linux/tools/testing/selftests/kvm/lib/sparsebit.c
<<
>>
Prefs
   1/*
   2 * Sparse bit array
   3 *
   4 * Copyright (C) 2018, Google LLC.
   5 * Copyright (C) 2018, Red Hat, Inc. (code style cleanup and fuzzing driver)
   6 *
   7 * This work is licensed under the terms of the GNU GPL, version 2.
   8 *
   9 * This library provides functions to support a memory efficient bit array,
  10 * with an index size of 2^64.  A sparsebit array is allocated through
  11 * the use sparsebit_alloc() and free'd via sparsebit_free(),
  12 * such as in the following:
  13 *
  14 *   struct sparsebit *s;
  15 *   s = sparsebit_alloc();
  16 *   sparsebit_free(&s);
  17 *
  18 * The struct sparsebit type resolves down to a struct sparsebit.
  19 * Note that, sparsebit_free() takes a pointer to the sparsebit
  20 * structure.  This is so that sparsebit_free() is able to poison
  21 * the pointer (e.g. set it to NULL) to the struct sparsebit before
  22 * returning to the caller.
  23 *
  24 * Between the return of sparsebit_alloc() and the call of
  25 * sparsebit_free(), there are multiple query and modifying operations
  26 * that can be performed on the allocated sparsebit array.  All of
  27 * these operations take as a parameter the value returned from
  28 * sparsebit_alloc() and most also take a bit index.  Frequently
  29 * used routines include:
  30 *
  31 *  ---- Query Operations
  32 *  sparsebit_is_set(s, idx)
  33 *  sparsebit_is_clear(s, idx)
  34 *  sparsebit_any_set(s)
  35 *  sparsebit_first_set(s)
  36 *  sparsebit_next_set(s, prev_idx)
  37 *
  38 *  ---- Modifying Operations
  39 *  sparsebit_set(s, idx)
  40 *  sparsebit_clear(s, idx)
  41 *  sparsebit_set_num(s, idx, num);
  42 *  sparsebit_clear_num(s, idx, num);
  43 *
  44 * A common operation, is to itterate over all the bits set in a test
  45 * sparsebit array.  This can be done via code with the following structure:
  46 *
  47 *   sparsebit_idx_t idx;
  48 *   if (sparsebit_any_set(s)) {
  49 *     idx = sparsebit_first_set(s);
  50 *     do {
  51 *       ...
  52 *       idx = sparsebit_next_set(s, idx);
  53 *     } while (idx != 0);
  54 *   }
  55 *
  56 * The index of the first bit set needs to be obtained via
  57 * sparsebit_first_set(), because sparsebit_next_set(), needs
  58 * the index of the previously set.  The sparsebit_idx_t type is
  59 * unsigned, so there is no previous index before 0 that is available.
  60 * Also, the call to sparsebit_first_set() is not made unless there
  61 * is at least 1 bit in the array set.  This is because sparsebit_first_set()
  62 * aborts if sparsebit_first_set() is called with no bits set.
  63 * It is the callers responsibility to assure that the
  64 * sparsebit array has at least a single bit set before calling
  65 * sparsebit_first_set().
  66 *
  67 * ==== Implementation Overview ====
  68 * For the most part the internal implementation of sparsebit is
  69 * opaque to the caller.  One important implementation detail that the
  70 * caller may need to be aware of is the spatial complexity of the
  71 * implementation.  This implementation of a sparsebit array is not
  72 * only sparse, in that it uses memory proportional to the number of bits
  73 * set.  It is also efficient in memory usage when most of the bits are
  74 * set.
  75 *
  76 * At a high-level the state of the bit settings are maintained through
  77 * the use of a binary-search tree, where each node contains at least
  78 * the following members:
  79 *
  80 *   typedef uint64_t sparsebit_idx_t;
  81 *   typedef uint64_t sparsebit_num_t;
  82 *
  83 *   sparsebit_idx_t idx;
  84 *   uint32_t mask;
  85 *   sparsebit_num_t num_after;
  86 *
  87 * The idx member contains the bit index of the first bit described by this
  88 * node, while the mask member stores the setting of the first 32-bits.
  89 * The setting of the bit at idx + n, where 0 <= n < 32, is located in the
  90 * mask member at 1 << n.
  91 *
  92 * Nodes are sorted by idx and the bits described by two nodes will never
  93 * overlap. The idx member is always aligned to the mask size, i.e. a
  94 * multiple of 32.
  95 *
  96 * Beyond a typical implementation, the nodes in this implementation also
  97 * contains a member named num_after.  The num_after member holds the
  98 * number of bits immediately after the mask bits that are contiguously set.
  99 * The use of the num_after member allows this implementation to efficiently
 100 * represent cases where most bits are set.  For example, the case of all
 101 * but the last two bits set, is represented by the following two nodes:
 102 *
 103 *   node 0 - idx: 0x0 mask: 0xffffffff num_after: 0xffffffffffffffc0
 104 *   node 1 - idx: 0xffffffffffffffe0 mask: 0x3fffffff num_after: 0
 105 *
 106 * ==== Invariants ====
 107 * This implementation usses the following invariants:
 108 *
 109 *   + Node are only used to represent bits that are set.
 110 *     Nodes with a mask of 0 and num_after of 0 are not allowed.
 111 *
 112 *   + Sum of bits set in all the nodes is equal to the value of
 113 *     the struct sparsebit_pvt num_set member.
 114 *
 115 *   + The setting of at least one bit is always described in a nodes
 116 *     mask (mask >= 1).
 117 *
 118 *   + A node with all mask bits set only occurs when the last bit
 119 *     described by the previous node is not equal to this nodes
 120 *     starting index - 1.  All such occurences of this condition are
 121 *     avoided by moving the setting of the nodes mask bits into
 122 *     the previous nodes num_after setting.
 123 *
 124 *   + Node starting index is evenly divisible by the number of bits
 125 *     within a nodes mask member.
 126 *
 127 *   + Nodes never represent a range of bits that wrap around the
 128 *     highest supported index.
 129 *
 130 *      (idx + MASK_BITS + num_after - 1) <= ((sparsebit_idx_t) 0) - 1)
 131 *
 132 *     As a consequence of the above, the num_after member of a node
 133 *     will always be <=:
 134 *
 135 *       maximum_index - nodes_starting_index - number_of_mask_bits
 136 *
 137 *   + Nodes within the binary search tree are sorted based on each
 138 *     nodes starting index.
 139 *
 140 *   + The range of bits described by any two nodes do not overlap.  The
 141 *     range of bits described by a single node is:
 142 *
 143 *       start: node->idx
 144 *       end (inclusive): node->idx + MASK_BITS + node->num_after - 1;
 145 *
 146 * Note, at times these invariants are temporarily violated for a
 147 * specific portion of the code.  For example, when setting a mask
 148 * bit, there is a small delay between when the mask bit is set and the
 149 * value in the struct sparsebit_pvt num_set member is updated.  Other
 150 * temporary violations occur when node_split() is called with a specified
 151 * index and assures that a node where its mask represents the bit
 152 * at the specified index exists.  At times to do this node_split()
 153 * must split an existing node into two nodes or create a node that
 154 * has no bits set.  Such temporary violations must be corrected before
 155 * returning to the caller.  These corrections are typically performed
 156 * by the local function node_reduce().
 157 */
 158
 159#include "test_util.h"
 160#include "sparsebit.h"
 161#include <limits.h>
 162#include <assert.h>
 163
 164#define DUMP_LINE_MAX 100 /* Does not include indent amount */
 165
 166typedef uint32_t mask_t;
 167#define MASK_BITS (sizeof(mask_t) * CHAR_BIT)
 168
 169struct node {
 170        struct node *parent;
 171        struct node *left;
 172        struct node *right;
 173        sparsebit_idx_t idx; /* index of least-significant bit in mask */
 174        sparsebit_num_t num_after; /* num contiguously set after mask */
 175        mask_t mask;
 176};
 177
 178struct sparsebit {
 179        /*
 180         * Points to root node of the binary search
 181         * tree.  Equal to NULL when no bits are set in
 182         * the entire sparsebit array.
 183         */
 184        struct node *root;
 185
 186        /*
 187         * A redundant count of the total number of bits set.  Used for
 188         * diagnostic purposes and to change the time complexity of
 189         * sparsebit_num_set() from O(n) to O(1).
 190         * Note: Due to overflow, a value of 0 means none or all set.
 191         */
 192        sparsebit_num_t num_set;
 193};
 194
 195/* Returns the number of set bits described by the settings
 196 * of the node pointed to by nodep.
 197 */
 198static sparsebit_num_t node_num_set(struct node *nodep)
 199{
 200        return nodep->num_after + __builtin_popcount(nodep->mask);
 201}
 202
 203/* Returns a pointer to the node that describes the
 204 * lowest bit index.
 205 */
 206static struct node *node_first(struct sparsebit *s)
 207{
 208        struct node *nodep;
 209
 210        for (nodep = s->root; nodep && nodep->left; nodep = nodep->left)
 211                ;
 212
 213        return nodep;
 214}
 215
 216/* Returns a pointer to the node that describes the
 217 * lowest bit index > the index of the node pointed to by np.
 218 * Returns NULL if no node with a higher index exists.
 219 */
 220static struct node *node_next(struct sparsebit *s, struct node *np)
 221{
 222        struct node *nodep = np;
 223
 224        /*
 225         * If current node has a right child, next node is the left-most
 226         * of the right child.
 227         */
 228        if (nodep->right) {
 229                for (nodep = nodep->right; nodep->left; nodep = nodep->left)
 230                        ;
 231                return nodep;
 232        }
 233
 234        /*
 235         * No right child.  Go up until node is left child of a parent.
 236         * That parent is then the next node.
 237         */
 238        while (nodep->parent && nodep == nodep->parent->right)
 239                nodep = nodep->parent;
 240
 241        return nodep->parent;
 242}
 243
 244/* Searches for and returns a pointer to the node that describes the
 245 * highest index < the index of the node pointed to by np.
 246 * Returns NULL if no node with a lower index exists.
 247 */
 248static struct node *node_prev(struct sparsebit *s, struct node *np)
 249{
 250        struct node *nodep = np;
 251
 252        /*
 253         * If current node has a left child, next node is the right-most
 254         * of the left child.
 255         */
 256        if (nodep->left) {
 257                for (nodep = nodep->left; nodep->right; nodep = nodep->right)
 258                        ;
 259                return (struct node *) nodep;
 260        }
 261
 262        /*
 263         * No left child.  Go up until node is right child of a parent.
 264         * That parent is then the next node.
 265         */
 266        while (nodep->parent && nodep == nodep->parent->left)
 267                nodep = nodep->parent;
 268
 269        return (struct node *) nodep->parent;
 270}
 271
 272
 273/* Allocates space to hold a copy of the node sub-tree pointed to by
 274 * subtree and duplicates the bit settings to the newly allocated nodes.
 275 * Returns the newly allocated copy of subtree.
 276 */
 277static struct node *node_copy_subtree(struct node *subtree)
 278{
 279        struct node *root;
 280
 281        /* Duplicate the node at the root of the subtree */
 282        root = calloc(1, sizeof(*root));
 283        if (!root) {
 284                perror("calloc");
 285                abort();
 286        }
 287
 288        root->idx = subtree->idx;
 289        root->mask = subtree->mask;
 290        root->num_after = subtree->num_after;
 291
 292        /* As needed, recursively duplicate the left and right subtrees */
 293        if (subtree->left) {
 294                root->left = node_copy_subtree(subtree->left);
 295                root->left->parent = root;
 296        }
 297
 298        if (subtree->right) {
 299                root->right = node_copy_subtree(subtree->right);
 300                root->right->parent = root;
 301        }
 302
 303        return root;
 304}
 305
 306/* Searches for and returns a pointer to the node that describes the setting
 307 * of the bit given by idx.  A node describes the setting of a bit if its
 308 * index is within the bits described by the mask bits or the number of
 309 * contiguous bits set after the mask.  Returns NULL if there is no such node.
 310 */
 311static struct node *node_find(struct sparsebit *s, sparsebit_idx_t idx)
 312{
 313        struct node *nodep;
 314
 315        /* Find the node that describes the setting of the bit at idx */
 316        for (nodep = s->root; nodep;
 317             nodep = nodep->idx > idx ? nodep->left : nodep->right) {
 318                if (idx >= nodep->idx &&
 319                    idx <= nodep->idx + MASK_BITS + nodep->num_after - 1)
 320                        break;
 321        }
 322
 323        return nodep;
 324}
 325
 326/* Entry Requirements:
 327 *   + A node that describes the setting of idx is not already present.
 328 *
 329 * Adds a new node to describe the setting of the bit at the index given
 330 * by idx.  Returns a pointer to the newly added node.
 331 *
 332 * TODO(lhuemill): Degenerate cases causes the tree to get unbalanced.
 333 */
 334static struct node *node_add(struct sparsebit *s, sparsebit_idx_t idx)
 335{
 336        struct node *nodep, *parentp, *prev;
 337
 338        /* Allocate and initialize the new node. */
 339        nodep = calloc(1, sizeof(*nodep));
 340        if (!nodep) {
 341                perror("calloc");
 342                abort();
 343        }
 344
 345        nodep->idx = idx & -MASK_BITS;
 346
 347        /* If no nodes, set it up as the root node. */
 348        if (!s->root) {
 349                s->root = nodep;
 350                return nodep;
 351        }
 352
 353        /*
 354         * Find the parent where the new node should be attached
 355         * and add the node there.
 356         */
 357        parentp = s->root;
 358        while (true) {
 359                if (idx < parentp->idx) {
 360                        if (!parentp->left) {
 361                                parentp->left = nodep;
 362                                nodep->parent = parentp;
 363                                break;
 364                        }
 365                        parentp = parentp->left;
 366                } else {
 367                        assert(idx > parentp->idx + MASK_BITS + parentp->num_after - 1);
 368                        if (!parentp->right) {
 369                                parentp->right = nodep;
 370                                nodep->parent = parentp;
 371                                break;
 372                        }
 373                        parentp = parentp->right;
 374                }
 375        }
 376
 377        /*
 378         * Does num_after bits of previous node overlap with the mask
 379         * of the new node?  If so set the bits in the new nodes mask
 380         * and reduce the previous nodes num_after.
 381         */
 382        prev = node_prev(s, nodep);
 383        while (prev && prev->idx + MASK_BITS + prev->num_after - 1 >= nodep->idx) {
 384                unsigned int n1 = (prev->idx + MASK_BITS + prev->num_after - 1)
 385                        - nodep->idx;
 386                assert(prev->num_after > 0);
 387                assert(n1 < MASK_BITS);
 388                assert(!(nodep->mask & (1 << n1)));
 389                nodep->mask |= (1 << n1);
 390                prev->num_after--;
 391        }
 392
 393        return nodep;
 394}
 395
 396/* Returns whether all the bits in the sparsebit array are set.  */
 397bool sparsebit_all_set(struct sparsebit *s)
 398{
 399        /*
 400         * If any nodes there must be at least one bit set.  Only case
 401         * where a bit is set and total num set is 0, is when all bits
 402         * are set.
 403         */
 404        return s->root && s->num_set == 0;
 405}
 406
 407/* Clears all bits described by the node pointed to by nodep, then
 408 * removes the node.
 409 */
 410static void node_rm(struct sparsebit *s, struct node *nodep)
 411{
 412        struct node *tmp;
 413        sparsebit_num_t num_set;
 414
 415        num_set = node_num_set(nodep);
 416        assert(s->num_set >= num_set || sparsebit_all_set(s));
 417        s->num_set -= node_num_set(nodep);
 418
 419        /* Have both left and right child */
 420        if (nodep->left && nodep->right) {
 421                /*
 422                 * Move left children to the leftmost leaf node
 423                 * of the right child.
 424                 */
 425                for (tmp = nodep->right; tmp->left; tmp = tmp->left)
 426                        ;
 427                tmp->left = nodep->left;
 428                nodep->left = NULL;
 429                tmp->left->parent = tmp;
 430        }
 431
 432        /* Left only child */
 433        if (nodep->left) {
 434                if (!nodep->parent) {
 435                        s->root = nodep->left;
 436                        nodep->left->parent = NULL;
 437                } else {
 438                        nodep->left->parent = nodep->parent;
 439                        if (nodep == nodep->parent->left)
 440                                nodep->parent->left = nodep->left;
 441                        else {
 442                                assert(nodep == nodep->parent->right);
 443                                nodep->parent->right = nodep->left;
 444                        }
 445                }
 446
 447                nodep->parent = nodep->left = nodep->right = NULL;
 448                free(nodep);
 449
 450                return;
 451        }
 452
 453
 454        /* Right only child */
 455        if (nodep->right) {
 456                if (!nodep->parent) {
 457                        s->root = nodep->right;
 458                        nodep->right->parent = NULL;
 459                } else {
 460                        nodep->right->parent = nodep->parent;
 461                        if (nodep == nodep->parent->left)
 462                                nodep->parent->left = nodep->right;
 463                        else {
 464                                assert(nodep == nodep->parent->right);
 465                                nodep->parent->right = nodep->right;
 466                        }
 467                }
 468
 469                nodep->parent = nodep->left = nodep->right = NULL;
 470                free(nodep);
 471
 472                return;
 473        }
 474
 475        /* Leaf Node */
 476        if (!nodep->parent) {
 477                s->root = NULL;
 478        } else {
 479                if (nodep->parent->left == nodep)
 480                        nodep->parent->left = NULL;
 481                else {
 482                        assert(nodep == nodep->parent->right);
 483                        nodep->parent->right = NULL;
 484                }
 485        }
 486
 487        nodep->parent = nodep->left = nodep->right = NULL;
 488        free(nodep);
 489
 490        return;
 491}
 492
 493/* Splits the node containing the bit at idx so that there is a node
 494 * that starts at the specified index.  If no such node exists, a new
 495 * node at the specified index is created.  Returns the new node.
 496 *
 497 * idx must start of a mask boundary.
 498 */
 499static struct node *node_split(struct sparsebit *s, sparsebit_idx_t idx)
 500{
 501        struct node *nodep1, *nodep2;
 502        sparsebit_idx_t offset;
 503        sparsebit_num_t orig_num_after;
 504
 505        assert(!(idx % MASK_BITS));
 506
 507        /*
 508         * Is there a node that describes the setting of idx?
 509         * If not, add it.
 510         */
 511        nodep1 = node_find(s, idx);
 512        if (!nodep1)
 513                return node_add(s, idx);
 514
 515        /*
 516         * All done if the starting index of the node is where the
 517         * split should occur.
 518         */
 519        if (nodep1->idx == idx)
 520                return nodep1;
 521
 522        /*
 523         * Split point not at start of mask, so it must be part of
 524         * bits described by num_after.
 525         */
 526
 527        /*
 528         * Calculate offset within num_after for where the split is
 529         * to occur.
 530         */
 531        offset = idx - (nodep1->idx + MASK_BITS);
 532        orig_num_after = nodep1->num_after;
 533
 534        /*
 535         * Add a new node to describe the bits starting at
 536         * the split point.
 537         */
 538        nodep1->num_after = offset;
 539        nodep2 = node_add(s, idx);
 540
 541        /* Move bits after the split point into the new node */
 542        nodep2->num_after = orig_num_after - offset;
 543        if (nodep2->num_after >= MASK_BITS) {
 544                nodep2->mask = ~(mask_t) 0;
 545                nodep2->num_after -= MASK_BITS;
 546        } else {
 547                nodep2->mask = (1 << nodep2->num_after) - 1;
 548                nodep2->num_after = 0;
 549        }
 550
 551        return nodep2;
 552}
 553
 554/* Iteratively reduces the node pointed to by nodep and its adjacent
 555 * nodes into a more compact form.  For example, a node with a mask with
 556 * all bits set adjacent to a previous node, will get combined into a
 557 * single node with an increased num_after setting.
 558 *
 559 * After each reduction, a further check is made to see if additional
 560 * reductions are possible with the new previous and next nodes.  Note,
 561 * a search for a reduction is only done across the nodes nearest nodep
 562 * and those that became part of a reduction.  Reductions beyond nodep
 563 * and the adjacent nodes that are reduced are not discovered.  It is the
 564 * responsibility of the caller to pass a nodep that is within one node
 565 * of each possible reduction.
 566 *
 567 * This function does not fix the temporary violation of all invariants.
 568 * For example it does not fix the case where the bit settings described
 569 * by two or more nodes overlap.  Such a violation introduces the potential
 570 * complication of a bit setting for a specific index having different settings
 571 * in different nodes.  This would then introduce the further complication
 572 * of which node has the correct setting of the bit and thus such conditions
 573 * are not allowed.
 574 *
 575 * This function is designed to fix invariant violations that are introduced
 576 * by node_split() and by changes to the nodes mask or num_after members.
 577 * For example, when setting a bit within a nodes mask, the function that
 578 * sets the bit doesn't have to worry about whether the setting of that
 579 * bit caused the mask to have leading only or trailing only bits set.
 580 * Instead, the function can call node_reduce(), with nodep equal to the
 581 * node address that it set a mask bit in, and node_reduce() will notice
 582 * the cases of leading or trailing only bits and that there is an
 583 * adjacent node that the bit settings could be merged into.
 584 *
 585 * This implementation specifically detects and corrects violation of the
 586 * following invariants:
 587 *
 588 *   + Node are only used to represent bits that are set.
 589 *     Nodes with a mask of 0 and num_after of 0 are not allowed.
 590 *
 591 *   + The setting of at least one bit is always described in a nodes
 592 *     mask (mask >= 1).
 593 *
 594 *   + A node with all mask bits set only occurs when the last bit
 595 *     described by the previous node is not equal to this nodes
 596 *     starting index - 1.  All such occurences of this condition are
 597 *     avoided by moving the setting of the nodes mask bits into
 598 *     the previous nodes num_after setting.
 599 */
 600static void node_reduce(struct sparsebit *s, struct node *nodep)
 601{
 602        bool reduction_performed;
 603
 604        do {
 605                reduction_performed = false;
 606                struct node *prev, *next, *tmp;
 607
 608                /* 1) Potential reductions within the current node. */
 609
 610                /* Nodes with all bits cleared may be removed. */
 611                if (nodep->mask == 0 && nodep->num_after == 0) {
 612                        /*
 613                         * About to remove the node pointed to by
 614                         * nodep, which normally would cause a problem
 615                         * for the next pass through the reduction loop,
 616                         * because the node at the starting point no longer
 617                         * exists.  This potential problem is handled
 618                         * by first remembering the location of the next
 619                         * or previous nodes.  Doesn't matter which, because
 620                         * once the node at nodep is removed, there will be
 621                         * no other nodes between prev and next.
 622                         *
 623                         * Note, the checks performed on nodep against both
 624                         * both prev and next both check for an adjacent
 625                         * node that can be reduced into a single node.  As
 626                         * such, after removing the node at nodep, doesn't
 627                         * matter whether the nodep for the next pass
 628                         * through the loop is equal to the previous pass
 629                         * prev or next node.  Either way, on the next pass
 630                         * the one not selected will become either the
 631                         * prev or next node.
 632                         */
 633                        tmp = node_next(s, nodep);
 634                        if (!tmp)
 635                                tmp = node_prev(s, nodep);
 636
 637                        node_rm(s, nodep);
 638                        nodep = NULL;
 639
 640                        nodep = tmp;
 641                        reduction_performed = true;
 642                        continue;
 643                }
 644
 645                /*
 646                 * When the mask is 0, can reduce the amount of num_after
 647                 * bits by moving the initial num_after bits into the mask.
 648                 */
 649                if (nodep->mask == 0) {
 650                        assert(nodep->num_after != 0);
 651                        assert(nodep->idx + MASK_BITS > nodep->idx);
 652
 653                        nodep->idx += MASK_BITS;
 654
 655                        if (nodep->num_after >= MASK_BITS) {
 656                                nodep->mask = ~0;
 657                                nodep->num_after -= MASK_BITS;
 658                        } else {
 659                                nodep->mask = (1u << nodep->num_after) - 1;
 660                                nodep->num_after = 0;
 661                        }
 662
 663                        reduction_performed = true;
 664                        continue;
 665                }
 666
 667                /*
 668                 * 2) Potential reductions between the current and
 669                 * previous nodes.
 670                 */
 671                prev = node_prev(s, nodep);
 672                if (prev) {
 673                        sparsebit_idx_t prev_highest_bit;
 674
 675                        /* Nodes with no bits set can be removed. */
 676                        if (prev->mask == 0 && prev->num_after == 0) {
 677                                node_rm(s, prev);
 678
 679                                reduction_performed = true;
 680                                continue;
 681                        }
 682
 683                        /*
 684                         * All mask bits set and previous node has
 685                         * adjacent index.
 686                         */
 687                        if (nodep->mask + 1 == 0 &&
 688                            prev->idx + MASK_BITS == nodep->idx) {
 689                                prev->num_after += MASK_BITS + nodep->num_after;
 690                                nodep->mask = 0;
 691                                nodep->num_after = 0;
 692
 693                                reduction_performed = true;
 694                                continue;
 695                        }
 696
 697                        /*
 698                         * Is node adjacent to previous node and the node
 699                         * contains a single contiguous range of bits
 700                         * starting from the beginning of the mask?
 701                         */
 702                        prev_highest_bit = prev->idx + MASK_BITS - 1 + prev->num_after;
 703                        if (prev_highest_bit + 1 == nodep->idx &&
 704                            (nodep->mask | (nodep->mask >> 1)) == nodep->mask) {
 705                                /*
 706                                 * How many contiguous bits are there?
 707                                 * Is equal to the total number of set
 708                                 * bits, due to an earlier check that
 709                                 * there is a single contiguous range of
 710                                 * set bits.
 711                                 */
 712                                unsigned int num_contiguous
 713                                        = __builtin_popcount(nodep->mask);
 714                                assert((num_contiguous > 0) &&
 715                                       ((1ULL << num_contiguous) - 1) == nodep->mask);
 716
 717                                prev->num_after += num_contiguous;
 718                                nodep->mask = 0;
 719
 720                                /*
 721                                 * For predictable performance, handle special
 722                                 * case where all mask bits are set and there
 723                                 * is a non-zero num_after setting.  This code
 724                                 * is functionally correct without the following
 725                                 * conditionalized statements, but without them
 726                                 * the value of num_after is only reduced by
 727                                 * the number of mask bits per pass.  There are
 728                                 * cases where num_after can be close to 2^64.
 729                                 * Without this code it could take nearly
 730                                 * (2^64) / 32 passes to perform the full
 731                                 * reduction.
 732                                 */
 733                                if (num_contiguous == MASK_BITS) {
 734                                        prev->num_after += nodep->num_after;
 735                                        nodep->num_after = 0;
 736                                }
 737
 738                                reduction_performed = true;
 739                                continue;
 740                        }
 741                }
 742
 743                /*
 744                 * 3) Potential reductions between the current and
 745                 * next nodes.
 746                 */
 747                next = node_next(s, nodep);
 748                if (next) {
 749                        /* Nodes with no bits set can be removed. */
 750                        if (next->mask == 0 && next->num_after == 0) {
 751                                node_rm(s, next);
 752                                reduction_performed = true;
 753                                continue;
 754                        }
 755
 756                        /*
 757                         * Is next node index adjacent to current node
 758                         * and has a mask with all bits set?
 759                         */
 760                        if (next->idx == nodep->idx + MASK_BITS + nodep->num_after &&
 761                            next->mask == ~(mask_t) 0) {
 762                                nodep->num_after += MASK_BITS;
 763                                next->mask = 0;
 764                                nodep->num_after += next->num_after;
 765                                next->num_after = 0;
 766
 767                                node_rm(s, next);
 768                                next = NULL;
 769
 770                                reduction_performed = true;
 771                                continue;
 772                        }
 773                }
 774        } while (nodep && reduction_performed);
 775}
 776
 777/* Returns whether the bit at the index given by idx, within the
 778 * sparsebit array is set or not.
 779 */
 780bool sparsebit_is_set(struct sparsebit *s, sparsebit_idx_t idx)
 781{
 782        struct node *nodep;
 783
 784        /* Find the node that describes the setting of the bit at idx */
 785        for (nodep = s->root; nodep;
 786             nodep = nodep->idx > idx ? nodep->left : nodep->right)
 787                if (idx >= nodep->idx &&
 788                    idx <= nodep->idx + MASK_BITS + nodep->num_after - 1)
 789                        goto have_node;
 790
 791        return false;
 792
 793have_node:
 794        /* Bit is set if it is any of the bits described by num_after */
 795        if (nodep->num_after && idx >= nodep->idx + MASK_BITS)
 796                return true;
 797
 798        /* Is the corresponding mask bit set */
 799        assert(idx >= nodep->idx && idx - nodep->idx < MASK_BITS);
 800        return !!(nodep->mask & (1 << (idx - nodep->idx)));
 801}
 802
 803/* Within the sparsebit array pointed to by s, sets the bit
 804 * at the index given by idx.
 805 */
 806static void bit_set(struct sparsebit *s, sparsebit_idx_t idx)
 807{
 808        struct node *nodep;
 809
 810        /* Skip bits that are already set */
 811        if (sparsebit_is_set(s, idx))
 812                return;
 813
 814        /*
 815         * Get a node where the bit at idx is described by the mask.
 816         * The node_split will also create a node, if there isn't
 817         * already a node that describes the setting of bit.
 818         */
 819        nodep = node_split(s, idx & -MASK_BITS);
 820
 821        /* Set the bit within the nodes mask */
 822        assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1);
 823        assert(!(nodep->mask & (1 << (idx - nodep->idx))));
 824        nodep->mask |= 1 << (idx - nodep->idx);
 825        s->num_set++;
 826
 827        node_reduce(s, nodep);
 828}
 829
 830/* Within the sparsebit array pointed to by s, clears the bit
 831 * at the index given by idx.
 832 */
 833static void bit_clear(struct sparsebit *s, sparsebit_idx_t idx)
 834{
 835        struct node *nodep;
 836
 837        /* Skip bits that are already cleared */
 838        if (!sparsebit_is_set(s, idx))
 839                return;
 840
 841        /* Is there a node that describes the setting of this bit? */
 842        nodep = node_find(s, idx);
 843        if (!nodep)
 844                return;
 845
 846        /*
 847         * If a num_after bit, split the node, so that the bit is
 848         * part of a node mask.
 849         */
 850        if (idx >= nodep->idx + MASK_BITS)
 851                nodep = node_split(s, idx & -MASK_BITS);
 852
 853        /*
 854         * After node_split above, bit at idx should be within the mask.
 855         * Clear that bit.
 856         */
 857        assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1);
 858        assert(nodep->mask & (1 << (idx - nodep->idx)));
 859        nodep->mask &= ~(1 << (idx - nodep->idx));
 860        assert(s->num_set > 0 || sparsebit_all_set(s));
 861        s->num_set--;
 862
 863        node_reduce(s, nodep);
 864}
 865
 866/* Recursively dumps to the FILE stream given by stream the contents
 867 * of the sub-tree of nodes pointed to by nodep.  Each line of output
 868 * is prefixed by the number of spaces given by indent.  On each
 869 * recursion, the indent amount is increased by 2.  This causes nodes
 870 * at each level deeper into the binary search tree to be displayed
 871 * with a greater indent.
 872 */
 873static void dump_nodes(FILE *stream, struct node *nodep,
 874        unsigned int indent)
 875{
 876        char *node_type;
 877
 878        /* Dump contents of node */
 879        if (!nodep->parent)
 880                node_type = "root";
 881        else if (nodep == nodep->parent->left)
 882                node_type = "left";
 883        else {
 884                assert(nodep == nodep->parent->right);
 885                node_type = "right";
 886        }
 887        fprintf(stream, "%*s---- %s nodep: %p\n", indent, "", node_type, nodep);
 888        fprintf(stream, "%*s  parent: %p left: %p right: %p\n", indent, "",
 889                nodep->parent, nodep->left, nodep->right);
 890        fprintf(stream, "%*s  idx: 0x%lx mask: 0x%x num_after: 0x%lx\n",
 891                indent, "", nodep->idx, nodep->mask, nodep->num_after);
 892
 893        /* If present, dump contents of left child nodes */
 894        if (nodep->left)
 895                dump_nodes(stream, nodep->left, indent + 2);
 896
 897        /* If present, dump contents of right child nodes */
 898        if (nodep->right)
 899                dump_nodes(stream, nodep->right, indent + 2);
 900}
 901
 902static inline sparsebit_idx_t node_first_set(struct node *nodep, int start)
 903{
 904        mask_t leading = (mask_t)1 << start;
 905        int n1 = __builtin_ctz(nodep->mask & -leading);
 906
 907        return nodep->idx + n1;
 908}
 909
 910static inline sparsebit_idx_t node_first_clear(struct node *nodep, int start)
 911{
 912        mask_t leading = (mask_t)1 << start;
 913        int n1 = __builtin_ctz(~nodep->mask & -leading);
 914
 915        return nodep->idx + n1;
 916}
 917
 918/* Dumps to the FILE stream specified by stream, the implementation dependent
 919 * internal state of s.  Each line of output is prefixed with the number
 920 * of spaces given by indent.  The output is completely implementation
 921 * dependent and subject to change.  Output from this function should only
 922 * be used for diagnostic purposes.  For example, this function can be
 923 * used by test cases after they detect an unexpected condition, as a means
 924 * to capture diagnostic information.
 925 */
 926static void sparsebit_dump_internal(FILE *stream, struct sparsebit *s,
 927        unsigned int indent)
 928{
 929        /* Dump the contents of s */
 930        fprintf(stream, "%*sroot: %p\n", indent, "", s->root);
 931        fprintf(stream, "%*snum_set: 0x%lx\n", indent, "", s->num_set);
 932
 933        if (s->root)
 934                dump_nodes(stream, s->root, indent);
 935}
 936
 937/* Allocates and returns a new sparsebit array. The initial state
 938 * of the newly allocated sparsebit array has all bits cleared.
 939 */
 940struct sparsebit *sparsebit_alloc(void)
 941{
 942        struct sparsebit *s;
 943
 944        /* Allocate top level structure. */
 945        s = calloc(1, sizeof(*s));
 946        if (!s) {
 947                perror("calloc");
 948                abort();
 949        }
 950
 951        return s;
 952}
 953
 954/* Frees the implementation dependent data for the sparsebit array
 955 * pointed to by s and poisons the pointer to that data.
 956 */
 957void sparsebit_free(struct sparsebit **sbitp)
 958{
 959        struct sparsebit *s = *sbitp;
 960
 961        if (!s)
 962                return;
 963
 964        sparsebit_clear_all(s);
 965        free(s);
 966        *sbitp = NULL;
 967}
 968
 969/* Makes a copy of the sparsebit array given by s, to the sparsebit
 970 * array given by d.  Note, d must have already been allocated via
 971 * sparsebit_alloc().  It can though already have bits set, which
 972 * if different from src will be cleared.
 973 */
 974void sparsebit_copy(struct sparsebit *d, struct sparsebit *s)
 975{
 976        /* First clear any bits already set in the destination */
 977        sparsebit_clear_all(d);
 978
 979        if (s->root) {
 980                d->root = node_copy_subtree(s->root);
 981                d->num_set = s->num_set;
 982        }
 983}
 984
 985/* Returns whether num consecutive bits starting at idx are all set.  */
 986bool sparsebit_is_set_num(struct sparsebit *s,
 987        sparsebit_idx_t idx, sparsebit_num_t num)
 988{
 989        sparsebit_idx_t next_cleared;
 990
 991        assert(num > 0);
 992        assert(idx + num - 1 >= idx);
 993
 994        /* With num > 0, the first bit must be set. */
 995        if (!sparsebit_is_set(s, idx))
 996                return false;
 997
 998        /* Find the next cleared bit */
 999        next_cleared = sparsebit_next_clear(s, idx);
1000
1001        /*
1002         * If no cleared bits beyond idx, then there are at least num
1003         * set bits. idx + num doesn't wrap.  Otherwise check if
1004         * there are enough set bits between idx and the next cleared bit.
1005         */
1006        return next_cleared == 0 || next_cleared - idx >= num;
1007}
1008
1009/* Returns whether the bit at the index given by idx.  */
1010bool sparsebit_is_clear(struct sparsebit *s,
1011        sparsebit_idx_t idx)
1012{
1013        return !sparsebit_is_set(s, idx);
1014}
1015
1016/* Returns whether num consecutive bits starting at idx are all cleared.  */
1017bool sparsebit_is_clear_num(struct sparsebit *s,
1018        sparsebit_idx_t idx, sparsebit_num_t num)
1019{
1020        sparsebit_idx_t next_set;
1021
1022        assert(num > 0);
1023        assert(idx + num - 1 >= idx);
1024
1025        /* With num > 0, the first bit must be cleared. */
1026        if (!sparsebit_is_clear(s, idx))
1027                return false;
1028
1029        /* Find the next set bit */
1030        next_set = sparsebit_next_set(s, idx);
1031
1032        /*
1033         * If no set bits beyond idx, then there are at least num
1034         * cleared bits. idx + num doesn't wrap.  Otherwise check if
1035         * there are enough cleared bits between idx and the next set bit.
1036         */
1037        return next_set == 0 || next_set - idx >= num;
1038}
1039
1040/* Returns the total number of bits set.  Note: 0 is also returned for
1041 * the case of all bits set.  This is because with all bits set, there
1042 * is 1 additional bit set beyond what can be represented in the return
1043 * value.  Use sparsebit_any_set(), instead of sparsebit_num_set() > 0,
1044 * to determine if the sparsebit array has any bits set.
1045 */
1046sparsebit_num_t sparsebit_num_set(struct sparsebit *s)
1047{
1048        return s->num_set;
1049}
1050
1051/* Returns whether any bit is set in the sparsebit array.  */
1052bool sparsebit_any_set(struct sparsebit *s)
1053{
1054        /*
1055         * Nodes only describe set bits.  If any nodes then there
1056         * is at least 1 bit set.
1057         */
1058        if (!s->root)
1059                return false;
1060
1061        /*
1062         * Every node should have a non-zero mask.  For now will
1063         * just assure that the root node has a non-zero mask,
1064         * which is a quick check that at least 1 bit is set.
1065         */
1066        assert(s->root->mask != 0);
1067        assert(s->num_set > 0 ||
1068               (s->root->num_after == ((sparsebit_num_t) 0) - MASK_BITS &&
1069                s->root->mask == ~(mask_t) 0));
1070
1071        return true;
1072}
1073
1074/* Returns whether all the bits in the sparsebit array are cleared.  */
1075bool sparsebit_all_clear(struct sparsebit *s)
1076{
1077        return !sparsebit_any_set(s);
1078}
1079
1080/* Returns whether all the bits in the sparsebit array are set.  */
1081bool sparsebit_any_clear(struct sparsebit *s)
1082{
1083        return !sparsebit_all_set(s);
1084}
1085
1086/* Returns the index of the first set bit.  Abort if no bits are set.
1087 */
1088sparsebit_idx_t sparsebit_first_set(struct sparsebit *s)
1089{
1090        struct node *nodep;
1091
1092        /* Validate at least 1 bit is set */
1093        assert(sparsebit_any_set(s));
1094
1095        nodep = node_first(s);
1096        return node_first_set(nodep, 0);
1097}
1098
1099/* Returns the index of the first cleared bit.  Abort if
1100 * no bits are cleared.
1101 */
1102sparsebit_idx_t sparsebit_first_clear(struct sparsebit *s)
1103{
1104        struct node *nodep1, *nodep2;
1105
1106        /* Validate at least 1 bit is cleared. */
1107        assert(sparsebit_any_clear(s));
1108
1109        /* If no nodes or first node index > 0 then lowest cleared is 0 */
1110        nodep1 = node_first(s);
1111        if (!nodep1 || nodep1->idx > 0)
1112                return 0;
1113
1114        /* Does the mask in the first node contain any cleared bits. */
1115        if (nodep1->mask != ~(mask_t) 0)
1116                return node_first_clear(nodep1, 0);
1117
1118        /*
1119         * All mask bits set in first node.  If there isn't a second node
1120         * then the first cleared bit is the first bit after the bits
1121         * described by the first node.
1122         */
1123        nodep2 = node_next(s, nodep1);
1124        if (!nodep2) {
1125                /*
1126                 * No second node.  First cleared bit is first bit beyond
1127                 * bits described by first node.
1128                 */
1129                assert(nodep1->mask == ~(mask_t) 0);
1130                assert(nodep1->idx + MASK_BITS + nodep1->num_after != (sparsebit_idx_t) 0);
1131                return nodep1->idx + MASK_BITS + nodep1->num_after;
1132        }
1133
1134        /*
1135         * There is a second node.
1136         * If it is not adjacent to the first node, then there is a gap
1137         * of cleared bits between the nodes, and the first cleared bit
1138         * is the first bit within the gap.
1139         */
1140        if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx)
1141                return nodep1->idx + MASK_BITS + nodep1->num_after;
1142
1143        /*
1144         * Second node is adjacent to the first node.
1145         * Because it is adjacent, its mask should be non-zero.  If all
1146         * its mask bits are set, then with it being adjacent, it should
1147         * have had the mask bits moved into the num_after setting of the
1148         * previous node.
1149         */
1150        return node_first_clear(nodep2, 0);
1151}
1152
1153/* Returns index of next bit set within s after the index given by prev.
1154 * Returns 0 if there are no bits after prev that are set.
1155 */
1156sparsebit_idx_t sparsebit_next_set(struct sparsebit *s,
1157        sparsebit_idx_t prev)
1158{
1159        sparsebit_idx_t lowest_possible = prev + 1;
1160        sparsebit_idx_t start;
1161        struct node *nodep;
1162
1163        /* A bit after the highest index can't be set. */
1164        if (lowest_possible == 0)
1165                return 0;
1166
1167        /*
1168         * Find the leftmost 'candidate' overlapping or to the right
1169         * of lowest_possible.
1170         */
1171        struct node *candidate = NULL;
1172
1173        /* True iff lowest_possible is within candidate */
1174        bool contains = false;
1175
1176        /*
1177         * Find node that describes setting of bit at lowest_possible.
1178         * If such a node doesn't exist, find the node with the lowest
1179         * starting index that is > lowest_possible.
1180         */
1181        for (nodep = s->root; nodep;) {
1182                if ((nodep->idx + MASK_BITS + nodep->num_after - 1)
1183                        >= lowest_possible) {
1184                        candidate = nodep;
1185                        if (candidate->idx <= lowest_possible) {
1186                                contains = true;
1187                                break;
1188                        }
1189                        nodep = nodep->left;
1190                } else {
1191                        nodep = nodep->right;
1192                }
1193        }
1194        if (!candidate)
1195                return 0;
1196
1197        assert(candidate->mask != 0);
1198
1199        /* Does the candidate node describe the setting of lowest_possible? */
1200        if (!contains) {
1201                /*
1202                 * Candidate doesn't describe setting of bit at lowest_possible.
1203                 * Candidate points to the first node with a starting index
1204                 * > lowest_possible.
1205                 */
1206                assert(candidate->idx > lowest_possible);
1207
1208                return node_first_set(candidate, 0);
1209        }
1210
1211        /*
1212         * Candidate describes setting of bit at lowest_possible.
1213         * Note: although the node describes the setting of the bit
1214         * at lowest_possible, its possible that its setting and the
1215         * setting of all latter bits described by this node are 0.
1216         * For now, just handle the cases where this node describes
1217         * a bit at or after an index of lowest_possible that is set.
1218         */
1219        start = lowest_possible - candidate->idx;
1220
1221        if (start < MASK_BITS && candidate->mask >= (1 << start))
1222                return node_first_set(candidate, start);
1223
1224        if (candidate->num_after) {
1225                sparsebit_idx_t first_num_after_idx = candidate->idx + MASK_BITS;
1226
1227                return lowest_possible < first_num_after_idx
1228                        ? first_num_after_idx : lowest_possible;
1229        }
1230
1231        /*
1232         * Although candidate node describes setting of bit at
1233         * the index of lowest_possible, all bits at that index and
1234         * latter that are described by candidate are cleared.  With
1235         * this, the next bit is the first bit in the next node, if
1236         * such a node exists.  If a next node doesn't exist, then
1237         * there is no next set bit.
1238         */
1239        candidate = node_next(s, candidate);
1240        if (!candidate)
1241                return 0;
1242
1243        return node_first_set(candidate, 0);
1244}
1245
1246/* Returns index of next bit cleared within s after the index given by prev.
1247 * Returns 0 if there are no bits after prev that are cleared.
1248 */
1249sparsebit_idx_t sparsebit_next_clear(struct sparsebit *s,
1250        sparsebit_idx_t prev)
1251{
1252        sparsebit_idx_t lowest_possible = prev + 1;
1253        sparsebit_idx_t idx;
1254        struct node *nodep1, *nodep2;
1255
1256        /* A bit after the highest index can't be set. */
1257        if (lowest_possible == 0)
1258                return 0;
1259
1260        /*
1261         * Does a node describing the setting of lowest_possible exist?
1262         * If not, the bit at lowest_possible is cleared.
1263         */
1264        nodep1 = node_find(s, lowest_possible);
1265        if (!nodep1)
1266                return lowest_possible;
1267
1268        /* Does a mask bit in node 1 describe the next cleared bit. */
1269        for (idx = lowest_possible - nodep1->idx; idx < MASK_BITS; idx++)
1270                if (!(nodep1->mask & (1 << idx)))
1271                        return nodep1->idx + idx;
1272
1273        /*
1274         * Next cleared bit is not described by node 1.  If there
1275         * isn't a next node, then next cleared bit is described
1276         * by bit after the bits described by the first node.
1277         */
1278        nodep2 = node_next(s, nodep1);
1279        if (!nodep2)
1280                return nodep1->idx + MASK_BITS + nodep1->num_after;
1281
1282        /*
1283         * There is a second node.
1284         * If it is not adjacent to the first node, then there is a gap
1285         * of cleared bits between the nodes, and the next cleared bit
1286         * is the first bit within the gap.
1287         */
1288        if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx)
1289                return nodep1->idx + MASK_BITS + nodep1->num_after;
1290
1291        /*
1292         * Second node is adjacent to the first node.
1293         * Because it is adjacent, its mask should be non-zero.  If all
1294         * its mask bits are set, then with it being adjacent, it should
1295         * have had the mask bits moved into the num_after setting of the
1296         * previous node.
1297         */
1298        return node_first_clear(nodep2, 0);
1299}
1300
1301/* Starting with the index 1 greater than the index given by start, finds
1302 * and returns the index of the first sequence of num consecutively set
1303 * bits.  Returns a value of 0 of no such sequence exists.
1304 */
1305sparsebit_idx_t sparsebit_next_set_num(struct sparsebit *s,
1306        sparsebit_idx_t start, sparsebit_num_t num)
1307{
1308        sparsebit_idx_t idx;
1309
1310        assert(num >= 1);
1311
1312        for (idx = sparsebit_next_set(s, start);
1313                idx != 0 && idx + num - 1 >= idx;
1314                idx = sparsebit_next_set(s, idx)) {
1315                assert(sparsebit_is_set(s, idx));
1316
1317                /*
1318                 * Does the sequence of bits starting at idx consist of
1319                 * num set bits?
1320                 */
1321                if (sparsebit_is_set_num(s, idx, num))
1322                        return idx;
1323
1324                /*
1325                 * Sequence of set bits at idx isn't large enough.
1326                 * Skip this entire sequence of set bits.
1327                 */
1328                idx = sparsebit_next_clear(s, idx);
1329                if (idx == 0)
1330                        return 0;
1331        }
1332
1333        return 0;
1334}
1335
1336/* Starting with the index 1 greater than the index given by start, finds
1337 * and returns the index of the first sequence of num consecutively cleared
1338 * bits.  Returns a value of 0 of no such sequence exists.
1339 */
1340sparsebit_idx_t sparsebit_next_clear_num(struct sparsebit *s,
1341        sparsebit_idx_t start, sparsebit_num_t num)
1342{
1343        sparsebit_idx_t idx;
1344
1345        assert(num >= 1);
1346
1347        for (idx = sparsebit_next_clear(s, start);
1348                idx != 0 && idx + num - 1 >= idx;
1349                idx = sparsebit_next_clear(s, idx)) {
1350                assert(sparsebit_is_clear(s, idx));
1351
1352                /*
1353                 * Does the sequence of bits starting at idx consist of
1354                 * num cleared bits?
1355                 */
1356                if (sparsebit_is_clear_num(s, idx, num))
1357                        return idx;
1358
1359                /*
1360                 * Sequence of cleared bits at idx isn't large enough.
1361                 * Skip this entire sequence of cleared bits.
1362                 */
1363                idx = sparsebit_next_set(s, idx);
1364                if (idx == 0)
1365                        return 0;
1366        }
1367
1368        return 0;
1369}
1370
1371/* Sets the bits * in the inclusive range idx through idx + num - 1.  */
1372void sparsebit_set_num(struct sparsebit *s,
1373        sparsebit_idx_t start, sparsebit_num_t num)
1374{
1375        struct node *nodep, *next;
1376        unsigned int n1;
1377        sparsebit_idx_t idx;
1378        sparsebit_num_t n;
1379        sparsebit_idx_t middle_start, middle_end;
1380
1381        assert(num > 0);
1382        assert(start + num - 1 >= start);
1383
1384        /*
1385         * Leading - bits before first mask boundary.
1386         *
1387         * TODO(lhuemill): With some effort it may be possible to
1388         *   replace the following loop with a sequential sequence
1389         *   of statements.  High level sequence would be:
1390         *
1391         *     1. Use node_split() to force node that describes setting
1392         *        of idx to be within the mask portion of a node.
1393         *     2. Form mask of bits to be set.
1394         *     3. Determine number of mask bits already set in the node
1395         *        and store in a local variable named num_already_set.
1396         *     4. Set the appropriate mask bits within the node.
1397         *     5. Increment struct sparsebit_pvt num_set member
1398         *        by the number of bits that were actually set.
1399         *        Exclude from the counts bits that were already set.
1400         *     6. Before returning to the caller, use node_reduce() to
1401         *        handle the multiple corner cases that this method
1402         *        introduces.
1403         */
1404        for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--)
1405                bit_set(s, idx);
1406
1407        /* Middle - bits spanning one or more entire mask */
1408        middle_start = idx;
1409        middle_end = middle_start + (n & -MASK_BITS) - 1;
1410        if (n >= MASK_BITS) {
1411                nodep = node_split(s, middle_start);
1412
1413                /*
1414                 * As needed, split just after end of middle bits.
1415                 * No split needed if end of middle bits is at highest
1416                 * supported bit index.
1417                 */
1418                if (middle_end + 1 > middle_end)
1419                        (void) node_split(s, middle_end + 1);
1420
1421                /* Delete nodes that only describe bits within the middle. */
1422                for (next = node_next(s, nodep);
1423                        next && (next->idx < middle_end);
1424                        next = node_next(s, nodep)) {
1425                        assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end);
1426                        node_rm(s, next);
1427                        next = NULL;
1428                }
1429
1430                /* As needed set each of the mask bits */
1431                for (n1 = 0; n1 < MASK_BITS; n1++) {
1432                        if (!(nodep->mask & (1 << n1))) {
1433                                nodep->mask |= 1 << n1;
1434                                s->num_set++;
1435                        }
1436                }
1437
1438                s->num_set -= nodep->num_after;
1439                nodep->num_after = middle_end - middle_start + 1 - MASK_BITS;
1440                s->num_set += nodep->num_after;
1441
1442                node_reduce(s, nodep);
1443        }
1444        idx = middle_end + 1;
1445        n -= middle_end - middle_start + 1;
1446
1447        /* Trailing - bits at and beyond last mask boundary */
1448        assert(n < MASK_BITS);
1449        for (; n > 0; idx++, n--)
1450                bit_set(s, idx);
1451}
1452
1453/* Clears the bits * in the inclusive range idx through idx + num - 1.  */
1454void sparsebit_clear_num(struct sparsebit *s,
1455        sparsebit_idx_t start, sparsebit_num_t num)
1456{
1457        struct node *nodep, *next;
1458        unsigned int n1;
1459        sparsebit_idx_t idx;
1460        sparsebit_num_t n;
1461        sparsebit_idx_t middle_start, middle_end;
1462
1463        assert(num > 0);
1464        assert(start + num - 1 >= start);
1465
1466        /* Leading - bits before first mask boundary */
1467        for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--)
1468                bit_clear(s, idx);
1469
1470        /* Middle - bits spanning one or more entire mask */
1471        middle_start = idx;
1472        middle_end = middle_start + (n & -MASK_BITS) - 1;
1473        if (n >= MASK_BITS) {
1474                nodep = node_split(s, middle_start);
1475
1476                /*
1477                 * As needed, split just after end of middle bits.
1478                 * No split needed if end of middle bits is at highest
1479                 * supported bit index.
1480                 */
1481                if (middle_end + 1 > middle_end)
1482                        (void) node_split(s, middle_end + 1);
1483
1484                /* Delete nodes that only describe bits within the middle. */
1485                for (next = node_next(s, nodep);
1486                        next && (next->idx < middle_end);
1487                        next = node_next(s, nodep)) {
1488                        assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end);
1489                        node_rm(s, next);
1490                        next = NULL;
1491                }
1492
1493                /* As needed clear each of the mask bits */
1494                for (n1 = 0; n1 < MASK_BITS; n1++) {
1495                        if (nodep->mask & (1 << n1)) {
1496                                nodep->mask &= ~(1 << n1);
1497                                s->num_set--;
1498                        }
1499                }
1500
1501                /* Clear any bits described by num_after */
1502                s->num_set -= nodep->num_after;
1503                nodep->num_after = 0;
1504
1505                /*
1506                 * Delete the node that describes the beginning of
1507                 * the middle bits and perform any allowed reductions
1508                 * with the nodes prev or next of nodep.
1509                 */
1510                node_reduce(s, nodep);
1511                nodep = NULL;
1512        }
1513        idx = middle_end + 1;
1514        n -= middle_end - middle_start + 1;
1515
1516        /* Trailing - bits at and beyond last mask boundary */
1517        assert(n < MASK_BITS);
1518        for (; n > 0; idx++, n--)
1519                bit_clear(s, idx);
1520}
1521
1522/* Sets the bit at the index given by idx.  */
1523void sparsebit_set(struct sparsebit *s, sparsebit_idx_t idx)
1524{
1525        sparsebit_set_num(s, idx, 1);
1526}
1527
1528/* Clears the bit at the index given by idx.  */
1529void sparsebit_clear(struct sparsebit *s, sparsebit_idx_t idx)
1530{
1531        sparsebit_clear_num(s, idx, 1);
1532}
1533
1534/* Sets the bits in the entire addressable range of the sparsebit array.  */
1535void sparsebit_set_all(struct sparsebit *s)
1536{
1537        sparsebit_set(s, 0);
1538        sparsebit_set_num(s, 1, ~(sparsebit_idx_t) 0);
1539        assert(sparsebit_all_set(s));
1540}
1541
1542/* Clears the bits in the entire addressable range of the sparsebit array.  */
1543void sparsebit_clear_all(struct sparsebit *s)
1544{
1545        sparsebit_clear(s, 0);
1546        sparsebit_clear_num(s, 1, ~(sparsebit_idx_t) 0);
1547        assert(!sparsebit_any_set(s));
1548}
1549
1550static size_t display_range(FILE *stream, sparsebit_idx_t low,
1551        sparsebit_idx_t high, bool prepend_comma_space)
1552{
1553        char *fmt_str;
1554        size_t sz;
1555
1556        /* Determine the printf format string */
1557        if (low == high)
1558                fmt_str = prepend_comma_space ? ", 0x%lx" : "0x%lx";
1559        else
1560                fmt_str = prepend_comma_space ? ", 0x%lx:0x%lx" : "0x%lx:0x%lx";
1561
1562        /*
1563         * When stream is NULL, just determine the size of what would
1564         * have been printed, else print the range.
1565         */
1566        if (!stream)
1567                sz = snprintf(NULL, 0, fmt_str, low, high);
1568        else
1569                sz = fprintf(stream, fmt_str, low, high);
1570
1571        return sz;
1572}
1573
1574
1575/* Dumps to the FILE stream given by stream, the bit settings
1576 * of s.  Each line of output is prefixed with the number of
1577 * spaces given by indent.  The length of each line is implementation
1578 * dependent and does not depend on the indent amount.  The following
1579 * is an example output of a sparsebit array that has bits:
1580 *
1581 *   0x5, 0x8, 0xa:0xe, 0x12
1582 *
1583 * This corresponds to a sparsebit whose bits 5, 8, 10, 11, 12, 13, 14, 18
1584 * are set.  Note that a ':', instead of a '-' is used to specify a range of
1585 * contiguous bits.  This is done because '-' is used to specify command-line
1586 * options, and sometimes ranges are specified as command-line arguments.
1587 */
1588void sparsebit_dump(FILE *stream, struct sparsebit *s,
1589        unsigned int indent)
1590{
1591        size_t current_line_len = 0;
1592        size_t sz;
1593        struct node *nodep;
1594
1595        if (!sparsebit_any_set(s))
1596                return;
1597
1598        /* Display initial indent */
1599        fprintf(stream, "%*s", indent, "");
1600
1601        /* For each node */
1602        for (nodep = node_first(s); nodep; nodep = node_next(s, nodep)) {
1603                unsigned int n1;
1604                sparsebit_idx_t low, high;
1605
1606                /* For each group of bits in the mask */
1607                for (n1 = 0; n1 < MASK_BITS; n1++) {
1608                        if (nodep->mask & (1 << n1)) {
1609                                low = high = nodep->idx + n1;
1610
1611                                for (; n1 < MASK_BITS; n1++) {
1612                                        if (nodep->mask & (1 << n1))
1613                                                high = nodep->idx + n1;
1614                                        else
1615                                                break;
1616                                }
1617
1618                                if ((n1 == MASK_BITS) && nodep->num_after)
1619                                        high += nodep->num_after;
1620
1621                                /*
1622                                 * How much room will it take to display
1623                                 * this range.
1624                                 */
1625                                sz = display_range(NULL, low, high,
1626                                        current_line_len != 0);
1627
1628                                /*
1629                                 * If there is not enough room, display
1630                                 * a newline plus the indent of the next
1631                                 * line.
1632                                 */
1633                                if (current_line_len + sz > DUMP_LINE_MAX) {
1634                                        fputs("\n", stream);
1635                                        fprintf(stream, "%*s", indent, "");
1636                                        current_line_len = 0;
1637                                }
1638
1639                                /* Display the range */
1640                                sz = display_range(stream, low, high,
1641                                        current_line_len != 0);
1642                                current_line_len += sz;
1643                        }
1644                }
1645
1646                /*
1647                 * If num_after and most significant-bit of mask is not
1648                 * set, then still need to display a range for the bits
1649                 * described by num_after.
1650                 */
1651                if (!(nodep->mask & (1 << (MASK_BITS - 1))) && nodep->num_after) {
1652                        low = nodep->idx + MASK_BITS;
1653                        high = nodep->idx + MASK_BITS + nodep->num_after - 1;
1654
1655                        /*
1656                         * How much room will it take to display
1657                         * this range.
1658                         */
1659                        sz = display_range(NULL, low, high,
1660                                current_line_len != 0);
1661
1662                        /*
1663                         * If there is not enough room, display
1664                         * a newline plus the indent of the next
1665                         * line.
1666                         */
1667                        if (current_line_len + sz > DUMP_LINE_MAX) {
1668                                fputs("\n", stream);
1669                                fprintf(stream, "%*s", indent, "");
1670                                current_line_len = 0;
1671                        }
1672
1673                        /* Display the range */
1674                        sz = display_range(stream, low, high,
1675                                current_line_len != 0);
1676                        current_line_len += sz;
1677                }
1678        }
1679        fputs("\n", stream);
1680}
1681
1682/* Validates the internal state of the sparsebit array given by
1683 * s.  On error, diagnostic information is printed to stderr and
1684 * abort is called.
1685 */
1686void sparsebit_validate_internal(struct sparsebit *s)
1687{
1688        bool error_detected = false;
1689        struct node *nodep, *prev = NULL;
1690        sparsebit_num_t total_bits_set = 0;
1691        unsigned int n1;
1692
1693        /* For each node */
1694        for (nodep = node_first(s); nodep;
1695                prev = nodep, nodep = node_next(s, nodep)) {
1696
1697                /*
1698                 * Increase total bits set by the number of bits set
1699                 * in this node.
1700                 */
1701                for (n1 = 0; n1 < MASK_BITS; n1++)
1702                        if (nodep->mask & (1 << n1))
1703                                total_bits_set++;
1704
1705                total_bits_set += nodep->num_after;
1706
1707                /*
1708                 * Arbitrary choice as to whether a mask of 0 is allowed
1709                 * or not.  For diagnostic purposes it is beneficial to
1710                 * have only one valid means to represent a set of bits.
1711                 * To support this an arbitrary choice has been made
1712                 * to not allow a mask of zero.
1713                 */
1714                if (nodep->mask == 0) {
1715                        fprintf(stderr, "Node mask of zero, "
1716                                "nodep: %p nodep->mask: 0x%x",
1717                                nodep, nodep->mask);
1718                        error_detected = true;
1719                        break;
1720                }
1721
1722                /*
1723                 * Validate num_after is not greater than the max index
1724                 * - the number of mask bits.  The num_after member
1725                 * uses 0-based indexing and thus has no value that
1726                 * represents all bits set.  This limitation is handled
1727                 * by requiring a non-zero mask.  With a non-zero mask,
1728                 * MASK_BITS worth of bits are described by the mask,
1729                 * which makes the largest needed num_after equal to:
1730                 *
1731                 *    (~(sparsebit_num_t) 0) - MASK_BITS + 1
1732                 */
1733                if (nodep->num_after
1734                        > (~(sparsebit_num_t) 0) - MASK_BITS + 1) {
1735                        fprintf(stderr, "num_after too large, "
1736                                "nodep: %p nodep->num_after: 0x%lx",
1737                                nodep, nodep->num_after);
1738                        error_detected = true;
1739                        break;
1740                }
1741
1742                /* Validate node index is divisible by the mask size */
1743                if (nodep->idx % MASK_BITS) {
1744                        fprintf(stderr, "Node index not divisible by "
1745                                "mask size,\n"
1746                                "  nodep: %p nodep->idx: 0x%lx "
1747                                "MASK_BITS: %lu\n",
1748                                nodep, nodep->idx, MASK_BITS);
1749                        error_detected = true;
1750                        break;
1751                }
1752
1753                /*
1754                 * Validate bits described by node don't wrap beyond the
1755                 * highest supported index.
1756                 */
1757                if ((nodep->idx + MASK_BITS + nodep->num_after - 1) < nodep->idx) {
1758                        fprintf(stderr, "Bits described by node wrap "
1759                                "beyond highest supported index,\n"
1760                                "  nodep: %p nodep->idx: 0x%lx\n"
1761                                "  MASK_BITS: %lu nodep->num_after: 0x%lx",
1762                                nodep, nodep->idx, MASK_BITS, nodep->num_after);
1763                        error_detected = true;
1764                        break;
1765                }
1766
1767                /* Check parent pointers. */
1768                if (nodep->left) {
1769                        if (nodep->left->parent != nodep) {
1770                                fprintf(stderr, "Left child parent pointer "
1771                                        "doesn't point to this node,\n"
1772                                        "  nodep: %p nodep->left: %p "
1773                                        "nodep->left->parent: %p",
1774                                        nodep, nodep->left,
1775                                        nodep->left->parent);
1776                                error_detected = true;
1777                                break;
1778                        }
1779                }
1780
1781                if (nodep->right) {
1782                        if (nodep->right->parent != nodep) {
1783                                fprintf(stderr, "Right child parent pointer "
1784                                        "doesn't point to this node,\n"
1785                                        "  nodep: %p nodep->right: %p "
1786                                        "nodep->right->parent: %p",
1787                                        nodep, nodep->right,
1788                                        nodep->right->parent);
1789                                error_detected = true;
1790                                break;
1791                        }
1792                }
1793
1794                if (!nodep->parent) {
1795                        if (s->root != nodep) {
1796                                fprintf(stderr, "Unexpected root node, "
1797                                        "s->root: %p nodep: %p",
1798                                        s->root, nodep);
1799                                error_detected = true;
1800                                break;
1801                        }
1802                }
1803
1804                if (prev) {
1805                        /*
1806                         * Is index of previous node before index of
1807                         * current node?
1808                         */
1809                        if (prev->idx >= nodep->idx) {
1810                                fprintf(stderr, "Previous node index "
1811                                        ">= current node index,\n"
1812                                        "  prev: %p prev->idx: 0x%lx\n"
1813                                        "  nodep: %p nodep->idx: 0x%lx",
1814                                        prev, prev->idx, nodep, nodep->idx);
1815                                error_detected = true;
1816                                break;
1817                        }
1818
1819                        /*
1820                         * Nodes occur in asscending order, based on each
1821                         * nodes starting index.
1822                         */
1823                        if ((prev->idx + MASK_BITS + prev->num_after - 1)
1824                                >= nodep->idx) {
1825                                fprintf(stderr, "Previous node bit range "
1826                                        "overlap with current node bit range,\n"
1827                                        "  prev: %p prev->idx: 0x%lx "
1828                                        "prev->num_after: 0x%lx\n"
1829                                        "  nodep: %p nodep->idx: 0x%lx "
1830                                        "nodep->num_after: 0x%lx\n"
1831                                        "  MASK_BITS: %lu",
1832                                        prev, prev->idx, prev->num_after,
1833                                        nodep, nodep->idx, nodep->num_after,
1834                                        MASK_BITS);
1835                                error_detected = true;
1836                                break;
1837                        }
1838
1839                        /*
1840                         * When the node has all mask bits set, it shouldn't
1841                         * be adjacent to the last bit described by the
1842                         * previous node.
1843                         */
1844                        if (nodep->mask == ~(mask_t) 0 &&
1845                            prev->idx + MASK_BITS + prev->num_after == nodep->idx) {
1846                                fprintf(stderr, "Current node has mask with "
1847                                        "all bits set and is adjacent to the "
1848                                        "previous node,\n"
1849                                        "  prev: %p prev->idx: 0x%lx "
1850                                        "prev->num_after: 0x%lx\n"
1851                                        "  nodep: %p nodep->idx: 0x%lx "
1852                                        "nodep->num_after: 0x%lx\n"
1853                                        "  MASK_BITS: %lu",
1854                                        prev, prev->idx, prev->num_after,
1855                                        nodep, nodep->idx, nodep->num_after,
1856                                        MASK_BITS);
1857
1858                                error_detected = true;
1859                                break;
1860                        }
1861                }
1862        }
1863
1864        if (!error_detected) {
1865                /*
1866                 * Is sum of bits set in each node equal to the count
1867                 * of total bits set.
1868                 */
1869                if (s->num_set != total_bits_set) {
1870                        fprintf(stderr, "Number of bits set missmatch,\n"
1871                                "  s->num_set: 0x%lx total_bits_set: 0x%lx",
1872                                s->num_set, total_bits_set);
1873
1874                        error_detected = true;
1875                }
1876        }
1877
1878        if (error_detected) {
1879                fputs("  dump_internal:\n", stderr);
1880                sparsebit_dump_internal(stderr, s, 4);
1881                abort();
1882        }
1883}
1884
1885
1886#ifdef FUZZ
1887/* A simple but effective fuzzing driver.  Look for bugs with the help
1888 * of some invariants and of a trivial representation of sparsebit.
1889 * Just use 512 bytes of /dev/zero and /dev/urandom as inputs, and let
1890 * afl-fuzz do the magic. :)
1891 */
1892
1893#include <stdlib.h>
1894#include <assert.h>
1895
1896struct range {
1897        sparsebit_idx_t first, last;
1898        bool set;
1899};
1900
1901struct sparsebit *s;
1902struct range ranges[1000];
1903int num_ranges;
1904
1905static bool get_value(sparsebit_idx_t idx)
1906{
1907        int i;
1908
1909        for (i = num_ranges; --i >= 0; )
1910                if (ranges[i].first <= idx && idx <= ranges[i].last)
1911                        return ranges[i].set;
1912
1913        return false;
1914}
1915
1916static void operate(int code, sparsebit_idx_t first, sparsebit_idx_t last)
1917{
1918        sparsebit_num_t num;
1919        sparsebit_idx_t next;
1920
1921        if (first < last) {
1922                num = last - first + 1;
1923        } else {
1924                num = first - last + 1;
1925                first = last;
1926                last = first + num - 1;
1927        }
1928
1929        switch (code) {
1930        case 0:
1931                sparsebit_set(s, first);
1932                assert(sparsebit_is_set(s, first));
1933                assert(!sparsebit_is_clear(s, first));
1934                assert(sparsebit_any_set(s));
1935                assert(!sparsebit_all_clear(s));
1936                if (get_value(first))
1937                        return;
1938                if (num_ranges == 1000)
1939                        exit(0);
1940                ranges[num_ranges++] = (struct range)
1941                        { .first = first, .last = first, .set = true };
1942                break;
1943        case 1:
1944                sparsebit_clear(s, first);
1945                assert(!sparsebit_is_set(s, first));
1946                assert(sparsebit_is_clear(s, first));
1947                assert(sparsebit_any_clear(s));
1948                assert(!sparsebit_all_set(s));
1949                if (!get_value(first))
1950                        return;
1951                if (num_ranges == 1000)
1952                        exit(0);
1953                ranges[num_ranges++] = (struct range)
1954                        { .first = first, .last = first, .set = false };
1955                break;
1956        case 2:
1957                assert(sparsebit_is_set(s, first) == get_value(first));
1958                assert(sparsebit_is_clear(s, first) == !get_value(first));
1959                break;
1960        case 3:
1961                if (sparsebit_any_set(s))
1962                        assert(get_value(sparsebit_first_set(s)));
1963                if (sparsebit_any_clear(s))
1964                        assert(!get_value(sparsebit_first_clear(s)));
1965                sparsebit_set_all(s);
1966                assert(!sparsebit_any_clear(s));
1967                assert(sparsebit_all_set(s));
1968                num_ranges = 0;
1969                ranges[num_ranges++] = (struct range)
1970                        { .first = 0, .last = ~(sparsebit_idx_t)0, .set = true };
1971                break;
1972        case 4:
1973                if (sparsebit_any_set(s))
1974                        assert(get_value(sparsebit_first_set(s)));
1975                if (sparsebit_any_clear(s))
1976                        assert(!get_value(sparsebit_first_clear(s)));
1977                sparsebit_clear_all(s);
1978                assert(!sparsebit_any_set(s));
1979                assert(sparsebit_all_clear(s));
1980                num_ranges = 0;
1981                break;
1982        case 5:
1983                next = sparsebit_next_set(s, first);
1984                assert(next == 0 || next > first);
1985                assert(next == 0 || get_value(next));
1986                break;
1987        case 6:
1988                next = sparsebit_next_clear(s, first);
1989                assert(next == 0 || next > first);
1990                assert(next == 0 || !get_value(next));
1991                break;
1992        case 7:
1993                next = sparsebit_next_clear(s, first);
1994                if (sparsebit_is_set_num(s, first, num)) {
1995                        assert(next == 0 || next > last);
1996                        if (first)
1997                                next = sparsebit_next_set(s, first - 1);
1998                        else if (sparsebit_any_set(s))
1999                                next = sparsebit_first_set(s);
2000                        else
2001                                return;
2002                        assert(next == first);
2003                } else {
2004                        assert(sparsebit_is_clear(s, first) || next <= last);
2005                }
2006                break;
2007        case 8:
2008                next = sparsebit_next_set(s, first);
2009                if (sparsebit_is_clear_num(s, first, num)) {
2010                        assert(next == 0 || next > last);
2011                        if (first)
2012                                next = sparsebit_next_clear(s, first - 1);
2013                        else if (sparsebit_any_clear(s))
2014                                next = sparsebit_first_clear(s);
2015                        else
2016                                return;
2017                        assert(next == first);
2018                } else {
2019                        assert(sparsebit_is_set(s, first) || next <= last);
2020                }
2021                break;
2022        case 9:
2023                sparsebit_set_num(s, first, num);
2024                assert(sparsebit_is_set_num(s, first, num));
2025                assert(!sparsebit_is_clear_num(s, first, num));
2026                assert(sparsebit_any_set(s));
2027                assert(!sparsebit_all_clear(s));
2028                if (num_ranges == 1000)
2029                        exit(0);
2030                ranges[num_ranges++] = (struct range)
2031                        { .first = first, .last = last, .set = true };
2032                break;
2033        case 10:
2034                sparsebit_clear_num(s, first, num);
2035                assert(!sparsebit_is_set_num(s, first, num));
2036                assert(sparsebit_is_clear_num(s, first, num));
2037                assert(sparsebit_any_clear(s));
2038                assert(!sparsebit_all_set(s));
2039                if (num_ranges == 1000)
2040                        exit(0);
2041                ranges[num_ranges++] = (struct range)
2042                        { .first = first, .last = last, .set = false };
2043                break;
2044        case 11:
2045                sparsebit_validate_internal(s);
2046                break;
2047        default:
2048                break;
2049        }
2050}
2051
2052unsigned char get8(void)
2053{
2054        int ch;
2055
2056        ch = getchar();
2057        if (ch == EOF)
2058                exit(0);
2059        return ch;
2060}
2061
2062uint64_t get64(void)
2063{
2064        uint64_t x;
2065
2066        x = get8();
2067        x = (x << 8) | get8();
2068        x = (x << 8) | get8();
2069        x = (x << 8) | get8();
2070        x = (x << 8) | get8();
2071        x = (x << 8) | get8();
2072        x = (x << 8) | get8();
2073        return (x << 8) | get8();
2074}
2075
2076int main(void)
2077{
2078        s = sparsebit_alloc();
2079        for (;;) {
2080                uint8_t op = get8() & 0xf;
2081                uint64_t first = get64();
2082                uint64_t last = get64();
2083
2084                operate(op, first, last);
2085        }
2086}
2087#endif
2088