linux/security/keys/keyring.c
<<
>>
Prefs
   1/* Keyring handling
   2 *
   3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/sched.h>
  15#include <linux/slab.h>
  16#include <linux/security.h>
  17#include <linux/seq_file.h>
  18#include <linux/err.h>
  19#include <keys/keyring-type.h>
  20#include <keys/user-type.h>
  21#include <linux/assoc_array_priv.h>
  22#include <linux/uaccess.h>
  23#include "internal.h"
  24
  25/*
  26 * When plumbing the depths of the key tree, this sets a hard limit
  27 * set on how deep we're willing to go.
  28 */
  29#define KEYRING_SEARCH_MAX_DEPTH 6
  30
  31/*
  32 * We keep all named keyrings in a hash to speed looking them up.
  33 */
  34#define KEYRING_NAME_HASH_SIZE  (1 << 5)
  35
  36/*
  37 * We mark pointers we pass to the associative array with bit 1 set if
  38 * they're keyrings and clear otherwise.
  39 */
  40#define KEYRING_PTR_SUBTYPE     0x2UL
  41
  42static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
  43{
  44        return (unsigned long)x & KEYRING_PTR_SUBTYPE;
  45}
  46static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
  47{
  48        void *object = assoc_array_ptr_to_leaf(x);
  49        return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
  50}
  51static inline void *keyring_key_to_ptr(struct key *key)
  52{
  53        if (key->type == &key_type_keyring)
  54                return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
  55        return key;
  56}
  57
  58static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
  59static DEFINE_RWLOCK(keyring_name_lock);
  60
  61static inline unsigned keyring_hash(const char *desc)
  62{
  63        unsigned bucket = 0;
  64
  65        for (; *desc; desc++)
  66                bucket += (unsigned char)*desc;
  67
  68        return bucket & (KEYRING_NAME_HASH_SIZE - 1);
  69}
  70
  71/*
  72 * The keyring key type definition.  Keyrings are simply keys of this type and
  73 * can be treated as ordinary keys in addition to having their own special
  74 * operations.
  75 */
  76static int keyring_preparse(struct key_preparsed_payload *prep);
  77static void keyring_free_preparse(struct key_preparsed_payload *prep);
  78static int keyring_instantiate(struct key *keyring,
  79                               struct key_preparsed_payload *prep);
  80static void keyring_revoke(struct key *keyring);
  81static void keyring_destroy(struct key *keyring);
  82static void keyring_describe(const struct key *keyring, struct seq_file *m);
  83static long keyring_read(const struct key *keyring,
  84                         char __user *buffer, size_t buflen);
  85
  86struct key_type key_type_keyring = {
  87        .name           = "keyring",
  88        .def_datalen    = 0,
  89        .preparse       = keyring_preparse,
  90        .free_preparse  = keyring_free_preparse,
  91        .instantiate    = keyring_instantiate,
  92        .revoke         = keyring_revoke,
  93        .destroy        = keyring_destroy,
  94        .describe       = keyring_describe,
  95        .read           = keyring_read,
  96};
  97EXPORT_SYMBOL(key_type_keyring);
  98
  99/*
 100 * Semaphore to serialise link/link calls to prevent two link calls in parallel
 101 * introducing a cycle.
 102 */
 103static DECLARE_RWSEM(keyring_serialise_link_sem);
 104
 105/*
 106 * Publish the name of a keyring so that it can be found by name (if it has
 107 * one).
 108 */
 109static void keyring_publish_name(struct key *keyring)
 110{
 111        int bucket;
 112
 113        if (keyring->description) {
 114                bucket = keyring_hash(keyring->description);
 115
 116                write_lock(&keyring_name_lock);
 117
 118                if (!keyring_name_hash[bucket].next)
 119                        INIT_LIST_HEAD(&keyring_name_hash[bucket]);
 120
 121                list_add_tail(&keyring->name_link,
 122                              &keyring_name_hash[bucket]);
 123
 124                write_unlock(&keyring_name_lock);
 125        }
 126}
 127
 128/*
 129 * Preparse a keyring payload
 130 */
 131static int keyring_preparse(struct key_preparsed_payload *prep)
 132{
 133        return prep->datalen != 0 ? -EINVAL : 0;
 134}
 135
 136/*
 137 * Free a preparse of a user defined key payload
 138 */
 139static void keyring_free_preparse(struct key_preparsed_payload *prep)
 140{
 141}
 142
 143/*
 144 * Initialise a keyring.
 145 *
 146 * Returns 0 on success, -EINVAL if given any data.
 147 */
 148static int keyring_instantiate(struct key *keyring,
 149                               struct key_preparsed_payload *prep)
 150{
 151        assoc_array_init(&keyring->keys);
 152        /* make the keyring available by name if it has one */
 153        keyring_publish_name(keyring);
 154        return 0;
 155}
 156
 157/*
 158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
 159 * fold the carry back too, but that requires inline asm.
 160 */
 161static u64 mult_64x32_and_fold(u64 x, u32 y)
 162{
 163        u64 hi = (u64)(u32)(x >> 32) * y;
 164        u64 lo = (u64)(u32)(x) * y;
 165        return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
 166}
 167
 168/*
 169 * Hash a key type and description.
 170 */
 171static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
 172{
 173        const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
 174        const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
 175        const char *description = index_key->description;
 176        unsigned long hash, type;
 177        u32 piece;
 178        u64 acc;
 179        int n, desc_len = index_key->desc_len;
 180
 181        type = (unsigned long)index_key->type;
 182
 183        acc = mult_64x32_and_fold(type, desc_len + 13);
 184        acc = mult_64x32_and_fold(acc, 9207);
 185        for (;;) {
 186                n = desc_len;
 187                if (n <= 0)
 188                        break;
 189                if (n > 4)
 190                        n = 4;
 191                piece = 0;
 192                memcpy(&piece, description, n);
 193                description += n;
 194                desc_len -= n;
 195                acc = mult_64x32_and_fold(acc, piece);
 196                acc = mult_64x32_and_fold(acc, 9207);
 197        }
 198
 199        /* Fold the hash down to 32 bits if need be. */
 200        hash = acc;
 201        if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
 202                hash ^= acc >> 32;
 203
 204        /* Squidge all the keyrings into a separate part of the tree to
 205         * ordinary keys by making sure the lowest level segment in the hash is
 206         * zero for keyrings and non-zero otherwise.
 207         */
 208        if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
 209                return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
 210        if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
 211                return (hash + (hash << level_shift)) & ~fan_mask;
 212        return hash;
 213}
 214
 215/*
 216 * Build the next index key chunk.
 217 *
 218 * On 32-bit systems the index key is laid out as:
 219 *
 220 *      0       4       5       9...
 221 *      hash    desclen typeptr desc[]
 222 *
 223 * On 64-bit systems:
 224 *
 225 *      0       8       9       17...
 226 *      hash    desclen typeptr desc[]
 227 *
 228 * We return it one word-sized chunk at a time.
 229 */
 230static unsigned long keyring_get_key_chunk(const void *data, int level)
 231{
 232        const struct keyring_index_key *index_key = data;
 233        unsigned long chunk = 0;
 234        long offset = 0;
 235        int desc_len = index_key->desc_len, n = sizeof(chunk);
 236
 237        level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
 238        switch (level) {
 239        case 0:
 240                return hash_key_type_and_desc(index_key);
 241        case 1:
 242                return ((unsigned long)index_key->type << 8) | desc_len;
 243        case 2:
 244                if (desc_len == 0)
 245                        return (u8)((unsigned long)index_key->type >>
 246                                    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
 247                n--;
 248                offset = 1;
 249        default:
 250                offset += sizeof(chunk) - 1;
 251                offset += (level - 3) * sizeof(chunk);
 252                if (offset >= desc_len)
 253                        return 0;
 254                desc_len -= offset;
 255                if (desc_len > n)
 256                        desc_len = n;
 257                offset += desc_len;
 258                do {
 259                        chunk <<= 8;
 260                        chunk |= ((u8*)index_key->description)[--offset];
 261                } while (--desc_len > 0);
 262
 263                if (level == 2) {
 264                        chunk <<= 8;
 265                        chunk |= (u8)((unsigned long)index_key->type >>
 266                                      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
 267                }
 268                return chunk;
 269        }
 270}
 271
 272static unsigned long keyring_get_object_key_chunk(const void *object, int level)
 273{
 274        const struct key *key = keyring_ptr_to_key(object);
 275        return keyring_get_key_chunk(&key->index_key, level);
 276}
 277
 278static bool keyring_compare_object(const void *object, const void *data)
 279{
 280        const struct keyring_index_key *index_key = data;
 281        const struct key *key = keyring_ptr_to_key(object);
 282
 283        return key->index_key.type == index_key->type &&
 284                key->index_key.desc_len == index_key->desc_len &&
 285                memcmp(key->index_key.description, index_key->description,
 286                       index_key->desc_len) == 0;
 287}
 288
 289/*
 290 * Compare the index keys of a pair of objects and determine the bit position
 291 * at which they differ - if they differ.
 292 */
 293static int keyring_diff_objects(const void *object, const void *data)
 294{
 295        const struct key *key_a = keyring_ptr_to_key(object);
 296        const struct keyring_index_key *a = &key_a->index_key;
 297        const struct keyring_index_key *b = data;
 298        unsigned long seg_a, seg_b;
 299        int level, i;
 300
 301        level = 0;
 302        seg_a = hash_key_type_and_desc(a);
 303        seg_b = hash_key_type_and_desc(b);
 304        if ((seg_a ^ seg_b) != 0)
 305                goto differ;
 306
 307        /* The number of bits contributed by the hash is controlled by a
 308         * constant in the assoc_array headers.  Everything else thereafter we
 309         * can deal with as being machine word-size dependent.
 310         */
 311        level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
 312        seg_a = a->desc_len;
 313        seg_b = b->desc_len;
 314        if ((seg_a ^ seg_b) != 0)
 315                goto differ;
 316
 317        /* The next bit may not work on big endian */
 318        level++;
 319        seg_a = (unsigned long)a->type;
 320        seg_b = (unsigned long)b->type;
 321        if ((seg_a ^ seg_b) != 0)
 322                goto differ;
 323
 324        level += sizeof(unsigned long);
 325        if (a->desc_len == 0)
 326                goto same;
 327
 328        i = 0;
 329        if (((unsigned long)a->description | (unsigned long)b->description) &
 330            (sizeof(unsigned long) - 1)) {
 331                do {
 332                        seg_a = *(unsigned long *)(a->description + i);
 333                        seg_b = *(unsigned long *)(b->description + i);
 334                        if ((seg_a ^ seg_b) != 0)
 335                                goto differ_plus_i;
 336                        i += sizeof(unsigned long);
 337                } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
 338        }
 339
 340        for (; i < a->desc_len; i++) {
 341                seg_a = *(unsigned char *)(a->description + i);
 342                seg_b = *(unsigned char *)(b->description + i);
 343                if ((seg_a ^ seg_b) != 0)
 344                        goto differ_plus_i;
 345        }
 346
 347same:
 348        return -1;
 349
 350differ_plus_i:
 351        level += i;
 352differ:
 353        i = level * 8 + __ffs(seg_a ^ seg_b);
 354        return i;
 355}
 356
 357/*
 358 * Free an object after stripping the keyring flag off of the pointer.
 359 */
 360static void keyring_free_object(void *object)
 361{
 362        key_put(keyring_ptr_to_key(object));
 363}
 364
 365/*
 366 * Operations for keyring management by the index-tree routines.
 367 */
 368static const struct assoc_array_ops keyring_assoc_array_ops = {
 369        .get_key_chunk          = keyring_get_key_chunk,
 370        .get_object_key_chunk   = keyring_get_object_key_chunk,
 371        .compare_object         = keyring_compare_object,
 372        .diff_objects           = keyring_diff_objects,
 373        .free_object            = keyring_free_object,
 374};
 375
 376/*
 377 * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
 378 * and dispose of its data.
 379 *
 380 * The garbage collector detects the final key_put(), removes the keyring from
 381 * the serial number tree and then does RCU synchronisation before coming here,
 382 * so we shouldn't need to worry about code poking around here with the RCU
 383 * readlock held by this time.
 384 */
 385static void keyring_destroy(struct key *keyring)
 386{
 387        if (keyring->description) {
 388                write_lock(&keyring_name_lock);
 389
 390                if (keyring->name_link.next != NULL &&
 391                    !list_empty(&keyring->name_link))
 392                        list_del(&keyring->name_link);
 393
 394                write_unlock(&keyring_name_lock);
 395        }
 396
 397        if (keyring->restrict_link) {
 398                struct key_restriction *keyres = keyring->restrict_link;
 399
 400                key_put(keyres->key);
 401                kfree(keyres);
 402        }
 403
 404        assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
 405}
 406
 407/*
 408 * Describe a keyring for /proc.
 409 */
 410static void keyring_describe(const struct key *keyring, struct seq_file *m)
 411{
 412        if (keyring->description)
 413                seq_puts(m, keyring->description);
 414        else
 415                seq_puts(m, "[anon]");
 416
 417        if (key_is_positive(keyring)) {
 418                if (keyring->keys.nr_leaves_on_tree != 0)
 419                        seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
 420                else
 421                        seq_puts(m, ": empty");
 422        }
 423}
 424
 425struct keyring_read_iterator_context {
 426        size_t                  buflen;
 427        size_t                  count;
 428        key_serial_t __user     *buffer;
 429};
 430
 431static int keyring_read_iterator(const void *object, void *data)
 432{
 433        struct keyring_read_iterator_context *ctx = data;
 434        const struct key *key = keyring_ptr_to_key(object);
 435        int ret;
 436
 437        kenter("{%s,%d},,{%zu/%zu}",
 438               key->type->name, key->serial, ctx->count, ctx->buflen);
 439
 440        if (ctx->count >= ctx->buflen)
 441                return 1;
 442
 443        ret = put_user(key->serial, ctx->buffer);
 444        if (ret < 0)
 445                return ret;
 446        ctx->buffer++;
 447        ctx->count += sizeof(key->serial);
 448        return 0;
 449}
 450
 451/*
 452 * Read a list of key IDs from the keyring's contents in binary form
 453 *
 454 * The keyring's semaphore is read-locked by the caller.  This prevents someone
 455 * from modifying it under us - which could cause us to read key IDs multiple
 456 * times.
 457 */
 458static long keyring_read(const struct key *keyring,
 459                         char __user *buffer, size_t buflen)
 460{
 461        struct keyring_read_iterator_context ctx;
 462        long ret;
 463
 464        kenter("{%d},,%zu", key_serial(keyring), buflen);
 465
 466        if (buflen & (sizeof(key_serial_t) - 1))
 467                return -EINVAL;
 468
 469        /* Copy as many key IDs as fit into the buffer */
 470        if (buffer && buflen) {
 471                ctx.buffer = (key_serial_t __user *)buffer;
 472                ctx.buflen = buflen;
 473                ctx.count = 0;
 474                ret = assoc_array_iterate(&keyring->keys,
 475                                          keyring_read_iterator, &ctx);
 476                if (ret < 0) {
 477                        kleave(" = %ld [iterate]", ret);
 478                        return ret;
 479                }
 480        }
 481
 482        /* Return the size of the buffer needed */
 483        ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
 484        if (ret <= buflen)
 485                kleave("= %ld [ok]", ret);
 486        else
 487                kleave("= %ld [buffer too small]", ret);
 488        return ret;
 489}
 490
 491/*
 492 * Allocate a keyring and link into the destination keyring.
 493 */
 494struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
 495                          const struct cred *cred, key_perm_t perm,
 496                          unsigned long flags,
 497                          struct key_restriction *restrict_link,
 498                          struct key *dest)
 499{
 500        struct key *keyring;
 501        int ret;
 502
 503        keyring = key_alloc(&key_type_keyring, description,
 504                            uid, gid, cred, perm, flags, restrict_link);
 505        if (!IS_ERR(keyring)) {
 506                ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
 507                if (ret < 0) {
 508                        key_put(keyring);
 509                        keyring = ERR_PTR(ret);
 510                }
 511        }
 512
 513        return keyring;
 514}
 515EXPORT_SYMBOL(keyring_alloc);
 516
 517/**
 518 * restrict_link_reject - Give -EPERM to restrict link
 519 * @keyring: The keyring being added to.
 520 * @type: The type of key being added.
 521 * @payload: The payload of the key intended to be added.
 522 * @data: Additional data for evaluating restriction.
 523 *
 524 * Reject the addition of any links to a keyring.  It can be overridden by
 525 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
 526 * adding a key to a keyring.
 527 *
 528 * This is meant to be stored in a key_restriction structure which is passed
 529 * in the restrict_link parameter to keyring_alloc().
 530 */
 531int restrict_link_reject(struct key *keyring,
 532                         const struct key_type *type,
 533                         const union key_payload *payload,
 534                         struct key *restriction_key)
 535{
 536        return -EPERM;
 537}
 538
 539/*
 540 * By default, we keys found by getting an exact match on their descriptions.
 541 */
 542bool key_default_cmp(const struct key *key,
 543                     const struct key_match_data *match_data)
 544{
 545        return strcmp(key->description, match_data->raw_data) == 0;
 546}
 547
 548/*
 549 * Iteration function to consider each key found.
 550 */
 551static int keyring_search_iterator(const void *object, void *iterator_data)
 552{
 553        struct keyring_search_context *ctx = iterator_data;
 554        const struct key *key = keyring_ptr_to_key(object);
 555        unsigned long kflags = READ_ONCE(key->flags);
 556        short state = READ_ONCE(key->state);
 557
 558        kenter("{%d}", key->serial);
 559
 560        /* ignore keys not of this type */
 561        if (key->type != ctx->index_key.type) {
 562                kleave(" = 0 [!type]");
 563                return 0;
 564        }
 565
 566        /* skip invalidated, revoked and expired keys */
 567        if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 568                time64_t expiry = READ_ONCE(key->expiry);
 569
 570                if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
 571                              (1 << KEY_FLAG_REVOKED))) {
 572                        ctx->result = ERR_PTR(-EKEYREVOKED);
 573                        kleave(" = %d [invrev]", ctx->skipped_ret);
 574                        goto skipped;
 575                }
 576
 577                if (expiry && ctx->now >= expiry) {
 578                        if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
 579                                ctx->result = ERR_PTR(-EKEYEXPIRED);
 580                        kleave(" = %d [expire]", ctx->skipped_ret);
 581                        goto skipped;
 582                }
 583        }
 584
 585        /* keys that don't match */
 586        if (!ctx->match_data.cmp(key, &ctx->match_data)) {
 587                kleave(" = 0 [!match]");
 588                return 0;
 589        }
 590
 591        /* key must have search permissions */
 592        if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 593            key_task_permission(make_key_ref(key, ctx->possessed),
 594                                ctx->cred, KEY_NEED_SEARCH) < 0) {
 595                ctx->result = ERR_PTR(-EACCES);
 596                kleave(" = %d [!perm]", ctx->skipped_ret);
 597                goto skipped;
 598        }
 599
 600        if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 601                /* we set a different error code if we pass a negative key */
 602                if (state < 0) {
 603                        ctx->result = ERR_PTR(state);
 604                        kleave(" = %d [neg]", ctx->skipped_ret);
 605                        goto skipped;
 606                }
 607        }
 608
 609        /* Found */
 610        ctx->result = make_key_ref(key, ctx->possessed);
 611        kleave(" = 1 [found]");
 612        return 1;
 613
 614skipped:
 615        return ctx->skipped_ret;
 616}
 617
 618/*
 619 * Search inside a keyring for a key.  We can search by walking to it
 620 * directly based on its index-key or we can iterate over the entire
 621 * tree looking for it, based on the match function.
 622 */
 623static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
 624{
 625        if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
 626                const void *object;
 627
 628                object = assoc_array_find(&keyring->keys,
 629                                          &keyring_assoc_array_ops,
 630                                          &ctx->index_key);
 631                return object ? ctx->iterator(object, ctx) : 0;
 632        }
 633        return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
 634}
 635
 636/*
 637 * Search a tree of keyrings that point to other keyrings up to the maximum
 638 * depth.
 639 */
 640static bool search_nested_keyrings(struct key *keyring,
 641                                   struct keyring_search_context *ctx)
 642{
 643        struct {
 644                struct key *keyring;
 645                struct assoc_array_node *node;
 646                int slot;
 647        } stack[KEYRING_SEARCH_MAX_DEPTH];
 648
 649        struct assoc_array_shortcut *shortcut;
 650        struct assoc_array_node *node;
 651        struct assoc_array_ptr *ptr;
 652        struct key *key;
 653        int sp = 0, slot;
 654
 655        kenter("{%d},{%s,%s}",
 656               keyring->serial,
 657               ctx->index_key.type->name,
 658               ctx->index_key.description);
 659
 660#define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
 661        BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
 662               (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
 663
 664        if (ctx->index_key.description)
 665                ctx->index_key.desc_len = strlen(ctx->index_key.description);
 666
 667        /* Check to see if this top-level keyring is what we are looking for
 668         * and whether it is valid or not.
 669         */
 670        if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
 671            keyring_compare_object(keyring, &ctx->index_key)) {
 672                ctx->skipped_ret = 2;
 673                switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
 674                case 1:
 675                        goto found;
 676                case 2:
 677                        return false;
 678                default:
 679                        break;
 680                }
 681        }
 682
 683        ctx->skipped_ret = 0;
 684
 685        /* Start processing a new keyring */
 686descend_to_keyring:
 687        kdebug("descend to %d", keyring->serial);
 688        if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
 689                              (1 << KEY_FLAG_REVOKED)))
 690                goto not_this_keyring;
 691
 692        /* Search through the keys in this keyring before its searching its
 693         * subtrees.
 694         */
 695        if (search_keyring(keyring, ctx))
 696                goto found;
 697
 698        /* Then manually iterate through the keyrings nested in this one.
 699         *
 700         * Start from the root node of the index tree.  Because of the way the
 701         * hash function has been set up, keyrings cluster on the leftmost
 702         * branch of the root node (root slot 0) or in the root node itself.
 703         * Non-keyrings avoid the leftmost branch of the root entirely (root
 704         * slots 1-15).
 705         */
 706        ptr = READ_ONCE(keyring->keys.root);
 707        if (!ptr)
 708                goto not_this_keyring;
 709
 710        if (assoc_array_ptr_is_shortcut(ptr)) {
 711                /* If the root is a shortcut, either the keyring only contains
 712                 * keyring pointers (everything clusters behind root slot 0) or
 713                 * doesn't contain any keyring pointers.
 714                 */
 715                shortcut = assoc_array_ptr_to_shortcut(ptr);
 716                if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
 717                        goto not_this_keyring;
 718
 719                ptr = READ_ONCE(shortcut->next_node);
 720                node = assoc_array_ptr_to_node(ptr);
 721                goto begin_node;
 722        }
 723
 724        node = assoc_array_ptr_to_node(ptr);
 725        ptr = node->slots[0];
 726        if (!assoc_array_ptr_is_meta(ptr))
 727                goto begin_node;
 728
 729descend_to_node:
 730        /* Descend to a more distal node in this keyring's content tree and go
 731         * through that.
 732         */
 733        kdebug("descend");
 734        if (assoc_array_ptr_is_shortcut(ptr)) {
 735                shortcut = assoc_array_ptr_to_shortcut(ptr);
 736                ptr = READ_ONCE(shortcut->next_node);
 737                BUG_ON(!assoc_array_ptr_is_node(ptr));
 738        }
 739        node = assoc_array_ptr_to_node(ptr);
 740
 741begin_node:
 742        kdebug("begin_node");
 743        slot = 0;
 744ascend_to_node:
 745        /* Go through the slots in a node */
 746        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 747                ptr = READ_ONCE(node->slots[slot]);
 748
 749                if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
 750                        goto descend_to_node;
 751
 752                if (!keyring_ptr_is_keyring(ptr))
 753                        continue;
 754
 755                key = keyring_ptr_to_key(ptr);
 756
 757                if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
 758                        if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
 759                                ctx->result = ERR_PTR(-ELOOP);
 760                                return false;
 761                        }
 762                        goto not_this_keyring;
 763                }
 764
 765                /* Search a nested keyring */
 766                if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 767                    key_task_permission(make_key_ref(key, ctx->possessed),
 768                                        ctx->cred, KEY_NEED_SEARCH) < 0)
 769                        continue;
 770
 771                /* stack the current position */
 772                stack[sp].keyring = keyring;
 773                stack[sp].node = node;
 774                stack[sp].slot = slot;
 775                sp++;
 776
 777                /* begin again with the new keyring */
 778                keyring = key;
 779                goto descend_to_keyring;
 780        }
 781
 782        /* We've dealt with all the slots in the current node, so now we need
 783         * to ascend to the parent and continue processing there.
 784         */
 785        ptr = READ_ONCE(node->back_pointer);
 786        slot = node->parent_slot;
 787
 788        if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
 789                shortcut = assoc_array_ptr_to_shortcut(ptr);
 790                ptr = READ_ONCE(shortcut->back_pointer);
 791                slot = shortcut->parent_slot;
 792        }
 793        if (!ptr)
 794                goto not_this_keyring;
 795        node = assoc_array_ptr_to_node(ptr);
 796        slot++;
 797
 798        /* If we've ascended to the root (zero backpointer), we must have just
 799         * finished processing the leftmost branch rather than the root slots -
 800         * so there can't be any more keyrings for us to find.
 801         */
 802        if (node->back_pointer) {
 803                kdebug("ascend %d", slot);
 804                goto ascend_to_node;
 805        }
 806
 807        /* The keyring we're looking at was disqualified or didn't contain a
 808         * matching key.
 809         */
 810not_this_keyring:
 811        kdebug("not_this_keyring %d", sp);
 812        if (sp <= 0) {
 813                kleave(" = false");
 814                return false;
 815        }
 816
 817        /* Resume the processing of a keyring higher up in the tree */
 818        sp--;
 819        keyring = stack[sp].keyring;
 820        node = stack[sp].node;
 821        slot = stack[sp].slot + 1;
 822        kdebug("ascend to %d [%d]", keyring->serial, slot);
 823        goto ascend_to_node;
 824
 825        /* We found a viable match */
 826found:
 827        key = key_ref_to_ptr(ctx->result);
 828        key_check(key);
 829        if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
 830                key->last_used_at = ctx->now;
 831                keyring->last_used_at = ctx->now;
 832                while (sp > 0)
 833                        stack[--sp].keyring->last_used_at = ctx->now;
 834        }
 835        kleave(" = true");
 836        return true;
 837}
 838
 839/**
 840 * keyring_search_aux - Search a keyring tree for a key matching some criteria
 841 * @keyring_ref: A pointer to the keyring with possession indicator.
 842 * @ctx: The keyring search context.
 843 *
 844 * Search the supplied keyring tree for a key that matches the criteria given.
 845 * The root keyring and any linked keyrings must grant Search permission to the
 846 * caller to be searchable and keys can only be found if they too grant Search
 847 * to the caller. The possession flag on the root keyring pointer controls use
 848 * of the possessor bits in permissions checking of the entire tree.  In
 849 * addition, the LSM gets to forbid keyring searches and key matches.
 850 *
 851 * The search is performed as a breadth-then-depth search up to the prescribed
 852 * limit (KEYRING_SEARCH_MAX_DEPTH).
 853 *
 854 * Keys are matched to the type provided and are then filtered by the match
 855 * function, which is given the description to use in any way it sees fit.  The
 856 * match function may use any attributes of a key that it wishes to to
 857 * determine the match.  Normally the match function from the key type would be
 858 * used.
 859 *
 860 * RCU can be used to prevent the keyring key lists from disappearing without
 861 * the need to take lots of locks.
 862 *
 863 * Returns a pointer to the found key and increments the key usage count if
 864 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
 865 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
 866 * specified keyring wasn't a keyring.
 867 *
 868 * In the case of a successful return, the possession attribute from
 869 * @keyring_ref is propagated to the returned key reference.
 870 */
 871key_ref_t keyring_search_aux(key_ref_t keyring_ref,
 872                             struct keyring_search_context *ctx)
 873{
 874        struct key *keyring;
 875        long err;
 876
 877        ctx->iterator = keyring_search_iterator;
 878        ctx->possessed = is_key_possessed(keyring_ref);
 879        ctx->result = ERR_PTR(-EAGAIN);
 880
 881        keyring = key_ref_to_ptr(keyring_ref);
 882        key_check(keyring);
 883
 884        if (keyring->type != &key_type_keyring)
 885                return ERR_PTR(-ENOTDIR);
 886
 887        if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
 888                err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
 889                if (err < 0)
 890                        return ERR_PTR(err);
 891        }
 892
 893        rcu_read_lock();
 894        ctx->now = ktime_get_real_seconds();
 895        if (search_nested_keyrings(keyring, ctx))
 896                __key_get(key_ref_to_ptr(ctx->result));
 897        rcu_read_unlock();
 898        return ctx->result;
 899}
 900
 901/**
 902 * keyring_search - Search the supplied keyring tree for a matching key
 903 * @keyring: The root of the keyring tree to be searched.
 904 * @type: The type of keyring we want to find.
 905 * @description: The name of the keyring we want to find.
 906 *
 907 * As keyring_search_aux() above, but using the current task's credentials and
 908 * type's default matching function and preferred search method.
 909 */
 910key_ref_t keyring_search(key_ref_t keyring,
 911                         struct key_type *type,
 912                         const char *description)
 913{
 914        struct keyring_search_context ctx = {
 915                .index_key.type         = type,
 916                .index_key.description  = description,
 917                .cred                   = current_cred(),
 918                .match_data.cmp         = key_default_cmp,
 919                .match_data.raw_data    = description,
 920                .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
 921                .flags                  = KEYRING_SEARCH_DO_STATE_CHECK,
 922        };
 923        key_ref_t key;
 924        int ret;
 925
 926        if (type->match_preparse) {
 927                ret = type->match_preparse(&ctx.match_data);
 928                if (ret < 0)
 929                        return ERR_PTR(ret);
 930        }
 931
 932        key = keyring_search_aux(keyring, &ctx);
 933
 934        if (type->match_free)
 935                type->match_free(&ctx.match_data);
 936        return key;
 937}
 938EXPORT_SYMBOL(keyring_search);
 939
 940static struct key_restriction *keyring_restriction_alloc(
 941        key_restrict_link_func_t check)
 942{
 943        struct key_restriction *keyres =
 944                kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
 945
 946        if (!keyres)
 947                return ERR_PTR(-ENOMEM);
 948
 949        keyres->check = check;
 950
 951        return keyres;
 952}
 953
 954/*
 955 * Semaphore to serialise restriction setup to prevent reference count
 956 * cycles through restriction key pointers.
 957 */
 958static DECLARE_RWSEM(keyring_serialise_restrict_sem);
 959
 960/*
 961 * Check for restriction cycles that would prevent keyring garbage collection.
 962 * keyring_serialise_restrict_sem must be held.
 963 */
 964static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
 965                                             struct key_restriction *keyres)
 966{
 967        while (keyres && keyres->key &&
 968               keyres->key->type == &key_type_keyring) {
 969                if (keyres->key == dest_keyring)
 970                        return true;
 971
 972                keyres = keyres->key->restrict_link;
 973        }
 974
 975        return false;
 976}
 977
 978/**
 979 * keyring_restrict - Look up and apply a restriction to a keyring
 980 *
 981 * @keyring: The keyring to be restricted
 982 * @restriction: The restriction options to apply to the keyring
 983 */
 984int keyring_restrict(key_ref_t keyring_ref, const char *type,
 985                     const char *restriction)
 986{
 987        struct key *keyring;
 988        struct key_type *restrict_type = NULL;
 989        struct key_restriction *restrict_link;
 990        int ret = 0;
 991
 992        keyring = key_ref_to_ptr(keyring_ref);
 993        key_check(keyring);
 994
 995        if (keyring->type != &key_type_keyring)
 996                return -ENOTDIR;
 997
 998        if (!type) {
 999                restrict_link = keyring_restriction_alloc(restrict_link_reject);
1000        } else {
1001                restrict_type = key_type_lookup(type);
1002
1003                if (IS_ERR(restrict_type))
1004                        return PTR_ERR(restrict_type);
1005
1006                if (!restrict_type->lookup_restriction) {
1007                        ret = -ENOENT;
1008                        goto error;
1009                }
1010
1011                restrict_link = restrict_type->lookup_restriction(restriction);
1012        }
1013
1014        if (IS_ERR(restrict_link)) {
1015                ret = PTR_ERR(restrict_link);
1016                goto error;
1017        }
1018
1019        down_write(&keyring->sem);
1020        down_write(&keyring_serialise_restrict_sem);
1021
1022        if (keyring->restrict_link)
1023                ret = -EEXIST;
1024        else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1025                ret = -EDEADLK;
1026        else
1027                keyring->restrict_link = restrict_link;
1028
1029        up_write(&keyring_serialise_restrict_sem);
1030        up_write(&keyring->sem);
1031
1032        if (ret < 0) {
1033                key_put(restrict_link->key);
1034                kfree(restrict_link);
1035        }
1036
1037error:
1038        if (restrict_type)
1039                key_type_put(restrict_type);
1040
1041        return ret;
1042}
1043EXPORT_SYMBOL(keyring_restrict);
1044
1045/*
1046 * Search the given keyring for a key that might be updated.
1047 *
1048 * The caller must guarantee that the keyring is a keyring and that the
1049 * permission is granted to modify the keyring as no check is made here.  The
1050 * caller must also hold a lock on the keyring semaphore.
1051 *
1052 * Returns a pointer to the found key with usage count incremented if
1053 * successful and returns NULL if not found.  Revoked and invalidated keys are
1054 * skipped over.
1055 *
1056 * If successful, the possession indicator is propagated from the keyring ref
1057 * to the returned key reference.
1058 */
1059key_ref_t find_key_to_update(key_ref_t keyring_ref,
1060                             const struct keyring_index_key *index_key)
1061{
1062        struct key *keyring, *key;
1063        const void *object;
1064
1065        keyring = key_ref_to_ptr(keyring_ref);
1066
1067        kenter("{%d},{%s,%s}",
1068               keyring->serial, index_key->type->name, index_key->description);
1069
1070        object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1071                                  index_key);
1072
1073        if (object)
1074                goto found;
1075
1076        kleave(" = NULL");
1077        return NULL;
1078
1079found:
1080        key = keyring_ptr_to_key(object);
1081        if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1082                          (1 << KEY_FLAG_REVOKED))) {
1083                kleave(" = NULL [x]");
1084                return NULL;
1085        }
1086        __key_get(key);
1087        kleave(" = {%d}", key->serial);
1088        return make_key_ref(key, is_key_possessed(keyring_ref));
1089}
1090
1091/*
1092 * Find a keyring with the specified name.
1093 *
1094 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1095 * user in the current user namespace are considered.  If @uid_keyring is %true,
1096 * the keyring additionally must have been allocated as a user or user session
1097 * keyring; otherwise, it must grant Search permission directly to the caller.
1098 *
1099 * Returns a pointer to the keyring with the keyring's refcount having being
1100 * incremented on success.  -ENOKEY is returned if a key could not be found.
1101 */
1102struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1103{
1104        struct key *keyring;
1105        int bucket;
1106
1107        if (!name)
1108                return ERR_PTR(-EINVAL);
1109
1110        bucket = keyring_hash(name);
1111
1112        read_lock(&keyring_name_lock);
1113
1114        if (keyring_name_hash[bucket].next) {
1115                /* search this hash bucket for a keyring with a matching name
1116                 * that's readable and that hasn't been revoked */
1117                list_for_each_entry(keyring,
1118                                    &keyring_name_hash[bucket],
1119                                    name_link
1120                                    ) {
1121                        if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1122                                continue;
1123
1124                        if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1125                                continue;
1126
1127                        if (strcmp(keyring->description, name) != 0)
1128                                continue;
1129
1130                        if (uid_keyring) {
1131                                if (!test_bit(KEY_FLAG_UID_KEYRING,
1132                                              &keyring->flags))
1133                                        continue;
1134                        } else {
1135                                if (key_permission(make_key_ref(keyring, 0),
1136                                                   KEY_NEED_SEARCH) < 0)
1137                                        continue;
1138                        }
1139
1140                        /* we've got a match but we might end up racing with
1141                         * key_cleanup() if the keyring is currently 'dead'
1142                         * (ie. it has a zero usage count) */
1143                        if (!refcount_inc_not_zero(&keyring->usage))
1144                                continue;
1145                        keyring->last_used_at = ktime_get_real_seconds();
1146                        goto out;
1147                }
1148        }
1149
1150        keyring = ERR_PTR(-ENOKEY);
1151out:
1152        read_unlock(&keyring_name_lock);
1153        return keyring;
1154}
1155
1156static int keyring_detect_cycle_iterator(const void *object,
1157                                         void *iterator_data)
1158{
1159        struct keyring_search_context *ctx = iterator_data;
1160        const struct key *key = keyring_ptr_to_key(object);
1161
1162        kenter("{%d}", key->serial);
1163
1164        /* We might get a keyring with matching index-key that is nonetheless a
1165         * different keyring. */
1166        if (key != ctx->match_data.raw_data)
1167                return 0;
1168
1169        ctx->result = ERR_PTR(-EDEADLK);
1170        return 1;
1171}
1172
1173/*
1174 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1175 * tree A at the topmost level (ie: as a direct child of A).
1176 *
1177 * Since we are adding B to A at the top level, checking for cycles should just
1178 * be a matter of seeing if node A is somewhere in tree B.
1179 */
1180static int keyring_detect_cycle(struct key *A, struct key *B)
1181{
1182        struct keyring_search_context ctx = {
1183                .index_key              = A->index_key,
1184                .match_data.raw_data    = A,
1185                .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1186                .iterator               = keyring_detect_cycle_iterator,
1187                .flags                  = (KEYRING_SEARCH_NO_STATE_CHECK |
1188                                           KEYRING_SEARCH_NO_UPDATE_TIME |
1189                                           KEYRING_SEARCH_NO_CHECK_PERM |
1190                                           KEYRING_SEARCH_DETECT_TOO_DEEP),
1191        };
1192
1193        rcu_read_lock();
1194        search_nested_keyrings(B, &ctx);
1195        rcu_read_unlock();
1196        return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1197}
1198
1199/*
1200 * Preallocate memory so that a key can be linked into to a keyring.
1201 */
1202int __key_link_begin(struct key *keyring,
1203                     const struct keyring_index_key *index_key,
1204                     struct assoc_array_edit **_edit)
1205        __acquires(&keyring->sem)
1206        __acquires(&keyring_serialise_link_sem)
1207{
1208        struct assoc_array_edit *edit;
1209        int ret;
1210
1211        kenter("%d,%s,%s,",
1212               keyring->serial, index_key->type->name, index_key->description);
1213
1214        BUG_ON(index_key->desc_len == 0);
1215
1216        if (keyring->type != &key_type_keyring)
1217                return -ENOTDIR;
1218
1219        down_write(&keyring->sem);
1220
1221        ret = -EKEYREVOKED;
1222        if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1223                goto error_krsem;
1224
1225        /* serialise link/link calls to prevent parallel calls causing a cycle
1226         * when linking two keyring in opposite orders */
1227        if (index_key->type == &key_type_keyring)
1228                down_write(&keyring_serialise_link_sem);
1229
1230        /* Create an edit script that will insert/replace the key in the
1231         * keyring tree.
1232         */
1233        edit = assoc_array_insert(&keyring->keys,
1234                                  &keyring_assoc_array_ops,
1235                                  index_key,
1236                                  NULL);
1237        if (IS_ERR(edit)) {
1238                ret = PTR_ERR(edit);
1239                goto error_sem;
1240        }
1241
1242        /* If we're not replacing a link in-place then we're going to need some
1243         * extra quota.
1244         */
1245        if (!edit->dead_leaf) {
1246                ret = key_payload_reserve(keyring,
1247                                          keyring->datalen + KEYQUOTA_LINK_BYTES);
1248                if (ret < 0)
1249                        goto error_cancel;
1250        }
1251
1252        *_edit = edit;
1253        kleave(" = 0");
1254        return 0;
1255
1256error_cancel:
1257        assoc_array_cancel_edit(edit);
1258error_sem:
1259        if (index_key->type == &key_type_keyring)
1260                up_write(&keyring_serialise_link_sem);
1261error_krsem:
1262        up_write(&keyring->sem);
1263        kleave(" = %d", ret);
1264        return ret;
1265}
1266
1267/*
1268 * Check already instantiated keys aren't going to be a problem.
1269 *
1270 * The caller must have called __key_link_begin(). Don't need to call this for
1271 * keys that were created since __key_link_begin() was called.
1272 */
1273int __key_link_check_live_key(struct key *keyring, struct key *key)
1274{
1275        if (key->type == &key_type_keyring)
1276                /* check that we aren't going to create a cycle by linking one
1277                 * keyring to another */
1278                return keyring_detect_cycle(keyring, key);
1279        return 0;
1280}
1281
1282/*
1283 * Link a key into to a keyring.
1284 *
1285 * Must be called with __key_link_begin() having being called.  Discards any
1286 * already extant link to matching key if there is one, so that each keyring
1287 * holds at most one link to any given key of a particular type+description
1288 * combination.
1289 */
1290void __key_link(struct key *key, struct assoc_array_edit **_edit)
1291{
1292        __key_get(key);
1293        assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1294        assoc_array_apply_edit(*_edit);
1295        *_edit = NULL;
1296}
1297
1298/*
1299 * Finish linking a key into to a keyring.
1300 *
1301 * Must be called with __key_link_begin() having being called.
1302 */
1303void __key_link_end(struct key *keyring,
1304                    const struct keyring_index_key *index_key,
1305                    struct assoc_array_edit *edit)
1306        __releases(&keyring->sem)
1307        __releases(&keyring_serialise_link_sem)
1308{
1309        BUG_ON(index_key->type == NULL);
1310        kenter("%d,%s,", keyring->serial, index_key->type->name);
1311
1312        if (index_key->type == &key_type_keyring)
1313                up_write(&keyring_serialise_link_sem);
1314
1315        if (edit) {
1316                if (!edit->dead_leaf) {
1317                        key_payload_reserve(keyring,
1318                                keyring->datalen - KEYQUOTA_LINK_BYTES);
1319                }
1320                assoc_array_cancel_edit(edit);
1321        }
1322        up_write(&keyring->sem);
1323}
1324
1325/*
1326 * Check addition of keys to restricted keyrings.
1327 */
1328static int __key_link_check_restriction(struct key *keyring, struct key *key)
1329{
1330        if (!keyring->restrict_link || !keyring->restrict_link->check)
1331                return 0;
1332        return keyring->restrict_link->check(keyring, key->type, &key->payload,
1333                                             keyring->restrict_link->key);
1334}
1335
1336/**
1337 * key_link - Link a key to a keyring
1338 * @keyring: The keyring to make the link in.
1339 * @key: The key to link to.
1340 *
1341 * Make a link in a keyring to a key, such that the keyring holds a reference
1342 * on that key and the key can potentially be found by searching that keyring.
1343 *
1344 * This function will write-lock the keyring's semaphore and will consume some
1345 * of the user's key data quota to hold the link.
1346 *
1347 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1348 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1349 * full, -EDQUOT if there is insufficient key data quota remaining to add
1350 * another link or -ENOMEM if there's insufficient memory.
1351 *
1352 * It is assumed that the caller has checked that it is permitted for a link to
1353 * be made (the keyring should have Write permission and the key Link
1354 * permission).
1355 */
1356int key_link(struct key *keyring, struct key *key)
1357{
1358        struct assoc_array_edit *edit;
1359        int ret;
1360
1361        kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1362
1363        key_check(keyring);
1364        key_check(key);
1365
1366        ret = __key_link_begin(keyring, &key->index_key, &edit);
1367        if (ret == 0) {
1368                kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1369                ret = __key_link_check_restriction(keyring, key);
1370                if (ret == 0)
1371                        ret = __key_link_check_live_key(keyring, key);
1372                if (ret == 0)
1373                        __key_link(key, &edit);
1374                __key_link_end(keyring, &key->index_key, edit);
1375        }
1376
1377        kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1378        return ret;
1379}
1380EXPORT_SYMBOL(key_link);
1381
1382/**
1383 * key_unlink - Unlink the first link to a key from a keyring.
1384 * @keyring: The keyring to remove the link from.
1385 * @key: The key the link is to.
1386 *
1387 * Remove a link from a keyring to a key.
1388 *
1389 * This function will write-lock the keyring's semaphore.
1390 *
1391 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1392 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1393 * memory.
1394 *
1395 * It is assumed that the caller has checked that it is permitted for a link to
1396 * be removed (the keyring should have Write permission; no permissions are
1397 * required on the key).
1398 */
1399int key_unlink(struct key *keyring, struct key *key)
1400{
1401        struct assoc_array_edit *edit;
1402        int ret;
1403
1404        key_check(keyring);
1405        key_check(key);
1406
1407        if (keyring->type != &key_type_keyring)
1408                return -ENOTDIR;
1409
1410        down_write(&keyring->sem);
1411
1412        edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1413                                  &key->index_key);
1414        if (IS_ERR(edit)) {
1415                ret = PTR_ERR(edit);
1416                goto error;
1417        }
1418        ret = -ENOENT;
1419        if (edit == NULL)
1420                goto error;
1421
1422        assoc_array_apply_edit(edit);
1423        key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1424        ret = 0;
1425
1426error:
1427        up_write(&keyring->sem);
1428        return ret;
1429}
1430EXPORT_SYMBOL(key_unlink);
1431
1432/**
1433 * keyring_clear - Clear a keyring
1434 * @keyring: The keyring to clear.
1435 *
1436 * Clear the contents of the specified keyring.
1437 *
1438 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1439 */
1440int keyring_clear(struct key *keyring)
1441{
1442        struct assoc_array_edit *edit;
1443        int ret;
1444
1445        if (keyring->type != &key_type_keyring)
1446                return -ENOTDIR;
1447
1448        down_write(&keyring->sem);
1449
1450        edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1451        if (IS_ERR(edit)) {
1452                ret = PTR_ERR(edit);
1453        } else {
1454                if (edit)
1455                        assoc_array_apply_edit(edit);
1456                key_payload_reserve(keyring, 0);
1457                ret = 0;
1458        }
1459
1460        up_write(&keyring->sem);
1461        return ret;
1462}
1463EXPORT_SYMBOL(keyring_clear);
1464
1465/*
1466 * Dispose of the links from a revoked keyring.
1467 *
1468 * This is called with the key sem write-locked.
1469 */
1470static void keyring_revoke(struct key *keyring)
1471{
1472        struct assoc_array_edit *edit;
1473
1474        edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1475        if (!IS_ERR(edit)) {
1476                if (edit)
1477                        assoc_array_apply_edit(edit);
1478                key_payload_reserve(keyring, 0);
1479        }
1480}
1481
1482static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1483{
1484        struct key *key = keyring_ptr_to_key(object);
1485        time64_t *limit = iterator_data;
1486
1487        if (key_is_dead(key, *limit))
1488                return false;
1489        key_get(key);
1490        return true;
1491}
1492
1493static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1494{
1495        const struct key *key = keyring_ptr_to_key(object);
1496        time64_t *limit = iterator_data;
1497
1498        key_check(key);
1499        return key_is_dead(key, *limit);
1500}
1501
1502/*
1503 * Garbage collect pointers from a keyring.
1504 *
1505 * Not called with any locks held.  The keyring's key struct will not be
1506 * deallocated under us as only our caller may deallocate it.
1507 */
1508void keyring_gc(struct key *keyring, time64_t limit)
1509{
1510        int result;
1511
1512        kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1513
1514        if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1515                              (1 << KEY_FLAG_REVOKED)))
1516                goto dont_gc;
1517
1518        /* scan the keyring looking for dead keys */
1519        rcu_read_lock();
1520        result = assoc_array_iterate(&keyring->keys,
1521                                     keyring_gc_check_iterator, &limit);
1522        rcu_read_unlock();
1523        if (result == true)
1524                goto do_gc;
1525
1526dont_gc:
1527        kleave(" [no gc]");
1528        return;
1529
1530do_gc:
1531        down_write(&keyring->sem);
1532        assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1533                       keyring_gc_select_iterator, &limit);
1534        up_write(&keyring->sem);
1535        kleave(" [gc]");
1536}
1537
1538/*
1539 * Garbage collect restriction pointers from a keyring.
1540 *
1541 * Keyring restrictions are associated with a key type, and must be cleaned
1542 * up if the key type is unregistered. The restriction is altered to always
1543 * reject additional keys so a keyring cannot be opened up by unregistering
1544 * a key type.
1545 *
1546 * Not called with any keyring locks held. The keyring's key struct will not
1547 * be deallocated under us as only our caller may deallocate it.
1548 *
1549 * The caller is required to hold key_types_sem and dead_type->sem. This is
1550 * fulfilled by key_gc_keytype() holding the locks on behalf of
1551 * key_garbage_collector(), which it invokes on a workqueue.
1552 */
1553void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1554{
1555        struct key_restriction *keyres;
1556
1557        kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1558
1559        /*
1560         * keyring->restrict_link is only assigned at key allocation time
1561         * or with the key type locked, so the only values that could be
1562         * concurrently assigned to keyring->restrict_link are for key
1563         * types other than dead_type. Given this, it's ok to check
1564         * the key type before acquiring keyring->sem.
1565         */
1566        if (!dead_type || !keyring->restrict_link ||
1567            keyring->restrict_link->keytype != dead_type) {
1568                kleave(" [no restriction gc]");
1569                return;
1570        }
1571
1572        /* Lock the keyring to ensure that a link is not in progress */
1573        down_write(&keyring->sem);
1574
1575        keyres = keyring->restrict_link;
1576
1577        keyres->check = restrict_link_reject;
1578
1579        key_put(keyres->key);
1580        keyres->key = NULL;
1581        keyres->keytype = NULL;
1582
1583        up_write(&keyring->sem);
1584
1585        kleave(" [restriction gc]");
1586}
1587