linux/net/sunrpc/sched.c
<<
>>
Prefs
   1/*
   2 * linux/net/sunrpc/sched.c
   3 *
   4 * Scheduling for synchronous and asynchronous RPC requests.
   5 *
   6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
   7 *
   8 * TCP NFS related read + write fixes
   9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  10 */
  11
  12#include <linux/module.h>
  13
  14#include <linux/sched.h>
  15#include <linux/interrupt.h>
  16#include <linux/slab.h>
  17#include <linux/mempool.h>
  18#include <linux/smp.h>
  19#include <linux/spinlock.h>
  20#include <linux/mutex.h>
  21#include <linux/freezer.h>
  22
  23#include <linux/sunrpc/clnt.h>
  24
  25#include "sunrpc.h"
  26
  27#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  28#define RPCDBG_FACILITY         RPCDBG_SCHED
  29#endif
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/sunrpc.h>
  33
  34/*
  35 * RPC slabs and memory pools
  36 */
  37#define RPC_BUFFER_MAXSIZE      (2048)
  38#define RPC_BUFFER_POOLSIZE     (8)
  39#define RPC_TASK_POOLSIZE       (8)
  40static struct kmem_cache        *rpc_task_slabp __read_mostly;
  41static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
  42static mempool_t        *rpc_task_mempool __read_mostly;
  43static mempool_t        *rpc_buffer_mempool __read_mostly;
  44
  45static void                     rpc_async_schedule(struct work_struct *);
  46static void                      rpc_release_task(struct rpc_task *task);
  47static void __rpc_queue_timer_fn(struct timer_list *t);
  48
  49/*
  50 * RPC tasks sit here while waiting for conditions to improve.
  51 */
  52static struct rpc_wait_queue delay_queue;
  53
  54/*
  55 * rpciod-related stuff
  56 */
  57struct workqueue_struct *rpciod_workqueue __read_mostly;
  58struct workqueue_struct *xprtiod_workqueue __read_mostly;
  59
  60/*
  61 * Disable the timer for a given RPC task. Should be called with
  62 * queue->lock and bh_disabled in order to avoid races within
  63 * rpc_run_timer().
  64 */
  65static void
  66__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  67{
  68        if (task->tk_timeout == 0)
  69                return;
  70        dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  71        task->tk_timeout = 0;
  72        list_del(&task->u.tk_wait.timer_list);
  73        if (list_empty(&queue->timer_list.list))
  74                del_timer(&queue->timer_list.timer);
  75}
  76
  77static void
  78rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  79{
  80        queue->timer_list.expires = expires;
  81        mod_timer(&queue->timer_list.timer, expires);
  82}
  83
  84/*
  85 * Set up a timer for the current task.
  86 */
  87static void
  88__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  89{
  90        if (!task->tk_timeout)
  91                return;
  92
  93        dprintk("RPC: %5u setting alarm for %u ms\n",
  94                task->tk_pid, jiffies_to_msecs(task->tk_timeout));
  95
  96        task->u.tk_wait.expires = jiffies + task->tk_timeout;
  97        if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
  98                rpc_set_queue_timer(queue, task->u.tk_wait.expires);
  99        list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
 100}
 101
 102static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
 103{
 104        struct list_head *q = &queue->tasks[queue->priority];
 105        struct rpc_task *task;
 106
 107        if (!list_empty(q)) {
 108                task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 109                if (task->tk_owner == queue->owner)
 110                        list_move_tail(&task->u.tk_wait.list, q);
 111        }
 112}
 113
 114static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
 115{
 116        if (queue->priority != priority) {
 117                /* Fairness: rotate the list when changing priority */
 118                rpc_rotate_queue_owner(queue);
 119                queue->priority = priority;
 120        }
 121}
 122
 123static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
 124{
 125        queue->owner = pid;
 126        queue->nr = RPC_BATCH_COUNT;
 127}
 128
 129static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
 130{
 131        rpc_set_waitqueue_priority(queue, queue->maxpriority);
 132        rpc_set_waitqueue_owner(queue, 0);
 133}
 134
 135/*
 136 * Add new request to a priority queue.
 137 */
 138static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
 139                struct rpc_task *task,
 140                unsigned char queue_priority)
 141{
 142        struct list_head *q;
 143        struct rpc_task *t;
 144
 145        INIT_LIST_HEAD(&task->u.tk_wait.links);
 146        if (unlikely(queue_priority > queue->maxpriority))
 147                queue_priority = queue->maxpriority;
 148        if (queue_priority > queue->priority)
 149                rpc_set_waitqueue_priority(queue, queue_priority);
 150        q = &queue->tasks[queue_priority];
 151        list_for_each_entry(t, q, u.tk_wait.list) {
 152                if (t->tk_owner == task->tk_owner) {
 153                        list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
 154                        return;
 155                }
 156        }
 157        list_add_tail(&task->u.tk_wait.list, q);
 158}
 159
 160/*
 161 * Add new request to wait queue.
 162 *
 163 * Swapper tasks always get inserted at the head of the queue.
 164 * This should avoid many nasty memory deadlocks and hopefully
 165 * improve overall performance.
 166 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 167 */
 168static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
 169                struct rpc_task *task,
 170                unsigned char queue_priority)
 171{
 172        WARN_ON_ONCE(RPC_IS_QUEUED(task));
 173        if (RPC_IS_QUEUED(task))
 174                return;
 175
 176        if (RPC_IS_PRIORITY(queue))
 177                __rpc_add_wait_queue_priority(queue, task, queue_priority);
 178        else if (RPC_IS_SWAPPER(task))
 179                list_add(&task->u.tk_wait.list, &queue->tasks[0]);
 180        else
 181                list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
 182        task->tk_waitqueue = queue;
 183        queue->qlen++;
 184        /* barrier matches the read in rpc_wake_up_task_queue_locked() */
 185        smp_wmb();
 186        rpc_set_queued(task);
 187
 188        dprintk("RPC: %5u added to queue %p \"%s\"\n",
 189                        task->tk_pid, queue, rpc_qname(queue));
 190}
 191
 192/*
 193 * Remove request from a priority queue.
 194 */
 195static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
 196{
 197        struct rpc_task *t;
 198
 199        if (!list_empty(&task->u.tk_wait.links)) {
 200                t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
 201                list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
 202                list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
 203        }
 204}
 205
 206/*
 207 * Remove request from queue.
 208 * Note: must be called with spin lock held.
 209 */
 210static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 211{
 212        __rpc_disable_timer(queue, task);
 213        if (RPC_IS_PRIORITY(queue))
 214                __rpc_remove_wait_queue_priority(task);
 215        list_del(&task->u.tk_wait.list);
 216        queue->qlen--;
 217        dprintk("RPC: %5u removed from queue %p \"%s\"\n",
 218                        task->tk_pid, queue, rpc_qname(queue));
 219}
 220
 221static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
 222{
 223        int i;
 224
 225        spin_lock_init(&queue->lock);
 226        for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
 227                INIT_LIST_HEAD(&queue->tasks[i]);
 228        queue->maxpriority = nr_queues - 1;
 229        rpc_reset_waitqueue_priority(queue);
 230        queue->qlen = 0;
 231        timer_setup(&queue->timer_list.timer, __rpc_queue_timer_fn, 0);
 232        INIT_LIST_HEAD(&queue->timer_list.list);
 233        rpc_assign_waitqueue_name(queue, qname);
 234}
 235
 236void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 237{
 238        __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
 239}
 240EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
 241
 242void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 243{
 244        __rpc_init_priority_wait_queue(queue, qname, 1);
 245}
 246EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
 247
 248void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
 249{
 250        del_timer_sync(&queue->timer_list.timer);
 251}
 252EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
 253
 254static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
 255{
 256        freezable_schedule_unsafe();
 257        if (signal_pending_state(mode, current))
 258                return -ERESTARTSYS;
 259        return 0;
 260}
 261
 262#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
 263static void rpc_task_set_debuginfo(struct rpc_task *task)
 264{
 265        static atomic_t rpc_pid;
 266
 267        task->tk_pid = atomic_inc_return(&rpc_pid);
 268}
 269#else
 270static inline void rpc_task_set_debuginfo(struct rpc_task *task)
 271{
 272}
 273#endif
 274
 275static void rpc_set_active(struct rpc_task *task)
 276{
 277        rpc_task_set_debuginfo(task);
 278        set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 279        trace_rpc_task_begin(task, NULL);
 280}
 281
 282/*
 283 * Mark an RPC call as having completed by clearing the 'active' bit
 284 * and then waking up all tasks that were sleeping.
 285 */
 286static int rpc_complete_task(struct rpc_task *task)
 287{
 288        void *m = &task->tk_runstate;
 289        wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
 290        struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
 291        unsigned long flags;
 292        int ret;
 293
 294        trace_rpc_task_complete(task, NULL);
 295
 296        spin_lock_irqsave(&wq->lock, flags);
 297        clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 298        ret = atomic_dec_and_test(&task->tk_count);
 299        if (waitqueue_active(wq))
 300                __wake_up_locked_key(wq, TASK_NORMAL, &k);
 301        spin_unlock_irqrestore(&wq->lock, flags);
 302        return ret;
 303}
 304
 305/*
 306 * Allow callers to wait for completion of an RPC call
 307 *
 308 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 309 * to enforce taking of the wq->lock and hence avoid races with
 310 * rpc_complete_task().
 311 */
 312int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
 313{
 314        if (action == NULL)
 315                action = rpc_wait_bit_killable;
 316        return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
 317                        action, TASK_KILLABLE);
 318}
 319EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
 320
 321/*
 322 * Make an RPC task runnable.
 323 *
 324 * Note: If the task is ASYNC, and is being made runnable after sitting on an
 325 * rpc_wait_queue, this must be called with the queue spinlock held to protect
 326 * the wait queue operation.
 327 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
 328 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
 329 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
 330 * the RPC_TASK_RUNNING flag.
 331 */
 332static void rpc_make_runnable(struct workqueue_struct *wq,
 333                struct rpc_task *task)
 334{
 335        bool need_wakeup = !rpc_test_and_set_running(task);
 336
 337        rpc_clear_queued(task);
 338        if (!need_wakeup)
 339                return;
 340        if (RPC_IS_ASYNC(task)) {
 341                INIT_WORK(&task->u.tk_work, rpc_async_schedule);
 342                queue_work(wq, &task->u.tk_work);
 343        } else
 344                wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
 345}
 346
 347/*
 348 * Prepare for sleeping on a wait queue.
 349 * By always appending tasks to the list we ensure FIFO behavior.
 350 * NB: An RPC task will only receive interrupt-driven events as long
 351 * as it's on a wait queue.
 352 */
 353static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
 354                struct rpc_task *task,
 355                rpc_action action,
 356                unsigned char queue_priority)
 357{
 358        dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
 359                        task->tk_pid, rpc_qname(q), jiffies);
 360
 361        trace_rpc_task_sleep(task, q);
 362
 363        __rpc_add_wait_queue(q, task, queue_priority);
 364
 365        WARN_ON_ONCE(task->tk_callback != NULL);
 366        task->tk_callback = action;
 367        __rpc_add_timer(q, task);
 368}
 369
 370void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 371                                rpc_action action)
 372{
 373        /* We shouldn't ever put an inactive task to sleep */
 374        WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
 375        if (!RPC_IS_ACTIVATED(task)) {
 376                task->tk_status = -EIO;
 377                rpc_put_task_async(task);
 378                return;
 379        }
 380
 381        /*
 382         * Protect the queue operations.
 383         */
 384        spin_lock_bh(&q->lock);
 385        __rpc_sleep_on_priority(q, task, action, task->tk_priority);
 386        spin_unlock_bh(&q->lock);
 387}
 388EXPORT_SYMBOL_GPL(rpc_sleep_on);
 389
 390void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
 391                rpc_action action, int priority)
 392{
 393        /* We shouldn't ever put an inactive task to sleep */
 394        WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
 395        if (!RPC_IS_ACTIVATED(task)) {
 396                task->tk_status = -EIO;
 397                rpc_put_task_async(task);
 398                return;
 399        }
 400
 401        /*
 402         * Protect the queue operations.
 403         */
 404        spin_lock_bh(&q->lock);
 405        __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
 406        spin_unlock_bh(&q->lock);
 407}
 408EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
 409
 410/**
 411 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
 412 * @wq: workqueue on which to run task
 413 * @queue: wait queue
 414 * @task: task to be woken up
 415 *
 416 * Caller must hold queue->lock, and have cleared the task queued flag.
 417 */
 418static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
 419                struct rpc_wait_queue *queue,
 420                struct rpc_task *task)
 421{
 422        dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
 423                        task->tk_pid, jiffies);
 424
 425        /* Has the task been executed yet? If not, we cannot wake it up! */
 426        if (!RPC_IS_ACTIVATED(task)) {
 427                printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
 428                return;
 429        }
 430
 431        trace_rpc_task_wakeup(task, queue);
 432
 433        __rpc_remove_wait_queue(queue, task);
 434
 435        rpc_make_runnable(wq, task);
 436
 437        dprintk("RPC:       __rpc_wake_up_task done\n");
 438}
 439
 440/*
 441 * Wake up a queued task while the queue lock is being held
 442 */
 443static void rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
 444                struct rpc_wait_queue *queue, struct rpc_task *task)
 445{
 446        if (RPC_IS_QUEUED(task)) {
 447                smp_rmb();
 448                if (task->tk_waitqueue == queue)
 449                        __rpc_do_wake_up_task_on_wq(wq, queue, task);
 450        }
 451}
 452
 453/*
 454 * Wake up a queued task while the queue lock is being held
 455 */
 456static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
 457{
 458        rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
 459}
 460
 461/*
 462 * Wake up a task on a specific queue
 463 */
 464void rpc_wake_up_queued_task_on_wq(struct workqueue_struct *wq,
 465                struct rpc_wait_queue *queue,
 466                struct rpc_task *task)
 467{
 468        spin_lock_bh(&queue->lock);
 469        rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
 470        spin_unlock_bh(&queue->lock);
 471}
 472
 473/*
 474 * Wake up a task on a specific queue
 475 */
 476void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 477{
 478        spin_lock_bh(&queue->lock);
 479        rpc_wake_up_task_queue_locked(queue, task);
 480        spin_unlock_bh(&queue->lock);
 481}
 482EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
 483
 484/*
 485 * Wake up the next task on a priority queue.
 486 */
 487static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
 488{
 489        struct list_head *q;
 490        struct rpc_task *task;
 491
 492        /*
 493         * Service a batch of tasks from a single owner.
 494         */
 495        q = &queue->tasks[queue->priority];
 496        if (!list_empty(q)) {
 497                task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 498                if (queue->owner == task->tk_owner) {
 499                        if (--queue->nr)
 500                                goto out;
 501                        list_move_tail(&task->u.tk_wait.list, q);
 502                }
 503                /*
 504                 * Check if we need to switch queues.
 505                 */
 506                goto new_owner;
 507        }
 508
 509        /*
 510         * Service the next queue.
 511         */
 512        do {
 513                if (q == &queue->tasks[0])
 514                        q = &queue->tasks[queue->maxpriority];
 515                else
 516                        q = q - 1;
 517                if (!list_empty(q)) {
 518                        task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 519                        goto new_queue;
 520                }
 521        } while (q != &queue->tasks[queue->priority]);
 522
 523        rpc_reset_waitqueue_priority(queue);
 524        return NULL;
 525
 526new_queue:
 527        rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
 528new_owner:
 529        rpc_set_waitqueue_owner(queue, task->tk_owner);
 530out:
 531        return task;
 532}
 533
 534static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
 535{
 536        if (RPC_IS_PRIORITY(queue))
 537                return __rpc_find_next_queued_priority(queue);
 538        if (!list_empty(&queue->tasks[0]))
 539                return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
 540        return NULL;
 541}
 542
 543/*
 544 * Wake up the first task on the wait queue.
 545 */
 546struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
 547                struct rpc_wait_queue *queue,
 548                bool (*func)(struct rpc_task *, void *), void *data)
 549{
 550        struct rpc_task *task = NULL;
 551
 552        dprintk("RPC:       wake_up_first(%p \"%s\")\n",
 553                        queue, rpc_qname(queue));
 554        spin_lock_bh(&queue->lock);
 555        task = __rpc_find_next_queued(queue);
 556        if (task != NULL) {
 557                if (func(task, data))
 558                        rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
 559                else
 560                        task = NULL;
 561        }
 562        spin_unlock_bh(&queue->lock);
 563
 564        return task;
 565}
 566
 567/*
 568 * Wake up the first task on the wait queue.
 569 */
 570struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
 571                bool (*func)(struct rpc_task *, void *), void *data)
 572{
 573        return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
 574}
 575EXPORT_SYMBOL_GPL(rpc_wake_up_first);
 576
 577static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
 578{
 579        return true;
 580}
 581
 582/*
 583 * Wake up the next task on the wait queue.
 584*/
 585struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
 586{
 587        return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
 588}
 589EXPORT_SYMBOL_GPL(rpc_wake_up_next);
 590
 591/**
 592 * rpc_wake_up - wake up all rpc_tasks
 593 * @queue: rpc_wait_queue on which the tasks are sleeping
 594 *
 595 * Grabs queue->lock
 596 */
 597void rpc_wake_up(struct rpc_wait_queue *queue)
 598{
 599        struct list_head *head;
 600
 601        spin_lock_bh(&queue->lock);
 602        head = &queue->tasks[queue->maxpriority];
 603        for (;;) {
 604                while (!list_empty(head)) {
 605                        struct rpc_task *task;
 606                        task = list_first_entry(head,
 607                                        struct rpc_task,
 608                                        u.tk_wait.list);
 609                        rpc_wake_up_task_queue_locked(queue, task);
 610                }
 611                if (head == &queue->tasks[0])
 612                        break;
 613                head--;
 614        }
 615        spin_unlock_bh(&queue->lock);
 616}
 617EXPORT_SYMBOL_GPL(rpc_wake_up);
 618
 619/**
 620 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 621 * @queue: rpc_wait_queue on which the tasks are sleeping
 622 * @status: status value to set
 623 *
 624 * Grabs queue->lock
 625 */
 626void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
 627{
 628        struct list_head *head;
 629
 630        spin_lock_bh(&queue->lock);
 631        head = &queue->tasks[queue->maxpriority];
 632        for (;;) {
 633                while (!list_empty(head)) {
 634                        struct rpc_task *task;
 635                        task = list_first_entry(head,
 636                                        struct rpc_task,
 637                                        u.tk_wait.list);
 638                        task->tk_status = status;
 639                        rpc_wake_up_task_queue_locked(queue, task);
 640                }
 641                if (head == &queue->tasks[0])
 642                        break;
 643                head--;
 644        }
 645        spin_unlock_bh(&queue->lock);
 646}
 647EXPORT_SYMBOL_GPL(rpc_wake_up_status);
 648
 649static void __rpc_queue_timer_fn(struct timer_list *t)
 650{
 651        struct rpc_wait_queue *queue = from_timer(queue, t, timer_list.timer);
 652        struct rpc_task *task, *n;
 653        unsigned long expires, now, timeo;
 654
 655        spin_lock(&queue->lock);
 656        expires = now = jiffies;
 657        list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
 658                timeo = task->u.tk_wait.expires;
 659                if (time_after_eq(now, timeo)) {
 660                        dprintk("RPC: %5u timeout\n", task->tk_pid);
 661                        task->tk_status = -ETIMEDOUT;
 662                        rpc_wake_up_task_queue_locked(queue, task);
 663                        continue;
 664                }
 665                if (expires == now || time_after(expires, timeo))
 666                        expires = timeo;
 667        }
 668        if (!list_empty(&queue->timer_list.list))
 669                rpc_set_queue_timer(queue, expires);
 670        spin_unlock(&queue->lock);
 671}
 672
 673static void __rpc_atrun(struct rpc_task *task)
 674{
 675        if (task->tk_status == -ETIMEDOUT)
 676                task->tk_status = 0;
 677}
 678
 679/*
 680 * Run a task at a later time
 681 */
 682void rpc_delay(struct rpc_task *task, unsigned long delay)
 683{
 684        task->tk_timeout = delay;
 685        rpc_sleep_on(&delay_queue, task, __rpc_atrun);
 686}
 687EXPORT_SYMBOL_GPL(rpc_delay);
 688
 689/*
 690 * Helper to call task->tk_ops->rpc_call_prepare
 691 */
 692void rpc_prepare_task(struct rpc_task *task)
 693{
 694        task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
 695}
 696
 697static void
 698rpc_init_task_statistics(struct rpc_task *task)
 699{
 700        /* Initialize retry counters */
 701        task->tk_garb_retry = 2;
 702        task->tk_cred_retry = 2;
 703        task->tk_rebind_retry = 2;
 704
 705        /* starting timestamp */
 706        task->tk_start = ktime_get();
 707}
 708
 709static void
 710rpc_reset_task_statistics(struct rpc_task *task)
 711{
 712        task->tk_timeouts = 0;
 713        task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
 714
 715        rpc_init_task_statistics(task);
 716}
 717
 718/*
 719 * Helper that calls task->tk_ops->rpc_call_done if it exists
 720 */
 721void rpc_exit_task(struct rpc_task *task)
 722{
 723        task->tk_action = NULL;
 724        if (task->tk_ops->rpc_call_done != NULL) {
 725                task->tk_ops->rpc_call_done(task, task->tk_calldata);
 726                if (task->tk_action != NULL) {
 727                        WARN_ON(RPC_ASSASSINATED(task));
 728                        /* Always release the RPC slot and buffer memory */
 729                        xprt_release(task);
 730                        rpc_reset_task_statistics(task);
 731                }
 732        }
 733}
 734
 735void rpc_exit(struct rpc_task *task, int status)
 736{
 737        task->tk_status = status;
 738        task->tk_action = rpc_exit_task;
 739        if (RPC_IS_QUEUED(task))
 740                rpc_wake_up_queued_task(task->tk_waitqueue, task);
 741}
 742EXPORT_SYMBOL_GPL(rpc_exit);
 743
 744void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
 745{
 746        if (ops->rpc_release != NULL)
 747                ops->rpc_release(calldata);
 748}
 749
 750/*
 751 * This is the RPC `scheduler' (or rather, the finite state machine).
 752 */
 753static void __rpc_execute(struct rpc_task *task)
 754{
 755        struct rpc_wait_queue *queue;
 756        int task_is_async = RPC_IS_ASYNC(task);
 757        int status = 0;
 758
 759        dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
 760                        task->tk_pid, task->tk_flags);
 761
 762        WARN_ON_ONCE(RPC_IS_QUEUED(task));
 763        if (RPC_IS_QUEUED(task))
 764                return;
 765
 766        for (;;) {
 767                void (*do_action)(struct rpc_task *);
 768
 769                /*
 770                 * Perform the next FSM step or a pending callback.
 771                 *
 772                 * tk_action may be NULL if the task has been killed.
 773                 * In particular, note that rpc_killall_tasks may
 774                 * do this at any time, so beware when dereferencing.
 775                 */
 776                do_action = task->tk_action;
 777                if (task->tk_callback) {
 778                        do_action = task->tk_callback;
 779                        task->tk_callback = NULL;
 780                }
 781                if (!do_action)
 782                        break;
 783                trace_rpc_task_run_action(task, do_action);
 784                do_action(task);
 785
 786                /*
 787                 * Lockless check for whether task is sleeping or not.
 788                 */
 789                if (!RPC_IS_QUEUED(task))
 790                        continue;
 791                /*
 792                 * The queue->lock protects against races with
 793                 * rpc_make_runnable().
 794                 *
 795                 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
 796                 * rpc_task, rpc_make_runnable() can assign it to a
 797                 * different workqueue. We therefore cannot assume that the
 798                 * rpc_task pointer may still be dereferenced.
 799                 */
 800                queue = task->tk_waitqueue;
 801                spin_lock_bh(&queue->lock);
 802                if (!RPC_IS_QUEUED(task)) {
 803                        spin_unlock_bh(&queue->lock);
 804                        continue;
 805                }
 806                rpc_clear_running(task);
 807                spin_unlock_bh(&queue->lock);
 808                if (task_is_async)
 809                        return;
 810
 811                /* sync task: sleep here */
 812                dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
 813                status = out_of_line_wait_on_bit(&task->tk_runstate,
 814                                RPC_TASK_QUEUED, rpc_wait_bit_killable,
 815                                TASK_KILLABLE);
 816                if (status == -ERESTARTSYS) {
 817                        /*
 818                         * When a sync task receives a signal, it exits with
 819                         * -ERESTARTSYS. In order to catch any callbacks that
 820                         * clean up after sleeping on some queue, we don't
 821                         * break the loop here, but go around once more.
 822                         */
 823                        dprintk("RPC: %5u got signal\n", task->tk_pid);
 824                        task->tk_flags |= RPC_TASK_KILLED;
 825                        rpc_exit(task, -ERESTARTSYS);
 826                }
 827                dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
 828        }
 829
 830        dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
 831                        task->tk_status);
 832        /* Release all resources associated with the task */
 833        rpc_release_task(task);
 834}
 835
 836/*
 837 * User-visible entry point to the scheduler.
 838 *
 839 * This may be called recursively if e.g. an async NFS task updates
 840 * the attributes and finds that dirty pages must be flushed.
 841 * NOTE: Upon exit of this function the task is guaranteed to be
 842 *       released. In particular note that tk_release() will have
 843 *       been called, so your task memory may have been freed.
 844 */
 845void rpc_execute(struct rpc_task *task)
 846{
 847        bool is_async = RPC_IS_ASYNC(task);
 848
 849        rpc_set_active(task);
 850        rpc_make_runnable(rpciod_workqueue, task);
 851        if (!is_async)
 852                __rpc_execute(task);
 853}
 854
 855static void rpc_async_schedule(struct work_struct *work)
 856{
 857        __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
 858}
 859
 860/**
 861 * rpc_malloc - allocate RPC buffer resources
 862 * @task: RPC task
 863 *
 864 * A single memory region is allocated, which is split between the
 865 * RPC call and RPC reply that this task is being used for. When
 866 * this RPC is retired, the memory is released by calling rpc_free.
 867 *
 868 * To prevent rpciod from hanging, this allocator never sleeps,
 869 * returning -ENOMEM and suppressing warning if the request cannot
 870 * be serviced immediately. The caller can arrange to sleep in a
 871 * way that is safe for rpciod.
 872 *
 873 * Most requests are 'small' (under 2KiB) and can be serviced from a
 874 * mempool, ensuring that NFS reads and writes can always proceed,
 875 * and that there is good locality of reference for these buffers.
 876 *
 877 * In order to avoid memory starvation triggering more writebacks of
 878 * NFS requests, we avoid using GFP_KERNEL.
 879 */
 880int rpc_malloc(struct rpc_task *task)
 881{
 882        struct rpc_rqst *rqst = task->tk_rqstp;
 883        size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
 884        struct rpc_buffer *buf;
 885        gfp_t gfp = GFP_NOIO | __GFP_NOWARN;
 886
 887        if (RPC_IS_SWAPPER(task))
 888                gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
 889
 890        size += sizeof(struct rpc_buffer);
 891        if (size <= RPC_BUFFER_MAXSIZE)
 892                buf = mempool_alloc(rpc_buffer_mempool, gfp);
 893        else
 894                buf = kmalloc(size, gfp);
 895
 896        if (!buf)
 897                return -ENOMEM;
 898
 899        buf->len = size;
 900        dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
 901                        task->tk_pid, size, buf);
 902        rqst->rq_buffer = buf->data;
 903        rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
 904        return 0;
 905}
 906EXPORT_SYMBOL_GPL(rpc_malloc);
 907
 908/**
 909 * rpc_free - free RPC buffer resources allocated via rpc_malloc
 910 * @task: RPC task
 911 *
 912 */
 913void rpc_free(struct rpc_task *task)
 914{
 915        void *buffer = task->tk_rqstp->rq_buffer;
 916        size_t size;
 917        struct rpc_buffer *buf;
 918
 919        buf = container_of(buffer, struct rpc_buffer, data);
 920        size = buf->len;
 921
 922        dprintk("RPC:       freeing buffer of size %zu at %p\n",
 923                        size, buf);
 924
 925        if (size <= RPC_BUFFER_MAXSIZE)
 926                mempool_free(buf, rpc_buffer_mempool);
 927        else
 928                kfree(buf);
 929}
 930EXPORT_SYMBOL_GPL(rpc_free);
 931
 932/*
 933 * Creation and deletion of RPC task structures
 934 */
 935static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
 936{
 937        memset(task, 0, sizeof(*task));
 938        atomic_set(&task->tk_count, 1);
 939        task->tk_flags  = task_setup_data->flags;
 940        task->tk_ops = task_setup_data->callback_ops;
 941        task->tk_calldata = task_setup_data->callback_data;
 942        INIT_LIST_HEAD(&task->tk_task);
 943
 944        task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
 945        task->tk_owner = current->tgid;
 946
 947        /* Initialize workqueue for async tasks */
 948        task->tk_workqueue = task_setup_data->workqueue;
 949
 950        task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
 951
 952        if (task->tk_ops->rpc_call_prepare != NULL)
 953                task->tk_action = rpc_prepare_task;
 954
 955        rpc_init_task_statistics(task);
 956
 957        dprintk("RPC:       new task initialized, procpid %u\n",
 958                                task_pid_nr(current));
 959}
 960
 961static struct rpc_task *
 962rpc_alloc_task(void)
 963{
 964        return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
 965}
 966
 967/*
 968 * Create a new task for the specified client.
 969 */
 970struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
 971{
 972        struct rpc_task *task = setup_data->task;
 973        unsigned short flags = 0;
 974
 975        if (task == NULL) {
 976                task = rpc_alloc_task();
 977                flags = RPC_TASK_DYNAMIC;
 978        }
 979
 980        rpc_init_task(task, setup_data);
 981        task->tk_flags |= flags;
 982        dprintk("RPC:       allocated task %p\n", task);
 983        return task;
 984}
 985
 986/*
 987 * rpc_free_task - release rpc task and perform cleanups
 988 *
 989 * Note that we free up the rpc_task _after_ rpc_release_calldata()
 990 * in order to work around a workqueue dependency issue.
 991 *
 992 * Tejun Heo states:
 993 * "Workqueue currently considers two work items to be the same if they're
 994 * on the same address and won't execute them concurrently - ie. it
 995 * makes a work item which is queued again while being executed wait
 996 * for the previous execution to complete.
 997 *
 998 * If a work function frees the work item, and then waits for an event
 999 * which should be performed by another work item and *that* work item
1000 * recycles the freed work item, it can create a false dependency loop.
1001 * There really is no reliable way to detect this short of verifying
1002 * every memory free."
1003 *
1004 */
1005static void rpc_free_task(struct rpc_task *task)
1006{
1007        unsigned short tk_flags = task->tk_flags;
1008
1009        rpc_release_calldata(task->tk_ops, task->tk_calldata);
1010
1011        if (tk_flags & RPC_TASK_DYNAMIC) {
1012                dprintk("RPC: %5u freeing task\n", task->tk_pid);
1013                mempool_free(task, rpc_task_mempool);
1014        }
1015}
1016
1017static void rpc_async_release(struct work_struct *work)
1018{
1019        rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1020}
1021
1022static void rpc_release_resources_task(struct rpc_task *task)
1023{
1024        xprt_release(task);
1025        if (task->tk_msg.rpc_cred) {
1026                put_rpccred(task->tk_msg.rpc_cred);
1027                task->tk_msg.rpc_cred = NULL;
1028        }
1029        rpc_task_release_client(task);
1030}
1031
1032static void rpc_final_put_task(struct rpc_task *task,
1033                struct workqueue_struct *q)
1034{
1035        if (q != NULL) {
1036                INIT_WORK(&task->u.tk_work, rpc_async_release);
1037                queue_work(q, &task->u.tk_work);
1038        } else
1039                rpc_free_task(task);
1040}
1041
1042static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1043{
1044        if (atomic_dec_and_test(&task->tk_count)) {
1045                rpc_release_resources_task(task);
1046                rpc_final_put_task(task, q);
1047        }
1048}
1049
1050void rpc_put_task(struct rpc_task *task)
1051{
1052        rpc_do_put_task(task, NULL);
1053}
1054EXPORT_SYMBOL_GPL(rpc_put_task);
1055
1056void rpc_put_task_async(struct rpc_task *task)
1057{
1058        rpc_do_put_task(task, task->tk_workqueue);
1059}
1060EXPORT_SYMBOL_GPL(rpc_put_task_async);
1061
1062static void rpc_release_task(struct rpc_task *task)
1063{
1064        dprintk("RPC: %5u release task\n", task->tk_pid);
1065
1066        WARN_ON_ONCE(RPC_IS_QUEUED(task));
1067
1068        rpc_release_resources_task(task);
1069
1070        /*
1071         * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1072         * so it should be safe to use task->tk_count as a test for whether
1073         * or not any other processes still hold references to our rpc_task.
1074         */
1075        if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1076                /* Wake up anyone who may be waiting for task completion */
1077                if (!rpc_complete_task(task))
1078                        return;
1079        } else {
1080                if (!atomic_dec_and_test(&task->tk_count))
1081                        return;
1082        }
1083        rpc_final_put_task(task, task->tk_workqueue);
1084}
1085
1086int rpciod_up(void)
1087{
1088        return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1089}
1090
1091void rpciod_down(void)
1092{
1093        module_put(THIS_MODULE);
1094}
1095
1096/*
1097 * Start up the rpciod workqueue.
1098 */
1099static int rpciod_start(void)
1100{
1101        struct workqueue_struct *wq;
1102
1103        /*
1104         * Create the rpciod thread and wait for it to start.
1105         */
1106        dprintk("RPC:       creating workqueue rpciod\n");
1107        wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1108        if (!wq)
1109                goto out_failed;
1110        rpciod_workqueue = wq;
1111        /* Note: highpri because network receive is latency sensitive */
1112        wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1113        if (!wq)
1114                goto free_rpciod;
1115        xprtiod_workqueue = wq;
1116        return 1;
1117free_rpciod:
1118        wq = rpciod_workqueue;
1119        rpciod_workqueue = NULL;
1120        destroy_workqueue(wq);
1121out_failed:
1122        return 0;
1123}
1124
1125static void rpciod_stop(void)
1126{
1127        struct workqueue_struct *wq = NULL;
1128
1129        if (rpciod_workqueue == NULL)
1130                return;
1131        dprintk("RPC:       destroying workqueue rpciod\n");
1132
1133        wq = rpciod_workqueue;
1134        rpciod_workqueue = NULL;
1135        destroy_workqueue(wq);
1136        wq = xprtiod_workqueue;
1137        xprtiod_workqueue = NULL;
1138        destroy_workqueue(wq);
1139}
1140
1141void
1142rpc_destroy_mempool(void)
1143{
1144        rpciod_stop();
1145        mempool_destroy(rpc_buffer_mempool);
1146        mempool_destroy(rpc_task_mempool);
1147        kmem_cache_destroy(rpc_task_slabp);
1148        kmem_cache_destroy(rpc_buffer_slabp);
1149        rpc_destroy_wait_queue(&delay_queue);
1150}
1151
1152int
1153rpc_init_mempool(void)
1154{
1155        /*
1156         * The following is not strictly a mempool initialisation,
1157         * but there is no harm in doing it here
1158         */
1159        rpc_init_wait_queue(&delay_queue, "delayq");
1160        if (!rpciod_start())
1161                goto err_nomem;
1162
1163        rpc_task_slabp = kmem_cache_create("rpc_tasks",
1164                                             sizeof(struct rpc_task),
1165                                             0, SLAB_HWCACHE_ALIGN,
1166                                             NULL);
1167        if (!rpc_task_slabp)
1168                goto err_nomem;
1169        rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1170                                             RPC_BUFFER_MAXSIZE,
1171                                             0, SLAB_HWCACHE_ALIGN,
1172                                             NULL);
1173        if (!rpc_buffer_slabp)
1174                goto err_nomem;
1175        rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1176                                                    rpc_task_slabp);
1177        if (!rpc_task_mempool)
1178                goto err_nomem;
1179        rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1180                                                      rpc_buffer_slabp);
1181        if (!rpc_buffer_mempool)
1182                goto err_nomem;
1183        return 0;
1184err_nomem:
1185        rpc_destroy_mempool();
1186        return -ENOMEM;
1187}
1188