linux/sound/firewire/fireface/ff-transaction.c
<<
>>
Prefs
   1/*
   2 * ff-transaction.c - a part of driver for RME Fireface series
   3 *
   4 * Copyright (c) 2015-2017 Takashi Sakamoto
   5 *
   6 * Licensed under the terms of the GNU General Public License, version 2.
   7 */
   8
   9#include "ff.h"
  10
  11static void finish_transmit_midi_msg(struct snd_ff *ff, unsigned int port,
  12                                     int rcode)
  13{
  14        struct snd_rawmidi_substream *substream =
  15                                READ_ONCE(ff->rx_midi_substreams[port]);
  16
  17        if (rcode_is_permanent_error(rcode)) {
  18                ff->rx_midi_error[port] = true;
  19                return;
  20        }
  21
  22        if (rcode != RCODE_COMPLETE) {
  23                /* Transfer the message again, immediately. */
  24                ff->next_ktime[port] = 0;
  25                schedule_work(&ff->rx_midi_work[port]);
  26                return;
  27        }
  28
  29        snd_rawmidi_transmit_ack(substream, ff->rx_bytes[port]);
  30        ff->rx_bytes[port] = 0;
  31
  32        if (!snd_rawmidi_transmit_empty(substream))
  33                schedule_work(&ff->rx_midi_work[port]);
  34}
  35
  36static void finish_transmit_midi0_msg(struct fw_card *card, int rcode,
  37                                      void *data, size_t length,
  38                                      void *callback_data)
  39{
  40        struct snd_ff *ff =
  41                container_of(callback_data, struct snd_ff, transactions[0]);
  42        finish_transmit_midi_msg(ff, 0, rcode);
  43}
  44
  45static void finish_transmit_midi1_msg(struct fw_card *card, int rcode,
  46                                      void *data, size_t length,
  47                                      void *callback_data)
  48{
  49        struct snd_ff *ff =
  50                container_of(callback_data, struct snd_ff, transactions[1]);
  51        finish_transmit_midi_msg(ff, 1, rcode);
  52}
  53
  54static inline void fill_midi_buf(struct snd_ff *ff, unsigned int port,
  55                                 unsigned int index, u8 byte)
  56{
  57        ff->msg_buf[port][index] = cpu_to_le32(byte);
  58}
  59
  60static void transmit_midi_msg(struct snd_ff *ff, unsigned int port)
  61{
  62        struct snd_rawmidi_substream *substream =
  63                        READ_ONCE(ff->rx_midi_substreams[port]);
  64        u8 *buf = (u8 *)ff->msg_buf[port];
  65        int i, len;
  66
  67        struct fw_device *fw_dev = fw_parent_device(ff->unit);
  68        unsigned long long addr;
  69        int generation;
  70        fw_transaction_callback_t callback;
  71
  72        if (substream == NULL || snd_rawmidi_transmit_empty(substream))
  73                return;
  74
  75        if (ff->rx_bytes[port] > 0 || ff->rx_midi_error[port])
  76                return;
  77
  78        /* Do it in next chance. */
  79        if (ktime_after(ff->next_ktime[port], ktime_get())) {
  80                schedule_work(&ff->rx_midi_work[port]);
  81                return;
  82        }
  83
  84        len = snd_rawmidi_transmit_peek(substream, buf,
  85                                        SND_FF_MAXIMIM_MIDI_QUADS);
  86        if (len <= 0)
  87                return;
  88
  89        for (i = len - 1; i >= 0; i--)
  90                fill_midi_buf(ff, port, i, buf[i]);
  91
  92        if (port == 0) {
  93                addr = ff->spec->protocol->midi_rx_port_0_reg;
  94                callback = finish_transmit_midi0_msg;
  95        } else {
  96                addr = ff->spec->protocol->midi_rx_port_1_reg;
  97                callback = finish_transmit_midi1_msg;
  98        }
  99
 100        /* Set interval to next transaction. */
 101        ff->next_ktime[port] = ktime_add_ns(ktime_get(),
 102                                            len * 8 * NSEC_PER_SEC / 31250);
 103        ff->rx_bytes[port] = len;
 104
 105        /*
 106         * In Linux FireWire core, when generation is updated with memory
 107         * barrier, node id has already been updated. In this module, After
 108         * this smp_rmb(), load/store instructions to memory are completed.
 109         * Thus, both of generation and node id are available with recent
 110         * values. This is a light-serialization solution to handle bus reset
 111         * events on IEEE 1394 bus.
 112         */
 113        generation = fw_dev->generation;
 114        smp_rmb();
 115        fw_send_request(fw_dev->card, &ff->transactions[port],
 116                        TCODE_WRITE_BLOCK_REQUEST,
 117                        fw_dev->node_id, generation, fw_dev->max_speed,
 118                        addr, &ff->msg_buf[port], len * 4,
 119                        callback, &ff->transactions[port]);
 120}
 121
 122static void transmit_midi0_msg(struct work_struct *work)
 123{
 124        struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[0]);
 125
 126        transmit_midi_msg(ff, 0);
 127}
 128
 129static void transmit_midi1_msg(struct work_struct *work)
 130{
 131        struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[1]);
 132
 133        transmit_midi_msg(ff, 1);
 134}
 135
 136static void handle_midi_msg(struct fw_card *card, struct fw_request *request,
 137                            int tcode, int destination, int source,
 138                            int generation, unsigned long long offset,
 139                            void *data, size_t length, void *callback_data)
 140{
 141        struct snd_ff *ff = callback_data;
 142        __le32 *buf = data;
 143        u32 quad;
 144        u8 byte;
 145        unsigned int index;
 146        struct snd_rawmidi_substream *substream;
 147        int i;
 148
 149        fw_send_response(card, request, RCODE_COMPLETE);
 150
 151        for (i = 0; i < length / 4; i++) {
 152                quad = le32_to_cpu(buf[i]);
 153
 154                /* Message in first port. */
 155                /*
 156                 * This value may represent the index of this unit when the same
 157                 * units are on the same IEEE 1394 bus. This driver doesn't use
 158                 * it.
 159                 */
 160                index = (quad >> 8) & 0xff;
 161                if (index > 0) {
 162                        substream = READ_ONCE(ff->tx_midi_substreams[0]);
 163                        if (substream != NULL) {
 164                                byte = quad & 0xff;
 165                                snd_rawmidi_receive(substream, &byte, 1);
 166                        }
 167                }
 168
 169                /* Message in second port. */
 170                index = (quad >> 24) & 0xff;
 171                if (index > 0) {
 172                        substream = READ_ONCE(ff->tx_midi_substreams[1]);
 173                        if (substream != NULL) {
 174                                byte = (quad >> 16) & 0xff;
 175                                snd_rawmidi_receive(substream, &byte, 1);
 176                        }
 177                }
 178        }
 179}
 180
 181static int allocate_own_address(struct snd_ff *ff, int i)
 182{
 183        struct fw_address_region midi_msg_region;
 184        int err;
 185
 186        ff->async_handler.length = SND_FF_MAXIMIM_MIDI_QUADS * 4;
 187        ff->async_handler.address_callback = handle_midi_msg;
 188        ff->async_handler.callback_data = ff;
 189
 190        midi_msg_region.start = 0x000100000000ull * i;
 191        midi_msg_region.end = midi_msg_region.start + ff->async_handler.length;
 192
 193        err = fw_core_add_address_handler(&ff->async_handler, &midi_msg_region);
 194        if (err >= 0) {
 195                /* Controllers are allowed to register this region. */
 196                if (ff->async_handler.offset & 0x0000ffffffff) {
 197                        fw_core_remove_address_handler(&ff->async_handler);
 198                        err = -EAGAIN;
 199                }
 200        }
 201
 202        return err;
 203}
 204
 205/*
 206 * The configuration to start asynchronous transactions for MIDI messages is in
 207 * 0x'0000'8010'051c. This register includes the other options, thus this driver
 208 * doesn't touch it and leaves the decision to userspace. The userspace MUST add
 209 * 0x04000000 to write transactions to the register to receive any MIDI
 210 * messages.
 211 *
 212 * Here, I just describe MIDI-related offsets of the register, in little-endian
 213 * order.
 214 *
 215 * Controllers are allowed to register higher 4 bytes of address to receive
 216 * the transactions. The register is 0x'0000'8010'03f4. On the other hand, the
 217 * controllers are not allowed to register lower 4 bytes of the address. They
 218 * are forced to select from 4 options by writing corresponding bits to
 219 * 0x'0000'8010'051c.
 220 *
 221 * The 3rd-6th bits in MSB of this register are used to indicate lower 4 bytes
 222 * of address to which the device transferrs the transactions.
 223 *  - 6th: 0x'....'....'0000'0180
 224 *  - 5th: 0x'....'....'0000'0100
 225 *  - 4th: 0x'....'....'0000'0080
 226 *  - 3rd: 0x'....'....'0000'0000
 227 *
 228 * This driver configure 0x'....'....'0000'0000 for units to receive MIDI
 229 * messages. 3rd bit of the register should be configured, however this driver
 230 * deligates this task to user space applications due to a restriction that
 231 * this register is write-only and the other bits have own effects.
 232 *
 233 * The 1st and 2nd bits in LSB of this register are used to cancel transferring
 234 * asynchronous transactions. These two bits have the same effect.
 235 *  - 1st/2nd: cancel transferring
 236 */
 237int snd_ff_transaction_reregister(struct snd_ff *ff)
 238{
 239        struct fw_card *fw_card = fw_parent_device(ff->unit)->card;
 240        u32 addr;
 241        __le32 reg;
 242
 243        /*
 244         * Controllers are allowed to register its node ID and upper 2 byte of
 245         * local address to listen asynchronous transactions.
 246         */
 247        addr = (fw_card->node_id << 16) | (ff->async_handler.offset >> 32);
 248        reg = cpu_to_le32(addr);
 249        return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
 250                                  ff->spec->protocol->midi_high_addr_reg,
 251                                  &reg, sizeof(reg), 0);
 252}
 253
 254int snd_ff_transaction_register(struct snd_ff *ff)
 255{
 256        int i, err;
 257
 258        /*
 259         * Allocate in Memory Space of IEC 13213, but lower 4 byte in LSB should
 260         * be zero due to device specification.
 261         */
 262        for (i = 0; i < 0xffff; i++) {
 263                err = allocate_own_address(ff, i);
 264                if (err != -EBUSY && err != -EAGAIN)
 265                        break;
 266        }
 267        if (err < 0)
 268                return err;
 269
 270        err = snd_ff_transaction_reregister(ff);
 271        if (err < 0)
 272                return err;
 273
 274        INIT_WORK(&ff->rx_midi_work[0], transmit_midi0_msg);
 275        INIT_WORK(&ff->rx_midi_work[1], transmit_midi1_msg);
 276
 277        return 0;
 278}
 279
 280void snd_ff_transaction_unregister(struct snd_ff *ff)
 281{
 282        __le32 reg;
 283
 284        if (ff->async_handler.callback_data == NULL)
 285                return;
 286        ff->async_handler.callback_data = NULL;
 287
 288        /* Release higher 4 bytes of address. */
 289        reg = cpu_to_le32(0x00000000);
 290        snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
 291                           ff->spec->protocol->midi_high_addr_reg,
 292                           &reg, sizeof(reg), 0);
 293
 294        fw_core_remove_address_handler(&ff->async_handler);
 295}
 296