linux/virt/kvm/kvm_main.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include <kvm/iodev.h>
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kvm.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/percpu.h>
  26#include <linux/mm.h>
  27#include <linux/miscdevice.h>
  28#include <linux/vmalloc.h>
  29#include <linux/reboot.h>
  30#include <linux/debugfs.h>
  31#include <linux/highmem.h>
  32#include <linux/file.h>
  33#include <linux/syscore_ops.h>
  34#include <linux/cpu.h>
  35#include <linux/sched/signal.h>
  36#include <linux/sched/mm.h>
  37#include <linux/sched/stat.h>
  38#include <linux/cpumask.h>
  39#include <linux/smp.h>
  40#include <linux/anon_inodes.h>
  41#include <linux/profile.h>
  42#include <linux/kvm_para.h>
  43#include <linux/pagemap.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/bitops.h>
  47#include <linux/spinlock.h>
  48#include <linux/compat.h>
  49#include <linux/srcu.h>
  50#include <linux/hugetlb.h>
  51#include <linux/slab.h>
  52#include <linux/sort.h>
  53#include <linux/bsearch.h>
  54
  55#include <asm/processor.h>
  56#include <asm/io.h>
  57#include <asm/ioctl.h>
  58#include <linux/uaccess.h>
  59#include <asm/pgtable.h>
  60
  61#include "coalesced_mmio.h"
  62#include "async_pf.h"
  63#include "vfio.h"
  64
  65#define CREATE_TRACE_POINTS
  66#include <trace/events/kvm.h>
  67
  68/* Worst case buffer size needed for holding an integer. */
  69#define ITOA_MAX_LEN 12
  70
  71MODULE_AUTHOR("Qumranet");
  72MODULE_LICENSE("GPL");
  73
  74/* Architectures should define their poll value according to the halt latency */
  75unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  76module_param(halt_poll_ns, uint, 0644);
  77EXPORT_SYMBOL_GPL(halt_poll_ns);
  78
  79/* Default doubles per-vcpu halt_poll_ns. */
  80unsigned int halt_poll_ns_grow = 2;
  81module_param(halt_poll_ns_grow, uint, 0644);
  82EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
  83
  84/* Default resets per-vcpu halt_poll_ns . */
  85unsigned int halt_poll_ns_shrink;
  86module_param(halt_poll_ns_shrink, uint, 0644);
  87EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
  88
  89/*
  90 * Ordering of locks:
  91 *
  92 *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  93 */
  94
  95DEFINE_SPINLOCK(kvm_lock);
  96static DEFINE_RAW_SPINLOCK(kvm_count_lock);
  97LIST_HEAD(vm_list);
  98
  99static cpumask_var_t cpus_hardware_enabled;
 100static int kvm_usage_count;
 101static atomic_t hardware_enable_failed;
 102
 103struct kmem_cache *kvm_vcpu_cache;
 104EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
 105
 106static __read_mostly struct preempt_ops kvm_preempt_ops;
 107
 108struct dentry *kvm_debugfs_dir;
 109EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
 110
 111static int kvm_debugfs_num_entries;
 112static const struct file_operations *stat_fops_per_vm[];
 113
 114static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 115                           unsigned long arg);
 116#ifdef CONFIG_KVM_COMPAT
 117static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 118                                  unsigned long arg);
 119#endif
 120static int hardware_enable_all(void);
 121static void hardware_disable_all(void);
 122
 123static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 124
 125static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
 126
 127__visible bool kvm_rebooting;
 128EXPORT_SYMBOL_GPL(kvm_rebooting);
 129
 130static bool largepages_enabled = true;
 131
 132#define KVM_EVENT_CREATE_VM 0
 133#define KVM_EVENT_DESTROY_VM 1
 134static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
 135static unsigned long long kvm_createvm_count;
 136static unsigned long long kvm_active_vms;
 137
 138__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
 139                unsigned long start, unsigned long end)
 140{
 141}
 142
 143bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
 144{
 145        if (pfn_valid(pfn))
 146                return PageReserved(pfn_to_page(pfn));
 147
 148        return true;
 149}
 150
 151/*
 152 * Switches to specified vcpu, until a matching vcpu_put()
 153 */
 154void vcpu_load(struct kvm_vcpu *vcpu)
 155{
 156        int cpu = get_cpu();
 157        preempt_notifier_register(&vcpu->preempt_notifier);
 158        kvm_arch_vcpu_load(vcpu, cpu);
 159        put_cpu();
 160}
 161EXPORT_SYMBOL_GPL(vcpu_load);
 162
 163void vcpu_put(struct kvm_vcpu *vcpu)
 164{
 165        preempt_disable();
 166        kvm_arch_vcpu_put(vcpu);
 167        preempt_notifier_unregister(&vcpu->preempt_notifier);
 168        preempt_enable();
 169}
 170EXPORT_SYMBOL_GPL(vcpu_put);
 171
 172/* TODO: merge with kvm_arch_vcpu_should_kick */
 173static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
 174{
 175        int mode = kvm_vcpu_exiting_guest_mode(vcpu);
 176
 177        /*
 178         * We need to wait for the VCPU to reenable interrupts and get out of
 179         * READING_SHADOW_PAGE_TABLES mode.
 180         */
 181        if (req & KVM_REQUEST_WAIT)
 182                return mode != OUTSIDE_GUEST_MODE;
 183
 184        /*
 185         * Need to kick a running VCPU, but otherwise there is nothing to do.
 186         */
 187        return mode == IN_GUEST_MODE;
 188}
 189
 190static void ack_flush(void *_completed)
 191{
 192}
 193
 194static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
 195{
 196        if (unlikely(!cpus))
 197                cpus = cpu_online_mask;
 198
 199        if (cpumask_empty(cpus))
 200                return false;
 201
 202        smp_call_function_many(cpus, ack_flush, NULL, wait);
 203        return true;
 204}
 205
 206bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 207{
 208        int i, cpu, me;
 209        cpumask_var_t cpus;
 210        bool called;
 211        struct kvm_vcpu *vcpu;
 212
 213        zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 214
 215        me = get_cpu();
 216        kvm_for_each_vcpu(i, vcpu, kvm) {
 217                kvm_make_request(req, vcpu);
 218                cpu = vcpu->cpu;
 219
 220                if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
 221                        continue;
 222
 223                if (cpus != NULL && cpu != -1 && cpu != me &&
 224                    kvm_request_needs_ipi(vcpu, req))
 225                        __cpumask_set_cpu(cpu, cpus);
 226        }
 227        called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
 228        put_cpu();
 229        free_cpumask_var(cpus);
 230        return called;
 231}
 232
 233#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
 234void kvm_flush_remote_tlbs(struct kvm *kvm)
 235{
 236        /*
 237         * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
 238         * kvm_make_all_cpus_request.
 239         */
 240        long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
 241
 242        /*
 243         * We want to publish modifications to the page tables before reading
 244         * mode. Pairs with a memory barrier in arch-specific code.
 245         * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 246         * and smp_mb in walk_shadow_page_lockless_begin/end.
 247         * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 248         *
 249         * There is already an smp_mb__after_atomic() before
 250         * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 251         * barrier here.
 252         */
 253        if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 254                ++kvm->stat.remote_tlb_flush;
 255        cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 256}
 257EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 258#endif
 259
 260void kvm_reload_remote_mmus(struct kvm *kvm)
 261{
 262        kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 263}
 264
 265int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 266{
 267        struct page *page;
 268        int r;
 269
 270        mutex_init(&vcpu->mutex);
 271        vcpu->cpu = -1;
 272        vcpu->kvm = kvm;
 273        vcpu->vcpu_id = id;
 274        vcpu->pid = NULL;
 275        init_swait_queue_head(&vcpu->wq);
 276        kvm_async_pf_vcpu_init(vcpu);
 277
 278        vcpu->pre_pcpu = -1;
 279        INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
 280
 281        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 282        if (!page) {
 283                r = -ENOMEM;
 284                goto fail;
 285        }
 286        vcpu->run = page_address(page);
 287
 288        kvm_vcpu_set_in_spin_loop(vcpu, false);
 289        kvm_vcpu_set_dy_eligible(vcpu, false);
 290        vcpu->preempted = false;
 291
 292        r = kvm_arch_vcpu_init(vcpu);
 293        if (r < 0)
 294                goto fail_free_run;
 295        return 0;
 296
 297fail_free_run:
 298        free_page((unsigned long)vcpu->run);
 299fail:
 300        return r;
 301}
 302EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 303
 304void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 305{
 306        /*
 307         * no need for rcu_read_lock as VCPU_RUN is the only place that
 308         * will change the vcpu->pid pointer and on uninit all file
 309         * descriptors are already gone.
 310         */
 311        put_pid(rcu_dereference_protected(vcpu->pid, 1));
 312        kvm_arch_vcpu_uninit(vcpu);
 313        free_page((unsigned long)vcpu->run);
 314}
 315EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 316
 317#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 318static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 319{
 320        return container_of(mn, struct kvm, mmu_notifier);
 321}
 322
 323static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 324                                        struct mm_struct *mm,
 325                                        unsigned long address,
 326                                        pte_t pte)
 327{
 328        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 329        int idx;
 330
 331        idx = srcu_read_lock(&kvm->srcu);
 332        spin_lock(&kvm->mmu_lock);
 333        kvm->mmu_notifier_seq++;
 334        kvm_set_spte_hva(kvm, address, pte);
 335        spin_unlock(&kvm->mmu_lock);
 336        srcu_read_unlock(&kvm->srcu, idx);
 337}
 338
 339static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 340                                                    struct mm_struct *mm,
 341                                                    unsigned long start,
 342                                                    unsigned long end)
 343{
 344        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 345        int need_tlb_flush = 0, idx;
 346
 347        idx = srcu_read_lock(&kvm->srcu);
 348        spin_lock(&kvm->mmu_lock);
 349        /*
 350         * The count increase must become visible at unlock time as no
 351         * spte can be established without taking the mmu_lock and
 352         * count is also read inside the mmu_lock critical section.
 353         */
 354        kvm->mmu_notifier_count++;
 355        need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
 356        need_tlb_flush |= kvm->tlbs_dirty;
 357        /* we've to flush the tlb before the pages can be freed */
 358        if (need_tlb_flush)
 359                kvm_flush_remote_tlbs(kvm);
 360
 361        spin_unlock(&kvm->mmu_lock);
 362
 363        kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
 364
 365        srcu_read_unlock(&kvm->srcu, idx);
 366}
 367
 368static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 369                                                  struct mm_struct *mm,
 370                                                  unsigned long start,
 371                                                  unsigned long end)
 372{
 373        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 374
 375        spin_lock(&kvm->mmu_lock);
 376        /*
 377         * This sequence increase will notify the kvm page fault that
 378         * the page that is going to be mapped in the spte could have
 379         * been freed.
 380         */
 381        kvm->mmu_notifier_seq++;
 382        smp_wmb();
 383        /*
 384         * The above sequence increase must be visible before the
 385         * below count decrease, which is ensured by the smp_wmb above
 386         * in conjunction with the smp_rmb in mmu_notifier_retry().
 387         */
 388        kvm->mmu_notifier_count--;
 389        spin_unlock(&kvm->mmu_lock);
 390
 391        BUG_ON(kvm->mmu_notifier_count < 0);
 392}
 393
 394static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 395                                              struct mm_struct *mm,
 396                                              unsigned long start,
 397                                              unsigned long end)
 398{
 399        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 400        int young, idx;
 401
 402        idx = srcu_read_lock(&kvm->srcu);
 403        spin_lock(&kvm->mmu_lock);
 404
 405        young = kvm_age_hva(kvm, start, end);
 406        if (young)
 407                kvm_flush_remote_tlbs(kvm);
 408
 409        spin_unlock(&kvm->mmu_lock);
 410        srcu_read_unlock(&kvm->srcu, idx);
 411
 412        return young;
 413}
 414
 415static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 416                                        struct mm_struct *mm,
 417                                        unsigned long start,
 418                                        unsigned long end)
 419{
 420        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 421        int young, idx;
 422
 423        idx = srcu_read_lock(&kvm->srcu);
 424        spin_lock(&kvm->mmu_lock);
 425        /*
 426         * Even though we do not flush TLB, this will still adversely
 427         * affect performance on pre-Haswell Intel EPT, where there is
 428         * no EPT Access Bit to clear so that we have to tear down EPT
 429         * tables instead. If we find this unacceptable, we can always
 430         * add a parameter to kvm_age_hva so that it effectively doesn't
 431         * do anything on clear_young.
 432         *
 433         * Also note that currently we never issue secondary TLB flushes
 434         * from clear_young, leaving this job up to the regular system
 435         * cadence. If we find this inaccurate, we might come up with a
 436         * more sophisticated heuristic later.
 437         */
 438        young = kvm_age_hva(kvm, start, end);
 439        spin_unlock(&kvm->mmu_lock);
 440        srcu_read_unlock(&kvm->srcu, idx);
 441
 442        return young;
 443}
 444
 445static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 446                                       struct mm_struct *mm,
 447                                       unsigned long address)
 448{
 449        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 450        int young, idx;
 451
 452        idx = srcu_read_lock(&kvm->srcu);
 453        spin_lock(&kvm->mmu_lock);
 454        young = kvm_test_age_hva(kvm, address);
 455        spin_unlock(&kvm->mmu_lock);
 456        srcu_read_unlock(&kvm->srcu, idx);
 457
 458        return young;
 459}
 460
 461static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 462                                     struct mm_struct *mm)
 463{
 464        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 465        int idx;
 466
 467        idx = srcu_read_lock(&kvm->srcu);
 468        kvm_arch_flush_shadow_all(kvm);
 469        srcu_read_unlock(&kvm->srcu, idx);
 470}
 471
 472static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 473        .flags                  = MMU_INVALIDATE_DOES_NOT_BLOCK,
 474        .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
 475        .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
 476        .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
 477        .clear_young            = kvm_mmu_notifier_clear_young,
 478        .test_young             = kvm_mmu_notifier_test_young,
 479        .change_pte             = kvm_mmu_notifier_change_pte,
 480        .release                = kvm_mmu_notifier_release,
 481};
 482
 483static int kvm_init_mmu_notifier(struct kvm *kvm)
 484{
 485        kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 486        return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 487}
 488
 489#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 490
 491static int kvm_init_mmu_notifier(struct kvm *kvm)
 492{
 493        return 0;
 494}
 495
 496#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 497
 498static struct kvm_memslots *kvm_alloc_memslots(void)
 499{
 500        int i;
 501        struct kvm_memslots *slots;
 502
 503        slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 504        if (!slots)
 505                return NULL;
 506
 507        for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 508                slots->id_to_index[i] = slots->memslots[i].id = i;
 509
 510        return slots;
 511}
 512
 513static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 514{
 515        if (!memslot->dirty_bitmap)
 516                return;
 517
 518        kvfree(memslot->dirty_bitmap);
 519        memslot->dirty_bitmap = NULL;
 520}
 521
 522/*
 523 * Free any memory in @free but not in @dont.
 524 */
 525static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
 526                              struct kvm_memory_slot *dont)
 527{
 528        if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 529                kvm_destroy_dirty_bitmap(free);
 530
 531        kvm_arch_free_memslot(kvm, free, dont);
 532
 533        free->npages = 0;
 534}
 535
 536static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 537{
 538        struct kvm_memory_slot *memslot;
 539
 540        if (!slots)
 541                return;
 542
 543        kvm_for_each_memslot(memslot, slots)
 544                kvm_free_memslot(kvm, memslot, NULL);
 545
 546        kvfree(slots);
 547}
 548
 549static void kvm_destroy_vm_debugfs(struct kvm *kvm)
 550{
 551        int i;
 552
 553        if (!kvm->debugfs_dentry)
 554                return;
 555
 556        debugfs_remove_recursive(kvm->debugfs_dentry);
 557
 558        if (kvm->debugfs_stat_data) {
 559                for (i = 0; i < kvm_debugfs_num_entries; i++)
 560                        kfree(kvm->debugfs_stat_data[i]);
 561                kfree(kvm->debugfs_stat_data);
 562        }
 563}
 564
 565static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
 566{
 567        char dir_name[ITOA_MAX_LEN * 2];
 568        struct kvm_stat_data *stat_data;
 569        struct kvm_stats_debugfs_item *p;
 570
 571        if (!debugfs_initialized())
 572                return 0;
 573
 574        snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
 575        kvm->debugfs_dentry = debugfs_create_dir(dir_name,
 576                                                 kvm_debugfs_dir);
 577        if (!kvm->debugfs_dentry)
 578                return -ENOMEM;
 579
 580        kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
 581                                         sizeof(*kvm->debugfs_stat_data),
 582                                         GFP_KERNEL);
 583        if (!kvm->debugfs_stat_data)
 584                return -ENOMEM;
 585
 586        for (p = debugfs_entries; p->name; p++) {
 587                stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
 588                if (!stat_data)
 589                        return -ENOMEM;
 590
 591                stat_data->kvm = kvm;
 592                stat_data->offset = p->offset;
 593                kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
 594                if (!debugfs_create_file(p->name, 0644,
 595                                         kvm->debugfs_dentry,
 596                                         stat_data,
 597                                         stat_fops_per_vm[p->kind]))
 598                        return -ENOMEM;
 599        }
 600        return 0;
 601}
 602
 603static struct kvm *kvm_create_vm(unsigned long type)
 604{
 605        int r, i;
 606        struct kvm *kvm = kvm_arch_alloc_vm();
 607
 608        if (!kvm)
 609                return ERR_PTR(-ENOMEM);
 610
 611        spin_lock_init(&kvm->mmu_lock);
 612        mmgrab(current->mm);
 613        kvm->mm = current->mm;
 614        kvm_eventfd_init(kvm);
 615        mutex_init(&kvm->lock);
 616        mutex_init(&kvm->irq_lock);
 617        mutex_init(&kvm->slots_lock);
 618        refcount_set(&kvm->users_count, 1);
 619        INIT_LIST_HEAD(&kvm->devices);
 620
 621        r = kvm_arch_init_vm(kvm, type);
 622        if (r)
 623                goto out_err_no_disable;
 624
 625        r = hardware_enable_all();
 626        if (r)
 627                goto out_err_no_disable;
 628
 629#ifdef CONFIG_HAVE_KVM_IRQFD
 630        INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 631#endif
 632
 633        BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 634
 635        r = -ENOMEM;
 636        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 637                struct kvm_memslots *slots = kvm_alloc_memslots();
 638                if (!slots)
 639                        goto out_err_no_srcu;
 640                /*
 641                 * Generations must be different for each address space.
 642                 * Init kvm generation close to the maximum to easily test the
 643                 * code of handling generation number wrap-around.
 644                 */
 645                slots->generation = i * 2 - 150;
 646                rcu_assign_pointer(kvm->memslots[i], slots);
 647        }
 648
 649        if (init_srcu_struct(&kvm->srcu))
 650                goto out_err_no_srcu;
 651        if (init_srcu_struct(&kvm->irq_srcu))
 652                goto out_err_no_irq_srcu;
 653        for (i = 0; i < KVM_NR_BUSES; i++) {
 654                rcu_assign_pointer(kvm->buses[i],
 655                        kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
 656                if (!kvm->buses[i])
 657                        goto out_err;
 658        }
 659
 660        r = kvm_init_mmu_notifier(kvm);
 661        if (r)
 662                goto out_err;
 663
 664        spin_lock(&kvm_lock);
 665        list_add(&kvm->vm_list, &vm_list);
 666        spin_unlock(&kvm_lock);
 667
 668        preempt_notifier_inc();
 669
 670        return kvm;
 671
 672out_err:
 673        cleanup_srcu_struct(&kvm->irq_srcu);
 674out_err_no_irq_srcu:
 675        cleanup_srcu_struct(&kvm->srcu);
 676out_err_no_srcu:
 677        hardware_disable_all();
 678out_err_no_disable:
 679        refcount_set(&kvm->users_count, 0);
 680        for (i = 0; i < KVM_NR_BUSES; i++)
 681                kfree(kvm_get_bus(kvm, i));
 682        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 683                kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 684        kvm_arch_free_vm(kvm);
 685        mmdrop(current->mm);
 686        return ERR_PTR(r);
 687}
 688
 689static void kvm_destroy_devices(struct kvm *kvm)
 690{
 691        struct kvm_device *dev, *tmp;
 692
 693        /*
 694         * We do not need to take the kvm->lock here, because nobody else
 695         * has a reference to the struct kvm at this point and therefore
 696         * cannot access the devices list anyhow.
 697         */
 698        list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
 699                list_del(&dev->vm_node);
 700                dev->ops->destroy(dev);
 701        }
 702}
 703
 704static void kvm_destroy_vm(struct kvm *kvm)
 705{
 706        int i;
 707        struct mm_struct *mm = kvm->mm;
 708
 709        kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
 710        kvm_destroy_vm_debugfs(kvm);
 711        kvm_arch_sync_events(kvm);
 712        spin_lock(&kvm_lock);
 713        list_del(&kvm->vm_list);
 714        spin_unlock(&kvm_lock);
 715        kvm_free_irq_routing(kvm);
 716        for (i = 0; i < KVM_NR_BUSES; i++) {
 717                struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
 718
 719                if (bus)
 720                        kvm_io_bus_destroy(bus);
 721                kvm->buses[i] = NULL;
 722        }
 723        kvm_coalesced_mmio_free(kvm);
 724#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 725        mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 726#else
 727        kvm_arch_flush_shadow_all(kvm);
 728#endif
 729        kvm_arch_destroy_vm(kvm);
 730        kvm_destroy_devices(kvm);
 731        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 732                kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 733        cleanup_srcu_struct(&kvm->irq_srcu);
 734        cleanup_srcu_struct(&kvm->srcu);
 735        kvm_arch_free_vm(kvm);
 736        preempt_notifier_dec();
 737        hardware_disable_all();
 738        mmdrop(mm);
 739}
 740
 741void kvm_get_kvm(struct kvm *kvm)
 742{
 743        refcount_inc(&kvm->users_count);
 744}
 745EXPORT_SYMBOL_GPL(kvm_get_kvm);
 746
 747void kvm_put_kvm(struct kvm *kvm)
 748{
 749        if (refcount_dec_and_test(&kvm->users_count))
 750                kvm_destroy_vm(kvm);
 751}
 752EXPORT_SYMBOL_GPL(kvm_put_kvm);
 753
 754
 755static int kvm_vm_release(struct inode *inode, struct file *filp)
 756{
 757        struct kvm *kvm = filp->private_data;
 758
 759        kvm_irqfd_release(kvm);
 760
 761        kvm_put_kvm(kvm);
 762        return 0;
 763}
 764
 765/*
 766 * Allocation size is twice as large as the actual dirty bitmap size.
 767 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
 768 */
 769static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 770{
 771        unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 772
 773        memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
 774        if (!memslot->dirty_bitmap)
 775                return -ENOMEM;
 776
 777        return 0;
 778}
 779
 780/*
 781 * Insert memslot and re-sort memslots based on their GFN,
 782 * so binary search could be used to lookup GFN.
 783 * Sorting algorithm takes advantage of having initially
 784 * sorted array and known changed memslot position.
 785 */
 786static void update_memslots(struct kvm_memslots *slots,
 787                            struct kvm_memory_slot *new)
 788{
 789        int id = new->id;
 790        int i = slots->id_to_index[id];
 791        struct kvm_memory_slot *mslots = slots->memslots;
 792
 793        WARN_ON(mslots[i].id != id);
 794        if (!new->npages) {
 795                WARN_ON(!mslots[i].npages);
 796                if (mslots[i].npages)
 797                        slots->used_slots--;
 798        } else {
 799                if (!mslots[i].npages)
 800                        slots->used_slots++;
 801        }
 802
 803        while (i < KVM_MEM_SLOTS_NUM - 1 &&
 804               new->base_gfn <= mslots[i + 1].base_gfn) {
 805                if (!mslots[i + 1].npages)
 806                        break;
 807                mslots[i] = mslots[i + 1];
 808                slots->id_to_index[mslots[i].id] = i;
 809                i++;
 810        }
 811
 812        /*
 813         * The ">=" is needed when creating a slot with base_gfn == 0,
 814         * so that it moves before all those with base_gfn == npages == 0.
 815         *
 816         * On the other hand, if new->npages is zero, the above loop has
 817         * already left i pointing to the beginning of the empty part of
 818         * mslots, and the ">=" would move the hole backwards in this
 819         * case---which is wrong.  So skip the loop when deleting a slot.
 820         */
 821        if (new->npages) {
 822                while (i > 0 &&
 823                       new->base_gfn >= mslots[i - 1].base_gfn) {
 824                        mslots[i] = mslots[i - 1];
 825                        slots->id_to_index[mslots[i].id] = i;
 826                        i--;
 827                }
 828        } else
 829                WARN_ON_ONCE(i != slots->used_slots);
 830
 831        mslots[i] = *new;
 832        slots->id_to_index[mslots[i].id] = i;
 833}
 834
 835static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
 836{
 837        u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
 838
 839#ifdef __KVM_HAVE_READONLY_MEM
 840        valid_flags |= KVM_MEM_READONLY;
 841#endif
 842
 843        if (mem->flags & ~valid_flags)
 844                return -EINVAL;
 845
 846        return 0;
 847}
 848
 849static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
 850                int as_id, struct kvm_memslots *slots)
 851{
 852        struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
 853
 854        /*
 855         * Set the low bit in the generation, which disables SPTE caching
 856         * until the end of synchronize_srcu_expedited.
 857         */
 858        WARN_ON(old_memslots->generation & 1);
 859        slots->generation = old_memslots->generation + 1;
 860
 861        rcu_assign_pointer(kvm->memslots[as_id], slots);
 862        synchronize_srcu_expedited(&kvm->srcu);
 863
 864        /*
 865         * Increment the new memslot generation a second time. This prevents
 866         * vm exits that race with memslot updates from caching a memslot
 867         * generation that will (potentially) be valid forever.
 868         *
 869         * Generations must be unique even across address spaces.  We do not need
 870         * a global counter for that, instead the generation space is evenly split
 871         * across address spaces.  For example, with two address spaces, address
 872         * space 0 will use generations 0, 4, 8, ... while * address space 1 will
 873         * use generations 2, 6, 10, 14, ...
 874         */
 875        slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
 876
 877        kvm_arch_memslots_updated(kvm, slots);
 878
 879        return old_memslots;
 880}
 881
 882/*
 883 * Allocate some memory and give it an address in the guest physical address
 884 * space.
 885 *
 886 * Discontiguous memory is allowed, mostly for framebuffers.
 887 *
 888 * Must be called holding kvm->slots_lock for write.
 889 */
 890int __kvm_set_memory_region(struct kvm *kvm,
 891                            const struct kvm_userspace_memory_region *mem)
 892{
 893        int r;
 894        gfn_t base_gfn;
 895        unsigned long npages;
 896        struct kvm_memory_slot *slot;
 897        struct kvm_memory_slot old, new;
 898        struct kvm_memslots *slots = NULL, *old_memslots;
 899        int as_id, id;
 900        enum kvm_mr_change change;
 901
 902        r = check_memory_region_flags(mem);
 903        if (r)
 904                goto out;
 905
 906        r = -EINVAL;
 907        as_id = mem->slot >> 16;
 908        id = (u16)mem->slot;
 909
 910        /* General sanity checks */
 911        if (mem->memory_size & (PAGE_SIZE - 1))
 912                goto out;
 913        if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 914                goto out;
 915        /* We can read the guest memory with __xxx_user() later on. */
 916        if ((id < KVM_USER_MEM_SLOTS) &&
 917            ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 918             !access_ok(VERIFY_WRITE,
 919                        (void __user *)(unsigned long)mem->userspace_addr,
 920                        mem->memory_size)))
 921                goto out;
 922        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
 923                goto out;
 924        if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 925                goto out;
 926
 927        slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
 928        base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 929        npages = mem->memory_size >> PAGE_SHIFT;
 930
 931        if (npages > KVM_MEM_MAX_NR_PAGES)
 932                goto out;
 933
 934        new = old = *slot;
 935
 936        new.id = id;
 937        new.base_gfn = base_gfn;
 938        new.npages = npages;
 939        new.flags = mem->flags;
 940
 941        if (npages) {
 942                if (!old.npages)
 943                        change = KVM_MR_CREATE;
 944                else { /* Modify an existing slot. */
 945                        if ((mem->userspace_addr != old.userspace_addr) ||
 946                            (npages != old.npages) ||
 947                            ((new.flags ^ old.flags) & KVM_MEM_READONLY))
 948                                goto out;
 949
 950                        if (base_gfn != old.base_gfn)
 951                                change = KVM_MR_MOVE;
 952                        else if (new.flags != old.flags)
 953                                change = KVM_MR_FLAGS_ONLY;
 954                        else { /* Nothing to change. */
 955                                r = 0;
 956                                goto out;
 957                        }
 958                }
 959        } else {
 960                if (!old.npages)
 961                        goto out;
 962
 963                change = KVM_MR_DELETE;
 964                new.base_gfn = 0;
 965                new.flags = 0;
 966        }
 967
 968        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
 969                /* Check for overlaps */
 970                r = -EEXIST;
 971                kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
 972                        if (slot->id == id)
 973                                continue;
 974                        if (!((base_gfn + npages <= slot->base_gfn) ||
 975                              (base_gfn >= slot->base_gfn + slot->npages)))
 976                                goto out;
 977                }
 978        }
 979
 980        /* Free page dirty bitmap if unneeded */
 981        if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
 982                new.dirty_bitmap = NULL;
 983
 984        r = -ENOMEM;
 985        if (change == KVM_MR_CREATE) {
 986                new.userspace_addr = mem->userspace_addr;
 987
 988                if (kvm_arch_create_memslot(kvm, &new, npages))
 989                        goto out_free;
 990        }
 991
 992        /* Allocate page dirty bitmap if needed */
 993        if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
 994                if (kvm_create_dirty_bitmap(&new) < 0)
 995                        goto out_free;
 996        }
 997
 998        slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 999        if (!slots)
1000                goto out_free;
1001        memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1002
1003        if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1004                slot = id_to_memslot(slots, id);
1005                slot->flags |= KVM_MEMSLOT_INVALID;
1006
1007                old_memslots = install_new_memslots(kvm, as_id, slots);
1008
1009                /* From this point no new shadow pages pointing to a deleted,
1010                 * or moved, memslot will be created.
1011                 *
1012                 * validation of sp->gfn happens in:
1013                 *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1014                 *      - kvm_is_visible_gfn (mmu_check_roots)
1015                 */
1016                kvm_arch_flush_shadow_memslot(kvm, slot);
1017
1018                /*
1019                 * We can re-use the old_memslots from above, the only difference
1020                 * from the currently installed memslots is the invalid flag.  This
1021                 * will get overwritten by update_memslots anyway.
1022                 */
1023                slots = old_memslots;
1024        }
1025
1026        r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1027        if (r)
1028                goto out_slots;
1029
1030        /* actual memory is freed via old in kvm_free_memslot below */
1031        if (change == KVM_MR_DELETE) {
1032                new.dirty_bitmap = NULL;
1033                memset(&new.arch, 0, sizeof(new.arch));
1034        }
1035
1036        update_memslots(slots, &new);
1037        old_memslots = install_new_memslots(kvm, as_id, slots);
1038
1039        kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1040
1041        kvm_free_memslot(kvm, &old, &new);
1042        kvfree(old_memslots);
1043        return 0;
1044
1045out_slots:
1046        kvfree(slots);
1047out_free:
1048        kvm_free_memslot(kvm, &new, &old);
1049out:
1050        return r;
1051}
1052EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1053
1054int kvm_set_memory_region(struct kvm *kvm,
1055                          const struct kvm_userspace_memory_region *mem)
1056{
1057        int r;
1058
1059        mutex_lock(&kvm->slots_lock);
1060        r = __kvm_set_memory_region(kvm, mem);
1061        mutex_unlock(&kvm->slots_lock);
1062        return r;
1063}
1064EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1065
1066static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1067                                          struct kvm_userspace_memory_region *mem)
1068{
1069        if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1070                return -EINVAL;
1071
1072        return kvm_set_memory_region(kvm, mem);
1073}
1074
1075int kvm_get_dirty_log(struct kvm *kvm,
1076                        struct kvm_dirty_log *log, int *is_dirty)
1077{
1078        struct kvm_memslots *slots;
1079        struct kvm_memory_slot *memslot;
1080        int i, as_id, id;
1081        unsigned long n;
1082        unsigned long any = 0;
1083
1084        as_id = log->slot >> 16;
1085        id = (u16)log->slot;
1086        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1087                return -EINVAL;
1088
1089        slots = __kvm_memslots(kvm, as_id);
1090        memslot = id_to_memslot(slots, id);
1091        if (!memslot->dirty_bitmap)
1092                return -ENOENT;
1093
1094        n = kvm_dirty_bitmap_bytes(memslot);
1095
1096        for (i = 0; !any && i < n/sizeof(long); ++i)
1097                any = memslot->dirty_bitmap[i];
1098
1099        if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1100                return -EFAULT;
1101
1102        if (any)
1103                *is_dirty = 1;
1104        return 0;
1105}
1106EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1107
1108#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1109/**
1110 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1111 *      are dirty write protect them for next write.
1112 * @kvm:        pointer to kvm instance
1113 * @log:        slot id and address to which we copy the log
1114 * @is_dirty:   flag set if any page is dirty
1115 *
1116 * We need to keep it in mind that VCPU threads can write to the bitmap
1117 * concurrently. So, to avoid losing track of dirty pages we keep the
1118 * following order:
1119 *
1120 *    1. Take a snapshot of the bit and clear it if needed.
1121 *    2. Write protect the corresponding page.
1122 *    3. Copy the snapshot to the userspace.
1123 *    4. Upon return caller flushes TLB's if needed.
1124 *
1125 * Between 2 and 4, the guest may write to the page using the remaining TLB
1126 * entry.  This is not a problem because the page is reported dirty using
1127 * the snapshot taken before and step 4 ensures that writes done after
1128 * exiting to userspace will be logged for the next call.
1129 *
1130 */
1131int kvm_get_dirty_log_protect(struct kvm *kvm,
1132                        struct kvm_dirty_log *log, bool *is_dirty)
1133{
1134        struct kvm_memslots *slots;
1135        struct kvm_memory_slot *memslot;
1136        int i, as_id, id;
1137        unsigned long n;
1138        unsigned long *dirty_bitmap;
1139        unsigned long *dirty_bitmap_buffer;
1140
1141        as_id = log->slot >> 16;
1142        id = (u16)log->slot;
1143        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1144                return -EINVAL;
1145
1146        slots = __kvm_memslots(kvm, as_id);
1147        memslot = id_to_memslot(slots, id);
1148
1149        dirty_bitmap = memslot->dirty_bitmap;
1150        if (!dirty_bitmap)
1151                return -ENOENT;
1152
1153        n = kvm_dirty_bitmap_bytes(memslot);
1154
1155        dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1156        memset(dirty_bitmap_buffer, 0, n);
1157
1158        spin_lock(&kvm->mmu_lock);
1159        *is_dirty = false;
1160        for (i = 0; i < n / sizeof(long); i++) {
1161                unsigned long mask;
1162                gfn_t offset;
1163
1164                if (!dirty_bitmap[i])
1165                        continue;
1166
1167                *is_dirty = true;
1168
1169                mask = xchg(&dirty_bitmap[i], 0);
1170                dirty_bitmap_buffer[i] = mask;
1171
1172                if (mask) {
1173                        offset = i * BITS_PER_LONG;
1174                        kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1175                                                                offset, mask);
1176                }
1177        }
1178
1179        spin_unlock(&kvm->mmu_lock);
1180        if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1181                return -EFAULT;
1182        return 0;
1183}
1184EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1185#endif
1186
1187bool kvm_largepages_enabled(void)
1188{
1189        return largepages_enabled;
1190}
1191
1192void kvm_disable_largepages(void)
1193{
1194        largepages_enabled = false;
1195}
1196EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1197
1198struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1199{
1200        return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1201}
1202EXPORT_SYMBOL_GPL(gfn_to_memslot);
1203
1204struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1205{
1206        return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1207}
1208
1209bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1210{
1211        struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1212
1213        if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1214              memslot->flags & KVM_MEMSLOT_INVALID)
1215                return false;
1216
1217        return true;
1218}
1219EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1220
1221unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1222{
1223        struct vm_area_struct *vma;
1224        unsigned long addr, size;
1225
1226        size = PAGE_SIZE;
1227
1228        addr = gfn_to_hva(kvm, gfn);
1229        if (kvm_is_error_hva(addr))
1230                return PAGE_SIZE;
1231
1232        down_read(&current->mm->mmap_sem);
1233        vma = find_vma(current->mm, addr);
1234        if (!vma)
1235                goto out;
1236
1237        size = vma_kernel_pagesize(vma);
1238
1239out:
1240        up_read(&current->mm->mmap_sem);
1241
1242        return size;
1243}
1244
1245static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1246{
1247        return slot->flags & KVM_MEM_READONLY;
1248}
1249
1250static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1251                                       gfn_t *nr_pages, bool write)
1252{
1253        if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1254                return KVM_HVA_ERR_BAD;
1255
1256        if (memslot_is_readonly(slot) && write)
1257                return KVM_HVA_ERR_RO_BAD;
1258
1259        if (nr_pages)
1260                *nr_pages = slot->npages - (gfn - slot->base_gfn);
1261
1262        return __gfn_to_hva_memslot(slot, gfn);
1263}
1264
1265static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1266                                     gfn_t *nr_pages)
1267{
1268        return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1269}
1270
1271unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1272                                        gfn_t gfn)
1273{
1274        return gfn_to_hva_many(slot, gfn, NULL);
1275}
1276EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1277
1278unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1279{
1280        return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1281}
1282EXPORT_SYMBOL_GPL(gfn_to_hva);
1283
1284unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1285{
1286        return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1287}
1288EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1289
1290/*
1291 * If writable is set to false, the hva returned by this function is only
1292 * allowed to be read.
1293 */
1294unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1295                                      gfn_t gfn, bool *writable)
1296{
1297        unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1298
1299        if (!kvm_is_error_hva(hva) && writable)
1300                *writable = !memslot_is_readonly(slot);
1301
1302        return hva;
1303}
1304
1305unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1306{
1307        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1308
1309        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1310}
1311
1312unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1313{
1314        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1315
1316        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1317}
1318
1319static inline int check_user_page_hwpoison(unsigned long addr)
1320{
1321        int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1322
1323        rc = get_user_pages(addr, 1, flags, NULL, NULL);
1324        return rc == -EHWPOISON;
1325}
1326
1327/*
1328 * The atomic path to get the writable pfn which will be stored in @pfn,
1329 * true indicates success, otherwise false is returned.
1330 */
1331static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1332                            bool write_fault, bool *writable, kvm_pfn_t *pfn)
1333{
1334        struct page *page[1];
1335        int npages;
1336
1337        if (!(async || atomic))
1338                return false;
1339
1340        /*
1341         * Fast pin a writable pfn only if it is a write fault request
1342         * or the caller allows to map a writable pfn for a read fault
1343         * request.
1344         */
1345        if (!(write_fault || writable))
1346                return false;
1347
1348        npages = __get_user_pages_fast(addr, 1, 1, page);
1349        if (npages == 1) {
1350                *pfn = page_to_pfn(page[0]);
1351
1352                if (writable)
1353                        *writable = true;
1354                return true;
1355        }
1356
1357        return false;
1358}
1359
1360/*
1361 * The slow path to get the pfn of the specified host virtual address,
1362 * 1 indicates success, -errno is returned if error is detected.
1363 */
1364static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1365                           bool *writable, kvm_pfn_t *pfn)
1366{
1367        unsigned int flags = FOLL_HWPOISON;
1368        struct page *page;
1369        int npages = 0;
1370
1371        might_sleep();
1372
1373        if (writable)
1374                *writable = write_fault;
1375
1376        if (write_fault)
1377                flags |= FOLL_WRITE;
1378        if (async)
1379                flags |= FOLL_NOWAIT;
1380
1381        npages = get_user_pages_unlocked(addr, 1, &page, flags);
1382        if (npages != 1)
1383                return npages;
1384
1385        /* map read fault as writable if possible */
1386        if (unlikely(!write_fault) && writable) {
1387                struct page *wpage;
1388
1389                if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1390                        *writable = true;
1391                        put_page(page);
1392                        page = wpage;
1393                }
1394        }
1395        *pfn = page_to_pfn(page);
1396        return npages;
1397}
1398
1399static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1400{
1401        if (unlikely(!(vma->vm_flags & VM_READ)))
1402                return false;
1403
1404        if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1405                return false;
1406
1407        return true;
1408}
1409
1410static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1411                               unsigned long addr, bool *async,
1412                               bool write_fault, bool *writable,
1413                               kvm_pfn_t *p_pfn)
1414{
1415        unsigned long pfn;
1416        int r;
1417
1418        r = follow_pfn(vma, addr, &pfn);
1419        if (r) {
1420                /*
1421                 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1422                 * not call the fault handler, so do it here.
1423                 */
1424                bool unlocked = false;
1425                r = fixup_user_fault(current, current->mm, addr,
1426                                     (write_fault ? FAULT_FLAG_WRITE : 0),
1427                                     &unlocked);
1428                if (unlocked)
1429                        return -EAGAIN;
1430                if (r)
1431                        return r;
1432
1433                r = follow_pfn(vma, addr, &pfn);
1434                if (r)
1435                        return r;
1436
1437        }
1438
1439        if (writable)
1440                *writable = true;
1441
1442        /*
1443         * Get a reference here because callers of *hva_to_pfn* and
1444         * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1445         * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1446         * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1447         * simply do nothing for reserved pfns.
1448         *
1449         * Whoever called remap_pfn_range is also going to call e.g.
1450         * unmap_mapping_range before the underlying pages are freed,
1451         * causing a call to our MMU notifier.
1452         */ 
1453        kvm_get_pfn(pfn);
1454
1455        *p_pfn = pfn;
1456        return 0;
1457}
1458
1459/*
1460 * Pin guest page in memory and return its pfn.
1461 * @addr: host virtual address which maps memory to the guest
1462 * @atomic: whether this function can sleep
1463 * @async: whether this function need to wait IO complete if the
1464 *         host page is not in the memory
1465 * @write_fault: whether we should get a writable host page
1466 * @writable: whether it allows to map a writable host page for !@write_fault
1467 *
1468 * The function will map a writable host page for these two cases:
1469 * 1): @write_fault = true
1470 * 2): @write_fault = false && @writable, @writable will tell the caller
1471 *     whether the mapping is writable.
1472 */
1473static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1474                        bool write_fault, bool *writable)
1475{
1476        struct vm_area_struct *vma;
1477        kvm_pfn_t pfn = 0;
1478        int npages, r;
1479
1480        /* we can do it either atomically or asynchronously, not both */
1481        BUG_ON(atomic && async);
1482
1483        if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1484                return pfn;
1485
1486        if (atomic)
1487                return KVM_PFN_ERR_FAULT;
1488
1489        npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1490        if (npages == 1)
1491                return pfn;
1492
1493        down_read(&current->mm->mmap_sem);
1494        if (npages == -EHWPOISON ||
1495              (!async && check_user_page_hwpoison(addr))) {
1496                pfn = KVM_PFN_ERR_HWPOISON;
1497                goto exit;
1498        }
1499
1500retry:
1501        vma = find_vma_intersection(current->mm, addr, addr + 1);
1502
1503        if (vma == NULL)
1504                pfn = KVM_PFN_ERR_FAULT;
1505        else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1506                r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1507                if (r == -EAGAIN)
1508                        goto retry;
1509                if (r < 0)
1510                        pfn = KVM_PFN_ERR_FAULT;
1511        } else {
1512                if (async && vma_is_valid(vma, write_fault))
1513                        *async = true;
1514                pfn = KVM_PFN_ERR_FAULT;
1515        }
1516exit:
1517        up_read(&current->mm->mmap_sem);
1518        return pfn;
1519}
1520
1521kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1522                               bool atomic, bool *async, bool write_fault,
1523                               bool *writable)
1524{
1525        unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1526
1527        if (addr == KVM_HVA_ERR_RO_BAD) {
1528                if (writable)
1529                        *writable = false;
1530                return KVM_PFN_ERR_RO_FAULT;
1531        }
1532
1533        if (kvm_is_error_hva(addr)) {
1534                if (writable)
1535                        *writable = false;
1536                return KVM_PFN_NOSLOT;
1537        }
1538
1539        /* Do not map writable pfn in the readonly memslot. */
1540        if (writable && memslot_is_readonly(slot)) {
1541                *writable = false;
1542                writable = NULL;
1543        }
1544
1545        return hva_to_pfn(addr, atomic, async, write_fault,
1546                          writable);
1547}
1548EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1549
1550kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1551                      bool *writable)
1552{
1553        return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1554                                    write_fault, writable);
1555}
1556EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1557
1558kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1559{
1560        return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1561}
1562EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1563
1564kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1565{
1566        return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1567}
1568EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1569
1570kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1571{
1572        return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1573}
1574EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1575
1576kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1577{
1578        return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1579}
1580EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1581
1582kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1583{
1584        return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1585}
1586EXPORT_SYMBOL_GPL(gfn_to_pfn);
1587
1588kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1589{
1590        return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1591}
1592EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1593
1594int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1595                            struct page **pages, int nr_pages)
1596{
1597        unsigned long addr;
1598        gfn_t entry = 0;
1599
1600        addr = gfn_to_hva_many(slot, gfn, &entry);
1601        if (kvm_is_error_hva(addr))
1602                return -1;
1603
1604        if (entry < nr_pages)
1605                return 0;
1606
1607        return __get_user_pages_fast(addr, nr_pages, 1, pages);
1608}
1609EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1610
1611static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1612{
1613        if (is_error_noslot_pfn(pfn))
1614                return KVM_ERR_PTR_BAD_PAGE;
1615
1616        if (kvm_is_reserved_pfn(pfn)) {
1617                WARN_ON(1);
1618                return KVM_ERR_PTR_BAD_PAGE;
1619        }
1620
1621        return pfn_to_page(pfn);
1622}
1623
1624struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1625{
1626        kvm_pfn_t pfn;
1627
1628        pfn = gfn_to_pfn(kvm, gfn);
1629
1630        return kvm_pfn_to_page(pfn);
1631}
1632EXPORT_SYMBOL_GPL(gfn_to_page);
1633
1634struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1635{
1636        kvm_pfn_t pfn;
1637
1638        pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1639
1640        return kvm_pfn_to_page(pfn);
1641}
1642EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1643
1644void kvm_release_page_clean(struct page *page)
1645{
1646        WARN_ON(is_error_page(page));
1647
1648        kvm_release_pfn_clean(page_to_pfn(page));
1649}
1650EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1651
1652void kvm_release_pfn_clean(kvm_pfn_t pfn)
1653{
1654        if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1655                put_page(pfn_to_page(pfn));
1656}
1657EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1658
1659void kvm_release_page_dirty(struct page *page)
1660{
1661        WARN_ON(is_error_page(page));
1662
1663        kvm_release_pfn_dirty(page_to_pfn(page));
1664}
1665EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1666
1667void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1668{
1669        kvm_set_pfn_dirty(pfn);
1670        kvm_release_pfn_clean(pfn);
1671}
1672EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1673
1674void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1675{
1676        if (!kvm_is_reserved_pfn(pfn)) {
1677                struct page *page = pfn_to_page(pfn);
1678
1679                if (!PageReserved(page))
1680                        SetPageDirty(page);
1681        }
1682}
1683EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1684
1685void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1686{
1687        if (!kvm_is_reserved_pfn(pfn))
1688                mark_page_accessed(pfn_to_page(pfn));
1689}
1690EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1691
1692void kvm_get_pfn(kvm_pfn_t pfn)
1693{
1694        if (!kvm_is_reserved_pfn(pfn))
1695                get_page(pfn_to_page(pfn));
1696}
1697EXPORT_SYMBOL_GPL(kvm_get_pfn);
1698
1699static int next_segment(unsigned long len, int offset)
1700{
1701        if (len > PAGE_SIZE - offset)
1702                return PAGE_SIZE - offset;
1703        else
1704                return len;
1705}
1706
1707static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1708                                 void *data, int offset, int len)
1709{
1710        int r;
1711        unsigned long addr;
1712
1713        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1714        if (kvm_is_error_hva(addr))
1715                return -EFAULT;
1716        r = __copy_from_user(data, (void __user *)addr + offset, len);
1717        if (r)
1718                return -EFAULT;
1719        return 0;
1720}
1721
1722int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1723                        int len)
1724{
1725        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1726
1727        return __kvm_read_guest_page(slot, gfn, data, offset, len);
1728}
1729EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1730
1731int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1732                             int offset, int len)
1733{
1734        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1735
1736        return __kvm_read_guest_page(slot, gfn, data, offset, len);
1737}
1738EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1739
1740int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1741{
1742        gfn_t gfn = gpa >> PAGE_SHIFT;
1743        int seg;
1744        int offset = offset_in_page(gpa);
1745        int ret;
1746
1747        while ((seg = next_segment(len, offset)) != 0) {
1748                ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1749                if (ret < 0)
1750                        return ret;
1751                offset = 0;
1752                len -= seg;
1753                data += seg;
1754                ++gfn;
1755        }
1756        return 0;
1757}
1758EXPORT_SYMBOL_GPL(kvm_read_guest);
1759
1760int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1761{
1762        gfn_t gfn = gpa >> PAGE_SHIFT;
1763        int seg;
1764        int offset = offset_in_page(gpa);
1765        int ret;
1766
1767        while ((seg = next_segment(len, offset)) != 0) {
1768                ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1769                if (ret < 0)
1770                        return ret;
1771                offset = 0;
1772                len -= seg;
1773                data += seg;
1774                ++gfn;
1775        }
1776        return 0;
1777}
1778EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1779
1780static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1781                                   void *data, int offset, unsigned long len)
1782{
1783        int r;
1784        unsigned long addr;
1785
1786        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1787        if (kvm_is_error_hva(addr))
1788                return -EFAULT;
1789        pagefault_disable();
1790        r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1791        pagefault_enable();
1792        if (r)
1793                return -EFAULT;
1794        return 0;
1795}
1796
1797int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1798                          unsigned long len)
1799{
1800        gfn_t gfn = gpa >> PAGE_SHIFT;
1801        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1802        int offset = offset_in_page(gpa);
1803
1804        return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1805}
1806EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1807
1808int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1809                               void *data, unsigned long len)
1810{
1811        gfn_t gfn = gpa >> PAGE_SHIFT;
1812        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1813        int offset = offset_in_page(gpa);
1814
1815        return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1816}
1817EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1818
1819static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1820                                  const void *data, int offset, int len)
1821{
1822        int r;
1823        unsigned long addr;
1824
1825        addr = gfn_to_hva_memslot(memslot, gfn);
1826        if (kvm_is_error_hva(addr))
1827                return -EFAULT;
1828        r = __copy_to_user((void __user *)addr + offset, data, len);
1829        if (r)
1830                return -EFAULT;
1831        mark_page_dirty_in_slot(memslot, gfn);
1832        return 0;
1833}
1834
1835int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1836                         const void *data, int offset, int len)
1837{
1838        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1839
1840        return __kvm_write_guest_page(slot, gfn, data, offset, len);
1841}
1842EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1843
1844int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1845                              const void *data, int offset, int len)
1846{
1847        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1848
1849        return __kvm_write_guest_page(slot, gfn, data, offset, len);
1850}
1851EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1852
1853int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1854                    unsigned long len)
1855{
1856        gfn_t gfn = gpa >> PAGE_SHIFT;
1857        int seg;
1858        int offset = offset_in_page(gpa);
1859        int ret;
1860
1861        while ((seg = next_segment(len, offset)) != 0) {
1862                ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1863                if (ret < 0)
1864                        return ret;
1865                offset = 0;
1866                len -= seg;
1867                data += seg;
1868                ++gfn;
1869        }
1870        return 0;
1871}
1872EXPORT_SYMBOL_GPL(kvm_write_guest);
1873
1874int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1875                         unsigned long len)
1876{
1877        gfn_t gfn = gpa >> PAGE_SHIFT;
1878        int seg;
1879        int offset = offset_in_page(gpa);
1880        int ret;
1881
1882        while ((seg = next_segment(len, offset)) != 0) {
1883                ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1884                if (ret < 0)
1885                        return ret;
1886                offset = 0;
1887                len -= seg;
1888                data += seg;
1889                ++gfn;
1890        }
1891        return 0;
1892}
1893EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1894
1895static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1896                                       struct gfn_to_hva_cache *ghc,
1897                                       gpa_t gpa, unsigned long len)
1898{
1899        int offset = offset_in_page(gpa);
1900        gfn_t start_gfn = gpa >> PAGE_SHIFT;
1901        gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1902        gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1903        gfn_t nr_pages_avail;
1904
1905        ghc->gpa = gpa;
1906        ghc->generation = slots->generation;
1907        ghc->len = len;
1908        ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1909        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1910        if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1911                ghc->hva += offset;
1912        } else {
1913                /*
1914                 * If the requested region crosses two memslots, we still
1915                 * verify that the entire region is valid here.
1916                 */
1917                while (start_gfn <= end_gfn) {
1918                        nr_pages_avail = 0;
1919                        ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1920                        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1921                                                   &nr_pages_avail);
1922                        if (kvm_is_error_hva(ghc->hva))
1923                                return -EFAULT;
1924                        start_gfn += nr_pages_avail;
1925                }
1926                /* Use the slow path for cross page reads and writes. */
1927                ghc->memslot = NULL;
1928        }
1929        return 0;
1930}
1931
1932int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1933                              gpa_t gpa, unsigned long len)
1934{
1935        struct kvm_memslots *slots = kvm_memslots(kvm);
1936        return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1937}
1938EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1939
1940int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1941                           void *data, int offset, unsigned long len)
1942{
1943        struct kvm_memslots *slots = kvm_memslots(kvm);
1944        int r;
1945        gpa_t gpa = ghc->gpa + offset;
1946
1947        BUG_ON(len + offset > ghc->len);
1948
1949        if (slots->generation != ghc->generation)
1950                __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1951
1952        if (unlikely(!ghc->memslot))
1953                return kvm_write_guest(kvm, gpa, data, len);
1954
1955        if (kvm_is_error_hva(ghc->hva))
1956                return -EFAULT;
1957
1958        r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1959        if (r)
1960                return -EFAULT;
1961        mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1962
1963        return 0;
1964}
1965EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1966
1967int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1968                           void *data, unsigned long len)
1969{
1970        return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1971}
1972EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1973
1974int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1975                           void *data, unsigned long len)
1976{
1977        struct kvm_memslots *slots = kvm_memslots(kvm);
1978        int r;
1979
1980        BUG_ON(len > ghc->len);
1981
1982        if (slots->generation != ghc->generation)
1983                __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1984
1985        if (unlikely(!ghc->memslot))
1986                return kvm_read_guest(kvm, ghc->gpa, data, len);
1987
1988        if (kvm_is_error_hva(ghc->hva))
1989                return -EFAULT;
1990
1991        r = __copy_from_user(data, (void __user *)ghc->hva, len);
1992        if (r)
1993                return -EFAULT;
1994
1995        return 0;
1996}
1997EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1998
1999int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2000{
2001        const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2002
2003        return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2004}
2005EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2006
2007int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2008{
2009        gfn_t gfn = gpa >> PAGE_SHIFT;
2010        int seg;
2011        int offset = offset_in_page(gpa);
2012        int ret;
2013
2014        while ((seg = next_segment(len, offset)) != 0) {
2015                ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2016                if (ret < 0)
2017                        return ret;
2018                offset = 0;
2019                len -= seg;
2020                ++gfn;
2021        }
2022        return 0;
2023}
2024EXPORT_SYMBOL_GPL(kvm_clear_guest);
2025
2026static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2027                                    gfn_t gfn)
2028{
2029        if (memslot && memslot->dirty_bitmap) {
2030                unsigned long rel_gfn = gfn - memslot->base_gfn;
2031
2032                set_bit_le(rel_gfn, memslot->dirty_bitmap);
2033        }
2034}
2035
2036void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2037{
2038        struct kvm_memory_slot *memslot;
2039
2040        memslot = gfn_to_memslot(kvm, gfn);
2041        mark_page_dirty_in_slot(memslot, gfn);
2042}
2043EXPORT_SYMBOL_GPL(mark_page_dirty);
2044
2045void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2046{
2047        struct kvm_memory_slot *memslot;
2048
2049        memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2050        mark_page_dirty_in_slot(memslot, gfn);
2051}
2052EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2053
2054void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2055{
2056        if (!vcpu->sigset_active)
2057                return;
2058
2059        /*
2060         * This does a lockless modification of ->real_blocked, which is fine
2061         * because, only current can change ->real_blocked and all readers of
2062         * ->real_blocked don't care as long ->real_blocked is always a subset
2063         * of ->blocked.
2064         */
2065        sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2066}
2067
2068void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2069{
2070        if (!vcpu->sigset_active)
2071                return;
2072
2073        sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2074        sigemptyset(&current->real_blocked);
2075}
2076
2077static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2078{
2079        unsigned int old, val, grow;
2080
2081        old = val = vcpu->halt_poll_ns;
2082        grow = READ_ONCE(halt_poll_ns_grow);
2083        /* 10us base */
2084        if (val == 0 && grow)
2085                val = 10000;
2086        else
2087                val *= grow;
2088
2089        if (val > halt_poll_ns)
2090                val = halt_poll_ns;
2091
2092        vcpu->halt_poll_ns = val;
2093        trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2094}
2095
2096static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2097{
2098        unsigned int old, val, shrink;
2099
2100        old = val = vcpu->halt_poll_ns;
2101        shrink = READ_ONCE(halt_poll_ns_shrink);
2102        if (shrink == 0)
2103                val = 0;
2104        else
2105                val /= shrink;
2106
2107        vcpu->halt_poll_ns = val;
2108        trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2109}
2110
2111static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2112{
2113        if (kvm_arch_vcpu_runnable(vcpu)) {
2114                kvm_make_request(KVM_REQ_UNHALT, vcpu);
2115                return -EINTR;
2116        }
2117        if (kvm_cpu_has_pending_timer(vcpu))
2118                return -EINTR;
2119        if (signal_pending(current))
2120                return -EINTR;
2121
2122        return 0;
2123}
2124
2125/*
2126 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2127 */
2128void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2129{
2130        ktime_t start, cur;
2131        DECLARE_SWAITQUEUE(wait);
2132        bool waited = false;
2133        u64 block_ns;
2134
2135        start = cur = ktime_get();
2136        if (vcpu->halt_poll_ns) {
2137                ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2138
2139                ++vcpu->stat.halt_attempted_poll;
2140                do {
2141                        /*
2142                         * This sets KVM_REQ_UNHALT if an interrupt
2143                         * arrives.
2144                         */
2145                        if (kvm_vcpu_check_block(vcpu) < 0) {
2146                                ++vcpu->stat.halt_successful_poll;
2147                                if (!vcpu_valid_wakeup(vcpu))
2148                                        ++vcpu->stat.halt_poll_invalid;
2149                                goto out;
2150                        }
2151                        cur = ktime_get();
2152                } while (single_task_running() && ktime_before(cur, stop));
2153        }
2154
2155        kvm_arch_vcpu_blocking(vcpu);
2156
2157        for (;;) {
2158                prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2159
2160                if (kvm_vcpu_check_block(vcpu) < 0)
2161                        break;
2162
2163                waited = true;
2164                schedule();
2165        }
2166
2167        finish_swait(&vcpu->wq, &wait);
2168        cur = ktime_get();
2169
2170        kvm_arch_vcpu_unblocking(vcpu);
2171out:
2172        block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2173
2174        if (!vcpu_valid_wakeup(vcpu))
2175                shrink_halt_poll_ns(vcpu);
2176        else if (halt_poll_ns) {
2177                if (block_ns <= vcpu->halt_poll_ns)
2178                        ;
2179                /* we had a long block, shrink polling */
2180                else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2181                        shrink_halt_poll_ns(vcpu);
2182                /* we had a short halt and our poll time is too small */
2183                else if (vcpu->halt_poll_ns < halt_poll_ns &&
2184                        block_ns < halt_poll_ns)
2185                        grow_halt_poll_ns(vcpu);
2186        } else
2187                vcpu->halt_poll_ns = 0;
2188
2189        trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2190        kvm_arch_vcpu_block_finish(vcpu);
2191}
2192EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2193
2194bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2195{
2196        struct swait_queue_head *wqp;
2197
2198        wqp = kvm_arch_vcpu_wq(vcpu);
2199        if (swq_has_sleeper(wqp)) {
2200                swake_up(wqp);
2201                ++vcpu->stat.halt_wakeup;
2202                return true;
2203        }
2204
2205        return false;
2206}
2207EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2208
2209#ifndef CONFIG_S390
2210/*
2211 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2212 */
2213void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2214{
2215        int me;
2216        int cpu = vcpu->cpu;
2217
2218        if (kvm_vcpu_wake_up(vcpu))
2219                return;
2220
2221        me = get_cpu();
2222        if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2223                if (kvm_arch_vcpu_should_kick(vcpu))
2224                        smp_send_reschedule(cpu);
2225        put_cpu();
2226}
2227EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2228#endif /* !CONFIG_S390 */
2229
2230int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2231{
2232        struct pid *pid;
2233        struct task_struct *task = NULL;
2234        int ret = 0;
2235
2236        rcu_read_lock();
2237        pid = rcu_dereference(target->pid);
2238        if (pid)
2239                task = get_pid_task(pid, PIDTYPE_PID);
2240        rcu_read_unlock();
2241        if (!task)
2242                return ret;
2243        ret = yield_to(task, 1);
2244        put_task_struct(task);
2245
2246        return ret;
2247}
2248EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2249
2250/*
2251 * Helper that checks whether a VCPU is eligible for directed yield.
2252 * Most eligible candidate to yield is decided by following heuristics:
2253 *
2254 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2255 *  (preempted lock holder), indicated by @in_spin_loop.
2256 *  Set at the beiginning and cleared at the end of interception/PLE handler.
2257 *
2258 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2259 *  chance last time (mostly it has become eligible now since we have probably
2260 *  yielded to lockholder in last iteration. This is done by toggling
2261 *  @dy_eligible each time a VCPU checked for eligibility.)
2262 *
2263 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2264 *  to preempted lock-holder could result in wrong VCPU selection and CPU
2265 *  burning. Giving priority for a potential lock-holder increases lock
2266 *  progress.
2267 *
2268 *  Since algorithm is based on heuristics, accessing another VCPU data without
2269 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2270 *  and continue with next VCPU and so on.
2271 */
2272static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2273{
2274#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2275        bool eligible;
2276
2277        eligible = !vcpu->spin_loop.in_spin_loop ||
2278                    vcpu->spin_loop.dy_eligible;
2279
2280        if (vcpu->spin_loop.in_spin_loop)
2281                kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2282
2283        return eligible;
2284#else
2285        return true;
2286#endif
2287}
2288
2289void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2290{
2291        struct kvm *kvm = me->kvm;
2292        struct kvm_vcpu *vcpu;
2293        int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2294        int yielded = 0;
2295        int try = 3;
2296        int pass;
2297        int i;
2298
2299        kvm_vcpu_set_in_spin_loop(me, true);
2300        /*
2301         * We boost the priority of a VCPU that is runnable but not
2302         * currently running, because it got preempted by something
2303         * else and called schedule in __vcpu_run.  Hopefully that
2304         * VCPU is holding the lock that we need and will release it.
2305         * We approximate round-robin by starting at the last boosted VCPU.
2306         */
2307        for (pass = 0; pass < 2 && !yielded && try; pass++) {
2308                kvm_for_each_vcpu(i, vcpu, kvm) {
2309                        if (!pass && i <= last_boosted_vcpu) {
2310                                i = last_boosted_vcpu;
2311                                continue;
2312                        } else if (pass && i > last_boosted_vcpu)
2313                                break;
2314                        if (!READ_ONCE(vcpu->preempted))
2315                                continue;
2316                        if (vcpu == me)
2317                                continue;
2318                        if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2319                                continue;
2320                        if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2321                                continue;
2322                        if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2323                                continue;
2324
2325                        yielded = kvm_vcpu_yield_to(vcpu);
2326                        if (yielded > 0) {
2327                                kvm->last_boosted_vcpu = i;
2328                                break;
2329                        } else if (yielded < 0) {
2330                                try--;
2331                                if (!try)
2332                                        break;
2333                        }
2334                }
2335        }
2336        kvm_vcpu_set_in_spin_loop(me, false);
2337
2338        /* Ensure vcpu is not eligible during next spinloop */
2339        kvm_vcpu_set_dy_eligible(me, false);
2340}
2341EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2342
2343static int kvm_vcpu_fault(struct vm_fault *vmf)
2344{
2345        struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2346        struct page *page;
2347
2348        if (vmf->pgoff == 0)
2349                page = virt_to_page(vcpu->run);
2350#ifdef CONFIG_X86
2351        else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2352                page = virt_to_page(vcpu->arch.pio_data);
2353#endif
2354#ifdef CONFIG_KVM_MMIO
2355        else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2356                page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2357#endif
2358        else
2359                return kvm_arch_vcpu_fault(vcpu, vmf);
2360        get_page(page);
2361        vmf->page = page;
2362        return 0;
2363}
2364
2365static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2366        .fault = kvm_vcpu_fault,
2367};
2368
2369static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2370{
2371        vma->vm_ops = &kvm_vcpu_vm_ops;
2372        return 0;
2373}
2374
2375static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2376{
2377        struct kvm_vcpu *vcpu = filp->private_data;
2378
2379        debugfs_remove_recursive(vcpu->debugfs_dentry);
2380        kvm_put_kvm(vcpu->kvm);
2381        return 0;
2382}
2383
2384static struct file_operations kvm_vcpu_fops = {
2385        .release        = kvm_vcpu_release,
2386        .unlocked_ioctl = kvm_vcpu_ioctl,
2387#ifdef CONFIG_KVM_COMPAT
2388        .compat_ioctl   = kvm_vcpu_compat_ioctl,
2389#endif
2390        .mmap           = kvm_vcpu_mmap,
2391        .llseek         = noop_llseek,
2392};
2393
2394/*
2395 * Allocates an inode for the vcpu.
2396 */
2397static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2398{
2399        char name[8 + 1 + ITOA_MAX_LEN + 1];
2400
2401        snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2402        return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2403}
2404
2405static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2406{
2407        char dir_name[ITOA_MAX_LEN * 2];
2408        int ret;
2409
2410        if (!kvm_arch_has_vcpu_debugfs())
2411                return 0;
2412
2413        if (!debugfs_initialized())
2414                return 0;
2415
2416        snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2417        vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2418                                                                vcpu->kvm->debugfs_dentry);
2419        if (!vcpu->debugfs_dentry)
2420                return -ENOMEM;
2421
2422        ret = kvm_arch_create_vcpu_debugfs(vcpu);
2423        if (ret < 0) {
2424                debugfs_remove_recursive(vcpu->debugfs_dentry);
2425                return ret;
2426        }
2427
2428        return 0;
2429}
2430
2431/*
2432 * Creates some virtual cpus.  Good luck creating more than one.
2433 */
2434static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2435{
2436        int r;
2437        struct kvm_vcpu *vcpu;
2438
2439        if (id >= KVM_MAX_VCPU_ID)
2440                return -EINVAL;
2441
2442        mutex_lock(&kvm->lock);
2443        if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2444                mutex_unlock(&kvm->lock);
2445                return -EINVAL;
2446        }
2447
2448        kvm->created_vcpus++;
2449        mutex_unlock(&kvm->lock);
2450
2451        vcpu = kvm_arch_vcpu_create(kvm, id);
2452        if (IS_ERR(vcpu)) {
2453                r = PTR_ERR(vcpu);
2454                goto vcpu_decrement;
2455        }
2456
2457        preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2458
2459        r = kvm_arch_vcpu_setup(vcpu);
2460        if (r)
2461                goto vcpu_destroy;
2462
2463        r = kvm_create_vcpu_debugfs(vcpu);
2464        if (r)
2465                goto vcpu_destroy;
2466
2467        mutex_lock(&kvm->lock);
2468        if (kvm_get_vcpu_by_id(kvm, id)) {
2469                r = -EEXIST;
2470                goto unlock_vcpu_destroy;
2471        }
2472
2473        BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2474
2475        /* Now it's all set up, let userspace reach it */
2476        kvm_get_kvm(kvm);
2477        r = create_vcpu_fd(vcpu);
2478        if (r < 0) {
2479                kvm_put_kvm(kvm);
2480                goto unlock_vcpu_destroy;
2481        }
2482
2483        kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2484
2485        /*
2486         * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2487         * before kvm->online_vcpu's incremented value.
2488         */
2489        smp_wmb();
2490        atomic_inc(&kvm->online_vcpus);
2491
2492        mutex_unlock(&kvm->lock);
2493        kvm_arch_vcpu_postcreate(vcpu);
2494        return r;
2495
2496unlock_vcpu_destroy:
2497        mutex_unlock(&kvm->lock);
2498        debugfs_remove_recursive(vcpu->debugfs_dentry);
2499vcpu_destroy:
2500        kvm_arch_vcpu_destroy(vcpu);
2501vcpu_decrement:
2502        mutex_lock(&kvm->lock);
2503        kvm->created_vcpus--;
2504        mutex_unlock(&kvm->lock);
2505        return r;
2506}
2507
2508static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2509{
2510        if (sigset) {
2511                sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2512                vcpu->sigset_active = 1;
2513                vcpu->sigset = *sigset;
2514        } else
2515                vcpu->sigset_active = 0;
2516        return 0;
2517}
2518
2519static long kvm_vcpu_ioctl(struct file *filp,
2520                           unsigned int ioctl, unsigned long arg)
2521{
2522        struct kvm_vcpu *vcpu = filp->private_data;
2523        void __user *argp = (void __user *)arg;
2524        int r;
2525        struct kvm_fpu *fpu = NULL;
2526        struct kvm_sregs *kvm_sregs = NULL;
2527
2528        if (vcpu->kvm->mm != current->mm)
2529                return -EIO;
2530
2531        if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2532                return -EINVAL;
2533
2534        /*
2535         * Some architectures have vcpu ioctls that are asynchronous to vcpu
2536         * execution; mutex_lock() would break them.
2537         */
2538        r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2539        if (r != -ENOIOCTLCMD)
2540                return r;
2541
2542        if (mutex_lock_killable(&vcpu->mutex))
2543                return -EINTR;
2544        switch (ioctl) {
2545        case KVM_RUN: {
2546                struct pid *oldpid;
2547                r = -EINVAL;
2548                if (arg)
2549                        goto out;
2550                oldpid = rcu_access_pointer(vcpu->pid);
2551                if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2552                        /* The thread running this VCPU changed. */
2553                        struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2554
2555                        rcu_assign_pointer(vcpu->pid, newpid);
2556                        if (oldpid)
2557                                synchronize_rcu();
2558                        put_pid(oldpid);
2559                }
2560                r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2561                trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2562                break;
2563        }
2564        case KVM_GET_REGS: {
2565                struct kvm_regs *kvm_regs;
2566
2567                r = -ENOMEM;
2568                kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2569                if (!kvm_regs)
2570                        goto out;
2571                r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2572                if (r)
2573                        goto out_free1;
2574                r = -EFAULT;
2575                if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2576                        goto out_free1;
2577                r = 0;
2578out_free1:
2579                kfree(kvm_regs);
2580                break;
2581        }
2582        case KVM_SET_REGS: {
2583                struct kvm_regs *kvm_regs;
2584
2585                r = -ENOMEM;
2586                kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2587                if (IS_ERR(kvm_regs)) {
2588                        r = PTR_ERR(kvm_regs);
2589                        goto out;
2590                }
2591                r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2592                kfree(kvm_regs);
2593                break;
2594        }
2595        case KVM_GET_SREGS: {
2596                kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2597                r = -ENOMEM;
2598                if (!kvm_sregs)
2599                        goto out;
2600                r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2601                if (r)
2602                        goto out;
2603                r = -EFAULT;
2604                if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2605                        goto out;
2606                r = 0;
2607                break;
2608        }
2609        case KVM_SET_SREGS: {
2610                kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2611                if (IS_ERR(kvm_sregs)) {
2612                        r = PTR_ERR(kvm_sregs);
2613                        kvm_sregs = NULL;
2614                        goto out;
2615                }
2616                r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2617                break;
2618        }
2619        case KVM_GET_MP_STATE: {
2620                struct kvm_mp_state mp_state;
2621
2622                r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2623                if (r)
2624                        goto out;
2625                r = -EFAULT;
2626                if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2627                        goto out;
2628                r = 0;
2629                break;
2630        }
2631        case KVM_SET_MP_STATE: {
2632                struct kvm_mp_state mp_state;
2633
2634                r = -EFAULT;
2635                if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2636                        goto out;
2637                r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2638                break;
2639        }
2640        case KVM_TRANSLATE: {
2641                struct kvm_translation tr;
2642
2643                r = -EFAULT;
2644                if (copy_from_user(&tr, argp, sizeof(tr)))
2645                        goto out;
2646                r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2647                if (r)
2648                        goto out;
2649                r = -EFAULT;
2650                if (copy_to_user(argp, &tr, sizeof(tr)))
2651                        goto out;
2652                r = 0;
2653                break;
2654        }
2655        case KVM_SET_GUEST_DEBUG: {
2656                struct kvm_guest_debug dbg;
2657
2658                r = -EFAULT;
2659                if (copy_from_user(&dbg, argp, sizeof(dbg)))
2660                        goto out;
2661                r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2662                break;
2663        }
2664        case KVM_SET_SIGNAL_MASK: {
2665                struct kvm_signal_mask __user *sigmask_arg = argp;
2666                struct kvm_signal_mask kvm_sigmask;
2667                sigset_t sigset, *p;
2668
2669                p = NULL;
2670                if (argp) {
2671                        r = -EFAULT;
2672                        if (copy_from_user(&kvm_sigmask, argp,
2673                                           sizeof(kvm_sigmask)))
2674                                goto out;
2675                        r = -EINVAL;
2676                        if (kvm_sigmask.len != sizeof(sigset))
2677                                goto out;
2678                        r = -EFAULT;
2679                        if (copy_from_user(&sigset, sigmask_arg->sigset,
2680                                           sizeof(sigset)))
2681                                goto out;
2682                        p = &sigset;
2683                }
2684                r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2685                break;
2686        }
2687        case KVM_GET_FPU: {
2688                fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2689                r = -ENOMEM;
2690                if (!fpu)
2691                        goto out;
2692                r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2693                if (r)
2694                        goto out;
2695                r = -EFAULT;
2696                if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2697                        goto out;
2698                r = 0;
2699                break;
2700        }
2701        case KVM_SET_FPU: {
2702                fpu = memdup_user(argp, sizeof(*fpu));
2703                if (IS_ERR(fpu)) {
2704                        r = PTR_ERR(fpu);
2705                        fpu = NULL;
2706                        goto out;
2707                }
2708                r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2709                break;
2710        }
2711        default:
2712                r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2713        }
2714out:
2715        mutex_unlock(&vcpu->mutex);
2716        kfree(fpu);
2717        kfree(kvm_sregs);
2718        return r;
2719}
2720
2721#ifdef CONFIG_KVM_COMPAT
2722static long kvm_vcpu_compat_ioctl(struct file *filp,
2723                                  unsigned int ioctl, unsigned long arg)
2724{
2725        struct kvm_vcpu *vcpu = filp->private_data;
2726        void __user *argp = compat_ptr(arg);
2727        int r;
2728
2729        if (vcpu->kvm->mm != current->mm)
2730                return -EIO;
2731
2732        switch (ioctl) {
2733        case KVM_SET_SIGNAL_MASK: {
2734                struct kvm_signal_mask __user *sigmask_arg = argp;
2735                struct kvm_signal_mask kvm_sigmask;
2736                sigset_t sigset;
2737
2738                if (argp) {
2739                        r = -EFAULT;
2740                        if (copy_from_user(&kvm_sigmask, argp,
2741                                           sizeof(kvm_sigmask)))
2742                                goto out;
2743                        r = -EINVAL;
2744                        if (kvm_sigmask.len != sizeof(compat_sigset_t))
2745                                goto out;
2746                        r = -EFAULT;
2747                        if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2748                                goto out;
2749                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2750                } else
2751                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2752                break;
2753        }
2754        default:
2755                r = kvm_vcpu_ioctl(filp, ioctl, arg);
2756        }
2757
2758out:
2759        return r;
2760}
2761#endif
2762
2763static int kvm_device_ioctl_attr(struct kvm_device *dev,
2764                                 int (*accessor)(struct kvm_device *dev,
2765                                                 struct kvm_device_attr *attr),
2766                                 unsigned long arg)
2767{
2768        struct kvm_device_attr attr;
2769
2770        if (!accessor)
2771                return -EPERM;
2772
2773        if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2774                return -EFAULT;
2775
2776        return accessor(dev, &attr);
2777}
2778
2779static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2780                             unsigned long arg)
2781{
2782        struct kvm_device *dev = filp->private_data;
2783
2784        switch (ioctl) {
2785        case KVM_SET_DEVICE_ATTR:
2786                return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2787        case KVM_GET_DEVICE_ATTR:
2788                return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2789        case KVM_HAS_DEVICE_ATTR:
2790                return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2791        default:
2792                if (dev->ops->ioctl)
2793                        return dev->ops->ioctl(dev, ioctl, arg);
2794
2795                return -ENOTTY;
2796        }
2797}
2798
2799static int kvm_device_release(struct inode *inode, struct file *filp)
2800{
2801        struct kvm_device *dev = filp->private_data;
2802        struct kvm *kvm = dev->kvm;
2803
2804        kvm_put_kvm(kvm);
2805        return 0;
2806}
2807
2808static const struct file_operations kvm_device_fops = {
2809        .unlocked_ioctl = kvm_device_ioctl,
2810#ifdef CONFIG_KVM_COMPAT
2811        .compat_ioctl = kvm_device_ioctl,
2812#endif
2813        .release = kvm_device_release,
2814};
2815
2816struct kvm_device *kvm_device_from_filp(struct file *filp)
2817{
2818        if (filp->f_op != &kvm_device_fops)
2819                return NULL;
2820
2821        return filp->private_data;
2822}
2823
2824static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2825#ifdef CONFIG_KVM_MPIC
2826        [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2827        [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2828#endif
2829};
2830
2831int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2832{
2833        if (type >= ARRAY_SIZE(kvm_device_ops_table))
2834                return -ENOSPC;
2835
2836        if (kvm_device_ops_table[type] != NULL)
2837                return -EEXIST;
2838
2839        kvm_device_ops_table[type] = ops;
2840        return 0;
2841}
2842
2843void kvm_unregister_device_ops(u32 type)
2844{
2845        if (kvm_device_ops_table[type] != NULL)
2846                kvm_device_ops_table[type] = NULL;
2847}
2848
2849static int kvm_ioctl_create_device(struct kvm *kvm,
2850                                   struct kvm_create_device *cd)
2851{
2852        struct kvm_device_ops *ops = NULL;
2853        struct kvm_device *dev;
2854        bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2855        int ret;
2856
2857        if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2858                return -ENODEV;
2859
2860        ops = kvm_device_ops_table[cd->type];
2861        if (ops == NULL)
2862                return -ENODEV;
2863
2864        if (test)
2865                return 0;
2866
2867        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2868        if (!dev)
2869                return -ENOMEM;
2870
2871        dev->ops = ops;
2872        dev->kvm = kvm;
2873
2874        mutex_lock(&kvm->lock);
2875        ret = ops->create(dev, cd->type);
2876        if (ret < 0) {
2877                mutex_unlock(&kvm->lock);
2878                kfree(dev);
2879                return ret;
2880        }
2881        list_add(&dev->vm_node, &kvm->devices);
2882        mutex_unlock(&kvm->lock);
2883
2884        if (ops->init)
2885                ops->init(dev);
2886
2887        ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2888        if (ret < 0) {
2889                mutex_lock(&kvm->lock);
2890                list_del(&dev->vm_node);
2891                mutex_unlock(&kvm->lock);
2892                ops->destroy(dev);
2893                return ret;
2894        }
2895
2896        kvm_get_kvm(kvm);
2897        cd->fd = ret;
2898        return 0;
2899}
2900
2901static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2902{
2903        switch (arg) {
2904        case KVM_CAP_USER_MEMORY:
2905        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2906        case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2907        case KVM_CAP_INTERNAL_ERROR_DATA:
2908#ifdef CONFIG_HAVE_KVM_MSI
2909        case KVM_CAP_SIGNAL_MSI:
2910#endif
2911#ifdef CONFIG_HAVE_KVM_IRQFD
2912        case KVM_CAP_IRQFD:
2913        case KVM_CAP_IRQFD_RESAMPLE:
2914#endif
2915        case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2916        case KVM_CAP_CHECK_EXTENSION_VM:
2917                return 1;
2918#ifdef CONFIG_KVM_MMIO
2919        case KVM_CAP_COALESCED_MMIO:
2920                return KVM_COALESCED_MMIO_PAGE_OFFSET;
2921#endif
2922#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2923        case KVM_CAP_IRQ_ROUTING:
2924                return KVM_MAX_IRQ_ROUTES;
2925#endif
2926#if KVM_ADDRESS_SPACE_NUM > 1
2927        case KVM_CAP_MULTI_ADDRESS_SPACE:
2928                return KVM_ADDRESS_SPACE_NUM;
2929#endif
2930        case KVM_CAP_MAX_VCPU_ID:
2931                return KVM_MAX_VCPU_ID;
2932        default:
2933                break;
2934        }
2935        return kvm_vm_ioctl_check_extension(kvm, arg);
2936}
2937
2938static long kvm_vm_ioctl(struct file *filp,
2939                           unsigned int ioctl, unsigned long arg)
2940{
2941        struct kvm *kvm = filp->private_data;
2942        void __user *argp = (void __user *)arg;
2943        int r;
2944
2945        if (kvm->mm != current->mm)
2946                return -EIO;
2947        switch (ioctl) {
2948        case KVM_CREATE_VCPU:
2949                r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2950                break;
2951        case KVM_SET_USER_MEMORY_REGION: {
2952                struct kvm_userspace_memory_region kvm_userspace_mem;
2953
2954                r = -EFAULT;
2955                if (copy_from_user(&kvm_userspace_mem, argp,
2956                                                sizeof(kvm_userspace_mem)))
2957                        goto out;
2958
2959                r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2960                break;
2961        }
2962        case KVM_GET_DIRTY_LOG: {
2963                struct kvm_dirty_log log;
2964
2965                r = -EFAULT;
2966                if (copy_from_user(&log, argp, sizeof(log)))
2967                        goto out;
2968                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2969                break;
2970        }
2971#ifdef CONFIG_KVM_MMIO
2972        case KVM_REGISTER_COALESCED_MMIO: {
2973                struct kvm_coalesced_mmio_zone zone;
2974
2975                r = -EFAULT;
2976                if (copy_from_user(&zone, argp, sizeof(zone)))
2977                        goto out;
2978                r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2979                break;
2980        }
2981        case KVM_UNREGISTER_COALESCED_MMIO: {
2982                struct kvm_coalesced_mmio_zone zone;
2983
2984                r = -EFAULT;
2985                if (copy_from_user(&zone, argp, sizeof(zone)))
2986                        goto out;
2987                r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2988                break;
2989        }
2990#endif
2991        case KVM_IRQFD: {
2992                struct kvm_irqfd data;
2993
2994                r = -EFAULT;
2995                if (copy_from_user(&data, argp, sizeof(data)))
2996                        goto out;
2997                r = kvm_irqfd(kvm, &data);
2998                break;
2999        }
3000        case KVM_IOEVENTFD: {
3001                struct kvm_ioeventfd data;
3002
3003                r = -EFAULT;
3004                if (copy_from_user(&data, argp, sizeof(data)))
3005                        goto out;
3006                r = kvm_ioeventfd(kvm, &data);
3007                break;
3008        }
3009#ifdef CONFIG_HAVE_KVM_MSI
3010        case KVM_SIGNAL_MSI: {
3011                struct kvm_msi msi;
3012
3013                r = -EFAULT;
3014                if (copy_from_user(&msi, argp, sizeof(msi)))
3015                        goto out;
3016                r = kvm_send_userspace_msi(kvm, &msi);
3017                break;
3018        }
3019#endif
3020#ifdef __KVM_HAVE_IRQ_LINE
3021        case KVM_IRQ_LINE_STATUS:
3022        case KVM_IRQ_LINE: {
3023                struct kvm_irq_level irq_event;
3024
3025                r = -EFAULT;
3026                if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3027                        goto out;
3028
3029                r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3030                                        ioctl == KVM_IRQ_LINE_STATUS);
3031                if (r)
3032                        goto out;
3033
3034                r = -EFAULT;
3035                if (ioctl == KVM_IRQ_LINE_STATUS) {
3036                        if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3037                                goto out;
3038                }
3039
3040                r = 0;
3041                break;
3042        }
3043#endif
3044#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3045        case KVM_SET_GSI_ROUTING: {
3046                struct kvm_irq_routing routing;
3047                struct kvm_irq_routing __user *urouting;
3048                struct kvm_irq_routing_entry *entries = NULL;
3049
3050                r = -EFAULT;
3051                if (copy_from_user(&routing, argp, sizeof(routing)))
3052                        goto out;
3053                r = -EINVAL;
3054                if (!kvm_arch_can_set_irq_routing(kvm))
3055                        goto out;
3056                if (routing.nr > KVM_MAX_IRQ_ROUTES)
3057                        goto out;
3058                if (routing.flags)
3059                        goto out;
3060                if (routing.nr) {
3061                        r = -ENOMEM;
3062                        entries = vmalloc(routing.nr * sizeof(*entries));
3063                        if (!entries)
3064                                goto out;
3065                        r = -EFAULT;
3066                        urouting = argp;
3067                        if (copy_from_user(entries, urouting->entries,
3068                                           routing.nr * sizeof(*entries)))
3069                                goto out_free_irq_routing;
3070                }
3071                r = kvm_set_irq_routing(kvm, entries, routing.nr,
3072                                        routing.flags);
3073out_free_irq_routing:
3074                vfree(entries);
3075                break;
3076        }
3077#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3078        case KVM_CREATE_DEVICE: {
3079                struct kvm_create_device cd;
3080
3081                r = -EFAULT;
3082                if (copy_from_user(&cd, argp, sizeof(cd)))
3083                        goto out;
3084
3085                r = kvm_ioctl_create_device(kvm, &cd);
3086                if (r)
3087                        goto out;
3088
3089                r = -EFAULT;
3090                if (copy_to_user(argp, &cd, sizeof(cd)))
3091                        goto out;
3092
3093                r = 0;
3094                break;
3095        }
3096        case KVM_CHECK_EXTENSION:
3097                r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3098                break;
3099        default:
3100                r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3101        }
3102out:
3103        return r;
3104}
3105
3106#ifdef CONFIG_KVM_COMPAT
3107struct compat_kvm_dirty_log {
3108        __u32 slot;
3109        __u32 padding1;
3110        union {
3111                compat_uptr_t dirty_bitmap; /* one bit per page */
3112                __u64 padding2;
3113        };
3114};
3115
3116static long kvm_vm_compat_ioctl(struct file *filp,
3117                           unsigned int ioctl, unsigned long arg)
3118{
3119        struct kvm *kvm = filp->private_data;
3120        int r;
3121
3122        if (kvm->mm != current->mm)
3123                return -EIO;
3124        switch (ioctl) {
3125        case KVM_GET_DIRTY_LOG: {
3126                struct compat_kvm_dirty_log compat_log;
3127                struct kvm_dirty_log log;
3128
3129                if (copy_from_user(&compat_log, (void __user *)arg,
3130                                   sizeof(compat_log)))
3131                        return -EFAULT;
3132                log.slot         = compat_log.slot;
3133                log.padding1     = compat_log.padding1;
3134                log.padding2     = compat_log.padding2;
3135                log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3136
3137                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3138                break;
3139        }
3140        default:
3141                r = kvm_vm_ioctl(filp, ioctl, arg);
3142        }
3143        return r;
3144}
3145#endif
3146
3147static struct file_operations kvm_vm_fops = {
3148        .release        = kvm_vm_release,
3149        .unlocked_ioctl = kvm_vm_ioctl,
3150#ifdef CONFIG_KVM_COMPAT
3151        .compat_ioctl   = kvm_vm_compat_ioctl,
3152#endif
3153        .llseek         = noop_llseek,
3154};
3155
3156static int kvm_dev_ioctl_create_vm(unsigned long type)
3157{
3158        int r;
3159        struct kvm *kvm;
3160        struct file *file;
3161
3162        kvm = kvm_create_vm(type);
3163        if (IS_ERR(kvm))
3164                return PTR_ERR(kvm);
3165#ifdef CONFIG_KVM_MMIO
3166        r = kvm_coalesced_mmio_init(kvm);
3167        if (r < 0)
3168                goto put_kvm;
3169#endif
3170        r = get_unused_fd_flags(O_CLOEXEC);
3171        if (r < 0)
3172                goto put_kvm;
3173
3174        file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3175        if (IS_ERR(file)) {
3176                put_unused_fd(r);
3177                r = PTR_ERR(file);
3178                goto put_kvm;
3179        }
3180
3181        /*
3182         * Don't call kvm_put_kvm anymore at this point; file->f_op is
3183         * already set, with ->release() being kvm_vm_release().  In error
3184         * cases it will be called by the final fput(file) and will take
3185         * care of doing kvm_put_kvm(kvm).
3186         */
3187        if (kvm_create_vm_debugfs(kvm, r) < 0) {
3188                put_unused_fd(r);
3189                fput(file);
3190                return -ENOMEM;
3191        }
3192        kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3193
3194        fd_install(r, file);
3195        return r;
3196
3197put_kvm:
3198        kvm_put_kvm(kvm);
3199        return r;
3200}
3201
3202static long kvm_dev_ioctl(struct file *filp,
3203                          unsigned int ioctl, unsigned long arg)
3204{
3205        long r = -EINVAL;
3206
3207        switch (ioctl) {
3208        case KVM_GET_API_VERSION:
3209                if (arg)
3210                        goto out;
3211                r = KVM_API_VERSION;
3212                break;
3213        case KVM_CREATE_VM:
3214                r = kvm_dev_ioctl_create_vm(arg);
3215                break;
3216        case KVM_CHECK_EXTENSION:
3217                r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3218                break;
3219        case KVM_GET_VCPU_MMAP_SIZE:
3220                if (arg)
3221                        goto out;
3222                r = PAGE_SIZE;     /* struct kvm_run */
3223#ifdef CONFIG_X86
3224                r += PAGE_SIZE;    /* pio data page */
3225#endif
3226#ifdef CONFIG_KVM_MMIO
3227                r += PAGE_SIZE;    /* coalesced mmio ring page */
3228#endif
3229                break;
3230        case KVM_TRACE_ENABLE:
3231        case KVM_TRACE_PAUSE:
3232        case KVM_TRACE_DISABLE:
3233                r = -EOPNOTSUPP;
3234                break;
3235        default:
3236                return kvm_arch_dev_ioctl(filp, ioctl, arg);
3237        }
3238out:
3239        return r;
3240}
3241
3242static struct file_operations kvm_chardev_ops = {
3243        .unlocked_ioctl = kvm_dev_ioctl,
3244        .compat_ioctl   = kvm_dev_ioctl,
3245        .llseek         = noop_llseek,
3246};
3247
3248static struct miscdevice kvm_dev = {
3249        KVM_MINOR,
3250        "kvm",
3251        &kvm_chardev_ops,
3252};
3253
3254static void hardware_enable_nolock(void *junk)
3255{
3256        int cpu = raw_smp_processor_id();
3257        int r;
3258
3259        if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3260                return;
3261
3262        cpumask_set_cpu(cpu, cpus_hardware_enabled);
3263
3264        r = kvm_arch_hardware_enable();
3265
3266        if (r) {
3267                cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3268                atomic_inc(&hardware_enable_failed);
3269                pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3270        }
3271}
3272
3273static int kvm_starting_cpu(unsigned int cpu)
3274{
3275        raw_spin_lock(&kvm_count_lock);
3276        if (kvm_usage_count)
3277                hardware_enable_nolock(NULL);
3278        raw_spin_unlock(&kvm_count_lock);
3279        return 0;
3280}
3281
3282static void hardware_disable_nolock(void *junk)
3283{
3284        int cpu = raw_smp_processor_id();
3285
3286        if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3287                return;
3288        cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3289        kvm_arch_hardware_disable();
3290}
3291
3292static int kvm_dying_cpu(unsigned int cpu)
3293{
3294        raw_spin_lock(&kvm_count_lock);
3295        if (kvm_usage_count)
3296                hardware_disable_nolock(NULL);
3297        raw_spin_unlock(&kvm_count_lock);
3298        return 0;
3299}
3300
3301static void hardware_disable_all_nolock(void)
3302{
3303        BUG_ON(!kvm_usage_count);
3304
3305        kvm_usage_count--;
3306        if (!kvm_usage_count)
3307                on_each_cpu(hardware_disable_nolock, NULL, 1);
3308}
3309
3310static void hardware_disable_all(void)
3311{
3312        raw_spin_lock(&kvm_count_lock);
3313        hardware_disable_all_nolock();
3314        raw_spin_unlock(&kvm_count_lock);
3315}
3316
3317static int hardware_enable_all(void)
3318{
3319        int r = 0;
3320
3321        raw_spin_lock(&kvm_count_lock);
3322
3323        kvm_usage_count++;
3324        if (kvm_usage_count == 1) {
3325                atomic_set(&hardware_enable_failed, 0);
3326                on_each_cpu(hardware_enable_nolock, NULL, 1);
3327
3328                if (atomic_read(&hardware_enable_failed)) {
3329                        hardware_disable_all_nolock();
3330                        r = -EBUSY;
3331                }
3332        }
3333
3334        raw_spin_unlock(&kvm_count_lock);
3335
3336        return r;
3337}
3338
3339static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3340                      void *v)
3341{
3342        /*
3343         * Some (well, at least mine) BIOSes hang on reboot if
3344         * in vmx root mode.
3345         *
3346         * And Intel TXT required VMX off for all cpu when system shutdown.
3347         */
3348        pr_info("kvm: exiting hardware virtualization\n");
3349        kvm_rebooting = true;
3350        on_each_cpu(hardware_disable_nolock, NULL, 1);
3351        return NOTIFY_OK;
3352}
3353
3354static struct notifier_block kvm_reboot_notifier = {
3355        .notifier_call = kvm_reboot,
3356        .priority = 0,
3357};
3358
3359static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3360{
3361        int i;
3362
3363        for (i = 0; i < bus->dev_count; i++) {
3364                struct kvm_io_device *pos = bus->range[i].dev;
3365
3366                kvm_iodevice_destructor(pos);
3367        }
3368        kfree(bus);
3369}
3370
3371static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3372                                 const struct kvm_io_range *r2)
3373{
3374        gpa_t addr1 = r1->addr;
3375        gpa_t addr2 = r2->addr;
3376
3377        if (addr1 < addr2)
3378                return -1;
3379
3380        /* If r2->len == 0, match the exact address.  If r2->len != 0,
3381         * accept any overlapping write.  Any order is acceptable for
3382         * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3383         * we process all of them.
3384         */
3385        if (r2->len) {
3386                addr1 += r1->len;
3387                addr2 += r2->len;
3388        }
3389
3390        if (addr1 > addr2)
3391                return 1;
3392
3393        return 0;
3394}
3395
3396static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3397{
3398        return kvm_io_bus_cmp(p1, p2);
3399}
3400
3401static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3402                             gpa_t addr, int len)
3403{
3404        struct kvm_io_range *range, key;
3405        int off;
3406
3407        key = (struct kvm_io_range) {
3408                .addr = addr,
3409                .len = len,
3410        };
3411
3412        range = bsearch(&key, bus->range, bus->dev_count,
3413                        sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3414        if (range == NULL)
3415                return -ENOENT;
3416
3417        off = range - bus->range;
3418
3419        while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3420                off--;
3421
3422        return off;
3423}
3424
3425static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3426                              struct kvm_io_range *range, const void *val)
3427{
3428        int idx;
3429
3430        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3431        if (idx < 0)
3432                return -EOPNOTSUPP;
3433
3434        while (idx < bus->dev_count &&
3435                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3436                if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3437                                        range->len, val))
3438                        return idx;
3439                idx++;
3440        }
3441
3442        return -EOPNOTSUPP;
3443}
3444
3445/* kvm_io_bus_write - called under kvm->slots_lock */
3446int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3447                     int len, const void *val)
3448{
3449        struct kvm_io_bus *bus;
3450        struct kvm_io_range range;
3451        int r;
3452
3453        range = (struct kvm_io_range) {
3454                .addr = addr,
3455                .len = len,
3456        };
3457
3458        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3459        if (!bus)
3460                return -ENOMEM;
3461        r = __kvm_io_bus_write(vcpu, bus, &range, val);
3462        return r < 0 ? r : 0;
3463}
3464
3465/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3466int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3467                            gpa_t addr, int len, const void *val, long cookie)
3468{
3469        struct kvm_io_bus *bus;
3470        struct kvm_io_range range;
3471
3472        range = (struct kvm_io_range) {
3473                .addr = addr,
3474                .len = len,
3475        };
3476
3477        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3478        if (!bus)
3479                return -ENOMEM;
3480
3481        /* First try the device referenced by cookie. */
3482        if ((cookie >= 0) && (cookie < bus->dev_count) &&
3483            (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3484                if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3485                                        val))
3486                        return cookie;
3487
3488        /*
3489         * cookie contained garbage; fall back to search and return the
3490         * correct cookie value.
3491         */
3492        return __kvm_io_bus_write(vcpu, bus, &range, val);
3493}
3494
3495static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3496                             struct kvm_io_range *range, void *val)
3497{
3498        int idx;
3499
3500        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3501        if (idx < 0)
3502                return -EOPNOTSUPP;
3503
3504        while (idx < bus->dev_count &&
3505                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3506                if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3507                                       range->len, val))
3508                        return idx;
3509                idx++;
3510        }
3511
3512        return -EOPNOTSUPP;
3513}
3514EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3515
3516/* kvm_io_bus_read - called under kvm->slots_lock */
3517int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3518                    int len, void *val)
3519{
3520        struct kvm_io_bus *bus;
3521        struct kvm_io_range range;
3522        int r;
3523
3524        range = (struct kvm_io_range) {
3525                .addr = addr,
3526                .len = len,
3527        };
3528
3529        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3530        if (!bus)
3531                return -ENOMEM;
3532        r = __kvm_io_bus_read(vcpu, bus, &range, val);
3533        return r < 0 ? r : 0;
3534}
3535
3536
3537/* Caller must hold slots_lock. */
3538int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3539                            int len, struct kvm_io_device *dev)
3540{
3541        int i;
3542        struct kvm_io_bus *new_bus, *bus;
3543        struct kvm_io_range range;
3544
3545        bus = kvm_get_bus(kvm, bus_idx);
3546        if (!bus)
3547                return -ENOMEM;
3548
3549        /* exclude ioeventfd which is limited by maximum fd */
3550        if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3551                return -ENOSPC;
3552
3553        new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3554                          sizeof(struct kvm_io_range)), GFP_KERNEL);
3555        if (!new_bus)
3556                return -ENOMEM;
3557
3558        range = (struct kvm_io_range) {
3559                .addr = addr,
3560                .len = len,
3561                .dev = dev,
3562        };
3563
3564        for (i = 0; i < bus->dev_count; i++)
3565                if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3566                        break;
3567
3568        memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3569        new_bus->dev_count++;
3570        new_bus->range[i] = range;
3571        memcpy(new_bus->range + i + 1, bus->range + i,
3572                (bus->dev_count - i) * sizeof(struct kvm_io_range));
3573        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3574        synchronize_srcu_expedited(&kvm->srcu);
3575        kfree(bus);
3576
3577        return 0;
3578}
3579
3580/* Caller must hold slots_lock. */
3581void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3582                               struct kvm_io_device *dev)
3583{
3584        int i;
3585        struct kvm_io_bus *new_bus, *bus;
3586
3587        bus = kvm_get_bus(kvm, bus_idx);
3588        if (!bus)
3589                return;
3590
3591        for (i = 0; i < bus->dev_count; i++)
3592                if (bus->range[i].dev == dev) {
3593                        break;
3594                }
3595
3596        if (i == bus->dev_count)
3597                return;
3598
3599        new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3600                          sizeof(struct kvm_io_range)), GFP_KERNEL);
3601        if (!new_bus)  {
3602                pr_err("kvm: failed to shrink bus, removing it completely\n");
3603                goto broken;
3604        }
3605
3606        memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3607        new_bus->dev_count--;
3608        memcpy(new_bus->range + i, bus->range + i + 1,
3609               (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3610
3611broken:
3612        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3613        synchronize_srcu_expedited(&kvm->srcu);
3614        kfree(bus);
3615        return;
3616}
3617
3618struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3619                                         gpa_t addr)
3620{
3621        struct kvm_io_bus *bus;
3622        int dev_idx, srcu_idx;
3623        struct kvm_io_device *iodev = NULL;
3624
3625        srcu_idx = srcu_read_lock(&kvm->srcu);
3626
3627        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3628        if (!bus)
3629                goto out_unlock;
3630
3631        dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3632        if (dev_idx < 0)
3633                goto out_unlock;
3634
3635        iodev = bus->range[dev_idx].dev;
3636
3637out_unlock:
3638        srcu_read_unlock(&kvm->srcu, srcu_idx);
3639
3640        return iodev;
3641}
3642EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3643
3644static int kvm_debugfs_open(struct inode *inode, struct file *file,
3645                           int (*get)(void *, u64 *), int (*set)(void *, u64),
3646                           const char *fmt)
3647{
3648        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3649                                          inode->i_private;
3650
3651        /* The debugfs files are a reference to the kvm struct which
3652         * is still valid when kvm_destroy_vm is called.
3653         * To avoid the race between open and the removal of the debugfs
3654         * directory we test against the users count.
3655         */
3656        if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3657                return -ENOENT;
3658
3659        if (simple_attr_open(inode, file, get, set, fmt)) {
3660                kvm_put_kvm(stat_data->kvm);
3661                return -ENOMEM;
3662        }
3663
3664        return 0;
3665}
3666
3667static int kvm_debugfs_release(struct inode *inode, struct file *file)
3668{
3669        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3670                                          inode->i_private;
3671
3672        simple_attr_release(inode, file);
3673        kvm_put_kvm(stat_data->kvm);
3674
3675        return 0;
3676}
3677
3678static int vm_stat_get_per_vm(void *data, u64 *val)
3679{
3680        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3681
3682        *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3683
3684        return 0;
3685}
3686
3687static int vm_stat_clear_per_vm(void *data, u64 val)
3688{
3689        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3690
3691        if (val)
3692                return -EINVAL;
3693
3694        *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3695
3696        return 0;
3697}
3698
3699static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3700{
3701        __simple_attr_check_format("%llu\n", 0ull);
3702        return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3703                                vm_stat_clear_per_vm, "%llu\n");
3704}
3705
3706static const struct file_operations vm_stat_get_per_vm_fops = {
3707        .owner   = THIS_MODULE,
3708        .open    = vm_stat_get_per_vm_open,
3709        .release = kvm_debugfs_release,
3710        .read    = simple_attr_read,
3711        .write   = simple_attr_write,
3712        .llseek  = no_llseek,
3713};
3714
3715static int vcpu_stat_get_per_vm(void *data, u64 *val)
3716{
3717        int i;
3718        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3719        struct kvm_vcpu *vcpu;
3720
3721        *val = 0;
3722
3723        kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3724                *val += *(u64 *)((void *)vcpu + stat_data->offset);
3725
3726        return 0;
3727}
3728
3729static int vcpu_stat_clear_per_vm(void *data, u64 val)
3730{
3731        int i;
3732        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3733        struct kvm_vcpu *vcpu;
3734
3735        if (val)
3736                return -EINVAL;
3737
3738        kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3739                *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3740
3741        return 0;
3742}
3743
3744static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3745{
3746        __simple_attr_check_format("%llu\n", 0ull);
3747        return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3748                                 vcpu_stat_clear_per_vm, "%llu\n");
3749}
3750
3751static const struct file_operations vcpu_stat_get_per_vm_fops = {
3752        .owner   = THIS_MODULE,
3753        .open    = vcpu_stat_get_per_vm_open,
3754        .release = kvm_debugfs_release,
3755        .read    = simple_attr_read,
3756        .write   = simple_attr_write,
3757        .llseek  = no_llseek,
3758};
3759
3760static const struct file_operations *stat_fops_per_vm[] = {
3761        [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3762        [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3763};
3764
3765static int vm_stat_get(void *_offset, u64 *val)
3766{
3767        unsigned offset = (long)_offset;
3768        struct kvm *kvm;
3769        struct kvm_stat_data stat_tmp = {.offset = offset};
3770        u64 tmp_val;
3771
3772        *val = 0;
3773        spin_lock(&kvm_lock);
3774        list_for_each_entry(kvm, &vm_list, vm_list) {
3775                stat_tmp.kvm = kvm;
3776                vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3777                *val += tmp_val;
3778        }
3779        spin_unlock(&kvm_lock);
3780        return 0;
3781}
3782
3783static int vm_stat_clear(void *_offset, u64 val)
3784{
3785        unsigned offset = (long)_offset;
3786        struct kvm *kvm;
3787        struct kvm_stat_data stat_tmp = {.offset = offset};
3788
3789        if (val)
3790                return -EINVAL;
3791
3792        spin_lock(&kvm_lock);
3793        list_for_each_entry(kvm, &vm_list, vm_list) {
3794                stat_tmp.kvm = kvm;
3795                vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3796        }
3797        spin_unlock(&kvm_lock);
3798
3799        return 0;
3800}
3801
3802DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3803
3804static int vcpu_stat_get(void *_offset, u64 *val)
3805{
3806        unsigned offset = (long)_offset;
3807        struct kvm *kvm;
3808        struct kvm_stat_data stat_tmp = {.offset = offset};
3809        u64 tmp_val;
3810
3811        *val = 0;
3812        spin_lock(&kvm_lock);
3813        list_for_each_entry(kvm, &vm_list, vm_list) {
3814                stat_tmp.kvm = kvm;
3815                vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3816                *val += tmp_val;
3817        }
3818        spin_unlock(&kvm_lock);
3819        return 0;
3820}
3821
3822static int vcpu_stat_clear(void *_offset, u64 val)
3823{
3824        unsigned offset = (long)_offset;
3825        struct kvm *kvm;
3826        struct kvm_stat_data stat_tmp = {.offset = offset};
3827
3828        if (val)
3829                return -EINVAL;
3830
3831        spin_lock(&kvm_lock);
3832        list_for_each_entry(kvm, &vm_list, vm_list) {
3833                stat_tmp.kvm = kvm;
3834                vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3835        }
3836        spin_unlock(&kvm_lock);
3837
3838        return 0;
3839}
3840
3841DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3842                        "%llu\n");
3843
3844static const struct file_operations *stat_fops[] = {
3845        [KVM_STAT_VCPU] = &vcpu_stat_fops,
3846        [KVM_STAT_VM]   = &vm_stat_fops,
3847};
3848
3849static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3850{
3851        struct kobj_uevent_env *env;
3852        unsigned long long created, active;
3853
3854        if (!kvm_dev.this_device || !kvm)
3855                return;
3856
3857        spin_lock(&kvm_lock);
3858        if (type == KVM_EVENT_CREATE_VM) {
3859                kvm_createvm_count++;
3860                kvm_active_vms++;
3861        } else if (type == KVM_EVENT_DESTROY_VM) {
3862                kvm_active_vms--;
3863        }
3864        created = kvm_createvm_count;
3865        active = kvm_active_vms;
3866        spin_unlock(&kvm_lock);
3867
3868        env = kzalloc(sizeof(*env), GFP_KERNEL);
3869        if (!env)
3870                return;
3871
3872        add_uevent_var(env, "CREATED=%llu", created);
3873        add_uevent_var(env, "COUNT=%llu", active);
3874
3875        if (type == KVM_EVENT_CREATE_VM) {
3876                add_uevent_var(env, "EVENT=create");
3877                kvm->userspace_pid = task_pid_nr(current);
3878        } else if (type == KVM_EVENT_DESTROY_VM) {
3879                add_uevent_var(env, "EVENT=destroy");
3880        }
3881        add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3882
3883        if (kvm->debugfs_dentry) {
3884                char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3885
3886                if (p) {
3887                        tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3888                        if (!IS_ERR(tmp))
3889                                add_uevent_var(env, "STATS_PATH=%s", tmp);
3890                        kfree(p);
3891                }
3892        }
3893        /* no need for checks, since we are adding at most only 5 keys */
3894        env->envp[env->envp_idx++] = NULL;
3895        kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3896        kfree(env);
3897}
3898
3899static int kvm_init_debug(void)
3900{
3901        int r = -EEXIST;
3902        struct kvm_stats_debugfs_item *p;
3903
3904        kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3905        if (kvm_debugfs_dir == NULL)
3906                goto out;
3907
3908        kvm_debugfs_num_entries = 0;
3909        for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3910                if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3911                                         (void *)(long)p->offset,
3912                                         stat_fops[p->kind]))
3913                        goto out_dir;
3914        }
3915
3916        return 0;
3917
3918out_dir:
3919        debugfs_remove_recursive(kvm_debugfs_dir);
3920out:
3921        return r;
3922}
3923
3924static int kvm_suspend(void)
3925{
3926        if (kvm_usage_count)
3927                hardware_disable_nolock(NULL);
3928        return 0;
3929}
3930
3931static void kvm_resume(void)
3932{
3933        if (kvm_usage_count) {
3934                WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3935                hardware_enable_nolock(NULL);
3936        }
3937}
3938
3939static struct syscore_ops kvm_syscore_ops = {
3940        .suspend = kvm_suspend,
3941        .resume = kvm_resume,
3942};
3943
3944static inline
3945struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3946{
3947        return container_of(pn, struct kvm_vcpu, preempt_notifier);
3948}
3949
3950static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3951{
3952        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3953
3954        if (vcpu->preempted)
3955                vcpu->preempted = false;
3956
3957        kvm_arch_sched_in(vcpu, cpu);
3958
3959        kvm_arch_vcpu_load(vcpu, cpu);
3960}
3961
3962static void kvm_sched_out(struct preempt_notifier *pn,
3963                          struct task_struct *next)
3964{
3965        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3966
3967        if (current->state == TASK_RUNNING)
3968                vcpu->preempted = true;
3969        kvm_arch_vcpu_put(vcpu);
3970}
3971
3972int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3973                  struct module *module)
3974{
3975        int r;
3976        int cpu;
3977
3978        r = kvm_arch_init(opaque);
3979        if (r)
3980                goto out_fail;
3981
3982        /*
3983         * kvm_arch_init makes sure there's at most one caller
3984         * for architectures that support multiple implementations,
3985         * like intel and amd on x86.
3986         * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3987         * conflicts in case kvm is already setup for another implementation.
3988         */
3989        r = kvm_irqfd_init();
3990        if (r)
3991                goto out_irqfd;
3992
3993        if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3994                r = -ENOMEM;
3995                goto out_free_0;
3996        }
3997
3998        r = kvm_arch_hardware_setup();
3999        if (r < 0)
4000                goto out_free_0a;
4001
4002        for_each_online_cpu(cpu) {
4003                smp_call_function_single(cpu,
4004                                kvm_arch_check_processor_compat,
4005                                &r, 1);
4006                if (r < 0)
4007                        goto out_free_1;
4008        }
4009
4010        r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4011                                      kvm_starting_cpu, kvm_dying_cpu);
4012        if (r)
4013                goto out_free_2;
4014        register_reboot_notifier(&kvm_reboot_notifier);
4015
4016        /* A kmem cache lets us meet the alignment requirements of fx_save. */
4017        if (!vcpu_align)
4018                vcpu_align = __alignof__(struct kvm_vcpu);
4019        kvm_vcpu_cache =
4020                kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4021                                           SLAB_ACCOUNT,
4022                                           offsetof(struct kvm_vcpu, arch),
4023                                           sizeof_field(struct kvm_vcpu, arch),
4024                                           NULL);
4025        if (!kvm_vcpu_cache) {
4026                r = -ENOMEM;
4027                goto out_free_3;
4028        }
4029
4030        r = kvm_async_pf_init();
4031        if (r)
4032                goto out_free;
4033
4034        kvm_chardev_ops.owner = module;
4035        kvm_vm_fops.owner = module;
4036        kvm_vcpu_fops.owner = module;
4037
4038        r = misc_register(&kvm_dev);
4039        if (r) {
4040                pr_err("kvm: misc device register failed\n");
4041                goto out_unreg;
4042        }
4043
4044        register_syscore_ops(&kvm_syscore_ops);
4045
4046        kvm_preempt_ops.sched_in = kvm_sched_in;
4047        kvm_preempt_ops.sched_out = kvm_sched_out;
4048
4049        r = kvm_init_debug();
4050        if (r) {
4051                pr_err("kvm: create debugfs files failed\n");
4052                goto out_undebugfs;
4053        }
4054
4055        r = kvm_vfio_ops_init();
4056        WARN_ON(r);
4057
4058        return 0;
4059
4060out_undebugfs:
4061        unregister_syscore_ops(&kvm_syscore_ops);
4062        misc_deregister(&kvm_dev);
4063out_unreg:
4064        kvm_async_pf_deinit();
4065out_free:
4066        kmem_cache_destroy(kvm_vcpu_cache);
4067out_free_3:
4068        unregister_reboot_notifier(&kvm_reboot_notifier);
4069        cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4070out_free_2:
4071out_free_1:
4072        kvm_arch_hardware_unsetup();
4073out_free_0a:
4074        free_cpumask_var(cpus_hardware_enabled);
4075out_free_0:
4076        kvm_irqfd_exit();
4077out_irqfd:
4078        kvm_arch_exit();
4079out_fail:
4080        return r;
4081}
4082EXPORT_SYMBOL_GPL(kvm_init);
4083
4084void kvm_exit(void)
4085{
4086        debugfs_remove_recursive(kvm_debugfs_dir);
4087        misc_deregister(&kvm_dev);
4088        kmem_cache_destroy(kvm_vcpu_cache);
4089        kvm_async_pf_deinit();
4090        unregister_syscore_ops(&kvm_syscore_ops);
4091        unregister_reboot_notifier(&kvm_reboot_notifier);
4092        cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4093        on_each_cpu(hardware_disable_nolock, NULL, 1);
4094        kvm_arch_hardware_unsetup();
4095        kvm_arch_exit();
4096        kvm_irqfd_exit();
4097        free_cpumask_var(cpus_hardware_enabled);
4098        kvm_vfio_ops_exit();
4099}
4100EXPORT_SYMBOL_GPL(kvm_exit);
4101