linux/security/keys/big_key.c
<<
>>
Prefs
   1/* Large capacity key type
   2 *
   3 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
   4 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public Licence
   9 * as published by the Free Software Foundation; either version
  10 * 2 of the Licence, or (at your option) any later version.
  11 */
  12
  13#define pr_fmt(fmt) "big_key: "fmt
  14#include <linux/init.h>
  15#include <linux/seq_file.h>
  16#include <linux/file.h>
  17#include <linux/shmem_fs.h>
  18#include <linux/err.h>
  19#include <linux/scatterlist.h>
  20#include <linux/random.h>
  21#include <linux/vmalloc.h>
  22#include <keys/user-type.h>
  23#include <keys/big_key-type.h>
  24#include <crypto/aead.h>
  25
  26struct big_key_buf {
  27        unsigned int            nr_pages;
  28        void                    *virt;
  29        struct scatterlist      *sg;
  30        struct page             *pages[];
  31};
  32
  33/*
  34 * Layout of key payload words.
  35 */
  36enum {
  37        big_key_data,
  38        big_key_path,
  39        big_key_path_2nd_part,
  40        big_key_len,
  41};
  42
  43/*
  44 * Crypto operation with big_key data
  45 */
  46enum big_key_op {
  47        BIG_KEY_ENC,
  48        BIG_KEY_DEC,
  49};
  50
  51/*
  52 * If the data is under this limit, there's no point creating a shm file to
  53 * hold it as the permanently resident metadata for the shmem fs will be at
  54 * least as large as the data.
  55 */
  56#define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))
  57
  58/*
  59 * Key size for big_key data encryption
  60 */
  61#define ENC_KEY_SIZE 32
  62
  63/*
  64 * Authentication tag length
  65 */
  66#define ENC_AUTHTAG_SIZE 16
  67
  68/*
  69 * big_key defined keys take an arbitrary string as the description and an
  70 * arbitrary blob of data as the payload
  71 */
  72struct key_type key_type_big_key = {
  73        .name                   = "big_key",
  74        .preparse               = big_key_preparse,
  75        .free_preparse          = big_key_free_preparse,
  76        .instantiate            = generic_key_instantiate,
  77        .revoke                 = big_key_revoke,
  78        .destroy                = big_key_destroy,
  79        .describe               = big_key_describe,
  80        .read                   = big_key_read,
  81        /* no ->update(); don't add it without changing big_key_crypt() nonce */
  82};
  83
  84/*
  85 * Crypto names for big_key data authenticated encryption
  86 */
  87static const char big_key_alg_name[] = "gcm(aes)";
  88
  89/*
  90 * Crypto algorithms for big_key data authenticated encryption
  91 */
  92static struct crypto_aead *big_key_aead;
  93
  94/*
  95 * Since changing the key affects the entire object, we need a mutex.
  96 */
  97static DEFINE_MUTEX(big_key_aead_lock);
  98
  99/*
 100 * Encrypt/decrypt big_key data
 101 */
 102static int big_key_crypt(enum big_key_op op, struct big_key_buf *buf, size_t datalen, u8 *key)
 103{
 104        int ret;
 105        struct aead_request *aead_req;
 106        /* We always use a zero nonce. The reason we can get away with this is
 107         * because we're using a different randomly generated key for every
 108         * different encryption. Notably, too, key_type_big_key doesn't define
 109         * an .update function, so there's no chance we'll wind up reusing the
 110         * key to encrypt updated data. Simply put: one key, one encryption.
 111         */
 112        u8 zero_nonce[crypto_aead_ivsize(big_key_aead)];
 113
 114        aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL);
 115        if (!aead_req)
 116                return -ENOMEM;
 117
 118        memset(zero_nonce, 0, sizeof(zero_nonce));
 119        aead_request_set_crypt(aead_req, buf->sg, buf->sg, datalen, zero_nonce);
 120        aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 121        aead_request_set_ad(aead_req, 0);
 122
 123        mutex_lock(&big_key_aead_lock);
 124        if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) {
 125                ret = -EAGAIN;
 126                goto error;
 127        }
 128        if (op == BIG_KEY_ENC)
 129                ret = crypto_aead_encrypt(aead_req);
 130        else
 131                ret = crypto_aead_decrypt(aead_req);
 132error:
 133        mutex_unlock(&big_key_aead_lock);
 134        aead_request_free(aead_req);
 135        return ret;
 136}
 137
 138/*
 139 * Free up the buffer.
 140 */
 141static void big_key_free_buffer(struct big_key_buf *buf)
 142{
 143        unsigned int i;
 144
 145        if (buf->virt) {
 146                memset(buf->virt, 0, buf->nr_pages * PAGE_SIZE);
 147                vunmap(buf->virt);
 148        }
 149
 150        for (i = 0; i < buf->nr_pages; i++)
 151                if (buf->pages[i])
 152                        __free_page(buf->pages[i]);
 153
 154        kfree(buf);
 155}
 156
 157/*
 158 * Allocate a buffer consisting of a set of pages with a virtual mapping
 159 * applied over them.
 160 */
 161static void *big_key_alloc_buffer(size_t len)
 162{
 163        struct big_key_buf *buf;
 164        unsigned int npg = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
 165        unsigned int i, l;
 166
 167        buf = kzalloc(sizeof(struct big_key_buf) +
 168                      sizeof(struct page) * npg +
 169                      sizeof(struct scatterlist) * npg,
 170                      GFP_KERNEL);
 171        if (!buf)
 172                return NULL;
 173
 174        buf->nr_pages = npg;
 175        buf->sg = (void *)(buf->pages + npg);
 176        sg_init_table(buf->sg, npg);
 177
 178        for (i = 0; i < buf->nr_pages; i++) {
 179                buf->pages[i] = alloc_page(GFP_KERNEL);
 180                if (!buf->pages[i])
 181                        goto nomem;
 182
 183                l = min_t(size_t, len, PAGE_SIZE);
 184                sg_set_page(&buf->sg[i], buf->pages[i], l, 0);
 185                len -= l;
 186        }
 187
 188        buf->virt = vmap(buf->pages, buf->nr_pages, VM_MAP, PAGE_KERNEL);
 189        if (!buf->virt)
 190                goto nomem;
 191
 192        return buf;
 193
 194nomem:
 195        big_key_free_buffer(buf);
 196        return NULL;
 197}
 198
 199/*
 200 * Preparse a big key
 201 */
 202int big_key_preparse(struct key_preparsed_payload *prep)
 203{
 204        struct big_key_buf *buf;
 205        struct path *path = (struct path *)&prep->payload.data[big_key_path];
 206        struct file *file;
 207        u8 *enckey;
 208        ssize_t written;
 209        size_t datalen = prep->datalen, enclen = datalen + ENC_AUTHTAG_SIZE;
 210        int ret;
 211
 212        if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
 213                return -EINVAL;
 214
 215        /* Set an arbitrary quota */
 216        prep->quotalen = 16;
 217
 218        prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;
 219
 220        if (datalen > BIG_KEY_FILE_THRESHOLD) {
 221                /* Create a shmem file to store the data in.  This will permit the data
 222                 * to be swapped out if needed.
 223                 *
 224                 * File content is stored encrypted with randomly generated key.
 225                 */
 226                loff_t pos = 0;
 227
 228                buf = big_key_alloc_buffer(enclen);
 229                if (!buf)
 230                        return -ENOMEM;
 231                memcpy(buf->virt, prep->data, datalen);
 232
 233                /* generate random key */
 234                enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
 235                if (!enckey) {
 236                        ret = -ENOMEM;
 237                        goto error;
 238                }
 239                ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE);
 240                if (unlikely(ret))
 241                        goto err_enckey;
 242
 243                /* encrypt aligned data */
 244                ret = big_key_crypt(BIG_KEY_ENC, buf, datalen, enckey);
 245                if (ret)
 246                        goto err_enckey;
 247
 248                /* save aligned data to file */
 249                file = shmem_kernel_file_setup("", enclen, 0);
 250                if (IS_ERR(file)) {
 251                        ret = PTR_ERR(file);
 252                        goto err_enckey;
 253                }
 254
 255                written = kernel_write(file, buf->virt, enclen, &pos);
 256                if (written != enclen) {
 257                        ret = written;
 258                        if (written >= 0)
 259                                ret = -ENOMEM;
 260                        goto err_fput;
 261                }
 262
 263                /* Pin the mount and dentry to the key so that we can open it again
 264                 * later
 265                 */
 266                prep->payload.data[big_key_data] = enckey;
 267                *path = file->f_path;
 268                path_get(path);
 269                fput(file);
 270                big_key_free_buffer(buf);
 271        } else {
 272                /* Just store the data in a buffer */
 273                void *data = kmalloc(datalen, GFP_KERNEL);
 274
 275                if (!data)
 276                        return -ENOMEM;
 277
 278                prep->payload.data[big_key_data] = data;
 279                memcpy(data, prep->data, prep->datalen);
 280        }
 281        return 0;
 282
 283err_fput:
 284        fput(file);
 285err_enckey:
 286        kzfree(enckey);
 287error:
 288        big_key_free_buffer(buf);
 289        return ret;
 290}
 291
 292/*
 293 * Clear preparsement.
 294 */
 295void big_key_free_preparse(struct key_preparsed_payload *prep)
 296{
 297        if (prep->datalen > BIG_KEY_FILE_THRESHOLD) {
 298                struct path *path = (struct path *)&prep->payload.data[big_key_path];
 299
 300                path_put(path);
 301        }
 302        kzfree(prep->payload.data[big_key_data]);
 303}
 304
 305/*
 306 * dispose of the links from a revoked keyring
 307 * - called with the key sem write-locked
 308 */
 309void big_key_revoke(struct key *key)
 310{
 311        struct path *path = (struct path *)&key->payload.data[big_key_path];
 312
 313        /* clear the quota */
 314        key_payload_reserve(key, 0);
 315        if (key_is_positive(key) &&
 316            (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD)
 317                vfs_truncate(path, 0);
 318}
 319
 320/*
 321 * dispose of the data dangling from the corpse of a big_key key
 322 */
 323void big_key_destroy(struct key *key)
 324{
 325        size_t datalen = (size_t)key->payload.data[big_key_len];
 326
 327        if (datalen > BIG_KEY_FILE_THRESHOLD) {
 328                struct path *path = (struct path *)&key->payload.data[big_key_path];
 329
 330                path_put(path);
 331                path->mnt = NULL;
 332                path->dentry = NULL;
 333        }
 334        kzfree(key->payload.data[big_key_data]);
 335        key->payload.data[big_key_data] = NULL;
 336}
 337
 338/*
 339 * describe the big_key key
 340 */
 341void big_key_describe(const struct key *key, struct seq_file *m)
 342{
 343        size_t datalen = (size_t)key->payload.data[big_key_len];
 344
 345        seq_puts(m, key->description);
 346
 347        if (key_is_positive(key))
 348                seq_printf(m, ": %zu [%s]",
 349                           datalen,
 350                           datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff");
 351}
 352
 353/*
 354 * read the key data
 355 * - the key's semaphore is read-locked
 356 */
 357long big_key_read(const struct key *key, char __user *buffer, size_t buflen)
 358{
 359        size_t datalen = (size_t)key->payload.data[big_key_len];
 360        long ret;
 361
 362        if (!buffer || buflen < datalen)
 363                return datalen;
 364
 365        if (datalen > BIG_KEY_FILE_THRESHOLD) {
 366                struct big_key_buf *buf;
 367                struct path *path = (struct path *)&key->payload.data[big_key_path];
 368                struct file *file;
 369                u8 *enckey = (u8 *)key->payload.data[big_key_data];
 370                size_t enclen = datalen + ENC_AUTHTAG_SIZE;
 371                loff_t pos = 0;
 372
 373                buf = big_key_alloc_buffer(enclen);
 374                if (!buf)
 375                        return -ENOMEM;
 376
 377                file = dentry_open(path, O_RDONLY, current_cred());
 378                if (IS_ERR(file)) {
 379                        ret = PTR_ERR(file);
 380                        goto error;
 381                }
 382
 383                /* read file to kernel and decrypt */
 384                ret = kernel_read(file, buf->virt, enclen, &pos);
 385                if (ret >= 0 && ret != enclen) {
 386                        ret = -EIO;
 387                        goto err_fput;
 388                }
 389
 390                ret = big_key_crypt(BIG_KEY_DEC, buf, enclen, enckey);
 391                if (ret)
 392                        goto err_fput;
 393
 394                ret = datalen;
 395
 396                /* copy decrypted data to user */
 397                if (copy_to_user(buffer, buf->virt, datalen) != 0)
 398                        ret = -EFAULT;
 399
 400err_fput:
 401                fput(file);
 402error:
 403                big_key_free_buffer(buf);
 404        } else {
 405                ret = datalen;
 406                if (copy_to_user(buffer, key->payload.data[big_key_data],
 407                                 datalen) != 0)
 408                        ret = -EFAULT;
 409        }
 410
 411        return ret;
 412}
 413
 414/*
 415 * Register key type
 416 */
 417static int __init big_key_init(void)
 418{
 419        int ret;
 420
 421        /* init block cipher */
 422        big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC);
 423        if (IS_ERR(big_key_aead)) {
 424                ret = PTR_ERR(big_key_aead);
 425                pr_err("Can't alloc crypto: %d\n", ret);
 426                return ret;
 427        }
 428        ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE);
 429        if (ret < 0) {
 430                pr_err("Can't set crypto auth tag len: %d\n", ret);
 431                goto free_aead;
 432        }
 433
 434        ret = register_key_type(&key_type_big_key);
 435        if (ret < 0) {
 436                pr_err("Can't register type: %d\n", ret);
 437                goto free_aead;
 438        }
 439
 440        return 0;
 441
 442free_aead:
 443        crypto_free_aead(big_key_aead);
 444        return ret;
 445}
 446
 447late_initcall(big_key_init);
 448