linux/arch/arm/mm/fault.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/fault.c
   3 *
   4 *  Copyright (C) 1995  Linus Torvalds
   5 *  Modifications for ARM processor (c) 1995-2004 Russell King
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/extable.h>
  12#include <linux/signal.h>
  13#include <linux/mm.h>
  14#include <linux/hardirq.h>
  15#include <linux/init.h>
  16#include <linux/kprobes.h>
  17#include <linux/uaccess.h>
  18#include <linux/page-flags.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/debug.h>
  21#include <linux/highmem.h>
  22#include <linux/perf_event.h>
  23
  24#include <asm/pgtable.h>
  25#include <asm/system_misc.h>
  26#include <asm/system_info.h>
  27#include <asm/tlbflush.h>
  28
  29#include "fault.h"
  30
  31#ifdef CONFIG_MMU
  32
  33#ifdef CONFIG_KPROBES
  34static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
  35{
  36        int ret = 0;
  37
  38        if (!user_mode(regs)) {
  39                /* kprobe_running() needs smp_processor_id() */
  40                preempt_disable();
  41                if (kprobe_running() && kprobe_fault_handler(regs, fsr))
  42                        ret = 1;
  43                preempt_enable();
  44        }
  45
  46        return ret;
  47}
  48#else
  49static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
  50{
  51        return 0;
  52}
  53#endif
  54
  55/*
  56 * This is useful to dump out the page tables associated with
  57 * 'addr' in mm 'mm'.
  58 */
  59void show_pte(struct mm_struct *mm, unsigned long addr)
  60{
  61        pgd_t *pgd;
  62
  63        if (!mm)
  64                mm = &init_mm;
  65
  66        pr_alert("pgd = %p\n", mm->pgd);
  67        pgd = pgd_offset(mm, addr);
  68        pr_alert("[%08lx] *pgd=%08llx",
  69                        addr, (long long)pgd_val(*pgd));
  70
  71        do {
  72                pud_t *pud;
  73                pmd_t *pmd;
  74                pte_t *pte;
  75
  76                if (pgd_none(*pgd))
  77                        break;
  78
  79                if (pgd_bad(*pgd)) {
  80                        pr_cont("(bad)");
  81                        break;
  82                }
  83
  84                pud = pud_offset(pgd, addr);
  85                if (PTRS_PER_PUD != 1)
  86                        pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
  87
  88                if (pud_none(*pud))
  89                        break;
  90
  91                if (pud_bad(*pud)) {
  92                        pr_cont("(bad)");
  93                        break;
  94                }
  95
  96                pmd = pmd_offset(pud, addr);
  97                if (PTRS_PER_PMD != 1)
  98                        pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
  99
 100                if (pmd_none(*pmd))
 101                        break;
 102
 103                if (pmd_bad(*pmd)) {
 104                        pr_cont("(bad)");
 105                        break;
 106                }
 107
 108                /* We must not map this if we have highmem enabled */
 109                if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
 110                        break;
 111
 112                pte = pte_offset_map(pmd, addr);
 113                pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
 114#ifndef CONFIG_ARM_LPAE
 115                pr_cont(", *ppte=%08llx",
 116                       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
 117#endif
 118                pte_unmap(pte);
 119        } while(0);
 120
 121        pr_cont("\n");
 122}
 123#else                                   /* CONFIG_MMU */
 124void show_pte(struct mm_struct *mm, unsigned long addr)
 125{ }
 126#endif                                  /* CONFIG_MMU */
 127
 128/*
 129 * Oops.  The kernel tried to access some page that wasn't present.
 130 */
 131static void
 132__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
 133                  struct pt_regs *regs)
 134{
 135        /*
 136         * Are we prepared to handle this kernel fault?
 137         */
 138        if (fixup_exception(regs))
 139                return;
 140
 141        /*
 142         * No handler, we'll have to terminate things with extreme prejudice.
 143         */
 144        bust_spinlocks(1);
 145        pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
 146                 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
 147                 "paging request", addr);
 148
 149        show_pte(mm, addr);
 150        die("Oops", regs, fsr);
 151        bust_spinlocks(0);
 152        do_exit(SIGKILL);
 153}
 154
 155/*
 156 * Something tried to access memory that isn't in our memory map..
 157 * User mode accesses just cause a SIGSEGV
 158 */
 159static void
 160__do_user_fault(struct task_struct *tsk, unsigned long addr,
 161                unsigned int fsr, unsigned int sig, int code,
 162                struct pt_regs *regs)
 163{
 164        struct siginfo si;
 165
 166        if (addr > TASK_SIZE)
 167                harden_branch_predictor();
 168
 169        clear_siginfo(&si);
 170
 171#ifdef CONFIG_DEBUG_USER
 172        if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
 173            ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
 174                printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
 175                       tsk->comm, sig, addr, fsr);
 176                show_pte(tsk->mm, addr);
 177                show_regs(regs);
 178        }
 179#endif
 180
 181        tsk->thread.address = addr;
 182        tsk->thread.error_code = fsr;
 183        tsk->thread.trap_no = 14;
 184        si.si_signo = sig;
 185        si.si_errno = 0;
 186        si.si_code = code;
 187        si.si_addr = (void __user *)addr;
 188        force_sig_info(sig, &si, tsk);
 189}
 190
 191void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 192{
 193        struct task_struct *tsk = current;
 194        struct mm_struct *mm = tsk->active_mm;
 195
 196        /*
 197         * If we are in kernel mode at this point, we
 198         * have no context to handle this fault with.
 199         */
 200        if (user_mode(regs))
 201                __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
 202        else
 203                __do_kernel_fault(mm, addr, fsr, regs);
 204}
 205
 206#ifdef CONFIG_MMU
 207#define VM_FAULT_BADMAP         0x010000
 208#define VM_FAULT_BADACCESS      0x020000
 209
 210/*
 211 * Check that the permissions on the VMA allow for the fault which occurred.
 212 * If we encountered a write fault, we must have write permission, otherwise
 213 * we allow any permission.
 214 */
 215static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
 216{
 217        unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
 218
 219        if (fsr & FSR_WRITE)
 220                mask = VM_WRITE;
 221        if (fsr & FSR_LNX_PF)
 222                mask = VM_EXEC;
 223
 224        return vma->vm_flags & mask ? false : true;
 225}
 226
 227static int __kprobes
 228__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
 229                unsigned int flags, struct task_struct *tsk)
 230{
 231        struct vm_area_struct *vma;
 232        int fault;
 233
 234        vma = find_vma(mm, addr);
 235        fault = VM_FAULT_BADMAP;
 236        if (unlikely(!vma))
 237                goto out;
 238        if (unlikely(vma->vm_start > addr))
 239                goto check_stack;
 240
 241        /*
 242         * Ok, we have a good vm_area for this
 243         * memory access, so we can handle it.
 244         */
 245good_area:
 246        if (access_error(fsr, vma)) {
 247                fault = VM_FAULT_BADACCESS;
 248                goto out;
 249        }
 250
 251        return handle_mm_fault(vma, addr & PAGE_MASK, flags);
 252
 253check_stack:
 254        /* Don't allow expansion below FIRST_USER_ADDRESS */
 255        if (vma->vm_flags & VM_GROWSDOWN &&
 256            addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
 257                goto good_area;
 258out:
 259        return fault;
 260}
 261
 262static int __kprobes
 263do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 264{
 265        struct task_struct *tsk;
 266        struct mm_struct *mm;
 267        int fault, sig, code;
 268        unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 269
 270        if (notify_page_fault(regs, fsr))
 271                return 0;
 272
 273        tsk = current;
 274        mm  = tsk->mm;
 275
 276        /* Enable interrupts if they were enabled in the parent context. */
 277        if (interrupts_enabled(regs))
 278                local_irq_enable();
 279
 280        /*
 281         * If we're in an interrupt or have no user
 282         * context, we must not take the fault..
 283         */
 284        if (faulthandler_disabled() || !mm)
 285                goto no_context;
 286
 287        if (user_mode(regs))
 288                flags |= FAULT_FLAG_USER;
 289        if (fsr & FSR_WRITE)
 290                flags |= FAULT_FLAG_WRITE;
 291
 292        /*
 293         * As per x86, we may deadlock here.  However, since the kernel only
 294         * validly references user space from well defined areas of the code,
 295         * we can bug out early if this is from code which shouldn't.
 296         */
 297        if (!down_read_trylock(&mm->mmap_sem)) {
 298                if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
 299                        goto no_context;
 300retry:
 301                down_read(&mm->mmap_sem);
 302        } else {
 303                /*
 304                 * The above down_read_trylock() might have succeeded in
 305                 * which case, we'll have missed the might_sleep() from
 306                 * down_read()
 307                 */
 308                might_sleep();
 309#ifdef CONFIG_DEBUG_VM
 310                if (!user_mode(regs) &&
 311                    !search_exception_tables(regs->ARM_pc))
 312                        goto no_context;
 313#endif
 314        }
 315
 316        fault = __do_page_fault(mm, addr, fsr, flags, tsk);
 317
 318        /* If we need to retry but a fatal signal is pending, handle the
 319         * signal first. We do not need to release the mmap_sem because
 320         * it would already be released in __lock_page_or_retry in
 321         * mm/filemap.c. */
 322        if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
 323                if (!user_mode(regs))
 324                        goto no_context;
 325                return 0;
 326        }
 327
 328        /*
 329         * Major/minor page fault accounting is only done on the
 330         * initial attempt. If we go through a retry, it is extremely
 331         * likely that the page will be found in page cache at that point.
 332         */
 333
 334        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
 335        if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
 336                if (fault & VM_FAULT_MAJOR) {
 337                        tsk->maj_flt++;
 338                        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
 339                                        regs, addr);
 340                } else {
 341                        tsk->min_flt++;
 342                        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
 343                                        regs, addr);
 344                }
 345                if (fault & VM_FAULT_RETRY) {
 346                        /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
 347                        * of starvation. */
 348                        flags &= ~FAULT_FLAG_ALLOW_RETRY;
 349                        flags |= FAULT_FLAG_TRIED;
 350                        goto retry;
 351                }
 352        }
 353
 354        up_read(&mm->mmap_sem);
 355
 356        /*
 357         * Handle the "normal" case first - VM_FAULT_MAJOR
 358         */
 359        if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
 360                return 0;
 361
 362        /*
 363         * If we are in kernel mode at this point, we
 364         * have no context to handle this fault with.
 365         */
 366        if (!user_mode(regs))
 367                goto no_context;
 368
 369        if (fault & VM_FAULT_OOM) {
 370                /*
 371                 * We ran out of memory, call the OOM killer, and return to
 372                 * userspace (which will retry the fault, or kill us if we
 373                 * got oom-killed)
 374                 */
 375                pagefault_out_of_memory();
 376                return 0;
 377        }
 378
 379        if (fault & VM_FAULT_SIGBUS) {
 380                /*
 381                 * We had some memory, but were unable to
 382                 * successfully fix up this page fault.
 383                 */
 384                sig = SIGBUS;
 385                code = BUS_ADRERR;
 386        } else {
 387                /*
 388                 * Something tried to access memory that
 389                 * isn't in our memory map..
 390                 */
 391                sig = SIGSEGV;
 392                code = fault == VM_FAULT_BADACCESS ?
 393                        SEGV_ACCERR : SEGV_MAPERR;
 394        }
 395
 396        __do_user_fault(tsk, addr, fsr, sig, code, regs);
 397        return 0;
 398
 399no_context:
 400        __do_kernel_fault(mm, addr, fsr, regs);
 401        return 0;
 402}
 403#else                                   /* CONFIG_MMU */
 404static int
 405do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 406{
 407        return 0;
 408}
 409#endif                                  /* CONFIG_MMU */
 410
 411/*
 412 * First Level Translation Fault Handler
 413 *
 414 * We enter here because the first level page table doesn't contain
 415 * a valid entry for the address.
 416 *
 417 * If the address is in kernel space (>= TASK_SIZE), then we are
 418 * probably faulting in the vmalloc() area.
 419 *
 420 * If the init_task's first level page tables contains the relevant
 421 * entry, we copy the it to this task.  If not, we send the process
 422 * a signal, fixup the exception, or oops the kernel.
 423 *
 424 * NOTE! We MUST NOT take any locks for this case. We may be in an
 425 * interrupt or a critical region, and should only copy the information
 426 * from the master page table, nothing more.
 427 */
 428#ifdef CONFIG_MMU
 429static int __kprobes
 430do_translation_fault(unsigned long addr, unsigned int fsr,
 431                     struct pt_regs *regs)
 432{
 433        unsigned int index;
 434        pgd_t *pgd, *pgd_k;
 435        pud_t *pud, *pud_k;
 436        pmd_t *pmd, *pmd_k;
 437
 438        if (addr < TASK_SIZE)
 439                return do_page_fault(addr, fsr, regs);
 440
 441        if (user_mode(regs))
 442                goto bad_area;
 443
 444        index = pgd_index(addr);
 445
 446        pgd = cpu_get_pgd() + index;
 447        pgd_k = init_mm.pgd + index;
 448
 449        if (pgd_none(*pgd_k))
 450                goto bad_area;
 451        if (!pgd_present(*pgd))
 452                set_pgd(pgd, *pgd_k);
 453
 454        pud = pud_offset(pgd, addr);
 455        pud_k = pud_offset(pgd_k, addr);
 456
 457        if (pud_none(*pud_k))
 458                goto bad_area;
 459        if (!pud_present(*pud))
 460                set_pud(pud, *pud_k);
 461
 462        pmd = pmd_offset(pud, addr);
 463        pmd_k = pmd_offset(pud_k, addr);
 464
 465#ifdef CONFIG_ARM_LPAE
 466        /*
 467         * Only one hardware entry per PMD with LPAE.
 468         */
 469        index = 0;
 470#else
 471        /*
 472         * On ARM one Linux PGD entry contains two hardware entries (see page
 473         * tables layout in pgtable.h). We normally guarantee that we always
 474         * fill both L1 entries. But create_mapping() doesn't follow the rule.
 475         * It can create inidividual L1 entries, so here we have to call
 476         * pmd_none() check for the entry really corresponded to address, not
 477         * for the first of pair.
 478         */
 479        index = (addr >> SECTION_SHIFT) & 1;
 480#endif
 481        if (pmd_none(pmd_k[index]))
 482                goto bad_area;
 483
 484        copy_pmd(pmd, pmd_k);
 485        return 0;
 486
 487bad_area:
 488        do_bad_area(addr, fsr, regs);
 489        return 0;
 490}
 491#else                                   /* CONFIG_MMU */
 492static int
 493do_translation_fault(unsigned long addr, unsigned int fsr,
 494                     struct pt_regs *regs)
 495{
 496        return 0;
 497}
 498#endif                                  /* CONFIG_MMU */
 499
 500/*
 501 * Some section permission faults need to be handled gracefully.
 502 * They can happen due to a __{get,put}_user during an oops.
 503 */
 504#ifndef CONFIG_ARM_LPAE
 505static int
 506do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 507{
 508        do_bad_area(addr, fsr, regs);
 509        return 0;
 510}
 511#endif /* CONFIG_ARM_LPAE */
 512
 513/*
 514 * This abort handler always returns "fault".
 515 */
 516static int
 517do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 518{
 519        return 1;
 520}
 521
 522struct fsr_info {
 523        int     (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
 524        int     sig;
 525        int     code;
 526        const char *name;
 527};
 528
 529/* FSR definition */
 530#ifdef CONFIG_ARM_LPAE
 531#include "fsr-3level.c"
 532#else
 533#include "fsr-2level.c"
 534#endif
 535
 536void __init
 537hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
 538                int sig, int code, const char *name)
 539{
 540        if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
 541                BUG();
 542
 543        fsr_info[nr].fn   = fn;
 544        fsr_info[nr].sig  = sig;
 545        fsr_info[nr].code = code;
 546        fsr_info[nr].name = name;
 547}
 548
 549/*
 550 * Dispatch a data abort to the relevant handler.
 551 */
 552asmlinkage void
 553do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 554{
 555        const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
 556        struct siginfo info;
 557
 558        if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
 559                return;
 560
 561        pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
 562                inf->name, fsr, addr);
 563        show_pte(current->mm, addr);
 564
 565        clear_siginfo(&info);
 566        info.si_signo = inf->sig;
 567        info.si_errno = 0;
 568        info.si_code  = inf->code;
 569        info.si_addr  = (void __user *)addr;
 570        arm_notify_die("", regs, &info, fsr, 0);
 571}
 572
 573void __init
 574hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
 575                 int sig, int code, const char *name)
 576{
 577        if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
 578                BUG();
 579
 580        ifsr_info[nr].fn   = fn;
 581        ifsr_info[nr].sig  = sig;
 582        ifsr_info[nr].code = code;
 583        ifsr_info[nr].name = name;
 584}
 585
 586asmlinkage void
 587do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
 588{
 589        const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
 590        struct siginfo info;
 591
 592        if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
 593                return;
 594
 595        pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
 596                inf->name, ifsr, addr);
 597
 598        clear_siginfo(&info);
 599        info.si_signo = inf->sig;
 600        info.si_errno = 0;
 601        info.si_code  = inf->code;
 602        info.si_addr  = (void __user *)addr;
 603        arm_notify_die("", regs, &info, ifsr, 0);
 604}
 605
 606/*
 607 * Abort handler to be used only during first unmasking of asynchronous aborts
 608 * on the boot CPU. This makes sure that the machine will not die if the
 609 * firmware/bootloader left an imprecise abort pending for us to trip over.
 610 */
 611static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
 612                                      struct pt_regs *regs)
 613{
 614        pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
 615                "first unmask, this is most likely caused by a "
 616                "firmware/bootloader bug.\n", fsr);
 617
 618        return 0;
 619}
 620
 621void __init early_abt_enable(void)
 622{
 623        fsr_info[FSR_FS_AEA].fn = early_abort_handler;
 624        local_abt_enable();
 625        fsr_info[FSR_FS_AEA].fn = do_bad;
 626}
 627
 628#ifndef CONFIG_ARM_LPAE
 629static int __init exceptions_init(void)
 630{
 631        if (cpu_architecture() >= CPU_ARCH_ARMv6) {
 632                hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
 633                                "I-cache maintenance fault");
 634        }
 635
 636        if (cpu_architecture() >= CPU_ARCH_ARMv7) {
 637                /*
 638                 * TODO: Access flag faults introduced in ARMv6K.
 639                 * Runtime check for 'K' extension is needed
 640                 */
 641                hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
 642                                "section access flag fault");
 643                hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
 644                                "section access flag fault");
 645        }
 646
 647        return 0;
 648}
 649
 650arch_initcall(exceptions_init);
 651#endif
 652