linux/virt/kvm/arm/mmu.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License, version 2, as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  17 */
  18
  19#include <linux/mman.h>
  20#include <linux/kvm_host.h>
  21#include <linux/io.h>
  22#include <linux/hugetlb.h>
  23#include <linux/sched/signal.h>
  24#include <trace/events/kvm.h>
  25#include <asm/pgalloc.h>
  26#include <asm/cacheflush.h>
  27#include <asm/kvm_arm.h>
  28#include <asm/kvm_mmu.h>
  29#include <asm/kvm_mmio.h>
  30#include <asm/kvm_asm.h>
  31#include <asm/kvm_emulate.h>
  32#include <asm/virt.h>
  33#include <asm/system_misc.h>
  34
  35#include "trace.h"
  36
  37static pgd_t *boot_hyp_pgd;
  38static pgd_t *hyp_pgd;
  39static pgd_t *merged_hyp_pgd;
  40static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
  41
  42static unsigned long hyp_idmap_start;
  43static unsigned long hyp_idmap_end;
  44static phys_addr_t hyp_idmap_vector;
  45
  46static unsigned long io_map_base;
  47
  48#define S2_PGD_SIZE     (PTRS_PER_S2_PGD * sizeof(pgd_t))
  49#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
  50
  51#define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
  52#define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
  53
  54static bool memslot_is_logging(struct kvm_memory_slot *memslot)
  55{
  56        return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
  57}
  58
  59/**
  60 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
  61 * @kvm:        pointer to kvm structure.
  62 *
  63 * Interface to HYP function to flush all VM TLB entries
  64 */
  65void kvm_flush_remote_tlbs(struct kvm *kvm)
  66{
  67        kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
  68}
  69
  70static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
  71{
  72        kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
  73}
  74
  75/*
  76 * D-Cache management functions. They take the page table entries by
  77 * value, as they are flushing the cache using the kernel mapping (or
  78 * kmap on 32bit).
  79 */
  80static void kvm_flush_dcache_pte(pte_t pte)
  81{
  82        __kvm_flush_dcache_pte(pte);
  83}
  84
  85static void kvm_flush_dcache_pmd(pmd_t pmd)
  86{
  87        __kvm_flush_dcache_pmd(pmd);
  88}
  89
  90static void kvm_flush_dcache_pud(pud_t pud)
  91{
  92        __kvm_flush_dcache_pud(pud);
  93}
  94
  95static bool kvm_is_device_pfn(unsigned long pfn)
  96{
  97        return !pfn_valid(pfn);
  98}
  99
 100/**
 101 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 102 * @kvm:        pointer to kvm structure.
 103 * @addr:       IPA
 104 * @pmd:        pmd pointer for IPA
 105 *
 106 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
 107 * pages in the range dirty.
 108 */
 109static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
 110{
 111        if (!pmd_thp_or_huge(*pmd))
 112                return;
 113
 114        pmd_clear(pmd);
 115        kvm_tlb_flush_vmid_ipa(kvm, addr);
 116        put_page(virt_to_page(pmd));
 117}
 118
 119static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
 120                                  int min, int max)
 121{
 122        void *page;
 123
 124        BUG_ON(max > KVM_NR_MEM_OBJS);
 125        if (cache->nobjs >= min)
 126                return 0;
 127        while (cache->nobjs < max) {
 128                page = (void *)__get_free_page(PGALLOC_GFP);
 129                if (!page)
 130                        return -ENOMEM;
 131                cache->objects[cache->nobjs++] = page;
 132        }
 133        return 0;
 134}
 135
 136static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
 137{
 138        while (mc->nobjs)
 139                free_page((unsigned long)mc->objects[--mc->nobjs]);
 140}
 141
 142static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
 143{
 144        void *p;
 145
 146        BUG_ON(!mc || !mc->nobjs);
 147        p = mc->objects[--mc->nobjs];
 148        return p;
 149}
 150
 151static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
 152{
 153        pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
 154        stage2_pgd_clear(pgd);
 155        kvm_tlb_flush_vmid_ipa(kvm, addr);
 156        stage2_pud_free(pud_table);
 157        put_page(virt_to_page(pgd));
 158}
 159
 160static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
 161{
 162        pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
 163        VM_BUG_ON(stage2_pud_huge(*pud));
 164        stage2_pud_clear(pud);
 165        kvm_tlb_flush_vmid_ipa(kvm, addr);
 166        stage2_pmd_free(pmd_table);
 167        put_page(virt_to_page(pud));
 168}
 169
 170static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
 171{
 172        pte_t *pte_table = pte_offset_kernel(pmd, 0);
 173        VM_BUG_ON(pmd_thp_or_huge(*pmd));
 174        pmd_clear(pmd);
 175        kvm_tlb_flush_vmid_ipa(kvm, addr);
 176        pte_free_kernel(NULL, pte_table);
 177        put_page(virt_to_page(pmd));
 178}
 179
 180/*
 181 * Unmapping vs dcache management:
 182 *
 183 * If a guest maps certain memory pages as uncached, all writes will
 184 * bypass the data cache and go directly to RAM.  However, the CPUs
 185 * can still speculate reads (not writes) and fill cache lines with
 186 * data.
 187 *
 188 * Those cache lines will be *clean* cache lines though, so a
 189 * clean+invalidate operation is equivalent to an invalidate
 190 * operation, because no cache lines are marked dirty.
 191 *
 192 * Those clean cache lines could be filled prior to an uncached write
 193 * by the guest, and the cache coherent IO subsystem would therefore
 194 * end up writing old data to disk.
 195 *
 196 * This is why right after unmapping a page/section and invalidating
 197 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 198 * the IO subsystem will never hit in the cache.
 199 */
 200static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
 201                       phys_addr_t addr, phys_addr_t end)
 202{
 203        phys_addr_t start_addr = addr;
 204        pte_t *pte, *start_pte;
 205
 206        start_pte = pte = pte_offset_kernel(pmd, addr);
 207        do {
 208                if (!pte_none(*pte)) {
 209                        pte_t old_pte = *pte;
 210
 211                        kvm_set_pte(pte, __pte(0));
 212                        kvm_tlb_flush_vmid_ipa(kvm, addr);
 213
 214                        /* No need to invalidate the cache for device mappings */
 215                        if (!kvm_is_device_pfn(pte_pfn(old_pte)))
 216                                kvm_flush_dcache_pte(old_pte);
 217
 218                        put_page(virt_to_page(pte));
 219                }
 220        } while (pte++, addr += PAGE_SIZE, addr != end);
 221
 222        if (stage2_pte_table_empty(start_pte))
 223                clear_stage2_pmd_entry(kvm, pmd, start_addr);
 224}
 225
 226static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
 227                       phys_addr_t addr, phys_addr_t end)
 228{
 229        phys_addr_t next, start_addr = addr;
 230        pmd_t *pmd, *start_pmd;
 231
 232        start_pmd = pmd = stage2_pmd_offset(pud, addr);
 233        do {
 234                next = stage2_pmd_addr_end(addr, end);
 235                if (!pmd_none(*pmd)) {
 236                        if (pmd_thp_or_huge(*pmd)) {
 237                                pmd_t old_pmd = *pmd;
 238
 239                                pmd_clear(pmd);
 240                                kvm_tlb_flush_vmid_ipa(kvm, addr);
 241
 242                                kvm_flush_dcache_pmd(old_pmd);
 243
 244                                put_page(virt_to_page(pmd));
 245                        } else {
 246                                unmap_stage2_ptes(kvm, pmd, addr, next);
 247                        }
 248                }
 249        } while (pmd++, addr = next, addr != end);
 250
 251        if (stage2_pmd_table_empty(start_pmd))
 252                clear_stage2_pud_entry(kvm, pud, start_addr);
 253}
 254
 255static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
 256                       phys_addr_t addr, phys_addr_t end)
 257{
 258        phys_addr_t next, start_addr = addr;
 259        pud_t *pud, *start_pud;
 260
 261        start_pud = pud = stage2_pud_offset(pgd, addr);
 262        do {
 263                next = stage2_pud_addr_end(addr, end);
 264                if (!stage2_pud_none(*pud)) {
 265                        if (stage2_pud_huge(*pud)) {
 266                                pud_t old_pud = *pud;
 267
 268                                stage2_pud_clear(pud);
 269                                kvm_tlb_flush_vmid_ipa(kvm, addr);
 270                                kvm_flush_dcache_pud(old_pud);
 271                                put_page(virt_to_page(pud));
 272                        } else {
 273                                unmap_stage2_pmds(kvm, pud, addr, next);
 274                        }
 275                }
 276        } while (pud++, addr = next, addr != end);
 277
 278        if (stage2_pud_table_empty(start_pud))
 279                clear_stage2_pgd_entry(kvm, pgd, start_addr);
 280}
 281
 282/**
 283 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 284 * @kvm:   The VM pointer
 285 * @start: The intermediate physical base address of the range to unmap
 286 * @size:  The size of the area to unmap
 287 *
 288 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 289 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 290 * destroying the VM), otherwise another faulting VCPU may come in and mess
 291 * with things behind our backs.
 292 */
 293static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
 294{
 295        pgd_t *pgd;
 296        phys_addr_t addr = start, end = start + size;
 297        phys_addr_t next;
 298
 299        assert_spin_locked(&kvm->mmu_lock);
 300        pgd = kvm->arch.pgd + stage2_pgd_index(addr);
 301        do {
 302                /*
 303                 * Make sure the page table is still active, as another thread
 304                 * could have possibly freed the page table, while we released
 305                 * the lock.
 306                 */
 307                if (!READ_ONCE(kvm->arch.pgd))
 308                        break;
 309                next = stage2_pgd_addr_end(addr, end);
 310                if (!stage2_pgd_none(*pgd))
 311                        unmap_stage2_puds(kvm, pgd, addr, next);
 312                /*
 313                 * If the range is too large, release the kvm->mmu_lock
 314                 * to prevent starvation and lockup detector warnings.
 315                 */
 316                if (next != end)
 317                        cond_resched_lock(&kvm->mmu_lock);
 318        } while (pgd++, addr = next, addr != end);
 319}
 320
 321static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
 322                              phys_addr_t addr, phys_addr_t end)
 323{
 324        pte_t *pte;
 325
 326        pte = pte_offset_kernel(pmd, addr);
 327        do {
 328                if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
 329                        kvm_flush_dcache_pte(*pte);
 330        } while (pte++, addr += PAGE_SIZE, addr != end);
 331}
 332
 333static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
 334                              phys_addr_t addr, phys_addr_t end)
 335{
 336        pmd_t *pmd;
 337        phys_addr_t next;
 338
 339        pmd = stage2_pmd_offset(pud, addr);
 340        do {
 341                next = stage2_pmd_addr_end(addr, end);
 342                if (!pmd_none(*pmd)) {
 343                        if (pmd_thp_or_huge(*pmd))
 344                                kvm_flush_dcache_pmd(*pmd);
 345                        else
 346                                stage2_flush_ptes(kvm, pmd, addr, next);
 347                }
 348        } while (pmd++, addr = next, addr != end);
 349}
 350
 351static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
 352                              phys_addr_t addr, phys_addr_t end)
 353{
 354        pud_t *pud;
 355        phys_addr_t next;
 356
 357        pud = stage2_pud_offset(pgd, addr);
 358        do {
 359                next = stage2_pud_addr_end(addr, end);
 360                if (!stage2_pud_none(*pud)) {
 361                        if (stage2_pud_huge(*pud))
 362                                kvm_flush_dcache_pud(*pud);
 363                        else
 364                                stage2_flush_pmds(kvm, pud, addr, next);
 365                }
 366        } while (pud++, addr = next, addr != end);
 367}
 368
 369static void stage2_flush_memslot(struct kvm *kvm,
 370                                 struct kvm_memory_slot *memslot)
 371{
 372        phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
 373        phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
 374        phys_addr_t next;
 375        pgd_t *pgd;
 376
 377        pgd = kvm->arch.pgd + stage2_pgd_index(addr);
 378        do {
 379                next = stage2_pgd_addr_end(addr, end);
 380                stage2_flush_puds(kvm, pgd, addr, next);
 381        } while (pgd++, addr = next, addr != end);
 382}
 383
 384/**
 385 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 386 * @kvm: The struct kvm pointer
 387 *
 388 * Go through the stage 2 page tables and invalidate any cache lines
 389 * backing memory already mapped to the VM.
 390 */
 391static void stage2_flush_vm(struct kvm *kvm)
 392{
 393        struct kvm_memslots *slots;
 394        struct kvm_memory_slot *memslot;
 395        int idx;
 396
 397        idx = srcu_read_lock(&kvm->srcu);
 398        spin_lock(&kvm->mmu_lock);
 399
 400        slots = kvm_memslots(kvm);
 401        kvm_for_each_memslot(memslot, slots)
 402                stage2_flush_memslot(kvm, memslot);
 403
 404        spin_unlock(&kvm->mmu_lock);
 405        srcu_read_unlock(&kvm->srcu, idx);
 406}
 407
 408static void clear_hyp_pgd_entry(pgd_t *pgd)
 409{
 410        pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
 411        pgd_clear(pgd);
 412        pud_free(NULL, pud_table);
 413        put_page(virt_to_page(pgd));
 414}
 415
 416static void clear_hyp_pud_entry(pud_t *pud)
 417{
 418        pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
 419        VM_BUG_ON(pud_huge(*pud));
 420        pud_clear(pud);
 421        pmd_free(NULL, pmd_table);
 422        put_page(virt_to_page(pud));
 423}
 424
 425static void clear_hyp_pmd_entry(pmd_t *pmd)
 426{
 427        pte_t *pte_table = pte_offset_kernel(pmd, 0);
 428        VM_BUG_ON(pmd_thp_or_huge(*pmd));
 429        pmd_clear(pmd);
 430        pte_free_kernel(NULL, pte_table);
 431        put_page(virt_to_page(pmd));
 432}
 433
 434static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
 435{
 436        pte_t *pte, *start_pte;
 437
 438        start_pte = pte = pte_offset_kernel(pmd, addr);
 439        do {
 440                if (!pte_none(*pte)) {
 441                        kvm_set_pte(pte, __pte(0));
 442                        put_page(virt_to_page(pte));
 443                }
 444        } while (pte++, addr += PAGE_SIZE, addr != end);
 445
 446        if (hyp_pte_table_empty(start_pte))
 447                clear_hyp_pmd_entry(pmd);
 448}
 449
 450static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
 451{
 452        phys_addr_t next;
 453        pmd_t *pmd, *start_pmd;
 454
 455        start_pmd = pmd = pmd_offset(pud, addr);
 456        do {
 457                next = pmd_addr_end(addr, end);
 458                /* Hyp doesn't use huge pmds */
 459                if (!pmd_none(*pmd))
 460                        unmap_hyp_ptes(pmd, addr, next);
 461        } while (pmd++, addr = next, addr != end);
 462
 463        if (hyp_pmd_table_empty(start_pmd))
 464                clear_hyp_pud_entry(pud);
 465}
 466
 467static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
 468{
 469        phys_addr_t next;
 470        pud_t *pud, *start_pud;
 471
 472        start_pud = pud = pud_offset(pgd, addr);
 473        do {
 474                next = pud_addr_end(addr, end);
 475                /* Hyp doesn't use huge puds */
 476                if (!pud_none(*pud))
 477                        unmap_hyp_pmds(pud, addr, next);
 478        } while (pud++, addr = next, addr != end);
 479
 480        if (hyp_pud_table_empty(start_pud))
 481                clear_hyp_pgd_entry(pgd);
 482}
 483
 484static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
 485{
 486        return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
 487}
 488
 489static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
 490                              phys_addr_t start, u64 size)
 491{
 492        pgd_t *pgd;
 493        phys_addr_t addr = start, end = start + size;
 494        phys_addr_t next;
 495
 496        /*
 497         * We don't unmap anything from HYP, except at the hyp tear down.
 498         * Hence, we don't have to invalidate the TLBs here.
 499         */
 500        pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
 501        do {
 502                next = pgd_addr_end(addr, end);
 503                if (!pgd_none(*pgd))
 504                        unmap_hyp_puds(pgd, addr, next);
 505        } while (pgd++, addr = next, addr != end);
 506}
 507
 508static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
 509{
 510        __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
 511}
 512
 513static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
 514{
 515        __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
 516}
 517
 518/**
 519 * free_hyp_pgds - free Hyp-mode page tables
 520 *
 521 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 522 * therefore contains either mappings in the kernel memory area (above
 523 * PAGE_OFFSET), or device mappings in the idmap range.
 524 *
 525 * boot_hyp_pgd should only map the idmap range, and is only used in
 526 * the extended idmap case.
 527 */
 528void free_hyp_pgds(void)
 529{
 530        pgd_t *id_pgd;
 531
 532        mutex_lock(&kvm_hyp_pgd_mutex);
 533
 534        id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
 535
 536        if (id_pgd) {
 537                /* In case we never called hyp_mmu_init() */
 538                if (!io_map_base)
 539                        io_map_base = hyp_idmap_start;
 540                unmap_hyp_idmap_range(id_pgd, io_map_base,
 541                                      hyp_idmap_start + PAGE_SIZE - io_map_base);
 542        }
 543
 544        if (boot_hyp_pgd) {
 545                free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
 546                boot_hyp_pgd = NULL;
 547        }
 548
 549        if (hyp_pgd) {
 550                unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
 551                                (uintptr_t)high_memory - PAGE_OFFSET);
 552
 553                free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
 554                hyp_pgd = NULL;
 555        }
 556        if (merged_hyp_pgd) {
 557                clear_page(merged_hyp_pgd);
 558                free_page((unsigned long)merged_hyp_pgd);
 559                merged_hyp_pgd = NULL;
 560        }
 561
 562        mutex_unlock(&kvm_hyp_pgd_mutex);
 563}
 564
 565static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
 566                                    unsigned long end, unsigned long pfn,
 567                                    pgprot_t prot)
 568{
 569        pte_t *pte;
 570        unsigned long addr;
 571
 572        addr = start;
 573        do {
 574                pte = pte_offset_kernel(pmd, addr);
 575                kvm_set_pte(pte, pfn_pte(pfn, prot));
 576                get_page(virt_to_page(pte));
 577                kvm_flush_dcache_to_poc(pte, sizeof(*pte));
 578                pfn++;
 579        } while (addr += PAGE_SIZE, addr != end);
 580}
 581
 582static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
 583                                   unsigned long end, unsigned long pfn,
 584                                   pgprot_t prot)
 585{
 586        pmd_t *pmd;
 587        pte_t *pte;
 588        unsigned long addr, next;
 589
 590        addr = start;
 591        do {
 592                pmd = pmd_offset(pud, addr);
 593
 594                BUG_ON(pmd_sect(*pmd));
 595
 596                if (pmd_none(*pmd)) {
 597                        pte = pte_alloc_one_kernel(NULL, addr);
 598                        if (!pte) {
 599                                kvm_err("Cannot allocate Hyp pte\n");
 600                                return -ENOMEM;
 601                        }
 602                        pmd_populate_kernel(NULL, pmd, pte);
 603                        get_page(virt_to_page(pmd));
 604                        kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
 605                }
 606
 607                next = pmd_addr_end(addr, end);
 608
 609                create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
 610                pfn += (next - addr) >> PAGE_SHIFT;
 611        } while (addr = next, addr != end);
 612
 613        return 0;
 614}
 615
 616static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
 617                                   unsigned long end, unsigned long pfn,
 618                                   pgprot_t prot)
 619{
 620        pud_t *pud;
 621        pmd_t *pmd;
 622        unsigned long addr, next;
 623        int ret;
 624
 625        addr = start;
 626        do {
 627                pud = pud_offset(pgd, addr);
 628
 629                if (pud_none_or_clear_bad(pud)) {
 630                        pmd = pmd_alloc_one(NULL, addr);
 631                        if (!pmd) {
 632                                kvm_err("Cannot allocate Hyp pmd\n");
 633                                return -ENOMEM;
 634                        }
 635                        pud_populate(NULL, pud, pmd);
 636                        get_page(virt_to_page(pud));
 637                        kvm_flush_dcache_to_poc(pud, sizeof(*pud));
 638                }
 639
 640                next = pud_addr_end(addr, end);
 641                ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
 642                if (ret)
 643                        return ret;
 644                pfn += (next - addr) >> PAGE_SHIFT;
 645        } while (addr = next, addr != end);
 646
 647        return 0;
 648}
 649
 650static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
 651                                 unsigned long start, unsigned long end,
 652                                 unsigned long pfn, pgprot_t prot)
 653{
 654        pgd_t *pgd;
 655        pud_t *pud;
 656        unsigned long addr, next;
 657        int err = 0;
 658
 659        mutex_lock(&kvm_hyp_pgd_mutex);
 660        addr = start & PAGE_MASK;
 661        end = PAGE_ALIGN(end);
 662        do {
 663                pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
 664
 665                if (pgd_none(*pgd)) {
 666                        pud = pud_alloc_one(NULL, addr);
 667                        if (!pud) {
 668                                kvm_err("Cannot allocate Hyp pud\n");
 669                                err = -ENOMEM;
 670                                goto out;
 671                        }
 672                        pgd_populate(NULL, pgd, pud);
 673                        get_page(virt_to_page(pgd));
 674                        kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
 675                }
 676
 677                next = pgd_addr_end(addr, end);
 678                err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
 679                if (err)
 680                        goto out;
 681                pfn += (next - addr) >> PAGE_SHIFT;
 682        } while (addr = next, addr != end);
 683out:
 684        mutex_unlock(&kvm_hyp_pgd_mutex);
 685        return err;
 686}
 687
 688static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
 689{
 690        if (!is_vmalloc_addr(kaddr)) {
 691                BUG_ON(!virt_addr_valid(kaddr));
 692                return __pa(kaddr);
 693        } else {
 694                return page_to_phys(vmalloc_to_page(kaddr)) +
 695                       offset_in_page(kaddr);
 696        }
 697}
 698
 699/**
 700 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
 701 * @from:       The virtual kernel start address of the range
 702 * @to:         The virtual kernel end address of the range (exclusive)
 703 * @prot:       The protection to be applied to this range
 704 *
 705 * The same virtual address as the kernel virtual address is also used
 706 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 707 * physical pages.
 708 */
 709int create_hyp_mappings(void *from, void *to, pgprot_t prot)
 710{
 711        phys_addr_t phys_addr;
 712        unsigned long virt_addr;
 713        unsigned long start = kern_hyp_va((unsigned long)from);
 714        unsigned long end = kern_hyp_va((unsigned long)to);
 715
 716        if (is_kernel_in_hyp_mode())
 717                return 0;
 718
 719        start = start & PAGE_MASK;
 720        end = PAGE_ALIGN(end);
 721
 722        for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
 723                int err;
 724
 725                phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
 726                err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
 727                                            virt_addr, virt_addr + PAGE_SIZE,
 728                                            __phys_to_pfn(phys_addr),
 729                                            prot);
 730                if (err)
 731                        return err;
 732        }
 733
 734        return 0;
 735}
 736
 737static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
 738                                        unsigned long *haddr, pgprot_t prot)
 739{
 740        pgd_t *pgd = hyp_pgd;
 741        unsigned long base;
 742        int ret = 0;
 743
 744        mutex_lock(&kvm_hyp_pgd_mutex);
 745
 746        /*
 747         * This assumes that we we have enough space below the idmap
 748         * page to allocate our VAs. If not, the check below will
 749         * kick. A potential alternative would be to detect that
 750         * overflow and switch to an allocation above the idmap.
 751         *
 752         * The allocated size is always a multiple of PAGE_SIZE.
 753         */
 754        size = PAGE_ALIGN(size + offset_in_page(phys_addr));
 755        base = io_map_base - size;
 756
 757        /*
 758         * Verify that BIT(VA_BITS - 1) hasn't been flipped by
 759         * allocating the new area, as it would indicate we've
 760         * overflowed the idmap/IO address range.
 761         */
 762        if ((base ^ io_map_base) & BIT(VA_BITS - 1))
 763                ret = -ENOMEM;
 764        else
 765                io_map_base = base;
 766
 767        mutex_unlock(&kvm_hyp_pgd_mutex);
 768
 769        if (ret)
 770                goto out;
 771
 772        if (__kvm_cpu_uses_extended_idmap())
 773                pgd = boot_hyp_pgd;
 774
 775        ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
 776                                    base, base + size,
 777                                    __phys_to_pfn(phys_addr), prot);
 778        if (ret)
 779                goto out;
 780
 781        *haddr = base + offset_in_page(phys_addr);
 782
 783out:
 784        return ret;
 785}
 786
 787/**
 788 * create_hyp_io_mappings - Map IO into both kernel and HYP
 789 * @phys_addr:  The physical start address which gets mapped
 790 * @size:       Size of the region being mapped
 791 * @kaddr:      Kernel VA for this mapping
 792 * @haddr:      HYP VA for this mapping
 793 */
 794int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
 795                           void __iomem **kaddr,
 796                           void __iomem **haddr)
 797{
 798        unsigned long addr;
 799        int ret;
 800
 801        *kaddr = ioremap(phys_addr, size);
 802        if (!*kaddr)
 803                return -ENOMEM;
 804
 805        if (is_kernel_in_hyp_mode()) {
 806                *haddr = *kaddr;
 807                return 0;
 808        }
 809
 810        ret = __create_hyp_private_mapping(phys_addr, size,
 811                                           &addr, PAGE_HYP_DEVICE);
 812        if (ret) {
 813                iounmap(*kaddr);
 814                *kaddr = NULL;
 815                *haddr = NULL;
 816                return ret;
 817        }
 818
 819        *haddr = (void __iomem *)addr;
 820        return 0;
 821}
 822
 823/**
 824 * create_hyp_exec_mappings - Map an executable range into HYP
 825 * @phys_addr:  The physical start address which gets mapped
 826 * @size:       Size of the region being mapped
 827 * @haddr:      HYP VA for this mapping
 828 */
 829int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
 830                             void **haddr)
 831{
 832        unsigned long addr;
 833        int ret;
 834
 835        BUG_ON(is_kernel_in_hyp_mode());
 836
 837        ret = __create_hyp_private_mapping(phys_addr, size,
 838                                           &addr, PAGE_HYP_EXEC);
 839        if (ret) {
 840                *haddr = NULL;
 841                return ret;
 842        }
 843
 844        *haddr = (void *)addr;
 845        return 0;
 846}
 847
 848/**
 849 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 850 * @kvm:        The KVM struct pointer for the VM.
 851 *
 852 * Allocates only the stage-2 HW PGD level table(s) (can support either full
 853 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
 854 * allocated pages.
 855 *
 856 * Note we don't need locking here as this is only called when the VM is
 857 * created, which can only be done once.
 858 */
 859int kvm_alloc_stage2_pgd(struct kvm *kvm)
 860{
 861        pgd_t *pgd;
 862
 863        if (kvm->arch.pgd != NULL) {
 864                kvm_err("kvm_arch already initialized?\n");
 865                return -EINVAL;
 866        }
 867
 868        /* Allocate the HW PGD, making sure that each page gets its own refcount */
 869        pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
 870        if (!pgd)
 871                return -ENOMEM;
 872
 873        kvm->arch.pgd = pgd;
 874        return 0;
 875}
 876
 877static void stage2_unmap_memslot(struct kvm *kvm,
 878                                 struct kvm_memory_slot *memslot)
 879{
 880        hva_t hva = memslot->userspace_addr;
 881        phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
 882        phys_addr_t size = PAGE_SIZE * memslot->npages;
 883        hva_t reg_end = hva + size;
 884
 885        /*
 886         * A memory region could potentially cover multiple VMAs, and any holes
 887         * between them, so iterate over all of them to find out if we should
 888         * unmap any of them.
 889         *
 890         *     +--------------------------------------------+
 891         * +---------------+----------------+   +----------------+
 892         * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
 893         * +---------------+----------------+   +----------------+
 894         *     |               memory region                |
 895         *     +--------------------------------------------+
 896         */
 897        do {
 898                struct vm_area_struct *vma = find_vma(current->mm, hva);
 899                hva_t vm_start, vm_end;
 900
 901                if (!vma || vma->vm_start >= reg_end)
 902                        break;
 903
 904                /*
 905                 * Take the intersection of this VMA with the memory region
 906                 */
 907                vm_start = max(hva, vma->vm_start);
 908                vm_end = min(reg_end, vma->vm_end);
 909
 910                if (!(vma->vm_flags & VM_PFNMAP)) {
 911                        gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
 912                        unmap_stage2_range(kvm, gpa, vm_end - vm_start);
 913                }
 914                hva = vm_end;
 915        } while (hva < reg_end);
 916}
 917
 918/**
 919 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 920 * @kvm: The struct kvm pointer
 921 *
 922 * Go through the memregions and unmap any reguler RAM
 923 * backing memory already mapped to the VM.
 924 */
 925void stage2_unmap_vm(struct kvm *kvm)
 926{
 927        struct kvm_memslots *slots;
 928        struct kvm_memory_slot *memslot;
 929        int idx;
 930
 931        idx = srcu_read_lock(&kvm->srcu);
 932        down_read(&current->mm->mmap_sem);
 933        spin_lock(&kvm->mmu_lock);
 934
 935        slots = kvm_memslots(kvm);
 936        kvm_for_each_memslot(memslot, slots)
 937                stage2_unmap_memslot(kvm, memslot);
 938
 939        spin_unlock(&kvm->mmu_lock);
 940        up_read(&current->mm->mmap_sem);
 941        srcu_read_unlock(&kvm->srcu, idx);
 942}
 943
 944/**
 945 * kvm_free_stage2_pgd - free all stage-2 tables
 946 * @kvm:        The KVM struct pointer for the VM.
 947 *
 948 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 949 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 950 * and setting the struct pointer to NULL.
 951 */
 952void kvm_free_stage2_pgd(struct kvm *kvm)
 953{
 954        void *pgd = NULL;
 955
 956        spin_lock(&kvm->mmu_lock);
 957        if (kvm->arch.pgd) {
 958                unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
 959                pgd = READ_ONCE(kvm->arch.pgd);
 960                kvm->arch.pgd = NULL;
 961        }
 962        spin_unlock(&kvm->mmu_lock);
 963
 964        /* Free the HW pgd, one page at a time */
 965        if (pgd)
 966                free_pages_exact(pgd, S2_PGD_SIZE);
 967}
 968
 969static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
 970                             phys_addr_t addr)
 971{
 972        pgd_t *pgd;
 973        pud_t *pud;
 974
 975        pgd = kvm->arch.pgd + stage2_pgd_index(addr);
 976        if (WARN_ON(stage2_pgd_none(*pgd))) {
 977                if (!cache)
 978                        return NULL;
 979                pud = mmu_memory_cache_alloc(cache);
 980                stage2_pgd_populate(pgd, pud);
 981                get_page(virt_to_page(pgd));
 982        }
 983
 984        return stage2_pud_offset(pgd, addr);
 985}
 986
 987static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
 988                             phys_addr_t addr)
 989{
 990        pud_t *pud;
 991        pmd_t *pmd;
 992
 993        pud = stage2_get_pud(kvm, cache, addr);
 994        if (!pud)
 995                return NULL;
 996
 997        if (stage2_pud_none(*pud)) {
 998                if (!cache)
 999                        return NULL;
1000                pmd = mmu_memory_cache_alloc(cache);
1001                stage2_pud_populate(pud, pmd);
1002                get_page(virt_to_page(pud));
1003        }
1004
1005        return stage2_pmd_offset(pud, addr);
1006}
1007
1008static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
1009                               *cache, phys_addr_t addr, const pmd_t *new_pmd)
1010{
1011        pmd_t *pmd, old_pmd;
1012
1013        pmd = stage2_get_pmd(kvm, cache, addr);
1014        VM_BUG_ON(!pmd);
1015
1016        /*
1017         * Mapping in huge pages should only happen through a fault.  If a
1018         * page is merged into a transparent huge page, the individual
1019         * subpages of that huge page should be unmapped through MMU
1020         * notifiers before we get here.
1021         *
1022         * Merging of CompoundPages is not supported; they should become
1023         * splitting first, unmapped, merged, and mapped back in on-demand.
1024         */
1025        VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
1026
1027        old_pmd = *pmd;
1028        if (pmd_present(old_pmd)) {
1029                pmd_clear(pmd);
1030                kvm_tlb_flush_vmid_ipa(kvm, addr);
1031        } else {
1032                get_page(virt_to_page(pmd));
1033        }
1034
1035        kvm_set_pmd(pmd, *new_pmd);
1036        return 0;
1037}
1038
1039static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
1040{
1041        pmd_t *pmdp;
1042        pte_t *ptep;
1043
1044        pmdp = stage2_get_pmd(kvm, NULL, addr);
1045        if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
1046                return false;
1047
1048        if (pmd_thp_or_huge(*pmdp))
1049                return kvm_s2pmd_exec(pmdp);
1050
1051        ptep = pte_offset_kernel(pmdp, addr);
1052        if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1053                return false;
1054
1055        return kvm_s2pte_exec(ptep);
1056}
1057
1058static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1059                          phys_addr_t addr, const pte_t *new_pte,
1060                          unsigned long flags)
1061{
1062        pmd_t *pmd;
1063        pte_t *pte, old_pte;
1064        bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1065        bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1066
1067        VM_BUG_ON(logging_active && !cache);
1068
1069        /* Create stage-2 page table mapping - Levels 0 and 1 */
1070        pmd = stage2_get_pmd(kvm, cache, addr);
1071        if (!pmd) {
1072                /*
1073                 * Ignore calls from kvm_set_spte_hva for unallocated
1074                 * address ranges.
1075                 */
1076                return 0;
1077        }
1078
1079        /*
1080         * While dirty page logging - dissolve huge PMD, then continue on to
1081         * allocate page.
1082         */
1083        if (logging_active)
1084                stage2_dissolve_pmd(kvm, addr, pmd);
1085
1086        /* Create stage-2 page mappings - Level 2 */
1087        if (pmd_none(*pmd)) {
1088                if (!cache)
1089                        return 0; /* ignore calls from kvm_set_spte_hva */
1090                pte = mmu_memory_cache_alloc(cache);
1091                pmd_populate_kernel(NULL, pmd, pte);
1092                get_page(virt_to_page(pmd));
1093        }
1094
1095        pte = pte_offset_kernel(pmd, addr);
1096
1097        if (iomap && pte_present(*pte))
1098                return -EFAULT;
1099
1100        /* Create 2nd stage page table mapping - Level 3 */
1101        old_pte = *pte;
1102        if (pte_present(old_pte)) {
1103                kvm_set_pte(pte, __pte(0));
1104                kvm_tlb_flush_vmid_ipa(kvm, addr);
1105        } else {
1106                get_page(virt_to_page(pte));
1107        }
1108
1109        kvm_set_pte(pte, *new_pte);
1110        return 0;
1111}
1112
1113#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1114static int stage2_ptep_test_and_clear_young(pte_t *pte)
1115{
1116        if (pte_young(*pte)) {
1117                *pte = pte_mkold(*pte);
1118                return 1;
1119        }
1120        return 0;
1121}
1122#else
1123static int stage2_ptep_test_and_clear_young(pte_t *pte)
1124{
1125        return __ptep_test_and_clear_young(pte);
1126}
1127#endif
1128
1129static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1130{
1131        return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1132}
1133
1134/**
1135 * kvm_phys_addr_ioremap - map a device range to guest IPA
1136 *
1137 * @kvm:        The KVM pointer
1138 * @guest_ipa:  The IPA at which to insert the mapping
1139 * @pa:         The physical address of the device
1140 * @size:       The size of the mapping
1141 */
1142int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1143                          phys_addr_t pa, unsigned long size, bool writable)
1144{
1145        phys_addr_t addr, end;
1146        int ret = 0;
1147        unsigned long pfn;
1148        struct kvm_mmu_memory_cache cache = { 0, };
1149
1150        end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1151        pfn = __phys_to_pfn(pa);
1152
1153        for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1154                pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1155
1156                if (writable)
1157                        pte = kvm_s2pte_mkwrite(pte);
1158
1159                ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1160                                                KVM_NR_MEM_OBJS);
1161                if (ret)
1162                        goto out;
1163                spin_lock(&kvm->mmu_lock);
1164                ret = stage2_set_pte(kvm, &cache, addr, &pte,
1165                                                KVM_S2PTE_FLAG_IS_IOMAP);
1166                spin_unlock(&kvm->mmu_lock);
1167                if (ret)
1168                        goto out;
1169
1170                pfn++;
1171        }
1172
1173out:
1174        mmu_free_memory_cache(&cache);
1175        return ret;
1176}
1177
1178static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1179{
1180        kvm_pfn_t pfn = *pfnp;
1181        gfn_t gfn = *ipap >> PAGE_SHIFT;
1182
1183        if (PageTransCompoundMap(pfn_to_page(pfn))) {
1184                unsigned long mask;
1185                /*
1186                 * The address we faulted on is backed by a transparent huge
1187                 * page.  However, because we map the compound huge page and
1188                 * not the individual tail page, we need to transfer the
1189                 * refcount to the head page.  We have to be careful that the
1190                 * THP doesn't start to split while we are adjusting the
1191                 * refcounts.
1192                 *
1193                 * We are sure this doesn't happen, because mmu_notifier_retry
1194                 * was successful and we are holding the mmu_lock, so if this
1195                 * THP is trying to split, it will be blocked in the mmu
1196                 * notifier before touching any of the pages, specifically
1197                 * before being able to call __split_huge_page_refcount().
1198                 *
1199                 * We can therefore safely transfer the refcount from PG_tail
1200                 * to PG_head and switch the pfn from a tail page to the head
1201                 * page accordingly.
1202                 */
1203                mask = PTRS_PER_PMD - 1;
1204                VM_BUG_ON((gfn & mask) != (pfn & mask));
1205                if (pfn & mask) {
1206                        *ipap &= PMD_MASK;
1207                        kvm_release_pfn_clean(pfn);
1208                        pfn &= ~mask;
1209                        kvm_get_pfn(pfn);
1210                        *pfnp = pfn;
1211                }
1212
1213                return true;
1214        }
1215
1216        return false;
1217}
1218
1219static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1220{
1221        if (kvm_vcpu_trap_is_iabt(vcpu))
1222                return false;
1223
1224        return kvm_vcpu_dabt_iswrite(vcpu);
1225}
1226
1227/**
1228 * stage2_wp_ptes - write protect PMD range
1229 * @pmd:        pointer to pmd entry
1230 * @addr:       range start address
1231 * @end:        range end address
1232 */
1233static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1234{
1235        pte_t *pte;
1236
1237        pte = pte_offset_kernel(pmd, addr);
1238        do {
1239                if (!pte_none(*pte)) {
1240                        if (!kvm_s2pte_readonly(pte))
1241                                kvm_set_s2pte_readonly(pte);
1242                }
1243        } while (pte++, addr += PAGE_SIZE, addr != end);
1244}
1245
1246/**
1247 * stage2_wp_pmds - write protect PUD range
1248 * @pud:        pointer to pud entry
1249 * @addr:       range start address
1250 * @end:        range end address
1251 */
1252static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1253{
1254        pmd_t *pmd;
1255        phys_addr_t next;
1256
1257        pmd = stage2_pmd_offset(pud, addr);
1258
1259        do {
1260                next = stage2_pmd_addr_end(addr, end);
1261                if (!pmd_none(*pmd)) {
1262                        if (pmd_thp_or_huge(*pmd)) {
1263                                if (!kvm_s2pmd_readonly(pmd))
1264                                        kvm_set_s2pmd_readonly(pmd);
1265                        } else {
1266                                stage2_wp_ptes(pmd, addr, next);
1267                        }
1268                }
1269        } while (pmd++, addr = next, addr != end);
1270}
1271
1272/**
1273  * stage2_wp_puds - write protect PGD range
1274  * @pgd:       pointer to pgd entry
1275  * @addr:      range start address
1276  * @end:       range end address
1277  *
1278  * Process PUD entries, for a huge PUD we cause a panic.
1279  */
1280static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1281{
1282        pud_t *pud;
1283        phys_addr_t next;
1284
1285        pud = stage2_pud_offset(pgd, addr);
1286        do {
1287                next = stage2_pud_addr_end(addr, end);
1288                if (!stage2_pud_none(*pud)) {
1289                        /* TODO:PUD not supported, revisit later if supported */
1290                        BUG_ON(stage2_pud_huge(*pud));
1291                        stage2_wp_pmds(pud, addr, next);
1292                }
1293        } while (pud++, addr = next, addr != end);
1294}
1295
1296/**
1297 * stage2_wp_range() - write protect stage2 memory region range
1298 * @kvm:        The KVM pointer
1299 * @addr:       Start address of range
1300 * @end:        End address of range
1301 */
1302static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1303{
1304        pgd_t *pgd;
1305        phys_addr_t next;
1306
1307        pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1308        do {
1309                /*
1310                 * Release kvm_mmu_lock periodically if the memory region is
1311                 * large. Otherwise, we may see kernel panics with
1312                 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1313                 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1314                 * will also starve other vCPUs. We have to also make sure
1315                 * that the page tables are not freed while we released
1316                 * the lock.
1317                 */
1318                cond_resched_lock(&kvm->mmu_lock);
1319                if (!READ_ONCE(kvm->arch.pgd))
1320                        break;
1321                next = stage2_pgd_addr_end(addr, end);
1322                if (stage2_pgd_present(*pgd))
1323                        stage2_wp_puds(pgd, addr, next);
1324        } while (pgd++, addr = next, addr != end);
1325}
1326
1327/**
1328 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1329 * @kvm:        The KVM pointer
1330 * @slot:       The memory slot to write protect
1331 *
1332 * Called to start logging dirty pages after memory region
1333 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1334 * all present PMD and PTEs are write protected in the memory region.
1335 * Afterwards read of dirty page log can be called.
1336 *
1337 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1338 * serializing operations for VM memory regions.
1339 */
1340void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1341{
1342        struct kvm_memslots *slots = kvm_memslots(kvm);
1343        struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1344        phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1345        phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1346
1347        spin_lock(&kvm->mmu_lock);
1348        stage2_wp_range(kvm, start, end);
1349        spin_unlock(&kvm->mmu_lock);
1350        kvm_flush_remote_tlbs(kvm);
1351}
1352
1353/**
1354 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1355 * @kvm:        The KVM pointer
1356 * @slot:       The memory slot associated with mask
1357 * @gfn_offset: The gfn offset in memory slot
1358 * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1359 *              slot to be write protected
1360 *
1361 * Walks bits set in mask write protects the associated pte's. Caller must
1362 * acquire kvm_mmu_lock.
1363 */
1364static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1365                struct kvm_memory_slot *slot,
1366                gfn_t gfn_offset, unsigned long mask)
1367{
1368        phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1369        phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1370        phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1371
1372        stage2_wp_range(kvm, start, end);
1373}
1374
1375/*
1376 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1377 * dirty pages.
1378 *
1379 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1380 * enable dirty logging for them.
1381 */
1382void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1383                struct kvm_memory_slot *slot,
1384                gfn_t gfn_offset, unsigned long mask)
1385{
1386        kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1387}
1388
1389static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1390{
1391        __clean_dcache_guest_page(pfn, size);
1392}
1393
1394static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1395{
1396        __invalidate_icache_guest_page(pfn, size);
1397}
1398
1399static void kvm_send_hwpoison_signal(unsigned long address,
1400                                     struct vm_area_struct *vma)
1401{
1402        siginfo_t info;
1403
1404        info.si_signo   = SIGBUS;
1405        info.si_errno   = 0;
1406        info.si_code    = BUS_MCEERR_AR;
1407        info.si_addr    = (void __user *)address;
1408
1409        if (is_vm_hugetlb_page(vma))
1410                info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
1411        else
1412                info.si_addr_lsb = PAGE_SHIFT;
1413
1414        send_sig_info(SIGBUS, &info, current);
1415}
1416
1417static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1418                          struct kvm_memory_slot *memslot, unsigned long hva,
1419                          unsigned long fault_status)
1420{
1421        int ret;
1422        bool write_fault, exec_fault, writable, hugetlb = false, force_pte = false;
1423        unsigned long mmu_seq;
1424        gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1425        struct kvm *kvm = vcpu->kvm;
1426        struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1427        struct vm_area_struct *vma;
1428        kvm_pfn_t pfn;
1429        pgprot_t mem_type = PAGE_S2;
1430        bool logging_active = memslot_is_logging(memslot);
1431        unsigned long flags = 0;
1432
1433        write_fault = kvm_is_write_fault(vcpu);
1434        exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
1435        VM_BUG_ON(write_fault && exec_fault);
1436
1437        if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1438                kvm_err("Unexpected L2 read permission error\n");
1439                return -EFAULT;
1440        }
1441
1442        /* Let's check if we will get back a huge page backed by hugetlbfs */
1443        down_read(&current->mm->mmap_sem);
1444        vma = find_vma_intersection(current->mm, hva, hva + 1);
1445        if (unlikely(!vma)) {
1446                kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1447                up_read(&current->mm->mmap_sem);
1448                return -EFAULT;
1449        }
1450
1451        if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1452                hugetlb = true;
1453                gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1454        } else {
1455                /*
1456                 * Pages belonging to memslots that don't have the same
1457                 * alignment for userspace and IPA cannot be mapped using
1458                 * block descriptors even if the pages belong to a THP for
1459                 * the process, because the stage-2 block descriptor will
1460                 * cover more than a single THP and we loose atomicity for
1461                 * unmapping, updates, and splits of the THP or other pages
1462                 * in the stage-2 block range.
1463                 */
1464                if ((memslot->userspace_addr & ~PMD_MASK) !=
1465                    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1466                        force_pte = true;
1467        }
1468        up_read(&current->mm->mmap_sem);
1469
1470        /* We need minimum second+third level pages */
1471        ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1472                                     KVM_NR_MEM_OBJS);
1473        if (ret)
1474                return ret;
1475
1476        mmu_seq = vcpu->kvm->mmu_notifier_seq;
1477        /*
1478         * Ensure the read of mmu_notifier_seq happens before we call
1479         * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1480         * the page we just got a reference to gets unmapped before we have a
1481         * chance to grab the mmu_lock, which ensure that if the page gets
1482         * unmapped afterwards, the call to kvm_unmap_hva will take it away
1483         * from us again properly. This smp_rmb() interacts with the smp_wmb()
1484         * in kvm_mmu_notifier_invalidate_<page|range_end>.
1485         */
1486        smp_rmb();
1487
1488        pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1489        if (pfn == KVM_PFN_ERR_HWPOISON) {
1490                kvm_send_hwpoison_signal(hva, vma);
1491                return 0;
1492        }
1493        if (is_error_noslot_pfn(pfn))
1494                return -EFAULT;
1495
1496        if (kvm_is_device_pfn(pfn)) {
1497                mem_type = PAGE_S2_DEVICE;
1498                flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1499        } else if (logging_active) {
1500                /*
1501                 * Faults on pages in a memslot with logging enabled
1502                 * should not be mapped with huge pages (it introduces churn
1503                 * and performance degradation), so force a pte mapping.
1504                 */
1505                force_pte = true;
1506                flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1507
1508                /*
1509                 * Only actually map the page as writable if this was a write
1510                 * fault.
1511                 */
1512                if (!write_fault)
1513                        writable = false;
1514        }
1515
1516        spin_lock(&kvm->mmu_lock);
1517        if (mmu_notifier_retry(kvm, mmu_seq))
1518                goto out_unlock;
1519
1520        if (!hugetlb && !force_pte)
1521                hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1522
1523        if (hugetlb) {
1524                pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1525                new_pmd = pmd_mkhuge(new_pmd);
1526                if (writable) {
1527                        new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1528                        kvm_set_pfn_dirty(pfn);
1529                }
1530
1531                if (fault_status != FSC_PERM)
1532                        clean_dcache_guest_page(pfn, PMD_SIZE);
1533
1534                if (exec_fault) {
1535                        new_pmd = kvm_s2pmd_mkexec(new_pmd);
1536                        invalidate_icache_guest_page(pfn, PMD_SIZE);
1537                } else if (fault_status == FSC_PERM) {
1538                        /* Preserve execute if XN was already cleared */
1539                        if (stage2_is_exec(kvm, fault_ipa))
1540                                new_pmd = kvm_s2pmd_mkexec(new_pmd);
1541                }
1542
1543                ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1544        } else {
1545                pte_t new_pte = pfn_pte(pfn, mem_type);
1546
1547                if (writable) {
1548                        new_pte = kvm_s2pte_mkwrite(new_pte);
1549                        kvm_set_pfn_dirty(pfn);
1550                        mark_page_dirty(kvm, gfn);
1551                }
1552
1553                if (fault_status != FSC_PERM)
1554                        clean_dcache_guest_page(pfn, PAGE_SIZE);
1555
1556                if (exec_fault) {
1557                        new_pte = kvm_s2pte_mkexec(new_pte);
1558                        invalidate_icache_guest_page(pfn, PAGE_SIZE);
1559                } else if (fault_status == FSC_PERM) {
1560                        /* Preserve execute if XN was already cleared */
1561                        if (stage2_is_exec(kvm, fault_ipa))
1562                                new_pte = kvm_s2pte_mkexec(new_pte);
1563                }
1564
1565                ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1566        }
1567
1568out_unlock:
1569        spin_unlock(&kvm->mmu_lock);
1570        kvm_set_pfn_accessed(pfn);
1571        kvm_release_pfn_clean(pfn);
1572        return ret;
1573}
1574
1575/*
1576 * Resolve the access fault by making the page young again.
1577 * Note that because the faulting entry is guaranteed not to be
1578 * cached in the TLB, we don't need to invalidate anything.
1579 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1580 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1581 */
1582static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1583{
1584        pmd_t *pmd;
1585        pte_t *pte;
1586        kvm_pfn_t pfn;
1587        bool pfn_valid = false;
1588
1589        trace_kvm_access_fault(fault_ipa);
1590
1591        spin_lock(&vcpu->kvm->mmu_lock);
1592
1593        pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1594        if (!pmd || pmd_none(*pmd))     /* Nothing there */
1595                goto out;
1596
1597        if (pmd_thp_or_huge(*pmd)) {    /* THP, HugeTLB */
1598                *pmd = pmd_mkyoung(*pmd);
1599                pfn = pmd_pfn(*pmd);
1600                pfn_valid = true;
1601                goto out;
1602        }
1603
1604        pte = pte_offset_kernel(pmd, fault_ipa);
1605        if (pte_none(*pte))             /* Nothing there either */
1606                goto out;
1607
1608        *pte = pte_mkyoung(*pte);       /* Just a page... */
1609        pfn = pte_pfn(*pte);
1610        pfn_valid = true;
1611out:
1612        spin_unlock(&vcpu->kvm->mmu_lock);
1613        if (pfn_valid)
1614                kvm_set_pfn_accessed(pfn);
1615}
1616
1617/**
1618 * kvm_handle_guest_abort - handles all 2nd stage aborts
1619 * @vcpu:       the VCPU pointer
1620 * @run:        the kvm_run structure
1621 *
1622 * Any abort that gets to the host is almost guaranteed to be caused by a
1623 * missing second stage translation table entry, which can mean that either the
1624 * guest simply needs more memory and we must allocate an appropriate page or it
1625 * can mean that the guest tried to access I/O memory, which is emulated by user
1626 * space. The distinction is based on the IPA causing the fault and whether this
1627 * memory region has been registered as standard RAM by user space.
1628 */
1629int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1630{
1631        unsigned long fault_status;
1632        phys_addr_t fault_ipa;
1633        struct kvm_memory_slot *memslot;
1634        unsigned long hva;
1635        bool is_iabt, write_fault, writable;
1636        gfn_t gfn;
1637        int ret, idx;
1638
1639        fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1640
1641        fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1642        is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1643
1644        /* Synchronous External Abort? */
1645        if (kvm_vcpu_dabt_isextabt(vcpu)) {
1646                /*
1647                 * For RAS the host kernel may handle this abort.
1648                 * There is no need to pass the error into the guest.
1649                 */
1650                if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1651                        return 1;
1652
1653                if (unlikely(!is_iabt)) {
1654                        kvm_inject_vabt(vcpu);
1655                        return 1;
1656                }
1657        }
1658
1659        trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1660                              kvm_vcpu_get_hfar(vcpu), fault_ipa);
1661
1662        /* Check the stage-2 fault is trans. fault or write fault */
1663        if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1664            fault_status != FSC_ACCESS) {
1665                kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1666                        kvm_vcpu_trap_get_class(vcpu),
1667                        (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1668                        (unsigned long)kvm_vcpu_get_hsr(vcpu));
1669                return -EFAULT;
1670        }
1671
1672        idx = srcu_read_lock(&vcpu->kvm->srcu);
1673
1674        gfn = fault_ipa >> PAGE_SHIFT;
1675        memslot = gfn_to_memslot(vcpu->kvm, gfn);
1676        hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1677        write_fault = kvm_is_write_fault(vcpu);
1678        if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1679                if (is_iabt) {
1680                        /* Prefetch Abort on I/O address */
1681                        kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1682                        ret = 1;
1683                        goto out_unlock;
1684                }
1685
1686                /*
1687                 * Check for a cache maintenance operation. Since we
1688                 * ended-up here, we know it is outside of any memory
1689                 * slot. But we can't find out if that is for a device,
1690                 * or if the guest is just being stupid. The only thing
1691                 * we know for sure is that this range cannot be cached.
1692                 *
1693                 * So let's assume that the guest is just being
1694                 * cautious, and skip the instruction.
1695                 */
1696                if (kvm_vcpu_dabt_is_cm(vcpu)) {
1697                        kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1698                        ret = 1;
1699                        goto out_unlock;
1700                }
1701
1702                /*
1703                 * The IPA is reported as [MAX:12], so we need to
1704                 * complement it with the bottom 12 bits from the
1705                 * faulting VA. This is always 12 bits, irrespective
1706                 * of the page size.
1707                 */
1708                fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1709                ret = io_mem_abort(vcpu, run, fault_ipa);
1710                goto out_unlock;
1711        }
1712
1713        /* Userspace should not be able to register out-of-bounds IPAs */
1714        VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1715
1716        if (fault_status == FSC_ACCESS) {
1717                handle_access_fault(vcpu, fault_ipa);
1718                ret = 1;
1719                goto out_unlock;
1720        }
1721
1722        ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1723        if (ret == 0)
1724                ret = 1;
1725out_unlock:
1726        srcu_read_unlock(&vcpu->kvm->srcu, idx);
1727        return ret;
1728}
1729
1730static int handle_hva_to_gpa(struct kvm *kvm,
1731                             unsigned long start,
1732                             unsigned long end,
1733                             int (*handler)(struct kvm *kvm,
1734                                            gpa_t gpa, u64 size,
1735                                            void *data),
1736                             void *data)
1737{
1738        struct kvm_memslots *slots;
1739        struct kvm_memory_slot *memslot;
1740        int ret = 0;
1741
1742        slots = kvm_memslots(kvm);
1743
1744        /* we only care about the pages that the guest sees */
1745        kvm_for_each_memslot(memslot, slots) {
1746                unsigned long hva_start, hva_end;
1747                gfn_t gpa;
1748
1749                hva_start = max(start, memslot->userspace_addr);
1750                hva_end = min(end, memslot->userspace_addr +
1751                                        (memslot->npages << PAGE_SHIFT));
1752                if (hva_start >= hva_end)
1753                        continue;
1754
1755                gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1756                ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1757        }
1758
1759        return ret;
1760}
1761
1762static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1763{
1764        unmap_stage2_range(kvm, gpa, size);
1765        return 0;
1766}
1767
1768int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1769{
1770        unsigned long end = hva + PAGE_SIZE;
1771
1772        if (!kvm->arch.pgd)
1773                return 0;
1774
1775        trace_kvm_unmap_hva(hva);
1776        handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1777        return 0;
1778}
1779
1780int kvm_unmap_hva_range(struct kvm *kvm,
1781                        unsigned long start, unsigned long end)
1782{
1783        if (!kvm->arch.pgd)
1784                return 0;
1785
1786        trace_kvm_unmap_hva_range(start, end);
1787        handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1788        return 0;
1789}
1790
1791static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1792{
1793        pte_t *pte = (pte_t *)data;
1794
1795        WARN_ON(size != PAGE_SIZE);
1796        /*
1797         * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1798         * flag clear because MMU notifiers will have unmapped a huge PMD before
1799         * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1800         * therefore stage2_set_pte() never needs to clear out a huge PMD
1801         * through this calling path.
1802         */
1803        stage2_set_pte(kvm, NULL, gpa, pte, 0);
1804        return 0;
1805}
1806
1807
1808void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1809{
1810        unsigned long end = hva + PAGE_SIZE;
1811        pte_t stage2_pte;
1812
1813        if (!kvm->arch.pgd)
1814                return;
1815
1816        trace_kvm_set_spte_hva(hva);
1817        stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1818        handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1819}
1820
1821static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1822{
1823        pmd_t *pmd;
1824        pte_t *pte;
1825
1826        WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1827        pmd = stage2_get_pmd(kvm, NULL, gpa);
1828        if (!pmd || pmd_none(*pmd))     /* Nothing there */
1829                return 0;
1830
1831        if (pmd_thp_or_huge(*pmd))      /* THP, HugeTLB */
1832                return stage2_pmdp_test_and_clear_young(pmd);
1833
1834        pte = pte_offset_kernel(pmd, gpa);
1835        if (pte_none(*pte))
1836                return 0;
1837
1838        return stage2_ptep_test_and_clear_young(pte);
1839}
1840
1841static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1842{
1843        pmd_t *pmd;
1844        pte_t *pte;
1845
1846        WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1847        pmd = stage2_get_pmd(kvm, NULL, gpa);
1848        if (!pmd || pmd_none(*pmd))     /* Nothing there */
1849                return 0;
1850
1851        if (pmd_thp_or_huge(*pmd))              /* THP, HugeTLB */
1852                return pmd_young(*pmd);
1853
1854        pte = pte_offset_kernel(pmd, gpa);
1855        if (!pte_none(*pte))            /* Just a page... */
1856                return pte_young(*pte);
1857
1858        return 0;
1859}
1860
1861int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1862{
1863        if (!kvm->arch.pgd)
1864                return 0;
1865        trace_kvm_age_hva(start, end);
1866        return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1867}
1868
1869int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1870{
1871        if (!kvm->arch.pgd)
1872                return 0;
1873        trace_kvm_test_age_hva(hva);
1874        return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1875}
1876
1877void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1878{
1879        mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1880}
1881
1882phys_addr_t kvm_mmu_get_httbr(void)
1883{
1884        if (__kvm_cpu_uses_extended_idmap())
1885                return virt_to_phys(merged_hyp_pgd);
1886        else
1887                return virt_to_phys(hyp_pgd);
1888}
1889
1890phys_addr_t kvm_get_idmap_vector(void)
1891{
1892        return hyp_idmap_vector;
1893}
1894
1895static int kvm_map_idmap_text(pgd_t *pgd)
1896{
1897        int err;
1898
1899        /* Create the idmap in the boot page tables */
1900        err =   __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
1901                                      hyp_idmap_start, hyp_idmap_end,
1902                                      __phys_to_pfn(hyp_idmap_start),
1903                                      PAGE_HYP_EXEC);
1904        if (err)
1905                kvm_err("Failed to idmap %lx-%lx\n",
1906                        hyp_idmap_start, hyp_idmap_end);
1907
1908        return err;
1909}
1910
1911int kvm_mmu_init(void)
1912{
1913        int err;
1914
1915        hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1916        hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1917        hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1918        hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1919        hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1920
1921        /*
1922         * We rely on the linker script to ensure at build time that the HYP
1923         * init code does not cross a page boundary.
1924         */
1925        BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1926
1927        kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1928        kvm_debug("HYP VA range: %lx:%lx\n",
1929                  kern_hyp_va(PAGE_OFFSET),
1930                  kern_hyp_va((unsigned long)high_memory - 1));
1931
1932        if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1933            hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1934            hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1935                /*
1936                 * The idmap page is intersecting with the VA space,
1937                 * it is not safe to continue further.
1938                 */
1939                kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1940                err = -EINVAL;
1941                goto out;
1942        }
1943
1944        hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1945        if (!hyp_pgd) {
1946                kvm_err("Hyp mode PGD not allocated\n");
1947                err = -ENOMEM;
1948                goto out;
1949        }
1950
1951        if (__kvm_cpu_uses_extended_idmap()) {
1952                boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1953                                                         hyp_pgd_order);
1954                if (!boot_hyp_pgd) {
1955                        kvm_err("Hyp boot PGD not allocated\n");
1956                        err = -ENOMEM;
1957                        goto out;
1958                }
1959
1960                err = kvm_map_idmap_text(boot_hyp_pgd);
1961                if (err)
1962                        goto out;
1963
1964                merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1965                if (!merged_hyp_pgd) {
1966                        kvm_err("Failed to allocate extra HYP pgd\n");
1967                        goto out;
1968                }
1969                __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1970                                    hyp_idmap_start);
1971        } else {
1972                err = kvm_map_idmap_text(hyp_pgd);
1973                if (err)
1974                        goto out;
1975        }
1976
1977        io_map_base = hyp_idmap_start;
1978        return 0;
1979out:
1980        free_hyp_pgds();
1981        return err;
1982}
1983
1984void kvm_arch_commit_memory_region(struct kvm *kvm,
1985                                   const struct kvm_userspace_memory_region *mem,
1986                                   const struct kvm_memory_slot *old,
1987                                   const struct kvm_memory_slot *new,
1988                                   enum kvm_mr_change change)
1989{
1990        /*
1991         * At this point memslot has been committed and there is an
1992         * allocated dirty_bitmap[], dirty pages will be be tracked while the
1993         * memory slot is write protected.
1994         */
1995        if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1996                kvm_mmu_wp_memory_region(kvm, mem->slot);
1997}
1998
1999int kvm_arch_prepare_memory_region(struct kvm *kvm,
2000                                   struct kvm_memory_slot *memslot,
2001                                   const struct kvm_userspace_memory_region *mem,
2002                                   enum kvm_mr_change change)
2003{
2004        hva_t hva = mem->userspace_addr;
2005        hva_t reg_end = hva + mem->memory_size;
2006        bool writable = !(mem->flags & KVM_MEM_READONLY);
2007        int ret = 0;
2008
2009        if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2010                        change != KVM_MR_FLAGS_ONLY)
2011                return 0;
2012
2013        /*
2014         * Prevent userspace from creating a memory region outside of the IPA
2015         * space addressable by the KVM guest IPA space.
2016         */
2017        if (memslot->base_gfn + memslot->npages >=
2018            (KVM_PHYS_SIZE >> PAGE_SHIFT))
2019                return -EFAULT;
2020
2021        down_read(&current->mm->mmap_sem);
2022        /*
2023         * A memory region could potentially cover multiple VMAs, and any holes
2024         * between them, so iterate over all of them to find out if we can map
2025         * any of them right now.
2026         *
2027         *     +--------------------------------------------+
2028         * +---------------+----------------+   +----------------+
2029         * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2030         * +---------------+----------------+   +----------------+
2031         *     |               memory region                |
2032         *     +--------------------------------------------+
2033         */
2034        do {
2035                struct vm_area_struct *vma = find_vma(current->mm, hva);
2036                hva_t vm_start, vm_end;
2037
2038                if (!vma || vma->vm_start >= reg_end)
2039                        break;
2040
2041                /*
2042                 * Mapping a read-only VMA is only allowed if the
2043                 * memory region is configured as read-only.
2044                 */
2045                if (writable && !(vma->vm_flags & VM_WRITE)) {
2046                        ret = -EPERM;
2047                        break;
2048                }
2049
2050                /*
2051                 * Take the intersection of this VMA with the memory region
2052                 */
2053                vm_start = max(hva, vma->vm_start);
2054                vm_end = min(reg_end, vma->vm_end);
2055
2056                if (vma->vm_flags & VM_PFNMAP) {
2057                        gpa_t gpa = mem->guest_phys_addr +
2058                                    (vm_start - mem->userspace_addr);
2059                        phys_addr_t pa;
2060
2061                        pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2062                        pa += vm_start - vma->vm_start;
2063
2064                        /* IO region dirty page logging not allowed */
2065                        if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2066                                ret = -EINVAL;
2067                                goto out;
2068                        }
2069
2070                        ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2071                                                    vm_end - vm_start,
2072                                                    writable);
2073                        if (ret)
2074                                break;
2075                }
2076                hva = vm_end;
2077        } while (hva < reg_end);
2078
2079        if (change == KVM_MR_FLAGS_ONLY)
2080                goto out;
2081
2082        spin_lock(&kvm->mmu_lock);
2083        if (ret)
2084                unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2085        else
2086                stage2_flush_memslot(kvm, memslot);
2087        spin_unlock(&kvm->mmu_lock);
2088out:
2089        up_read(&current->mm->mmap_sem);
2090        return ret;
2091}
2092
2093void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
2094                           struct kvm_memory_slot *dont)
2095{
2096}
2097
2098int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
2099                            unsigned long npages)
2100{
2101        return 0;
2102}
2103
2104void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
2105{
2106}
2107
2108void kvm_arch_flush_shadow_all(struct kvm *kvm)
2109{
2110        kvm_free_stage2_pgd(kvm);
2111}
2112
2113void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2114                                   struct kvm_memory_slot *slot)
2115{
2116        gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2117        phys_addr_t size = slot->npages << PAGE_SHIFT;
2118
2119        spin_lock(&kvm->mmu_lock);
2120        unmap_stage2_range(kvm, gpa, size);
2121        spin_unlock(&kvm->mmu_lock);
2122}
2123
2124/*
2125 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2126 *
2127 * Main problems:
2128 * - S/W ops are local to a CPU (not broadcast)
2129 * - We have line migration behind our back (speculation)
2130 * - System caches don't support S/W at all (damn!)
2131 *
2132 * In the face of the above, the best we can do is to try and convert
2133 * S/W ops to VA ops. Because the guest is not allowed to infer the
2134 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2135 * which is a rather good thing for us.
2136 *
2137 * Also, it is only used when turning caches on/off ("The expected
2138 * usage of the cache maintenance instructions that operate by set/way
2139 * is associated with the cache maintenance instructions associated
2140 * with the powerdown and powerup of caches, if this is required by
2141 * the implementation.").
2142 *
2143 * We use the following policy:
2144 *
2145 * - If we trap a S/W operation, we enable VM trapping to detect
2146 *   caches being turned on/off, and do a full clean.
2147 *
2148 * - We flush the caches on both caches being turned on and off.
2149 *
2150 * - Once the caches are enabled, we stop trapping VM ops.
2151 */
2152void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2153{
2154        unsigned long hcr = *vcpu_hcr(vcpu);
2155
2156        /*
2157         * If this is the first time we do a S/W operation
2158         * (i.e. HCR_TVM not set) flush the whole memory, and set the
2159         * VM trapping.
2160         *
2161         * Otherwise, rely on the VM trapping to wait for the MMU +
2162         * Caches to be turned off. At that point, we'll be able to
2163         * clean the caches again.
2164         */
2165        if (!(hcr & HCR_TVM)) {
2166                trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2167                                        vcpu_has_cache_enabled(vcpu));
2168                stage2_flush_vm(vcpu->kvm);
2169                *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2170        }
2171}
2172
2173void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2174{
2175        bool now_enabled = vcpu_has_cache_enabled(vcpu);
2176
2177        /*
2178         * If switching the MMU+caches on, need to invalidate the caches.
2179         * If switching it off, need to clean the caches.
2180         * Clean + invalidate does the trick always.
2181         */
2182        if (now_enabled != was_enabled)
2183                stage2_flush_vm(vcpu->kvm);
2184
2185        /* Caches are now on, stop trapping VM ops (until a S/W op) */
2186        if (now_enabled)
2187                *vcpu_hcr(vcpu) &= ~HCR_TVM;
2188
2189        trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2190}
2191