linux/sound/pci/sis7019.c
<<
>>
Prefs
   1/*
   2 *  Driver for SiS7019 Audio Accelerator
   3 *
   4 *  Copyright (C) 2004-2007, David Dillow
   5 *  Written by David Dillow <dave@thedillows.org>
   6 *  Inspired by the Trident 4D-WaveDX/NX driver.
   7 *
   8 *  All rights reserved.
   9 *
  10 *  This program is free software; you can redistribute it and/or modify
  11 *  it under the terms of the GNU General Public License as published by
  12 *  the Free Software Foundation, version 2.
  13 *
  14 *  This program is distributed in the hope that it will be useful,
  15 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 *  GNU General Public License for more details.
  18 *
  19 *  You should have received a copy of the GNU General Public License
  20 *  along with this program; if not, write to the Free Software
  21 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/pci.h>
  26#include <linux/time.h>
  27#include <linux/slab.h>
  28#include <linux/module.h>
  29#include <linux/interrupt.h>
  30#include <linux/delay.h>
  31#include <sound/core.h>
  32#include <sound/ac97_codec.h>
  33#include <sound/initval.h>
  34#include "sis7019.h"
  35
  36MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
  37MODULE_DESCRIPTION("SiS7019");
  38MODULE_LICENSE("GPL");
  39MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
  40
  41static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
  42static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
  43static bool enable = 1;
  44static int codecs = 1;
  45
  46module_param(index, int, 0444);
  47MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
  48module_param(id, charp, 0444);
  49MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
  50module_param(enable, bool, 0444);
  51MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
  52module_param(codecs, int, 0444);
  53MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
  54
  55static const struct pci_device_id snd_sis7019_ids[] = {
  56        { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
  57        { 0, }
  58};
  59
  60MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
  61
  62/* There are three timing modes for the voices.
  63 *
  64 * For both playback and capture, when the buffer is one or two periods long,
  65 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
  66 * to let us know when the periods have ended.
  67 *
  68 * When performing playback with more than two periods per buffer, we set
  69 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
  70 * reach it. We then update the offset and continue on until we are
  71 * interrupted for the next period.
  72 *
  73 * Capture channels do not have a SSO, so we allocate a playback channel to
  74 * use as a timer for the capture periods. We use the SSO on the playback
  75 * channel to clock out virtual periods, and adjust the virtual period length
  76 * to maintain synchronization. This algorithm came from the Trident driver.
  77 *
  78 * FIXME: It'd be nice to make use of some of the synth features in the
  79 * hardware, but a woeful lack of documentation is a significant roadblock.
  80 */
  81struct voice {
  82        u16 flags;
  83#define         VOICE_IN_USE            1
  84#define         VOICE_CAPTURE           2
  85#define         VOICE_SSO_TIMING        4
  86#define         VOICE_SYNC_TIMING       8
  87        u16 sync_cso;
  88        u16 period_size;
  89        u16 buffer_size;
  90        u16 sync_period_size;
  91        u16 sync_buffer_size;
  92        u32 sso;
  93        u32 vperiod;
  94        struct snd_pcm_substream *substream;
  95        struct voice *timing;
  96        void __iomem *ctrl_base;
  97        void __iomem *wave_base;
  98        void __iomem *sync_base;
  99        int num;
 100};
 101
 102/* We need four pages to store our wave parameters during a suspend. If
 103 * we're not doing power management, we still need to allocate a page
 104 * for the silence buffer.
 105 */
 106#ifdef CONFIG_PM_SLEEP
 107#define SIS_SUSPEND_PAGES       4
 108#else
 109#define SIS_SUSPEND_PAGES       1
 110#endif
 111
 112struct sis7019 {
 113        unsigned long ioport;
 114        void __iomem *ioaddr;
 115        int irq;
 116        int codecs_present;
 117
 118        struct pci_dev *pci;
 119        struct snd_pcm *pcm;
 120        struct snd_card *card;
 121        struct snd_ac97 *ac97[3];
 122
 123        /* Protect against more than one thread hitting the AC97
 124         * registers (in a more polite manner than pounding the hardware
 125         * semaphore)
 126         */
 127        struct mutex ac97_mutex;
 128
 129        /* voice_lock protects allocation/freeing of the voice descriptions
 130         */
 131        spinlock_t voice_lock;
 132
 133        struct voice voices[64];
 134        struct voice capture_voice;
 135
 136        /* Allocate pages to store the internal wave state during
 137         * suspends. When we're operating, this can be used as a silence
 138         * buffer for a timing channel.
 139         */
 140        void *suspend_state[SIS_SUSPEND_PAGES];
 141
 142        int silence_users;
 143        dma_addr_t silence_dma_addr;
 144};
 145
 146/* These values are also used by the module param 'codecs' to indicate
 147 * which codecs should be present.
 148 */
 149#define SIS_PRIMARY_CODEC_PRESENT       0x0001
 150#define SIS_SECONDARY_CODEC_PRESENT     0x0002
 151#define SIS_TERTIARY_CODEC_PRESENT      0x0004
 152
 153/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
 154 * documented range of 8-0xfff8 samples. Given that they are 0-based,
 155 * that places our period/buffer range at 9-0xfff9 samples. That makes the
 156 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
 157 * max samples / min samples gives us the max periods in a buffer.
 158 *
 159 * We'll add a constraint upon open that limits the period and buffer sample
 160 * size to values that are legal for the hardware.
 161 */
 162static const struct snd_pcm_hardware sis_playback_hw_info = {
 163        .info = (SNDRV_PCM_INFO_MMAP |
 164                 SNDRV_PCM_INFO_MMAP_VALID |
 165                 SNDRV_PCM_INFO_INTERLEAVED |
 166                 SNDRV_PCM_INFO_BLOCK_TRANSFER |
 167                 SNDRV_PCM_INFO_SYNC_START |
 168                 SNDRV_PCM_INFO_RESUME),
 169        .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
 170                    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
 171        .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
 172        .rate_min = 4000,
 173        .rate_max = 48000,
 174        .channels_min = 1,
 175        .channels_max = 2,
 176        .buffer_bytes_max = (0xfff9 * 4),
 177        .period_bytes_min = 9,
 178        .period_bytes_max = (0xfff9 * 4),
 179        .periods_min = 1,
 180        .periods_max = (0xfff9 / 9),
 181};
 182
 183static const struct snd_pcm_hardware sis_capture_hw_info = {
 184        .info = (SNDRV_PCM_INFO_MMAP |
 185                 SNDRV_PCM_INFO_MMAP_VALID |
 186                 SNDRV_PCM_INFO_INTERLEAVED |
 187                 SNDRV_PCM_INFO_BLOCK_TRANSFER |
 188                 SNDRV_PCM_INFO_SYNC_START |
 189                 SNDRV_PCM_INFO_RESUME),
 190        .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
 191                    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
 192        .rates = SNDRV_PCM_RATE_48000,
 193        .rate_min = 4000,
 194        .rate_max = 48000,
 195        .channels_min = 1,
 196        .channels_max = 2,
 197        .buffer_bytes_max = (0xfff9 * 4),
 198        .period_bytes_min = 9,
 199        .period_bytes_max = (0xfff9 * 4),
 200        .periods_min = 1,
 201        .periods_max = (0xfff9 / 9),
 202};
 203
 204static void sis_update_sso(struct voice *voice, u16 period)
 205{
 206        void __iomem *base = voice->ctrl_base;
 207
 208        voice->sso += period;
 209        if (voice->sso >= voice->buffer_size)
 210                voice->sso -= voice->buffer_size;
 211
 212        /* Enforce the documented hardware minimum offset */
 213        if (voice->sso < 8)
 214                voice->sso = 8;
 215
 216        /* The SSO is in the upper 16 bits of the register. */
 217        writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
 218}
 219
 220static void sis_update_voice(struct voice *voice)
 221{
 222        if (voice->flags & VOICE_SSO_TIMING) {
 223                sis_update_sso(voice, voice->period_size);
 224        } else if (voice->flags & VOICE_SYNC_TIMING) {
 225                int sync;
 226
 227                /* If we've not hit the end of the virtual period, update
 228                 * our records and keep going.
 229                 */
 230                if (voice->vperiod > voice->period_size) {
 231                        voice->vperiod -= voice->period_size;
 232                        if (voice->vperiod < voice->period_size)
 233                                sis_update_sso(voice, voice->vperiod);
 234                        else
 235                                sis_update_sso(voice, voice->period_size);
 236                        return;
 237                }
 238
 239                /* Calculate our relative offset between the target and
 240                 * the actual CSO value. Since we're operating in a loop,
 241                 * if the value is more than half way around, we can
 242                 * consider ourselves wrapped.
 243                 */
 244                sync = voice->sync_cso;
 245                sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
 246                if (sync > (voice->sync_buffer_size / 2))
 247                        sync -= voice->sync_buffer_size;
 248
 249                /* If sync is positive, then we interrupted too early, and
 250                 * we'll need to come back in a few samples and try again.
 251                 * There's a minimum wait, as it takes some time for the DMA
 252                 * engine to startup, etc...
 253                 */
 254                if (sync > 0) {
 255                        if (sync < 16)
 256                                sync = 16;
 257                        sis_update_sso(voice, sync);
 258                        return;
 259                }
 260
 261                /* Ok, we interrupted right on time, or (hopefully) just
 262                 * a bit late. We'll adjst our next waiting period based
 263                 * on how close we got.
 264                 *
 265                 * We need to stay just behind the actual channel to ensure
 266                 * it really is past a period when we get our interrupt --
 267                 * otherwise we'll fall into the early code above and have
 268                 * a minimum wait time, which makes us quite late here,
 269                 * eating into the user's time to refresh the buffer, esp.
 270                 * if using small periods.
 271                 *
 272                 * If we're less than 9 samples behind, we're on target.
 273                 * Otherwise, shorten the next vperiod by the amount we've
 274                 * been delayed.
 275                 */
 276                if (sync > -9)
 277                        voice->vperiod = voice->sync_period_size + 1;
 278                else
 279                        voice->vperiod = voice->sync_period_size + sync + 10;
 280
 281                if (voice->vperiod < voice->buffer_size) {
 282                        sis_update_sso(voice, voice->vperiod);
 283                        voice->vperiod = 0;
 284                } else
 285                        sis_update_sso(voice, voice->period_size);
 286
 287                sync = voice->sync_cso + voice->sync_period_size;
 288                if (sync >= voice->sync_buffer_size)
 289                        sync -= voice->sync_buffer_size;
 290                voice->sync_cso = sync;
 291        }
 292
 293        snd_pcm_period_elapsed(voice->substream);
 294}
 295
 296static void sis_voice_irq(u32 status, struct voice *voice)
 297{
 298        int bit;
 299
 300        while (status) {
 301                bit = __ffs(status);
 302                status >>= bit + 1;
 303                voice += bit;
 304                sis_update_voice(voice);
 305                voice++;
 306        }
 307}
 308
 309static irqreturn_t sis_interrupt(int irq, void *dev)
 310{
 311        struct sis7019 *sis = dev;
 312        unsigned long io = sis->ioport;
 313        struct voice *voice;
 314        u32 intr, status;
 315
 316        /* We only use the DMA interrupts, and we don't enable any other
 317         * source of interrupts. But, it is possible to see an interrupt
 318         * status that didn't actually interrupt us, so eliminate anything
 319         * we're not expecting to avoid falsely claiming an IRQ, and an
 320         * ensuing endless loop.
 321         */
 322        intr = inl(io + SIS_GISR);
 323        intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
 324                SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
 325        if (!intr)
 326                return IRQ_NONE;
 327
 328        do {
 329                status = inl(io + SIS_PISR_A);
 330                if (status) {
 331                        sis_voice_irq(status, sis->voices);
 332                        outl(status, io + SIS_PISR_A);
 333                }
 334
 335                status = inl(io + SIS_PISR_B);
 336                if (status) {
 337                        sis_voice_irq(status, &sis->voices[32]);
 338                        outl(status, io + SIS_PISR_B);
 339                }
 340
 341                status = inl(io + SIS_RISR);
 342                if (status) {
 343                        voice = &sis->capture_voice;
 344                        if (!voice->timing)
 345                                snd_pcm_period_elapsed(voice->substream);
 346
 347                        outl(status, io + SIS_RISR);
 348                }
 349
 350                outl(intr, io + SIS_GISR);
 351                intr = inl(io + SIS_GISR);
 352                intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
 353                        SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
 354        } while (intr);
 355
 356        return IRQ_HANDLED;
 357}
 358
 359static u32 sis_rate_to_delta(unsigned int rate)
 360{
 361        u32 delta;
 362
 363        /* This was copied from the trident driver, but it seems its gotten
 364         * around a bit... nevertheless, it works well.
 365         *
 366         * We special case 44100 and 8000 since rounding with the equation
 367         * does not give us an accurate enough value. For 11025 and 22050
 368         * the equation gives us the best answer. All other frequencies will
 369         * also use the equation. JDW
 370         */
 371        if (rate == 44100)
 372                delta = 0xeb3;
 373        else if (rate == 8000)
 374                delta = 0x2ab;
 375        else if (rate == 48000)
 376                delta = 0x1000;
 377        else
 378                delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
 379        return delta;
 380}
 381
 382static void __sis_map_silence(struct sis7019 *sis)
 383{
 384        /* Helper function: must hold sis->voice_lock on entry */
 385        if (!sis->silence_users)
 386                sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
 387                                                sis->suspend_state[0],
 388                                                4096, DMA_TO_DEVICE);
 389        sis->silence_users++;
 390}
 391
 392static void __sis_unmap_silence(struct sis7019 *sis)
 393{
 394        /* Helper function: must hold sis->voice_lock on entry */
 395        sis->silence_users--;
 396        if (!sis->silence_users)
 397                dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
 398                                        DMA_TO_DEVICE);
 399}
 400
 401static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
 402{
 403        unsigned long flags;
 404
 405        spin_lock_irqsave(&sis->voice_lock, flags);
 406        if (voice->timing) {
 407                __sis_unmap_silence(sis);
 408                voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
 409                                                VOICE_SYNC_TIMING);
 410                voice->timing = NULL;
 411        }
 412        voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
 413        spin_unlock_irqrestore(&sis->voice_lock, flags);
 414}
 415
 416static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
 417{
 418        /* Must hold the voice_lock on entry */
 419        struct voice *voice;
 420        int i;
 421
 422        for (i = 0; i < 64; i++) {
 423                voice = &sis->voices[i];
 424                if (voice->flags & VOICE_IN_USE)
 425                        continue;
 426                voice->flags |= VOICE_IN_USE;
 427                goto found_one;
 428        }
 429        voice = NULL;
 430
 431found_one:
 432        return voice;
 433}
 434
 435static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
 436{
 437        struct voice *voice;
 438        unsigned long flags;
 439
 440        spin_lock_irqsave(&sis->voice_lock, flags);
 441        voice = __sis_alloc_playback_voice(sis);
 442        spin_unlock_irqrestore(&sis->voice_lock, flags);
 443
 444        return voice;
 445}
 446
 447static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
 448                                        struct snd_pcm_hw_params *hw_params)
 449{
 450        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 451        struct snd_pcm_runtime *runtime = substream->runtime;
 452        struct voice *voice = runtime->private_data;
 453        unsigned int period_size, buffer_size;
 454        unsigned long flags;
 455        int needed;
 456
 457        /* If there are one or two periods per buffer, we don't need a
 458         * timing voice, as we can use the capture channel's interrupts
 459         * to clock out the periods.
 460         */
 461        period_size = params_period_size(hw_params);
 462        buffer_size = params_buffer_size(hw_params);
 463        needed = (period_size != buffer_size &&
 464                        period_size != (buffer_size / 2));
 465
 466        if (needed && !voice->timing) {
 467                spin_lock_irqsave(&sis->voice_lock, flags);
 468                voice->timing = __sis_alloc_playback_voice(sis);
 469                if (voice->timing)
 470                        __sis_map_silence(sis);
 471                spin_unlock_irqrestore(&sis->voice_lock, flags);
 472                if (!voice->timing)
 473                        return -ENOMEM;
 474                voice->timing->substream = substream;
 475        } else if (!needed && voice->timing) {
 476                sis_free_voice(sis, voice);
 477                voice->timing = NULL;
 478        }
 479
 480        return 0;
 481}
 482
 483static int sis_playback_open(struct snd_pcm_substream *substream)
 484{
 485        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 486        struct snd_pcm_runtime *runtime = substream->runtime;
 487        struct voice *voice;
 488
 489        voice = sis_alloc_playback_voice(sis);
 490        if (!voice)
 491                return -EAGAIN;
 492
 493        voice->substream = substream;
 494        runtime->private_data = voice;
 495        runtime->hw = sis_playback_hw_info;
 496        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 497                                                9, 0xfff9);
 498        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 499                                                9, 0xfff9);
 500        snd_pcm_set_sync(substream);
 501        return 0;
 502}
 503
 504static int sis_substream_close(struct snd_pcm_substream *substream)
 505{
 506        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 507        struct snd_pcm_runtime *runtime = substream->runtime;
 508        struct voice *voice = runtime->private_data;
 509
 510        sis_free_voice(sis, voice);
 511        return 0;
 512}
 513
 514static int sis_playback_hw_params(struct snd_pcm_substream *substream,
 515                                        struct snd_pcm_hw_params *hw_params)
 516{
 517        return snd_pcm_lib_malloc_pages(substream,
 518                                        params_buffer_bytes(hw_params));
 519}
 520
 521static int sis_hw_free(struct snd_pcm_substream *substream)
 522{
 523        return snd_pcm_lib_free_pages(substream);
 524}
 525
 526static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
 527{
 528        struct snd_pcm_runtime *runtime = substream->runtime;
 529        struct voice *voice = runtime->private_data;
 530        void __iomem *ctrl_base = voice->ctrl_base;
 531        void __iomem *wave_base = voice->wave_base;
 532        u32 format, dma_addr, control, sso_eso, delta, reg;
 533        u16 leo;
 534
 535        /* We rely on the PCM core to ensure that the parameters for this
 536         * substream do not change on us while we're programming the HW.
 537         */
 538        format = 0;
 539        if (snd_pcm_format_width(runtime->format) == 8)
 540                format |= SIS_PLAY_DMA_FORMAT_8BIT;
 541        if (!snd_pcm_format_signed(runtime->format))
 542                format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
 543        if (runtime->channels == 1)
 544                format |= SIS_PLAY_DMA_FORMAT_MONO;
 545
 546        /* The baseline setup is for a single period per buffer, and
 547         * we add bells and whistles as needed from there.
 548         */
 549        dma_addr = runtime->dma_addr;
 550        leo = runtime->buffer_size - 1;
 551        control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
 552        sso_eso = leo;
 553
 554        if (runtime->period_size == (runtime->buffer_size / 2)) {
 555                control |= SIS_PLAY_DMA_INTR_AT_MLP;
 556        } else if (runtime->period_size != runtime->buffer_size) {
 557                voice->flags |= VOICE_SSO_TIMING;
 558                voice->sso = runtime->period_size - 1;
 559                voice->period_size = runtime->period_size;
 560                voice->buffer_size = runtime->buffer_size;
 561
 562                control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
 563                control |= SIS_PLAY_DMA_INTR_AT_SSO;
 564                sso_eso |= (runtime->period_size - 1) << 16;
 565        }
 566
 567        delta = sis_rate_to_delta(runtime->rate);
 568
 569        /* Ok, we're ready to go, set up the channel.
 570         */
 571        writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
 572        writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
 573        writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
 574        writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
 575
 576        for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
 577                writel(0, wave_base + reg);
 578
 579        writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
 580        writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
 581        writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
 582                        SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
 583                        SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
 584                        wave_base + SIS_WAVE_CHANNEL_CONTROL);
 585
 586        /* Force PCI writes to post. */
 587        readl(ctrl_base);
 588
 589        return 0;
 590}
 591
 592static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
 593{
 594        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 595        unsigned long io = sis->ioport;
 596        struct snd_pcm_substream *s;
 597        struct voice *voice;
 598        void *chip;
 599        int starting;
 600        u32 record = 0;
 601        u32 play[2] = { 0, 0 };
 602
 603        /* No locks needed, as the PCM core will hold the locks on the
 604         * substreams, and the HW will only start/stop the indicated voices
 605         * without changing the state of the others.
 606         */
 607        switch (cmd) {
 608        case SNDRV_PCM_TRIGGER_START:
 609        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 610        case SNDRV_PCM_TRIGGER_RESUME:
 611                starting = 1;
 612                break;
 613        case SNDRV_PCM_TRIGGER_STOP:
 614        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 615        case SNDRV_PCM_TRIGGER_SUSPEND:
 616                starting = 0;
 617                break;
 618        default:
 619                return -EINVAL;
 620        }
 621
 622        snd_pcm_group_for_each_entry(s, substream) {
 623                /* Make sure it is for us... */
 624                chip = snd_pcm_substream_chip(s);
 625                if (chip != sis)
 626                        continue;
 627
 628                voice = s->runtime->private_data;
 629                if (voice->flags & VOICE_CAPTURE) {
 630                        record |= 1 << voice->num;
 631                        voice = voice->timing;
 632                }
 633
 634                /* voice could be NULL if this a recording stream, and it
 635                 * doesn't have an external timing channel.
 636                 */
 637                if (voice)
 638                        play[voice->num / 32] |= 1 << (voice->num & 0x1f);
 639
 640                snd_pcm_trigger_done(s, substream);
 641        }
 642
 643        if (starting) {
 644                if (record)
 645                        outl(record, io + SIS_RECORD_START_REG);
 646                if (play[0])
 647                        outl(play[0], io + SIS_PLAY_START_A_REG);
 648                if (play[1])
 649                        outl(play[1], io + SIS_PLAY_START_B_REG);
 650        } else {
 651                if (record)
 652                        outl(record, io + SIS_RECORD_STOP_REG);
 653                if (play[0])
 654                        outl(play[0], io + SIS_PLAY_STOP_A_REG);
 655                if (play[1])
 656                        outl(play[1], io + SIS_PLAY_STOP_B_REG);
 657        }
 658        return 0;
 659}
 660
 661static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
 662{
 663        struct snd_pcm_runtime *runtime = substream->runtime;
 664        struct voice *voice = runtime->private_data;
 665        u32 cso;
 666
 667        cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
 668        cso &= 0xffff;
 669        return cso;
 670}
 671
 672static int sis_capture_open(struct snd_pcm_substream *substream)
 673{
 674        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 675        struct snd_pcm_runtime *runtime = substream->runtime;
 676        struct voice *voice = &sis->capture_voice;
 677        unsigned long flags;
 678
 679        /* FIXME: The driver only supports recording from one channel
 680         * at the moment, but it could support more.
 681         */
 682        spin_lock_irqsave(&sis->voice_lock, flags);
 683        if (voice->flags & VOICE_IN_USE)
 684                voice = NULL;
 685        else
 686                voice->flags |= VOICE_IN_USE;
 687        spin_unlock_irqrestore(&sis->voice_lock, flags);
 688
 689        if (!voice)
 690                return -EAGAIN;
 691
 692        voice->substream = substream;
 693        runtime->private_data = voice;
 694        runtime->hw = sis_capture_hw_info;
 695        runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
 696        snd_pcm_limit_hw_rates(runtime);
 697        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 698                                                9, 0xfff9);
 699        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 700                                                9, 0xfff9);
 701        snd_pcm_set_sync(substream);
 702        return 0;
 703}
 704
 705static int sis_capture_hw_params(struct snd_pcm_substream *substream,
 706                                        struct snd_pcm_hw_params *hw_params)
 707{
 708        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 709        int rc;
 710
 711        rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
 712                                                params_rate(hw_params));
 713        if (rc)
 714                goto out;
 715
 716        rc = snd_pcm_lib_malloc_pages(substream,
 717                                        params_buffer_bytes(hw_params));
 718        if (rc < 0)
 719                goto out;
 720
 721        rc = sis_alloc_timing_voice(substream, hw_params);
 722
 723out:
 724        return rc;
 725}
 726
 727static void sis_prepare_timing_voice(struct voice *voice,
 728                                        struct snd_pcm_substream *substream)
 729{
 730        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 731        struct snd_pcm_runtime *runtime = substream->runtime;
 732        struct voice *timing = voice->timing;
 733        void __iomem *play_base = timing->ctrl_base;
 734        void __iomem *wave_base = timing->wave_base;
 735        u16 buffer_size, period_size;
 736        u32 format, control, sso_eso, delta;
 737        u32 vperiod, sso, reg;
 738
 739        /* Set our initial buffer and period as large as we can given a
 740         * single page of silence.
 741         */
 742        buffer_size = 4096 / runtime->channels;
 743        buffer_size /= snd_pcm_format_size(runtime->format, 1);
 744        period_size = buffer_size;
 745
 746        /* Initially, we want to interrupt just a bit behind the end of
 747         * the period we're clocking out. 12 samples seems to give a good
 748         * delay.
 749         *
 750         * We want to spread our interrupts throughout the virtual period,
 751         * so that we don't end up with two interrupts back to back at the
 752         * end -- this helps minimize the effects of any jitter. Adjust our
 753         * clocking period size so that the last period is at least a fourth
 754         * of a full period.
 755         *
 756         * This is all moot if we don't need to use virtual periods.
 757         */
 758        vperiod = runtime->period_size + 12;
 759        if (vperiod > period_size) {
 760                u16 tail = vperiod % period_size;
 761                u16 quarter_period = period_size / 4;
 762
 763                if (tail && tail < quarter_period) {
 764                        u16 loops = vperiod / period_size;
 765
 766                        tail = quarter_period - tail;
 767                        tail += loops - 1;
 768                        tail /= loops;
 769                        period_size -= tail;
 770                }
 771
 772                sso = period_size - 1;
 773        } else {
 774                /* The initial period will fit inside the buffer, so we
 775                 * don't need to use virtual periods -- disable them.
 776                 */
 777                period_size = runtime->period_size;
 778                sso = vperiod - 1;
 779                vperiod = 0;
 780        }
 781
 782        /* The interrupt handler implements the timing synchronization, so
 783         * setup its state.
 784         */
 785        timing->flags |= VOICE_SYNC_TIMING;
 786        timing->sync_base = voice->ctrl_base;
 787        timing->sync_cso = runtime->period_size;
 788        timing->sync_period_size = runtime->period_size;
 789        timing->sync_buffer_size = runtime->buffer_size;
 790        timing->period_size = period_size;
 791        timing->buffer_size = buffer_size;
 792        timing->sso = sso;
 793        timing->vperiod = vperiod;
 794
 795        /* Using unsigned samples with the all-zero silence buffer
 796         * forces the output to the lower rail, killing playback.
 797         * So ignore unsigned vs signed -- it doesn't change the timing.
 798         */
 799        format = 0;
 800        if (snd_pcm_format_width(runtime->format) == 8)
 801                format = SIS_CAPTURE_DMA_FORMAT_8BIT;
 802        if (runtime->channels == 1)
 803                format |= SIS_CAPTURE_DMA_FORMAT_MONO;
 804
 805        control = timing->buffer_size - 1;
 806        control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
 807        sso_eso = timing->buffer_size - 1;
 808        sso_eso |= timing->sso << 16;
 809
 810        delta = sis_rate_to_delta(runtime->rate);
 811
 812        /* We've done the math, now configure the channel.
 813         */
 814        writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
 815        writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
 816        writel(control, play_base + SIS_PLAY_DMA_CONTROL);
 817        writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
 818
 819        for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
 820                writel(0, wave_base + reg);
 821
 822        writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
 823        writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
 824        writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
 825                        SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
 826                        SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
 827                        wave_base + SIS_WAVE_CHANNEL_CONTROL);
 828}
 829
 830static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
 831{
 832        struct snd_pcm_runtime *runtime = substream->runtime;
 833        struct voice *voice = runtime->private_data;
 834        void __iomem *rec_base = voice->ctrl_base;
 835        u32 format, dma_addr, control;
 836        u16 leo;
 837
 838        /* We rely on the PCM core to ensure that the parameters for this
 839         * substream do not change on us while we're programming the HW.
 840         */
 841        format = 0;
 842        if (snd_pcm_format_width(runtime->format) == 8)
 843                format = SIS_CAPTURE_DMA_FORMAT_8BIT;
 844        if (!snd_pcm_format_signed(runtime->format))
 845                format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
 846        if (runtime->channels == 1)
 847                format |= SIS_CAPTURE_DMA_FORMAT_MONO;
 848
 849        dma_addr = runtime->dma_addr;
 850        leo = runtime->buffer_size - 1;
 851        control = leo | SIS_CAPTURE_DMA_LOOP;
 852
 853        /* If we've got more than two periods per buffer, then we have
 854         * use a timing voice to clock out the periods. Otherwise, we can
 855         * use the capture channel's interrupts.
 856         */
 857        if (voice->timing) {
 858                sis_prepare_timing_voice(voice, substream);
 859        } else {
 860                control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
 861                if (runtime->period_size != runtime->buffer_size)
 862                        control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
 863        }
 864
 865        writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
 866        writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
 867        writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
 868
 869        /* Force the writes to post. */
 870        readl(rec_base);
 871
 872        return 0;
 873}
 874
 875static const struct snd_pcm_ops sis_playback_ops = {
 876        .open = sis_playback_open,
 877        .close = sis_substream_close,
 878        .ioctl = snd_pcm_lib_ioctl,
 879        .hw_params = sis_playback_hw_params,
 880        .hw_free = sis_hw_free,
 881        .prepare = sis_pcm_playback_prepare,
 882        .trigger = sis_pcm_trigger,
 883        .pointer = sis_pcm_pointer,
 884};
 885
 886static const struct snd_pcm_ops sis_capture_ops = {
 887        .open = sis_capture_open,
 888        .close = sis_substream_close,
 889        .ioctl = snd_pcm_lib_ioctl,
 890        .hw_params = sis_capture_hw_params,
 891        .hw_free = sis_hw_free,
 892        .prepare = sis_pcm_capture_prepare,
 893        .trigger = sis_pcm_trigger,
 894        .pointer = sis_pcm_pointer,
 895};
 896
 897static int sis_pcm_create(struct sis7019 *sis)
 898{
 899        struct snd_pcm *pcm;
 900        int rc;
 901
 902        /* We have 64 voices, and the driver currently records from
 903         * only one channel, though that could change in the future.
 904         */
 905        rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
 906        if (rc)
 907                return rc;
 908
 909        pcm->private_data = sis;
 910        strcpy(pcm->name, "SiS7019");
 911        sis->pcm = pcm;
 912
 913        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
 914        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
 915
 916        /* Try to preallocate some memory, but it's not the end of the
 917         * world if this fails.
 918         */
 919        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
 920                                snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
 921
 922        return 0;
 923}
 924
 925static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
 926{
 927        unsigned long io = sis->ioport;
 928        unsigned short val = 0xffff;
 929        u16 status;
 930        u16 rdy;
 931        int count;
 932        static const u16 codec_ready[3] = {
 933                SIS_AC97_STATUS_CODEC_READY,
 934                SIS_AC97_STATUS_CODEC2_READY,
 935                SIS_AC97_STATUS_CODEC3_READY,
 936        };
 937
 938        rdy = codec_ready[codec];
 939
 940
 941        /* Get the AC97 semaphore -- software first, so we don't spin
 942         * pounding out IO reads on the hardware semaphore...
 943         */
 944        mutex_lock(&sis->ac97_mutex);
 945
 946        count = 0xffff;
 947        while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
 948                udelay(1);
 949
 950        if (!count)
 951                goto timeout;
 952
 953        /* ... and wait for any outstanding commands to complete ...
 954         */
 955        count = 0xffff;
 956        do {
 957                status = inw(io + SIS_AC97_STATUS);
 958                if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
 959                        break;
 960
 961                udelay(1);
 962        } while (--count);
 963
 964        if (!count)
 965                goto timeout_sema;
 966
 967        /* ... before sending our command and waiting for it to finish ...
 968         */
 969        outl(cmd, io + SIS_AC97_CMD);
 970        udelay(10);
 971
 972        count = 0xffff;
 973        while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
 974                udelay(1);
 975
 976        /* ... and reading the results (if any).
 977         */
 978        val = inl(io + SIS_AC97_CMD) >> 16;
 979
 980timeout_sema:
 981        outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
 982timeout:
 983        mutex_unlock(&sis->ac97_mutex);
 984
 985        if (!count) {
 986                dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
 987                                        codec, cmd);
 988        }
 989
 990        return val;
 991}
 992
 993static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
 994                                unsigned short val)
 995{
 996        static const u32 cmd[3] = {
 997                SIS_AC97_CMD_CODEC_WRITE,
 998                SIS_AC97_CMD_CODEC2_WRITE,
 999                SIS_AC97_CMD_CODEC3_WRITE,
1000        };
1001        sis_ac97_rw(ac97->private_data, ac97->num,
1002                        (val << 16) | (reg << 8) | cmd[ac97->num]);
1003}
1004
1005static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
1006{
1007        static const u32 cmd[3] = {
1008                SIS_AC97_CMD_CODEC_READ,
1009                SIS_AC97_CMD_CODEC2_READ,
1010                SIS_AC97_CMD_CODEC3_READ,
1011        };
1012        return sis_ac97_rw(ac97->private_data, ac97->num,
1013                                        (reg << 8) | cmd[ac97->num]);
1014}
1015
1016static int sis_mixer_create(struct sis7019 *sis)
1017{
1018        struct snd_ac97_bus *bus;
1019        struct snd_ac97_template ac97;
1020        static struct snd_ac97_bus_ops ops = {
1021                .write = sis_ac97_write,
1022                .read = sis_ac97_read,
1023        };
1024        int rc;
1025
1026        memset(&ac97, 0, sizeof(ac97));
1027        ac97.private_data = sis;
1028
1029        rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
1030        if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1031                rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
1032        ac97.num = 1;
1033        if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1034                rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1035        ac97.num = 2;
1036        if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1037                rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1038
1039        /* If we return an error here, then snd_card_free() should
1040         * free up any ac97 codecs that got created, as well as the bus.
1041         */
1042        return rc;
1043}
1044
1045static void sis_free_suspend(struct sis7019 *sis)
1046{
1047        int i;
1048
1049        for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1050                kfree(sis->suspend_state[i]);
1051}
1052
1053static int sis_chip_free(struct sis7019 *sis)
1054{
1055        /* Reset the chip, and disable all interrputs.
1056         */
1057        outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1058        udelay(25);
1059        outl(0, sis->ioport + SIS_GCR);
1060        outl(0, sis->ioport + SIS_GIER);
1061
1062        /* Now, free everything we allocated.
1063         */
1064        if (sis->irq >= 0)
1065                free_irq(sis->irq, sis);
1066
1067        iounmap(sis->ioaddr);
1068        pci_release_regions(sis->pci);
1069        pci_disable_device(sis->pci);
1070        sis_free_suspend(sis);
1071        return 0;
1072}
1073
1074static int sis_dev_free(struct snd_device *dev)
1075{
1076        struct sis7019 *sis = dev->device_data;
1077        return sis_chip_free(sis);
1078}
1079
1080static int sis_chip_init(struct sis7019 *sis)
1081{
1082        unsigned long io = sis->ioport;
1083        void __iomem *ioaddr = sis->ioaddr;
1084        unsigned long timeout;
1085        u16 status;
1086        int count;
1087        int i;
1088
1089        /* Reset the audio controller
1090         */
1091        outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1092        udelay(25);
1093        outl(0, io + SIS_GCR);
1094
1095        /* Get the AC-link semaphore, and reset the codecs
1096         */
1097        count = 0xffff;
1098        while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1099                udelay(1);
1100
1101        if (!count)
1102                return -EIO;
1103
1104        outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1105        udelay(250);
1106
1107        count = 0xffff;
1108        while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1109                udelay(1);
1110
1111        /* Command complete, we can let go of the semaphore now.
1112         */
1113        outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1114        if (!count)
1115                return -EIO;
1116
1117        /* Now that we've finished the reset, find out what's attached.
1118         * There are some codec/board combinations that take an extremely
1119         * long time to come up. 350+ ms has been observed in the field,
1120         * so we'll give them up to 500ms.
1121         */
1122        sis->codecs_present = 0;
1123        timeout = msecs_to_jiffies(500) + jiffies;
1124        while (time_before_eq(jiffies, timeout)) {
1125                status = inl(io + SIS_AC97_STATUS);
1126                if (status & SIS_AC97_STATUS_CODEC_READY)
1127                        sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1128                if (status & SIS_AC97_STATUS_CODEC2_READY)
1129                        sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1130                if (status & SIS_AC97_STATUS_CODEC3_READY)
1131                        sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1132
1133                if (sis->codecs_present == codecs)
1134                        break;
1135
1136                msleep(1);
1137        }
1138
1139        /* All done, check for errors.
1140         */
1141        if (!sis->codecs_present) {
1142                dev_err(&sis->pci->dev, "could not find any codecs\n");
1143                return -EIO;
1144        }
1145
1146        if (sis->codecs_present != codecs) {
1147                dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1148                                         sis->codecs_present, codecs);
1149        }
1150
1151        /* Let the hardware know that the audio driver is alive,
1152         * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1153         * record channels. We're going to want to use Variable Rate Audio
1154         * for recording, to avoid needlessly resampling from 48kHZ.
1155         */
1156        outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1157        outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1158                SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1159                SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1160                SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1161
1162        /* All AC97 PCM slots should be sourced from sub-mixer 0.
1163         */
1164        outl(0, io + SIS_AC97_PSR);
1165
1166        /* There is only one valid DMA setup for a PCI environment.
1167         */
1168        outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1169
1170        /* Reset the synchronization groups for all of the channels
1171         * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1172         * we'll need to change how we handle these. Until then, we just
1173         * assign sub-mixer 0 to all playback channels, and avoid any
1174         * attenuation on the audio.
1175         */
1176        outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1177        outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1178        outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1179        outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1180        outl(0, io + SIS_MIXER_SYNC_GROUP);
1181
1182        for (i = 0; i < 64; i++) {
1183                writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1184                writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1185                                SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1186        }
1187
1188        /* Don't attenuate any audio set for the wave amplifier.
1189         *
1190         * FIXME: Maximum attenuation is set for the music amp, which will
1191         * need to change if we start using the synth engine.
1192         */
1193        outl(0xffff0000, io + SIS_WEVCR);
1194
1195        /* Ensure that the wave engine is in normal operating mode.
1196         */
1197        outl(0, io + SIS_WECCR);
1198
1199        /* Go ahead and enable the DMA interrupts. They won't go live
1200         * until we start a channel.
1201         */
1202        outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1203                SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1204
1205        return 0;
1206}
1207
1208#ifdef CONFIG_PM_SLEEP
1209static int sis_suspend(struct device *dev)
1210{
1211        struct snd_card *card = dev_get_drvdata(dev);
1212        struct sis7019 *sis = card->private_data;
1213        void __iomem *ioaddr = sis->ioaddr;
1214        int i;
1215
1216        snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1217        snd_pcm_suspend_all(sis->pcm);
1218        if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1219                snd_ac97_suspend(sis->ac97[0]);
1220        if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1221                snd_ac97_suspend(sis->ac97[1]);
1222        if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1223                snd_ac97_suspend(sis->ac97[2]);
1224
1225        /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1226         */
1227        if (sis->irq >= 0) {
1228                free_irq(sis->irq, sis);
1229                sis->irq = -1;
1230        }
1231
1232        /* Save the internal state away
1233         */
1234        for (i = 0; i < 4; i++) {
1235                memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1236                ioaddr += 4096;
1237        }
1238
1239        return 0;
1240}
1241
1242static int sis_resume(struct device *dev)
1243{
1244        struct pci_dev *pci = to_pci_dev(dev);
1245        struct snd_card *card = dev_get_drvdata(dev);
1246        struct sis7019 *sis = card->private_data;
1247        void __iomem *ioaddr = sis->ioaddr;
1248        int i;
1249
1250        if (sis_chip_init(sis)) {
1251                dev_err(&pci->dev, "unable to re-init controller\n");
1252                goto error;
1253        }
1254
1255        if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1256                        KBUILD_MODNAME, sis)) {
1257                dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1258                goto error;
1259        }
1260
1261        /* Restore saved state, then clear out the page we use for the
1262         * silence buffer.
1263         */
1264        for (i = 0; i < 4; i++) {
1265                memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1266                ioaddr += 4096;
1267        }
1268
1269        memset(sis->suspend_state[0], 0, 4096);
1270
1271        sis->irq = pci->irq;
1272
1273        if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1274                snd_ac97_resume(sis->ac97[0]);
1275        if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1276                snd_ac97_resume(sis->ac97[1]);
1277        if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1278                snd_ac97_resume(sis->ac97[2]);
1279
1280        snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1281        return 0;
1282
1283error:
1284        snd_card_disconnect(card);
1285        return -EIO;
1286}
1287
1288static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1289#define SIS_PM_OPS      &sis_pm
1290#else
1291#define SIS_PM_OPS      NULL
1292#endif /* CONFIG_PM_SLEEP */
1293
1294static int sis_alloc_suspend(struct sis7019 *sis)
1295{
1296        int i;
1297
1298        /* We need 16K to store the internal wave engine state during a
1299         * suspend, but we don't need it to be contiguous, so play nice
1300         * with the memory system. We'll also use this area for a silence
1301         * buffer.
1302         */
1303        for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1304                sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1305                if (!sis->suspend_state[i])
1306                        return -ENOMEM;
1307        }
1308        memset(sis->suspend_state[0], 0, 4096);
1309
1310        return 0;
1311}
1312
1313static int sis_chip_create(struct snd_card *card,
1314                           struct pci_dev *pci)
1315{
1316        struct sis7019 *sis = card->private_data;
1317        struct voice *voice;
1318        static struct snd_device_ops ops = {
1319                .dev_free = sis_dev_free,
1320        };
1321        int rc;
1322        int i;
1323
1324        rc = pci_enable_device(pci);
1325        if (rc)
1326                goto error_out;
1327
1328        rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1329        if (rc < 0) {
1330                dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1331                goto error_out_enabled;
1332        }
1333
1334        memset(sis, 0, sizeof(*sis));
1335        mutex_init(&sis->ac97_mutex);
1336        spin_lock_init(&sis->voice_lock);
1337        sis->card = card;
1338        sis->pci = pci;
1339        sis->irq = -1;
1340        sis->ioport = pci_resource_start(pci, 0);
1341
1342        rc = pci_request_regions(pci, "SiS7019");
1343        if (rc) {
1344                dev_err(&pci->dev, "unable request regions\n");
1345                goto error_out_enabled;
1346        }
1347
1348        rc = -EIO;
1349        sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
1350        if (!sis->ioaddr) {
1351                dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1352                goto error_out_cleanup;
1353        }
1354
1355        rc = sis_alloc_suspend(sis);
1356        if (rc < 0) {
1357                dev_err(&pci->dev, "unable to allocate state storage\n");
1358                goto error_out_cleanup;
1359        }
1360
1361        rc = sis_chip_init(sis);
1362        if (rc)
1363                goto error_out_cleanup;
1364
1365        rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1366                         sis);
1367        if (rc) {
1368                dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1369                goto error_out_cleanup;
1370        }
1371
1372        sis->irq = pci->irq;
1373        pci_set_master(pci);
1374
1375        for (i = 0; i < 64; i++) {
1376                voice = &sis->voices[i];
1377                voice->num = i;
1378                voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1379                voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1380        }
1381
1382        voice = &sis->capture_voice;
1383        voice->flags = VOICE_CAPTURE;
1384        voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1385        voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1386
1387        rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1388        if (rc)
1389                goto error_out_cleanup;
1390
1391        return 0;
1392
1393error_out_cleanup:
1394        sis_chip_free(sis);
1395
1396error_out_enabled:
1397        pci_disable_device(pci);
1398
1399error_out:
1400        return rc;
1401}
1402
1403static int snd_sis7019_probe(struct pci_dev *pci,
1404                             const struct pci_device_id *pci_id)
1405{
1406        struct snd_card *card;
1407        struct sis7019 *sis;
1408        int rc;
1409
1410        rc = -ENOENT;
1411        if (!enable)
1412                goto error_out;
1413
1414        /* The user can specify which codecs should be present so that we
1415         * can wait for them to show up if they are slow to recover from
1416         * the AC97 cold reset. We default to a single codec, the primary.
1417         *
1418         * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1419         */
1420        codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1421                  SIS_TERTIARY_CODEC_PRESENT;
1422        if (!codecs)
1423                codecs = SIS_PRIMARY_CODEC_PRESENT;
1424
1425        rc = snd_card_new(&pci->dev, index, id, THIS_MODULE,
1426                          sizeof(*sis), &card);
1427        if (rc < 0)
1428                goto error_out;
1429
1430        strcpy(card->driver, "SiS7019");
1431        strcpy(card->shortname, "SiS7019");
1432        rc = sis_chip_create(card, pci);
1433        if (rc)
1434                goto card_error_out;
1435
1436        sis = card->private_data;
1437
1438        rc = sis_mixer_create(sis);
1439        if (rc)
1440                goto card_error_out;
1441
1442        rc = sis_pcm_create(sis);
1443        if (rc)
1444                goto card_error_out;
1445
1446        snprintf(card->longname, sizeof(card->longname),
1447                        "%s Audio Accelerator with %s at 0x%lx, irq %d",
1448                        card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1449                        sis->ioport, sis->irq);
1450
1451        rc = snd_card_register(card);
1452        if (rc)
1453                goto card_error_out;
1454
1455        pci_set_drvdata(pci, card);
1456        return 0;
1457
1458card_error_out:
1459        snd_card_free(card);
1460
1461error_out:
1462        return rc;
1463}
1464
1465static void snd_sis7019_remove(struct pci_dev *pci)
1466{
1467        snd_card_free(pci_get_drvdata(pci));
1468}
1469
1470static struct pci_driver sis7019_driver = {
1471        .name = KBUILD_MODNAME,
1472        .id_table = snd_sis7019_ids,
1473        .probe = snd_sis7019_probe,
1474        .remove = snd_sis7019_remove,
1475        .driver = {
1476                .pm = SIS_PM_OPS,
1477        },
1478};
1479
1480module_pci_driver(sis7019_driver);
1481