linux/tools/perf/util/machine.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include "callchain.h"
   7#include "debug.h"
   8#include "event.h"
   9#include "evsel.h"
  10#include "hist.h"
  11#include "machine.h"
  12#include "map.h"
  13#include "sort.h"
  14#include "strlist.h"
  15#include "thread.h"
  16#include "vdso.h"
  17#include <stdbool.h>
  18#include <sys/types.h>
  19#include <sys/stat.h>
  20#include <unistd.h>
  21#include "unwind.h"
  22#include "linux/hash.h"
  23#include "asm/bug.h"
  24
  25#include "sane_ctype.h"
  26#include <symbol/kallsyms.h>
  27
  28static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  29
  30static void dsos__init(struct dsos *dsos)
  31{
  32        INIT_LIST_HEAD(&dsos->head);
  33        dsos->root = RB_ROOT;
  34        init_rwsem(&dsos->lock);
  35}
  36
  37static void machine__threads_init(struct machine *machine)
  38{
  39        int i;
  40
  41        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  42                struct threads *threads = &machine->threads[i];
  43                threads->entries = RB_ROOT;
  44                init_rwsem(&threads->lock);
  45                threads->nr = 0;
  46                INIT_LIST_HEAD(&threads->dead);
  47                threads->last_match = NULL;
  48        }
  49}
  50
  51static int machine__set_mmap_name(struct machine *machine)
  52{
  53        if (machine__is_host(machine))
  54                machine->mmap_name = strdup("[kernel.kallsyms]");
  55        else if (machine__is_default_guest(machine))
  56                machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  57        else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  58                          machine->pid) < 0)
  59                machine->mmap_name = NULL;
  60
  61        return machine->mmap_name ? 0 : -ENOMEM;
  62}
  63
  64int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  65{
  66        int err = -ENOMEM;
  67
  68        memset(machine, 0, sizeof(*machine));
  69        map_groups__init(&machine->kmaps, machine);
  70        RB_CLEAR_NODE(&machine->rb_node);
  71        dsos__init(&machine->dsos);
  72
  73        machine__threads_init(machine);
  74
  75        machine->vdso_info = NULL;
  76        machine->env = NULL;
  77
  78        machine->pid = pid;
  79
  80        machine->id_hdr_size = 0;
  81        machine->kptr_restrict_warned = false;
  82        machine->comm_exec = false;
  83        machine->kernel_start = 0;
  84
  85        memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
  86
  87        machine->root_dir = strdup(root_dir);
  88        if (machine->root_dir == NULL)
  89                return -ENOMEM;
  90
  91        if (machine__set_mmap_name(machine))
  92                goto out;
  93
  94        if (pid != HOST_KERNEL_ID) {
  95                struct thread *thread = machine__findnew_thread(machine, -1,
  96                                                                pid);
  97                char comm[64];
  98
  99                if (thread == NULL)
 100                        goto out;
 101
 102                snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 103                thread__set_comm(thread, comm, 0);
 104                thread__put(thread);
 105        }
 106
 107        machine->current_tid = NULL;
 108        err = 0;
 109
 110out:
 111        if (err) {
 112                zfree(&machine->root_dir);
 113                zfree(&machine->mmap_name);
 114        }
 115        return 0;
 116}
 117
 118struct machine *machine__new_host(void)
 119{
 120        struct machine *machine = malloc(sizeof(*machine));
 121
 122        if (machine != NULL) {
 123                machine__init(machine, "", HOST_KERNEL_ID);
 124
 125                if (machine__create_kernel_maps(machine) < 0)
 126                        goto out_delete;
 127        }
 128
 129        return machine;
 130out_delete:
 131        free(machine);
 132        return NULL;
 133}
 134
 135struct machine *machine__new_kallsyms(void)
 136{
 137        struct machine *machine = machine__new_host();
 138        /*
 139         * FIXME:
 140         * 1) MAP__FUNCTION will go away when we stop loading separate maps for
 141         *    functions and data objects.
 142         * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
 143         *    ask for not using the kcore parsing code, once this one is fixed
 144         *    to create a map per module.
 145         */
 146        if (machine && machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION) <= 0) {
 147                machine__delete(machine);
 148                machine = NULL;
 149        }
 150
 151        return machine;
 152}
 153
 154static void dsos__purge(struct dsos *dsos)
 155{
 156        struct dso *pos, *n;
 157
 158        down_write(&dsos->lock);
 159
 160        list_for_each_entry_safe(pos, n, &dsos->head, node) {
 161                RB_CLEAR_NODE(&pos->rb_node);
 162                pos->root = NULL;
 163                list_del_init(&pos->node);
 164                dso__put(pos);
 165        }
 166
 167        up_write(&dsos->lock);
 168}
 169
 170static void dsos__exit(struct dsos *dsos)
 171{
 172        dsos__purge(dsos);
 173        exit_rwsem(&dsos->lock);
 174}
 175
 176void machine__delete_threads(struct machine *machine)
 177{
 178        struct rb_node *nd;
 179        int i;
 180
 181        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 182                struct threads *threads = &machine->threads[i];
 183                down_write(&threads->lock);
 184                nd = rb_first(&threads->entries);
 185                while (nd) {
 186                        struct thread *t = rb_entry(nd, struct thread, rb_node);
 187
 188                        nd = rb_next(nd);
 189                        __machine__remove_thread(machine, t, false);
 190                }
 191                up_write(&threads->lock);
 192        }
 193}
 194
 195void machine__exit(struct machine *machine)
 196{
 197        int i;
 198
 199        if (machine == NULL)
 200                return;
 201
 202        machine__destroy_kernel_maps(machine);
 203        map_groups__exit(&machine->kmaps);
 204        dsos__exit(&machine->dsos);
 205        machine__exit_vdso(machine);
 206        zfree(&machine->root_dir);
 207        zfree(&machine->mmap_name);
 208        zfree(&machine->current_tid);
 209
 210        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 211                struct threads *threads = &machine->threads[i];
 212                exit_rwsem(&threads->lock);
 213        }
 214}
 215
 216void machine__delete(struct machine *machine)
 217{
 218        if (machine) {
 219                machine__exit(machine);
 220                free(machine);
 221        }
 222}
 223
 224void machines__init(struct machines *machines)
 225{
 226        machine__init(&machines->host, "", HOST_KERNEL_ID);
 227        machines->guests = RB_ROOT;
 228}
 229
 230void machines__exit(struct machines *machines)
 231{
 232        machine__exit(&machines->host);
 233        /* XXX exit guest */
 234}
 235
 236struct machine *machines__add(struct machines *machines, pid_t pid,
 237                              const char *root_dir)
 238{
 239        struct rb_node **p = &machines->guests.rb_node;
 240        struct rb_node *parent = NULL;
 241        struct machine *pos, *machine = malloc(sizeof(*machine));
 242
 243        if (machine == NULL)
 244                return NULL;
 245
 246        if (machine__init(machine, root_dir, pid) != 0) {
 247                free(machine);
 248                return NULL;
 249        }
 250
 251        while (*p != NULL) {
 252                parent = *p;
 253                pos = rb_entry(parent, struct machine, rb_node);
 254                if (pid < pos->pid)
 255                        p = &(*p)->rb_left;
 256                else
 257                        p = &(*p)->rb_right;
 258        }
 259
 260        rb_link_node(&machine->rb_node, parent, p);
 261        rb_insert_color(&machine->rb_node, &machines->guests);
 262
 263        return machine;
 264}
 265
 266void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 267{
 268        struct rb_node *nd;
 269
 270        machines->host.comm_exec = comm_exec;
 271
 272        for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 273                struct machine *machine = rb_entry(nd, struct machine, rb_node);
 274
 275                machine->comm_exec = comm_exec;
 276        }
 277}
 278
 279struct machine *machines__find(struct machines *machines, pid_t pid)
 280{
 281        struct rb_node **p = &machines->guests.rb_node;
 282        struct rb_node *parent = NULL;
 283        struct machine *machine;
 284        struct machine *default_machine = NULL;
 285
 286        if (pid == HOST_KERNEL_ID)
 287                return &machines->host;
 288
 289        while (*p != NULL) {
 290                parent = *p;
 291                machine = rb_entry(parent, struct machine, rb_node);
 292                if (pid < machine->pid)
 293                        p = &(*p)->rb_left;
 294                else if (pid > machine->pid)
 295                        p = &(*p)->rb_right;
 296                else
 297                        return machine;
 298                if (!machine->pid)
 299                        default_machine = machine;
 300        }
 301
 302        return default_machine;
 303}
 304
 305struct machine *machines__findnew(struct machines *machines, pid_t pid)
 306{
 307        char path[PATH_MAX];
 308        const char *root_dir = "";
 309        struct machine *machine = machines__find(machines, pid);
 310
 311        if (machine && (machine->pid == pid))
 312                goto out;
 313
 314        if ((pid != HOST_KERNEL_ID) &&
 315            (pid != DEFAULT_GUEST_KERNEL_ID) &&
 316            (symbol_conf.guestmount)) {
 317                sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 318                if (access(path, R_OK)) {
 319                        static struct strlist *seen;
 320
 321                        if (!seen)
 322                                seen = strlist__new(NULL, NULL);
 323
 324                        if (!strlist__has_entry(seen, path)) {
 325                                pr_err("Can't access file %s\n", path);
 326                                strlist__add(seen, path);
 327                        }
 328                        machine = NULL;
 329                        goto out;
 330                }
 331                root_dir = path;
 332        }
 333
 334        machine = machines__add(machines, pid, root_dir);
 335out:
 336        return machine;
 337}
 338
 339void machines__process_guests(struct machines *machines,
 340                              machine__process_t process, void *data)
 341{
 342        struct rb_node *nd;
 343
 344        for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 345                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 346                process(pos, data);
 347        }
 348}
 349
 350void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 351{
 352        struct rb_node *node;
 353        struct machine *machine;
 354
 355        machines->host.id_hdr_size = id_hdr_size;
 356
 357        for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
 358                machine = rb_entry(node, struct machine, rb_node);
 359                machine->id_hdr_size = id_hdr_size;
 360        }
 361
 362        return;
 363}
 364
 365static void machine__update_thread_pid(struct machine *machine,
 366                                       struct thread *th, pid_t pid)
 367{
 368        struct thread *leader;
 369
 370        if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 371                return;
 372
 373        th->pid_ = pid;
 374
 375        if (th->pid_ == th->tid)
 376                return;
 377
 378        leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 379        if (!leader)
 380                goto out_err;
 381
 382        if (!leader->mg)
 383                leader->mg = map_groups__new(machine);
 384
 385        if (!leader->mg)
 386                goto out_err;
 387
 388        if (th->mg == leader->mg)
 389                return;
 390
 391        if (th->mg) {
 392                /*
 393                 * Maps are created from MMAP events which provide the pid and
 394                 * tid.  Consequently there never should be any maps on a thread
 395                 * with an unknown pid.  Just print an error if there are.
 396                 */
 397                if (!map_groups__empty(th->mg))
 398                        pr_err("Discarding thread maps for %d:%d\n",
 399                               th->pid_, th->tid);
 400                map_groups__put(th->mg);
 401        }
 402
 403        th->mg = map_groups__get(leader->mg);
 404out_put:
 405        thread__put(leader);
 406        return;
 407out_err:
 408        pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 409        goto out_put;
 410}
 411
 412/*
 413 * Caller must eventually drop thread->refcnt returned with a successful
 414 * lookup/new thread inserted.
 415 */
 416static struct thread *____machine__findnew_thread(struct machine *machine,
 417                                                  struct threads *threads,
 418                                                  pid_t pid, pid_t tid,
 419                                                  bool create)
 420{
 421        struct rb_node **p = &threads->entries.rb_node;
 422        struct rb_node *parent = NULL;
 423        struct thread *th;
 424
 425        /*
 426         * Front-end cache - TID lookups come in blocks,
 427         * so most of the time we dont have to look up
 428         * the full rbtree:
 429         */
 430        th = threads->last_match;
 431        if (th != NULL) {
 432                if (th->tid == tid) {
 433                        machine__update_thread_pid(machine, th, pid);
 434                        return thread__get(th);
 435                }
 436
 437                threads->last_match = NULL;
 438        }
 439
 440        while (*p != NULL) {
 441                parent = *p;
 442                th = rb_entry(parent, struct thread, rb_node);
 443
 444                if (th->tid == tid) {
 445                        threads->last_match = th;
 446                        machine__update_thread_pid(machine, th, pid);
 447                        return thread__get(th);
 448                }
 449
 450                if (tid < th->tid)
 451                        p = &(*p)->rb_left;
 452                else
 453                        p = &(*p)->rb_right;
 454        }
 455
 456        if (!create)
 457                return NULL;
 458
 459        th = thread__new(pid, tid);
 460        if (th != NULL) {
 461                rb_link_node(&th->rb_node, parent, p);
 462                rb_insert_color(&th->rb_node, &threads->entries);
 463
 464                /*
 465                 * We have to initialize map_groups separately
 466                 * after rb tree is updated.
 467                 *
 468                 * The reason is that we call machine__findnew_thread
 469                 * within thread__init_map_groups to find the thread
 470                 * leader and that would screwed the rb tree.
 471                 */
 472                if (thread__init_map_groups(th, machine)) {
 473                        rb_erase_init(&th->rb_node, &threads->entries);
 474                        RB_CLEAR_NODE(&th->rb_node);
 475                        thread__put(th);
 476                        return NULL;
 477                }
 478                /*
 479                 * It is now in the rbtree, get a ref
 480                 */
 481                thread__get(th);
 482                threads->last_match = th;
 483                ++threads->nr;
 484        }
 485
 486        return th;
 487}
 488
 489struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 490{
 491        return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 492}
 493
 494struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 495                                       pid_t tid)
 496{
 497        struct threads *threads = machine__threads(machine, tid);
 498        struct thread *th;
 499
 500        down_write(&threads->lock);
 501        th = __machine__findnew_thread(machine, pid, tid);
 502        up_write(&threads->lock);
 503        return th;
 504}
 505
 506struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 507                                    pid_t tid)
 508{
 509        struct threads *threads = machine__threads(machine, tid);
 510        struct thread *th;
 511
 512        down_read(&threads->lock);
 513        th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 514        up_read(&threads->lock);
 515        return th;
 516}
 517
 518struct comm *machine__thread_exec_comm(struct machine *machine,
 519                                       struct thread *thread)
 520{
 521        if (machine->comm_exec)
 522                return thread__exec_comm(thread);
 523        else
 524                return thread__comm(thread);
 525}
 526
 527int machine__process_comm_event(struct machine *machine, union perf_event *event,
 528                                struct perf_sample *sample)
 529{
 530        struct thread *thread = machine__findnew_thread(machine,
 531                                                        event->comm.pid,
 532                                                        event->comm.tid);
 533        bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 534        int err = 0;
 535
 536        if (exec)
 537                machine->comm_exec = true;
 538
 539        if (dump_trace)
 540                perf_event__fprintf_comm(event, stdout);
 541
 542        if (thread == NULL ||
 543            __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 544                dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 545                err = -1;
 546        }
 547
 548        thread__put(thread);
 549
 550        return err;
 551}
 552
 553int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 554                                      union perf_event *event,
 555                                      struct perf_sample *sample __maybe_unused)
 556{
 557        struct thread *thread = machine__findnew_thread(machine,
 558                                                        event->namespaces.pid,
 559                                                        event->namespaces.tid);
 560        int err = 0;
 561
 562        WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 563                  "\nWARNING: kernel seems to support more namespaces than perf"
 564                  " tool.\nTry updating the perf tool..\n\n");
 565
 566        WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 567                  "\nWARNING: perf tool seems to support more namespaces than"
 568                  " the kernel.\nTry updating the kernel..\n\n");
 569
 570        if (dump_trace)
 571                perf_event__fprintf_namespaces(event, stdout);
 572
 573        if (thread == NULL ||
 574            thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 575                dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 576                err = -1;
 577        }
 578
 579        thread__put(thread);
 580
 581        return err;
 582}
 583
 584int machine__process_lost_event(struct machine *machine __maybe_unused,
 585                                union perf_event *event, struct perf_sample *sample __maybe_unused)
 586{
 587        dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
 588                    event->lost.id, event->lost.lost);
 589        return 0;
 590}
 591
 592int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 593                                        union perf_event *event, struct perf_sample *sample)
 594{
 595        dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
 596                    sample->id, event->lost_samples.lost);
 597        return 0;
 598}
 599
 600static struct dso *machine__findnew_module_dso(struct machine *machine,
 601                                               struct kmod_path *m,
 602                                               const char *filename)
 603{
 604        struct dso *dso;
 605
 606        down_write(&machine->dsos.lock);
 607
 608        dso = __dsos__find(&machine->dsos, m->name, true);
 609        if (!dso) {
 610                dso = __dsos__addnew(&machine->dsos, m->name);
 611                if (dso == NULL)
 612                        goto out_unlock;
 613
 614                dso__set_module_info(dso, m, machine);
 615                dso__set_long_name(dso, strdup(filename), true);
 616        }
 617
 618        dso__get(dso);
 619out_unlock:
 620        up_write(&machine->dsos.lock);
 621        return dso;
 622}
 623
 624int machine__process_aux_event(struct machine *machine __maybe_unused,
 625                               union perf_event *event)
 626{
 627        if (dump_trace)
 628                perf_event__fprintf_aux(event, stdout);
 629        return 0;
 630}
 631
 632int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 633                                        union perf_event *event)
 634{
 635        if (dump_trace)
 636                perf_event__fprintf_itrace_start(event, stdout);
 637        return 0;
 638}
 639
 640int machine__process_switch_event(struct machine *machine __maybe_unused,
 641                                  union perf_event *event)
 642{
 643        if (dump_trace)
 644                perf_event__fprintf_switch(event, stdout);
 645        return 0;
 646}
 647
 648static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
 649{
 650        const char *dup_filename;
 651
 652        if (!filename || !dso || !dso->long_name)
 653                return;
 654        if (dso->long_name[0] != '[')
 655                return;
 656        if (!strchr(filename, '/'))
 657                return;
 658
 659        dup_filename = strdup(filename);
 660        if (!dup_filename)
 661                return;
 662
 663        dso__set_long_name(dso, dup_filename, true);
 664}
 665
 666struct map *machine__findnew_module_map(struct machine *machine, u64 start,
 667                                        const char *filename)
 668{
 669        struct map *map = NULL;
 670        struct dso *dso = NULL;
 671        struct kmod_path m;
 672
 673        if (kmod_path__parse_name(&m, filename))
 674                return NULL;
 675
 676        map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
 677                                       m.name);
 678        if (map) {
 679                /*
 680                 * If the map's dso is an offline module, give dso__load()
 681                 * a chance to find the file path of that module by fixing
 682                 * long_name.
 683                 */
 684                dso__adjust_kmod_long_name(map->dso, filename);
 685                goto out;
 686        }
 687
 688        dso = machine__findnew_module_dso(machine, &m, filename);
 689        if (dso == NULL)
 690                goto out;
 691
 692        map = map__new2(start, dso, MAP__FUNCTION);
 693        if (map == NULL)
 694                goto out;
 695
 696        map_groups__insert(&machine->kmaps, map);
 697
 698        /* Put the map here because map_groups__insert alread got it */
 699        map__put(map);
 700out:
 701        /* put the dso here, corresponding to  machine__findnew_module_dso */
 702        dso__put(dso);
 703        free(m.name);
 704        return map;
 705}
 706
 707size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 708{
 709        struct rb_node *nd;
 710        size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 711
 712        for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 713                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 714                ret += __dsos__fprintf(&pos->dsos.head, fp);
 715        }
 716
 717        return ret;
 718}
 719
 720size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 721                                     bool (skip)(struct dso *dso, int parm), int parm)
 722{
 723        return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 724}
 725
 726size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 727                                     bool (skip)(struct dso *dso, int parm), int parm)
 728{
 729        struct rb_node *nd;
 730        size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 731
 732        for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 733                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 734                ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 735        }
 736        return ret;
 737}
 738
 739size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 740{
 741        int i;
 742        size_t printed = 0;
 743        struct dso *kdso = machine__kernel_map(machine)->dso;
 744
 745        if (kdso->has_build_id) {
 746                char filename[PATH_MAX];
 747                if (dso__build_id_filename(kdso, filename, sizeof(filename),
 748                                           false))
 749                        printed += fprintf(fp, "[0] %s\n", filename);
 750        }
 751
 752        for (i = 0; i < vmlinux_path__nr_entries; ++i)
 753                printed += fprintf(fp, "[%d] %s\n",
 754                                   i + kdso->has_build_id, vmlinux_path[i]);
 755
 756        return printed;
 757}
 758
 759size_t machine__fprintf(struct machine *machine, FILE *fp)
 760{
 761        struct rb_node *nd;
 762        size_t ret;
 763        int i;
 764
 765        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 766                struct threads *threads = &machine->threads[i];
 767
 768                down_read(&threads->lock);
 769
 770                ret = fprintf(fp, "Threads: %u\n", threads->nr);
 771
 772                for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
 773                        struct thread *pos = rb_entry(nd, struct thread, rb_node);
 774
 775                        ret += thread__fprintf(pos, fp);
 776                }
 777
 778                up_read(&threads->lock);
 779        }
 780        return ret;
 781}
 782
 783static struct dso *machine__get_kernel(struct machine *machine)
 784{
 785        const char *vmlinux_name = machine->mmap_name;
 786        struct dso *kernel;
 787
 788        if (machine__is_host(machine)) {
 789                if (symbol_conf.vmlinux_name)
 790                        vmlinux_name = symbol_conf.vmlinux_name;
 791
 792                kernel = machine__findnew_kernel(machine, vmlinux_name,
 793                                                 "[kernel]", DSO_TYPE_KERNEL);
 794        } else {
 795                if (symbol_conf.default_guest_vmlinux_name)
 796                        vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 797
 798                kernel = machine__findnew_kernel(machine, vmlinux_name,
 799                                                 "[guest.kernel]",
 800                                                 DSO_TYPE_GUEST_KERNEL);
 801        }
 802
 803        if (kernel != NULL && (!kernel->has_build_id))
 804                dso__read_running_kernel_build_id(kernel, machine);
 805
 806        return kernel;
 807}
 808
 809struct process_args {
 810        u64 start;
 811};
 812
 813static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 814                                           size_t bufsz)
 815{
 816        if (machine__is_default_guest(machine))
 817                scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 818        else
 819                scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 820}
 821
 822const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 823
 824/* Figure out the start address of kernel map from /proc/kallsyms.
 825 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 826 * symbol_name if it's not that important.
 827 */
 828static int machine__get_running_kernel_start(struct machine *machine,
 829                                             const char **symbol_name, u64 *start)
 830{
 831        char filename[PATH_MAX];
 832        int i, err = -1;
 833        const char *name;
 834        u64 addr = 0;
 835
 836        machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 837
 838        if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 839                return 0;
 840
 841        for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 842                err = kallsyms__get_function_start(filename, name, &addr);
 843                if (!err)
 844                        break;
 845        }
 846
 847        if (err)
 848                return -1;
 849
 850        if (symbol_name)
 851                *symbol_name = name;
 852
 853        *start = addr;
 854        return 0;
 855}
 856
 857static int
 858__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
 859{
 860        int type;
 861
 862        /* In case of renewal the kernel map, destroy previous one */
 863        machine__destroy_kernel_maps(machine);
 864
 865        for (type = 0; type < MAP__NR_TYPES; ++type) {
 866                struct kmap *kmap;
 867                struct map *map;
 868
 869                machine->vmlinux_maps[type] = map__new2(0, kernel, type);
 870                if (machine->vmlinux_maps[type] == NULL)
 871                        return -1;
 872
 873                machine->vmlinux_maps[type]->map_ip =
 874                        machine->vmlinux_maps[type]->unmap_ip =
 875                                identity__map_ip;
 876                map = __machine__kernel_map(machine, type);
 877                kmap = map__kmap(map);
 878                if (!kmap)
 879                        return -1;
 880
 881                kmap->kmaps = &machine->kmaps;
 882                map_groups__insert(&machine->kmaps, map);
 883        }
 884
 885        return 0;
 886}
 887
 888void machine__destroy_kernel_maps(struct machine *machine)
 889{
 890        int type;
 891
 892        for (type = 0; type < MAP__NR_TYPES; ++type) {
 893                struct kmap *kmap;
 894                struct map *map = __machine__kernel_map(machine, type);
 895
 896                if (map == NULL)
 897                        continue;
 898
 899                kmap = map__kmap(map);
 900                map_groups__remove(&machine->kmaps, map);
 901                if (kmap && kmap->ref_reloc_sym) {
 902                        /*
 903                         * ref_reloc_sym is shared among all maps, so free just
 904                         * on one of them.
 905                         */
 906                        if (type == MAP__FUNCTION) {
 907                                zfree((char **)&kmap->ref_reloc_sym->name);
 908                                zfree(&kmap->ref_reloc_sym);
 909                        } else
 910                                kmap->ref_reloc_sym = NULL;
 911                }
 912
 913                map__put(machine->vmlinux_maps[type]);
 914                machine->vmlinux_maps[type] = NULL;
 915        }
 916}
 917
 918int machines__create_guest_kernel_maps(struct machines *machines)
 919{
 920        int ret = 0;
 921        struct dirent **namelist = NULL;
 922        int i, items = 0;
 923        char path[PATH_MAX];
 924        pid_t pid;
 925        char *endp;
 926
 927        if (symbol_conf.default_guest_vmlinux_name ||
 928            symbol_conf.default_guest_modules ||
 929            symbol_conf.default_guest_kallsyms) {
 930                machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
 931        }
 932
 933        if (symbol_conf.guestmount) {
 934                items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
 935                if (items <= 0)
 936                        return -ENOENT;
 937                for (i = 0; i < items; i++) {
 938                        if (!isdigit(namelist[i]->d_name[0])) {
 939                                /* Filter out . and .. */
 940                                continue;
 941                        }
 942                        pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
 943                        if ((*endp != '\0') ||
 944                            (endp == namelist[i]->d_name) ||
 945                            (errno == ERANGE)) {
 946                                pr_debug("invalid directory (%s). Skipping.\n",
 947                                         namelist[i]->d_name);
 948                                continue;
 949                        }
 950                        sprintf(path, "%s/%s/proc/kallsyms",
 951                                symbol_conf.guestmount,
 952                                namelist[i]->d_name);
 953                        ret = access(path, R_OK);
 954                        if (ret) {
 955                                pr_debug("Can't access file %s\n", path);
 956                                goto failure;
 957                        }
 958                        machines__create_kernel_maps(machines, pid);
 959                }
 960failure:
 961                free(namelist);
 962        }
 963
 964        return ret;
 965}
 966
 967void machines__destroy_kernel_maps(struct machines *machines)
 968{
 969        struct rb_node *next = rb_first(&machines->guests);
 970
 971        machine__destroy_kernel_maps(&machines->host);
 972
 973        while (next) {
 974                struct machine *pos = rb_entry(next, struct machine, rb_node);
 975
 976                next = rb_next(&pos->rb_node);
 977                rb_erase(&pos->rb_node, &machines->guests);
 978                machine__delete(pos);
 979        }
 980}
 981
 982int machines__create_kernel_maps(struct machines *machines, pid_t pid)
 983{
 984        struct machine *machine = machines__findnew(machines, pid);
 985
 986        if (machine == NULL)
 987                return -1;
 988
 989        return machine__create_kernel_maps(machine);
 990}
 991
 992int machine__load_kallsyms(struct machine *machine, const char *filename,
 993                             enum map_type type)
 994{
 995        struct map *map = machine__kernel_map(machine);
 996        int ret = __dso__load_kallsyms(map->dso, filename, map, true);
 997
 998        if (ret > 0) {
 999                dso__set_loaded(map->dso, type);
1000                /*
1001                 * Since /proc/kallsyms will have multiple sessions for the
1002                 * kernel, with modules between them, fixup the end of all
1003                 * sections.
1004                 */
1005                __map_groups__fixup_end(&machine->kmaps, type);
1006        }
1007
1008        return ret;
1009}
1010
1011int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1012{
1013        struct map *map = machine__kernel_map(machine);
1014        int ret = dso__load_vmlinux_path(map->dso, map);
1015
1016        if (ret > 0)
1017                dso__set_loaded(map->dso, type);
1018
1019        return ret;
1020}
1021
1022static char *get_kernel_version(const char *root_dir)
1023{
1024        char version[PATH_MAX];
1025        FILE *file;
1026        char *name, *tmp;
1027        const char *prefix = "Linux version ";
1028
1029        sprintf(version, "%s/proc/version", root_dir);
1030        file = fopen(version, "r");
1031        if (!file)
1032                return NULL;
1033
1034        version[0] = '\0';
1035        tmp = fgets(version, sizeof(version), file);
1036        fclose(file);
1037
1038        name = strstr(version, prefix);
1039        if (!name)
1040                return NULL;
1041        name += strlen(prefix);
1042        tmp = strchr(name, ' ');
1043        if (tmp)
1044                *tmp = '\0';
1045
1046        return strdup(name);
1047}
1048
1049static bool is_kmod_dso(struct dso *dso)
1050{
1051        return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1052               dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1053}
1054
1055static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1056                                       struct kmod_path *m)
1057{
1058        struct map *map;
1059        char *long_name;
1060
1061        map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1062        if (map == NULL)
1063                return 0;
1064
1065        long_name = strdup(path);
1066        if (long_name == NULL)
1067                return -ENOMEM;
1068
1069        dso__set_long_name(map->dso, long_name, true);
1070        dso__kernel_module_get_build_id(map->dso, "");
1071
1072        /*
1073         * Full name could reveal us kmod compression, so
1074         * we need to update the symtab_type if needed.
1075         */
1076        if (m->comp && is_kmod_dso(map->dso))
1077                map->dso->symtab_type++;
1078
1079        return 0;
1080}
1081
1082static int map_groups__set_modules_path_dir(struct map_groups *mg,
1083                                const char *dir_name, int depth)
1084{
1085        struct dirent *dent;
1086        DIR *dir = opendir(dir_name);
1087        int ret = 0;
1088
1089        if (!dir) {
1090                pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1091                return -1;
1092        }
1093
1094        while ((dent = readdir(dir)) != NULL) {
1095                char path[PATH_MAX];
1096                struct stat st;
1097
1098                /*sshfs might return bad dent->d_type, so we have to stat*/
1099                snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1100                if (stat(path, &st))
1101                        continue;
1102
1103                if (S_ISDIR(st.st_mode)) {
1104                        if (!strcmp(dent->d_name, ".") ||
1105                            !strcmp(dent->d_name, ".."))
1106                                continue;
1107
1108                        /* Do not follow top-level source and build symlinks */
1109                        if (depth == 0) {
1110                                if (!strcmp(dent->d_name, "source") ||
1111                                    !strcmp(dent->d_name, "build"))
1112                                        continue;
1113                        }
1114
1115                        ret = map_groups__set_modules_path_dir(mg, path,
1116                                                               depth + 1);
1117                        if (ret < 0)
1118                                goto out;
1119                } else {
1120                        struct kmod_path m;
1121
1122                        ret = kmod_path__parse_name(&m, dent->d_name);
1123                        if (ret)
1124                                goto out;
1125
1126                        if (m.kmod)
1127                                ret = map_groups__set_module_path(mg, path, &m);
1128
1129                        free(m.name);
1130
1131                        if (ret)
1132                                goto out;
1133                }
1134        }
1135
1136out:
1137        closedir(dir);
1138        return ret;
1139}
1140
1141static int machine__set_modules_path(struct machine *machine)
1142{
1143        char *version;
1144        char modules_path[PATH_MAX];
1145
1146        version = get_kernel_version(machine->root_dir);
1147        if (!version)
1148                return -1;
1149
1150        snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1151                 machine->root_dir, version);
1152        free(version);
1153
1154        return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1155}
1156int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1157                                const char *name __maybe_unused)
1158{
1159        return 0;
1160}
1161
1162static int machine__create_module(void *arg, const char *name, u64 start,
1163                                  u64 size)
1164{
1165        struct machine *machine = arg;
1166        struct map *map;
1167
1168        if (arch__fix_module_text_start(&start, name) < 0)
1169                return -1;
1170
1171        map = machine__findnew_module_map(machine, start, name);
1172        if (map == NULL)
1173                return -1;
1174        map->end = start + size;
1175
1176        dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1177
1178        return 0;
1179}
1180
1181static int machine__create_modules(struct machine *machine)
1182{
1183        const char *modules;
1184        char path[PATH_MAX];
1185
1186        if (machine__is_default_guest(machine)) {
1187                modules = symbol_conf.default_guest_modules;
1188        } else {
1189                snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1190                modules = path;
1191        }
1192
1193        if (symbol__restricted_filename(modules, "/proc/modules"))
1194                return -1;
1195
1196        if (modules__parse(modules, machine, machine__create_module))
1197                return -1;
1198
1199        if (!machine__set_modules_path(machine))
1200                return 0;
1201
1202        pr_debug("Problems setting modules path maps, continuing anyway...\n");
1203
1204        return 0;
1205}
1206
1207static void machine__set_kernel_mmap(struct machine *machine,
1208                                     u64 start, u64 end)
1209{
1210        int i;
1211
1212        for (i = 0; i < MAP__NR_TYPES; i++) {
1213                machine->vmlinux_maps[i]->start = start;
1214                machine->vmlinux_maps[i]->end   = end;
1215
1216                /*
1217                 * Be a bit paranoid here, some perf.data file came with
1218                 * a zero sized synthesized MMAP event for the kernel.
1219                 */
1220                if (start == 0 && end == 0)
1221                        machine->vmlinux_maps[i]->end = ~0ULL;
1222        }
1223}
1224
1225int machine__create_kernel_maps(struct machine *machine)
1226{
1227        struct dso *kernel = machine__get_kernel(machine);
1228        const char *name = NULL;
1229        struct map *map;
1230        u64 addr = 0;
1231        int ret;
1232
1233        if (kernel == NULL)
1234                return -1;
1235
1236        ret = __machine__create_kernel_maps(machine, kernel);
1237        dso__put(kernel);
1238        if (ret < 0)
1239                return -1;
1240
1241        if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1242                if (machine__is_host(machine))
1243                        pr_debug("Problems creating module maps, "
1244                                 "continuing anyway...\n");
1245                else
1246                        pr_debug("Problems creating module maps for guest %d, "
1247                                 "continuing anyway...\n", machine->pid);
1248        }
1249
1250        if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1251                if (name &&
1252                    maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1253                        machine__destroy_kernel_maps(machine);
1254                        return -1;
1255                }
1256
1257                /* we have a real start address now, so re-order the kmaps */
1258                map = machine__kernel_map(machine);
1259
1260                map__get(map);
1261                map_groups__remove(&machine->kmaps, map);
1262
1263                /* assume it's the last in the kmaps */
1264                machine__set_kernel_mmap(machine, addr, ~0ULL);
1265
1266                map_groups__insert(&machine->kmaps, map);
1267                map__put(map);
1268        }
1269
1270        /* update end address of the kernel map using adjacent module address */
1271        map = map__next(machine__kernel_map(machine));
1272        if (map)
1273                machine__set_kernel_mmap(machine, addr, map->start);
1274
1275        return 0;
1276}
1277
1278static bool machine__uses_kcore(struct machine *machine)
1279{
1280        struct dso *dso;
1281
1282        list_for_each_entry(dso, &machine->dsos.head, node) {
1283                if (dso__is_kcore(dso))
1284                        return true;
1285        }
1286
1287        return false;
1288}
1289
1290static int machine__process_kernel_mmap_event(struct machine *machine,
1291                                              union perf_event *event)
1292{
1293        struct map *map;
1294        enum dso_kernel_type kernel_type;
1295        bool is_kernel_mmap;
1296
1297        /* If we have maps from kcore then we do not need or want any others */
1298        if (machine__uses_kcore(machine))
1299                return 0;
1300
1301        if (machine__is_host(machine))
1302                kernel_type = DSO_TYPE_KERNEL;
1303        else
1304                kernel_type = DSO_TYPE_GUEST_KERNEL;
1305
1306        is_kernel_mmap = memcmp(event->mmap.filename,
1307                                machine->mmap_name,
1308                                strlen(machine->mmap_name) - 1) == 0;
1309        if (event->mmap.filename[0] == '/' ||
1310            (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1311                map = machine__findnew_module_map(machine, event->mmap.start,
1312                                                  event->mmap.filename);
1313                if (map == NULL)
1314                        goto out_problem;
1315
1316                map->end = map->start + event->mmap.len;
1317        } else if (is_kernel_mmap) {
1318                const char *symbol_name = (event->mmap.filename +
1319                                strlen(machine->mmap_name));
1320                /*
1321                 * Should be there already, from the build-id table in
1322                 * the header.
1323                 */
1324                struct dso *kernel = NULL;
1325                struct dso *dso;
1326
1327                down_read(&machine->dsos.lock);
1328
1329                list_for_each_entry(dso, &machine->dsos.head, node) {
1330
1331                        /*
1332                         * The cpumode passed to is_kernel_module is not the
1333                         * cpumode of *this* event. If we insist on passing
1334                         * correct cpumode to is_kernel_module, we should
1335                         * record the cpumode when we adding this dso to the
1336                         * linked list.
1337                         *
1338                         * However we don't really need passing correct
1339                         * cpumode.  We know the correct cpumode must be kernel
1340                         * mode (if not, we should not link it onto kernel_dsos
1341                         * list).
1342                         *
1343                         * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1344                         * is_kernel_module() treats it as a kernel cpumode.
1345                         */
1346
1347                        if (!dso->kernel ||
1348                            is_kernel_module(dso->long_name,
1349                                             PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1350                                continue;
1351
1352
1353                        kernel = dso;
1354                        break;
1355                }
1356
1357                up_read(&machine->dsos.lock);
1358
1359                if (kernel == NULL)
1360                        kernel = machine__findnew_dso(machine, machine->mmap_name);
1361                if (kernel == NULL)
1362                        goto out_problem;
1363
1364                kernel->kernel = kernel_type;
1365                if (__machine__create_kernel_maps(machine, kernel) < 0) {
1366                        dso__put(kernel);
1367                        goto out_problem;
1368                }
1369
1370                if (strstr(kernel->long_name, "vmlinux"))
1371                        dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1372
1373                machine__set_kernel_mmap(machine, event->mmap.start,
1374                                         event->mmap.start + event->mmap.len);
1375
1376                /*
1377                 * Avoid using a zero address (kptr_restrict) for the ref reloc
1378                 * symbol. Effectively having zero here means that at record
1379                 * time /proc/sys/kernel/kptr_restrict was non zero.
1380                 */
1381                if (event->mmap.pgoff != 0) {
1382                        maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1383                                                         symbol_name,
1384                                                         event->mmap.pgoff);
1385                }
1386
1387                if (machine__is_default_guest(machine)) {
1388                        /*
1389                         * preload dso of guest kernel and modules
1390                         */
1391                        dso__load(kernel, machine__kernel_map(machine));
1392                }
1393        }
1394        return 0;
1395out_problem:
1396        return -1;
1397}
1398
1399int machine__process_mmap2_event(struct machine *machine,
1400                                 union perf_event *event,
1401                                 struct perf_sample *sample)
1402{
1403        struct thread *thread;
1404        struct map *map;
1405        enum map_type type;
1406        int ret = 0;
1407
1408        if (dump_trace)
1409                perf_event__fprintf_mmap2(event, stdout);
1410
1411        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1412            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1413                ret = machine__process_kernel_mmap_event(machine, event);
1414                if (ret < 0)
1415                        goto out_problem;
1416                return 0;
1417        }
1418
1419        thread = machine__findnew_thread(machine, event->mmap2.pid,
1420                                        event->mmap2.tid);
1421        if (thread == NULL)
1422                goto out_problem;
1423
1424        if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1425                type = MAP__VARIABLE;
1426        else
1427                type = MAP__FUNCTION;
1428
1429        map = map__new(machine, event->mmap2.start,
1430                        event->mmap2.len, event->mmap2.pgoff,
1431                        event->mmap2.maj,
1432                        event->mmap2.min, event->mmap2.ino,
1433                        event->mmap2.ino_generation,
1434                        event->mmap2.prot,
1435                        event->mmap2.flags,
1436                        event->mmap2.filename, type, thread);
1437
1438        if (map == NULL)
1439                goto out_problem_map;
1440
1441        ret = thread__insert_map(thread, map);
1442        if (ret)
1443                goto out_problem_insert;
1444
1445        thread__put(thread);
1446        map__put(map);
1447        return 0;
1448
1449out_problem_insert:
1450        map__put(map);
1451out_problem_map:
1452        thread__put(thread);
1453out_problem:
1454        dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1455        return 0;
1456}
1457
1458int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1459                                struct perf_sample *sample)
1460{
1461        struct thread *thread;
1462        struct map *map;
1463        enum map_type type;
1464        int ret = 0;
1465
1466        if (dump_trace)
1467                perf_event__fprintf_mmap(event, stdout);
1468
1469        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1470            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1471                ret = machine__process_kernel_mmap_event(machine, event);
1472                if (ret < 0)
1473                        goto out_problem;
1474                return 0;
1475        }
1476
1477        thread = machine__findnew_thread(machine, event->mmap.pid,
1478                                         event->mmap.tid);
1479        if (thread == NULL)
1480                goto out_problem;
1481
1482        if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1483                type = MAP__VARIABLE;
1484        else
1485                type = MAP__FUNCTION;
1486
1487        map = map__new(machine, event->mmap.start,
1488                        event->mmap.len, event->mmap.pgoff,
1489                        0, 0, 0, 0, 0, 0,
1490                        event->mmap.filename,
1491                        type, thread);
1492
1493        if (map == NULL)
1494                goto out_problem_map;
1495
1496        ret = thread__insert_map(thread, map);
1497        if (ret)
1498                goto out_problem_insert;
1499
1500        thread__put(thread);
1501        map__put(map);
1502        return 0;
1503
1504out_problem_insert:
1505        map__put(map);
1506out_problem_map:
1507        thread__put(thread);
1508out_problem:
1509        dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1510        return 0;
1511}
1512
1513static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1514{
1515        struct threads *threads = machine__threads(machine, th->tid);
1516
1517        if (threads->last_match == th)
1518                threads->last_match = NULL;
1519
1520        BUG_ON(refcount_read(&th->refcnt) == 0);
1521        if (lock)
1522                down_write(&threads->lock);
1523        rb_erase_init(&th->rb_node, &threads->entries);
1524        RB_CLEAR_NODE(&th->rb_node);
1525        --threads->nr;
1526        /*
1527         * Move it first to the dead_threads list, then drop the reference,
1528         * if this is the last reference, then the thread__delete destructor
1529         * will be called and we will remove it from the dead_threads list.
1530         */
1531        list_add_tail(&th->node, &threads->dead);
1532        if (lock)
1533                up_write(&threads->lock);
1534        thread__put(th);
1535}
1536
1537void machine__remove_thread(struct machine *machine, struct thread *th)
1538{
1539        return __machine__remove_thread(machine, th, true);
1540}
1541
1542int machine__process_fork_event(struct machine *machine, union perf_event *event,
1543                                struct perf_sample *sample)
1544{
1545        struct thread *thread = machine__find_thread(machine,
1546                                                     event->fork.pid,
1547                                                     event->fork.tid);
1548        struct thread *parent = machine__findnew_thread(machine,
1549                                                        event->fork.ppid,
1550                                                        event->fork.ptid);
1551        int err = 0;
1552
1553        if (dump_trace)
1554                perf_event__fprintf_task(event, stdout);
1555
1556        /*
1557         * There may be an existing thread that is not actually the parent,
1558         * either because we are processing events out of order, or because the
1559         * (fork) event that would have removed the thread was lost. Assume the
1560         * latter case and continue on as best we can.
1561         */
1562        if (parent->pid_ != (pid_t)event->fork.ppid) {
1563                dump_printf("removing erroneous parent thread %d/%d\n",
1564                            parent->pid_, parent->tid);
1565                machine__remove_thread(machine, parent);
1566                thread__put(parent);
1567                parent = machine__findnew_thread(machine, event->fork.ppid,
1568                                                 event->fork.ptid);
1569        }
1570
1571        /* if a thread currently exists for the thread id remove it */
1572        if (thread != NULL) {
1573                machine__remove_thread(machine, thread);
1574                thread__put(thread);
1575        }
1576
1577        thread = machine__findnew_thread(machine, event->fork.pid,
1578                                         event->fork.tid);
1579
1580        if (thread == NULL || parent == NULL ||
1581            thread__fork(thread, parent, sample->time) < 0) {
1582                dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1583                err = -1;
1584        }
1585        thread__put(thread);
1586        thread__put(parent);
1587
1588        return err;
1589}
1590
1591int machine__process_exit_event(struct machine *machine, union perf_event *event,
1592                                struct perf_sample *sample __maybe_unused)
1593{
1594        struct thread *thread = machine__find_thread(machine,
1595                                                     event->fork.pid,
1596                                                     event->fork.tid);
1597
1598        if (dump_trace)
1599                perf_event__fprintf_task(event, stdout);
1600
1601        if (thread != NULL) {
1602                thread__exited(thread);
1603                thread__put(thread);
1604        }
1605
1606        return 0;
1607}
1608
1609int machine__process_event(struct machine *machine, union perf_event *event,
1610                           struct perf_sample *sample)
1611{
1612        int ret;
1613
1614        switch (event->header.type) {
1615        case PERF_RECORD_COMM:
1616                ret = machine__process_comm_event(machine, event, sample); break;
1617        case PERF_RECORD_MMAP:
1618                ret = machine__process_mmap_event(machine, event, sample); break;
1619        case PERF_RECORD_NAMESPACES:
1620                ret = machine__process_namespaces_event(machine, event, sample); break;
1621        case PERF_RECORD_MMAP2:
1622                ret = machine__process_mmap2_event(machine, event, sample); break;
1623        case PERF_RECORD_FORK:
1624                ret = machine__process_fork_event(machine, event, sample); break;
1625        case PERF_RECORD_EXIT:
1626                ret = machine__process_exit_event(machine, event, sample); break;
1627        case PERF_RECORD_LOST:
1628                ret = machine__process_lost_event(machine, event, sample); break;
1629        case PERF_RECORD_AUX:
1630                ret = machine__process_aux_event(machine, event); break;
1631        case PERF_RECORD_ITRACE_START:
1632                ret = machine__process_itrace_start_event(machine, event); break;
1633        case PERF_RECORD_LOST_SAMPLES:
1634                ret = machine__process_lost_samples_event(machine, event, sample); break;
1635        case PERF_RECORD_SWITCH:
1636        case PERF_RECORD_SWITCH_CPU_WIDE:
1637                ret = machine__process_switch_event(machine, event); break;
1638        default:
1639                ret = -1;
1640                break;
1641        }
1642
1643        return ret;
1644}
1645
1646static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1647{
1648        if (!regexec(regex, sym->name, 0, NULL, 0))
1649                return 1;
1650        return 0;
1651}
1652
1653static void ip__resolve_ams(struct thread *thread,
1654                            struct addr_map_symbol *ams,
1655                            u64 ip)
1656{
1657        struct addr_location al;
1658
1659        memset(&al, 0, sizeof(al));
1660        /*
1661         * We cannot use the header.misc hint to determine whether a
1662         * branch stack address is user, kernel, guest, hypervisor.
1663         * Branches may straddle the kernel/user/hypervisor boundaries.
1664         * Thus, we have to try consecutively until we find a match
1665         * or else, the symbol is unknown
1666         */
1667        thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1668
1669        ams->addr = ip;
1670        ams->al_addr = al.addr;
1671        ams->sym = al.sym;
1672        ams->map = al.map;
1673        ams->phys_addr = 0;
1674}
1675
1676static void ip__resolve_data(struct thread *thread,
1677                             u8 m, struct addr_map_symbol *ams,
1678                             u64 addr, u64 phys_addr)
1679{
1680        struct addr_location al;
1681
1682        memset(&al, 0, sizeof(al));
1683
1684        thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1685        if (al.map == NULL) {
1686                /*
1687                 * some shared data regions have execute bit set which puts
1688                 * their mapping in the MAP__FUNCTION type array.
1689                 * Check there as a fallback option before dropping the sample.
1690                 */
1691                thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1692        }
1693
1694        ams->addr = addr;
1695        ams->al_addr = al.addr;
1696        ams->sym = al.sym;
1697        ams->map = al.map;
1698        ams->phys_addr = phys_addr;
1699}
1700
1701struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1702                                     struct addr_location *al)
1703{
1704        struct mem_info *mi = mem_info__new();
1705
1706        if (!mi)
1707                return NULL;
1708
1709        ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1710        ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1711                         sample->addr, sample->phys_addr);
1712        mi->data_src.val = sample->data_src;
1713
1714        return mi;
1715}
1716
1717static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1718{
1719        char *srcline = NULL;
1720
1721        if (!map || callchain_param.key == CCKEY_FUNCTION)
1722                return srcline;
1723
1724        srcline = srcline__tree_find(&map->dso->srclines, ip);
1725        if (!srcline) {
1726                bool show_sym = false;
1727                bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1728
1729                srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1730                                      sym, show_sym, show_addr, ip);
1731                srcline__tree_insert(&map->dso->srclines, ip, srcline);
1732        }
1733
1734        return srcline;
1735}
1736
1737struct iterations {
1738        int nr_loop_iter;
1739        u64 cycles;
1740};
1741
1742static int add_callchain_ip(struct thread *thread,
1743                            struct callchain_cursor *cursor,
1744                            struct symbol **parent,
1745                            struct addr_location *root_al,
1746                            u8 *cpumode,
1747                            u64 ip,
1748                            bool branch,
1749                            struct branch_flags *flags,
1750                            struct iterations *iter,
1751                            u64 branch_from)
1752{
1753        struct addr_location al;
1754        int nr_loop_iter = 0;
1755        u64 iter_cycles = 0;
1756        const char *srcline = NULL;
1757
1758        al.filtered = 0;
1759        al.sym = NULL;
1760        if (!cpumode) {
1761                thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1762                                                   ip, &al);
1763        } else {
1764                if (ip >= PERF_CONTEXT_MAX) {
1765                        switch (ip) {
1766                        case PERF_CONTEXT_HV:
1767                                *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1768                                break;
1769                        case PERF_CONTEXT_KERNEL:
1770                                *cpumode = PERF_RECORD_MISC_KERNEL;
1771                                break;
1772                        case PERF_CONTEXT_USER:
1773                                *cpumode = PERF_RECORD_MISC_USER;
1774                                break;
1775                        default:
1776                                pr_debug("invalid callchain context: "
1777                                         "%"PRId64"\n", (s64) ip);
1778                                /*
1779                                 * It seems the callchain is corrupted.
1780                                 * Discard all.
1781                                 */
1782                                callchain_cursor_reset(cursor);
1783                                return 1;
1784                        }
1785                        return 0;
1786                }
1787                thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1788                                           ip, &al);
1789        }
1790
1791        if (al.sym != NULL) {
1792                if (perf_hpp_list.parent && !*parent &&
1793                    symbol__match_regex(al.sym, &parent_regex))
1794                        *parent = al.sym;
1795                else if (have_ignore_callees && root_al &&
1796                  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1797                        /* Treat this symbol as the root,
1798                           forgetting its callees. */
1799                        *root_al = al;
1800                        callchain_cursor_reset(cursor);
1801                }
1802        }
1803
1804        if (symbol_conf.hide_unresolved && al.sym == NULL)
1805                return 0;
1806
1807        if (iter) {
1808                nr_loop_iter = iter->nr_loop_iter;
1809                iter_cycles = iter->cycles;
1810        }
1811
1812        srcline = callchain_srcline(al.map, al.sym, al.addr);
1813        return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1814                                       branch, flags, nr_loop_iter,
1815                                       iter_cycles, branch_from, srcline);
1816}
1817
1818struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1819                                           struct addr_location *al)
1820{
1821        unsigned int i;
1822        const struct branch_stack *bs = sample->branch_stack;
1823        struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1824
1825        if (!bi)
1826                return NULL;
1827
1828        for (i = 0; i < bs->nr; i++) {
1829                ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1830                ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1831                bi[i].flags = bs->entries[i].flags;
1832        }
1833        return bi;
1834}
1835
1836static void save_iterations(struct iterations *iter,
1837                            struct branch_entry *be, int nr)
1838{
1839        int i;
1840
1841        iter->nr_loop_iter = nr;
1842        iter->cycles = 0;
1843
1844        for (i = 0; i < nr; i++)
1845                iter->cycles += be[i].flags.cycles;
1846}
1847
1848#define CHASHSZ 127
1849#define CHASHBITS 7
1850#define NO_ENTRY 0xff
1851
1852#define PERF_MAX_BRANCH_DEPTH 127
1853
1854/* Remove loops. */
1855static int remove_loops(struct branch_entry *l, int nr,
1856                        struct iterations *iter)
1857{
1858        int i, j, off;
1859        unsigned char chash[CHASHSZ];
1860
1861        memset(chash, NO_ENTRY, sizeof(chash));
1862
1863        BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1864
1865        for (i = 0; i < nr; i++) {
1866                int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1867
1868                /* no collision handling for now */
1869                if (chash[h] == NO_ENTRY) {
1870                        chash[h] = i;
1871                } else if (l[chash[h]].from == l[i].from) {
1872                        bool is_loop = true;
1873                        /* check if it is a real loop */
1874                        off = 0;
1875                        for (j = chash[h]; j < i && i + off < nr; j++, off++)
1876                                if (l[j].from != l[i + off].from) {
1877                                        is_loop = false;
1878                                        break;
1879                                }
1880                        if (is_loop) {
1881                                j = nr - (i + off);
1882                                if (j > 0) {
1883                                        save_iterations(iter + i + off,
1884                                                l + i, off);
1885
1886                                        memmove(iter + i, iter + i + off,
1887                                                j * sizeof(*iter));
1888
1889                                        memmove(l + i, l + i + off,
1890                                                j * sizeof(*l));
1891                                }
1892
1893                                nr -= off;
1894                        }
1895                }
1896        }
1897        return nr;
1898}
1899
1900/*
1901 * Recolve LBR callstack chain sample
1902 * Return:
1903 * 1 on success get LBR callchain information
1904 * 0 no available LBR callchain information, should try fp
1905 * negative error code on other errors.
1906 */
1907static int resolve_lbr_callchain_sample(struct thread *thread,
1908                                        struct callchain_cursor *cursor,
1909                                        struct perf_sample *sample,
1910                                        struct symbol **parent,
1911                                        struct addr_location *root_al,
1912                                        int max_stack)
1913{
1914        struct ip_callchain *chain = sample->callchain;
1915        int chain_nr = min(max_stack, (int)chain->nr), i;
1916        u8 cpumode = PERF_RECORD_MISC_USER;
1917        u64 ip, branch_from = 0;
1918
1919        for (i = 0; i < chain_nr; i++) {
1920                if (chain->ips[i] == PERF_CONTEXT_USER)
1921                        break;
1922        }
1923
1924        /* LBR only affects the user callchain */
1925        if (i != chain_nr) {
1926                struct branch_stack *lbr_stack = sample->branch_stack;
1927                int lbr_nr = lbr_stack->nr, j, k;
1928                bool branch;
1929                struct branch_flags *flags;
1930                /*
1931                 * LBR callstack can only get user call chain.
1932                 * The mix_chain_nr is kernel call chain
1933                 * number plus LBR user call chain number.
1934                 * i is kernel call chain number,
1935                 * 1 is PERF_CONTEXT_USER,
1936                 * lbr_nr + 1 is the user call chain number.
1937                 * For details, please refer to the comments
1938                 * in callchain__printf
1939                 */
1940                int mix_chain_nr = i + 1 + lbr_nr + 1;
1941
1942                for (j = 0; j < mix_chain_nr; j++) {
1943                        int err;
1944                        branch = false;
1945                        flags = NULL;
1946
1947                        if (callchain_param.order == ORDER_CALLEE) {
1948                                if (j < i + 1)
1949                                        ip = chain->ips[j];
1950                                else if (j > i + 1) {
1951                                        k = j - i - 2;
1952                                        ip = lbr_stack->entries[k].from;
1953                                        branch = true;
1954                                        flags = &lbr_stack->entries[k].flags;
1955                                } else {
1956                                        ip = lbr_stack->entries[0].to;
1957                                        branch = true;
1958                                        flags = &lbr_stack->entries[0].flags;
1959                                        branch_from =
1960                                                lbr_stack->entries[0].from;
1961                                }
1962                        } else {
1963                                if (j < lbr_nr) {
1964                                        k = lbr_nr - j - 1;
1965                                        ip = lbr_stack->entries[k].from;
1966                                        branch = true;
1967                                        flags = &lbr_stack->entries[k].flags;
1968                                }
1969                                else if (j > lbr_nr)
1970                                        ip = chain->ips[i + 1 - (j - lbr_nr)];
1971                                else {
1972                                        ip = lbr_stack->entries[0].to;
1973                                        branch = true;
1974                                        flags = &lbr_stack->entries[0].flags;
1975                                        branch_from =
1976                                                lbr_stack->entries[0].from;
1977                                }
1978                        }
1979
1980                        err = add_callchain_ip(thread, cursor, parent,
1981                                               root_al, &cpumode, ip,
1982                                               branch, flags, NULL,
1983                                               branch_from);
1984                        if (err)
1985                                return (err < 0) ? err : 0;
1986                }
1987                return 1;
1988        }
1989
1990        return 0;
1991}
1992
1993static int thread__resolve_callchain_sample(struct thread *thread,
1994                                            struct callchain_cursor *cursor,
1995                                            struct perf_evsel *evsel,
1996                                            struct perf_sample *sample,
1997                                            struct symbol **parent,
1998                                            struct addr_location *root_al,
1999                                            int max_stack)
2000{
2001        struct branch_stack *branch = sample->branch_stack;
2002        struct ip_callchain *chain = sample->callchain;
2003        int chain_nr = 0;
2004        u8 cpumode = PERF_RECORD_MISC_USER;
2005        int i, j, err, nr_entries;
2006        int skip_idx = -1;
2007        int first_call = 0;
2008
2009        if (chain)
2010                chain_nr = chain->nr;
2011
2012        if (perf_evsel__has_branch_callstack(evsel)) {
2013                err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2014                                                   root_al, max_stack);
2015                if (err)
2016                        return (err < 0) ? err : 0;
2017        }
2018
2019        /*
2020         * Based on DWARF debug information, some architectures skip
2021         * a callchain entry saved by the kernel.
2022         */
2023        skip_idx = arch_skip_callchain_idx(thread, chain);
2024
2025        /*
2026         * Add branches to call stack for easier browsing. This gives
2027         * more context for a sample than just the callers.
2028         *
2029         * This uses individual histograms of paths compared to the
2030         * aggregated histograms the normal LBR mode uses.
2031         *
2032         * Limitations for now:
2033         * - No extra filters
2034         * - No annotations (should annotate somehow)
2035         */
2036
2037        if (branch && callchain_param.branch_callstack) {
2038                int nr = min(max_stack, (int)branch->nr);
2039                struct branch_entry be[nr];
2040                struct iterations iter[nr];
2041
2042                if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2043                        pr_warning("corrupted branch chain. skipping...\n");
2044                        goto check_calls;
2045                }
2046
2047                for (i = 0; i < nr; i++) {
2048                        if (callchain_param.order == ORDER_CALLEE) {
2049                                be[i] = branch->entries[i];
2050
2051                                if (chain == NULL)
2052                                        continue;
2053
2054                                /*
2055                                 * Check for overlap into the callchain.
2056                                 * The return address is one off compared to
2057                                 * the branch entry. To adjust for this
2058                                 * assume the calling instruction is not longer
2059                                 * than 8 bytes.
2060                                 */
2061                                if (i == skip_idx ||
2062                                    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2063                                        first_call++;
2064                                else if (be[i].from < chain->ips[first_call] &&
2065                                    be[i].from >= chain->ips[first_call] - 8)
2066                                        first_call++;
2067                        } else
2068                                be[i] = branch->entries[branch->nr - i - 1];
2069                }
2070
2071                memset(iter, 0, sizeof(struct iterations) * nr);
2072                nr = remove_loops(be, nr, iter);
2073
2074                for (i = 0; i < nr; i++) {
2075                        err = add_callchain_ip(thread, cursor, parent,
2076                                               root_al,
2077                                               NULL, be[i].to,
2078                                               true, &be[i].flags,
2079                                               NULL, be[i].from);
2080
2081                        if (!err)
2082                                err = add_callchain_ip(thread, cursor, parent, root_al,
2083                                                       NULL, be[i].from,
2084                                                       true, &be[i].flags,
2085                                                       &iter[i], 0);
2086                        if (err == -EINVAL)
2087                                break;
2088                        if (err)
2089                                return err;
2090                }
2091
2092                if (chain_nr == 0)
2093                        return 0;
2094
2095                chain_nr -= nr;
2096        }
2097
2098check_calls:
2099        for (i = first_call, nr_entries = 0;
2100             i < chain_nr && nr_entries < max_stack; i++) {
2101                u64 ip;
2102
2103                if (callchain_param.order == ORDER_CALLEE)
2104                        j = i;
2105                else
2106                        j = chain->nr - i - 1;
2107
2108#ifdef HAVE_SKIP_CALLCHAIN_IDX
2109                if (j == skip_idx)
2110                        continue;
2111#endif
2112                ip = chain->ips[j];
2113
2114                if (ip < PERF_CONTEXT_MAX)
2115                       ++nr_entries;
2116
2117                err = add_callchain_ip(thread, cursor, parent,
2118                                       root_al, &cpumode, ip,
2119                                       false, NULL, NULL, 0);
2120
2121                if (err)
2122                        return (err < 0) ? err : 0;
2123        }
2124
2125        return 0;
2126}
2127
2128static int append_inlines(struct callchain_cursor *cursor,
2129                          struct map *map, struct symbol *sym, u64 ip)
2130{
2131        struct inline_node *inline_node;
2132        struct inline_list *ilist;
2133        u64 addr;
2134        int ret = 1;
2135
2136        if (!symbol_conf.inline_name || !map || !sym)
2137                return ret;
2138
2139        addr = map__rip_2objdump(map, ip);
2140
2141        inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2142        if (!inline_node) {
2143                inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2144                if (!inline_node)
2145                        return ret;
2146                inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2147        }
2148
2149        list_for_each_entry(ilist, &inline_node->val, list) {
2150                ret = callchain_cursor_append(cursor, ip, map,
2151                                              ilist->symbol, false,
2152                                              NULL, 0, 0, 0, ilist->srcline);
2153
2154                if (ret != 0)
2155                        return ret;
2156        }
2157
2158        return ret;
2159}
2160
2161static int unwind_entry(struct unwind_entry *entry, void *arg)
2162{
2163        struct callchain_cursor *cursor = arg;
2164        const char *srcline = NULL;
2165
2166        if (symbol_conf.hide_unresolved && entry->sym == NULL)
2167                return 0;
2168
2169        if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2170                return 0;
2171
2172        srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
2173        return callchain_cursor_append(cursor, entry->ip,
2174                                       entry->map, entry->sym,
2175                                       false, NULL, 0, 0, 0, srcline);
2176}
2177
2178static int thread__resolve_callchain_unwind(struct thread *thread,
2179                                            struct callchain_cursor *cursor,
2180                                            struct perf_evsel *evsel,
2181                                            struct perf_sample *sample,
2182                                            int max_stack)
2183{
2184        /* Can we do dwarf post unwind? */
2185        if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2186              (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2187                return 0;
2188
2189        /* Bail out if nothing was captured. */
2190        if ((!sample->user_regs.regs) ||
2191            (!sample->user_stack.size))
2192                return 0;
2193
2194        return unwind__get_entries(unwind_entry, cursor,
2195                                   thread, sample, max_stack);
2196}
2197
2198int thread__resolve_callchain(struct thread *thread,
2199                              struct callchain_cursor *cursor,
2200                              struct perf_evsel *evsel,
2201                              struct perf_sample *sample,
2202                              struct symbol **parent,
2203                              struct addr_location *root_al,
2204                              int max_stack)
2205{
2206        int ret = 0;
2207
2208        callchain_cursor_reset(cursor);
2209
2210        if (callchain_param.order == ORDER_CALLEE) {
2211                ret = thread__resolve_callchain_sample(thread, cursor,
2212                                                       evsel, sample,
2213                                                       parent, root_al,
2214                                                       max_stack);
2215                if (ret)
2216                        return ret;
2217                ret = thread__resolve_callchain_unwind(thread, cursor,
2218                                                       evsel, sample,
2219                                                       max_stack);
2220        } else {
2221                ret = thread__resolve_callchain_unwind(thread, cursor,
2222                                                       evsel, sample,
2223                                                       max_stack);
2224                if (ret)
2225                        return ret;
2226                ret = thread__resolve_callchain_sample(thread, cursor,
2227                                                       evsel, sample,
2228                                                       parent, root_al,
2229                                                       max_stack);
2230        }
2231
2232        return ret;
2233}
2234
2235int machine__for_each_thread(struct machine *machine,
2236                             int (*fn)(struct thread *thread, void *p),
2237                             void *priv)
2238{
2239        struct threads *threads;
2240        struct rb_node *nd;
2241        struct thread *thread;
2242        int rc = 0;
2243        int i;
2244
2245        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2246                threads = &machine->threads[i];
2247                for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2248                        thread = rb_entry(nd, struct thread, rb_node);
2249                        rc = fn(thread, priv);
2250                        if (rc != 0)
2251                                return rc;
2252                }
2253
2254                list_for_each_entry(thread, &threads->dead, node) {
2255                        rc = fn(thread, priv);
2256                        if (rc != 0)
2257                                return rc;
2258                }
2259        }
2260        return rc;
2261}
2262
2263int machines__for_each_thread(struct machines *machines,
2264                              int (*fn)(struct thread *thread, void *p),
2265                              void *priv)
2266{
2267        struct rb_node *nd;
2268        int rc = 0;
2269
2270        rc = machine__for_each_thread(&machines->host, fn, priv);
2271        if (rc != 0)
2272                return rc;
2273
2274        for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2275                struct machine *machine = rb_entry(nd, struct machine, rb_node);
2276
2277                rc = machine__for_each_thread(machine, fn, priv);
2278                if (rc != 0)
2279                        return rc;
2280        }
2281        return rc;
2282}
2283
2284int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2285                                  struct target *target, struct thread_map *threads,
2286                                  perf_event__handler_t process, bool data_mmap,
2287                                  unsigned int proc_map_timeout,
2288                                  unsigned int nr_threads_synthesize)
2289{
2290        if (target__has_task(target))
2291                return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2292        else if (target__has_cpu(target))
2293                return perf_event__synthesize_threads(tool, process,
2294                                                      machine, data_mmap,
2295                                                      proc_map_timeout,
2296                                                      nr_threads_synthesize);
2297        /* command specified */
2298        return 0;
2299}
2300
2301pid_t machine__get_current_tid(struct machine *machine, int cpu)
2302{
2303        if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2304                return -1;
2305
2306        return machine->current_tid[cpu];
2307}
2308
2309int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2310                             pid_t tid)
2311{
2312        struct thread *thread;
2313
2314        if (cpu < 0)
2315                return -EINVAL;
2316
2317        if (!machine->current_tid) {
2318                int i;
2319
2320                machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2321                if (!machine->current_tid)
2322                        return -ENOMEM;
2323                for (i = 0; i < MAX_NR_CPUS; i++)
2324                        machine->current_tid[i] = -1;
2325        }
2326
2327        if (cpu >= MAX_NR_CPUS) {
2328                pr_err("Requested CPU %d too large. ", cpu);
2329                pr_err("Consider raising MAX_NR_CPUS\n");
2330                return -EINVAL;
2331        }
2332
2333        machine->current_tid[cpu] = tid;
2334
2335        thread = machine__findnew_thread(machine, pid, tid);
2336        if (!thread)
2337                return -ENOMEM;
2338
2339        thread->cpu = cpu;
2340        thread__put(thread);
2341
2342        return 0;
2343}
2344
2345int machine__get_kernel_start(struct machine *machine)
2346{
2347        struct map *map = machine__kernel_map(machine);
2348        int err = 0;
2349
2350        /*
2351         * The only addresses above 2^63 are kernel addresses of a 64-bit
2352         * kernel.  Note that addresses are unsigned so that on a 32-bit system
2353         * all addresses including kernel addresses are less than 2^32.  In
2354         * that case (32-bit system), if the kernel mapping is unknown, all
2355         * addresses will be assumed to be in user space - see
2356         * machine__kernel_ip().
2357         */
2358        machine->kernel_start = 1ULL << 63;
2359        if (map) {
2360                err = map__load(map);
2361                if (!err)
2362                        machine->kernel_start = map->start;
2363        }
2364        return err;
2365}
2366
2367struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2368{
2369        return dsos__findnew(&machine->dsos, filename);
2370}
2371
2372char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2373{
2374        struct machine *machine = vmachine;
2375        struct map *map;
2376        struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2377
2378        if (sym == NULL)
2379                return NULL;
2380
2381        *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2382        *addrp = map->unmap_ip(map, sym->start);
2383        return sym->name;
2384}
2385