linux/net/vmw_vsock/af_vsock.c
<<
>>
Prefs
   1/*
   2 * VMware vSockets Driver
   3 *
   4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the Free
   8 * Software Foundation version 2 and no later version.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 */
  15
  16/* Implementation notes:
  17 *
  18 * - There are two kinds of sockets: those created by user action (such as
  19 * calling socket(2)) and those created by incoming connection request packets.
  20 *
  21 * - There are two "global" tables, one for bound sockets (sockets that have
  22 * specified an address that they are responsible for) and one for connected
  23 * sockets (sockets that have established a connection with another socket).
  24 * These tables are "global" in that all sockets on the system are placed
  25 * within them. - Note, though, that the bound table contains an extra entry
  26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
  27 * that list. The bound table is used solely for lookup of sockets when packets
  28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
  29 * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
  30 * sockets out of the bound hash buckets will reduce the chance of collisions
  31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
  32 * socket type in the hash table lookups.
  33 *
  34 * - Sockets created by user action will either be "client" sockets that
  35 * initiate a connection or "server" sockets that listen for connections; we do
  36 * not support simultaneous connects (two "client" sockets connecting).
  37 *
  38 * - "Server" sockets are referred to as listener sockets throughout this
  39 * implementation because they are in the TCP_LISTEN state.  When a
  40 * connection request is received (the second kind of socket mentioned above),
  41 * we create a new socket and refer to it as a pending socket.  These pending
  42 * sockets are placed on the pending connection list of the listener socket.
  43 * When future packets are received for the address the listener socket is
  44 * bound to, we check if the source of the packet is from one that has an
  45 * existing pending connection.  If it does, we process the packet for the
  46 * pending socket.  When that socket reaches the connected state, it is removed
  47 * from the listener socket's pending list and enqueued in the listener
  48 * socket's accept queue.  Callers of accept(2) will accept connected sockets
  49 * from the listener socket's accept queue.  If the socket cannot be accepted
  50 * for some reason then it is marked rejected.  Once the connection is
  51 * accepted, it is owned by the user process and the responsibility for cleanup
  52 * falls with that user process.
  53 *
  54 * - It is possible that these pending sockets will never reach the connected
  55 * state; in fact, we may never receive another packet after the connection
  56 * request.  Because of this, we must schedule a cleanup function to run in the
  57 * future, after some amount of time passes where a connection should have been
  58 * established.  This function ensures that the socket is off all lists so it
  59 * cannot be retrieved, then drops all references to the socket so it is cleaned
  60 * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
  61 * function will also cleanup rejected sockets, those that reach the connected
  62 * state but leave it before they have been accepted.
  63 *
  64 * - Lock ordering for pending or accept queue sockets is:
  65 *
  66 *     lock_sock(listener);
  67 *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
  68 *
  69 * Using explicit nested locking keeps lockdep happy since normally only one
  70 * lock of a given class may be taken at a time.
  71 *
  72 * - Sockets created by user action will be cleaned up when the user process
  73 * calls close(2), causing our release implementation to be called. Our release
  74 * implementation will perform some cleanup then drop the last reference so our
  75 * sk_destruct implementation is invoked.  Our sk_destruct implementation will
  76 * perform additional cleanup that's common for both types of sockets.
  77 *
  78 * - A socket's reference count is what ensures that the structure won't be
  79 * freed.  Each entry in a list (such as the "global" bound and connected tables
  80 * and the listener socket's pending list and connected queue) ensures a
  81 * reference.  When we defer work until process context and pass a socket as our
  82 * argument, we must ensure the reference count is increased to ensure the
  83 * socket isn't freed before the function is run; the deferred function will
  84 * then drop the reference.
  85 *
  86 * - sk->sk_state uses the TCP state constants because they are widely used by
  87 * other address families and exposed to userspace tools like ss(8):
  88 *
  89 *   TCP_CLOSE - unconnected
  90 *   TCP_SYN_SENT - connecting
  91 *   TCP_ESTABLISHED - connected
  92 *   TCP_CLOSING - disconnecting
  93 *   TCP_LISTEN - listening
  94 */
  95
  96#include <linux/types.h>
  97#include <linux/bitops.h>
  98#include <linux/cred.h>
  99#include <linux/init.h>
 100#include <linux/io.h>
 101#include <linux/kernel.h>
 102#include <linux/sched/signal.h>
 103#include <linux/kmod.h>
 104#include <linux/list.h>
 105#include <linux/miscdevice.h>
 106#include <linux/module.h>
 107#include <linux/mutex.h>
 108#include <linux/net.h>
 109#include <linux/poll.h>
 110#include <linux/skbuff.h>
 111#include <linux/smp.h>
 112#include <linux/socket.h>
 113#include <linux/stddef.h>
 114#include <linux/unistd.h>
 115#include <linux/wait.h>
 116#include <linux/workqueue.h>
 117#include <net/sock.h>
 118#include <net/af_vsock.h>
 119
 120static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
 121static void vsock_sk_destruct(struct sock *sk);
 122static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
 123
 124/* Protocol family. */
 125static struct proto vsock_proto = {
 126        .name = "AF_VSOCK",
 127        .owner = THIS_MODULE,
 128        .obj_size = sizeof(struct vsock_sock),
 129};
 130
 131/* The default peer timeout indicates how long we will wait for a peer response
 132 * to a control message.
 133 */
 134#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
 135
 136static const struct vsock_transport *transport;
 137static DEFINE_MUTEX(vsock_register_mutex);
 138
 139/**** EXPORTS ****/
 140
 141/* Get the ID of the local context.  This is transport dependent. */
 142
 143int vm_sockets_get_local_cid(void)
 144{
 145        return transport->get_local_cid();
 146}
 147EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
 148
 149/**** UTILS ****/
 150
 151/* Each bound VSocket is stored in the bind hash table and each connected
 152 * VSocket is stored in the connected hash table.
 153 *
 154 * Unbound sockets are all put on the same list attached to the end of the hash
 155 * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
 156 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
 157 * represents the list that addr hashes to).
 158 *
 159 * Specifically, we initialize the vsock_bind_table array to a size of
 160 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
 161 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
 162 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
 163 * mods with VSOCK_HASH_SIZE to ensure this.
 164 */
 165#define MAX_PORT_RETRIES        24
 166
 167#define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
 168#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
 169#define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
 170
 171/* XXX This can probably be implemented in a better way. */
 172#define VSOCK_CONN_HASH(src, dst)                               \
 173        (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
 174#define vsock_connected_sockets(src, dst)               \
 175        (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
 176#define vsock_connected_sockets_vsk(vsk)                                \
 177        vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
 178
 179struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
 180EXPORT_SYMBOL_GPL(vsock_bind_table);
 181struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
 182EXPORT_SYMBOL_GPL(vsock_connected_table);
 183DEFINE_SPINLOCK(vsock_table_lock);
 184EXPORT_SYMBOL_GPL(vsock_table_lock);
 185
 186/* Autobind this socket to the local address if necessary. */
 187static int vsock_auto_bind(struct vsock_sock *vsk)
 188{
 189        struct sock *sk = sk_vsock(vsk);
 190        struct sockaddr_vm local_addr;
 191
 192        if (vsock_addr_bound(&vsk->local_addr))
 193                return 0;
 194        vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 195        return __vsock_bind(sk, &local_addr);
 196}
 197
 198static int __init vsock_init_tables(void)
 199{
 200        int i;
 201
 202        for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
 203                INIT_LIST_HEAD(&vsock_bind_table[i]);
 204
 205        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
 206                INIT_LIST_HEAD(&vsock_connected_table[i]);
 207        return 0;
 208}
 209
 210static void __vsock_insert_bound(struct list_head *list,
 211                                 struct vsock_sock *vsk)
 212{
 213        sock_hold(&vsk->sk);
 214        list_add(&vsk->bound_table, list);
 215}
 216
 217static void __vsock_insert_connected(struct list_head *list,
 218                                     struct vsock_sock *vsk)
 219{
 220        sock_hold(&vsk->sk);
 221        list_add(&vsk->connected_table, list);
 222}
 223
 224static void __vsock_remove_bound(struct vsock_sock *vsk)
 225{
 226        list_del_init(&vsk->bound_table);
 227        sock_put(&vsk->sk);
 228}
 229
 230static void __vsock_remove_connected(struct vsock_sock *vsk)
 231{
 232        list_del_init(&vsk->connected_table);
 233        sock_put(&vsk->sk);
 234}
 235
 236static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
 237{
 238        struct vsock_sock *vsk;
 239
 240        list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
 241                if (addr->svm_port == vsk->local_addr.svm_port)
 242                        return sk_vsock(vsk);
 243
 244        return NULL;
 245}
 246
 247static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
 248                                                  struct sockaddr_vm *dst)
 249{
 250        struct vsock_sock *vsk;
 251
 252        list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
 253                            connected_table) {
 254                if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
 255                    dst->svm_port == vsk->local_addr.svm_port) {
 256                        return sk_vsock(vsk);
 257                }
 258        }
 259
 260        return NULL;
 261}
 262
 263static void vsock_insert_unbound(struct vsock_sock *vsk)
 264{
 265        spin_lock_bh(&vsock_table_lock);
 266        __vsock_insert_bound(vsock_unbound_sockets, vsk);
 267        spin_unlock_bh(&vsock_table_lock);
 268}
 269
 270void vsock_insert_connected(struct vsock_sock *vsk)
 271{
 272        struct list_head *list = vsock_connected_sockets(
 273                &vsk->remote_addr, &vsk->local_addr);
 274
 275        spin_lock_bh(&vsock_table_lock);
 276        __vsock_insert_connected(list, vsk);
 277        spin_unlock_bh(&vsock_table_lock);
 278}
 279EXPORT_SYMBOL_GPL(vsock_insert_connected);
 280
 281void vsock_remove_bound(struct vsock_sock *vsk)
 282{
 283        spin_lock_bh(&vsock_table_lock);
 284        __vsock_remove_bound(vsk);
 285        spin_unlock_bh(&vsock_table_lock);
 286}
 287EXPORT_SYMBOL_GPL(vsock_remove_bound);
 288
 289void vsock_remove_connected(struct vsock_sock *vsk)
 290{
 291        spin_lock_bh(&vsock_table_lock);
 292        __vsock_remove_connected(vsk);
 293        spin_unlock_bh(&vsock_table_lock);
 294}
 295EXPORT_SYMBOL_GPL(vsock_remove_connected);
 296
 297struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
 298{
 299        struct sock *sk;
 300
 301        spin_lock_bh(&vsock_table_lock);
 302        sk = __vsock_find_bound_socket(addr);
 303        if (sk)
 304                sock_hold(sk);
 305
 306        spin_unlock_bh(&vsock_table_lock);
 307
 308        return sk;
 309}
 310EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
 311
 312struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
 313                                         struct sockaddr_vm *dst)
 314{
 315        struct sock *sk;
 316
 317        spin_lock_bh(&vsock_table_lock);
 318        sk = __vsock_find_connected_socket(src, dst);
 319        if (sk)
 320                sock_hold(sk);
 321
 322        spin_unlock_bh(&vsock_table_lock);
 323
 324        return sk;
 325}
 326EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
 327
 328static bool vsock_in_bound_table(struct vsock_sock *vsk)
 329{
 330        bool ret;
 331
 332        spin_lock_bh(&vsock_table_lock);
 333        ret = __vsock_in_bound_table(vsk);
 334        spin_unlock_bh(&vsock_table_lock);
 335
 336        return ret;
 337}
 338
 339static bool vsock_in_connected_table(struct vsock_sock *vsk)
 340{
 341        bool ret;
 342
 343        spin_lock_bh(&vsock_table_lock);
 344        ret = __vsock_in_connected_table(vsk);
 345        spin_unlock_bh(&vsock_table_lock);
 346
 347        return ret;
 348}
 349
 350void vsock_remove_sock(struct vsock_sock *vsk)
 351{
 352        if (vsock_in_bound_table(vsk))
 353                vsock_remove_bound(vsk);
 354
 355        if (vsock_in_connected_table(vsk))
 356                vsock_remove_connected(vsk);
 357}
 358EXPORT_SYMBOL_GPL(vsock_remove_sock);
 359
 360void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
 361{
 362        int i;
 363
 364        spin_lock_bh(&vsock_table_lock);
 365
 366        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
 367                struct vsock_sock *vsk;
 368                list_for_each_entry(vsk, &vsock_connected_table[i],
 369                                    connected_table)
 370                        fn(sk_vsock(vsk));
 371        }
 372
 373        spin_unlock_bh(&vsock_table_lock);
 374}
 375EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
 376
 377void vsock_add_pending(struct sock *listener, struct sock *pending)
 378{
 379        struct vsock_sock *vlistener;
 380        struct vsock_sock *vpending;
 381
 382        vlistener = vsock_sk(listener);
 383        vpending = vsock_sk(pending);
 384
 385        sock_hold(pending);
 386        sock_hold(listener);
 387        list_add_tail(&vpending->pending_links, &vlistener->pending_links);
 388}
 389EXPORT_SYMBOL_GPL(vsock_add_pending);
 390
 391void vsock_remove_pending(struct sock *listener, struct sock *pending)
 392{
 393        struct vsock_sock *vpending = vsock_sk(pending);
 394
 395        list_del_init(&vpending->pending_links);
 396        sock_put(listener);
 397        sock_put(pending);
 398}
 399EXPORT_SYMBOL_GPL(vsock_remove_pending);
 400
 401void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
 402{
 403        struct vsock_sock *vlistener;
 404        struct vsock_sock *vconnected;
 405
 406        vlistener = vsock_sk(listener);
 407        vconnected = vsock_sk(connected);
 408
 409        sock_hold(connected);
 410        sock_hold(listener);
 411        list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
 412}
 413EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
 414
 415static struct sock *vsock_dequeue_accept(struct sock *listener)
 416{
 417        struct vsock_sock *vlistener;
 418        struct vsock_sock *vconnected;
 419
 420        vlistener = vsock_sk(listener);
 421
 422        if (list_empty(&vlistener->accept_queue))
 423                return NULL;
 424
 425        vconnected = list_entry(vlistener->accept_queue.next,
 426                                struct vsock_sock, accept_queue);
 427
 428        list_del_init(&vconnected->accept_queue);
 429        sock_put(listener);
 430        /* The caller will need a reference on the connected socket so we let
 431         * it call sock_put().
 432         */
 433
 434        return sk_vsock(vconnected);
 435}
 436
 437static bool vsock_is_accept_queue_empty(struct sock *sk)
 438{
 439        struct vsock_sock *vsk = vsock_sk(sk);
 440        return list_empty(&vsk->accept_queue);
 441}
 442
 443static bool vsock_is_pending(struct sock *sk)
 444{
 445        struct vsock_sock *vsk = vsock_sk(sk);
 446        return !list_empty(&vsk->pending_links);
 447}
 448
 449static int vsock_send_shutdown(struct sock *sk, int mode)
 450{
 451        return transport->shutdown(vsock_sk(sk), mode);
 452}
 453
 454void vsock_pending_work(struct work_struct *work)
 455{
 456        struct sock *sk;
 457        struct sock *listener;
 458        struct vsock_sock *vsk;
 459        bool cleanup;
 460
 461        vsk = container_of(work, struct vsock_sock, dwork.work);
 462        sk = sk_vsock(vsk);
 463        listener = vsk->listener;
 464        cleanup = true;
 465
 466        lock_sock(listener);
 467        lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
 468
 469        if (vsock_is_pending(sk)) {
 470                vsock_remove_pending(listener, sk);
 471
 472                listener->sk_ack_backlog--;
 473        } else if (!vsk->rejected) {
 474                /* We are not on the pending list and accept() did not reject
 475                 * us, so we must have been accepted by our user process.  We
 476                 * just need to drop our references to the sockets and be on
 477                 * our way.
 478                 */
 479                cleanup = false;
 480                goto out;
 481        }
 482
 483        /* We need to remove ourself from the global connected sockets list so
 484         * incoming packets can't find this socket, and to reduce the reference
 485         * count.
 486         */
 487        if (vsock_in_connected_table(vsk))
 488                vsock_remove_connected(vsk);
 489
 490        sk->sk_state = TCP_CLOSE;
 491
 492out:
 493        release_sock(sk);
 494        release_sock(listener);
 495        if (cleanup)
 496                sock_put(sk);
 497
 498        sock_put(sk);
 499        sock_put(listener);
 500}
 501EXPORT_SYMBOL_GPL(vsock_pending_work);
 502
 503/**** SOCKET OPERATIONS ****/
 504
 505static int __vsock_bind_stream(struct vsock_sock *vsk,
 506                               struct sockaddr_vm *addr)
 507{
 508        static u32 port = LAST_RESERVED_PORT + 1;
 509        struct sockaddr_vm new_addr;
 510
 511        vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
 512
 513        if (addr->svm_port == VMADDR_PORT_ANY) {
 514                bool found = false;
 515                unsigned int i;
 516
 517                for (i = 0; i < MAX_PORT_RETRIES; i++) {
 518                        if (port <= LAST_RESERVED_PORT)
 519                                port = LAST_RESERVED_PORT + 1;
 520
 521                        new_addr.svm_port = port++;
 522
 523                        if (!__vsock_find_bound_socket(&new_addr)) {
 524                                found = true;
 525                                break;
 526                        }
 527                }
 528
 529                if (!found)
 530                        return -EADDRNOTAVAIL;
 531        } else {
 532                /* If port is in reserved range, ensure caller
 533                 * has necessary privileges.
 534                 */
 535                if (addr->svm_port <= LAST_RESERVED_PORT &&
 536                    !capable(CAP_NET_BIND_SERVICE)) {
 537                        return -EACCES;
 538                }
 539
 540                if (__vsock_find_bound_socket(&new_addr))
 541                        return -EADDRINUSE;
 542        }
 543
 544        vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
 545
 546        /* Remove stream sockets from the unbound list and add them to the hash
 547         * table for easy lookup by its address.  The unbound list is simply an
 548         * extra entry at the end of the hash table, a trick used by AF_UNIX.
 549         */
 550        __vsock_remove_bound(vsk);
 551        __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
 552
 553        return 0;
 554}
 555
 556static int __vsock_bind_dgram(struct vsock_sock *vsk,
 557                              struct sockaddr_vm *addr)
 558{
 559        return transport->dgram_bind(vsk, addr);
 560}
 561
 562static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
 563{
 564        struct vsock_sock *vsk = vsock_sk(sk);
 565        u32 cid;
 566        int retval;
 567
 568        /* First ensure this socket isn't already bound. */
 569        if (vsock_addr_bound(&vsk->local_addr))
 570                return -EINVAL;
 571
 572        /* Now bind to the provided address or select appropriate values if
 573         * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
 574         * like AF_INET prevents binding to a non-local IP address (in most
 575         * cases), we only allow binding to the local CID.
 576         */
 577        cid = transport->get_local_cid();
 578        if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
 579                return -EADDRNOTAVAIL;
 580
 581        switch (sk->sk_socket->type) {
 582        case SOCK_STREAM:
 583                spin_lock_bh(&vsock_table_lock);
 584                retval = __vsock_bind_stream(vsk, addr);
 585                spin_unlock_bh(&vsock_table_lock);
 586                break;
 587
 588        case SOCK_DGRAM:
 589                retval = __vsock_bind_dgram(vsk, addr);
 590                break;
 591
 592        default:
 593                retval = -EINVAL;
 594                break;
 595        }
 596
 597        return retval;
 598}
 599
 600struct sock *__vsock_create(struct net *net,
 601                            struct socket *sock,
 602                            struct sock *parent,
 603                            gfp_t priority,
 604                            unsigned short type,
 605                            int kern)
 606{
 607        struct sock *sk;
 608        struct vsock_sock *psk;
 609        struct vsock_sock *vsk;
 610
 611        sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
 612        if (!sk)
 613                return NULL;
 614
 615        sock_init_data(sock, sk);
 616
 617        /* sk->sk_type is normally set in sock_init_data, but only if sock is
 618         * non-NULL. We make sure that our sockets always have a type by
 619         * setting it here if needed.
 620         */
 621        if (!sock)
 622                sk->sk_type = type;
 623
 624        vsk = vsock_sk(sk);
 625        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 626        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 627
 628        sk->sk_destruct = vsock_sk_destruct;
 629        sk->sk_backlog_rcv = vsock_queue_rcv_skb;
 630        sock_reset_flag(sk, SOCK_DONE);
 631
 632        INIT_LIST_HEAD(&vsk->bound_table);
 633        INIT_LIST_HEAD(&vsk->connected_table);
 634        vsk->listener = NULL;
 635        INIT_LIST_HEAD(&vsk->pending_links);
 636        INIT_LIST_HEAD(&vsk->accept_queue);
 637        vsk->rejected = false;
 638        vsk->sent_request = false;
 639        vsk->ignore_connecting_rst = false;
 640        vsk->peer_shutdown = 0;
 641
 642        psk = parent ? vsock_sk(parent) : NULL;
 643        if (parent) {
 644                vsk->trusted = psk->trusted;
 645                vsk->owner = get_cred(psk->owner);
 646                vsk->connect_timeout = psk->connect_timeout;
 647        } else {
 648                vsk->trusted = capable(CAP_NET_ADMIN);
 649                vsk->owner = get_current_cred();
 650                vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
 651        }
 652
 653        if (transport->init(vsk, psk) < 0) {
 654                sk_free(sk);
 655                return NULL;
 656        }
 657
 658        if (sock)
 659                vsock_insert_unbound(vsk);
 660
 661        return sk;
 662}
 663EXPORT_SYMBOL_GPL(__vsock_create);
 664
 665static void __vsock_release(struct sock *sk)
 666{
 667        if (sk) {
 668                struct sk_buff *skb;
 669                struct sock *pending;
 670                struct vsock_sock *vsk;
 671
 672                vsk = vsock_sk(sk);
 673                pending = NULL; /* Compiler warning. */
 674
 675                transport->release(vsk);
 676
 677                lock_sock(sk);
 678                sock_orphan(sk);
 679                sk->sk_shutdown = SHUTDOWN_MASK;
 680
 681                while ((skb = skb_dequeue(&sk->sk_receive_queue)))
 682                        kfree_skb(skb);
 683
 684                /* Clean up any sockets that never were accepted. */
 685                while ((pending = vsock_dequeue_accept(sk)) != NULL) {
 686                        __vsock_release(pending);
 687                        sock_put(pending);
 688                }
 689
 690                release_sock(sk);
 691                sock_put(sk);
 692        }
 693}
 694
 695static void vsock_sk_destruct(struct sock *sk)
 696{
 697        struct vsock_sock *vsk = vsock_sk(sk);
 698
 699        transport->destruct(vsk);
 700
 701        /* When clearing these addresses, there's no need to set the family and
 702         * possibly register the address family with the kernel.
 703         */
 704        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 705        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 706
 707        put_cred(vsk->owner);
 708}
 709
 710static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 711{
 712        int err;
 713
 714        err = sock_queue_rcv_skb(sk, skb);
 715        if (err)
 716                kfree_skb(skb);
 717
 718        return err;
 719}
 720
 721s64 vsock_stream_has_data(struct vsock_sock *vsk)
 722{
 723        return transport->stream_has_data(vsk);
 724}
 725EXPORT_SYMBOL_GPL(vsock_stream_has_data);
 726
 727s64 vsock_stream_has_space(struct vsock_sock *vsk)
 728{
 729        return transport->stream_has_space(vsk);
 730}
 731EXPORT_SYMBOL_GPL(vsock_stream_has_space);
 732
 733static int vsock_release(struct socket *sock)
 734{
 735        __vsock_release(sock->sk);
 736        sock->sk = NULL;
 737        sock->state = SS_FREE;
 738
 739        return 0;
 740}
 741
 742static int
 743vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
 744{
 745        int err;
 746        struct sock *sk;
 747        struct sockaddr_vm *vm_addr;
 748
 749        sk = sock->sk;
 750
 751        if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
 752                return -EINVAL;
 753
 754        lock_sock(sk);
 755        err = __vsock_bind(sk, vm_addr);
 756        release_sock(sk);
 757
 758        return err;
 759}
 760
 761static int vsock_getname(struct socket *sock,
 762                         struct sockaddr *addr, int peer)
 763{
 764        int err;
 765        struct sock *sk;
 766        struct vsock_sock *vsk;
 767        struct sockaddr_vm *vm_addr;
 768
 769        sk = sock->sk;
 770        vsk = vsock_sk(sk);
 771        err = 0;
 772
 773        lock_sock(sk);
 774
 775        if (peer) {
 776                if (sock->state != SS_CONNECTED) {
 777                        err = -ENOTCONN;
 778                        goto out;
 779                }
 780                vm_addr = &vsk->remote_addr;
 781        } else {
 782                vm_addr = &vsk->local_addr;
 783        }
 784
 785        if (!vm_addr) {
 786                err = -EINVAL;
 787                goto out;
 788        }
 789
 790        /* sys_getsockname() and sys_getpeername() pass us a
 791         * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
 792         * that macro is defined in socket.c instead of .h, so we hardcode its
 793         * value here.
 794         */
 795        BUILD_BUG_ON(sizeof(*vm_addr) > 128);
 796        memcpy(addr, vm_addr, sizeof(*vm_addr));
 797        err = sizeof(*vm_addr);
 798
 799out:
 800        release_sock(sk);
 801        return err;
 802}
 803
 804static int vsock_shutdown(struct socket *sock, int mode)
 805{
 806        int err;
 807        struct sock *sk;
 808
 809        /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
 810         * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
 811         * here like the other address families do.  Note also that the
 812         * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
 813         * which is what we want.
 814         */
 815        mode++;
 816
 817        if ((mode & ~SHUTDOWN_MASK) || !mode)
 818                return -EINVAL;
 819
 820        /* If this is a STREAM socket and it is not connected then bail out
 821         * immediately.  If it is a DGRAM socket then we must first kick the
 822         * socket so that it wakes up from any sleeping calls, for example
 823         * recv(), and then afterwards return the error.
 824         */
 825
 826        sk = sock->sk;
 827        if (sock->state == SS_UNCONNECTED) {
 828                err = -ENOTCONN;
 829                if (sk->sk_type == SOCK_STREAM)
 830                        return err;
 831        } else {
 832                sock->state = SS_DISCONNECTING;
 833                err = 0;
 834        }
 835
 836        /* Receive and send shutdowns are treated alike. */
 837        mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
 838        if (mode) {
 839                lock_sock(sk);
 840                sk->sk_shutdown |= mode;
 841                sk->sk_state_change(sk);
 842                release_sock(sk);
 843
 844                if (sk->sk_type == SOCK_STREAM) {
 845                        sock_reset_flag(sk, SOCK_DONE);
 846                        vsock_send_shutdown(sk, mode);
 847                }
 848        }
 849
 850        return err;
 851}
 852
 853static __poll_t vsock_poll(struct file *file, struct socket *sock,
 854                               poll_table *wait)
 855{
 856        struct sock *sk;
 857        __poll_t mask;
 858        struct vsock_sock *vsk;
 859
 860        sk = sock->sk;
 861        vsk = vsock_sk(sk);
 862
 863        poll_wait(file, sk_sleep(sk), wait);
 864        mask = 0;
 865
 866        if (sk->sk_err)
 867                /* Signify that there has been an error on this socket. */
 868                mask |= EPOLLERR;
 869
 870        /* INET sockets treat local write shutdown and peer write shutdown as a
 871         * case of EPOLLHUP set.
 872         */
 873        if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
 874            ((sk->sk_shutdown & SEND_SHUTDOWN) &&
 875             (vsk->peer_shutdown & SEND_SHUTDOWN))) {
 876                mask |= EPOLLHUP;
 877        }
 878
 879        if (sk->sk_shutdown & RCV_SHUTDOWN ||
 880            vsk->peer_shutdown & SEND_SHUTDOWN) {
 881                mask |= EPOLLRDHUP;
 882        }
 883
 884        if (sock->type == SOCK_DGRAM) {
 885                /* For datagram sockets we can read if there is something in
 886                 * the queue and write as long as the socket isn't shutdown for
 887                 * sending.
 888                 */
 889                if (!skb_queue_empty(&sk->sk_receive_queue) ||
 890                    (sk->sk_shutdown & RCV_SHUTDOWN)) {
 891                        mask |= EPOLLIN | EPOLLRDNORM;
 892                }
 893
 894                if (!(sk->sk_shutdown & SEND_SHUTDOWN))
 895                        mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
 896
 897        } else if (sock->type == SOCK_STREAM) {
 898                lock_sock(sk);
 899
 900                /* Listening sockets that have connections in their accept
 901                 * queue can be read.
 902                 */
 903                if (sk->sk_state == TCP_LISTEN
 904                    && !vsock_is_accept_queue_empty(sk))
 905                        mask |= EPOLLIN | EPOLLRDNORM;
 906
 907                /* If there is something in the queue then we can read. */
 908                if (transport->stream_is_active(vsk) &&
 909                    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
 910                        bool data_ready_now = false;
 911                        int ret = transport->notify_poll_in(
 912                                        vsk, 1, &data_ready_now);
 913                        if (ret < 0) {
 914                                mask |= EPOLLERR;
 915                        } else {
 916                                if (data_ready_now)
 917                                        mask |= EPOLLIN | EPOLLRDNORM;
 918
 919                        }
 920                }
 921
 922                /* Sockets whose connections have been closed, reset, or
 923                 * terminated should also be considered read, and we check the
 924                 * shutdown flag for that.
 925                 */
 926                if (sk->sk_shutdown & RCV_SHUTDOWN ||
 927                    vsk->peer_shutdown & SEND_SHUTDOWN) {
 928                        mask |= EPOLLIN | EPOLLRDNORM;
 929                }
 930
 931                /* Connected sockets that can produce data can be written. */
 932                if (sk->sk_state == TCP_ESTABLISHED) {
 933                        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 934                                bool space_avail_now = false;
 935                                int ret = transport->notify_poll_out(
 936                                                vsk, 1, &space_avail_now);
 937                                if (ret < 0) {
 938                                        mask |= EPOLLERR;
 939                                } else {
 940                                        if (space_avail_now)
 941                                                /* Remove EPOLLWRBAND since INET
 942                                                 * sockets are not setting it.
 943                                                 */
 944                                                mask |= EPOLLOUT | EPOLLWRNORM;
 945
 946                                }
 947                        }
 948                }
 949
 950                /* Simulate INET socket poll behaviors, which sets
 951                 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
 952                 * but local send is not shutdown.
 953                 */
 954                if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
 955                        if (!(sk->sk_shutdown & SEND_SHUTDOWN))
 956                                mask |= EPOLLOUT | EPOLLWRNORM;
 957
 958                }
 959
 960                release_sock(sk);
 961        }
 962
 963        return mask;
 964}
 965
 966static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
 967                               size_t len)
 968{
 969        int err;
 970        struct sock *sk;
 971        struct vsock_sock *vsk;
 972        struct sockaddr_vm *remote_addr;
 973
 974        if (msg->msg_flags & MSG_OOB)
 975                return -EOPNOTSUPP;
 976
 977        /* For now, MSG_DONTWAIT is always assumed... */
 978        err = 0;
 979        sk = sock->sk;
 980        vsk = vsock_sk(sk);
 981
 982        lock_sock(sk);
 983
 984        err = vsock_auto_bind(vsk);
 985        if (err)
 986                goto out;
 987
 988
 989        /* If the provided message contains an address, use that.  Otherwise
 990         * fall back on the socket's remote handle (if it has been connected).
 991         */
 992        if (msg->msg_name &&
 993            vsock_addr_cast(msg->msg_name, msg->msg_namelen,
 994                            &remote_addr) == 0) {
 995                /* Ensure this address is of the right type and is a valid
 996                 * destination.
 997                 */
 998
 999                if (remote_addr->svm_cid == VMADDR_CID_ANY)
1000                        remote_addr->svm_cid = transport->get_local_cid();
1001
1002                if (!vsock_addr_bound(remote_addr)) {
1003                        err = -EINVAL;
1004                        goto out;
1005                }
1006        } else if (sock->state == SS_CONNECTED) {
1007                remote_addr = &vsk->remote_addr;
1008
1009                if (remote_addr->svm_cid == VMADDR_CID_ANY)
1010                        remote_addr->svm_cid = transport->get_local_cid();
1011
1012                /* XXX Should connect() or this function ensure remote_addr is
1013                 * bound?
1014                 */
1015                if (!vsock_addr_bound(&vsk->remote_addr)) {
1016                        err = -EINVAL;
1017                        goto out;
1018                }
1019        } else {
1020                err = -EINVAL;
1021                goto out;
1022        }
1023
1024        if (!transport->dgram_allow(remote_addr->svm_cid,
1025                                    remote_addr->svm_port)) {
1026                err = -EINVAL;
1027                goto out;
1028        }
1029
1030        err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1031
1032out:
1033        release_sock(sk);
1034        return err;
1035}
1036
1037static int vsock_dgram_connect(struct socket *sock,
1038                               struct sockaddr *addr, int addr_len, int flags)
1039{
1040        int err;
1041        struct sock *sk;
1042        struct vsock_sock *vsk;
1043        struct sockaddr_vm *remote_addr;
1044
1045        sk = sock->sk;
1046        vsk = vsock_sk(sk);
1047
1048        err = vsock_addr_cast(addr, addr_len, &remote_addr);
1049        if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1050                lock_sock(sk);
1051                vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1052                                VMADDR_PORT_ANY);
1053                sock->state = SS_UNCONNECTED;
1054                release_sock(sk);
1055                return 0;
1056        } else if (err != 0)
1057                return -EINVAL;
1058
1059        lock_sock(sk);
1060
1061        err = vsock_auto_bind(vsk);
1062        if (err)
1063                goto out;
1064
1065        if (!transport->dgram_allow(remote_addr->svm_cid,
1066                                    remote_addr->svm_port)) {
1067                err = -EINVAL;
1068                goto out;
1069        }
1070
1071        memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1072        sock->state = SS_CONNECTED;
1073
1074out:
1075        release_sock(sk);
1076        return err;
1077}
1078
1079static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1080                               size_t len, int flags)
1081{
1082        return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1083}
1084
1085static const struct proto_ops vsock_dgram_ops = {
1086        .family = PF_VSOCK,
1087        .owner = THIS_MODULE,
1088        .release = vsock_release,
1089        .bind = vsock_bind,
1090        .connect = vsock_dgram_connect,
1091        .socketpair = sock_no_socketpair,
1092        .accept = sock_no_accept,
1093        .getname = vsock_getname,
1094        .poll = vsock_poll,
1095        .ioctl = sock_no_ioctl,
1096        .listen = sock_no_listen,
1097        .shutdown = vsock_shutdown,
1098        .setsockopt = sock_no_setsockopt,
1099        .getsockopt = sock_no_getsockopt,
1100        .sendmsg = vsock_dgram_sendmsg,
1101        .recvmsg = vsock_dgram_recvmsg,
1102        .mmap = sock_no_mmap,
1103        .sendpage = sock_no_sendpage,
1104};
1105
1106static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1107{
1108        if (!transport->cancel_pkt)
1109                return -EOPNOTSUPP;
1110
1111        return transport->cancel_pkt(vsk);
1112}
1113
1114static void vsock_connect_timeout(struct work_struct *work)
1115{
1116        struct sock *sk;
1117        struct vsock_sock *vsk;
1118        int cancel = 0;
1119
1120        vsk = container_of(work, struct vsock_sock, dwork.work);
1121        sk = sk_vsock(vsk);
1122
1123        lock_sock(sk);
1124        if (sk->sk_state == TCP_SYN_SENT &&
1125            (sk->sk_shutdown != SHUTDOWN_MASK)) {
1126                sk->sk_state = TCP_CLOSE;
1127                sk->sk_err = ETIMEDOUT;
1128                sk->sk_error_report(sk);
1129                cancel = 1;
1130        }
1131        release_sock(sk);
1132        if (cancel)
1133                vsock_transport_cancel_pkt(vsk);
1134
1135        sock_put(sk);
1136}
1137
1138static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1139                                int addr_len, int flags)
1140{
1141        int err;
1142        struct sock *sk;
1143        struct vsock_sock *vsk;
1144        struct sockaddr_vm *remote_addr;
1145        long timeout;
1146        DEFINE_WAIT(wait);
1147
1148        err = 0;
1149        sk = sock->sk;
1150        vsk = vsock_sk(sk);
1151
1152        lock_sock(sk);
1153
1154        /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1155        switch (sock->state) {
1156        case SS_CONNECTED:
1157                err = -EISCONN;
1158                goto out;
1159        case SS_DISCONNECTING:
1160                err = -EINVAL;
1161                goto out;
1162        case SS_CONNECTING:
1163                /* This continues on so we can move sock into the SS_CONNECTED
1164                 * state once the connection has completed (at which point err
1165                 * will be set to zero also).  Otherwise, we will either wait
1166                 * for the connection or return -EALREADY should this be a
1167                 * non-blocking call.
1168                 */
1169                err = -EALREADY;
1170                break;
1171        default:
1172                if ((sk->sk_state == TCP_LISTEN) ||
1173                    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1174                        err = -EINVAL;
1175                        goto out;
1176                }
1177
1178                /* The hypervisor and well-known contexts do not have socket
1179                 * endpoints.
1180                 */
1181                if (!transport->stream_allow(remote_addr->svm_cid,
1182                                             remote_addr->svm_port)) {
1183                        err = -ENETUNREACH;
1184                        goto out;
1185                }
1186
1187                /* Set the remote address that we are connecting to. */
1188                memcpy(&vsk->remote_addr, remote_addr,
1189                       sizeof(vsk->remote_addr));
1190
1191                err = vsock_auto_bind(vsk);
1192                if (err)
1193                        goto out;
1194
1195                sk->sk_state = TCP_SYN_SENT;
1196
1197                err = transport->connect(vsk);
1198                if (err < 0)
1199                        goto out;
1200
1201                /* Mark sock as connecting and set the error code to in
1202                 * progress in case this is a non-blocking connect.
1203                 */
1204                sock->state = SS_CONNECTING;
1205                err = -EINPROGRESS;
1206        }
1207
1208        /* The receive path will handle all communication until we are able to
1209         * enter the connected state.  Here we wait for the connection to be
1210         * completed or a notification of an error.
1211         */
1212        timeout = vsk->connect_timeout;
1213        prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1214
1215        while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1216                if (flags & O_NONBLOCK) {
1217                        /* If we're not going to block, we schedule a timeout
1218                         * function to generate a timeout on the connection
1219                         * attempt, in case the peer doesn't respond in a
1220                         * timely manner. We hold on to the socket until the
1221                         * timeout fires.
1222                         */
1223                        sock_hold(sk);
1224                        INIT_DELAYED_WORK(&vsk->dwork,
1225                                          vsock_connect_timeout);
1226                        schedule_delayed_work(&vsk->dwork, timeout);
1227
1228                        /* Skip ahead to preserve error code set above. */
1229                        goto out_wait;
1230                }
1231
1232                release_sock(sk);
1233                timeout = schedule_timeout(timeout);
1234                lock_sock(sk);
1235
1236                if (signal_pending(current)) {
1237                        err = sock_intr_errno(timeout);
1238                        sk->sk_state = TCP_CLOSE;
1239                        sock->state = SS_UNCONNECTED;
1240                        vsock_transport_cancel_pkt(vsk);
1241                        goto out_wait;
1242                } else if (timeout == 0) {
1243                        err = -ETIMEDOUT;
1244                        sk->sk_state = TCP_CLOSE;
1245                        sock->state = SS_UNCONNECTED;
1246                        vsock_transport_cancel_pkt(vsk);
1247                        goto out_wait;
1248                }
1249
1250                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1251        }
1252
1253        if (sk->sk_err) {
1254                err = -sk->sk_err;
1255                sk->sk_state = TCP_CLOSE;
1256                sock->state = SS_UNCONNECTED;
1257        } else {
1258                err = 0;
1259        }
1260
1261out_wait:
1262        finish_wait(sk_sleep(sk), &wait);
1263out:
1264        release_sock(sk);
1265        return err;
1266}
1267
1268static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1269                        bool kern)
1270{
1271        struct sock *listener;
1272        int err;
1273        struct sock *connected;
1274        struct vsock_sock *vconnected;
1275        long timeout;
1276        DEFINE_WAIT(wait);
1277
1278        err = 0;
1279        listener = sock->sk;
1280
1281        lock_sock(listener);
1282
1283        if (sock->type != SOCK_STREAM) {
1284                err = -EOPNOTSUPP;
1285                goto out;
1286        }
1287
1288        if (listener->sk_state != TCP_LISTEN) {
1289                err = -EINVAL;
1290                goto out;
1291        }
1292
1293        /* Wait for children sockets to appear; these are the new sockets
1294         * created upon connection establishment.
1295         */
1296        timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1297        prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1298
1299        while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1300               listener->sk_err == 0) {
1301                release_sock(listener);
1302                timeout = schedule_timeout(timeout);
1303                finish_wait(sk_sleep(listener), &wait);
1304                lock_sock(listener);
1305
1306                if (signal_pending(current)) {
1307                        err = sock_intr_errno(timeout);
1308                        goto out;
1309                } else if (timeout == 0) {
1310                        err = -EAGAIN;
1311                        goto out;
1312                }
1313
1314                prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1315        }
1316        finish_wait(sk_sleep(listener), &wait);
1317
1318        if (listener->sk_err)
1319                err = -listener->sk_err;
1320
1321        if (connected) {
1322                listener->sk_ack_backlog--;
1323
1324                lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1325                vconnected = vsock_sk(connected);
1326
1327                /* If the listener socket has received an error, then we should
1328                 * reject this socket and return.  Note that we simply mark the
1329                 * socket rejected, drop our reference, and let the cleanup
1330                 * function handle the cleanup; the fact that we found it in
1331                 * the listener's accept queue guarantees that the cleanup
1332                 * function hasn't run yet.
1333                 */
1334                if (err) {
1335                        vconnected->rejected = true;
1336                } else {
1337                        newsock->state = SS_CONNECTED;
1338                        sock_graft(connected, newsock);
1339                }
1340
1341                release_sock(connected);
1342                sock_put(connected);
1343        }
1344
1345out:
1346        release_sock(listener);
1347        return err;
1348}
1349
1350static int vsock_listen(struct socket *sock, int backlog)
1351{
1352        int err;
1353        struct sock *sk;
1354        struct vsock_sock *vsk;
1355
1356        sk = sock->sk;
1357
1358        lock_sock(sk);
1359
1360        if (sock->type != SOCK_STREAM) {
1361                err = -EOPNOTSUPP;
1362                goto out;
1363        }
1364
1365        if (sock->state != SS_UNCONNECTED) {
1366                err = -EINVAL;
1367                goto out;
1368        }
1369
1370        vsk = vsock_sk(sk);
1371
1372        if (!vsock_addr_bound(&vsk->local_addr)) {
1373                err = -EINVAL;
1374                goto out;
1375        }
1376
1377        sk->sk_max_ack_backlog = backlog;
1378        sk->sk_state = TCP_LISTEN;
1379
1380        err = 0;
1381
1382out:
1383        release_sock(sk);
1384        return err;
1385}
1386
1387static int vsock_stream_setsockopt(struct socket *sock,
1388                                   int level,
1389                                   int optname,
1390                                   char __user *optval,
1391                                   unsigned int optlen)
1392{
1393        int err;
1394        struct sock *sk;
1395        struct vsock_sock *vsk;
1396        u64 val;
1397
1398        if (level != AF_VSOCK)
1399                return -ENOPROTOOPT;
1400
1401#define COPY_IN(_v)                                       \
1402        do {                                              \
1403                if (optlen < sizeof(_v)) {                \
1404                        err = -EINVAL;                    \
1405                        goto exit;                        \
1406                }                                         \
1407                if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {     \
1408                        err = -EFAULT;                                  \
1409                        goto exit;                                      \
1410                }                                                       \
1411        } while (0)
1412
1413        err = 0;
1414        sk = sock->sk;
1415        vsk = vsock_sk(sk);
1416
1417        lock_sock(sk);
1418
1419        switch (optname) {
1420        case SO_VM_SOCKETS_BUFFER_SIZE:
1421                COPY_IN(val);
1422                transport->set_buffer_size(vsk, val);
1423                break;
1424
1425        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1426                COPY_IN(val);
1427                transport->set_max_buffer_size(vsk, val);
1428                break;
1429
1430        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1431                COPY_IN(val);
1432                transport->set_min_buffer_size(vsk, val);
1433                break;
1434
1435        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1436                struct timeval tv;
1437                COPY_IN(tv);
1438                if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1439                    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1440                        vsk->connect_timeout = tv.tv_sec * HZ +
1441                            DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1442                        if (vsk->connect_timeout == 0)
1443                                vsk->connect_timeout =
1444                                    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1445
1446                } else {
1447                        err = -ERANGE;
1448                }
1449                break;
1450        }
1451
1452        default:
1453                err = -ENOPROTOOPT;
1454                break;
1455        }
1456
1457#undef COPY_IN
1458
1459exit:
1460        release_sock(sk);
1461        return err;
1462}
1463
1464static int vsock_stream_getsockopt(struct socket *sock,
1465                                   int level, int optname,
1466                                   char __user *optval,
1467                                   int __user *optlen)
1468{
1469        int err;
1470        int len;
1471        struct sock *sk;
1472        struct vsock_sock *vsk;
1473        u64 val;
1474
1475        if (level != AF_VSOCK)
1476                return -ENOPROTOOPT;
1477
1478        err = get_user(len, optlen);
1479        if (err != 0)
1480                return err;
1481
1482#define COPY_OUT(_v)                            \
1483        do {                                    \
1484                if (len < sizeof(_v))           \
1485                        return -EINVAL;         \
1486                                                \
1487                len = sizeof(_v);               \
1488                if (copy_to_user(optval, &_v, len) != 0)        \
1489                        return -EFAULT;                         \
1490                                                                \
1491        } while (0)
1492
1493        err = 0;
1494        sk = sock->sk;
1495        vsk = vsock_sk(sk);
1496
1497        switch (optname) {
1498        case SO_VM_SOCKETS_BUFFER_SIZE:
1499                val = transport->get_buffer_size(vsk);
1500                COPY_OUT(val);
1501                break;
1502
1503        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1504                val = transport->get_max_buffer_size(vsk);
1505                COPY_OUT(val);
1506                break;
1507
1508        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1509                val = transport->get_min_buffer_size(vsk);
1510                COPY_OUT(val);
1511                break;
1512
1513        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1514                struct timeval tv;
1515                tv.tv_sec = vsk->connect_timeout / HZ;
1516                tv.tv_usec =
1517                    (vsk->connect_timeout -
1518                     tv.tv_sec * HZ) * (1000000 / HZ);
1519                COPY_OUT(tv);
1520                break;
1521        }
1522        default:
1523                return -ENOPROTOOPT;
1524        }
1525
1526        err = put_user(len, optlen);
1527        if (err != 0)
1528                return -EFAULT;
1529
1530#undef COPY_OUT
1531
1532        return 0;
1533}
1534
1535static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1536                                size_t len)
1537{
1538        struct sock *sk;
1539        struct vsock_sock *vsk;
1540        ssize_t total_written;
1541        long timeout;
1542        int err;
1543        struct vsock_transport_send_notify_data send_data;
1544        DEFINE_WAIT_FUNC(wait, woken_wake_function);
1545
1546        sk = sock->sk;
1547        vsk = vsock_sk(sk);
1548        total_written = 0;
1549        err = 0;
1550
1551        if (msg->msg_flags & MSG_OOB)
1552                return -EOPNOTSUPP;
1553
1554        lock_sock(sk);
1555
1556        /* Callers should not provide a destination with stream sockets. */
1557        if (msg->msg_namelen) {
1558                err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1559                goto out;
1560        }
1561
1562        /* Send data only if both sides are not shutdown in the direction. */
1563        if (sk->sk_shutdown & SEND_SHUTDOWN ||
1564            vsk->peer_shutdown & RCV_SHUTDOWN) {
1565                err = -EPIPE;
1566                goto out;
1567        }
1568
1569        if (sk->sk_state != TCP_ESTABLISHED ||
1570            !vsock_addr_bound(&vsk->local_addr)) {
1571                err = -ENOTCONN;
1572                goto out;
1573        }
1574
1575        if (!vsock_addr_bound(&vsk->remote_addr)) {
1576                err = -EDESTADDRREQ;
1577                goto out;
1578        }
1579
1580        /* Wait for room in the produce queue to enqueue our user's data. */
1581        timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1582
1583        err = transport->notify_send_init(vsk, &send_data);
1584        if (err < 0)
1585                goto out;
1586
1587        while (total_written < len) {
1588                ssize_t written;
1589
1590                add_wait_queue(sk_sleep(sk), &wait);
1591                while (vsock_stream_has_space(vsk) == 0 &&
1592                       sk->sk_err == 0 &&
1593                       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1594                       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1595
1596                        /* Don't wait for non-blocking sockets. */
1597                        if (timeout == 0) {
1598                                err = -EAGAIN;
1599                                remove_wait_queue(sk_sleep(sk), &wait);
1600                                goto out_err;
1601                        }
1602
1603                        err = transport->notify_send_pre_block(vsk, &send_data);
1604                        if (err < 0) {
1605                                remove_wait_queue(sk_sleep(sk), &wait);
1606                                goto out_err;
1607                        }
1608
1609                        release_sock(sk);
1610                        timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1611                        lock_sock(sk);
1612                        if (signal_pending(current)) {
1613                                err = sock_intr_errno(timeout);
1614                                remove_wait_queue(sk_sleep(sk), &wait);
1615                                goto out_err;
1616                        } else if (timeout == 0) {
1617                                err = -EAGAIN;
1618                                remove_wait_queue(sk_sleep(sk), &wait);
1619                                goto out_err;
1620                        }
1621                }
1622                remove_wait_queue(sk_sleep(sk), &wait);
1623
1624                /* These checks occur both as part of and after the loop
1625                 * conditional since we need to check before and after
1626                 * sleeping.
1627                 */
1628                if (sk->sk_err) {
1629                        err = -sk->sk_err;
1630                        goto out_err;
1631                } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1632                           (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1633                        err = -EPIPE;
1634                        goto out_err;
1635                }
1636
1637                err = transport->notify_send_pre_enqueue(vsk, &send_data);
1638                if (err < 0)
1639                        goto out_err;
1640
1641                /* Note that enqueue will only write as many bytes as are free
1642                 * in the produce queue, so we don't need to ensure len is
1643                 * smaller than the queue size.  It is the caller's
1644                 * responsibility to check how many bytes we were able to send.
1645                 */
1646
1647                written = transport->stream_enqueue(
1648                                vsk, msg,
1649                                len - total_written);
1650                if (written < 0) {
1651                        err = -ENOMEM;
1652                        goto out_err;
1653                }
1654
1655                total_written += written;
1656
1657                err = transport->notify_send_post_enqueue(
1658                                vsk, written, &send_data);
1659                if (err < 0)
1660                        goto out_err;
1661
1662        }
1663
1664out_err:
1665        if (total_written > 0)
1666                err = total_written;
1667out:
1668        release_sock(sk);
1669        return err;
1670}
1671
1672
1673static int
1674vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1675                     int flags)
1676{
1677        struct sock *sk;
1678        struct vsock_sock *vsk;
1679        int err;
1680        size_t target;
1681        ssize_t copied;
1682        long timeout;
1683        struct vsock_transport_recv_notify_data recv_data;
1684
1685        DEFINE_WAIT(wait);
1686
1687        sk = sock->sk;
1688        vsk = vsock_sk(sk);
1689        err = 0;
1690
1691        lock_sock(sk);
1692
1693        if (sk->sk_state != TCP_ESTABLISHED) {
1694                /* Recvmsg is supposed to return 0 if a peer performs an
1695                 * orderly shutdown. Differentiate between that case and when a
1696                 * peer has not connected or a local shutdown occured with the
1697                 * SOCK_DONE flag.
1698                 */
1699                if (sock_flag(sk, SOCK_DONE))
1700                        err = 0;
1701                else
1702                        err = -ENOTCONN;
1703
1704                goto out;
1705        }
1706
1707        if (flags & MSG_OOB) {
1708                err = -EOPNOTSUPP;
1709                goto out;
1710        }
1711
1712        /* We don't check peer_shutdown flag here since peer may actually shut
1713         * down, but there can be data in the queue that a local socket can
1714         * receive.
1715         */
1716        if (sk->sk_shutdown & RCV_SHUTDOWN) {
1717                err = 0;
1718                goto out;
1719        }
1720
1721        /* It is valid on Linux to pass in a zero-length receive buffer.  This
1722         * is not an error.  We may as well bail out now.
1723         */
1724        if (!len) {
1725                err = 0;
1726                goto out;
1727        }
1728
1729        /* We must not copy less than target bytes into the user's buffer
1730         * before returning successfully, so we wait for the consume queue to
1731         * have that much data to consume before dequeueing.  Note that this
1732         * makes it impossible to handle cases where target is greater than the
1733         * queue size.
1734         */
1735        target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1736        if (target >= transport->stream_rcvhiwat(vsk)) {
1737                err = -ENOMEM;
1738                goto out;
1739        }
1740        timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1741        copied = 0;
1742
1743        err = transport->notify_recv_init(vsk, target, &recv_data);
1744        if (err < 0)
1745                goto out;
1746
1747
1748        while (1) {
1749                s64 ready;
1750
1751                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1752                ready = vsock_stream_has_data(vsk);
1753
1754                if (ready == 0) {
1755                        if (sk->sk_err != 0 ||
1756                            (sk->sk_shutdown & RCV_SHUTDOWN) ||
1757                            (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1758                                finish_wait(sk_sleep(sk), &wait);
1759                                break;
1760                        }
1761                        /* Don't wait for non-blocking sockets. */
1762                        if (timeout == 0) {
1763                                err = -EAGAIN;
1764                                finish_wait(sk_sleep(sk), &wait);
1765                                break;
1766                        }
1767
1768                        err = transport->notify_recv_pre_block(
1769                                        vsk, target, &recv_data);
1770                        if (err < 0) {
1771                                finish_wait(sk_sleep(sk), &wait);
1772                                break;
1773                        }
1774                        release_sock(sk);
1775                        timeout = schedule_timeout(timeout);
1776                        lock_sock(sk);
1777
1778                        if (signal_pending(current)) {
1779                                err = sock_intr_errno(timeout);
1780                                finish_wait(sk_sleep(sk), &wait);
1781                                break;
1782                        } else if (timeout == 0) {
1783                                err = -EAGAIN;
1784                                finish_wait(sk_sleep(sk), &wait);
1785                                break;
1786                        }
1787                } else {
1788                        ssize_t read;
1789
1790                        finish_wait(sk_sleep(sk), &wait);
1791
1792                        if (ready < 0) {
1793                                /* Invalid queue pair content. XXX This should
1794                                * be changed to a connection reset in a later
1795                                * change.
1796                                */
1797
1798                                err = -ENOMEM;
1799                                goto out;
1800                        }
1801
1802                        err = transport->notify_recv_pre_dequeue(
1803                                        vsk, target, &recv_data);
1804                        if (err < 0)
1805                                break;
1806
1807                        read = transport->stream_dequeue(
1808                                        vsk, msg,
1809                                        len - copied, flags);
1810                        if (read < 0) {
1811                                err = -ENOMEM;
1812                                break;
1813                        }
1814
1815                        copied += read;
1816
1817                        err = transport->notify_recv_post_dequeue(
1818                                        vsk, target, read,
1819                                        !(flags & MSG_PEEK), &recv_data);
1820                        if (err < 0)
1821                                goto out;
1822
1823                        if (read >= target || flags & MSG_PEEK)
1824                                break;
1825
1826                        target -= read;
1827                }
1828        }
1829
1830        if (sk->sk_err)
1831                err = -sk->sk_err;
1832        else if (sk->sk_shutdown & RCV_SHUTDOWN)
1833                err = 0;
1834
1835        if (copied > 0)
1836                err = copied;
1837
1838out:
1839        release_sock(sk);
1840        return err;
1841}
1842
1843static const struct proto_ops vsock_stream_ops = {
1844        .family = PF_VSOCK,
1845        .owner = THIS_MODULE,
1846        .release = vsock_release,
1847        .bind = vsock_bind,
1848        .connect = vsock_stream_connect,
1849        .socketpair = sock_no_socketpair,
1850        .accept = vsock_accept,
1851        .getname = vsock_getname,
1852        .poll = vsock_poll,
1853        .ioctl = sock_no_ioctl,
1854        .listen = vsock_listen,
1855        .shutdown = vsock_shutdown,
1856        .setsockopt = vsock_stream_setsockopt,
1857        .getsockopt = vsock_stream_getsockopt,
1858        .sendmsg = vsock_stream_sendmsg,
1859        .recvmsg = vsock_stream_recvmsg,
1860        .mmap = sock_no_mmap,
1861        .sendpage = sock_no_sendpage,
1862};
1863
1864static int vsock_create(struct net *net, struct socket *sock,
1865                        int protocol, int kern)
1866{
1867        if (!sock)
1868                return -EINVAL;
1869
1870        if (protocol && protocol != PF_VSOCK)
1871                return -EPROTONOSUPPORT;
1872
1873        switch (sock->type) {
1874        case SOCK_DGRAM:
1875                sock->ops = &vsock_dgram_ops;
1876                break;
1877        case SOCK_STREAM:
1878                sock->ops = &vsock_stream_ops;
1879                break;
1880        default:
1881                return -ESOCKTNOSUPPORT;
1882        }
1883
1884        sock->state = SS_UNCONNECTED;
1885
1886        return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1887}
1888
1889static const struct net_proto_family vsock_family_ops = {
1890        .family = AF_VSOCK,
1891        .create = vsock_create,
1892        .owner = THIS_MODULE,
1893};
1894
1895static long vsock_dev_do_ioctl(struct file *filp,
1896                               unsigned int cmd, void __user *ptr)
1897{
1898        u32 __user *p = ptr;
1899        int retval = 0;
1900
1901        switch (cmd) {
1902        case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1903                if (put_user(transport->get_local_cid(), p) != 0)
1904                        retval = -EFAULT;
1905                break;
1906
1907        default:
1908                pr_err("Unknown ioctl %d\n", cmd);
1909                retval = -EINVAL;
1910        }
1911
1912        return retval;
1913}
1914
1915static long vsock_dev_ioctl(struct file *filp,
1916                            unsigned int cmd, unsigned long arg)
1917{
1918        return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1919}
1920
1921#ifdef CONFIG_COMPAT
1922static long vsock_dev_compat_ioctl(struct file *filp,
1923                                   unsigned int cmd, unsigned long arg)
1924{
1925        return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1926}
1927#endif
1928
1929static const struct file_operations vsock_device_ops = {
1930        .owner          = THIS_MODULE,
1931        .unlocked_ioctl = vsock_dev_ioctl,
1932#ifdef CONFIG_COMPAT
1933        .compat_ioctl   = vsock_dev_compat_ioctl,
1934#endif
1935        .open           = nonseekable_open,
1936};
1937
1938static struct miscdevice vsock_device = {
1939        .name           = "vsock",
1940        .fops           = &vsock_device_ops,
1941};
1942
1943int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1944{
1945        int err = mutex_lock_interruptible(&vsock_register_mutex);
1946
1947        if (err)
1948                return err;
1949
1950        if (transport) {
1951                err = -EBUSY;
1952                goto err_busy;
1953        }
1954
1955        /* Transport must be the owner of the protocol so that it can't
1956         * unload while there are open sockets.
1957         */
1958        vsock_proto.owner = owner;
1959        transport = t;
1960
1961        vsock_device.minor = MISC_DYNAMIC_MINOR;
1962        err = misc_register(&vsock_device);
1963        if (err) {
1964                pr_err("Failed to register misc device\n");
1965                goto err_reset_transport;
1966        }
1967
1968        err = proto_register(&vsock_proto, 1);  /* we want our slab */
1969        if (err) {
1970                pr_err("Cannot register vsock protocol\n");
1971                goto err_deregister_misc;
1972        }
1973
1974        err = sock_register(&vsock_family_ops);
1975        if (err) {
1976                pr_err("could not register af_vsock (%d) address family: %d\n",
1977                       AF_VSOCK, err);
1978                goto err_unregister_proto;
1979        }
1980
1981        mutex_unlock(&vsock_register_mutex);
1982        return 0;
1983
1984err_unregister_proto:
1985        proto_unregister(&vsock_proto);
1986err_deregister_misc:
1987        misc_deregister(&vsock_device);
1988err_reset_transport:
1989        transport = NULL;
1990err_busy:
1991        mutex_unlock(&vsock_register_mutex);
1992        return err;
1993}
1994EXPORT_SYMBOL_GPL(__vsock_core_init);
1995
1996void vsock_core_exit(void)
1997{
1998        mutex_lock(&vsock_register_mutex);
1999
2000        misc_deregister(&vsock_device);
2001        sock_unregister(AF_VSOCK);
2002        proto_unregister(&vsock_proto);
2003
2004        /* We do not want the assignment below re-ordered. */
2005        mb();
2006        transport = NULL;
2007
2008        mutex_unlock(&vsock_register_mutex);
2009}
2010EXPORT_SYMBOL_GPL(vsock_core_exit);
2011
2012const struct vsock_transport *vsock_core_get_transport(void)
2013{
2014        /* vsock_register_mutex not taken since only the transport uses this
2015         * function and only while registered.
2016         */
2017        return transport;
2018}
2019EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2020
2021static void __exit vsock_exit(void)
2022{
2023        /* Do nothing.  This function makes this module removable. */
2024}
2025
2026module_init(vsock_init_tables);
2027module_exit(vsock_exit);
2028
2029MODULE_AUTHOR("VMware, Inc.");
2030MODULE_DESCRIPTION("VMware Virtual Socket Family");
2031MODULE_VERSION("1.0.2.0-k");
2032MODULE_LICENSE("GPL v2");
2033