linux/virt/kvm/arm/arm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License, version 2, as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  17 */
  18
  19#include <linux/cpu_pm.h>
  20#include <linux/errno.h>
  21#include <linux/err.h>
  22#include <linux/kvm_host.h>
  23#include <linux/list.h>
  24#include <linux/module.h>
  25#include <linux/vmalloc.h>
  26#include <linux/fs.h>
  27#include <linux/mman.h>
  28#include <linux/sched.h>
  29#include <linux/kvm.h>
  30#include <linux/kvm_irqfd.h>
  31#include <linux/irqbypass.h>
  32#include <trace/events/kvm.h>
  33#include <kvm/arm_pmu.h>
  34#include <kvm/arm_psci.h>
  35
  36#define CREATE_TRACE_POINTS
  37#include "trace.h"
  38
  39#include <linux/uaccess.h>
  40#include <asm/ptrace.h>
  41#include <asm/mman.h>
  42#include <asm/tlbflush.h>
  43#include <asm/cacheflush.h>
  44#include <asm/virt.h>
  45#include <asm/kvm_arm.h>
  46#include <asm/kvm_asm.h>
  47#include <asm/kvm_mmu.h>
  48#include <asm/kvm_emulate.h>
  49#include <asm/kvm_coproc.h>
  50#include <asm/sections.h>
  51
  52#ifdef REQUIRES_VIRT
  53__asm__(".arch_extension        virt");
  54#endif
  55
  56DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
  57static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
  58
  59/* Per-CPU variable containing the currently running vcpu. */
  60static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
  61
  62/* The VMID used in the VTTBR */
  63static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
  64static u32 kvm_next_vmid;
  65static unsigned int kvm_vmid_bits __read_mostly;
  66static DEFINE_RWLOCK(kvm_vmid_lock);
  67
  68static bool vgic_present;
  69
  70static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
  71
  72static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
  73{
  74        __this_cpu_write(kvm_arm_running_vcpu, vcpu);
  75}
  76
  77DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
  78
  79/**
  80 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
  81 * Must be called from non-preemptible context
  82 */
  83struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
  84{
  85        return __this_cpu_read(kvm_arm_running_vcpu);
  86}
  87
  88/**
  89 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
  90 */
  91struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
  92{
  93        return &kvm_arm_running_vcpu;
  94}
  95
  96int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  97{
  98        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  99}
 100
 101int kvm_arch_hardware_setup(void)
 102{
 103        return 0;
 104}
 105
 106void kvm_arch_check_processor_compat(void *rtn)
 107{
 108        *(int *)rtn = 0;
 109}
 110
 111
 112/**
 113 * kvm_arch_init_vm - initializes a VM data structure
 114 * @kvm:        pointer to the KVM struct
 115 */
 116int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 117{
 118        int ret, cpu;
 119
 120        if (type)
 121                return -EINVAL;
 122
 123        kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
 124        if (!kvm->arch.last_vcpu_ran)
 125                return -ENOMEM;
 126
 127        for_each_possible_cpu(cpu)
 128                *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
 129
 130        ret = kvm_alloc_stage2_pgd(kvm);
 131        if (ret)
 132                goto out_fail_alloc;
 133
 134        ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
 135        if (ret)
 136                goto out_free_stage2_pgd;
 137
 138        kvm_vgic_early_init(kvm);
 139
 140        /* Mark the initial VMID generation invalid */
 141        kvm->arch.vmid_gen = 0;
 142
 143        /* The maximum number of VCPUs is limited by the host's GIC model */
 144        kvm->arch.max_vcpus = vgic_present ?
 145                                kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
 146
 147        return ret;
 148out_free_stage2_pgd:
 149        kvm_free_stage2_pgd(kvm);
 150out_fail_alloc:
 151        free_percpu(kvm->arch.last_vcpu_ran);
 152        kvm->arch.last_vcpu_ran = NULL;
 153        return ret;
 154}
 155
 156bool kvm_arch_has_vcpu_debugfs(void)
 157{
 158        return false;
 159}
 160
 161int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
 162{
 163        return 0;
 164}
 165
 166int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
 167{
 168        return VM_FAULT_SIGBUS;
 169}
 170
 171
 172/**
 173 * kvm_arch_destroy_vm - destroy the VM data structure
 174 * @kvm:        pointer to the KVM struct
 175 */
 176void kvm_arch_destroy_vm(struct kvm *kvm)
 177{
 178        int i;
 179
 180        kvm_vgic_destroy(kvm);
 181
 182        free_percpu(kvm->arch.last_vcpu_ran);
 183        kvm->arch.last_vcpu_ran = NULL;
 184
 185        for (i = 0; i < KVM_MAX_VCPUS; ++i) {
 186                if (kvm->vcpus[i]) {
 187                        kvm_arch_vcpu_free(kvm->vcpus[i]);
 188                        kvm->vcpus[i] = NULL;
 189                }
 190        }
 191        atomic_set(&kvm->online_vcpus, 0);
 192}
 193
 194int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 195{
 196        int r;
 197        switch (ext) {
 198        case KVM_CAP_IRQCHIP:
 199                r = vgic_present;
 200                break;
 201        case KVM_CAP_IOEVENTFD:
 202        case KVM_CAP_DEVICE_CTRL:
 203        case KVM_CAP_USER_MEMORY:
 204        case KVM_CAP_SYNC_MMU:
 205        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
 206        case KVM_CAP_ONE_REG:
 207        case KVM_CAP_ARM_PSCI:
 208        case KVM_CAP_ARM_PSCI_0_2:
 209        case KVM_CAP_READONLY_MEM:
 210        case KVM_CAP_MP_STATE:
 211        case KVM_CAP_IMMEDIATE_EXIT:
 212                r = 1;
 213                break;
 214        case KVM_CAP_ARM_SET_DEVICE_ADDR:
 215                r = 1;
 216                break;
 217        case KVM_CAP_NR_VCPUS:
 218                r = num_online_cpus();
 219                break;
 220        case KVM_CAP_MAX_VCPUS:
 221                r = KVM_MAX_VCPUS;
 222                break;
 223        case KVM_CAP_NR_MEMSLOTS:
 224                r = KVM_USER_MEM_SLOTS;
 225                break;
 226        case KVM_CAP_MSI_DEVID:
 227                if (!kvm)
 228                        r = -EINVAL;
 229                else
 230                        r = kvm->arch.vgic.msis_require_devid;
 231                break;
 232        case KVM_CAP_ARM_USER_IRQ:
 233                /*
 234                 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
 235                 * (bump this number if adding more devices)
 236                 */
 237                r = 1;
 238                break;
 239        default:
 240                r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
 241                break;
 242        }
 243        return r;
 244}
 245
 246long kvm_arch_dev_ioctl(struct file *filp,
 247                        unsigned int ioctl, unsigned long arg)
 248{
 249        return -EINVAL;
 250}
 251
 252
 253struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 254{
 255        int err;
 256        struct kvm_vcpu *vcpu;
 257
 258        if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
 259                err = -EBUSY;
 260                goto out;
 261        }
 262
 263        if (id >= kvm->arch.max_vcpus) {
 264                err = -EINVAL;
 265                goto out;
 266        }
 267
 268        vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
 269        if (!vcpu) {
 270                err = -ENOMEM;
 271                goto out;
 272        }
 273
 274        err = kvm_vcpu_init(vcpu, kvm, id);
 275        if (err)
 276                goto free_vcpu;
 277
 278        err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
 279        if (err)
 280                goto vcpu_uninit;
 281
 282        return vcpu;
 283vcpu_uninit:
 284        kvm_vcpu_uninit(vcpu);
 285free_vcpu:
 286        kmem_cache_free(kvm_vcpu_cache, vcpu);
 287out:
 288        return ERR_PTR(err);
 289}
 290
 291void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
 292{
 293        kvm_vgic_vcpu_early_init(vcpu);
 294}
 295
 296void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 297{
 298        if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
 299                static_branch_dec(&userspace_irqchip_in_use);
 300
 301        kvm_mmu_free_memory_caches(vcpu);
 302        kvm_timer_vcpu_terminate(vcpu);
 303        kvm_pmu_vcpu_destroy(vcpu);
 304        kvm_vcpu_uninit(vcpu);
 305        kmem_cache_free(kvm_vcpu_cache, vcpu);
 306}
 307
 308void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 309{
 310        kvm_arch_vcpu_free(vcpu);
 311}
 312
 313int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
 314{
 315        return kvm_timer_is_pending(vcpu);
 316}
 317
 318void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
 319{
 320        kvm_timer_schedule(vcpu);
 321        kvm_vgic_v4_enable_doorbell(vcpu);
 322}
 323
 324void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
 325{
 326        kvm_timer_unschedule(vcpu);
 327        kvm_vgic_v4_disable_doorbell(vcpu);
 328}
 329
 330int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
 331{
 332        /* Force users to call KVM_ARM_VCPU_INIT */
 333        vcpu->arch.target = -1;
 334        bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
 335
 336        /* Set up the timer */
 337        kvm_timer_vcpu_init(vcpu);
 338
 339        kvm_arm_reset_debug_ptr(vcpu);
 340
 341        return kvm_vgic_vcpu_init(vcpu);
 342}
 343
 344void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 345{
 346        int *last_ran;
 347
 348        last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
 349
 350        /*
 351         * We might get preempted before the vCPU actually runs, but
 352         * over-invalidation doesn't affect correctness.
 353         */
 354        if (*last_ran != vcpu->vcpu_id) {
 355                kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
 356                *last_ran = vcpu->vcpu_id;
 357        }
 358
 359        vcpu->cpu = cpu;
 360        vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
 361
 362        kvm_arm_set_running_vcpu(vcpu);
 363        kvm_vgic_load(vcpu);
 364        kvm_timer_vcpu_load(vcpu);
 365        kvm_vcpu_load_sysregs(vcpu);
 366}
 367
 368void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
 369{
 370        kvm_vcpu_put_sysregs(vcpu);
 371        kvm_timer_vcpu_put(vcpu);
 372        kvm_vgic_put(vcpu);
 373
 374        vcpu->cpu = -1;
 375
 376        kvm_arm_set_running_vcpu(NULL);
 377}
 378
 379static void vcpu_power_off(struct kvm_vcpu *vcpu)
 380{
 381        vcpu->arch.power_off = true;
 382        kvm_make_request(KVM_REQ_SLEEP, vcpu);
 383        kvm_vcpu_kick(vcpu);
 384}
 385
 386int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 387                                    struct kvm_mp_state *mp_state)
 388{
 389        if (vcpu->arch.power_off)
 390                mp_state->mp_state = KVM_MP_STATE_STOPPED;
 391        else
 392                mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
 393
 394        return 0;
 395}
 396
 397int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 398                                    struct kvm_mp_state *mp_state)
 399{
 400        int ret = 0;
 401
 402        switch (mp_state->mp_state) {
 403        case KVM_MP_STATE_RUNNABLE:
 404                vcpu->arch.power_off = false;
 405                break;
 406        case KVM_MP_STATE_STOPPED:
 407                vcpu_power_off(vcpu);
 408                break;
 409        default:
 410                ret = -EINVAL;
 411        }
 412
 413        return ret;
 414}
 415
 416/**
 417 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 418 * @v:          The VCPU pointer
 419 *
 420 * If the guest CPU is not waiting for interrupts or an interrupt line is
 421 * asserted, the CPU is by definition runnable.
 422 */
 423int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
 424{
 425        bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
 426        return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
 427                && !v->arch.power_off && !v->arch.pause);
 428}
 429
 430bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
 431{
 432        return vcpu_mode_priv(vcpu);
 433}
 434
 435/* Just ensure a guest exit from a particular CPU */
 436static void exit_vm_noop(void *info)
 437{
 438}
 439
 440void force_vm_exit(const cpumask_t *mask)
 441{
 442        preempt_disable();
 443        smp_call_function_many(mask, exit_vm_noop, NULL, true);
 444        preempt_enable();
 445}
 446
 447/**
 448 * need_new_vmid_gen - check that the VMID is still valid
 449 * @kvm: The VM's VMID to check
 450 *
 451 * return true if there is a new generation of VMIDs being used
 452 *
 453 * The hardware supports only 256 values with the value zero reserved for the
 454 * host, so we check if an assigned value belongs to a previous generation,
 455 * which which requires us to assign a new value. If we're the first to use a
 456 * VMID for the new generation, we must flush necessary caches and TLBs on all
 457 * CPUs.
 458 */
 459static bool need_new_vmid_gen(struct kvm *kvm)
 460{
 461        return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
 462}
 463
 464/**
 465 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 466 * @kvm The guest that we are about to run
 467 *
 468 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 469 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 470 * caches and TLBs.
 471 */
 472static void update_vttbr(struct kvm *kvm)
 473{
 474        phys_addr_t pgd_phys;
 475        u64 vmid;
 476        bool new_gen;
 477
 478        read_lock(&kvm_vmid_lock);
 479        new_gen = need_new_vmid_gen(kvm);
 480        read_unlock(&kvm_vmid_lock);
 481
 482        if (!new_gen)
 483                return;
 484
 485        write_lock(&kvm_vmid_lock);
 486
 487        /*
 488         * We need to re-check the vmid_gen here to ensure that if another vcpu
 489         * already allocated a valid vmid for this vm, then this vcpu should
 490         * use the same vmid.
 491         */
 492        if (!need_new_vmid_gen(kvm)) {
 493                write_unlock(&kvm_vmid_lock);
 494                return;
 495        }
 496
 497        /* First user of a new VMID generation? */
 498        if (unlikely(kvm_next_vmid == 0)) {
 499                atomic64_inc(&kvm_vmid_gen);
 500                kvm_next_vmid = 1;
 501
 502                /*
 503                 * On SMP we know no other CPUs can use this CPU's or each
 504                 * other's VMID after force_vm_exit returns since the
 505                 * kvm_vmid_lock blocks them from reentry to the guest.
 506                 */
 507                force_vm_exit(cpu_all_mask);
 508                /*
 509                 * Now broadcast TLB + ICACHE invalidation over the inner
 510                 * shareable domain to make sure all data structures are
 511                 * clean.
 512                 */
 513                kvm_call_hyp(__kvm_flush_vm_context);
 514        }
 515
 516        kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
 517        kvm->arch.vmid = kvm_next_vmid;
 518        kvm_next_vmid++;
 519        kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
 520
 521        /* update vttbr to be used with the new vmid */
 522        pgd_phys = virt_to_phys(kvm->arch.pgd);
 523        BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
 524        vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
 525        kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
 526
 527        write_unlock(&kvm_vmid_lock);
 528}
 529
 530static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
 531{
 532        struct kvm *kvm = vcpu->kvm;
 533        int ret = 0;
 534
 535        if (likely(vcpu->arch.has_run_once))
 536                return 0;
 537
 538        vcpu->arch.has_run_once = true;
 539
 540        if (likely(irqchip_in_kernel(kvm))) {
 541                /*
 542                 * Map the VGIC hardware resources before running a vcpu the
 543                 * first time on this VM.
 544                 */
 545                if (unlikely(!vgic_ready(kvm))) {
 546                        ret = kvm_vgic_map_resources(kvm);
 547                        if (ret)
 548                                return ret;
 549                }
 550        } else {
 551                /*
 552                 * Tell the rest of the code that there are userspace irqchip
 553                 * VMs in the wild.
 554                 */
 555                static_branch_inc(&userspace_irqchip_in_use);
 556        }
 557
 558        ret = kvm_timer_enable(vcpu);
 559        if (ret)
 560                return ret;
 561
 562        ret = kvm_arm_pmu_v3_enable(vcpu);
 563
 564        return ret;
 565}
 566
 567bool kvm_arch_intc_initialized(struct kvm *kvm)
 568{
 569        return vgic_initialized(kvm);
 570}
 571
 572void kvm_arm_halt_guest(struct kvm *kvm)
 573{
 574        int i;
 575        struct kvm_vcpu *vcpu;
 576
 577        kvm_for_each_vcpu(i, vcpu, kvm)
 578                vcpu->arch.pause = true;
 579        kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
 580}
 581
 582void kvm_arm_resume_guest(struct kvm *kvm)
 583{
 584        int i;
 585        struct kvm_vcpu *vcpu;
 586
 587        kvm_for_each_vcpu(i, vcpu, kvm) {
 588                vcpu->arch.pause = false;
 589                swake_up(kvm_arch_vcpu_wq(vcpu));
 590        }
 591}
 592
 593static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
 594{
 595        struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
 596
 597        swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
 598                                       (!vcpu->arch.pause)));
 599
 600        if (vcpu->arch.power_off || vcpu->arch.pause) {
 601                /* Awaken to handle a signal, request we sleep again later. */
 602                kvm_make_request(KVM_REQ_SLEEP, vcpu);
 603        }
 604}
 605
 606static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
 607{
 608        return vcpu->arch.target >= 0;
 609}
 610
 611static void check_vcpu_requests(struct kvm_vcpu *vcpu)
 612{
 613        if (kvm_request_pending(vcpu)) {
 614                if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
 615                        vcpu_req_sleep(vcpu);
 616
 617                /*
 618                 * Clear IRQ_PENDING requests that were made to guarantee
 619                 * that a VCPU sees new virtual interrupts.
 620                 */
 621                kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
 622        }
 623}
 624
 625/**
 626 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 627 * @vcpu:       The VCPU pointer
 628 * @run:        The kvm_run structure pointer used for userspace state exchange
 629 *
 630 * This function is called through the VCPU_RUN ioctl called from user space. It
 631 * will execute VM code in a loop until the time slice for the process is used
 632 * or some emulation is needed from user space in which case the function will
 633 * return with return value 0 and with the kvm_run structure filled in with the
 634 * required data for the requested emulation.
 635 */
 636int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 637{
 638        int ret;
 639
 640        if (unlikely(!kvm_vcpu_initialized(vcpu)))
 641                return -ENOEXEC;
 642
 643        ret = kvm_vcpu_first_run_init(vcpu);
 644        if (ret)
 645                return ret;
 646
 647        if (run->exit_reason == KVM_EXIT_MMIO) {
 648                ret = kvm_handle_mmio_return(vcpu, vcpu->run);
 649                if (ret)
 650                        return ret;
 651                if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
 652                        return 0;
 653        }
 654
 655        if (run->immediate_exit)
 656                return -EINTR;
 657
 658        vcpu_load(vcpu);
 659
 660        kvm_sigset_activate(vcpu);
 661
 662        ret = 1;
 663        run->exit_reason = KVM_EXIT_UNKNOWN;
 664        while (ret > 0) {
 665                /*
 666                 * Check conditions before entering the guest
 667                 */
 668                cond_resched();
 669
 670                update_vttbr(vcpu->kvm);
 671
 672                check_vcpu_requests(vcpu);
 673
 674                /*
 675                 * Preparing the interrupts to be injected also
 676                 * involves poking the GIC, which must be done in a
 677                 * non-preemptible context.
 678                 */
 679                preempt_disable();
 680
 681                /* Flush FP/SIMD state that can't survive guest entry/exit */
 682                kvm_fpsimd_flush_cpu_state();
 683
 684                kvm_pmu_flush_hwstate(vcpu);
 685
 686                local_irq_disable();
 687
 688                kvm_vgic_flush_hwstate(vcpu);
 689
 690                /*
 691                 * Exit if we have a signal pending so that we can deliver the
 692                 * signal to user space.
 693                 */
 694                if (signal_pending(current)) {
 695                        ret = -EINTR;
 696                        run->exit_reason = KVM_EXIT_INTR;
 697                }
 698
 699                /*
 700                 * If we're using a userspace irqchip, then check if we need
 701                 * to tell a userspace irqchip about timer or PMU level
 702                 * changes and if so, exit to userspace (the actual level
 703                 * state gets updated in kvm_timer_update_run and
 704                 * kvm_pmu_update_run below).
 705                 */
 706                if (static_branch_unlikely(&userspace_irqchip_in_use)) {
 707                        if (kvm_timer_should_notify_user(vcpu) ||
 708                            kvm_pmu_should_notify_user(vcpu)) {
 709                                ret = -EINTR;
 710                                run->exit_reason = KVM_EXIT_INTR;
 711                        }
 712                }
 713
 714                /*
 715                 * Ensure we set mode to IN_GUEST_MODE after we disable
 716                 * interrupts and before the final VCPU requests check.
 717                 * See the comment in kvm_vcpu_exiting_guest_mode() and
 718                 * Documentation/virtual/kvm/vcpu-requests.rst
 719                 */
 720                smp_store_mb(vcpu->mode, IN_GUEST_MODE);
 721
 722                if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
 723                    kvm_request_pending(vcpu)) {
 724                        vcpu->mode = OUTSIDE_GUEST_MODE;
 725                        isb(); /* Ensure work in x_flush_hwstate is committed */
 726                        kvm_pmu_sync_hwstate(vcpu);
 727                        if (static_branch_unlikely(&userspace_irqchip_in_use))
 728                                kvm_timer_sync_hwstate(vcpu);
 729                        kvm_vgic_sync_hwstate(vcpu);
 730                        local_irq_enable();
 731                        preempt_enable();
 732                        continue;
 733                }
 734
 735                kvm_arm_setup_debug(vcpu);
 736
 737                /**************************************************************
 738                 * Enter the guest
 739                 */
 740                trace_kvm_entry(*vcpu_pc(vcpu));
 741                guest_enter_irqoff();
 742
 743                if (has_vhe()) {
 744                        kvm_arm_vhe_guest_enter();
 745                        ret = kvm_vcpu_run_vhe(vcpu);
 746                        kvm_arm_vhe_guest_exit();
 747                } else {
 748                        ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
 749                }
 750
 751                vcpu->mode = OUTSIDE_GUEST_MODE;
 752                vcpu->stat.exits++;
 753                /*
 754                 * Back from guest
 755                 *************************************************************/
 756
 757                kvm_arm_clear_debug(vcpu);
 758
 759                /*
 760                 * We must sync the PMU state before the vgic state so
 761                 * that the vgic can properly sample the updated state of the
 762                 * interrupt line.
 763                 */
 764                kvm_pmu_sync_hwstate(vcpu);
 765
 766                /*
 767                 * Sync the vgic state before syncing the timer state because
 768                 * the timer code needs to know if the virtual timer
 769                 * interrupts are active.
 770                 */
 771                kvm_vgic_sync_hwstate(vcpu);
 772
 773                /*
 774                 * Sync the timer hardware state before enabling interrupts as
 775                 * we don't want vtimer interrupts to race with syncing the
 776                 * timer virtual interrupt state.
 777                 */
 778                if (static_branch_unlikely(&userspace_irqchip_in_use))
 779                        kvm_timer_sync_hwstate(vcpu);
 780
 781                /*
 782                 * We may have taken a host interrupt in HYP mode (ie
 783                 * while executing the guest). This interrupt is still
 784                 * pending, as we haven't serviced it yet!
 785                 *
 786                 * We're now back in SVC mode, with interrupts
 787                 * disabled.  Enabling the interrupts now will have
 788                 * the effect of taking the interrupt again, in SVC
 789                 * mode this time.
 790                 */
 791                local_irq_enable();
 792
 793                /*
 794                 * We do local_irq_enable() before calling guest_exit() so
 795                 * that if a timer interrupt hits while running the guest we
 796                 * account that tick as being spent in the guest.  We enable
 797                 * preemption after calling guest_exit() so that if we get
 798                 * preempted we make sure ticks after that is not counted as
 799                 * guest time.
 800                 */
 801                guest_exit();
 802                trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
 803
 804                /* Exit types that need handling before we can be preempted */
 805                handle_exit_early(vcpu, run, ret);
 806
 807                preempt_enable();
 808
 809                ret = handle_exit(vcpu, run, ret);
 810        }
 811
 812        /* Tell userspace about in-kernel device output levels */
 813        if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
 814                kvm_timer_update_run(vcpu);
 815                kvm_pmu_update_run(vcpu);
 816        }
 817
 818        kvm_sigset_deactivate(vcpu);
 819
 820        vcpu_put(vcpu);
 821        return ret;
 822}
 823
 824static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
 825{
 826        int bit_index;
 827        bool set;
 828        unsigned long *hcr;
 829
 830        if (number == KVM_ARM_IRQ_CPU_IRQ)
 831                bit_index = __ffs(HCR_VI);
 832        else /* KVM_ARM_IRQ_CPU_FIQ */
 833                bit_index = __ffs(HCR_VF);
 834
 835        hcr = vcpu_hcr(vcpu);
 836        if (level)
 837                set = test_and_set_bit(bit_index, hcr);
 838        else
 839                set = test_and_clear_bit(bit_index, hcr);
 840
 841        /*
 842         * If we didn't change anything, no need to wake up or kick other CPUs
 843         */
 844        if (set == level)
 845                return 0;
 846
 847        /*
 848         * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
 849         * trigger a world-switch round on the running physical CPU to set the
 850         * virtual IRQ/FIQ fields in the HCR appropriately.
 851         */
 852        kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
 853        kvm_vcpu_kick(vcpu);
 854
 855        return 0;
 856}
 857
 858int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
 859                          bool line_status)
 860{
 861        u32 irq = irq_level->irq;
 862        unsigned int irq_type, vcpu_idx, irq_num;
 863        int nrcpus = atomic_read(&kvm->online_vcpus);
 864        struct kvm_vcpu *vcpu = NULL;
 865        bool level = irq_level->level;
 866
 867        irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
 868        vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
 869        irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
 870
 871        trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
 872
 873        switch (irq_type) {
 874        case KVM_ARM_IRQ_TYPE_CPU:
 875                if (irqchip_in_kernel(kvm))
 876                        return -ENXIO;
 877
 878                if (vcpu_idx >= nrcpus)
 879                        return -EINVAL;
 880
 881                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
 882                if (!vcpu)
 883                        return -EINVAL;
 884
 885                if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
 886                        return -EINVAL;
 887
 888                return vcpu_interrupt_line(vcpu, irq_num, level);
 889        case KVM_ARM_IRQ_TYPE_PPI:
 890                if (!irqchip_in_kernel(kvm))
 891                        return -ENXIO;
 892
 893                if (vcpu_idx >= nrcpus)
 894                        return -EINVAL;
 895
 896                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
 897                if (!vcpu)
 898                        return -EINVAL;
 899
 900                if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
 901                        return -EINVAL;
 902
 903                return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
 904        case KVM_ARM_IRQ_TYPE_SPI:
 905                if (!irqchip_in_kernel(kvm))
 906                        return -ENXIO;
 907
 908                if (irq_num < VGIC_NR_PRIVATE_IRQS)
 909                        return -EINVAL;
 910
 911                return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
 912        }
 913
 914        return -EINVAL;
 915}
 916
 917static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
 918                               const struct kvm_vcpu_init *init)
 919{
 920        unsigned int i;
 921        int phys_target = kvm_target_cpu();
 922
 923        if (init->target != phys_target)
 924                return -EINVAL;
 925
 926        /*
 927         * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
 928         * use the same target.
 929         */
 930        if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
 931                return -EINVAL;
 932
 933        /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
 934        for (i = 0; i < sizeof(init->features) * 8; i++) {
 935                bool set = (init->features[i / 32] & (1 << (i % 32)));
 936
 937                if (set && i >= KVM_VCPU_MAX_FEATURES)
 938                        return -ENOENT;
 939
 940                /*
 941                 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
 942                 * use the same feature set.
 943                 */
 944                if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
 945                    test_bit(i, vcpu->arch.features) != set)
 946                        return -EINVAL;
 947
 948                if (set)
 949                        set_bit(i, vcpu->arch.features);
 950        }
 951
 952        vcpu->arch.target = phys_target;
 953
 954        /* Now we know what it is, we can reset it. */
 955        return kvm_reset_vcpu(vcpu);
 956}
 957
 958
 959static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
 960                                         struct kvm_vcpu_init *init)
 961{
 962        int ret;
 963
 964        ret = kvm_vcpu_set_target(vcpu, init);
 965        if (ret)
 966                return ret;
 967
 968        /*
 969         * Ensure a rebooted VM will fault in RAM pages and detect if the
 970         * guest MMU is turned off and flush the caches as needed.
 971         */
 972        if (vcpu->arch.has_run_once)
 973                stage2_unmap_vm(vcpu->kvm);
 974
 975        vcpu_reset_hcr(vcpu);
 976
 977        /*
 978         * Handle the "start in power-off" case.
 979         */
 980        if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
 981                vcpu_power_off(vcpu);
 982        else
 983                vcpu->arch.power_off = false;
 984
 985        return 0;
 986}
 987
 988static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
 989                                 struct kvm_device_attr *attr)
 990{
 991        int ret = -ENXIO;
 992
 993        switch (attr->group) {
 994        default:
 995                ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
 996                break;
 997        }
 998
 999        return ret;
1000}
1001
1002static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1003                                 struct kvm_device_attr *attr)
1004{
1005        int ret = -ENXIO;
1006
1007        switch (attr->group) {
1008        default:
1009                ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1010                break;
1011        }
1012
1013        return ret;
1014}
1015
1016static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1017                                 struct kvm_device_attr *attr)
1018{
1019        int ret = -ENXIO;
1020
1021        switch (attr->group) {
1022        default:
1023                ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1024                break;
1025        }
1026
1027        return ret;
1028}
1029
1030long kvm_arch_vcpu_ioctl(struct file *filp,
1031                         unsigned int ioctl, unsigned long arg)
1032{
1033        struct kvm_vcpu *vcpu = filp->private_data;
1034        void __user *argp = (void __user *)arg;
1035        struct kvm_device_attr attr;
1036        long r;
1037
1038        switch (ioctl) {
1039        case KVM_ARM_VCPU_INIT: {
1040                struct kvm_vcpu_init init;
1041
1042                r = -EFAULT;
1043                if (copy_from_user(&init, argp, sizeof(init)))
1044                        break;
1045
1046                r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1047                break;
1048        }
1049        case KVM_SET_ONE_REG:
1050        case KVM_GET_ONE_REG: {
1051                struct kvm_one_reg reg;
1052
1053                r = -ENOEXEC;
1054                if (unlikely(!kvm_vcpu_initialized(vcpu)))
1055                        break;
1056
1057                r = -EFAULT;
1058                if (copy_from_user(&reg, argp, sizeof(reg)))
1059                        break;
1060
1061                if (ioctl == KVM_SET_ONE_REG)
1062                        r = kvm_arm_set_reg(vcpu, &reg);
1063                else
1064                        r = kvm_arm_get_reg(vcpu, &reg);
1065                break;
1066        }
1067        case KVM_GET_REG_LIST: {
1068                struct kvm_reg_list __user *user_list = argp;
1069                struct kvm_reg_list reg_list;
1070                unsigned n;
1071
1072                r = -ENOEXEC;
1073                if (unlikely(!kvm_vcpu_initialized(vcpu)))
1074                        break;
1075
1076                r = -EFAULT;
1077                if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1078                        break;
1079                n = reg_list.n;
1080                reg_list.n = kvm_arm_num_regs(vcpu);
1081                if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1082                        break;
1083                r = -E2BIG;
1084                if (n < reg_list.n)
1085                        break;
1086                r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1087                break;
1088        }
1089        case KVM_SET_DEVICE_ATTR: {
1090                r = -EFAULT;
1091                if (copy_from_user(&attr, argp, sizeof(attr)))
1092                        break;
1093                r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1094                break;
1095        }
1096        case KVM_GET_DEVICE_ATTR: {
1097                r = -EFAULT;
1098                if (copy_from_user(&attr, argp, sizeof(attr)))
1099                        break;
1100                r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1101                break;
1102        }
1103        case KVM_HAS_DEVICE_ATTR: {
1104                r = -EFAULT;
1105                if (copy_from_user(&attr, argp, sizeof(attr)))
1106                        break;
1107                r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1108                break;
1109        }
1110        default:
1111                r = -EINVAL;
1112        }
1113
1114        return r;
1115}
1116
1117/**
1118 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1119 * @kvm: kvm instance
1120 * @log: slot id and address to which we copy the log
1121 *
1122 * Steps 1-4 below provide general overview of dirty page logging. See
1123 * kvm_get_dirty_log_protect() function description for additional details.
1124 *
1125 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1126 * always flush the TLB (step 4) even if previous step failed  and the dirty
1127 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1128 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1129 * writes will be marked dirty for next log read.
1130 *
1131 *   1. Take a snapshot of the bit and clear it if needed.
1132 *   2. Write protect the corresponding page.
1133 *   3. Copy the snapshot to the userspace.
1134 *   4. Flush TLB's if needed.
1135 */
1136int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1137{
1138        bool is_dirty = false;
1139        int r;
1140
1141        mutex_lock(&kvm->slots_lock);
1142
1143        r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1144
1145        if (is_dirty)
1146                kvm_flush_remote_tlbs(kvm);
1147
1148        mutex_unlock(&kvm->slots_lock);
1149        return r;
1150}
1151
1152static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1153                                        struct kvm_arm_device_addr *dev_addr)
1154{
1155        unsigned long dev_id, type;
1156
1157        dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1158                KVM_ARM_DEVICE_ID_SHIFT;
1159        type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1160                KVM_ARM_DEVICE_TYPE_SHIFT;
1161
1162        switch (dev_id) {
1163        case KVM_ARM_DEVICE_VGIC_V2:
1164                if (!vgic_present)
1165                        return -ENXIO;
1166                return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1167        default:
1168                return -ENODEV;
1169        }
1170}
1171
1172long kvm_arch_vm_ioctl(struct file *filp,
1173                       unsigned int ioctl, unsigned long arg)
1174{
1175        struct kvm *kvm = filp->private_data;
1176        void __user *argp = (void __user *)arg;
1177
1178        switch (ioctl) {
1179        case KVM_CREATE_IRQCHIP: {
1180                int ret;
1181                if (!vgic_present)
1182                        return -ENXIO;
1183                mutex_lock(&kvm->lock);
1184                ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1185                mutex_unlock(&kvm->lock);
1186                return ret;
1187        }
1188        case KVM_ARM_SET_DEVICE_ADDR: {
1189                struct kvm_arm_device_addr dev_addr;
1190
1191                if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1192                        return -EFAULT;
1193                return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1194        }
1195        case KVM_ARM_PREFERRED_TARGET: {
1196                int err;
1197                struct kvm_vcpu_init init;
1198
1199                err = kvm_vcpu_preferred_target(&init);
1200                if (err)
1201                        return err;
1202
1203                if (copy_to_user(argp, &init, sizeof(init)))
1204                        return -EFAULT;
1205
1206                return 0;
1207        }
1208        default:
1209                return -EINVAL;
1210        }
1211}
1212
1213static void cpu_init_hyp_mode(void *dummy)
1214{
1215        phys_addr_t pgd_ptr;
1216        unsigned long hyp_stack_ptr;
1217        unsigned long stack_page;
1218        unsigned long vector_ptr;
1219
1220        /* Switch from the HYP stub to our own HYP init vector */
1221        __hyp_set_vectors(kvm_get_idmap_vector());
1222
1223        pgd_ptr = kvm_mmu_get_httbr();
1224        stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1225        hyp_stack_ptr = stack_page + PAGE_SIZE;
1226        vector_ptr = (unsigned long)kvm_get_hyp_vector();
1227
1228        __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1229        __cpu_init_stage2();
1230
1231        kvm_arm_init_debug();
1232}
1233
1234static void cpu_hyp_reset(void)
1235{
1236        if (!is_kernel_in_hyp_mode())
1237                __hyp_reset_vectors();
1238}
1239
1240static void cpu_hyp_reinit(void)
1241{
1242        cpu_hyp_reset();
1243
1244        if (is_kernel_in_hyp_mode()) {
1245                /*
1246                 * __cpu_init_stage2() is safe to call even if the PM
1247                 * event was cancelled before the CPU was reset.
1248                 */
1249                __cpu_init_stage2();
1250                kvm_timer_init_vhe();
1251        } else {
1252                cpu_init_hyp_mode(NULL);
1253        }
1254
1255        if (vgic_present)
1256                kvm_vgic_init_cpu_hardware();
1257}
1258
1259static void _kvm_arch_hardware_enable(void *discard)
1260{
1261        if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1262                cpu_hyp_reinit();
1263                __this_cpu_write(kvm_arm_hardware_enabled, 1);
1264        }
1265}
1266
1267int kvm_arch_hardware_enable(void)
1268{
1269        _kvm_arch_hardware_enable(NULL);
1270        return 0;
1271}
1272
1273static void _kvm_arch_hardware_disable(void *discard)
1274{
1275        if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1276                cpu_hyp_reset();
1277                __this_cpu_write(kvm_arm_hardware_enabled, 0);
1278        }
1279}
1280
1281void kvm_arch_hardware_disable(void)
1282{
1283        _kvm_arch_hardware_disable(NULL);
1284}
1285
1286#ifdef CONFIG_CPU_PM
1287static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1288                                    unsigned long cmd,
1289                                    void *v)
1290{
1291        /*
1292         * kvm_arm_hardware_enabled is left with its old value over
1293         * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1294         * re-enable hyp.
1295         */
1296        switch (cmd) {
1297        case CPU_PM_ENTER:
1298                if (__this_cpu_read(kvm_arm_hardware_enabled))
1299                        /*
1300                         * don't update kvm_arm_hardware_enabled here
1301                         * so that the hardware will be re-enabled
1302                         * when we resume. See below.
1303                         */
1304                        cpu_hyp_reset();
1305
1306                return NOTIFY_OK;
1307        case CPU_PM_ENTER_FAILED:
1308        case CPU_PM_EXIT:
1309                if (__this_cpu_read(kvm_arm_hardware_enabled))
1310                        /* The hardware was enabled before suspend. */
1311                        cpu_hyp_reinit();
1312
1313                return NOTIFY_OK;
1314
1315        default:
1316                return NOTIFY_DONE;
1317        }
1318}
1319
1320static struct notifier_block hyp_init_cpu_pm_nb = {
1321        .notifier_call = hyp_init_cpu_pm_notifier,
1322};
1323
1324static void __init hyp_cpu_pm_init(void)
1325{
1326        cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1327}
1328static void __init hyp_cpu_pm_exit(void)
1329{
1330        cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1331}
1332#else
1333static inline void hyp_cpu_pm_init(void)
1334{
1335}
1336static inline void hyp_cpu_pm_exit(void)
1337{
1338}
1339#endif
1340
1341static int init_common_resources(void)
1342{
1343        /* set size of VMID supported by CPU */
1344        kvm_vmid_bits = kvm_get_vmid_bits();
1345        kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1346
1347        return 0;
1348}
1349
1350static int init_subsystems(void)
1351{
1352        int err = 0;
1353
1354        /*
1355         * Enable hardware so that subsystem initialisation can access EL2.
1356         */
1357        on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1358
1359        /*
1360         * Register CPU lower-power notifier
1361         */
1362        hyp_cpu_pm_init();
1363
1364        /*
1365         * Init HYP view of VGIC
1366         */
1367        err = kvm_vgic_hyp_init();
1368        switch (err) {
1369        case 0:
1370                vgic_present = true;
1371                break;
1372        case -ENODEV:
1373        case -ENXIO:
1374                vgic_present = false;
1375                err = 0;
1376                break;
1377        default:
1378                goto out;
1379        }
1380
1381        /*
1382         * Init HYP architected timer support
1383         */
1384        err = kvm_timer_hyp_init(vgic_present);
1385        if (err)
1386                goto out;
1387
1388        kvm_perf_init();
1389        kvm_coproc_table_init();
1390
1391out:
1392        on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1393
1394        return err;
1395}
1396
1397static void teardown_hyp_mode(void)
1398{
1399        int cpu;
1400
1401        free_hyp_pgds();
1402        for_each_possible_cpu(cpu)
1403                free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1404        hyp_cpu_pm_exit();
1405}
1406
1407/**
1408 * Inits Hyp-mode on all online CPUs
1409 */
1410static int init_hyp_mode(void)
1411{
1412        int cpu;
1413        int err = 0;
1414
1415        /*
1416         * Allocate Hyp PGD and setup Hyp identity mapping
1417         */
1418        err = kvm_mmu_init();
1419        if (err)
1420                goto out_err;
1421
1422        /*
1423         * Allocate stack pages for Hypervisor-mode
1424         */
1425        for_each_possible_cpu(cpu) {
1426                unsigned long stack_page;
1427
1428                stack_page = __get_free_page(GFP_KERNEL);
1429                if (!stack_page) {
1430                        err = -ENOMEM;
1431                        goto out_err;
1432                }
1433
1434                per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1435        }
1436
1437        /*
1438         * Map the Hyp-code called directly from the host
1439         */
1440        err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1441                                  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1442        if (err) {
1443                kvm_err("Cannot map world-switch code\n");
1444                goto out_err;
1445        }
1446
1447        err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1448                                  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1449        if (err) {
1450                kvm_err("Cannot map rodata section\n");
1451                goto out_err;
1452        }
1453
1454        err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1455                                  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1456        if (err) {
1457                kvm_err("Cannot map bss section\n");
1458                goto out_err;
1459        }
1460
1461        err = kvm_map_vectors();
1462        if (err) {
1463                kvm_err("Cannot map vectors\n");
1464                goto out_err;
1465        }
1466
1467        /*
1468         * Map the Hyp stack pages
1469         */
1470        for_each_possible_cpu(cpu) {
1471                char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1472                err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1473                                          PAGE_HYP);
1474
1475                if (err) {
1476                        kvm_err("Cannot map hyp stack\n");
1477                        goto out_err;
1478                }
1479        }
1480
1481        for_each_possible_cpu(cpu) {
1482                kvm_cpu_context_t *cpu_ctxt;
1483
1484                cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1485                err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1486
1487                if (err) {
1488                        kvm_err("Cannot map host CPU state: %d\n", err);
1489                        goto out_err;
1490                }
1491        }
1492
1493        return 0;
1494
1495out_err:
1496        teardown_hyp_mode();
1497        kvm_err("error initializing Hyp mode: %d\n", err);
1498        return err;
1499}
1500
1501static void check_kvm_target_cpu(void *ret)
1502{
1503        *(int *)ret = kvm_target_cpu();
1504}
1505
1506struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1507{
1508        struct kvm_vcpu *vcpu;
1509        int i;
1510
1511        mpidr &= MPIDR_HWID_BITMASK;
1512        kvm_for_each_vcpu(i, vcpu, kvm) {
1513                if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1514                        return vcpu;
1515        }
1516        return NULL;
1517}
1518
1519bool kvm_arch_has_irq_bypass(void)
1520{
1521        return true;
1522}
1523
1524int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1525                                      struct irq_bypass_producer *prod)
1526{
1527        struct kvm_kernel_irqfd *irqfd =
1528                container_of(cons, struct kvm_kernel_irqfd, consumer);
1529
1530        return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1531                                          &irqfd->irq_entry);
1532}
1533void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1534                                      struct irq_bypass_producer *prod)
1535{
1536        struct kvm_kernel_irqfd *irqfd =
1537                container_of(cons, struct kvm_kernel_irqfd, consumer);
1538
1539        kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1540                                     &irqfd->irq_entry);
1541}
1542
1543void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1544{
1545        struct kvm_kernel_irqfd *irqfd =
1546                container_of(cons, struct kvm_kernel_irqfd, consumer);
1547
1548        kvm_arm_halt_guest(irqfd->kvm);
1549}
1550
1551void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1552{
1553        struct kvm_kernel_irqfd *irqfd =
1554                container_of(cons, struct kvm_kernel_irqfd, consumer);
1555
1556        kvm_arm_resume_guest(irqfd->kvm);
1557}
1558
1559/**
1560 * Initialize Hyp-mode and memory mappings on all CPUs.
1561 */
1562int kvm_arch_init(void *opaque)
1563{
1564        int err;
1565        int ret, cpu;
1566        bool in_hyp_mode;
1567
1568        if (!is_hyp_mode_available()) {
1569                kvm_info("HYP mode not available\n");
1570                return -ENODEV;
1571        }
1572
1573        for_each_online_cpu(cpu) {
1574                smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1575                if (ret < 0) {
1576                        kvm_err("Error, CPU %d not supported!\n", cpu);
1577                        return -ENODEV;
1578                }
1579        }
1580
1581        err = init_common_resources();
1582        if (err)
1583                return err;
1584
1585        in_hyp_mode = is_kernel_in_hyp_mode();
1586
1587        if (!in_hyp_mode) {
1588                err = init_hyp_mode();
1589                if (err)
1590                        goto out_err;
1591        }
1592
1593        err = init_subsystems();
1594        if (err)
1595                goto out_hyp;
1596
1597        if (in_hyp_mode)
1598                kvm_info("VHE mode initialized successfully\n");
1599        else
1600                kvm_info("Hyp mode initialized successfully\n");
1601
1602        return 0;
1603
1604out_hyp:
1605        if (!in_hyp_mode)
1606                teardown_hyp_mode();
1607out_err:
1608        return err;
1609}
1610
1611/* NOP: Compiling as a module not supported */
1612void kvm_arch_exit(void)
1613{
1614        kvm_perf_teardown();
1615}
1616
1617static int arm_init(void)
1618{
1619        int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1620        return rc;
1621}
1622
1623module_init(arm_init);
1624