1
2
3
4
5
6
7
8
9
10
11
12
13
14#include <linux/acpi.h>
15#include <linux/arch_topology.h>
16#include <linux/cacheinfo.h>
17#include <linux/cpu.h>
18#include <linux/cpumask.h>
19#include <linux/init.h>
20#include <linux/percpu.h>
21#include <linux/node.h>
22#include <linux/nodemask.h>
23#include <linux/of.h>
24#include <linux/sched.h>
25#include <linux/sched/topology.h>
26#include <linux/slab.h>
27#include <linux/smp.h>
28#include <linux/string.h>
29
30#include <asm/cpu.h>
31#include <asm/cputype.h>
32#include <asm/topology.h>
33
34static int __init get_cpu_for_node(struct device_node *node)
35{
36 struct device_node *cpu_node;
37 int cpu;
38
39 cpu_node = of_parse_phandle(node, "cpu", 0);
40 if (!cpu_node)
41 return -1;
42
43 cpu = of_cpu_node_to_id(cpu_node);
44 if (cpu >= 0)
45 topology_parse_cpu_capacity(cpu_node, cpu);
46 else
47 pr_crit("Unable to find CPU node for %pOF\n", cpu_node);
48
49 of_node_put(cpu_node);
50 return cpu;
51}
52
53static int __init parse_core(struct device_node *core, int package_id,
54 int core_id)
55{
56 char name[10];
57 bool leaf = true;
58 int i = 0;
59 int cpu;
60 struct device_node *t;
61
62 do {
63 snprintf(name, sizeof(name), "thread%d", i);
64 t = of_get_child_by_name(core, name);
65 if (t) {
66 leaf = false;
67 cpu = get_cpu_for_node(t);
68 if (cpu >= 0) {
69 cpu_topology[cpu].package_id = package_id;
70 cpu_topology[cpu].core_id = core_id;
71 cpu_topology[cpu].thread_id = i;
72 } else {
73 pr_err("%pOF: Can't get CPU for thread\n",
74 t);
75 of_node_put(t);
76 return -EINVAL;
77 }
78 of_node_put(t);
79 }
80 i++;
81 } while (t);
82
83 cpu = get_cpu_for_node(core);
84 if (cpu >= 0) {
85 if (!leaf) {
86 pr_err("%pOF: Core has both threads and CPU\n",
87 core);
88 return -EINVAL;
89 }
90
91 cpu_topology[cpu].package_id = package_id;
92 cpu_topology[cpu].core_id = core_id;
93 } else if (leaf) {
94 pr_err("%pOF: Can't get CPU for leaf core\n", core);
95 return -EINVAL;
96 }
97
98 return 0;
99}
100
101static int __init parse_cluster(struct device_node *cluster, int depth)
102{
103 char name[10];
104 bool leaf = true;
105 bool has_cores = false;
106 struct device_node *c;
107 static int package_id __initdata;
108 int core_id = 0;
109 int i, ret;
110
111
112
113
114
115
116 i = 0;
117 do {
118 snprintf(name, sizeof(name), "cluster%d", i);
119 c = of_get_child_by_name(cluster, name);
120 if (c) {
121 leaf = false;
122 ret = parse_cluster(c, depth + 1);
123 of_node_put(c);
124 if (ret != 0)
125 return ret;
126 }
127 i++;
128 } while (c);
129
130
131 i = 0;
132 do {
133 snprintf(name, sizeof(name), "core%d", i);
134 c = of_get_child_by_name(cluster, name);
135 if (c) {
136 has_cores = true;
137
138 if (depth == 0) {
139 pr_err("%pOF: cpu-map children should be clusters\n",
140 c);
141 of_node_put(c);
142 return -EINVAL;
143 }
144
145 if (leaf) {
146 ret = parse_core(c, package_id, core_id++);
147 } else {
148 pr_err("%pOF: Non-leaf cluster with core %s\n",
149 cluster, name);
150 ret = -EINVAL;
151 }
152
153 of_node_put(c);
154 if (ret != 0)
155 return ret;
156 }
157 i++;
158 } while (c);
159
160 if (leaf && !has_cores)
161 pr_warn("%pOF: empty cluster\n", cluster);
162
163 if (leaf)
164 package_id++;
165
166 return 0;
167}
168
169static int __init parse_dt_topology(void)
170{
171 struct device_node *cn, *map;
172 int ret = 0;
173 int cpu;
174
175 cn = of_find_node_by_path("/cpus");
176 if (!cn) {
177 pr_err("No CPU information found in DT\n");
178 return 0;
179 }
180
181
182
183
184
185 map = of_get_child_by_name(cn, "cpu-map");
186 if (!map)
187 goto out;
188
189 ret = parse_cluster(map, 0);
190 if (ret != 0)
191 goto out_map;
192
193 topology_normalize_cpu_scale();
194
195
196
197
198
199 for_each_possible_cpu(cpu)
200 if (cpu_topology[cpu].package_id == -1)
201 ret = -EINVAL;
202
203out_map:
204 of_node_put(map);
205out:
206 of_node_put(cn);
207 return ret;
208}
209
210
211
212
213struct cpu_topology cpu_topology[NR_CPUS];
214EXPORT_SYMBOL_GPL(cpu_topology);
215
216const struct cpumask *cpu_coregroup_mask(int cpu)
217{
218 const cpumask_t *core_mask = &cpu_topology[cpu].core_sibling;
219
220 if (cpu_topology[cpu].llc_id != -1) {
221 if (cpumask_subset(&cpu_topology[cpu].llc_siblings, core_mask))
222 core_mask = &cpu_topology[cpu].llc_siblings;
223 }
224
225 return core_mask;
226}
227
228static void update_siblings_masks(unsigned int cpuid)
229{
230 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
231 int cpu;
232
233
234 for_each_possible_cpu(cpu) {
235 cpu_topo = &cpu_topology[cpu];
236
237 if (cpuid_topo->llc_id == cpu_topo->llc_id) {
238 cpumask_set_cpu(cpu, &cpuid_topo->llc_siblings);
239 cpumask_set_cpu(cpuid, &cpu_topo->llc_siblings);
240 }
241
242 if (cpuid_topo->package_id != cpu_topo->package_id)
243 continue;
244
245 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
246 if (cpu != cpuid)
247 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
248
249 if (cpuid_topo->core_id != cpu_topo->core_id)
250 continue;
251
252 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
253 if (cpu != cpuid)
254 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
255 }
256}
257
258void store_cpu_topology(unsigned int cpuid)
259{
260 struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
261 u64 mpidr;
262
263 if (cpuid_topo->package_id != -1)
264 goto topology_populated;
265
266 mpidr = read_cpuid_mpidr();
267
268
269 if (mpidr & MPIDR_UP_BITMASK)
270 return;
271
272
273 if (mpidr & MPIDR_MT_BITMASK) {
274
275 cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
276 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
277 cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
278 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
279 } else {
280
281 cpuid_topo->thread_id = -1;
282 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
283 cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
284 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
285 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
286 }
287
288 pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
289 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
290 cpuid_topo->thread_id, mpidr);
291
292topology_populated:
293 update_siblings_masks(cpuid);
294}
295
296static void __init reset_cpu_topology(void)
297{
298 unsigned int cpu;
299
300 for_each_possible_cpu(cpu) {
301 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
302
303 cpu_topo->thread_id = -1;
304 cpu_topo->core_id = 0;
305 cpu_topo->package_id = -1;
306
307 cpu_topo->llc_id = -1;
308 cpumask_clear(&cpu_topo->llc_siblings);
309 cpumask_set_cpu(cpu, &cpu_topo->llc_siblings);
310
311 cpumask_clear(&cpu_topo->core_sibling);
312 cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
313 cpumask_clear(&cpu_topo->thread_sibling);
314 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
315 }
316}
317
318#ifdef CONFIG_ACPI
319
320
321
322
323static int __init parse_acpi_topology(void)
324{
325 bool is_threaded;
326 int cpu, topology_id;
327
328 is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
329
330 for_each_possible_cpu(cpu) {
331 int i, cache_id;
332
333 topology_id = find_acpi_cpu_topology(cpu, 0);
334 if (topology_id < 0)
335 return topology_id;
336
337 if (is_threaded) {
338 cpu_topology[cpu].thread_id = topology_id;
339 topology_id = find_acpi_cpu_topology(cpu, 1);
340 cpu_topology[cpu].core_id = topology_id;
341 } else {
342 cpu_topology[cpu].thread_id = -1;
343 cpu_topology[cpu].core_id = topology_id;
344 }
345 topology_id = find_acpi_cpu_topology_package(cpu);
346 cpu_topology[cpu].package_id = topology_id;
347
348 i = acpi_find_last_cache_level(cpu);
349
350 if (i > 0) {
351
352
353
354
355 cache_id = find_acpi_cpu_cache_topology(cpu, i);
356 if (cache_id > 0)
357 cpu_topology[cpu].llc_id = cache_id;
358 }
359 }
360
361 return 0;
362}
363
364#else
365static inline int __init parse_acpi_topology(void)
366{
367 return -EINVAL;
368}
369#endif
370
371void __init init_cpu_topology(void)
372{
373 reset_cpu_topology();
374
375
376
377
378
379 if (!acpi_disabled && parse_acpi_topology())
380 reset_cpu_topology();
381 else if (of_have_populated_dt() && parse_dt_topology())
382 reset_cpu_topology();
383}
384