2291        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2292                         COMPAT_FLAGS(msg));
2293        if (err)
2294                goto out_freeiov;
2295        if (MSG_CMSG_COMPAT & flags)
2296                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2297                                 &msg_compat->msg_controllen);
2298        else
2299                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2300                                 &msg->msg_controllen);
2301        if (err)
2302                goto out_freeiov;
2303        err = len;
2304
2305out_freeiov:
2306        kfree(iov);
2307        return err;
2308}
2309
2310/*
2311 *      BSD recvmsg interface
2312 */
2313
2314long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2315                   bool forbid_cmsg_compat)
2316{
2317        int fput_needed, err;
2318        struct msghdr msg_sys;
2319        struct socket *sock;
2320
2321        if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2322                return -EINVAL;
2323
2324        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2325        if (!sock)
2326                goto out;
2327
2328        err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2329
2330        fput_light(sock->file, fput_needed);
2331out:
2332        return err;
2333}
2334
2335SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2336                unsigned int, flags)
2337{
2338        return __sys_recvmsg(fd, msg, flags, true);
2339}
2340
2341/*
2342 *     Linux recvmmsg interface
2343 */
2344
2345int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2346                   unsigned int flags, struct timespec *timeout)
2347{
2348        int fput_needed, err, datagrams;
2349        struct socket *sock;
2350        struct mmsghdr __user *entry;
2351        struct compat_mmsghdr __user *compat_entry;
2352        struct msghdr msg_sys;
2353        struct timespec64 end_time;
2354        struct timespec64 timeout64;
2355
2356        if (timeout &&
2357            poll_select_set_timeout(&end_time, timeout->tv_sec,
2358                                    timeout->tv_nsec))
2359                return -EINVAL;
2360
2361        datagrams = 0;
2362
2363        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2364        if (!sock)
2365                return err;
2366
2367        if (likely(!(flags & MSG_ERRQUEUE))) {
2368                err = sock_error(sock->sk);
2369                if (err) {
2370                        datagrams = err;
2371                        goto out_put;
2372                }
2373        }
2374
2375        entry = mmsg;
2376        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2377
2378        while (datagrams < vlen) {
2379                /*
2380                 * No need to ask LSM for more than the first datagram.
2381                 */
2382                if (MSG_CMSG_COMPAT & flags) {
2383                        err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2384                                             &msg_sys, flags & ~MSG_WAITFORONE,
2385                                             datagrams);
2386                        if (err < 0)
2387                                break;
2388                        err = __put_user(err, &compat_entry->msg_len);
2389                        ++compat_entry;
2390                } else {
2391                        err = ___sys_recvmsg(sock,
2392                                             (struct user_msghdr __user *)entry,
2393                                             &msg_sys, flags & ~MSG_WAITFORONE,
2394                                             datagrams);
2395                        if (err < 0)
2396                                break;
2397                        err = put_user(err, &entry->msg_len);
2398                        ++entry;
2399                }
2400
2401                if (err)
2402                        break;
2403                ++datagrams;
2404
2405                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2406                if (flags & MSG_WAITFORONE)
2407                        flags |= MSG_DONTWAIT;
2408
2409                if (timeout) {
2410                        ktime_get_ts64(&timeout64);
2411                        *timeout = timespec64_to_timespec(
2412                                        timespec64_sub(end_time, timeout64));
2413                        if (timeout->tv_sec < 0) {
2414                                timeout->tv_sec = timeout->tv_nsec = 0;
2415                                break;
2416                        }
2417
2418                        /* Timeout, return less than vlen datagrams */
2419                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2420                                break;
2421                }
2422
2423                /* Out of band data, return right away */
2424                if (msg_sys.msg_flags & MSG_OOB)
2425                        break;
2426                cond_resched();
2427        }
2428
2429        if (err == 0)
2430                goto out_put;
2431
2432        if (datagrams == 0) {
2433                datagrams = err;
2434                goto out_put;
2435        }
2436
2437        /*
2438         * We may return less entries than requested (vlen) if the
2439         * sock is non block and there aren't enough datagrams...
2440         */
2441        if (err != -EAGAIN) {
2442                /*
2443                 * ... or  if recvmsg returns an error after we
2444                 * received some datagrams, where we record the
2445                 * error to return on the next call or if the
2446                 * app asks about it using getsockopt(SO_ERROR).
2447                 */
2448                sock->sk->sk_err = -err;
2449        }
2450out_put:
2451        fput_light(sock->file, fput_needed);
2452
2453        return datagrams;
2454}
2455
2456static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2457                           unsigned int vlen, unsigned int flags,
2458                           struct timespec __user *timeout)
2459{
2460        int datagrams;
2461        struct timespec timeout_sys;
2462
2463        if (flags & MSG_CMSG_COMPAT)
2464                return -EINVAL;
2465
2466        if (!timeout)
2467                return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2468
2469        if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2470                return -EFAULT;
2471
2472        datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2473
2474        if (datagrams > 0 &&
2475            copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2476                datagrams = -EFAULT;
2477
2478        return datagrams;
2479}
2480
2481SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2482                unsigned int, vlen, unsigned int, flags,
2483                struct timespec __user *, timeout)
2484{
2485        return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2486}
2487
2488#ifdef __ARCH_WANT_SYS_SOCKETCALL
2489/* Argument list sizes for sys_socketcall */
2490#define AL(x) ((x) * sizeof(unsigned long))
2491static const unsigned char nargs[21] = {
2492        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2493        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2494        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2495        AL(4), AL(5), AL(4)
2496};
2497
2498#undef AL
2499
2500/*
2501 *      System call vectors.
2502 *
2503 *      Argument checking cleaned up. Saved 20% in size.
2504 *  This function doesn't need to set the kernel lock because
2505 *  it is set by the callees.
2506 */
2507
2508SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2509{
2510        unsigned long a[AUDITSC_ARGS];
2511        unsigned long a0, a1;
2512        int err;
2513        unsigned int len;
2514
2515        if (call < 1 || call > SYS_SENDMMSG)
2516                return -EINVAL;
2517
2518        len = nargs[call];
2519        if (len > sizeof(a))
2520                return -EINVAL;
2521
2522        /* copy_from_user should be SMP safe. */
2523        if (copy_from_user(a, args, len))
2524                return -EFAULT;
2525
2526        err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2527        if (err)
2528                return err;
2529
2530        a0 = a[0];
2531        a1 = a[1];
2532
2533        switch (call) {
2534        case SYS_SOCKET:
2535                err = __sys_socket(a0, a1, a[2]);
2536                break;
2537        case SYS_BIND:
2538                err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2539                break;
2540        case SYS_CONNECT:
2541                err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2542                break;
2543        case SYS_LISTEN:
2544                err = __sys_listen(a0, a1);
2545                break;
2546        case SYS_ACCEPT:
2547                err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2548                                    (int __user *)a[2], 0);
2549                break;
2550        case SYS_GETSOCKNAME:
2551                err =
2552                    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2553                                      (int __user *)a[2]);
2554                break;
2555        case SYS_GETPEERNAME:
2556                err =
2557                    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2558                                      (int __user *)a[2]);
2559                break;
2560        case SYS_SOCKETPAIR:
2561                err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2562                break;
2563        case SYS_SEND:
2564                err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2565                                   NULL, 0);
2566                break;
2567        case SYS_SENDTO:
2568                err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2569                                   (struct sockaddr __user *)a[4], a[5]);
2570                break;
2571        case SYS_RECV:
2572                err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2573                                     NULL, NULL);
2574                break;
2575        case SYS_RECVFROM:
2576                err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2577                                     (struct sockaddr __user *)a[4],
2578                                     (int __user *)a[5]);
2579                break;
2580        case SYS_SHUTDOWN:
2581                err = __sys_shutdown(a0, a1);
2582                break;
2583        case SYS_SETSOCKOPT:
2584                err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2585                                       a[4]);
2586                break;
2587        case SYS_GETSOCKOPT:
2588                err =
2589                    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2590                                     (int __user *)a[4]);
2591                break;
2592        case SYS_SENDMSG:
2593                err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2594                                    a[2], true);
2595                break;
2596        case SYS_SENDMMSG:
2597                err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2598                                     a[3], true);
2599                break;
2600        case SYS_RECVMSG:
2601                err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2602                                    a[2], true);
2603                break;
2604        case SYS_RECVMMSG:
2605                err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2606                                      a[3], (struct timespec __user *)a[4]);
2607                break;
2608        case SYS_ACCEPT4:
2609                err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2610                                    (int __user *)a[2], a[3]);
2611                break;
2612        default:
2613                err = -EINVAL;
2614                break;
2615        }
2616        return err;
2617}
2618
2619#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2620
2621/**
2622 *      sock_register - add a socket protocol handler
2623 *      @ops: description of protocol
2624 *
2625 *      This function is called by a protocol handler that wants to
2626 *      advertise its address family, and have it linked into the
2627 *      socket interface. The value ops->family corresponds to the
2628 *      socket system call protocol family.
2629 */
2630int sock_register(const struct net_proto_family *ops)
2631{
2632        int err;
2633
2634        if (ops->family >= NPROTO) {
2635                pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2636                return -ENOBUFS;
2637        }
2638
2639        spin_lock(&net_family_lock);
2640        if (rcu_dereference_protected(net_families[ops->family],
2641                                      lockdep_is_held(&net_family_lock)))
2642                err = -EEXIST;
2643        else {
2644                rcu_assign_pointer(net_families[ops->family], ops);
2645                err = 0;
2646        }
2647        spin_unlock(&net_family_lock);
2648
2649        pr_info("NET: Registered protocol family %d\n", ops->family);
2650        return err;
2651}
2652EXPORT_SYMBOL(sock_register);
2653
2654/**
2655 *      sock_unregister - remove a protocol handler
2656 *      @family: protocol family to remove
2657 *
2658 *      This function is called by a protocol handler that wants to
2659 *      remove its address family, and have it unlinked from the
2660 *      new socket creation.
2661 *
2662 *      If protocol handler is a module, then it can use module reference
2663 *      counts to protect against new references. If protocol handler is not
2664 *      a module then it needs to provide its own protection in
2665 *      the ops->create routine.
2666 */
2667void sock_unregister(int family)
2668{
2669        BUG_ON(family < 0 || family >= NPROTO);
2670
2671        spin_lock(&net_family_lock);
2672        RCU_INIT_POINTER(net_families[family], NULL);
2673        spin_unlock(&net_family_lock);
2674
2675        synchronize_rcu();
2676
2677        pr_info("NET: Unregistered protocol family %d\n", family);
2678}
2679EXPORT_SYMBOL(sock_unregister);
2680
2681bool sock_is_registered(int family)
2682{
2683        return family < NPROTO && rcu_access_pointer(net_families[family]);
2684}
2685
2686static int __init sock_init(void)
2687{
2688        int err;
2689        /*
2690         *      Initialize the network sysctl infrastructure.
2691         */
2692        err = net_sysctl_init();
2693        if (err)
2694                goto out;
2695
2696        /*
2697         *      Initialize skbuff SLAB cache
2698         */
2699        skb_init();
2700
2701        /*
2702         *      Initialize the protocols module.
2703         */
2704
2705        init_inodecache();
2706
2707        err = register_filesystem(&sock_fs_type);
2708        if (err)
2709                goto out_fs;
2710        sock_mnt = kern_mount(&sock_fs_type);
2711        if (IS_ERR(sock_mnt)) {
2712                err = PTR_ERR(sock_mnt);
2713                goto out_mount;
2714        }
2715
2716        /* The real protocol initialization is performed in later initcalls.
2717         */
2718
2719#ifdef CONFIG_NETFILTER
2720        err = netfilter_init();
2721        if (err)
2722                goto out;
2723#endif
2724
2725        ptp_classifier_init();
2726
2727out:
2728        return err;
2729
2730out_mount:
2731        unregister_filesystem(&sock_fs_type);
2732out_fs:
2733        goto out;
2734}
2735
2736core_initcall(sock_init);       /* early initcall */
2737
2738#ifdef CONFIG_PROC_FS
2739void socket_seq_show(struct seq_file *seq)
2740{
2741        seq_printf(seq, "sockets: used %d\n",
2742                   sock_inuse_get(seq->private));
2743}
2744#endif                          /* CONFIG_PROC_FS */
2745
2746#ifdef CONFIG_COMPAT
2747static int do_siocgstamp(struct net *net, struct socket *sock,
2748                         unsigned int cmd, void __user *up)
2749{
2750        mm_segment_t old_fs = get_fs();
2751        struct timeval ktv;
2752        int err;
2753
2754        set_fs(KERNEL_DS);
2755        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2756        set_fs(old_fs);
2757        if (!err)
2758                err = compat_put_timeval(&ktv, up);
2759
2760        return err;
2761}
2762
2763static int do_siocgstampns(struct net *net, struct socket *sock,
2764                           unsigned int cmd, void __user *up)
2765{
2766        mm_segment_t old_fs = get_fs();
2767        struct timespec kts;
2768        int err;
2769
2770        set_fs(KERNEL_DS);
2771        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2772        set_fs(old_fs);
2773        if (!err)
2774                err = compat_put_timespec(&kts, up);
2775
2776        return err;
2777}
2778
2779static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2780{
2781        struct compat_ifconf ifc32;
2782        struct ifconf ifc;
2783        int err;
2784
2785        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2786                return -EFAULT;
2787
2788        ifc.ifc_len = ifc32.ifc_len;
2789        ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2790
2791        rtnl_lock();
2792        err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2793        rtnl_unlock();
2794        if (err)
2795                return err;
2796
2797        ifc32.ifc_len = ifc.ifc_len;
2798        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2799                return -EFAULT;
2800
2801        return 0;
2802}
2803
2804static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2805{
2806        struct compat_ethtool_rxnfc __user *compat_rxnfc;
2807        bool convert_in = false, convert_out = false;
2808        size_t buf_size = 0;
2809        struct ethtool_rxnfc __user *rxnfc = NULL;
2810        struct ifreq ifr;
2811        u32 rule_cnt = 0, actual_rule_cnt;
2812        u32 ethcmd;
2813        u32 data;
2814        int ret;
2815
2816        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2817                return -EFAULT;
2818
2819        compat_rxnfc = compat_ptr(data);
2820
2821        if (get_user(ethcmd, &compat_rxnfc->cmd))
2822                return -EFAULT;
2823
2824        /* Most ethtool structures are defined without padding.
2825         * Unfortunately struct ethtool_rxnfc is an exception.
2826         */
2827        switch (ethcmd) {
2828        default:
2829                break;
2830        case ETHTOOL_GRXCLSRLALL:
2831                /* Buffer size is variable */
2832                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2833                        return -EFAULT;
2834                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2835                        return -ENOMEM;
2836                buf_size += rule_cnt * sizeof(u32);
2837                /* fall through */
2838        case ETHTOOL_GRXRINGS:
2839        case ETHTOOL_GRXCLSRLCNT:
2840        case ETHTOOL_GRXCLSRULE:
2841        case ETHTOOL_SRXCLSRLINS:
2842                convert_out = true;
2843                /* fall through */
2844        case ETHTOOL_SRXCLSRLDEL:
2845                buf_size += sizeof(struct ethtool_rxnfc);
2846                convert_in = true;
2847                rxnfc = compat_alloc_user_space(buf_size);
2848                break;
2849        }
2850
2851        if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2852                return -EFAULT;
2853
2854        ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2855
2856        if (convert_in) {
2857                /* We expect there to be holes between fs.m_ext and
2858                 * fs.ring_cookie and at the end of fs, but nowhere else.
2859                 */
2860                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2861                             sizeof(compat_rxnfc->fs.m_ext) !=
2862                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
2863                             sizeof(rxnfc->fs.m_ext));
2864                BUILD_BUG_ON(
2865                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
2866                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2867                        offsetof(struct ethtool_rxnfc, fs.location) -
2868                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2869
2870                if (copy_in_user(rxnfc, compat_rxnfc,
2871                                 (void __user *)(&rxnfc->fs.m_ext + 1) -
2872                                 (void __user *)rxnfc) ||
2873                    copy_in_user(&rxnfc->fs.ring_cookie,
2874                                 &compat_rxnfc->fs.ring_cookie,
2875                                 (void __user *)(&rxnfc->fs.location + 1) -
2876                                 (void __user *)&rxnfc->fs.ring_cookie) ||
2877                    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2878                                 sizeof(rxnfc->rule_cnt)))
2879                        return -EFAULT;
2880        }
2881
2882        ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2883        if (ret)
2884                return ret;
2885
2886        if (convert_out) {
2887                if (copy_in_user(compat_rxnfc, rxnfc,
2888                                 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2889                                 (const void __user *)rxnfc) ||
2890                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2891                                 &rxnfc->fs.ring_cookie,
2892                                 (const void __user *)(&rxnfc->fs.location + 1) -
2893                                 (const void __user *)&rxnfc->fs.ring_cookie) ||
2894                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2895                                 sizeof(rxnfc->rule_cnt)))
2896                        return -EFAULT;
2897
2898                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2899                        /* As an optimisation, we only copy the actual
2900                         * number of rules that the underlying
2901                         * function returned.  Since Mallory might
2902                         * change the rule count in user memory, we
2903                         * check that it is less than the rule count
2904                         * originally given (as the user buffer size),
2905                         * which has been range-checked.
2906                         */
2907                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2908                                return -EFAULT;
2909                        if (actual_rule_cnt < rule_cnt)
2910                                rule_cnt = actual_rule_cnt;
2911                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
2912                                         &rxnfc->rule_locs[0],
2913                                         rule_cnt * sizeof(u32)))
2914                                return -EFAULT;
2915                }
2916        }
2917
2918        return 0;
2919}
2920
2921static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2922{
2923        compat_uptr_t uptr32;
2924        struct ifreq ifr;
2925        void __user *saved;
2926        int err;
2927
2928        if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2929                return -EFAULT;
2930
2931        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2932                return -EFAULT;
2933
2934        saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2935        ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2936
2937        err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2938        if (!err) {
2939                ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2940                if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2941                        err = -EFAULT;
2942        }
2943        return err;
2944}
2945
2946/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2947static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2948                                 struct compat_ifreq __user *u_ifreq32)
2949{
2950        struct ifreq ifreq;
2951        u32 data32;
2952
2953        if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2954                return -EFAULT;
2955        if (get_user(data32, &u_ifreq32->ifr_data))
2956                return -EFAULT;
2957        ifreq.ifr_data = compat_ptr(data32);
2958
2959        return dev_ioctl(net, cmd, &ifreq, NULL);
2960}
2961
2962static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2963                        struct compat_ifreq __user *uifr32)
2964{
2965        struct ifreq ifr;
2966        struct compat_ifmap __user *uifmap32;
2967        int err;
2968
2969        uifmap32 = &uifr32->ifr_ifru.ifru_map;
2970        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2971        err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2972        err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2973        err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2974        err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2975        err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2976        err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2977        if (err)
2978                return -EFAULT;
2979
2980        err = dev_ioctl(net, cmd, &ifr, NULL);
2981
2982        if (cmd == SIOCGIFMAP && !err) {
2983                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2984                err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2985                err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2986                err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2987                err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2988                err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2989                err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2990                if (err)
2991                        err = -EFAULT;
2992        }
2993        return err;
2994}
2995
2996struct rtentry32 {
2997        u32             rt_pad1;
2998        struct sockaddr rt_dst;         /* target address               */
2999        struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3000        struct sockaddr rt_genmask;     /* target network mask (IP)     */
3001        unsigned short  rt_flags;
3002        short           rt_pad2;
3003        u32             rt_pad3;
3004        unsigned char   rt_tos;
3005        unsigned char   rt_class;
3006        short           rt_pad4;
3007        short           rt_metric;      /* +1 for binary compatibility! */
3008        /* char * */ u32 rt_dev;        /* forcing the device at add    */
3009        u32             rt_mtu;         /* per route MTU/Window         */
3010        u32             rt_window;      /* Window clamping              */
3011        unsigned short  rt_irtt;        /* Initial RTT                  */
3012};
3013
3014struct in6_rtmsg32 {
3015        struct in6_addr         rtmsg_dst;
3016        struct in6_addr         rtmsg_src;
3017        struct in6_addr         rtmsg_gateway;
3018        u32                     rtmsg_type;
3019        u16                     rtmsg_dst_len;
3020        u16                     rtmsg_src_len;
3021        u32                     rtmsg_metric;
3022        u32                     rtmsg_info;
3023        u32                     rtmsg_flags;
3024        s32                     rtmsg_ifindex;
3025};
3026
3027static int routing_ioctl(struct net *net, struct socket *sock,
3028                         unsigned int cmd, void __user *argp)
3029{
3030        int ret;
3031        void *r = NULL;
3032        struct in6_rtmsg r6;
3033        struct rtentry r4;
3034        char devname[16];
3035        u32 rtdev;
3036        mm_segment_t old_fs = get_fs();
3037
3038        if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3039                struct in6_rtmsg32 __user *ur6 = argp;
3040                ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3041                        3 * sizeof(struct in6_addr));
3042                ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3043                ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3044                ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3045                ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3046                ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3047                ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3048                ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3049
3050                r = (void *) &r6;
3051        } else { /* ipv4 */
3052                struct rtentry32 __user *ur4 = argp;
3053                ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3054                                        3 * sizeof(struct sockaddr));
3055                ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3056                ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3057                ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3058                ret |= get_user(r4.rt_window, &(ur4->rt_window));
3059                ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3060                ret |= get_user(rtdev, &(ur4->rt_dev));
3061                if (rtdev) {
3062                        ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3063                        r4.rt_dev = (char __user __force *)devname;
3064                        devname[15] = 0;
3065                } else
3066                        r4.rt_dev = NULL;
3067
3068                r = (void *) &r4;
3069        }
3070
3071        if (ret) {
3072                ret = -EFAULT;
3073                goto out;
3074        }
3075
3076        set_fs(KERNEL_DS);
3077        ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3078        set_fs(old_fs);
3079
3080out:
3081        return ret;
3082}
3083
3084/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3085 * for some operations; this forces use of the newer bridge-utils that
3086 * use compatible ioctls
3087 */
3088static int old_bridge_ioctl(compat_ulong_t __user *argp)
3089{
3090        compat_ulong_t tmp;
3091
3092        if (get_user(tmp, argp))
3093                return -EFAULT;
3094        if (tmp == BRCTL_GET_VERSION)
3095                return BRCTL_VERSION + 1;
3096        return -EINVAL;
3097}
3098
3099static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3100                         unsigned int cmd, unsigned long arg)
3101{
3102        void __user *argp = compat_ptr(arg);
3103        struct sock *sk = sock->sk;
3104        struct net *net = sock_net(sk);
3105
3106        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3107                return compat_ifr_data_ioctl(net, cmd, argp);
3108
3109        switch (cmd) {
3110        case SIOCSIFBR:
3111        case SIOCGIFBR:
3112                return old_bridge_ioctl(argp);
3113        case SIOCGIFCONF:
3114                return compat_dev_ifconf(net, argp);
3115        case SIOCETHTOOL:
3116                return ethtool_ioctl(net, argp);
3117        case SIOCWANDEV:
3118                return compat_siocwandev(net, argp);
3119        case SIOCGIFMAP:
3120        case SIOCSIFMAP:
3121                return compat_sioc_ifmap(net, cmd, argp);
3122        case SIOCADDRT:
3123        case SIOCDELRT:
3124                return routing_ioctl(net, sock, cmd, argp);
3125        case SIOCGSTAMP:
3126                return do_siocgstamp(net, sock, cmd, argp);
3127        case SIOCGSTAMPNS:
3128                return do_siocgstampns(net, sock, cmd, argp);
3129        case SIOCBONDSLAVEINFOQUERY:
3130        case SIOCBONDINFOQUERY:
3131        case SIOCSHWTSTAMP:
3132        case SIOCGHWTSTAMP:
3133                return compat_ifr_data_ioctl(net, cmd, argp);
3134
3135        case FIOSETOWN:
3136        case SIOCSPGRP:
3137        case FIOGETOWN:
3138        case SIOCGPGRP:
3139        case SIOCBRADDBR:
3140        case SIOCBRDELBR:
3141        case SIOCGIFVLAN:
3142        case SIOCSIFVLAN:
3143        case SIOCADDDLCI:
3144        case SIOCDELDLCI:
3145        case SIOCGSKNS:
3146                return sock_ioctl(file, cmd, arg);
3147
3148        case SIOCGIFFLAGS:
3149        case SIOCSIFFLAGS:
3150        case SIOCGIFMETRIC:
3151        case SIOCSIFMETRIC:
3152        case SIOCGIFMTU:
3153        case SIOCSIFMTU:
3154        case SIOCGIFMEM:
3155        case SIOCSIFMEM:
3156        case SIOCGIFHWADDR:
3157        case SIOCSIFHWADDR:
3158        case SIOCADDMULTI:
3159        case SIOCDELMULTI:
3160        case SIOCGIFINDEX:
3161        case SIOCGIFADDR:
3162        case SIOCSIFADDR:
3163        case SIOCSIFHWBROADCAST:
3164        case SIOCDIFADDR:
3165        case SIOCGIFBRDADDR:
3166        case SIOCSIFBRDADDR:
3167        case SIOCGIFDSTADDR:
3168        case SIOCSIFDSTADDR:
3169        case SIOCGIFNETMASK:
3170        case SIOCSIFNETMASK:
3171        case SIOCSIFPFLAGS:
3172        case SIOCGIFPFLAGS:
3173        case SIOCGIFTXQLEN:
3174        case SIOCSIFTXQLEN:
3175        case SIOCBRADDIF:
3176        case SIOCBRDELIF:
3177        case SIOCSIFNAME:
3178        case SIOCGMIIPHY:
3179        case SIOCGMIIREG:
3180        case SIOCSMIIREG:
3181        case SIOCSARP:
3182        case SIOCGARP:
3183        case SIOCDARP:
3184        case SIOCATMARK:
3185        case SIOCBONDENSLAVE:
3186        case SIOCBONDRELEASE:
3187        case SIOCBONDSETHWADDR:
3188        case SIOCBONDCHANGEACTIVE:
3189        case SIOCGIFNAME:
3190                return sock_do_ioctl(net, sock, cmd, arg);
3191        }
3192
3193        return -ENOIOCTLCMD;
3194}
3195
3196static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3197                              unsigned long arg)
3198{
3199        struct socket *sock = file->private_data;
3200        int ret = -ENOIOCTLCMD;
3201        struct sock *sk;
3202        struct net *net;
3203
3204        sk = sock->sk;
3205        net = sock_net(sk);
3206
3207        if (sock->ops->compat_ioctl)
3208                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3209
3210        if (ret == -ENOIOCTLCMD &&
3211            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3212                ret = compat_wext_handle_ioctl(net, cmd, arg);
3213
3214        if (ret == -ENOIOCTLCMD)
3215                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3216
3217        return ret;
3218}
3219#endif
3220
3221int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3222{
3223        return sock->ops->bind(sock, addr, addrlen);
3224}
3225EXPORT_SYMBOL(kernel_bind);
3226
3227int kernel_listen(struct socket *sock, int backlog)
3228{
3229        return sock->ops->listen(sock, backlog);
3230}
3231EXPORT_SYMBOL(kernel_listen);
3232
3233int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3234{
3235        struct sock *sk = sock->sk;
3236        int err;
3237
3238        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3239                               newsock);
3240        if (err < 0)
3241                goto done;
3242
3243        err = sock->ops->accept(sock, *newsock, flags, true);
3244        if (err < 0) {
3245                sock_release(*newsock);
3246                *newsock = NULL;
3247                goto done;
3248        }
3249
3250        (*newsock)->ops = sock->ops;
3251        __module_get((*newsock)->ops->owner);
3252
3253done:
3254        return err;
3255}
3256EXPORT_SYMBOL(kernel_accept);
3257
3258int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3259                   int flags)
3260{
3261        return sock->ops->connect(sock, addr, addrlen, flags);
3262}
3263EXPORT_SYMBOL(kernel_connect);
3264
3265int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3266{
3267        return sock->ops->getname(sock, addr, 0);
3268}
3269EXPORT_SYMBOL(kernel_getsockname);
3270
3271int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3272{
3273        return sock->ops->getname(sock, addr, 1);
3274}
3275EXPORT_SYMBOL(kernel_getpeername);
3276
3277int kernel_getsockopt(struct socket *sock, int level, int optname,
3278                        char *optval, int *optlen)
3279{
3280        mm_segment_t oldfs = get_fs();
3281        char __user *uoptval;
3282        int __user *uoptlen;
3283        int err;
3284
3285        uoptval = (char __user __force *) optval;
3286        uoptlen = (int __user __force *) optlen;
3287
3288        set_fs(KERNEL_DS);
3289        if (level == SOL_SOCKET)
3290                err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3291        else
3292                err = sock->ops->getsockopt(sock, level, optname, uoptval,
3293                                            uoptlen);
3294        set_fs(oldfs);
3295        return err;
3296}
3297EXPORT_SYMBOL(kernel_getsockopt);
3298
3299int kernel_setsockopt(struct socket *sock, int level, int optname,
3300                        char *optval, unsigned int optlen)
3301{
3302        mm_segment_t oldfs = get_fs();
3303        char __user *uoptval;
3304        int err;
3305
3306        uoptval = (char __user __force *) optval;
3307
3308        set_fs(KERNEL_DS);
3309        if (level == SOL_SOCKET)
3310                err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3311        else
3312                err = sock->ops->setsockopt(sock, level, optname, uoptval,
3313                                            optlen);
3314        set_fs(oldfs);
3315        return err;
3316}
3317EXPORT_SYMBOL(kernel_setsockopt);
3318
3319int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3320                    size_t size, int flags)
3321{
3322        if (sock->ops->sendpage)
3323                return sock->ops->sendpage(sock, page, offset, size, flags);
3324
3325        return sock_no_sendpage(sock, page, offset, size, flags);
3326}
3327EXPORT_SYMBOL(kernel_sendpage);
3328
3329int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3330                           size_t size, int flags)
3331{
3332        struct socket *sock = sk->sk_socket;
3333
3334        if (sock->ops->sendpage_locked)
3335                return sock->ops->sendpage_locked(sk, page, offset, size,
3336                                                  flags);
3337
3338        return sock_no_sendpage_locked(sk, page, offset, size, flags);
3339}
3340EXPORT_SYMBOL(kernel_sendpage_locked);
3341
3342int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3343{
3344        return sock->ops->shutdown(sock, how);
3345}
3346EXPORT_SYMBOL(kernel_sock_shutdown);
3347
3348/* This routine returns the IP overhead imposed by a socket i.e.
3349 * the length of the underlying IP header, depending on whether
3350 * this is an IPv4 or IPv6 socket and the length from IP options turned
3351 * on at the socket. Assumes that the caller has a lock on the socket.
3352 */
3353u32 kernel_sock_ip_overhead(struct sock *sk)
3354{
3355        struct inet_sock *inet;
3356        struct ip_options_rcu *opt;
3357        u32 overhead = 0;
3358#if IS_ENABLED(CONFIG_IPV6)
3359        struct ipv6_pinfo *np;
3360        struct ipv6_txoptions *optv6 = NULL;
3361#endif /* IS_ENABLED(CONFIG_IPV6) */
3362
3363        if (!sk)
3364                return overhead;
3365
3366        switch (sk->sk_family) {
3367        case AF_INET:
3368                inet = inet_sk(sk);
3369                overhead += sizeof(struct iphdr);
3370                opt = rcu_dereference_protected(inet->inet_opt,
3371                                                sock_owned_by_user(sk));
3372                if (opt)
3373                        overhead += opt->opt.optlen;
3374                return overhead;
3375#if IS_ENABLED(CONFIG_IPV6)
3376        case AF_INET6:
3377                np = inet6_sk(sk);
3378                overhead += sizeof(struct ipv6hdr);
3379                if (np)
3380                        optv6 = rcu_dereference_protected(np->opt,
3381                                                          sock_owned_by_user(sk));
3382                if (optv6)
3383                        overhead += (optv6->opt_flen + optv6->opt_nflen);
3384                return overhead;
3385#endif /* IS_ENABLED(CONFIG_IPV6) */
3386        default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3387                return overhead;
3388        }
3389}
3390EXPORT_SYMBOL(kernel_sock_ip_overhead);
3391