linux/arch/arm/kernel/smp.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/kernel/smp.c
   3 *
   4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/spinlock.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/hotplug.h>
  16#include <linux/sched/task_stack.h>
  17#include <linux/interrupt.h>
  18#include <linux/cache.h>
  19#include <linux/profile.h>
  20#include <linux/errno.h>
  21#include <linux/mm.h>
  22#include <linux/err.h>
  23#include <linux/cpu.h>
  24#include <linux/seq_file.h>
  25#include <linux/irq.h>
  26#include <linux/nmi.h>
  27#include <linux/percpu.h>
  28#include <linux/clockchips.h>
  29#include <linux/completion.h>
  30#include <linux/cpufreq.h>
  31#include <linux/irq_work.h>
  32
  33#include <linux/atomic.h>
  34#include <asm/bugs.h>
  35#include <asm/smp.h>
  36#include <asm/cacheflush.h>
  37#include <asm/cpu.h>
  38#include <asm/cputype.h>
  39#include <asm/exception.h>
  40#include <asm/idmap.h>
  41#include <asm/topology.h>
  42#include <asm/mmu_context.h>
  43#include <asm/pgtable.h>
  44#include <asm/pgalloc.h>
  45#include <asm/processor.h>
  46#include <asm/sections.h>
  47#include <asm/tlbflush.h>
  48#include <asm/ptrace.h>
  49#include <asm/smp_plat.h>
  50#include <asm/virt.h>
  51#include <asm/mach/arch.h>
  52#include <asm/mpu.h>
  53
  54#define CREATE_TRACE_POINTS
  55#include <trace/events/ipi.h>
  56
  57/*
  58 * as from 2.5, kernels no longer have an init_tasks structure
  59 * so we need some other way of telling a new secondary core
  60 * where to place its SVC stack
  61 */
  62struct secondary_data secondary_data;
  63
  64/*
  65 * control for which core is the next to come out of the secondary
  66 * boot "holding pen"
  67 */
  68volatile int pen_release = -1;
  69
  70enum ipi_msg_type {
  71        IPI_WAKEUP,
  72        IPI_TIMER,
  73        IPI_RESCHEDULE,
  74        IPI_CALL_FUNC,
  75        IPI_CPU_STOP,
  76        IPI_IRQ_WORK,
  77        IPI_COMPLETION,
  78        IPI_CPU_BACKTRACE,
  79        /*
  80         * SGI8-15 can be reserved by secure firmware, and thus may
  81         * not be usable by the kernel. Please keep the above limited
  82         * to at most 8 entries.
  83         */
  84};
  85
  86static DECLARE_COMPLETION(cpu_running);
  87
  88static struct smp_operations smp_ops __ro_after_init;
  89
  90void __init smp_set_ops(const struct smp_operations *ops)
  91{
  92        if (ops)
  93                smp_ops = *ops;
  94};
  95
  96static unsigned long get_arch_pgd(pgd_t *pgd)
  97{
  98#ifdef CONFIG_ARM_LPAE
  99        return __phys_to_pfn(virt_to_phys(pgd));
 100#else
 101        return virt_to_phys(pgd);
 102#endif
 103}
 104
 105int __cpu_up(unsigned int cpu, struct task_struct *idle)
 106{
 107        int ret;
 108
 109        if (!smp_ops.smp_boot_secondary)
 110                return -ENOSYS;
 111
 112        /*
 113         * We need to tell the secondary core where to find
 114         * its stack and the page tables.
 115         */
 116        secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
 117#ifdef CONFIG_ARM_MPU
 118        secondary_data.mpu_rgn_info = &mpu_rgn_info;
 119#endif
 120
 121#ifdef CONFIG_MMU
 122        secondary_data.pgdir = virt_to_phys(idmap_pgd);
 123        secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
 124#endif
 125        sync_cache_w(&secondary_data);
 126
 127        /*
 128         * Now bring the CPU into our world.
 129         */
 130        ret = smp_ops.smp_boot_secondary(cpu, idle);
 131        if (ret == 0) {
 132                /*
 133                 * CPU was successfully started, wait for it
 134                 * to come online or time out.
 135                 */
 136                wait_for_completion_timeout(&cpu_running,
 137                                                 msecs_to_jiffies(1000));
 138
 139                if (!cpu_online(cpu)) {
 140                        pr_crit("CPU%u: failed to come online\n", cpu);
 141                        ret = -EIO;
 142                }
 143        } else {
 144                pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
 145        }
 146
 147
 148        memset(&secondary_data, 0, sizeof(secondary_data));
 149        return ret;
 150}
 151
 152/* platform specific SMP operations */
 153void __init smp_init_cpus(void)
 154{
 155        if (smp_ops.smp_init_cpus)
 156                smp_ops.smp_init_cpus();
 157}
 158
 159int platform_can_secondary_boot(void)
 160{
 161        return !!smp_ops.smp_boot_secondary;
 162}
 163
 164int platform_can_cpu_hotplug(void)
 165{
 166#ifdef CONFIG_HOTPLUG_CPU
 167        if (smp_ops.cpu_kill)
 168                return 1;
 169#endif
 170
 171        return 0;
 172}
 173
 174#ifdef CONFIG_HOTPLUG_CPU
 175static int platform_cpu_kill(unsigned int cpu)
 176{
 177        if (smp_ops.cpu_kill)
 178                return smp_ops.cpu_kill(cpu);
 179        return 1;
 180}
 181
 182static int platform_cpu_disable(unsigned int cpu)
 183{
 184        if (smp_ops.cpu_disable)
 185                return smp_ops.cpu_disable(cpu);
 186
 187        return 0;
 188}
 189
 190int platform_can_hotplug_cpu(unsigned int cpu)
 191{
 192        /* cpu_die must be specified to support hotplug */
 193        if (!smp_ops.cpu_die)
 194                return 0;
 195
 196        if (smp_ops.cpu_can_disable)
 197                return smp_ops.cpu_can_disable(cpu);
 198
 199        /*
 200         * By default, allow disabling all CPUs except the first one,
 201         * since this is special on a lot of platforms, e.g. because
 202         * of clock tick interrupts.
 203         */
 204        return cpu != 0;
 205}
 206
 207/*
 208 * __cpu_disable runs on the processor to be shutdown.
 209 */
 210int __cpu_disable(void)
 211{
 212        unsigned int cpu = smp_processor_id();
 213        int ret;
 214
 215        ret = platform_cpu_disable(cpu);
 216        if (ret)
 217                return ret;
 218
 219        /*
 220         * Take this CPU offline.  Once we clear this, we can't return,
 221         * and we must not schedule until we're ready to give up the cpu.
 222         */
 223        set_cpu_online(cpu, false);
 224
 225        /*
 226         * OK - migrate IRQs away from this CPU
 227         */
 228        migrate_irqs();
 229
 230        /*
 231         * Flush user cache and TLB mappings, and then remove this CPU
 232         * from the vm mask set of all processes.
 233         *
 234         * Caches are flushed to the Level of Unification Inner Shareable
 235         * to write-back dirty lines to unified caches shared by all CPUs.
 236         */
 237        flush_cache_louis();
 238        local_flush_tlb_all();
 239
 240        return 0;
 241}
 242
 243static DECLARE_COMPLETION(cpu_died);
 244
 245/*
 246 * called on the thread which is asking for a CPU to be shutdown -
 247 * waits until shutdown has completed, or it is timed out.
 248 */
 249void __cpu_die(unsigned int cpu)
 250{
 251        if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
 252                pr_err("CPU%u: cpu didn't die\n", cpu);
 253                return;
 254        }
 255        pr_debug("CPU%u: shutdown\n", cpu);
 256
 257        clear_tasks_mm_cpumask(cpu);
 258        /*
 259         * platform_cpu_kill() is generally expected to do the powering off
 260         * and/or cutting of clocks to the dying CPU.  Optionally, this may
 261         * be done by the CPU which is dying in preference to supporting
 262         * this call, but that means there is _no_ synchronisation between
 263         * the requesting CPU and the dying CPU actually losing power.
 264         */
 265        if (!platform_cpu_kill(cpu))
 266                pr_err("CPU%u: unable to kill\n", cpu);
 267}
 268
 269/*
 270 * Called from the idle thread for the CPU which has been shutdown.
 271 *
 272 * Note that we disable IRQs here, but do not re-enable them
 273 * before returning to the caller. This is also the behaviour
 274 * of the other hotplug-cpu capable cores, so presumably coming
 275 * out of idle fixes this.
 276 */
 277void arch_cpu_idle_dead(void)
 278{
 279        unsigned int cpu = smp_processor_id();
 280
 281        idle_task_exit();
 282
 283        local_irq_disable();
 284
 285        /*
 286         * Flush the data out of the L1 cache for this CPU.  This must be
 287         * before the completion to ensure that data is safely written out
 288         * before platform_cpu_kill() gets called - which may disable
 289         * *this* CPU and power down its cache.
 290         */
 291        flush_cache_louis();
 292
 293        /*
 294         * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
 295         * this returns, power and/or clocks can be removed at any point
 296         * from this CPU and its cache by platform_cpu_kill().
 297         */
 298        complete(&cpu_died);
 299
 300        /*
 301         * Ensure that the cache lines associated with that completion are
 302         * written out.  This covers the case where _this_ CPU is doing the
 303         * powering down, to ensure that the completion is visible to the
 304         * CPU waiting for this one.
 305         */
 306        flush_cache_louis();
 307
 308        /*
 309         * The actual CPU shutdown procedure is at least platform (if not
 310         * CPU) specific.  This may remove power, or it may simply spin.
 311         *
 312         * Platforms are generally expected *NOT* to return from this call,
 313         * although there are some which do because they have no way to
 314         * power down the CPU.  These platforms are the _only_ reason we
 315         * have a return path which uses the fragment of assembly below.
 316         *
 317         * The return path should not be used for platforms which can
 318         * power off the CPU.
 319         */
 320        if (smp_ops.cpu_die)
 321                smp_ops.cpu_die(cpu);
 322
 323        pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
 324                cpu);
 325
 326        /*
 327         * Do not return to the idle loop - jump back to the secondary
 328         * cpu initialisation.  There's some initialisation which needs
 329         * to be repeated to undo the effects of taking the CPU offline.
 330         */
 331        __asm__("mov    sp, %0\n"
 332        "       mov     fp, #0\n"
 333        "       b       secondary_start_kernel"
 334                :
 335                : "r" (task_stack_page(current) + THREAD_SIZE - 8));
 336}
 337#endif /* CONFIG_HOTPLUG_CPU */
 338
 339/*
 340 * Called by both boot and secondaries to move global data into
 341 * per-processor storage.
 342 */
 343static void smp_store_cpu_info(unsigned int cpuid)
 344{
 345        struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
 346
 347        cpu_info->loops_per_jiffy = loops_per_jiffy;
 348        cpu_info->cpuid = read_cpuid_id();
 349
 350        store_cpu_topology(cpuid);
 351}
 352
 353/*
 354 * This is the secondary CPU boot entry.  We're using this CPUs
 355 * idle thread stack, but a set of temporary page tables.
 356 */
 357asmlinkage void secondary_start_kernel(void)
 358{
 359        struct mm_struct *mm = &init_mm;
 360        unsigned int cpu;
 361
 362        /*
 363         * The identity mapping is uncached (strongly ordered), so
 364         * switch away from it before attempting any exclusive accesses.
 365         */
 366        cpu_switch_mm(mm->pgd, mm);
 367        local_flush_bp_all();
 368        enter_lazy_tlb(mm, current);
 369        local_flush_tlb_all();
 370
 371        /*
 372         * All kernel threads share the same mm context; grab a
 373         * reference and switch to it.
 374         */
 375        cpu = smp_processor_id();
 376        mmgrab(mm);
 377        current->active_mm = mm;
 378        cpumask_set_cpu(cpu, mm_cpumask(mm));
 379
 380        cpu_init();
 381
 382#ifndef CONFIG_MMU
 383        setup_vectors_base();
 384#endif
 385        pr_debug("CPU%u: Booted secondary processor\n", cpu);
 386
 387        preempt_disable();
 388        trace_hardirqs_off();
 389
 390        /*
 391         * Give the platform a chance to do its own initialisation.
 392         */
 393        if (smp_ops.smp_secondary_init)
 394                smp_ops.smp_secondary_init(cpu);
 395
 396        notify_cpu_starting(cpu);
 397
 398        calibrate_delay();
 399
 400        smp_store_cpu_info(cpu);
 401
 402        /*
 403         * OK, now it's safe to let the boot CPU continue.  Wait for
 404         * the CPU migration code to notice that the CPU is online
 405         * before we continue - which happens after __cpu_up returns.
 406         */
 407        set_cpu_online(cpu, true);
 408
 409        check_other_bugs();
 410
 411        complete(&cpu_running);
 412
 413        local_irq_enable();
 414        local_fiq_enable();
 415        local_abt_enable();
 416
 417        /*
 418         * OK, it's off to the idle thread for us
 419         */
 420        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 421}
 422
 423void __init smp_cpus_done(unsigned int max_cpus)
 424{
 425        int cpu;
 426        unsigned long bogosum = 0;
 427
 428        for_each_online_cpu(cpu)
 429                bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
 430
 431        printk(KERN_INFO "SMP: Total of %d processors activated "
 432               "(%lu.%02lu BogoMIPS).\n",
 433               num_online_cpus(),
 434               bogosum / (500000/HZ),
 435               (bogosum / (5000/HZ)) % 100);
 436
 437        hyp_mode_check();
 438}
 439
 440void __init smp_prepare_boot_cpu(void)
 441{
 442        set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
 443}
 444
 445void __init smp_prepare_cpus(unsigned int max_cpus)
 446{
 447        unsigned int ncores = num_possible_cpus();
 448
 449        init_cpu_topology();
 450
 451        smp_store_cpu_info(smp_processor_id());
 452
 453        /*
 454         * are we trying to boot more cores than exist?
 455         */
 456        if (max_cpus > ncores)
 457                max_cpus = ncores;
 458        if (ncores > 1 && max_cpus) {
 459                /*
 460                 * Initialise the present map, which describes the set of CPUs
 461                 * actually populated at the present time. A platform should
 462                 * re-initialize the map in the platforms smp_prepare_cpus()
 463                 * if present != possible (e.g. physical hotplug).
 464                 */
 465                init_cpu_present(cpu_possible_mask);
 466
 467                /*
 468                 * Initialise the SCU if there are more than one CPU
 469                 * and let them know where to start.
 470                 */
 471                if (smp_ops.smp_prepare_cpus)
 472                        smp_ops.smp_prepare_cpus(max_cpus);
 473        }
 474}
 475
 476static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
 477
 478void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
 479{
 480        if (!__smp_cross_call)
 481                __smp_cross_call = fn;
 482}
 483
 484static const char *ipi_types[NR_IPI] __tracepoint_string = {
 485#define S(x,s)  [x] = s
 486        S(IPI_WAKEUP, "CPU wakeup interrupts"),
 487        S(IPI_TIMER, "Timer broadcast interrupts"),
 488        S(IPI_RESCHEDULE, "Rescheduling interrupts"),
 489        S(IPI_CALL_FUNC, "Function call interrupts"),
 490        S(IPI_CPU_STOP, "CPU stop interrupts"),
 491        S(IPI_IRQ_WORK, "IRQ work interrupts"),
 492        S(IPI_COMPLETION, "completion interrupts"),
 493};
 494
 495static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
 496{
 497        trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
 498        __smp_cross_call(target, ipinr);
 499}
 500
 501void show_ipi_list(struct seq_file *p, int prec)
 502{
 503        unsigned int cpu, i;
 504
 505        for (i = 0; i < NR_IPI; i++) {
 506                seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
 507
 508                for_each_online_cpu(cpu)
 509                        seq_printf(p, "%10u ",
 510                                   __get_irq_stat(cpu, ipi_irqs[i]));
 511
 512                seq_printf(p, " %s\n", ipi_types[i]);
 513        }
 514}
 515
 516u64 smp_irq_stat_cpu(unsigned int cpu)
 517{
 518        u64 sum = 0;
 519        int i;
 520
 521        for (i = 0; i < NR_IPI; i++)
 522                sum += __get_irq_stat(cpu, ipi_irqs[i]);
 523
 524        return sum;
 525}
 526
 527void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 528{
 529        smp_cross_call(mask, IPI_CALL_FUNC);
 530}
 531
 532void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
 533{
 534        smp_cross_call(mask, IPI_WAKEUP);
 535}
 536
 537void arch_send_call_function_single_ipi(int cpu)
 538{
 539        smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
 540}
 541
 542#ifdef CONFIG_IRQ_WORK
 543void arch_irq_work_raise(void)
 544{
 545        if (arch_irq_work_has_interrupt())
 546                smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
 547}
 548#endif
 549
 550#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 551void tick_broadcast(const struct cpumask *mask)
 552{
 553        smp_cross_call(mask, IPI_TIMER);
 554}
 555#endif
 556
 557static DEFINE_RAW_SPINLOCK(stop_lock);
 558
 559/*
 560 * ipi_cpu_stop - handle IPI from smp_send_stop()
 561 */
 562static void ipi_cpu_stop(unsigned int cpu)
 563{
 564        if (system_state <= SYSTEM_RUNNING) {
 565                raw_spin_lock(&stop_lock);
 566                pr_crit("CPU%u: stopping\n", cpu);
 567                dump_stack();
 568                raw_spin_unlock(&stop_lock);
 569        }
 570
 571        set_cpu_online(cpu, false);
 572
 573        local_fiq_disable();
 574        local_irq_disable();
 575
 576        while (1)
 577                cpu_relax();
 578}
 579
 580static DEFINE_PER_CPU(struct completion *, cpu_completion);
 581
 582int register_ipi_completion(struct completion *completion, int cpu)
 583{
 584        per_cpu(cpu_completion, cpu) = completion;
 585        return IPI_COMPLETION;
 586}
 587
 588static void ipi_complete(unsigned int cpu)
 589{
 590        complete(per_cpu(cpu_completion, cpu));
 591}
 592
 593/*
 594 * Main handler for inter-processor interrupts
 595 */
 596asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
 597{
 598        handle_IPI(ipinr, regs);
 599}
 600
 601void handle_IPI(int ipinr, struct pt_regs *regs)
 602{
 603        unsigned int cpu = smp_processor_id();
 604        struct pt_regs *old_regs = set_irq_regs(regs);
 605
 606        if ((unsigned)ipinr < NR_IPI) {
 607                trace_ipi_entry_rcuidle(ipi_types[ipinr]);
 608                __inc_irq_stat(cpu, ipi_irqs[ipinr]);
 609        }
 610
 611        switch (ipinr) {
 612        case IPI_WAKEUP:
 613                break;
 614
 615#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 616        case IPI_TIMER:
 617                irq_enter();
 618                tick_receive_broadcast();
 619                irq_exit();
 620                break;
 621#endif
 622
 623        case IPI_RESCHEDULE:
 624                scheduler_ipi();
 625                break;
 626
 627        case IPI_CALL_FUNC:
 628                irq_enter();
 629                generic_smp_call_function_interrupt();
 630                irq_exit();
 631                break;
 632
 633        case IPI_CPU_STOP:
 634                irq_enter();
 635                ipi_cpu_stop(cpu);
 636                irq_exit();
 637                break;
 638
 639#ifdef CONFIG_IRQ_WORK
 640        case IPI_IRQ_WORK:
 641                irq_enter();
 642                irq_work_run();
 643                irq_exit();
 644                break;
 645#endif
 646
 647        case IPI_COMPLETION:
 648                irq_enter();
 649                ipi_complete(cpu);
 650                irq_exit();
 651                break;
 652
 653        case IPI_CPU_BACKTRACE:
 654                printk_nmi_enter();
 655                irq_enter();
 656                nmi_cpu_backtrace(regs);
 657                irq_exit();
 658                printk_nmi_exit();
 659                break;
 660
 661        default:
 662                pr_crit("CPU%u: Unknown IPI message 0x%x\n",
 663                        cpu, ipinr);
 664                break;
 665        }
 666
 667        if ((unsigned)ipinr < NR_IPI)
 668                trace_ipi_exit_rcuidle(ipi_types[ipinr]);
 669        set_irq_regs(old_regs);
 670}
 671
 672void smp_send_reschedule(int cpu)
 673{
 674        smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
 675}
 676
 677void smp_send_stop(void)
 678{
 679        unsigned long timeout;
 680        struct cpumask mask;
 681
 682        cpumask_copy(&mask, cpu_online_mask);
 683        cpumask_clear_cpu(smp_processor_id(), &mask);
 684        if (!cpumask_empty(&mask))
 685                smp_cross_call(&mask, IPI_CPU_STOP);
 686
 687        /* Wait up to one second for other CPUs to stop */
 688        timeout = USEC_PER_SEC;
 689        while (num_online_cpus() > 1 && timeout--)
 690                udelay(1);
 691
 692        if (num_online_cpus() > 1)
 693                pr_warn("SMP: failed to stop secondary CPUs\n");
 694}
 695
 696/*
 697 * not supported here
 698 */
 699int setup_profiling_timer(unsigned int multiplier)
 700{
 701        return -EINVAL;
 702}
 703
 704#ifdef CONFIG_CPU_FREQ
 705
 706static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
 707static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
 708static unsigned long global_l_p_j_ref;
 709static unsigned long global_l_p_j_ref_freq;
 710
 711static int cpufreq_callback(struct notifier_block *nb,
 712                                        unsigned long val, void *data)
 713{
 714        struct cpufreq_freqs *freq = data;
 715        int cpu = freq->cpu;
 716
 717        if (freq->flags & CPUFREQ_CONST_LOOPS)
 718                return NOTIFY_OK;
 719
 720        if (!per_cpu(l_p_j_ref, cpu)) {
 721                per_cpu(l_p_j_ref, cpu) =
 722                        per_cpu(cpu_data, cpu).loops_per_jiffy;
 723                per_cpu(l_p_j_ref_freq, cpu) = freq->old;
 724                if (!global_l_p_j_ref) {
 725                        global_l_p_j_ref = loops_per_jiffy;
 726                        global_l_p_j_ref_freq = freq->old;
 727                }
 728        }
 729
 730        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 731            (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
 732                loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
 733                                                global_l_p_j_ref_freq,
 734                                                freq->new);
 735                per_cpu(cpu_data, cpu).loops_per_jiffy =
 736                        cpufreq_scale(per_cpu(l_p_j_ref, cpu),
 737                                        per_cpu(l_p_j_ref_freq, cpu),
 738                                        freq->new);
 739        }
 740        return NOTIFY_OK;
 741}
 742
 743static struct notifier_block cpufreq_notifier = {
 744        .notifier_call  = cpufreq_callback,
 745};
 746
 747static int __init register_cpufreq_notifier(void)
 748{
 749        return cpufreq_register_notifier(&cpufreq_notifier,
 750                                                CPUFREQ_TRANSITION_NOTIFIER);
 751}
 752core_initcall(register_cpufreq_notifier);
 753
 754#endif
 755
 756static void raise_nmi(cpumask_t *mask)
 757{
 758        smp_cross_call(mask, IPI_CPU_BACKTRACE);
 759}
 760
 761void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
 762{
 763        nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
 764}
 765