linux/arch/mips/kernel/traps.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7 * Copyright (C) 1995, 1996 Paul M. Antoine
   8 * Copyright (C) 1998 Ulf Carlsson
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
  13 * Copyright (C) 2014, Imagination Technologies Ltd.
  14 */
  15#include <linux/bitops.h>
  16#include <linux/bug.h>
  17#include <linux/compiler.h>
  18#include <linux/context_tracking.h>
  19#include <linux/cpu_pm.h>
  20#include <linux/kexec.h>
  21#include <linux/init.h>
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/extable.h>
  25#include <linux/mm.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/debug.h>
  28#include <linux/smp.h>
  29#include <linux/spinlock.h>
  30#include <linux/kallsyms.h>
  31#include <linux/bootmem.h>
  32#include <linux/interrupt.h>
  33#include <linux/ptrace.h>
  34#include <linux/kgdb.h>
  35#include <linux/kdebug.h>
  36#include <linux/kprobes.h>
  37#include <linux/notifier.h>
  38#include <linux/kdb.h>
  39#include <linux/irq.h>
  40#include <linux/perf_event.h>
  41
  42#include <asm/addrspace.h>
  43#include <asm/bootinfo.h>
  44#include <asm/branch.h>
  45#include <asm/break.h>
  46#include <asm/cop2.h>
  47#include <asm/cpu.h>
  48#include <asm/cpu-type.h>
  49#include <asm/dsp.h>
  50#include <asm/fpu.h>
  51#include <asm/fpu_emulator.h>
  52#include <asm/idle.h>
  53#include <asm/mips-cps.h>
  54#include <asm/mips-r2-to-r6-emul.h>
  55#include <asm/mipsregs.h>
  56#include <asm/mipsmtregs.h>
  57#include <asm/module.h>
  58#include <asm/msa.h>
  59#include <asm/pgtable.h>
  60#include <asm/ptrace.h>
  61#include <asm/sections.h>
  62#include <asm/siginfo.h>
  63#include <asm/tlbdebug.h>
  64#include <asm/traps.h>
  65#include <linux/uaccess.h>
  66#include <asm/watch.h>
  67#include <asm/mmu_context.h>
  68#include <asm/types.h>
  69#include <asm/stacktrace.h>
  70#include <asm/uasm.h>
  71
  72extern void check_wait(void);
  73extern asmlinkage void rollback_handle_int(void);
  74extern asmlinkage void handle_int(void);
  75extern u32 handle_tlbl[];
  76extern u32 handle_tlbs[];
  77extern u32 handle_tlbm[];
  78extern asmlinkage void handle_adel(void);
  79extern asmlinkage void handle_ades(void);
  80extern asmlinkage void handle_ibe(void);
  81extern asmlinkage void handle_dbe(void);
  82extern asmlinkage void handle_sys(void);
  83extern asmlinkage void handle_bp(void);
  84extern asmlinkage void handle_ri(void);
  85extern asmlinkage void handle_ri_rdhwr_tlbp(void);
  86extern asmlinkage void handle_ri_rdhwr(void);
  87extern asmlinkage void handle_cpu(void);
  88extern asmlinkage void handle_ov(void);
  89extern asmlinkage void handle_tr(void);
  90extern asmlinkage void handle_msa_fpe(void);
  91extern asmlinkage void handle_fpe(void);
  92extern asmlinkage void handle_ftlb(void);
  93extern asmlinkage void handle_msa(void);
  94extern asmlinkage void handle_mdmx(void);
  95extern asmlinkage void handle_watch(void);
  96extern asmlinkage void handle_mt(void);
  97extern asmlinkage void handle_dsp(void);
  98extern asmlinkage void handle_mcheck(void);
  99extern asmlinkage void handle_reserved(void);
 100extern void tlb_do_page_fault_0(void);
 101
 102void (*board_be_init)(void);
 103int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
 104void (*board_nmi_handler_setup)(void);
 105void (*board_ejtag_handler_setup)(void);
 106void (*board_bind_eic_interrupt)(int irq, int regset);
 107void (*board_ebase_setup)(void);
 108void(*board_cache_error_setup)(void);
 109
 110static void show_raw_backtrace(unsigned long reg29)
 111{
 112        unsigned long *sp = (unsigned long *)(reg29 & ~3);
 113        unsigned long addr;
 114
 115        printk("Call Trace:");
 116#ifdef CONFIG_KALLSYMS
 117        printk("\n");
 118#endif
 119        while (!kstack_end(sp)) {
 120                unsigned long __user *p =
 121                        (unsigned long __user *)(unsigned long)sp++;
 122                if (__get_user(addr, p)) {
 123                        printk(" (Bad stack address)");
 124                        break;
 125                }
 126                if (__kernel_text_address(addr))
 127                        print_ip_sym(addr);
 128        }
 129        printk("\n");
 130}
 131
 132#ifdef CONFIG_KALLSYMS
 133int raw_show_trace;
 134static int __init set_raw_show_trace(char *str)
 135{
 136        raw_show_trace = 1;
 137        return 1;
 138}
 139__setup("raw_show_trace", set_raw_show_trace);
 140#endif
 141
 142static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
 143{
 144        unsigned long sp = regs->regs[29];
 145        unsigned long ra = regs->regs[31];
 146        unsigned long pc = regs->cp0_epc;
 147
 148        if (!task)
 149                task = current;
 150
 151        if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
 152                show_raw_backtrace(sp);
 153                return;
 154        }
 155        printk("Call Trace:\n");
 156        do {
 157                print_ip_sym(pc);
 158                pc = unwind_stack(task, &sp, pc, &ra);
 159        } while (pc);
 160        pr_cont("\n");
 161}
 162
 163/*
 164 * This routine abuses get_user()/put_user() to reference pointers
 165 * with at least a bit of error checking ...
 166 */
 167static void show_stacktrace(struct task_struct *task,
 168        const struct pt_regs *regs)
 169{
 170        const int field = 2 * sizeof(unsigned long);
 171        long stackdata;
 172        int i;
 173        unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 174
 175        printk("Stack :");
 176        i = 0;
 177        while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 178                if (i && ((i % (64 / field)) == 0)) {
 179                        pr_cont("\n");
 180                        printk("       ");
 181                }
 182                if (i > 39) {
 183                        pr_cont(" ...");
 184                        break;
 185                }
 186
 187                if (__get_user(stackdata, sp++)) {
 188                        pr_cont(" (Bad stack address)");
 189                        break;
 190                }
 191
 192                pr_cont(" %0*lx", field, stackdata);
 193                i++;
 194        }
 195        pr_cont("\n");
 196        show_backtrace(task, regs);
 197}
 198
 199void show_stack(struct task_struct *task, unsigned long *sp)
 200{
 201        struct pt_regs regs;
 202        mm_segment_t old_fs = get_fs();
 203
 204        regs.cp0_status = KSU_KERNEL;
 205        if (sp) {
 206                regs.regs[29] = (unsigned long)sp;
 207                regs.regs[31] = 0;
 208                regs.cp0_epc = 0;
 209        } else {
 210                if (task && task != current) {
 211                        regs.regs[29] = task->thread.reg29;
 212                        regs.regs[31] = 0;
 213                        regs.cp0_epc = task->thread.reg31;
 214#ifdef CONFIG_KGDB_KDB
 215                } else if (atomic_read(&kgdb_active) != -1 &&
 216                           kdb_current_regs) {
 217                        memcpy(&regs, kdb_current_regs, sizeof(regs));
 218#endif /* CONFIG_KGDB_KDB */
 219                } else {
 220                        prepare_frametrace(&regs);
 221                }
 222        }
 223        /*
 224         * show_stack() deals exclusively with kernel mode, so be sure to access
 225         * the stack in the kernel (not user) address space.
 226         */
 227        set_fs(KERNEL_DS);
 228        show_stacktrace(task, &regs);
 229        set_fs(old_fs);
 230}
 231
 232static void show_code(unsigned int __user *pc)
 233{
 234        long i;
 235        unsigned short __user *pc16 = NULL;
 236
 237        printk("Code:");
 238
 239        if ((unsigned long)pc & 1)
 240                pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 241        for(i = -3 ; i < 6 ; i++) {
 242                unsigned int insn;
 243                if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 244                        pr_cont(" (Bad address in epc)\n");
 245                        break;
 246                }
 247                pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 248        }
 249        pr_cont("\n");
 250}
 251
 252static void __show_regs(const struct pt_regs *regs)
 253{
 254        const int field = 2 * sizeof(unsigned long);
 255        unsigned int cause = regs->cp0_cause;
 256        unsigned int exccode;
 257        int i;
 258
 259        show_regs_print_info(KERN_DEFAULT);
 260
 261        /*
 262         * Saved main processor registers
 263         */
 264        for (i = 0; i < 32; ) {
 265                if ((i % 4) == 0)
 266                        printk("$%2d   :", i);
 267                if (i == 0)
 268                        pr_cont(" %0*lx", field, 0UL);
 269                else if (i == 26 || i == 27)
 270                        pr_cont(" %*s", field, "");
 271                else
 272                        pr_cont(" %0*lx", field, regs->regs[i]);
 273
 274                i++;
 275                if ((i % 4) == 0)
 276                        pr_cont("\n");
 277        }
 278
 279#ifdef CONFIG_CPU_HAS_SMARTMIPS
 280        printk("Acx    : %0*lx\n", field, regs->acx);
 281#endif
 282        printk("Hi    : %0*lx\n", field, regs->hi);
 283        printk("Lo    : %0*lx\n", field, regs->lo);
 284
 285        /*
 286         * Saved cp0 registers
 287         */
 288        printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 289               (void *) regs->cp0_epc);
 290        printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 291               (void *) regs->regs[31]);
 292
 293        printk("Status: %08x    ", (uint32_t) regs->cp0_status);
 294
 295        if (cpu_has_3kex) {
 296                if (regs->cp0_status & ST0_KUO)
 297                        pr_cont("KUo ");
 298                if (regs->cp0_status & ST0_IEO)
 299                        pr_cont("IEo ");
 300                if (regs->cp0_status & ST0_KUP)
 301                        pr_cont("KUp ");
 302                if (regs->cp0_status & ST0_IEP)
 303                        pr_cont("IEp ");
 304                if (regs->cp0_status & ST0_KUC)
 305                        pr_cont("KUc ");
 306                if (regs->cp0_status & ST0_IEC)
 307                        pr_cont("IEc ");
 308        } else if (cpu_has_4kex) {
 309                if (regs->cp0_status & ST0_KX)
 310                        pr_cont("KX ");
 311                if (regs->cp0_status & ST0_SX)
 312                        pr_cont("SX ");
 313                if (regs->cp0_status & ST0_UX)
 314                        pr_cont("UX ");
 315                switch (regs->cp0_status & ST0_KSU) {
 316                case KSU_USER:
 317                        pr_cont("USER ");
 318                        break;
 319                case KSU_SUPERVISOR:
 320                        pr_cont("SUPERVISOR ");
 321                        break;
 322                case KSU_KERNEL:
 323                        pr_cont("KERNEL ");
 324                        break;
 325                default:
 326                        pr_cont("BAD_MODE ");
 327                        break;
 328                }
 329                if (regs->cp0_status & ST0_ERL)
 330                        pr_cont("ERL ");
 331                if (regs->cp0_status & ST0_EXL)
 332                        pr_cont("EXL ");
 333                if (regs->cp0_status & ST0_IE)
 334                        pr_cont("IE ");
 335        }
 336        pr_cont("\n");
 337
 338        exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 339        printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
 340
 341        if (1 <= exccode && exccode <= 5)
 342                printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 343
 344        printk("PrId  : %08x (%s)\n", read_c0_prid(),
 345               cpu_name_string());
 346}
 347
 348/*
 349 * FIXME: really the generic show_regs should take a const pointer argument.
 350 */
 351void show_regs(struct pt_regs *regs)
 352{
 353        __show_regs((struct pt_regs *)regs);
 354        dump_stack();
 355}
 356
 357void show_registers(struct pt_regs *regs)
 358{
 359        const int field = 2 * sizeof(unsigned long);
 360        mm_segment_t old_fs = get_fs();
 361
 362        __show_regs(regs);
 363        print_modules();
 364        printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 365               current->comm, current->pid, current_thread_info(), current,
 366              field, current_thread_info()->tp_value);
 367        if (cpu_has_userlocal) {
 368                unsigned long tls;
 369
 370                tls = read_c0_userlocal();
 371                if (tls != current_thread_info()->tp_value)
 372                        printk("*HwTLS: %0*lx\n", field, tls);
 373        }
 374
 375        if (!user_mode(regs))
 376                /* Necessary for getting the correct stack content */
 377                set_fs(KERNEL_DS);
 378        show_stacktrace(current, regs);
 379        show_code((unsigned int __user *) regs->cp0_epc);
 380        printk("\n");
 381        set_fs(old_fs);
 382}
 383
 384static DEFINE_RAW_SPINLOCK(die_lock);
 385
 386void __noreturn die(const char *str, struct pt_regs *regs)
 387{
 388        static int die_counter;
 389        int sig = SIGSEGV;
 390
 391        oops_enter();
 392
 393        if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
 394                       SIGSEGV) == NOTIFY_STOP)
 395                sig = 0;
 396
 397        console_verbose();
 398        raw_spin_lock_irq(&die_lock);
 399        bust_spinlocks(1);
 400
 401        printk("%s[#%d]:\n", str, ++die_counter);
 402        show_registers(regs);
 403        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 404        raw_spin_unlock_irq(&die_lock);
 405
 406        oops_exit();
 407
 408        if (in_interrupt())
 409                panic("Fatal exception in interrupt");
 410
 411        if (panic_on_oops)
 412                panic("Fatal exception");
 413
 414        if (regs && kexec_should_crash(current))
 415                crash_kexec(regs);
 416
 417        do_exit(sig);
 418}
 419
 420extern struct exception_table_entry __start___dbe_table[];
 421extern struct exception_table_entry __stop___dbe_table[];
 422
 423__asm__(
 424"       .section        __dbe_table, \"a\"\n"
 425"       .previous                       \n");
 426
 427/* Given an address, look for it in the exception tables. */
 428static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 429{
 430        const struct exception_table_entry *e;
 431
 432        e = search_extable(__start___dbe_table,
 433                           __stop___dbe_table - __start___dbe_table, addr);
 434        if (!e)
 435                e = search_module_dbetables(addr);
 436        return e;
 437}
 438
 439asmlinkage void do_be(struct pt_regs *regs)
 440{
 441        const int field = 2 * sizeof(unsigned long);
 442        const struct exception_table_entry *fixup = NULL;
 443        int data = regs->cp0_cause & 4;
 444        int action = MIPS_BE_FATAL;
 445        enum ctx_state prev_state;
 446
 447        prev_state = exception_enter();
 448        /* XXX For now.  Fixme, this searches the wrong table ...  */
 449        if (data && !user_mode(regs))
 450                fixup = search_dbe_tables(exception_epc(regs));
 451
 452        if (fixup)
 453                action = MIPS_BE_FIXUP;
 454
 455        if (board_be_handler)
 456                action = board_be_handler(regs, fixup != NULL);
 457        else
 458                mips_cm_error_report();
 459
 460        switch (action) {
 461        case MIPS_BE_DISCARD:
 462                goto out;
 463        case MIPS_BE_FIXUP:
 464                if (fixup) {
 465                        regs->cp0_epc = fixup->nextinsn;
 466                        goto out;
 467                }
 468                break;
 469        default:
 470                break;
 471        }
 472
 473        /*
 474         * Assume it would be too dangerous to continue ...
 475         */
 476        printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 477               data ? "Data" : "Instruction",
 478               field, regs->cp0_epc, field, regs->regs[31]);
 479        if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
 480                       SIGBUS) == NOTIFY_STOP)
 481                goto out;
 482
 483        die_if_kernel("Oops", regs);
 484        force_sig(SIGBUS, current);
 485
 486out:
 487        exception_exit(prev_state);
 488}
 489
 490/*
 491 * ll/sc, rdhwr, sync emulation
 492 */
 493
 494#define OPCODE 0xfc000000
 495#define BASE   0x03e00000
 496#define RT     0x001f0000
 497#define OFFSET 0x0000ffff
 498#define LL     0xc0000000
 499#define SC     0xe0000000
 500#define SPEC0  0x00000000
 501#define SPEC3  0x7c000000
 502#define RD     0x0000f800
 503#define FUNC   0x0000003f
 504#define SYNC   0x0000000f
 505#define RDHWR  0x0000003b
 506
 507/*  microMIPS definitions   */
 508#define MM_POOL32A_FUNC 0xfc00ffff
 509#define MM_RDHWR        0x00006b3c
 510#define MM_RS           0x001f0000
 511#define MM_RT           0x03e00000
 512
 513/*
 514 * The ll_bit is cleared by r*_switch.S
 515 */
 516
 517unsigned int ll_bit;
 518struct task_struct *ll_task;
 519
 520static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 521{
 522        unsigned long value, __user *vaddr;
 523        long offset;
 524
 525        /*
 526         * analyse the ll instruction that just caused a ri exception
 527         * and put the referenced address to addr.
 528         */
 529
 530        /* sign extend offset */
 531        offset = opcode & OFFSET;
 532        offset <<= 16;
 533        offset >>= 16;
 534
 535        vaddr = (unsigned long __user *)
 536                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 537
 538        if ((unsigned long)vaddr & 3)
 539                return SIGBUS;
 540        if (get_user(value, vaddr))
 541                return SIGSEGV;
 542
 543        preempt_disable();
 544
 545        if (ll_task == NULL || ll_task == current) {
 546                ll_bit = 1;
 547        } else {
 548                ll_bit = 0;
 549        }
 550        ll_task = current;
 551
 552        preempt_enable();
 553
 554        regs->regs[(opcode & RT) >> 16] = value;
 555
 556        return 0;
 557}
 558
 559static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 560{
 561        unsigned long __user *vaddr;
 562        unsigned long reg;
 563        long offset;
 564
 565        /*
 566         * analyse the sc instruction that just caused a ri exception
 567         * and put the referenced address to addr.
 568         */
 569
 570        /* sign extend offset */
 571        offset = opcode & OFFSET;
 572        offset <<= 16;
 573        offset >>= 16;
 574
 575        vaddr = (unsigned long __user *)
 576                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 577        reg = (opcode & RT) >> 16;
 578
 579        if ((unsigned long)vaddr & 3)
 580                return SIGBUS;
 581
 582        preempt_disable();
 583
 584        if (ll_bit == 0 || ll_task != current) {
 585                regs->regs[reg] = 0;
 586                preempt_enable();
 587                return 0;
 588        }
 589
 590        preempt_enable();
 591
 592        if (put_user(regs->regs[reg], vaddr))
 593                return SIGSEGV;
 594
 595        regs->regs[reg] = 1;
 596
 597        return 0;
 598}
 599
 600/*
 601 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 602 * opcodes are supposed to result in coprocessor unusable exceptions if
 603 * executed on ll/sc-less processors.  That's the theory.  In practice a
 604 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 605 * instead, so we're doing the emulation thing in both exception handlers.
 606 */
 607static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 608{
 609        if ((opcode & OPCODE) == LL) {
 610                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 611                                1, regs, 0);
 612                return simulate_ll(regs, opcode);
 613        }
 614        if ((opcode & OPCODE) == SC) {
 615                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 616                                1, regs, 0);
 617                return simulate_sc(regs, opcode);
 618        }
 619
 620        return -1;                      /* Must be something else ... */
 621}
 622
 623/*
 624 * Simulate trapping 'rdhwr' instructions to provide user accessible
 625 * registers not implemented in hardware.
 626 */
 627static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
 628{
 629        struct thread_info *ti = task_thread_info(current);
 630
 631        perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 632                        1, regs, 0);
 633        switch (rd) {
 634        case MIPS_HWR_CPUNUM:           /* CPU number */
 635                regs->regs[rt] = smp_processor_id();
 636                return 0;
 637        case MIPS_HWR_SYNCISTEP:        /* SYNCI length */
 638                regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 639                                     current_cpu_data.icache.linesz);
 640                return 0;
 641        case MIPS_HWR_CC:               /* Read count register */
 642                regs->regs[rt] = read_c0_count();
 643                return 0;
 644        case MIPS_HWR_CCRES:            /* Count register resolution */
 645                switch (current_cpu_type()) {
 646                case CPU_20KC:
 647                case CPU_25KF:
 648                        regs->regs[rt] = 1;
 649                        break;
 650                default:
 651                        regs->regs[rt] = 2;
 652                }
 653                return 0;
 654        case MIPS_HWR_ULR:              /* Read UserLocal register */
 655                regs->regs[rt] = ti->tp_value;
 656                return 0;
 657        default:
 658                return -1;
 659        }
 660}
 661
 662static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
 663{
 664        if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 665                int rd = (opcode & RD) >> 11;
 666                int rt = (opcode & RT) >> 16;
 667
 668                simulate_rdhwr(regs, rd, rt);
 669                return 0;
 670        }
 671
 672        /* Not ours.  */
 673        return -1;
 674}
 675
 676static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
 677{
 678        if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
 679                int rd = (opcode & MM_RS) >> 16;
 680                int rt = (opcode & MM_RT) >> 21;
 681                simulate_rdhwr(regs, rd, rt);
 682                return 0;
 683        }
 684
 685        /* Not ours.  */
 686        return -1;
 687}
 688
 689static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 690{
 691        if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
 692                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 693                                1, regs, 0);
 694                return 0;
 695        }
 696
 697        return -1;                      /* Must be something else ... */
 698}
 699
 700asmlinkage void do_ov(struct pt_regs *regs)
 701{
 702        enum ctx_state prev_state;
 703
 704        prev_state = exception_enter();
 705        die_if_kernel("Integer overflow", regs);
 706
 707        force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc, current);
 708        exception_exit(prev_state);
 709}
 710
 711/*
 712 * Send SIGFPE according to FCSR Cause bits, which must have already
 713 * been masked against Enable bits.  This is impotant as Inexact can
 714 * happen together with Overflow or Underflow, and `ptrace' can set
 715 * any bits.
 716 */
 717void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
 718                     struct task_struct *tsk)
 719{
 720        int si_code = FPE_FLTUNK;
 721
 722        if (fcr31 & FPU_CSR_INV_X)
 723                si_code = FPE_FLTINV;
 724        else if (fcr31 & FPU_CSR_DIV_X)
 725                si_code = FPE_FLTDIV;
 726        else if (fcr31 & FPU_CSR_OVF_X)
 727                si_code = FPE_FLTOVF;
 728        else if (fcr31 & FPU_CSR_UDF_X)
 729                si_code = FPE_FLTUND;
 730        else if (fcr31 & FPU_CSR_INE_X)
 731                si_code = FPE_FLTRES;
 732
 733        force_sig_fault(SIGFPE, si_code, fault_addr, tsk);
 734}
 735
 736int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
 737{
 738        int si_code;
 739        struct vm_area_struct *vma;
 740
 741        switch (sig) {
 742        case 0:
 743                return 0;
 744
 745        case SIGFPE:
 746                force_fcr31_sig(fcr31, fault_addr, current);
 747                return 1;
 748
 749        case SIGBUS:
 750                force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr, current);
 751                return 1;
 752
 753        case SIGSEGV:
 754                down_read(&current->mm->mmap_sem);
 755                vma = find_vma(current->mm, (unsigned long)fault_addr);
 756                if (vma && (vma->vm_start <= (unsigned long)fault_addr))
 757                        si_code = SEGV_ACCERR;
 758                else
 759                        si_code = SEGV_MAPERR;
 760                up_read(&current->mm->mmap_sem);
 761                force_sig_fault(SIGSEGV, si_code, fault_addr, current);
 762                return 1;
 763
 764        default:
 765                force_sig(sig, current);
 766                return 1;
 767        }
 768}
 769
 770static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
 771                       unsigned long old_epc, unsigned long old_ra)
 772{
 773        union mips_instruction inst = { .word = opcode };
 774        void __user *fault_addr;
 775        unsigned long fcr31;
 776        int sig;
 777
 778        /* If it's obviously not an FP instruction, skip it */
 779        switch (inst.i_format.opcode) {
 780        case cop1_op:
 781        case cop1x_op:
 782        case lwc1_op:
 783        case ldc1_op:
 784        case swc1_op:
 785        case sdc1_op:
 786                break;
 787
 788        default:
 789                return -1;
 790        }
 791
 792        /*
 793         * do_ri skipped over the instruction via compute_return_epc, undo
 794         * that for the FPU emulator.
 795         */
 796        regs->cp0_epc = old_epc;
 797        regs->regs[31] = old_ra;
 798
 799        /* Save the FP context to struct thread_struct */
 800        lose_fpu(1);
 801
 802        /* Run the emulator */
 803        sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 804                                       &fault_addr);
 805
 806        /*
 807         * We can't allow the emulated instruction to leave any
 808         * enabled Cause bits set in $fcr31.
 809         */
 810        fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
 811        current->thread.fpu.fcr31 &= ~fcr31;
 812
 813        /* Restore the hardware register state */
 814        own_fpu(1);
 815
 816        /* Send a signal if required.  */
 817        process_fpemu_return(sig, fault_addr, fcr31);
 818
 819        return 0;
 820}
 821
 822/*
 823 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 824 */
 825asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 826{
 827        enum ctx_state prev_state;
 828        void __user *fault_addr;
 829        int sig;
 830
 831        prev_state = exception_enter();
 832        if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
 833                       SIGFPE) == NOTIFY_STOP)
 834                goto out;
 835
 836        /* Clear FCSR.Cause before enabling interrupts */
 837        write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
 838        local_irq_enable();
 839
 840        die_if_kernel("FP exception in kernel code", regs);
 841
 842        if (fcr31 & FPU_CSR_UNI_X) {
 843                /*
 844                 * Unimplemented operation exception.  If we've got the full
 845                 * software emulator on-board, let's use it...
 846                 *
 847                 * Force FPU to dump state into task/thread context.  We're
 848                 * moving a lot of data here for what is probably a single
 849                 * instruction, but the alternative is to pre-decode the FP
 850                 * register operands before invoking the emulator, which seems
 851                 * a bit extreme for what should be an infrequent event.
 852                 */
 853                /* Ensure 'resume' not overwrite saved fp context again. */
 854                lose_fpu(1);
 855
 856                /* Run the emulator */
 857                sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 858                                               &fault_addr);
 859
 860                /*
 861                 * We can't allow the emulated instruction to leave any
 862                 * enabled Cause bits set in $fcr31.
 863                 */
 864                fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
 865                current->thread.fpu.fcr31 &= ~fcr31;
 866
 867                /* Restore the hardware register state */
 868                own_fpu(1);     /* Using the FPU again.  */
 869        } else {
 870                sig = SIGFPE;
 871                fault_addr = (void __user *) regs->cp0_epc;
 872        }
 873
 874        /* Send a signal if required.  */
 875        process_fpemu_return(sig, fault_addr, fcr31);
 876
 877out:
 878        exception_exit(prev_state);
 879}
 880
 881void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
 882        const char *str)
 883{
 884        char b[40];
 885
 886#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 887        if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
 888                         SIGTRAP) == NOTIFY_STOP)
 889                return;
 890#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 891
 892        if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
 893                       SIGTRAP) == NOTIFY_STOP)
 894                return;
 895
 896        /*
 897         * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 898         * insns, even for trap and break codes that indicate arithmetic
 899         * failures.  Weird ...
 900         * But should we continue the brokenness???  --macro
 901         */
 902        switch (code) {
 903        case BRK_OVERFLOW:
 904        case BRK_DIVZERO:
 905                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 906                die_if_kernel(b, regs);
 907                force_sig_fault(SIGFPE,
 908                                code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
 909                                (void __user *) regs->cp0_epc, current);
 910                break;
 911        case BRK_BUG:
 912                die_if_kernel("Kernel bug detected", regs);
 913                force_sig(SIGTRAP, current);
 914                break;
 915        case BRK_MEMU:
 916                /*
 917                 * This breakpoint code is used by the FPU emulator to retake
 918                 * control of the CPU after executing the instruction from the
 919                 * delay slot of an emulated branch.
 920                 *
 921                 * Terminate if exception was recognized as a delay slot return
 922                 * otherwise handle as normal.
 923                 */
 924                if (do_dsemulret(regs))
 925                        return;
 926
 927                die_if_kernel("Math emu break/trap", regs);
 928                force_sig(SIGTRAP, current);
 929                break;
 930        default:
 931                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 932                die_if_kernel(b, regs);
 933                if (si_code) {
 934                        force_sig_fault(SIGTRAP, si_code, NULL, current);
 935                } else {
 936                        force_sig(SIGTRAP, current);
 937                }
 938        }
 939}
 940
 941asmlinkage void do_bp(struct pt_regs *regs)
 942{
 943        unsigned long epc = msk_isa16_mode(exception_epc(regs));
 944        unsigned int opcode, bcode;
 945        enum ctx_state prev_state;
 946        mm_segment_t seg;
 947
 948        seg = get_fs();
 949        if (!user_mode(regs))
 950                set_fs(KERNEL_DS);
 951
 952        prev_state = exception_enter();
 953        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
 954        if (get_isa16_mode(regs->cp0_epc)) {
 955                u16 instr[2];
 956
 957                if (__get_user(instr[0], (u16 __user *)epc))
 958                        goto out_sigsegv;
 959
 960                if (!cpu_has_mmips) {
 961                        /* MIPS16e mode */
 962                        bcode = (instr[0] >> 5) & 0x3f;
 963                } else if (mm_insn_16bit(instr[0])) {
 964                        /* 16-bit microMIPS BREAK */
 965                        bcode = instr[0] & 0xf;
 966                } else {
 967                        /* 32-bit microMIPS BREAK */
 968                        if (__get_user(instr[1], (u16 __user *)(epc + 2)))
 969                                goto out_sigsegv;
 970                        opcode = (instr[0] << 16) | instr[1];
 971                        bcode = (opcode >> 6) & ((1 << 20) - 1);
 972                }
 973        } else {
 974                if (__get_user(opcode, (unsigned int __user *)epc))
 975                        goto out_sigsegv;
 976                bcode = (opcode >> 6) & ((1 << 20) - 1);
 977        }
 978
 979        /*
 980         * There is the ancient bug in the MIPS assemblers that the break
 981         * code starts left to bit 16 instead to bit 6 in the opcode.
 982         * Gas is bug-compatible, but not always, grrr...
 983         * We handle both cases with a simple heuristics.  --macro
 984         */
 985        if (bcode >= (1 << 10))
 986                bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
 987
 988        /*
 989         * notify the kprobe handlers, if instruction is likely to
 990         * pertain to them.
 991         */
 992        switch (bcode) {
 993        case BRK_UPROBE:
 994                if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
 995                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
 996                        goto out;
 997                else
 998                        break;
 999        case BRK_UPROBE_XOL:
1000                if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1001                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1002                        goto out;
1003                else
1004                        break;
1005        case BRK_KPROBE_BP:
1006                if (notify_die(DIE_BREAK, "debug", regs, bcode,
1007                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1008                        goto out;
1009                else
1010                        break;
1011        case BRK_KPROBE_SSTEPBP:
1012                if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1013                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1014                        goto out;
1015                else
1016                        break;
1017        default:
1018                break;
1019        }
1020
1021        do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1022
1023out:
1024        set_fs(seg);
1025        exception_exit(prev_state);
1026        return;
1027
1028out_sigsegv:
1029        force_sig(SIGSEGV, current);
1030        goto out;
1031}
1032
1033asmlinkage void do_tr(struct pt_regs *regs)
1034{
1035        u32 opcode, tcode = 0;
1036        enum ctx_state prev_state;
1037        u16 instr[2];
1038        mm_segment_t seg;
1039        unsigned long epc = msk_isa16_mode(exception_epc(regs));
1040
1041        seg = get_fs();
1042        if (!user_mode(regs))
1043                set_fs(get_ds());
1044
1045        prev_state = exception_enter();
1046        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1047        if (get_isa16_mode(regs->cp0_epc)) {
1048                if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1049                    __get_user(instr[1], (u16 __user *)(epc + 2)))
1050                        goto out_sigsegv;
1051                opcode = (instr[0] << 16) | instr[1];
1052                /* Immediate versions don't provide a code.  */
1053                if (!(opcode & OPCODE))
1054                        tcode = (opcode >> 12) & ((1 << 4) - 1);
1055        } else {
1056                if (__get_user(opcode, (u32 __user *)epc))
1057                        goto out_sigsegv;
1058                /* Immediate versions don't provide a code.  */
1059                if (!(opcode & OPCODE))
1060                        tcode = (opcode >> 6) & ((1 << 10) - 1);
1061        }
1062
1063        do_trap_or_bp(regs, tcode, 0, "Trap");
1064
1065out:
1066        set_fs(seg);
1067        exception_exit(prev_state);
1068        return;
1069
1070out_sigsegv:
1071        force_sig(SIGSEGV, current);
1072        goto out;
1073}
1074
1075asmlinkage void do_ri(struct pt_regs *regs)
1076{
1077        unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1078        unsigned long old_epc = regs->cp0_epc;
1079        unsigned long old31 = regs->regs[31];
1080        enum ctx_state prev_state;
1081        unsigned int opcode = 0;
1082        int status = -1;
1083
1084        /*
1085         * Avoid any kernel code. Just emulate the R2 instruction
1086         * as quickly as possible.
1087         */
1088        if (mipsr2_emulation && cpu_has_mips_r6 &&
1089            likely(user_mode(regs)) &&
1090            likely(get_user(opcode, epc) >= 0)) {
1091                unsigned long fcr31 = 0;
1092
1093                status = mipsr2_decoder(regs, opcode, &fcr31);
1094                switch (status) {
1095                case 0:
1096                case SIGEMT:
1097                        return;
1098                case SIGILL:
1099                        goto no_r2_instr;
1100                default:
1101                        process_fpemu_return(status,
1102                                             &current->thread.cp0_baduaddr,
1103                                             fcr31);
1104                        return;
1105                }
1106        }
1107
1108no_r2_instr:
1109
1110        prev_state = exception_enter();
1111        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1112
1113        if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1114                       SIGILL) == NOTIFY_STOP)
1115                goto out;
1116
1117        die_if_kernel("Reserved instruction in kernel code", regs);
1118
1119        if (unlikely(compute_return_epc(regs) < 0))
1120                goto out;
1121
1122        if (!get_isa16_mode(regs->cp0_epc)) {
1123                if (unlikely(get_user(opcode, epc) < 0))
1124                        status = SIGSEGV;
1125
1126                if (!cpu_has_llsc && status < 0)
1127                        status = simulate_llsc(regs, opcode);
1128
1129                if (status < 0)
1130                        status = simulate_rdhwr_normal(regs, opcode);
1131
1132                if (status < 0)
1133                        status = simulate_sync(regs, opcode);
1134
1135                if (status < 0)
1136                        status = simulate_fp(regs, opcode, old_epc, old31);
1137        } else if (cpu_has_mmips) {
1138                unsigned short mmop[2] = { 0 };
1139
1140                if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1141                        status = SIGSEGV;
1142                if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1143                        status = SIGSEGV;
1144                opcode = mmop[0];
1145                opcode = (opcode << 16) | mmop[1];
1146
1147                if (status < 0)
1148                        status = simulate_rdhwr_mm(regs, opcode);
1149        }
1150
1151        if (status < 0)
1152                status = SIGILL;
1153
1154        if (unlikely(status > 0)) {
1155                regs->cp0_epc = old_epc;                /* Undo skip-over.  */
1156                regs->regs[31] = old31;
1157                force_sig(status, current);
1158        }
1159
1160out:
1161        exception_exit(prev_state);
1162}
1163
1164/*
1165 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1166 * emulated more than some threshold number of instructions, force migration to
1167 * a "CPU" that has FP support.
1168 */
1169static void mt_ase_fp_affinity(void)
1170{
1171#ifdef CONFIG_MIPS_MT_FPAFF
1172        if (mt_fpemul_threshold > 0 &&
1173             ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1174                /*
1175                 * If there's no FPU present, or if the application has already
1176                 * restricted the allowed set to exclude any CPUs with FPUs,
1177                 * we'll skip the procedure.
1178                 */
1179                if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1180                        cpumask_t tmask;
1181
1182                        current->thread.user_cpus_allowed
1183                                = current->cpus_allowed;
1184                        cpumask_and(&tmask, &current->cpus_allowed,
1185                                    &mt_fpu_cpumask);
1186                        set_cpus_allowed_ptr(current, &tmask);
1187                        set_thread_flag(TIF_FPUBOUND);
1188                }
1189        }
1190#endif /* CONFIG_MIPS_MT_FPAFF */
1191}
1192
1193/*
1194 * No lock; only written during early bootup by CPU 0.
1195 */
1196static RAW_NOTIFIER_HEAD(cu2_chain);
1197
1198int __ref register_cu2_notifier(struct notifier_block *nb)
1199{
1200        return raw_notifier_chain_register(&cu2_chain, nb);
1201}
1202
1203int cu2_notifier_call_chain(unsigned long val, void *v)
1204{
1205        return raw_notifier_call_chain(&cu2_chain, val, v);
1206}
1207
1208static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1209        void *data)
1210{
1211        struct pt_regs *regs = data;
1212
1213        die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1214                              "instruction", regs);
1215        force_sig(SIGILL, current);
1216
1217        return NOTIFY_OK;
1218}
1219
1220static int enable_restore_fp_context(int msa)
1221{
1222        int err, was_fpu_owner, prior_msa;
1223
1224        /*
1225         * If an FP mode switch is currently underway, wait for it to
1226         * complete before proceeding.
1227         */
1228        wait_var_event(&current->mm->context.fp_mode_switching,
1229                       !atomic_read(&current->mm->context.fp_mode_switching));
1230
1231        if (!used_math()) {
1232                /* First time FP context user. */
1233                preempt_disable();
1234                err = init_fpu();
1235                if (msa && !err) {
1236                        enable_msa();
1237                        init_msa_upper();
1238                        set_thread_flag(TIF_USEDMSA);
1239                        set_thread_flag(TIF_MSA_CTX_LIVE);
1240                }
1241                preempt_enable();
1242                if (!err)
1243                        set_used_math();
1244                return err;
1245        }
1246
1247        /*
1248         * This task has formerly used the FP context.
1249         *
1250         * If this thread has no live MSA vector context then we can simply
1251         * restore the scalar FP context. If it has live MSA vector context
1252         * (that is, it has or may have used MSA since last performing a
1253         * function call) then we'll need to restore the vector context. This
1254         * applies even if we're currently only executing a scalar FP
1255         * instruction. This is because if we were to later execute an MSA
1256         * instruction then we'd either have to:
1257         *
1258         *  - Restore the vector context & clobber any registers modified by
1259         *    scalar FP instructions between now & then.
1260         *
1261         * or
1262         *
1263         *  - Not restore the vector context & lose the most significant bits
1264         *    of all vector registers.
1265         *
1266         * Neither of those options is acceptable. We cannot restore the least
1267         * significant bits of the registers now & only restore the most
1268         * significant bits later because the most significant bits of any
1269         * vector registers whose aliased FP register is modified now will have
1270         * been zeroed. We'd have no way to know that when restoring the vector
1271         * context & thus may load an outdated value for the most significant
1272         * bits of a vector register.
1273         */
1274        if (!msa && !thread_msa_context_live())
1275                return own_fpu(1);
1276
1277        /*
1278         * This task is using or has previously used MSA. Thus we require
1279         * that Status.FR == 1.
1280         */
1281        preempt_disable();
1282        was_fpu_owner = is_fpu_owner();
1283        err = own_fpu_inatomic(0);
1284        if (err)
1285                goto out;
1286
1287        enable_msa();
1288        write_msa_csr(current->thread.fpu.msacsr);
1289        set_thread_flag(TIF_USEDMSA);
1290
1291        /*
1292         * If this is the first time that the task is using MSA and it has
1293         * previously used scalar FP in this time slice then we already nave
1294         * FP context which we shouldn't clobber. We do however need to clear
1295         * the upper 64b of each vector register so that this task has no
1296         * opportunity to see data left behind by another.
1297         */
1298        prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1299        if (!prior_msa && was_fpu_owner) {
1300                init_msa_upper();
1301
1302                goto out;
1303        }
1304
1305        if (!prior_msa) {
1306                /*
1307                 * Restore the least significant 64b of each vector register
1308                 * from the existing scalar FP context.
1309                 */
1310                _restore_fp(current);
1311
1312                /*
1313                 * The task has not formerly used MSA, so clear the upper 64b
1314                 * of each vector register such that it cannot see data left
1315                 * behind by another task.
1316                 */
1317                init_msa_upper();
1318        } else {
1319                /* We need to restore the vector context. */
1320                restore_msa(current);
1321
1322                /* Restore the scalar FP control & status register */
1323                if (!was_fpu_owner)
1324                        write_32bit_cp1_register(CP1_STATUS,
1325                                                 current->thread.fpu.fcr31);
1326        }
1327
1328out:
1329        preempt_enable();
1330
1331        return 0;
1332}
1333
1334asmlinkage void do_cpu(struct pt_regs *regs)
1335{
1336        enum ctx_state prev_state;
1337        unsigned int __user *epc;
1338        unsigned long old_epc, old31;
1339        void __user *fault_addr;
1340        unsigned int opcode;
1341        unsigned long fcr31;
1342        unsigned int cpid;
1343        int status, err;
1344        int sig;
1345
1346        prev_state = exception_enter();
1347        cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1348
1349        if (cpid != 2)
1350                die_if_kernel("do_cpu invoked from kernel context!", regs);
1351
1352        switch (cpid) {
1353        case 0:
1354                epc = (unsigned int __user *)exception_epc(regs);
1355                old_epc = regs->cp0_epc;
1356                old31 = regs->regs[31];
1357                opcode = 0;
1358                status = -1;
1359
1360                if (unlikely(compute_return_epc(regs) < 0))
1361                        break;
1362
1363                if (!get_isa16_mode(regs->cp0_epc)) {
1364                        if (unlikely(get_user(opcode, epc) < 0))
1365                                status = SIGSEGV;
1366
1367                        if (!cpu_has_llsc && status < 0)
1368                                status = simulate_llsc(regs, opcode);
1369                }
1370
1371                if (status < 0)
1372                        status = SIGILL;
1373
1374                if (unlikely(status > 0)) {
1375                        regs->cp0_epc = old_epc;        /* Undo skip-over.  */
1376                        regs->regs[31] = old31;
1377                        force_sig(status, current);
1378                }
1379
1380                break;
1381
1382        case 3:
1383                /*
1384                 * The COP3 opcode space and consequently the CP0.Status.CU3
1385                 * bit and the CP0.Cause.CE=3 encoding have been removed as
1386                 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1387                 * up the space has been reused for COP1X instructions, that
1388                 * are enabled by the CP0.Status.CU1 bit and consequently
1389                 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1390                 * exceptions.  Some FPU-less processors that implement one
1391                 * of these ISAs however use this code erroneously for COP1X
1392                 * instructions.  Therefore we redirect this trap to the FP
1393                 * emulator too.
1394                 */
1395                if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1396                        force_sig(SIGILL, current);
1397                        break;
1398                }
1399                /* Fall through.  */
1400
1401        case 1:
1402                err = enable_restore_fp_context(0);
1403
1404                if (raw_cpu_has_fpu && !err)
1405                        break;
1406
1407                sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1408                                               &fault_addr);
1409
1410                /*
1411                 * We can't allow the emulated instruction to leave
1412                 * any enabled Cause bits set in $fcr31.
1413                 */
1414                fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1415                current->thread.fpu.fcr31 &= ~fcr31;
1416
1417                /* Send a signal if required.  */
1418                if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1419                        mt_ase_fp_affinity();
1420
1421                break;
1422
1423        case 2:
1424                raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1425                break;
1426        }
1427
1428        exception_exit(prev_state);
1429}
1430
1431asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1432{
1433        enum ctx_state prev_state;
1434
1435        prev_state = exception_enter();
1436        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1437        if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1438                       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1439                goto out;
1440
1441        /* Clear MSACSR.Cause before enabling interrupts */
1442        write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1443        local_irq_enable();
1444
1445        die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1446        force_sig(SIGFPE, current);
1447out:
1448        exception_exit(prev_state);
1449}
1450
1451asmlinkage void do_msa(struct pt_regs *regs)
1452{
1453        enum ctx_state prev_state;
1454        int err;
1455
1456        prev_state = exception_enter();
1457
1458        if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1459                force_sig(SIGILL, current);
1460                goto out;
1461        }
1462
1463        die_if_kernel("do_msa invoked from kernel context!", regs);
1464
1465        err = enable_restore_fp_context(1);
1466        if (err)
1467                force_sig(SIGILL, current);
1468out:
1469        exception_exit(prev_state);
1470}
1471
1472asmlinkage void do_mdmx(struct pt_regs *regs)
1473{
1474        enum ctx_state prev_state;
1475
1476        prev_state = exception_enter();
1477        force_sig(SIGILL, current);
1478        exception_exit(prev_state);
1479}
1480
1481/*
1482 * Called with interrupts disabled.
1483 */
1484asmlinkage void do_watch(struct pt_regs *regs)
1485{
1486        enum ctx_state prev_state;
1487
1488        prev_state = exception_enter();
1489        /*
1490         * Clear WP (bit 22) bit of cause register so we don't loop
1491         * forever.
1492         */
1493        clear_c0_cause(CAUSEF_WP);
1494
1495        /*
1496         * If the current thread has the watch registers loaded, save
1497         * their values and send SIGTRAP.  Otherwise another thread
1498         * left the registers set, clear them and continue.
1499         */
1500        if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1501                mips_read_watch_registers();
1502                local_irq_enable();
1503                force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL, current);
1504        } else {
1505                mips_clear_watch_registers();
1506                local_irq_enable();
1507        }
1508        exception_exit(prev_state);
1509}
1510
1511asmlinkage void do_mcheck(struct pt_regs *regs)
1512{
1513        int multi_match = regs->cp0_status & ST0_TS;
1514        enum ctx_state prev_state;
1515        mm_segment_t old_fs = get_fs();
1516
1517        prev_state = exception_enter();
1518        show_regs(regs);
1519
1520        if (multi_match) {
1521                dump_tlb_regs();
1522                pr_info("\n");
1523                dump_tlb_all();
1524        }
1525
1526        if (!user_mode(regs))
1527                set_fs(KERNEL_DS);
1528
1529        show_code((unsigned int __user *) regs->cp0_epc);
1530
1531        set_fs(old_fs);
1532
1533        /*
1534         * Some chips may have other causes of machine check (e.g. SB1
1535         * graduation timer)
1536         */
1537        panic("Caught Machine Check exception - %scaused by multiple "
1538              "matching entries in the TLB.",
1539              (multi_match) ? "" : "not ");
1540}
1541
1542asmlinkage void do_mt(struct pt_regs *regs)
1543{
1544        int subcode;
1545
1546        subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1547                        >> VPECONTROL_EXCPT_SHIFT;
1548        switch (subcode) {
1549        case 0:
1550                printk(KERN_DEBUG "Thread Underflow\n");
1551                break;
1552        case 1:
1553                printk(KERN_DEBUG "Thread Overflow\n");
1554                break;
1555        case 2:
1556                printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1557                break;
1558        case 3:
1559                printk(KERN_DEBUG "Gating Storage Exception\n");
1560                break;
1561        case 4:
1562                printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1563                break;
1564        case 5:
1565                printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1566                break;
1567        default:
1568                printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1569                        subcode);
1570                break;
1571        }
1572        die_if_kernel("MIPS MT Thread exception in kernel", regs);
1573
1574        force_sig(SIGILL, current);
1575}
1576
1577
1578asmlinkage void do_dsp(struct pt_regs *regs)
1579{
1580        if (cpu_has_dsp)
1581                panic("Unexpected DSP exception");
1582
1583        force_sig(SIGILL, current);
1584}
1585
1586asmlinkage void do_reserved(struct pt_regs *regs)
1587{
1588        /*
1589         * Game over - no way to handle this if it ever occurs.  Most probably
1590         * caused by a new unknown cpu type or after another deadly
1591         * hard/software error.
1592         */
1593        show_regs(regs);
1594        panic("Caught reserved exception %ld - should not happen.",
1595              (regs->cp0_cause & 0x7f) >> 2);
1596}
1597
1598static int __initdata l1parity = 1;
1599static int __init nol1parity(char *s)
1600{
1601        l1parity = 0;
1602        return 1;
1603}
1604__setup("nol1par", nol1parity);
1605static int __initdata l2parity = 1;
1606static int __init nol2parity(char *s)
1607{
1608        l2parity = 0;
1609        return 1;
1610}
1611__setup("nol2par", nol2parity);
1612
1613/*
1614 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1615 * it different ways.
1616 */
1617static inline void parity_protection_init(void)
1618{
1619#define ERRCTL_PE       0x80000000
1620#define ERRCTL_L2P      0x00800000
1621
1622        if (mips_cm_revision() >= CM_REV_CM3) {
1623                ulong gcr_ectl, cp0_ectl;
1624
1625                /*
1626                 * With CM3 systems we need to ensure that the L1 & L2
1627                 * parity enables are set to the same value, since this
1628                 * is presumed by the hardware engineers.
1629                 *
1630                 * If the user disabled either of L1 or L2 ECC checking,
1631                 * disable both.
1632                 */
1633                l1parity &= l2parity;
1634                l2parity &= l1parity;
1635
1636                /* Probe L1 ECC support */
1637                cp0_ectl = read_c0_ecc();
1638                write_c0_ecc(cp0_ectl | ERRCTL_PE);
1639                back_to_back_c0_hazard();
1640                cp0_ectl = read_c0_ecc();
1641
1642                /* Probe L2 ECC support */
1643                gcr_ectl = read_gcr_err_control();
1644
1645                if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1646                    !(cp0_ectl & ERRCTL_PE)) {
1647                        /*
1648                         * One of L1 or L2 ECC checking isn't supported,
1649                         * so we cannot enable either.
1650                         */
1651                        l1parity = l2parity = 0;
1652                }
1653
1654                /* Configure L1 ECC checking */
1655                if (l1parity)
1656                        cp0_ectl |= ERRCTL_PE;
1657                else
1658                        cp0_ectl &= ~ERRCTL_PE;
1659                write_c0_ecc(cp0_ectl);
1660                back_to_back_c0_hazard();
1661                WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1662
1663                /* Configure L2 ECC checking */
1664                if (l2parity)
1665                        gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1666                else
1667                        gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1668                write_gcr_err_control(gcr_ectl);
1669                gcr_ectl = read_gcr_err_control();
1670                gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1671                WARN_ON(!!gcr_ectl != l2parity);
1672
1673                pr_info("Cache parity protection %sabled\n",
1674                        l1parity ? "en" : "dis");
1675                return;
1676        }
1677
1678        switch (current_cpu_type()) {
1679        case CPU_24K:
1680        case CPU_34K:
1681        case CPU_74K:
1682        case CPU_1004K:
1683        case CPU_1074K:
1684        case CPU_INTERAPTIV:
1685        case CPU_PROAPTIV:
1686        case CPU_P5600:
1687        case CPU_QEMU_GENERIC:
1688        case CPU_P6600:
1689                {
1690                        unsigned long errctl;
1691                        unsigned int l1parity_present, l2parity_present;
1692
1693                        errctl = read_c0_ecc();
1694                        errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1695
1696                        /* probe L1 parity support */
1697                        write_c0_ecc(errctl | ERRCTL_PE);
1698                        back_to_back_c0_hazard();
1699                        l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1700
1701                        /* probe L2 parity support */
1702                        write_c0_ecc(errctl|ERRCTL_L2P);
1703                        back_to_back_c0_hazard();
1704                        l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1705
1706                        if (l1parity_present && l2parity_present) {
1707                                if (l1parity)
1708                                        errctl |= ERRCTL_PE;
1709                                if (l1parity ^ l2parity)
1710                                        errctl |= ERRCTL_L2P;
1711                        } else if (l1parity_present) {
1712                                if (l1parity)
1713                                        errctl |= ERRCTL_PE;
1714                        } else if (l2parity_present) {
1715                                if (l2parity)
1716                                        errctl |= ERRCTL_L2P;
1717                        } else {
1718                                /* No parity available */
1719                        }
1720
1721                        printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1722
1723                        write_c0_ecc(errctl);
1724                        back_to_back_c0_hazard();
1725                        errctl = read_c0_ecc();
1726                        printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1727
1728                        if (l1parity_present)
1729                                printk(KERN_INFO "Cache parity protection %sabled\n",
1730                                       (errctl & ERRCTL_PE) ? "en" : "dis");
1731
1732                        if (l2parity_present) {
1733                                if (l1parity_present && l1parity)
1734                                        errctl ^= ERRCTL_L2P;
1735                                printk(KERN_INFO "L2 cache parity protection %sabled\n",
1736                                       (errctl & ERRCTL_L2P) ? "en" : "dis");
1737                        }
1738                }
1739                break;
1740
1741        case CPU_5KC:
1742        case CPU_5KE:
1743        case CPU_LOONGSON1:
1744                write_c0_ecc(0x80000000);
1745                back_to_back_c0_hazard();
1746                /* Set the PE bit (bit 31) in the c0_errctl register. */
1747                printk(KERN_INFO "Cache parity protection %sabled\n",
1748                       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1749                break;
1750        case CPU_20KC:
1751        case CPU_25KF:
1752                /* Clear the DE bit (bit 16) in the c0_status register. */
1753                printk(KERN_INFO "Enable cache parity protection for "
1754                       "MIPS 20KC/25KF CPUs.\n");
1755                clear_c0_status(ST0_DE);
1756                break;
1757        default:
1758                break;
1759        }
1760}
1761
1762asmlinkage void cache_parity_error(void)
1763{
1764        const int field = 2 * sizeof(unsigned long);
1765        unsigned int reg_val;
1766
1767        /* For the moment, report the problem and hang. */
1768        printk("Cache error exception:\n");
1769        printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1770        reg_val = read_c0_cacheerr();
1771        printk("c0_cacheerr == %08x\n", reg_val);
1772
1773        printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1774               reg_val & (1<<30) ? "secondary" : "primary",
1775               reg_val & (1<<31) ? "data" : "insn");
1776        if ((cpu_has_mips_r2_r6) &&
1777            ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1778                pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1779                        reg_val & (1<<29) ? "ED " : "",
1780                        reg_val & (1<<28) ? "ET " : "",
1781                        reg_val & (1<<27) ? "ES " : "",
1782                        reg_val & (1<<26) ? "EE " : "",
1783                        reg_val & (1<<25) ? "EB " : "",
1784                        reg_val & (1<<24) ? "EI " : "",
1785                        reg_val & (1<<23) ? "E1 " : "",
1786                        reg_val & (1<<22) ? "E0 " : "");
1787        } else {
1788                pr_err("Error bits: %s%s%s%s%s%s%s\n",
1789                        reg_val & (1<<29) ? "ED " : "",
1790                        reg_val & (1<<28) ? "ET " : "",
1791                        reg_val & (1<<26) ? "EE " : "",
1792                        reg_val & (1<<25) ? "EB " : "",
1793                        reg_val & (1<<24) ? "EI " : "",
1794                        reg_val & (1<<23) ? "E1 " : "",
1795                        reg_val & (1<<22) ? "E0 " : "");
1796        }
1797        printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1798
1799#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1800        if (reg_val & (1<<22))
1801                printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1802
1803        if (reg_val & (1<<23))
1804                printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1805#endif
1806
1807        panic("Can't handle the cache error!");
1808}
1809
1810asmlinkage void do_ftlb(void)
1811{
1812        const int field = 2 * sizeof(unsigned long);
1813        unsigned int reg_val;
1814
1815        /* For the moment, report the problem and hang. */
1816        if ((cpu_has_mips_r2_r6) &&
1817            (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1818            ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1819                pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1820                       read_c0_ecc());
1821                pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1822                reg_val = read_c0_cacheerr();
1823                pr_err("c0_cacheerr == %08x\n", reg_val);
1824
1825                if ((reg_val & 0xc0000000) == 0xc0000000) {
1826                        pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1827                } else {
1828                        pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1829                               reg_val & (1<<30) ? "secondary" : "primary",
1830                               reg_val & (1<<31) ? "data" : "insn");
1831                }
1832        } else {
1833                pr_err("FTLB error exception\n");
1834        }
1835        /* Just print the cacheerr bits for now */
1836        cache_parity_error();
1837}
1838
1839/*
1840 * SDBBP EJTAG debug exception handler.
1841 * We skip the instruction and return to the next instruction.
1842 */
1843void ejtag_exception_handler(struct pt_regs *regs)
1844{
1845        const int field = 2 * sizeof(unsigned long);
1846        unsigned long depc, old_epc, old_ra;
1847        unsigned int debug;
1848
1849        printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1850        depc = read_c0_depc();
1851        debug = read_c0_debug();
1852        printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1853        if (debug & 0x80000000) {
1854                /*
1855                 * In branch delay slot.
1856                 * We cheat a little bit here and use EPC to calculate the
1857                 * debug return address (DEPC). EPC is restored after the
1858                 * calculation.
1859                 */
1860                old_epc = regs->cp0_epc;
1861                old_ra = regs->regs[31];
1862                regs->cp0_epc = depc;
1863                compute_return_epc(regs);
1864                depc = regs->cp0_epc;
1865                regs->cp0_epc = old_epc;
1866                regs->regs[31] = old_ra;
1867        } else
1868                depc += 4;
1869        write_c0_depc(depc);
1870
1871#if 0
1872        printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1873        write_c0_debug(debug | 0x100);
1874#endif
1875}
1876
1877/*
1878 * NMI exception handler.
1879 * No lock; only written during early bootup by CPU 0.
1880 */
1881static RAW_NOTIFIER_HEAD(nmi_chain);
1882
1883int register_nmi_notifier(struct notifier_block *nb)
1884{
1885        return raw_notifier_chain_register(&nmi_chain, nb);
1886}
1887
1888void __noreturn nmi_exception_handler(struct pt_regs *regs)
1889{
1890        char str[100];
1891
1892        nmi_enter();
1893        raw_notifier_call_chain(&nmi_chain, 0, regs);
1894        bust_spinlocks(1);
1895        snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1896                 smp_processor_id(), regs->cp0_epc);
1897        regs->cp0_epc = read_c0_errorepc();
1898        die(str, regs);
1899        nmi_exit();
1900}
1901
1902#define VECTORSPACING 0x100     /* for EI/VI mode */
1903
1904unsigned long ebase;
1905EXPORT_SYMBOL_GPL(ebase);
1906unsigned long exception_handlers[32];
1907unsigned long vi_handlers[64];
1908
1909void __init *set_except_vector(int n, void *addr)
1910{
1911        unsigned long handler = (unsigned long) addr;
1912        unsigned long old_handler;
1913
1914#ifdef CONFIG_CPU_MICROMIPS
1915        /*
1916         * Only the TLB handlers are cache aligned with an even
1917         * address. All other handlers are on an odd address and
1918         * require no modification. Otherwise, MIPS32 mode will
1919         * be entered when handling any TLB exceptions. That
1920         * would be bad...since we must stay in microMIPS mode.
1921         */
1922        if (!(handler & 0x1))
1923                handler |= 1;
1924#endif
1925        old_handler = xchg(&exception_handlers[n], handler);
1926
1927        if (n == 0 && cpu_has_divec) {
1928#ifdef CONFIG_CPU_MICROMIPS
1929                unsigned long jump_mask = ~((1 << 27) - 1);
1930#else
1931                unsigned long jump_mask = ~((1 << 28) - 1);
1932#endif
1933                u32 *buf = (u32 *)(ebase + 0x200);
1934                unsigned int k0 = 26;
1935                if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1936                        uasm_i_j(&buf, handler & ~jump_mask);
1937                        uasm_i_nop(&buf);
1938                } else {
1939                        UASM_i_LA(&buf, k0, handler);
1940                        uasm_i_jr(&buf, k0);
1941                        uasm_i_nop(&buf);
1942                }
1943                local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1944        }
1945        return (void *)old_handler;
1946}
1947
1948static void do_default_vi(void)
1949{
1950        show_regs(get_irq_regs());
1951        panic("Caught unexpected vectored interrupt.");
1952}
1953
1954static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1955{
1956        unsigned long handler;
1957        unsigned long old_handler = vi_handlers[n];
1958        int srssets = current_cpu_data.srsets;
1959        u16 *h;
1960        unsigned char *b;
1961
1962        BUG_ON(!cpu_has_veic && !cpu_has_vint);
1963
1964        if (addr == NULL) {
1965                handler = (unsigned long) do_default_vi;
1966                srs = 0;
1967        } else
1968                handler = (unsigned long) addr;
1969        vi_handlers[n] = handler;
1970
1971        b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1972
1973        if (srs >= srssets)
1974                panic("Shadow register set %d not supported", srs);
1975
1976        if (cpu_has_veic) {
1977                if (board_bind_eic_interrupt)
1978                        board_bind_eic_interrupt(n, srs);
1979        } else if (cpu_has_vint) {
1980                /* SRSMap is only defined if shadow sets are implemented */
1981                if (srssets > 1)
1982                        change_c0_srsmap(0xf << n*4, srs << n*4);
1983        }
1984
1985        if (srs == 0) {
1986                /*
1987                 * If no shadow set is selected then use the default handler
1988                 * that does normal register saving and standard interrupt exit
1989                 */
1990                extern char except_vec_vi, except_vec_vi_lui;
1991                extern char except_vec_vi_ori, except_vec_vi_end;
1992                extern char rollback_except_vec_vi;
1993                char *vec_start = using_rollback_handler() ?
1994                        &rollback_except_vec_vi : &except_vec_vi;
1995#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1996                const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1997                const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1998#else
1999                const int lui_offset = &except_vec_vi_lui - vec_start;
2000                const int ori_offset = &except_vec_vi_ori - vec_start;
2001#endif
2002                const int handler_len = &except_vec_vi_end - vec_start;
2003
2004                if (handler_len > VECTORSPACING) {
2005                        /*
2006                         * Sigh... panicing won't help as the console
2007                         * is probably not configured :(
2008                         */
2009                        panic("VECTORSPACING too small");
2010                }
2011
2012                set_handler(((unsigned long)b - ebase), vec_start,
2013#ifdef CONFIG_CPU_MICROMIPS
2014                                (handler_len - 1));
2015#else
2016                                handler_len);
2017#endif
2018                h = (u16 *)(b + lui_offset);
2019                *h = (handler >> 16) & 0xffff;
2020                h = (u16 *)(b + ori_offset);
2021                *h = (handler & 0xffff);
2022                local_flush_icache_range((unsigned long)b,
2023                                         (unsigned long)(b+handler_len));
2024        }
2025        else {
2026                /*
2027                 * In other cases jump directly to the interrupt handler. It
2028                 * is the handler's responsibility to save registers if required
2029                 * (eg hi/lo) and return from the exception using "eret".
2030                 */
2031                u32 insn;
2032
2033                h = (u16 *)b;
2034                /* j handler */
2035#ifdef CONFIG_CPU_MICROMIPS
2036                insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2037#else
2038                insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2039#endif
2040                h[0] = (insn >> 16) & 0xffff;
2041                h[1] = insn & 0xffff;
2042                h[2] = 0;
2043                h[3] = 0;
2044                local_flush_icache_range((unsigned long)b,
2045                                         (unsigned long)(b+8));
2046        }
2047
2048        return (void *)old_handler;
2049}
2050
2051void *set_vi_handler(int n, vi_handler_t addr)
2052{
2053        return set_vi_srs_handler(n, addr, 0);
2054}
2055
2056extern void tlb_init(void);
2057
2058/*
2059 * Timer interrupt
2060 */
2061int cp0_compare_irq;
2062EXPORT_SYMBOL_GPL(cp0_compare_irq);
2063int cp0_compare_irq_shift;
2064
2065/*
2066 * Performance counter IRQ or -1 if shared with timer
2067 */
2068int cp0_perfcount_irq;
2069EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2070
2071/*
2072 * Fast debug channel IRQ or -1 if not present
2073 */
2074int cp0_fdc_irq;
2075EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2076
2077static int noulri;
2078
2079static int __init ulri_disable(char *s)
2080{
2081        pr_info("Disabling ulri\n");
2082        noulri = 1;
2083
2084        return 1;
2085}
2086__setup("noulri", ulri_disable);
2087
2088/* configure STATUS register */
2089static void configure_status(void)
2090{
2091        /*
2092         * Disable coprocessors and select 32-bit or 64-bit addressing
2093         * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2094         * flag that some firmware may have left set and the TS bit (for
2095         * IP27).  Set XX for ISA IV code to work.
2096         */
2097        unsigned int status_set = ST0_CU0;
2098#ifdef CONFIG_64BIT
2099        status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2100#endif
2101        if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2102                status_set |= ST0_XX;
2103        if (cpu_has_dsp)
2104                status_set |= ST0_MX;
2105
2106        change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2107                         status_set);
2108}
2109
2110unsigned int hwrena;
2111EXPORT_SYMBOL_GPL(hwrena);
2112
2113/* configure HWRENA register */
2114static void configure_hwrena(void)
2115{
2116        hwrena = cpu_hwrena_impl_bits;
2117
2118        if (cpu_has_mips_r2_r6)
2119                hwrena |= MIPS_HWRENA_CPUNUM |
2120                          MIPS_HWRENA_SYNCISTEP |
2121                          MIPS_HWRENA_CC |
2122                          MIPS_HWRENA_CCRES;
2123
2124        if (!noulri && cpu_has_userlocal)
2125                hwrena |= MIPS_HWRENA_ULR;
2126
2127        if (hwrena)
2128                write_c0_hwrena(hwrena);
2129}
2130
2131static void configure_exception_vector(void)
2132{
2133        if (cpu_has_veic || cpu_has_vint) {
2134                unsigned long sr = set_c0_status(ST0_BEV);
2135                /* If available, use WG to set top bits of EBASE */
2136                if (cpu_has_ebase_wg) {
2137#ifdef CONFIG_64BIT
2138                        write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2139#else
2140                        write_c0_ebase(ebase | MIPS_EBASE_WG);
2141#endif
2142                }
2143                write_c0_ebase(ebase);
2144                write_c0_status(sr);
2145                /* Setting vector spacing enables EI/VI mode  */
2146                change_c0_intctl(0x3e0, VECTORSPACING);
2147        }
2148        if (cpu_has_divec) {
2149                if (cpu_has_mipsmt) {
2150                        unsigned int vpflags = dvpe();
2151                        set_c0_cause(CAUSEF_IV);
2152                        evpe(vpflags);
2153                } else
2154                        set_c0_cause(CAUSEF_IV);
2155        }
2156}
2157
2158void per_cpu_trap_init(bool is_boot_cpu)
2159{
2160        unsigned int cpu = smp_processor_id();
2161
2162        configure_status();
2163        configure_hwrena();
2164
2165        configure_exception_vector();
2166
2167        /*
2168         * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2169         *
2170         *  o read IntCtl.IPTI to determine the timer interrupt
2171         *  o read IntCtl.IPPCI to determine the performance counter interrupt
2172         *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2173         */
2174        if (cpu_has_mips_r2_r6) {
2175                /*
2176                 * We shouldn't trust a secondary core has a sane EBASE register
2177                 * so use the one calculated by the boot CPU.
2178                 */
2179                if (!is_boot_cpu) {
2180                        /* If available, use WG to set top bits of EBASE */
2181                        if (cpu_has_ebase_wg) {
2182#ifdef CONFIG_64BIT
2183                                write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2184#else
2185                                write_c0_ebase(ebase | MIPS_EBASE_WG);
2186#endif
2187                        }
2188                        write_c0_ebase(ebase);
2189                }
2190
2191                cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2192                cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2193                cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2194                cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2195                if (!cp0_fdc_irq)
2196                        cp0_fdc_irq = -1;
2197
2198        } else {
2199                cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2200                cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2201                cp0_perfcount_irq = -1;
2202                cp0_fdc_irq = -1;
2203        }
2204
2205        if (!cpu_data[cpu].asid_cache)
2206                cpu_data[cpu].asid_cache = asid_first_version(cpu);
2207
2208        mmgrab(&init_mm);
2209        current->active_mm = &init_mm;
2210        BUG_ON(current->mm);
2211        enter_lazy_tlb(&init_mm, current);
2212
2213        /* Boot CPU's cache setup in setup_arch(). */
2214        if (!is_boot_cpu)
2215                cpu_cache_init();
2216        tlb_init();
2217        TLBMISS_HANDLER_SETUP();
2218}
2219
2220/* Install CPU exception handler */
2221void set_handler(unsigned long offset, void *addr, unsigned long size)
2222{
2223#ifdef CONFIG_CPU_MICROMIPS
2224        memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2225#else
2226        memcpy((void *)(ebase + offset), addr, size);
2227#endif
2228        local_flush_icache_range(ebase + offset, ebase + offset + size);
2229}
2230
2231static const char panic_null_cerr[] =
2232        "Trying to set NULL cache error exception handler\n";
2233
2234/*
2235 * Install uncached CPU exception handler.
2236 * This is suitable only for the cache error exception which is the only
2237 * exception handler that is being run uncached.
2238 */
2239void set_uncached_handler(unsigned long offset, void *addr,
2240        unsigned long size)
2241{
2242        unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2243
2244        if (!addr)
2245                panic(panic_null_cerr);
2246
2247        memcpy((void *)(uncached_ebase + offset), addr, size);
2248}
2249
2250static int __initdata rdhwr_noopt;
2251static int __init set_rdhwr_noopt(char *str)
2252{
2253        rdhwr_noopt = 1;
2254        return 1;
2255}
2256
2257__setup("rdhwr_noopt", set_rdhwr_noopt);
2258
2259void __init trap_init(void)
2260{
2261        extern char except_vec3_generic;
2262        extern char except_vec4;
2263        extern char except_vec3_r4000;
2264        unsigned long i;
2265
2266        check_wait();
2267
2268        if (cpu_has_veic || cpu_has_vint) {
2269                unsigned long size = 0x200 + VECTORSPACING*64;
2270                phys_addr_t ebase_pa;
2271
2272                ebase = (unsigned long)
2273                        __alloc_bootmem(size, 1 << fls(size), 0);
2274
2275                /*
2276                 * Try to ensure ebase resides in KSeg0 if possible.
2277                 *
2278                 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2279                 * hitting a poorly defined exception base for Cache Errors.
2280                 * The allocation is likely to be in the low 512MB of physical,
2281                 * in which case we should be able to convert to KSeg0.
2282                 *
2283                 * EVA is special though as it allows segments to be rearranged
2284                 * and to become uncached during cache error handling.
2285                 */
2286                ebase_pa = __pa(ebase);
2287                if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2288                        ebase = CKSEG0ADDR(ebase_pa);
2289        } else {
2290                ebase = CAC_BASE;
2291
2292                if (cpu_has_mips_r2_r6) {
2293                        if (cpu_has_ebase_wg) {
2294#ifdef CONFIG_64BIT
2295                                ebase = (read_c0_ebase_64() & ~0xfff);
2296#else
2297                                ebase = (read_c0_ebase() & ~0xfff);
2298#endif
2299                        } else {
2300                                ebase += (read_c0_ebase() & 0x3ffff000);
2301                        }
2302                }
2303        }
2304
2305        if (cpu_has_mmips) {
2306                unsigned int config3 = read_c0_config3();
2307
2308                if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2309                        write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2310                else
2311                        write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2312        }
2313
2314        if (board_ebase_setup)
2315                board_ebase_setup();
2316        per_cpu_trap_init(true);
2317
2318        /*
2319         * Copy the generic exception handlers to their final destination.
2320         * This will be overridden later as suitable for a particular
2321         * configuration.
2322         */
2323        set_handler(0x180, &except_vec3_generic, 0x80);
2324
2325        /*
2326         * Setup default vectors
2327         */
2328        for (i = 0; i <= 31; i++)
2329                set_except_vector(i, handle_reserved);
2330
2331        /*
2332         * Copy the EJTAG debug exception vector handler code to it's final
2333         * destination.
2334         */
2335        if (cpu_has_ejtag && board_ejtag_handler_setup)
2336                board_ejtag_handler_setup();
2337
2338        /*
2339         * Only some CPUs have the watch exceptions.
2340         */
2341        if (cpu_has_watch)
2342                set_except_vector(EXCCODE_WATCH, handle_watch);
2343
2344        /*
2345         * Initialise interrupt handlers
2346         */
2347        if (cpu_has_veic || cpu_has_vint) {
2348                int nvec = cpu_has_veic ? 64 : 8;
2349                for (i = 0; i < nvec; i++)
2350                        set_vi_handler(i, NULL);
2351        }
2352        else if (cpu_has_divec)
2353                set_handler(0x200, &except_vec4, 0x8);
2354
2355        /*
2356         * Some CPUs can enable/disable for cache parity detection, but does
2357         * it different ways.
2358         */
2359        parity_protection_init();
2360
2361        /*
2362         * The Data Bus Errors / Instruction Bus Errors are signaled
2363         * by external hardware.  Therefore these two exceptions
2364         * may have board specific handlers.
2365         */
2366        if (board_be_init)
2367                board_be_init();
2368
2369        set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2370                                        rollback_handle_int : handle_int);
2371        set_except_vector(EXCCODE_MOD, handle_tlbm);
2372        set_except_vector(EXCCODE_TLBL, handle_tlbl);
2373        set_except_vector(EXCCODE_TLBS, handle_tlbs);
2374
2375        set_except_vector(EXCCODE_ADEL, handle_adel);
2376        set_except_vector(EXCCODE_ADES, handle_ades);
2377
2378        set_except_vector(EXCCODE_IBE, handle_ibe);
2379        set_except_vector(EXCCODE_DBE, handle_dbe);
2380
2381        set_except_vector(EXCCODE_SYS, handle_sys);
2382        set_except_vector(EXCCODE_BP, handle_bp);
2383
2384        if (rdhwr_noopt)
2385                set_except_vector(EXCCODE_RI, handle_ri);
2386        else {
2387                if (cpu_has_vtag_icache)
2388                        set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2389                else if (current_cpu_type() == CPU_LOONGSON3)
2390                        set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2391                else
2392                        set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2393        }
2394
2395        set_except_vector(EXCCODE_CPU, handle_cpu);
2396        set_except_vector(EXCCODE_OV, handle_ov);
2397        set_except_vector(EXCCODE_TR, handle_tr);
2398        set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2399
2400        if (board_nmi_handler_setup)
2401                board_nmi_handler_setup();
2402
2403        if (cpu_has_fpu && !cpu_has_nofpuex)
2404                set_except_vector(EXCCODE_FPE, handle_fpe);
2405
2406        set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2407
2408        if (cpu_has_rixiex) {
2409                set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2410                set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2411        }
2412
2413        set_except_vector(EXCCODE_MSADIS, handle_msa);
2414        set_except_vector(EXCCODE_MDMX, handle_mdmx);
2415
2416        if (cpu_has_mcheck)
2417                set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2418
2419        if (cpu_has_mipsmt)
2420                set_except_vector(EXCCODE_THREAD, handle_mt);
2421
2422        set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2423
2424        if (board_cache_error_setup)
2425                board_cache_error_setup();
2426
2427        if (cpu_has_vce)
2428                /* Special exception: R4[04]00 uses also the divec space. */
2429                set_handler(0x180, &except_vec3_r4000, 0x100);
2430        else if (cpu_has_4kex)
2431                set_handler(0x180, &except_vec3_generic, 0x80);
2432        else
2433                set_handler(0x080, &except_vec3_generic, 0x80);
2434
2435        local_flush_icache_range(ebase, ebase + 0x400);
2436
2437        sort_extable(__start___dbe_table, __stop___dbe_table);
2438
2439        cu2_notifier(default_cu2_call, 0x80000000);     /* Run last  */
2440}
2441
2442static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2443                            void *v)
2444{
2445        switch (cmd) {
2446        case CPU_PM_ENTER_FAILED:
2447        case CPU_PM_EXIT:
2448                configure_status();
2449                configure_hwrena();
2450                configure_exception_vector();
2451
2452                /* Restore register with CPU number for TLB handlers */
2453                TLBMISS_HANDLER_RESTORE();
2454
2455                break;
2456        }
2457
2458        return NOTIFY_OK;
2459}
2460
2461static struct notifier_block trap_pm_notifier_block = {
2462        .notifier_call = trap_pm_notifier,
2463};
2464
2465static int __init trap_pm_init(void)
2466{
2467        return cpu_pm_register_notifier(&trap_pm_notifier_block);
2468}
2469arch_initcall(trap_pm_init);
2470