linux/security/selinux/avc.c
<<
>>
Prefs
   1/*
   2 * Implementation of the kernel access vector cache (AVC).
   3 *
   4 * Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   5 *           James Morris <jmorris@redhat.com>
   6 *
   7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
   8 *      Replaced the avc_lock spinlock by RCU.
   9 *
  10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  11 *
  12 *      This program is free software; you can redistribute it and/or modify
  13 *      it under the terms of the GNU General Public License version 2,
  14 *      as published by the Free Software Foundation.
  15 */
  16#include <linux/types.h>
  17#include <linux/stddef.h>
  18#include <linux/kernel.h>
  19#include <linux/slab.h>
  20#include <linux/fs.h>
  21#include <linux/dcache.h>
  22#include <linux/init.h>
  23#include <linux/skbuff.h>
  24#include <linux/percpu.h>
  25#include <linux/list.h>
  26#include <net/sock.h>
  27#include <linux/un.h>
  28#include <net/af_unix.h>
  29#include <linux/ip.h>
  30#include <linux/audit.h>
  31#include <linux/ipv6.h>
  32#include <net/ipv6.h>
  33#include "avc.h"
  34#include "avc_ss.h"
  35#include "classmap.h"
  36
  37#define AVC_CACHE_SLOTS                 512
  38#define AVC_DEF_CACHE_THRESHOLD         512
  39#define AVC_CACHE_RECLAIM               16
  40
  41#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  42#define avc_cache_stats_incr(field)     this_cpu_inc(avc_cache_stats.field)
  43#else
  44#define avc_cache_stats_incr(field)     do {} while (0)
  45#endif
  46
  47struct avc_entry {
  48        u32                     ssid;
  49        u32                     tsid;
  50        u16                     tclass;
  51        struct av_decision      avd;
  52        struct avc_xperms_node  *xp_node;
  53};
  54
  55struct avc_node {
  56        struct avc_entry        ae;
  57        struct hlist_node       list; /* anchored in avc_cache->slots[i] */
  58        struct rcu_head         rhead;
  59};
  60
  61struct avc_xperms_decision_node {
  62        struct extended_perms_decision xpd;
  63        struct list_head xpd_list; /* list of extended_perms_decision */
  64};
  65
  66struct avc_xperms_node {
  67        struct extended_perms xp;
  68        struct list_head xpd_head; /* list head of extended_perms_decision */
  69};
  70
  71struct avc_cache {
  72        struct hlist_head       slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
  73        spinlock_t              slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
  74        atomic_t                lru_hint;       /* LRU hint for reclaim scan */
  75        atomic_t                active_nodes;
  76        u32                     latest_notif;   /* latest revocation notification */
  77};
  78
  79struct avc_callback_node {
  80        int (*callback) (u32 event);
  81        u32 events;
  82        struct avc_callback_node *next;
  83};
  84
  85#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  86DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
  87#endif
  88
  89struct selinux_avc {
  90        unsigned int avc_cache_threshold;
  91        struct avc_cache avc_cache;
  92};
  93
  94static struct selinux_avc selinux_avc;
  95
  96void selinux_avc_init(struct selinux_avc **avc)
  97{
  98        int i;
  99
 100        selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
 101        for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 102                INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
 103                spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
 104        }
 105        atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
 106        atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
 107        *avc = &selinux_avc;
 108}
 109
 110unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
 111{
 112        return avc->avc_cache_threshold;
 113}
 114
 115void avc_set_cache_threshold(struct selinux_avc *avc,
 116                             unsigned int cache_threshold)
 117{
 118        avc->avc_cache_threshold = cache_threshold;
 119}
 120
 121static struct avc_callback_node *avc_callbacks;
 122static struct kmem_cache *avc_node_cachep;
 123static struct kmem_cache *avc_xperms_data_cachep;
 124static struct kmem_cache *avc_xperms_decision_cachep;
 125static struct kmem_cache *avc_xperms_cachep;
 126
 127static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
 128{
 129        return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
 130}
 131
 132/**
 133 * avc_dump_av - Display an access vector in human-readable form.
 134 * @tclass: target security class
 135 * @av: access vector
 136 */
 137static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
 138{
 139        const char **perms;
 140        int i, perm;
 141
 142        if (av == 0) {
 143                audit_log_format(ab, " null");
 144                return;
 145        }
 146
 147        BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
 148        perms = secclass_map[tclass-1].perms;
 149
 150        audit_log_format(ab, " {");
 151        i = 0;
 152        perm = 1;
 153        while (i < (sizeof(av) * 8)) {
 154                if ((perm & av) && perms[i]) {
 155                        audit_log_format(ab, " %s", perms[i]);
 156                        av &= ~perm;
 157                }
 158                i++;
 159                perm <<= 1;
 160        }
 161
 162        if (av)
 163                audit_log_format(ab, " 0x%x", av);
 164
 165        audit_log_format(ab, " }");
 166}
 167
 168/**
 169 * avc_dump_query - Display a SID pair and a class in human-readable form.
 170 * @ssid: source security identifier
 171 * @tsid: target security identifier
 172 * @tclass: target security class
 173 */
 174static void avc_dump_query(struct audit_buffer *ab, struct selinux_state *state,
 175                           u32 ssid, u32 tsid, u16 tclass)
 176{
 177        int rc;
 178        char *scontext;
 179        u32 scontext_len;
 180
 181        rc = security_sid_to_context(state, ssid, &scontext, &scontext_len);
 182        if (rc)
 183                audit_log_format(ab, "ssid=%d", ssid);
 184        else {
 185                audit_log_format(ab, "scontext=%s", scontext);
 186                kfree(scontext);
 187        }
 188
 189        rc = security_sid_to_context(state, tsid, &scontext, &scontext_len);
 190        if (rc)
 191                audit_log_format(ab, " tsid=%d", tsid);
 192        else {
 193                audit_log_format(ab, " tcontext=%s", scontext);
 194                kfree(scontext);
 195        }
 196
 197        BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
 198        audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
 199}
 200
 201/**
 202 * avc_init - Initialize the AVC.
 203 *
 204 * Initialize the access vector cache.
 205 */
 206void __init avc_init(void)
 207{
 208        avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
 209                                        0, SLAB_PANIC, NULL);
 210        avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
 211                                        sizeof(struct avc_xperms_node),
 212                                        0, SLAB_PANIC, NULL);
 213        avc_xperms_decision_cachep = kmem_cache_create(
 214                                        "avc_xperms_decision_node",
 215                                        sizeof(struct avc_xperms_decision_node),
 216                                        0, SLAB_PANIC, NULL);
 217        avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
 218                                        sizeof(struct extended_perms_data),
 219                                        0, SLAB_PANIC, NULL);
 220}
 221
 222int avc_get_hash_stats(struct selinux_avc *avc, char *page)
 223{
 224        int i, chain_len, max_chain_len, slots_used;
 225        struct avc_node *node;
 226        struct hlist_head *head;
 227
 228        rcu_read_lock();
 229
 230        slots_used = 0;
 231        max_chain_len = 0;
 232        for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 233                head = &avc->avc_cache.slots[i];
 234                if (!hlist_empty(head)) {
 235                        slots_used++;
 236                        chain_len = 0;
 237                        hlist_for_each_entry_rcu(node, head, list)
 238                                chain_len++;
 239                        if (chain_len > max_chain_len)
 240                                max_chain_len = chain_len;
 241                }
 242        }
 243
 244        rcu_read_unlock();
 245
 246        return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
 247                         "longest chain: %d\n",
 248                         atomic_read(&avc->avc_cache.active_nodes),
 249                         slots_used, AVC_CACHE_SLOTS, max_chain_len);
 250}
 251
 252/*
 253 * using a linked list for extended_perms_decision lookup because the list is
 254 * always small. i.e. less than 5, typically 1
 255 */
 256static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
 257                                        struct avc_xperms_node *xp_node)
 258{
 259        struct avc_xperms_decision_node *xpd_node;
 260
 261        list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
 262                if (xpd_node->xpd.driver == driver)
 263                        return &xpd_node->xpd;
 264        }
 265        return NULL;
 266}
 267
 268static inline unsigned int
 269avc_xperms_has_perm(struct extended_perms_decision *xpd,
 270                                        u8 perm, u8 which)
 271{
 272        unsigned int rc = 0;
 273
 274        if ((which == XPERMS_ALLOWED) &&
 275                        (xpd->used & XPERMS_ALLOWED))
 276                rc = security_xperm_test(xpd->allowed->p, perm);
 277        else if ((which == XPERMS_AUDITALLOW) &&
 278                        (xpd->used & XPERMS_AUDITALLOW))
 279                rc = security_xperm_test(xpd->auditallow->p, perm);
 280        else if ((which == XPERMS_DONTAUDIT) &&
 281                        (xpd->used & XPERMS_DONTAUDIT))
 282                rc = security_xperm_test(xpd->dontaudit->p, perm);
 283        return rc;
 284}
 285
 286static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
 287                                u8 driver, u8 perm)
 288{
 289        struct extended_perms_decision *xpd;
 290        security_xperm_set(xp_node->xp.drivers.p, driver);
 291        xpd = avc_xperms_decision_lookup(driver, xp_node);
 292        if (xpd && xpd->allowed)
 293                security_xperm_set(xpd->allowed->p, perm);
 294}
 295
 296static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
 297{
 298        struct extended_perms_decision *xpd;
 299
 300        xpd = &xpd_node->xpd;
 301        if (xpd->allowed)
 302                kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
 303        if (xpd->auditallow)
 304                kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
 305        if (xpd->dontaudit)
 306                kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
 307        kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
 308}
 309
 310static void avc_xperms_free(struct avc_xperms_node *xp_node)
 311{
 312        struct avc_xperms_decision_node *xpd_node, *tmp;
 313
 314        if (!xp_node)
 315                return;
 316
 317        list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
 318                list_del(&xpd_node->xpd_list);
 319                avc_xperms_decision_free(xpd_node);
 320        }
 321        kmem_cache_free(avc_xperms_cachep, xp_node);
 322}
 323
 324static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
 325                                        struct extended_perms_decision *src)
 326{
 327        dest->driver = src->driver;
 328        dest->used = src->used;
 329        if (dest->used & XPERMS_ALLOWED)
 330                memcpy(dest->allowed->p, src->allowed->p,
 331                                sizeof(src->allowed->p));
 332        if (dest->used & XPERMS_AUDITALLOW)
 333                memcpy(dest->auditallow->p, src->auditallow->p,
 334                                sizeof(src->auditallow->p));
 335        if (dest->used & XPERMS_DONTAUDIT)
 336                memcpy(dest->dontaudit->p, src->dontaudit->p,
 337                                sizeof(src->dontaudit->p));
 338}
 339
 340/*
 341 * similar to avc_copy_xperms_decision, but only copy decision
 342 * information relevant to this perm
 343 */
 344static inline void avc_quick_copy_xperms_decision(u8 perm,
 345                        struct extended_perms_decision *dest,
 346                        struct extended_perms_decision *src)
 347{
 348        /*
 349         * compute index of the u32 of the 256 bits (8 u32s) that contain this
 350         * command permission
 351         */
 352        u8 i = perm >> 5;
 353
 354        dest->used = src->used;
 355        if (dest->used & XPERMS_ALLOWED)
 356                dest->allowed->p[i] = src->allowed->p[i];
 357        if (dest->used & XPERMS_AUDITALLOW)
 358                dest->auditallow->p[i] = src->auditallow->p[i];
 359        if (dest->used & XPERMS_DONTAUDIT)
 360                dest->dontaudit->p[i] = src->dontaudit->p[i];
 361}
 362
 363static struct avc_xperms_decision_node
 364                *avc_xperms_decision_alloc(u8 which)
 365{
 366        struct avc_xperms_decision_node *xpd_node;
 367        struct extended_perms_decision *xpd;
 368
 369        xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT);
 370        if (!xpd_node)
 371                return NULL;
 372
 373        xpd = &xpd_node->xpd;
 374        if (which & XPERMS_ALLOWED) {
 375                xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
 376                                                GFP_NOWAIT);
 377                if (!xpd->allowed)
 378                        goto error;
 379        }
 380        if (which & XPERMS_AUDITALLOW) {
 381                xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
 382                                                GFP_NOWAIT);
 383                if (!xpd->auditallow)
 384                        goto error;
 385        }
 386        if (which & XPERMS_DONTAUDIT) {
 387                xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
 388                                                GFP_NOWAIT);
 389                if (!xpd->dontaudit)
 390                        goto error;
 391        }
 392        return xpd_node;
 393error:
 394        avc_xperms_decision_free(xpd_node);
 395        return NULL;
 396}
 397
 398static int avc_add_xperms_decision(struct avc_node *node,
 399                        struct extended_perms_decision *src)
 400{
 401        struct avc_xperms_decision_node *dest_xpd;
 402
 403        node->ae.xp_node->xp.len++;
 404        dest_xpd = avc_xperms_decision_alloc(src->used);
 405        if (!dest_xpd)
 406                return -ENOMEM;
 407        avc_copy_xperms_decision(&dest_xpd->xpd, src);
 408        list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
 409        return 0;
 410}
 411
 412static struct avc_xperms_node *avc_xperms_alloc(void)
 413{
 414        struct avc_xperms_node *xp_node;
 415
 416        xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT);
 417        if (!xp_node)
 418                return xp_node;
 419        INIT_LIST_HEAD(&xp_node->xpd_head);
 420        return xp_node;
 421}
 422
 423static int avc_xperms_populate(struct avc_node *node,
 424                                struct avc_xperms_node *src)
 425{
 426        struct avc_xperms_node *dest;
 427        struct avc_xperms_decision_node *dest_xpd;
 428        struct avc_xperms_decision_node *src_xpd;
 429
 430        if (src->xp.len == 0)
 431                return 0;
 432        dest = avc_xperms_alloc();
 433        if (!dest)
 434                return -ENOMEM;
 435
 436        memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
 437        dest->xp.len = src->xp.len;
 438
 439        /* for each source xpd allocate a destination xpd and copy */
 440        list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
 441                dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
 442                if (!dest_xpd)
 443                        goto error;
 444                avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
 445                list_add(&dest_xpd->xpd_list, &dest->xpd_head);
 446        }
 447        node->ae.xp_node = dest;
 448        return 0;
 449error:
 450        avc_xperms_free(dest);
 451        return -ENOMEM;
 452
 453}
 454
 455static inline u32 avc_xperms_audit_required(u32 requested,
 456                                        struct av_decision *avd,
 457                                        struct extended_perms_decision *xpd,
 458                                        u8 perm,
 459                                        int result,
 460                                        u32 *deniedp)
 461{
 462        u32 denied, audited;
 463
 464        denied = requested & ~avd->allowed;
 465        if (unlikely(denied)) {
 466                audited = denied & avd->auditdeny;
 467                if (audited && xpd) {
 468                        if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
 469                                audited &= ~requested;
 470                }
 471        } else if (result) {
 472                audited = denied = requested;
 473        } else {
 474                audited = requested & avd->auditallow;
 475                if (audited && xpd) {
 476                        if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
 477                                audited &= ~requested;
 478                }
 479        }
 480
 481        *deniedp = denied;
 482        return audited;
 483}
 484
 485static inline int avc_xperms_audit(struct selinux_state *state,
 486                                   u32 ssid, u32 tsid, u16 tclass,
 487                                   u32 requested, struct av_decision *avd,
 488                                   struct extended_perms_decision *xpd,
 489                                   u8 perm, int result,
 490                                   struct common_audit_data *ad)
 491{
 492        u32 audited, denied;
 493
 494        audited = avc_xperms_audit_required(
 495                        requested, avd, xpd, perm, result, &denied);
 496        if (likely(!audited))
 497                return 0;
 498        return slow_avc_audit(state, ssid, tsid, tclass, requested,
 499                        audited, denied, result, ad, 0);
 500}
 501
 502static void avc_node_free(struct rcu_head *rhead)
 503{
 504        struct avc_node *node = container_of(rhead, struct avc_node, rhead);
 505        avc_xperms_free(node->ae.xp_node);
 506        kmem_cache_free(avc_node_cachep, node);
 507        avc_cache_stats_incr(frees);
 508}
 509
 510static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
 511{
 512        hlist_del_rcu(&node->list);
 513        call_rcu(&node->rhead, avc_node_free);
 514        atomic_dec(&avc->avc_cache.active_nodes);
 515}
 516
 517static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
 518{
 519        avc_xperms_free(node->ae.xp_node);
 520        kmem_cache_free(avc_node_cachep, node);
 521        avc_cache_stats_incr(frees);
 522        atomic_dec(&avc->avc_cache.active_nodes);
 523}
 524
 525static void avc_node_replace(struct selinux_avc *avc,
 526                             struct avc_node *new, struct avc_node *old)
 527{
 528        hlist_replace_rcu(&old->list, &new->list);
 529        call_rcu(&old->rhead, avc_node_free);
 530        atomic_dec(&avc->avc_cache.active_nodes);
 531}
 532
 533static inline int avc_reclaim_node(struct selinux_avc *avc)
 534{
 535        struct avc_node *node;
 536        int hvalue, try, ecx;
 537        unsigned long flags;
 538        struct hlist_head *head;
 539        spinlock_t *lock;
 540
 541        for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
 542                hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
 543                        (AVC_CACHE_SLOTS - 1);
 544                head = &avc->avc_cache.slots[hvalue];
 545                lock = &avc->avc_cache.slots_lock[hvalue];
 546
 547                if (!spin_trylock_irqsave(lock, flags))
 548                        continue;
 549
 550                rcu_read_lock();
 551                hlist_for_each_entry(node, head, list) {
 552                        avc_node_delete(avc, node);
 553                        avc_cache_stats_incr(reclaims);
 554                        ecx++;
 555                        if (ecx >= AVC_CACHE_RECLAIM) {
 556                                rcu_read_unlock();
 557                                spin_unlock_irqrestore(lock, flags);
 558                                goto out;
 559                        }
 560                }
 561                rcu_read_unlock();
 562                spin_unlock_irqrestore(lock, flags);
 563        }
 564out:
 565        return ecx;
 566}
 567
 568static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
 569{
 570        struct avc_node *node;
 571
 572        node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT);
 573        if (!node)
 574                goto out;
 575
 576        INIT_HLIST_NODE(&node->list);
 577        avc_cache_stats_incr(allocations);
 578
 579        if (atomic_inc_return(&avc->avc_cache.active_nodes) >
 580            avc->avc_cache_threshold)
 581                avc_reclaim_node(avc);
 582
 583out:
 584        return node;
 585}
 586
 587static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
 588{
 589        node->ae.ssid = ssid;
 590        node->ae.tsid = tsid;
 591        node->ae.tclass = tclass;
 592        memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
 593}
 594
 595static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
 596                                               u32 ssid, u32 tsid, u16 tclass)
 597{
 598        struct avc_node *node, *ret = NULL;
 599        int hvalue;
 600        struct hlist_head *head;
 601
 602        hvalue = avc_hash(ssid, tsid, tclass);
 603        head = &avc->avc_cache.slots[hvalue];
 604        hlist_for_each_entry_rcu(node, head, list) {
 605                if (ssid == node->ae.ssid &&
 606                    tclass == node->ae.tclass &&
 607                    tsid == node->ae.tsid) {
 608                        ret = node;
 609                        break;
 610                }
 611        }
 612
 613        return ret;
 614}
 615
 616/**
 617 * avc_lookup - Look up an AVC entry.
 618 * @ssid: source security identifier
 619 * @tsid: target security identifier
 620 * @tclass: target security class
 621 *
 622 * Look up an AVC entry that is valid for the
 623 * (@ssid, @tsid), interpreting the permissions
 624 * based on @tclass.  If a valid AVC entry exists,
 625 * then this function returns the avc_node.
 626 * Otherwise, this function returns NULL.
 627 */
 628static struct avc_node *avc_lookup(struct selinux_avc *avc,
 629                                   u32 ssid, u32 tsid, u16 tclass)
 630{
 631        struct avc_node *node;
 632
 633        avc_cache_stats_incr(lookups);
 634        node = avc_search_node(avc, ssid, tsid, tclass);
 635
 636        if (node)
 637                return node;
 638
 639        avc_cache_stats_incr(misses);
 640        return NULL;
 641}
 642
 643static int avc_latest_notif_update(struct selinux_avc *avc,
 644                                   int seqno, int is_insert)
 645{
 646        int ret = 0;
 647        static DEFINE_SPINLOCK(notif_lock);
 648        unsigned long flag;
 649
 650        spin_lock_irqsave(&notif_lock, flag);
 651        if (is_insert) {
 652                if (seqno < avc->avc_cache.latest_notif) {
 653                        printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
 654                               seqno, avc->avc_cache.latest_notif);
 655                        ret = -EAGAIN;
 656                }
 657        } else {
 658                if (seqno > avc->avc_cache.latest_notif)
 659                        avc->avc_cache.latest_notif = seqno;
 660        }
 661        spin_unlock_irqrestore(&notif_lock, flag);
 662
 663        return ret;
 664}
 665
 666/**
 667 * avc_insert - Insert an AVC entry.
 668 * @ssid: source security identifier
 669 * @tsid: target security identifier
 670 * @tclass: target security class
 671 * @avd: resulting av decision
 672 * @xp_node: resulting extended permissions
 673 *
 674 * Insert an AVC entry for the SID pair
 675 * (@ssid, @tsid) and class @tclass.
 676 * The access vectors and the sequence number are
 677 * normally provided by the security server in
 678 * response to a security_compute_av() call.  If the
 679 * sequence number @avd->seqno is not less than the latest
 680 * revocation notification, then the function copies
 681 * the access vectors into a cache entry, returns
 682 * avc_node inserted. Otherwise, this function returns NULL.
 683 */
 684static struct avc_node *avc_insert(struct selinux_avc *avc,
 685                                   u32 ssid, u32 tsid, u16 tclass,
 686                                   struct av_decision *avd,
 687                                   struct avc_xperms_node *xp_node)
 688{
 689        struct avc_node *pos, *node = NULL;
 690        int hvalue;
 691        unsigned long flag;
 692
 693        if (avc_latest_notif_update(avc, avd->seqno, 1))
 694                goto out;
 695
 696        node = avc_alloc_node(avc);
 697        if (node) {
 698                struct hlist_head *head;
 699                spinlock_t *lock;
 700                int rc = 0;
 701
 702                hvalue = avc_hash(ssid, tsid, tclass);
 703                avc_node_populate(node, ssid, tsid, tclass, avd);
 704                rc = avc_xperms_populate(node, xp_node);
 705                if (rc) {
 706                        kmem_cache_free(avc_node_cachep, node);
 707                        return NULL;
 708                }
 709                head = &avc->avc_cache.slots[hvalue];
 710                lock = &avc->avc_cache.slots_lock[hvalue];
 711
 712                spin_lock_irqsave(lock, flag);
 713                hlist_for_each_entry(pos, head, list) {
 714                        if (pos->ae.ssid == ssid &&
 715                            pos->ae.tsid == tsid &&
 716                            pos->ae.tclass == tclass) {
 717                                avc_node_replace(avc, node, pos);
 718                                goto found;
 719                        }
 720                }
 721                hlist_add_head_rcu(&node->list, head);
 722found:
 723                spin_unlock_irqrestore(lock, flag);
 724        }
 725out:
 726        return node;
 727}
 728
 729/**
 730 * avc_audit_pre_callback - SELinux specific information
 731 * will be called by generic audit code
 732 * @ab: the audit buffer
 733 * @a: audit_data
 734 */
 735static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
 736{
 737        struct common_audit_data *ad = a;
 738        audit_log_format(ab, "avc:  %s ",
 739                         ad->selinux_audit_data->denied ? "denied" : "granted");
 740        avc_dump_av(ab, ad->selinux_audit_data->tclass,
 741                        ad->selinux_audit_data->audited);
 742        audit_log_format(ab, " for ");
 743}
 744
 745/**
 746 * avc_audit_post_callback - SELinux specific information
 747 * will be called by generic audit code
 748 * @ab: the audit buffer
 749 * @a: audit_data
 750 */
 751static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
 752{
 753        struct common_audit_data *ad = a;
 754        audit_log_format(ab, " ");
 755        avc_dump_query(ab, ad->selinux_audit_data->state,
 756                       ad->selinux_audit_data->ssid,
 757                       ad->selinux_audit_data->tsid,
 758                       ad->selinux_audit_data->tclass);
 759        if (ad->selinux_audit_data->denied) {
 760                audit_log_format(ab, " permissive=%u",
 761                                 ad->selinux_audit_data->result ? 0 : 1);
 762        }
 763}
 764
 765/* This is the slow part of avc audit with big stack footprint */
 766noinline int slow_avc_audit(struct selinux_state *state,
 767                            u32 ssid, u32 tsid, u16 tclass,
 768                            u32 requested, u32 audited, u32 denied, int result,
 769                            struct common_audit_data *a,
 770                            unsigned int flags)
 771{
 772        struct common_audit_data stack_data;
 773        struct selinux_audit_data sad;
 774
 775        if (!a) {
 776                a = &stack_data;
 777                a->type = LSM_AUDIT_DATA_NONE;
 778        }
 779
 780        /*
 781         * When in a RCU walk do the audit on the RCU retry.  This is because
 782         * the collection of the dname in an inode audit message is not RCU
 783         * safe.  Note this may drop some audits when the situation changes
 784         * during retry. However this is logically just as if the operation
 785         * happened a little later.
 786         */
 787        if ((a->type == LSM_AUDIT_DATA_INODE) &&
 788            (flags & MAY_NOT_BLOCK))
 789                return -ECHILD;
 790
 791        sad.tclass = tclass;
 792        sad.requested = requested;
 793        sad.ssid = ssid;
 794        sad.tsid = tsid;
 795        sad.audited = audited;
 796        sad.denied = denied;
 797        sad.result = result;
 798        sad.state = state;
 799
 800        a->selinux_audit_data = &sad;
 801
 802        common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
 803        return 0;
 804}
 805
 806/**
 807 * avc_add_callback - Register a callback for security events.
 808 * @callback: callback function
 809 * @events: security events
 810 *
 811 * Register a callback function for events in the set @events.
 812 * Returns %0 on success or -%ENOMEM if insufficient memory
 813 * exists to add the callback.
 814 */
 815int __init avc_add_callback(int (*callback)(u32 event), u32 events)
 816{
 817        struct avc_callback_node *c;
 818        int rc = 0;
 819
 820        c = kmalloc(sizeof(*c), GFP_KERNEL);
 821        if (!c) {
 822                rc = -ENOMEM;
 823                goto out;
 824        }
 825
 826        c->callback = callback;
 827        c->events = events;
 828        c->next = avc_callbacks;
 829        avc_callbacks = c;
 830out:
 831        return rc;
 832}
 833
 834/**
 835 * avc_update_node Update an AVC entry
 836 * @event : Updating event
 837 * @perms : Permission mask bits
 838 * @ssid,@tsid,@tclass : identifier of an AVC entry
 839 * @seqno : sequence number when decision was made
 840 * @xpd: extended_perms_decision to be added to the node
 841 *
 842 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
 843 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
 844 * otherwise, this function updates the AVC entry. The original AVC-entry object
 845 * will release later by RCU.
 846 */
 847static int avc_update_node(struct selinux_avc *avc,
 848                           u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
 849                           u32 tsid, u16 tclass, u32 seqno,
 850                           struct extended_perms_decision *xpd,
 851                           u32 flags)
 852{
 853        int hvalue, rc = 0;
 854        unsigned long flag;
 855        struct avc_node *pos, *node, *orig = NULL;
 856        struct hlist_head *head;
 857        spinlock_t *lock;
 858
 859        node = avc_alloc_node(avc);
 860        if (!node) {
 861                rc = -ENOMEM;
 862                goto out;
 863        }
 864
 865        /* Lock the target slot */
 866        hvalue = avc_hash(ssid, tsid, tclass);
 867
 868        head = &avc->avc_cache.slots[hvalue];
 869        lock = &avc->avc_cache.slots_lock[hvalue];
 870
 871        spin_lock_irqsave(lock, flag);
 872
 873        hlist_for_each_entry(pos, head, list) {
 874                if (ssid == pos->ae.ssid &&
 875                    tsid == pos->ae.tsid &&
 876                    tclass == pos->ae.tclass &&
 877                    seqno == pos->ae.avd.seqno){
 878                        orig = pos;
 879                        break;
 880                }
 881        }
 882
 883        if (!orig) {
 884                rc = -ENOENT;
 885                avc_node_kill(avc, node);
 886                goto out_unlock;
 887        }
 888
 889        /*
 890         * Copy and replace original node.
 891         */
 892
 893        avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
 894
 895        if (orig->ae.xp_node) {
 896                rc = avc_xperms_populate(node, orig->ae.xp_node);
 897                if (rc) {
 898                        kmem_cache_free(avc_node_cachep, node);
 899                        goto out_unlock;
 900                }
 901        }
 902
 903        switch (event) {
 904        case AVC_CALLBACK_GRANT:
 905                node->ae.avd.allowed |= perms;
 906                if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
 907                        avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
 908                break;
 909        case AVC_CALLBACK_TRY_REVOKE:
 910        case AVC_CALLBACK_REVOKE:
 911                node->ae.avd.allowed &= ~perms;
 912                break;
 913        case AVC_CALLBACK_AUDITALLOW_ENABLE:
 914                node->ae.avd.auditallow |= perms;
 915                break;
 916        case AVC_CALLBACK_AUDITALLOW_DISABLE:
 917                node->ae.avd.auditallow &= ~perms;
 918                break;
 919        case AVC_CALLBACK_AUDITDENY_ENABLE:
 920                node->ae.avd.auditdeny |= perms;
 921                break;
 922        case AVC_CALLBACK_AUDITDENY_DISABLE:
 923                node->ae.avd.auditdeny &= ~perms;
 924                break;
 925        case AVC_CALLBACK_ADD_XPERMS:
 926                avc_add_xperms_decision(node, xpd);
 927                break;
 928        }
 929        avc_node_replace(avc, node, orig);
 930out_unlock:
 931        spin_unlock_irqrestore(lock, flag);
 932out:
 933        return rc;
 934}
 935
 936/**
 937 * avc_flush - Flush the cache
 938 */
 939static void avc_flush(struct selinux_avc *avc)
 940{
 941        struct hlist_head *head;
 942        struct avc_node *node;
 943        spinlock_t *lock;
 944        unsigned long flag;
 945        int i;
 946
 947        for (i = 0; i < AVC_CACHE_SLOTS; i++) {
 948                head = &avc->avc_cache.slots[i];
 949                lock = &avc->avc_cache.slots_lock[i];
 950
 951                spin_lock_irqsave(lock, flag);
 952                /*
 953                 * With preemptable RCU, the outer spinlock does not
 954                 * prevent RCU grace periods from ending.
 955                 */
 956                rcu_read_lock();
 957                hlist_for_each_entry(node, head, list)
 958                        avc_node_delete(avc, node);
 959                rcu_read_unlock();
 960                spin_unlock_irqrestore(lock, flag);
 961        }
 962}
 963
 964/**
 965 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
 966 * @seqno: policy sequence number
 967 */
 968int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
 969{
 970        struct avc_callback_node *c;
 971        int rc = 0, tmprc;
 972
 973        avc_flush(avc);
 974
 975        for (c = avc_callbacks; c; c = c->next) {
 976                if (c->events & AVC_CALLBACK_RESET) {
 977                        tmprc = c->callback(AVC_CALLBACK_RESET);
 978                        /* save the first error encountered for the return
 979                           value and continue processing the callbacks */
 980                        if (!rc)
 981                                rc = tmprc;
 982                }
 983        }
 984
 985        avc_latest_notif_update(avc, seqno, 0);
 986        return rc;
 987}
 988
 989/*
 990 * Slow-path helper function for avc_has_perm_noaudit,
 991 * when the avc_node lookup fails. We get called with
 992 * the RCU read lock held, and need to return with it
 993 * still held, but drop if for the security compute.
 994 *
 995 * Don't inline this, since it's the slow-path and just
 996 * results in a bigger stack frame.
 997 */
 998static noinline
 999struct avc_node *avc_compute_av(struct selinux_state *state,
1000                                u32 ssid, u32 tsid,
1001                                u16 tclass, struct av_decision *avd,
1002                                struct avc_xperms_node *xp_node)
1003{
1004        rcu_read_unlock();
1005        INIT_LIST_HEAD(&xp_node->xpd_head);
1006        security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1007        rcu_read_lock();
1008        return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1009}
1010
1011static noinline int avc_denied(struct selinux_state *state,
1012                               u32 ssid, u32 tsid,
1013                               u16 tclass, u32 requested,
1014                               u8 driver, u8 xperm, unsigned int flags,
1015                               struct av_decision *avd)
1016{
1017        if (flags & AVC_STRICT)
1018                return -EACCES;
1019
1020        if (enforcing_enabled(state) &&
1021            !(avd->flags & AVD_FLAGS_PERMISSIVE))
1022                return -EACCES;
1023
1024        avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1025                        xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1026        return 0;
1027}
1028
1029/*
1030 * The avc extended permissions logic adds an additional 256 bits of
1031 * permissions to an avc node when extended permissions for that node are
1032 * specified in the avtab. If the additional 256 permissions is not adequate,
1033 * as-is the case with ioctls, then multiple may be chained together and the
1034 * driver field is used to specify which set contains the permission.
1035 */
1036int avc_has_extended_perms(struct selinux_state *state,
1037                           u32 ssid, u32 tsid, u16 tclass, u32 requested,
1038                           u8 driver, u8 xperm, struct common_audit_data *ad)
1039{
1040        struct avc_node *node;
1041        struct av_decision avd;
1042        u32 denied;
1043        struct extended_perms_decision local_xpd;
1044        struct extended_perms_decision *xpd = NULL;
1045        struct extended_perms_data allowed;
1046        struct extended_perms_data auditallow;
1047        struct extended_perms_data dontaudit;
1048        struct avc_xperms_node local_xp_node;
1049        struct avc_xperms_node *xp_node;
1050        int rc = 0, rc2;
1051
1052        xp_node = &local_xp_node;
1053        BUG_ON(!requested);
1054
1055        rcu_read_lock();
1056
1057        node = avc_lookup(state->avc, ssid, tsid, tclass);
1058        if (unlikely(!node)) {
1059                node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1060        } else {
1061                memcpy(&avd, &node->ae.avd, sizeof(avd));
1062                xp_node = node->ae.xp_node;
1063        }
1064        /* if extended permissions are not defined, only consider av_decision */
1065        if (!xp_node || !xp_node->xp.len)
1066                goto decision;
1067
1068        local_xpd.allowed = &allowed;
1069        local_xpd.auditallow = &auditallow;
1070        local_xpd.dontaudit = &dontaudit;
1071
1072        xpd = avc_xperms_decision_lookup(driver, xp_node);
1073        if (unlikely(!xpd)) {
1074                /*
1075                 * Compute the extended_perms_decision only if the driver
1076                 * is flagged
1077                 */
1078                if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1079                        avd.allowed &= ~requested;
1080                        goto decision;
1081                }
1082                rcu_read_unlock();
1083                security_compute_xperms_decision(state, ssid, tsid, tclass,
1084                                                 driver, &local_xpd);
1085                rcu_read_lock();
1086                avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1087                                driver, xperm, ssid, tsid, tclass, avd.seqno,
1088                                &local_xpd, 0);
1089        } else {
1090                avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1091        }
1092        xpd = &local_xpd;
1093
1094        if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1095                avd.allowed &= ~requested;
1096
1097decision:
1098        denied = requested & ~(avd.allowed);
1099        if (unlikely(denied))
1100                rc = avc_denied(state, ssid, tsid, tclass, requested,
1101                                driver, xperm, AVC_EXTENDED_PERMS, &avd);
1102
1103        rcu_read_unlock();
1104
1105        rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1106                        &avd, xpd, xperm, rc, ad);
1107        if (rc2)
1108                return rc2;
1109        return rc;
1110}
1111
1112/**
1113 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1114 * @ssid: source security identifier
1115 * @tsid: target security identifier
1116 * @tclass: target security class
1117 * @requested: requested permissions, interpreted based on @tclass
1118 * @flags:  AVC_STRICT or 0
1119 * @avd: access vector decisions
1120 *
1121 * Check the AVC to determine whether the @requested permissions are granted
1122 * for the SID pair (@ssid, @tsid), interpreting the permissions
1123 * based on @tclass, and call the security server on a cache miss to obtain
1124 * a new decision and add it to the cache.  Return a copy of the decisions
1125 * in @avd.  Return %0 if all @requested permissions are granted,
1126 * -%EACCES if any permissions are denied, or another -errno upon
1127 * other errors.  This function is typically called by avc_has_perm(),
1128 * but may also be called directly to separate permission checking from
1129 * auditing, e.g. in cases where a lock must be held for the check but
1130 * should be released for the auditing.
1131 */
1132inline int avc_has_perm_noaudit(struct selinux_state *state,
1133                                u32 ssid, u32 tsid,
1134                                u16 tclass, u32 requested,
1135                                unsigned int flags,
1136                                struct av_decision *avd)
1137{
1138        struct avc_node *node;
1139        struct avc_xperms_node xp_node;
1140        int rc = 0;
1141        u32 denied;
1142
1143        BUG_ON(!requested);
1144
1145        rcu_read_lock();
1146
1147        node = avc_lookup(state->avc, ssid, tsid, tclass);
1148        if (unlikely(!node))
1149                node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1150        else
1151                memcpy(avd, &node->ae.avd, sizeof(*avd));
1152
1153        denied = requested & ~(avd->allowed);
1154        if (unlikely(denied))
1155                rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1156                                flags, avd);
1157
1158        rcu_read_unlock();
1159        return rc;
1160}
1161
1162/**
1163 * avc_has_perm - Check permissions and perform any appropriate auditing.
1164 * @ssid: source security identifier
1165 * @tsid: target security identifier
1166 * @tclass: target security class
1167 * @requested: requested permissions, interpreted based on @tclass
1168 * @auditdata: auxiliary audit data
1169 *
1170 * Check the AVC to determine whether the @requested permissions are granted
1171 * for the SID pair (@ssid, @tsid), interpreting the permissions
1172 * based on @tclass, and call the security server on a cache miss to obtain
1173 * a new decision and add it to the cache.  Audit the granting or denial of
1174 * permissions in accordance with the policy.  Return %0 if all @requested
1175 * permissions are granted, -%EACCES if any permissions are denied, or
1176 * another -errno upon other errors.
1177 */
1178int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1179                 u32 requested, struct common_audit_data *auditdata)
1180{
1181        struct av_decision avd;
1182        int rc, rc2;
1183
1184        rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1185                                  &avd);
1186
1187        rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1188                        auditdata, 0);
1189        if (rc2)
1190                return rc2;
1191        return rc;
1192}
1193
1194int avc_has_perm_flags(struct selinux_state *state,
1195                       u32 ssid, u32 tsid, u16 tclass, u32 requested,
1196                       struct common_audit_data *auditdata,
1197                       int flags)
1198{
1199        struct av_decision avd;
1200        int rc, rc2;
1201
1202        rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1203                                  &avd);
1204
1205        rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1206                        auditdata, flags);
1207        if (rc2)
1208                return rc2;
1209        return rc;
1210}
1211
1212u32 avc_policy_seqno(struct selinux_state *state)
1213{
1214        return state->avc->avc_cache.latest_notif;
1215}
1216
1217void avc_disable(void)
1218{
1219        /*
1220         * If you are looking at this because you have realized that we are
1221         * not destroying the avc_node_cachep it might be easy to fix, but
1222         * I don't know the memory barrier semantics well enough to know.  It's
1223         * possible that some other task dereferenced security_ops when
1224         * it still pointed to selinux operations.  If that is the case it's
1225         * possible that it is about to use the avc and is about to need the
1226         * avc_node_cachep.  I know I could wrap the security.c security_ops call
1227         * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1228         * the cache and get that memory back.
1229         */
1230        if (avc_node_cachep) {
1231                avc_flush(selinux_state.avc);
1232                /* kmem_cache_destroy(avc_node_cachep); */
1233        }
1234}
1235