linux/arch/mips/kvm/vz.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: Support for hardware virtualization extensions
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Yann Le Du <ledu@kymasys.com>
  10 */
  11
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/module.h>
  15#include <linux/preempt.h>
  16#include <linux/vmalloc.h>
  17#include <asm/cacheflush.h>
  18#include <asm/cacheops.h>
  19#include <asm/cmpxchg.h>
  20#include <asm/fpu.h>
  21#include <asm/hazards.h>
  22#include <asm/inst.h>
  23#include <asm/mmu_context.h>
  24#include <asm/r4kcache.h>
  25#include <asm/time.h>
  26#include <asm/tlb.h>
  27#include <asm/tlbex.h>
  28
  29#include <linux/kvm_host.h>
  30
  31#include "interrupt.h"
  32
  33#include "trace.h"
  34
  35/* Pointers to last VCPU loaded on each physical CPU */
  36static struct kvm_vcpu *last_vcpu[NR_CPUS];
  37/* Pointers to last VCPU executed on each physical CPU */
  38static struct kvm_vcpu *last_exec_vcpu[NR_CPUS];
  39
  40/*
  41 * Number of guest VTLB entries to use, so we can catch inconsistency between
  42 * CPUs.
  43 */
  44static unsigned int kvm_vz_guest_vtlb_size;
  45
  46static inline long kvm_vz_read_gc0_ebase(void)
  47{
  48        if (sizeof(long) == 8 && cpu_has_ebase_wg)
  49                return read_gc0_ebase_64();
  50        else
  51                return read_gc0_ebase();
  52}
  53
  54static inline void kvm_vz_write_gc0_ebase(long v)
  55{
  56        /*
  57         * First write with WG=1 to write upper bits, then write again in case
  58         * WG should be left at 0.
  59         * write_gc0_ebase_64() is no longer UNDEFINED since R6.
  60         */
  61        if (sizeof(long) == 8 &&
  62            (cpu_has_mips64r6 || cpu_has_ebase_wg)) {
  63                write_gc0_ebase_64(v | MIPS_EBASE_WG);
  64                write_gc0_ebase_64(v);
  65        } else {
  66                write_gc0_ebase(v | MIPS_EBASE_WG);
  67                write_gc0_ebase(v);
  68        }
  69}
  70
  71/*
  72 * These Config bits may be writable by the guest:
  73 * Config:      [K23, KU] (!TLB), K0
  74 * Config1:     (none)
  75 * Config2:     [TU, SU] (impl)
  76 * Config3:     ISAOnExc
  77 * Config4:     FTLBPageSize
  78 * Config5:     K, CV, MSAEn, UFE, FRE, SBRI, UFR
  79 */
  80
  81static inline unsigned int kvm_vz_config_guest_wrmask(struct kvm_vcpu *vcpu)
  82{
  83        return CONF_CM_CMASK;
  84}
  85
  86static inline unsigned int kvm_vz_config1_guest_wrmask(struct kvm_vcpu *vcpu)
  87{
  88        return 0;
  89}
  90
  91static inline unsigned int kvm_vz_config2_guest_wrmask(struct kvm_vcpu *vcpu)
  92{
  93        return 0;
  94}
  95
  96static inline unsigned int kvm_vz_config3_guest_wrmask(struct kvm_vcpu *vcpu)
  97{
  98        return MIPS_CONF3_ISA_OE;
  99}
 100
 101static inline unsigned int kvm_vz_config4_guest_wrmask(struct kvm_vcpu *vcpu)
 102{
 103        /* no need to be exact */
 104        return MIPS_CONF4_VFTLBPAGESIZE;
 105}
 106
 107static inline unsigned int kvm_vz_config5_guest_wrmask(struct kvm_vcpu *vcpu)
 108{
 109        unsigned int mask = MIPS_CONF5_K | MIPS_CONF5_CV | MIPS_CONF5_SBRI;
 110
 111        /* Permit MSAEn changes if MSA supported and enabled */
 112        if (kvm_mips_guest_has_msa(&vcpu->arch))
 113                mask |= MIPS_CONF5_MSAEN;
 114
 115        /*
 116         * Permit guest FPU mode changes if FPU is enabled and the relevant
 117         * feature exists according to FIR register.
 118         */
 119        if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
 120                if (cpu_has_ufr)
 121                        mask |= MIPS_CONF5_UFR;
 122                if (cpu_has_fre)
 123                        mask |= MIPS_CONF5_FRE | MIPS_CONF5_UFE;
 124        }
 125
 126        return mask;
 127}
 128
 129/*
 130 * VZ optionally allows these additional Config bits to be written by root:
 131 * Config:      M, [MT]
 132 * Config1:     M, [MMUSize-1, C2, MD, PC, WR, CA], FP
 133 * Config2:     M
 134 * Config3:     M, MSAP, [BPG], ULRI, [DSP2P, DSPP], CTXTC, [ITL, LPA, VEIC,
 135 *              VInt, SP, CDMM, MT, SM, TL]
 136 * Config4:     M, [VTLBSizeExt, MMUSizeExt]
 137 * Config5:     MRP
 138 */
 139
 140static inline unsigned int kvm_vz_config_user_wrmask(struct kvm_vcpu *vcpu)
 141{
 142        return kvm_vz_config_guest_wrmask(vcpu) | MIPS_CONF_M;
 143}
 144
 145static inline unsigned int kvm_vz_config1_user_wrmask(struct kvm_vcpu *vcpu)
 146{
 147        unsigned int mask = kvm_vz_config1_guest_wrmask(vcpu) | MIPS_CONF_M;
 148
 149        /* Permit FPU to be present if FPU is supported */
 150        if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
 151                mask |= MIPS_CONF1_FP;
 152
 153        return mask;
 154}
 155
 156static inline unsigned int kvm_vz_config2_user_wrmask(struct kvm_vcpu *vcpu)
 157{
 158        return kvm_vz_config2_guest_wrmask(vcpu) | MIPS_CONF_M;
 159}
 160
 161static inline unsigned int kvm_vz_config3_user_wrmask(struct kvm_vcpu *vcpu)
 162{
 163        unsigned int mask = kvm_vz_config3_guest_wrmask(vcpu) | MIPS_CONF_M |
 164                MIPS_CONF3_ULRI | MIPS_CONF3_CTXTC;
 165
 166        /* Permit MSA to be present if MSA is supported */
 167        if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 168                mask |= MIPS_CONF3_MSA;
 169
 170        return mask;
 171}
 172
 173static inline unsigned int kvm_vz_config4_user_wrmask(struct kvm_vcpu *vcpu)
 174{
 175        return kvm_vz_config4_guest_wrmask(vcpu) | MIPS_CONF_M;
 176}
 177
 178static inline unsigned int kvm_vz_config5_user_wrmask(struct kvm_vcpu *vcpu)
 179{
 180        return kvm_vz_config5_guest_wrmask(vcpu) | MIPS_CONF5_MRP;
 181}
 182
 183static gpa_t kvm_vz_gva_to_gpa_cb(gva_t gva)
 184{
 185        /* VZ guest has already converted gva to gpa */
 186        return gva;
 187}
 188
 189static void kvm_vz_queue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
 190{
 191        set_bit(priority, &vcpu->arch.pending_exceptions);
 192        clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
 193}
 194
 195static void kvm_vz_dequeue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
 196{
 197        clear_bit(priority, &vcpu->arch.pending_exceptions);
 198        set_bit(priority, &vcpu->arch.pending_exceptions_clr);
 199}
 200
 201static void kvm_vz_queue_timer_int_cb(struct kvm_vcpu *vcpu)
 202{
 203        /*
 204         * timer expiry is asynchronous to vcpu execution therefore defer guest
 205         * cp0 accesses
 206         */
 207        kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
 208}
 209
 210static void kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu *vcpu)
 211{
 212        /*
 213         * timer expiry is asynchronous to vcpu execution therefore defer guest
 214         * cp0 accesses
 215         */
 216        kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_TIMER);
 217}
 218
 219static void kvm_vz_queue_io_int_cb(struct kvm_vcpu *vcpu,
 220                                   struct kvm_mips_interrupt *irq)
 221{
 222        int intr = (int)irq->irq;
 223
 224        /*
 225         * interrupts are asynchronous to vcpu execution therefore defer guest
 226         * cp0 accesses
 227         */
 228        switch (intr) {
 229        case 2:
 230                kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IO);
 231                break;
 232
 233        case 3:
 234                kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IPI_1);
 235                break;
 236
 237        case 4:
 238                kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IPI_2);
 239                break;
 240
 241        default:
 242                break;
 243        }
 244
 245}
 246
 247static void kvm_vz_dequeue_io_int_cb(struct kvm_vcpu *vcpu,
 248                                     struct kvm_mips_interrupt *irq)
 249{
 250        int intr = (int)irq->irq;
 251
 252        /*
 253         * interrupts are asynchronous to vcpu execution therefore defer guest
 254         * cp0 accesses
 255         */
 256        switch (intr) {
 257        case -2:
 258                kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IO);
 259                break;
 260
 261        case -3:
 262                kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IPI_1);
 263                break;
 264
 265        case -4:
 266                kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IPI_2);
 267                break;
 268
 269        default:
 270                break;
 271        }
 272
 273}
 274
 275static u32 kvm_vz_priority_to_irq[MIPS_EXC_MAX] = {
 276        [MIPS_EXC_INT_TIMER] = C_IRQ5,
 277        [MIPS_EXC_INT_IO]    = C_IRQ0,
 278        [MIPS_EXC_INT_IPI_1] = C_IRQ1,
 279        [MIPS_EXC_INT_IPI_2] = C_IRQ2,
 280};
 281
 282static int kvm_vz_irq_deliver_cb(struct kvm_vcpu *vcpu, unsigned int priority,
 283                                 u32 cause)
 284{
 285        u32 irq = (priority < MIPS_EXC_MAX) ?
 286                kvm_vz_priority_to_irq[priority] : 0;
 287
 288        switch (priority) {
 289        case MIPS_EXC_INT_TIMER:
 290                set_gc0_cause(C_TI);
 291                break;
 292
 293        case MIPS_EXC_INT_IO:
 294        case MIPS_EXC_INT_IPI_1:
 295        case MIPS_EXC_INT_IPI_2:
 296                if (cpu_has_guestctl2)
 297                        set_c0_guestctl2(irq);
 298                else
 299                        set_gc0_cause(irq);
 300                break;
 301
 302        default:
 303                break;
 304        }
 305
 306        clear_bit(priority, &vcpu->arch.pending_exceptions);
 307        return 1;
 308}
 309
 310static int kvm_vz_irq_clear_cb(struct kvm_vcpu *vcpu, unsigned int priority,
 311                               u32 cause)
 312{
 313        u32 irq = (priority < MIPS_EXC_MAX) ?
 314                kvm_vz_priority_to_irq[priority] : 0;
 315
 316        switch (priority) {
 317        case MIPS_EXC_INT_TIMER:
 318                /*
 319                 * Call to kvm_write_c0_guest_compare() clears Cause.TI in
 320                 * kvm_mips_emulate_CP0(). Explicitly clear irq associated with
 321                 * Cause.IP[IPTI] if GuestCtl2 virtual interrupt register not
 322                 * supported or if not using GuestCtl2 Hardware Clear.
 323                 */
 324                if (cpu_has_guestctl2) {
 325                        if (!(read_c0_guestctl2() & (irq << 14)))
 326                                clear_c0_guestctl2(irq);
 327                } else {
 328                        clear_gc0_cause(irq);
 329                }
 330                break;
 331
 332        case MIPS_EXC_INT_IO:
 333        case MIPS_EXC_INT_IPI_1:
 334        case MIPS_EXC_INT_IPI_2:
 335                /* Clear GuestCtl2.VIP irq if not using Hardware Clear */
 336                if (cpu_has_guestctl2) {
 337                        if (!(read_c0_guestctl2() & (irq << 14)))
 338                                clear_c0_guestctl2(irq);
 339                } else {
 340                        clear_gc0_cause(irq);
 341                }
 342                break;
 343
 344        default:
 345                break;
 346        }
 347
 348        clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
 349        return 1;
 350}
 351
 352/*
 353 * VZ guest timer handling.
 354 */
 355
 356/**
 357 * kvm_vz_should_use_htimer() - Find whether to use the VZ hard guest timer.
 358 * @vcpu:       Virtual CPU.
 359 *
 360 * Returns:     true if the VZ GTOffset & real guest CP0_Count should be used
 361 *              instead of software emulation of guest timer.
 362 *              false otherwise.
 363 */
 364static bool kvm_vz_should_use_htimer(struct kvm_vcpu *vcpu)
 365{
 366        if (kvm_mips_count_disabled(vcpu))
 367                return false;
 368
 369        /* Chosen frequency must match real frequency */
 370        if (mips_hpt_frequency != vcpu->arch.count_hz)
 371                return false;
 372
 373        /* We don't support a CP0_GTOffset with fewer bits than CP0_Count */
 374        if (current_cpu_data.gtoffset_mask != 0xffffffff)
 375                return false;
 376
 377        return true;
 378}
 379
 380/**
 381 * _kvm_vz_restore_stimer() - Restore soft timer state.
 382 * @vcpu:       Virtual CPU.
 383 * @compare:    CP0_Compare register value, restored by caller.
 384 * @cause:      CP0_Cause register to restore.
 385 *
 386 * Restore VZ state relating to the soft timer. The hard timer can be enabled
 387 * later.
 388 */
 389static void _kvm_vz_restore_stimer(struct kvm_vcpu *vcpu, u32 compare,
 390                                   u32 cause)
 391{
 392        /*
 393         * Avoid spurious counter interrupts by setting Guest CP0_Count to just
 394         * after Guest CP0_Compare.
 395         */
 396        write_c0_gtoffset(compare - read_c0_count());
 397
 398        back_to_back_c0_hazard();
 399        write_gc0_cause(cause);
 400}
 401
 402/**
 403 * _kvm_vz_restore_htimer() - Restore hard timer state.
 404 * @vcpu:       Virtual CPU.
 405 * @compare:    CP0_Compare register value, restored by caller.
 406 * @cause:      CP0_Cause register to restore.
 407 *
 408 * Restore hard timer Guest.Count & Guest.Cause taking care to preserve the
 409 * value of Guest.CP0_Cause.TI while restoring Guest.CP0_Cause.
 410 */
 411static void _kvm_vz_restore_htimer(struct kvm_vcpu *vcpu,
 412                                   u32 compare, u32 cause)
 413{
 414        u32 start_count, after_count;
 415        ktime_t freeze_time;
 416        unsigned long flags;
 417
 418        /*
 419         * Freeze the soft-timer and sync the guest CP0_Count with it. We do
 420         * this with interrupts disabled to avoid latency.
 421         */
 422        local_irq_save(flags);
 423        freeze_time = kvm_mips_freeze_hrtimer(vcpu, &start_count);
 424        write_c0_gtoffset(start_count - read_c0_count());
 425        local_irq_restore(flags);
 426
 427        /* restore guest CP0_Cause, as TI may already be set */
 428        back_to_back_c0_hazard();
 429        write_gc0_cause(cause);
 430
 431        /*
 432         * The above sequence isn't atomic and would result in lost timer
 433         * interrupts if we're not careful. Detect if a timer interrupt is due
 434         * and assert it.
 435         */
 436        back_to_back_c0_hazard();
 437        after_count = read_gc0_count();
 438        if (after_count - start_count > compare - start_count - 1)
 439                kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
 440}
 441
 442/**
 443 * kvm_vz_restore_timer() - Restore timer state.
 444 * @vcpu:       Virtual CPU.
 445 *
 446 * Restore soft timer state from saved context.
 447 */
 448static void kvm_vz_restore_timer(struct kvm_vcpu *vcpu)
 449{
 450        struct mips_coproc *cop0 = vcpu->arch.cop0;
 451        u32 cause, compare;
 452
 453        compare = kvm_read_sw_gc0_compare(cop0);
 454        cause = kvm_read_sw_gc0_cause(cop0);
 455
 456        write_gc0_compare(compare);
 457        _kvm_vz_restore_stimer(vcpu, compare, cause);
 458}
 459
 460/**
 461 * kvm_vz_acquire_htimer() - Switch to hard timer state.
 462 * @vcpu:       Virtual CPU.
 463 *
 464 * Restore hard timer state on top of existing soft timer state if possible.
 465 *
 466 * Since hard timer won't remain active over preemption, preemption should be
 467 * disabled by the caller.
 468 */
 469void kvm_vz_acquire_htimer(struct kvm_vcpu *vcpu)
 470{
 471        u32 gctl0;
 472
 473        gctl0 = read_c0_guestctl0();
 474        if (!(gctl0 & MIPS_GCTL0_GT) && kvm_vz_should_use_htimer(vcpu)) {
 475                /* enable guest access to hard timer */
 476                write_c0_guestctl0(gctl0 | MIPS_GCTL0_GT);
 477
 478                _kvm_vz_restore_htimer(vcpu, read_gc0_compare(),
 479                                       read_gc0_cause());
 480        }
 481}
 482
 483/**
 484 * _kvm_vz_save_htimer() - Switch to software emulation of guest timer.
 485 * @vcpu:       Virtual CPU.
 486 * @compare:    Pointer to write compare value to.
 487 * @cause:      Pointer to write cause value to.
 488 *
 489 * Save VZ guest timer state and switch to software emulation of guest CP0
 490 * timer. The hard timer must already be in use, so preemption should be
 491 * disabled.
 492 */
 493static void _kvm_vz_save_htimer(struct kvm_vcpu *vcpu,
 494                                u32 *out_compare, u32 *out_cause)
 495{
 496        u32 cause, compare, before_count, end_count;
 497        ktime_t before_time;
 498
 499        compare = read_gc0_compare();
 500        *out_compare = compare;
 501
 502        before_time = ktime_get();
 503
 504        /*
 505         * Record the CP0_Count *prior* to saving CP0_Cause, so we have a time
 506         * at which no pending timer interrupt is missing.
 507         */
 508        before_count = read_gc0_count();
 509        back_to_back_c0_hazard();
 510        cause = read_gc0_cause();
 511        *out_cause = cause;
 512
 513        /*
 514         * Record a final CP0_Count which we will transfer to the soft-timer.
 515         * This is recorded *after* saving CP0_Cause, so we don't get any timer
 516         * interrupts from just after the final CP0_Count point.
 517         */
 518        back_to_back_c0_hazard();
 519        end_count = read_gc0_count();
 520
 521        /*
 522         * The above sequence isn't atomic, so we could miss a timer interrupt
 523         * between reading CP0_Cause and end_count. Detect and record any timer
 524         * interrupt due between before_count and end_count.
 525         */
 526        if (end_count - before_count > compare - before_count - 1)
 527                kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
 528
 529        /*
 530         * Restore soft-timer, ignoring a small amount of negative drift due to
 531         * delay between freeze_hrtimer and setting CP0_GTOffset.
 532         */
 533        kvm_mips_restore_hrtimer(vcpu, before_time, end_count, -0x10000);
 534}
 535
 536/**
 537 * kvm_vz_save_timer() - Save guest timer state.
 538 * @vcpu:       Virtual CPU.
 539 *
 540 * Save VZ guest timer state and switch to soft guest timer if hard timer was in
 541 * use.
 542 */
 543static void kvm_vz_save_timer(struct kvm_vcpu *vcpu)
 544{
 545        struct mips_coproc *cop0 = vcpu->arch.cop0;
 546        u32 gctl0, compare, cause;
 547
 548        gctl0 = read_c0_guestctl0();
 549        if (gctl0 & MIPS_GCTL0_GT) {
 550                /* disable guest use of hard timer */
 551                write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
 552
 553                /* save hard timer state */
 554                _kvm_vz_save_htimer(vcpu, &compare, &cause);
 555        } else {
 556                compare = read_gc0_compare();
 557                cause = read_gc0_cause();
 558        }
 559
 560        /* save timer-related state to VCPU context */
 561        kvm_write_sw_gc0_cause(cop0, cause);
 562        kvm_write_sw_gc0_compare(cop0, compare);
 563}
 564
 565/**
 566 * kvm_vz_lose_htimer() - Ensure hard guest timer is not in use.
 567 * @vcpu:       Virtual CPU.
 568 *
 569 * Transfers the state of the hard guest timer to the soft guest timer, leaving
 570 * guest state intact so it can continue to be used with the soft timer.
 571 */
 572void kvm_vz_lose_htimer(struct kvm_vcpu *vcpu)
 573{
 574        u32 gctl0, compare, cause;
 575
 576        preempt_disable();
 577        gctl0 = read_c0_guestctl0();
 578        if (gctl0 & MIPS_GCTL0_GT) {
 579                /* disable guest use of timer */
 580                write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
 581
 582                /* switch to soft timer */
 583                _kvm_vz_save_htimer(vcpu, &compare, &cause);
 584
 585                /* leave soft timer in usable state */
 586                _kvm_vz_restore_stimer(vcpu, compare, cause);
 587        }
 588        preempt_enable();
 589}
 590
 591/**
 592 * is_eva_access() - Find whether an instruction is an EVA memory accessor.
 593 * @inst:       32-bit instruction encoding.
 594 *
 595 * Finds whether @inst encodes an EVA memory access instruction, which would
 596 * indicate that emulation of it should access the user mode address space
 597 * instead of the kernel mode address space. This matters for MUSUK segments
 598 * which are TLB mapped for user mode but unmapped for kernel mode.
 599 *
 600 * Returns:     Whether @inst encodes an EVA accessor instruction.
 601 */
 602static bool is_eva_access(union mips_instruction inst)
 603{
 604        if (inst.spec3_format.opcode != spec3_op)
 605                return false;
 606
 607        switch (inst.spec3_format.func) {
 608        case lwle_op:
 609        case lwre_op:
 610        case cachee_op:
 611        case sbe_op:
 612        case she_op:
 613        case sce_op:
 614        case swe_op:
 615        case swle_op:
 616        case swre_op:
 617        case prefe_op:
 618        case lbue_op:
 619        case lhue_op:
 620        case lbe_op:
 621        case lhe_op:
 622        case lle_op:
 623        case lwe_op:
 624                return true;
 625        default:
 626                return false;
 627        }
 628}
 629
 630/**
 631 * is_eva_am_mapped() - Find whether an access mode is mapped.
 632 * @vcpu:       KVM VCPU state.
 633 * @am:         3-bit encoded access mode.
 634 * @eu:         Segment becomes unmapped and uncached when Status.ERL=1.
 635 *
 636 * Decode @am to find whether it encodes a mapped segment for the current VCPU
 637 * state. Where necessary @eu and the actual instruction causing the fault are
 638 * taken into account to make the decision.
 639 *
 640 * Returns:     Whether the VCPU faulted on a TLB mapped address.
 641 */
 642static bool is_eva_am_mapped(struct kvm_vcpu *vcpu, unsigned int am, bool eu)
 643{
 644        u32 am_lookup;
 645        int err;
 646
 647        /*
 648         * Interpret access control mode. We assume address errors will already
 649         * have been caught by the guest, leaving us with:
 650         *      AM      UM  SM  KM  31..24 23..16
 651         * UK    0 000          Unm   0      0
 652         * MK    1 001          TLB   1
 653         * MSK   2 010      TLB TLB   1
 654         * MUSK  3 011  TLB TLB TLB   1
 655         * MUSUK 4 100  TLB TLB Unm   0      1
 656         * USK   5 101      Unm Unm   0      0
 657         * -     6 110                0      0
 658         * UUSK  7 111  Unm Unm Unm   0      0
 659         *
 660         * We shift a magic value by AM across the sign bit to find if always
 661         * TLB mapped, and if not shift by 8 again to find if it depends on KM.
 662         */
 663        am_lookup = 0x70080000 << am;
 664        if ((s32)am_lookup < 0) {
 665                /*
 666                 * MK, MSK, MUSK
 667                 * Always TLB mapped, unless SegCtl.EU && ERL
 668                 */
 669                if (!eu || !(read_gc0_status() & ST0_ERL))
 670                        return true;
 671        } else {
 672                am_lookup <<= 8;
 673                if ((s32)am_lookup < 0) {
 674                        union mips_instruction inst;
 675                        unsigned int status;
 676                        u32 *opc;
 677
 678                        /*
 679                         * MUSUK
 680                         * TLB mapped if not in kernel mode
 681                         */
 682                        status = read_gc0_status();
 683                        if (!(status & (ST0_EXL | ST0_ERL)) &&
 684                            (status & ST0_KSU))
 685                                return true;
 686                        /*
 687                         * EVA access instructions in kernel
 688                         * mode access user address space.
 689                         */
 690                        opc = (u32 *)vcpu->arch.pc;
 691                        if (vcpu->arch.host_cp0_cause & CAUSEF_BD)
 692                                opc += 1;
 693                        err = kvm_get_badinstr(opc, vcpu, &inst.word);
 694                        if (!err && is_eva_access(inst))
 695                                return true;
 696                }
 697        }
 698
 699        return false;
 700}
 701
 702/**
 703 * kvm_vz_gva_to_gpa() - Convert valid GVA to GPA.
 704 * @vcpu:       KVM VCPU state.
 705 * @gva:        Guest virtual address to convert.
 706 * @gpa:        Output guest physical address.
 707 *
 708 * Convert a guest virtual address (GVA) which is valid according to the guest
 709 * context, to a guest physical address (GPA).
 710 *
 711 * Returns:     0 on success.
 712 *              -errno on failure.
 713 */
 714static int kvm_vz_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
 715                             unsigned long *gpa)
 716{
 717        u32 gva32 = gva;
 718        unsigned long segctl;
 719
 720        if ((long)gva == (s32)gva32) {
 721                /* Handle canonical 32-bit virtual address */
 722                if (cpu_guest_has_segments) {
 723                        unsigned long mask, pa;
 724
 725                        switch (gva32 >> 29) {
 726                        case 0:
 727                        case 1: /* CFG5 (1GB) */
 728                                segctl = read_gc0_segctl2() >> 16;
 729                                mask = (unsigned long)0xfc0000000ull;
 730                                break;
 731                        case 2:
 732                        case 3: /* CFG4 (1GB) */
 733                                segctl = read_gc0_segctl2();
 734                                mask = (unsigned long)0xfc0000000ull;
 735                                break;
 736                        case 4: /* CFG3 (512MB) */
 737                                segctl = read_gc0_segctl1() >> 16;
 738                                mask = (unsigned long)0xfe0000000ull;
 739                                break;
 740                        case 5: /* CFG2 (512MB) */
 741                                segctl = read_gc0_segctl1();
 742                                mask = (unsigned long)0xfe0000000ull;
 743                                break;
 744                        case 6: /* CFG1 (512MB) */
 745                                segctl = read_gc0_segctl0() >> 16;
 746                                mask = (unsigned long)0xfe0000000ull;
 747                                break;
 748                        case 7: /* CFG0 (512MB) */
 749                                segctl = read_gc0_segctl0();
 750                                mask = (unsigned long)0xfe0000000ull;
 751                                break;
 752                        default:
 753                                /*
 754                                 * GCC 4.9 isn't smart enough to figure out that
 755                                 * segctl and mask are always initialised.
 756                                 */
 757                                unreachable();
 758                        }
 759
 760                        if (is_eva_am_mapped(vcpu, (segctl >> 4) & 0x7,
 761                                             segctl & 0x0008))
 762                                goto tlb_mapped;
 763
 764                        /* Unmapped, find guest physical address */
 765                        pa = (segctl << 20) & mask;
 766                        pa |= gva32 & ~mask;
 767                        *gpa = pa;
 768                        return 0;
 769                } else if ((s32)gva32 < (s32)0xc0000000) {
 770                        /* legacy unmapped KSeg0 or KSeg1 */
 771                        *gpa = gva32 & 0x1fffffff;
 772                        return 0;
 773                }
 774#ifdef CONFIG_64BIT
 775        } else if ((gva & 0xc000000000000000) == 0x8000000000000000) {
 776                /* XKPHYS */
 777                if (cpu_guest_has_segments) {
 778                        /*
 779                         * Each of the 8 regions can be overridden by SegCtl2.XR
 780                         * to use SegCtl1.XAM.
 781                         */
 782                        segctl = read_gc0_segctl2();
 783                        if (segctl & (1ull << (56 + ((gva >> 59) & 0x7)))) {
 784                                segctl = read_gc0_segctl1();
 785                                if (is_eva_am_mapped(vcpu, (segctl >> 59) & 0x7,
 786                                                     0))
 787                                        goto tlb_mapped;
 788                        }
 789
 790                }
 791                /*
 792                 * Traditionally fully unmapped.
 793                 * Bits 61:59 specify the CCA, which we can just mask off here.
 794                 * Bits 58:PABITS should be zero, but we shouldn't have got here
 795                 * if it wasn't.
 796                 */
 797                *gpa = gva & 0x07ffffffffffffff;
 798                return 0;
 799#endif
 800        }
 801
 802tlb_mapped:
 803        return kvm_vz_guest_tlb_lookup(vcpu, gva, gpa);
 804}
 805
 806/**
 807 * kvm_vz_badvaddr_to_gpa() - Convert GVA BadVAddr from root exception to GPA.
 808 * @vcpu:       KVM VCPU state.
 809 * @badvaddr:   Root BadVAddr.
 810 * @gpa:        Output guest physical address.
 811 *
 812 * VZ implementations are permitted to report guest virtual addresses (GVA) in
 813 * BadVAddr on a root exception during guest execution, instead of the more
 814 * convenient guest physical addresses (GPA). When we get a GVA, this function
 815 * converts it to a GPA, taking into account guest segmentation and guest TLB
 816 * state.
 817 *
 818 * Returns:     0 on success.
 819 *              -errno on failure.
 820 */
 821static int kvm_vz_badvaddr_to_gpa(struct kvm_vcpu *vcpu, unsigned long badvaddr,
 822                                  unsigned long *gpa)
 823{
 824        unsigned int gexccode = (vcpu->arch.host_cp0_guestctl0 &
 825                                 MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
 826
 827        /* If BadVAddr is GPA, then all is well in the world */
 828        if (likely(gexccode == MIPS_GCTL0_GEXC_GPA)) {
 829                *gpa = badvaddr;
 830                return 0;
 831        }
 832
 833        /* Otherwise we'd expect it to be GVA ... */
 834        if (WARN(gexccode != MIPS_GCTL0_GEXC_GVA,
 835                 "Unexpected gexccode %#x\n", gexccode))
 836                return -EINVAL;
 837
 838        /* ... and we need to perform the GVA->GPA translation in software */
 839        return kvm_vz_gva_to_gpa(vcpu, badvaddr, gpa);
 840}
 841
 842static int kvm_trap_vz_no_handler(struct kvm_vcpu *vcpu)
 843{
 844        u32 *opc = (u32 *) vcpu->arch.pc;
 845        u32 cause = vcpu->arch.host_cp0_cause;
 846        u32 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 847        unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
 848        u32 inst = 0;
 849
 850        /*
 851         *  Fetch the instruction.
 852         */
 853        if (cause & CAUSEF_BD)
 854                opc += 1;
 855        kvm_get_badinstr(opc, vcpu, &inst);
 856
 857        kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
 858                exccode, opc, inst, badvaddr,
 859                read_gc0_status());
 860        kvm_arch_vcpu_dump_regs(vcpu);
 861        vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 862        return RESUME_HOST;
 863}
 864
 865static unsigned long mips_process_maar(unsigned int op, unsigned long val)
 866{
 867        /* Mask off unused bits */
 868        unsigned long mask = 0xfffff000 | MIPS_MAAR_S | MIPS_MAAR_VL;
 869
 870        if (read_gc0_pagegrain() & PG_ELPA)
 871                mask |= 0x00ffffff00000000ull;
 872        if (cpu_guest_has_mvh)
 873                mask |= MIPS_MAAR_VH;
 874
 875        /* Set or clear VH */
 876        if (op == mtc_op) {
 877                /* clear VH */
 878                val &= ~MIPS_MAAR_VH;
 879        } else if (op == dmtc_op) {
 880                /* set VH to match VL */
 881                val &= ~MIPS_MAAR_VH;
 882                if (val & MIPS_MAAR_VL)
 883                        val |= MIPS_MAAR_VH;
 884        }
 885
 886        return val & mask;
 887}
 888
 889static void kvm_write_maari(struct kvm_vcpu *vcpu, unsigned long val)
 890{
 891        struct mips_coproc *cop0 = vcpu->arch.cop0;
 892
 893        val &= MIPS_MAARI_INDEX;
 894        if (val == MIPS_MAARI_INDEX)
 895                kvm_write_sw_gc0_maari(cop0, ARRAY_SIZE(vcpu->arch.maar) - 1);
 896        else if (val < ARRAY_SIZE(vcpu->arch.maar))
 897                kvm_write_sw_gc0_maari(cop0, val);
 898}
 899
 900static enum emulation_result kvm_vz_gpsi_cop0(union mips_instruction inst,
 901                                              u32 *opc, u32 cause,
 902                                              struct kvm_run *run,
 903                                              struct kvm_vcpu *vcpu)
 904{
 905        struct mips_coproc *cop0 = vcpu->arch.cop0;
 906        enum emulation_result er = EMULATE_DONE;
 907        u32 rt, rd, sel;
 908        unsigned long curr_pc;
 909        unsigned long val;
 910
 911        /*
 912         * Update PC and hold onto current PC in case there is
 913         * an error and we want to rollback the PC
 914         */
 915        curr_pc = vcpu->arch.pc;
 916        er = update_pc(vcpu, cause);
 917        if (er == EMULATE_FAIL)
 918                return er;
 919
 920        if (inst.co_format.co) {
 921                switch (inst.co_format.func) {
 922                case wait_op:
 923                        er = kvm_mips_emul_wait(vcpu);
 924                        break;
 925                default:
 926                        er = EMULATE_FAIL;
 927                }
 928        } else {
 929                rt = inst.c0r_format.rt;
 930                rd = inst.c0r_format.rd;
 931                sel = inst.c0r_format.sel;
 932
 933                switch (inst.c0r_format.rs) {
 934                case dmfc_op:
 935                case mfc_op:
 936#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
 937                        cop0->stat[rd][sel]++;
 938#endif
 939                        if (rd == MIPS_CP0_COUNT &&
 940                            sel == 0) {                 /* Count */
 941                                val = kvm_mips_read_count(vcpu);
 942                        } else if (rd == MIPS_CP0_COMPARE &&
 943                                   sel == 0) {          /* Compare */
 944                                val = read_gc0_compare();
 945                        } else if (rd == MIPS_CP0_LLADDR &&
 946                                   sel == 0) {          /* LLAddr */
 947                                if (cpu_guest_has_rw_llb)
 948                                        val = read_gc0_lladdr() &
 949                                                MIPS_LLADDR_LLB;
 950                                else
 951                                        val = 0;
 952                        } else if (rd == MIPS_CP0_LLADDR &&
 953                                   sel == 1 &&          /* MAAR */
 954                                   cpu_guest_has_maar &&
 955                                   !cpu_guest_has_dyn_maar) {
 956                                /* MAARI must be in range */
 957                                BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
 958                                                ARRAY_SIZE(vcpu->arch.maar));
 959                                val = vcpu->arch.maar[
 960                                        kvm_read_sw_gc0_maari(cop0)];
 961                        } else if ((rd == MIPS_CP0_PRID &&
 962                                    (sel == 0 ||        /* PRid */
 963                                     sel == 2 ||        /* CDMMBase */
 964                                     sel == 3)) ||      /* CMGCRBase */
 965                                   (rd == MIPS_CP0_STATUS &&
 966                                    (sel == 2 ||        /* SRSCtl */
 967                                     sel == 3)) ||      /* SRSMap */
 968                                   (rd == MIPS_CP0_CONFIG &&
 969                                    (sel == 7)) ||      /* Config7 */
 970                                   (rd == MIPS_CP0_LLADDR &&
 971                                    (sel == 2) &&       /* MAARI */
 972                                    cpu_guest_has_maar &&
 973                                    !cpu_guest_has_dyn_maar) ||
 974                                   (rd == MIPS_CP0_ERRCTL &&
 975                                    (sel == 0))) {      /* ErrCtl */
 976                                val = cop0->reg[rd][sel];
 977                        } else {
 978                                val = 0;
 979                                er = EMULATE_FAIL;
 980                        }
 981
 982                        if (er != EMULATE_FAIL) {
 983                                /* Sign extend */
 984                                if (inst.c0r_format.rs == mfc_op)
 985                                        val = (int)val;
 986                                vcpu->arch.gprs[rt] = val;
 987                        }
 988
 989                        trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mfc_op) ?
 990                                        KVM_TRACE_MFC0 : KVM_TRACE_DMFC0,
 991                                      KVM_TRACE_COP0(rd, sel), val);
 992                        break;
 993
 994                case dmtc_op:
 995                case mtc_op:
 996#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
 997                        cop0->stat[rd][sel]++;
 998#endif
 999                        val = vcpu->arch.gprs[rt];
1000                        trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mtc_op) ?
1001                                        KVM_TRACE_MTC0 : KVM_TRACE_DMTC0,
1002                                      KVM_TRACE_COP0(rd, sel), val);
1003
1004                        if (rd == MIPS_CP0_COUNT &&
1005                            sel == 0) {                 /* Count */
1006                                kvm_vz_lose_htimer(vcpu);
1007                                kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1008                        } else if (rd == MIPS_CP0_COMPARE &&
1009                                   sel == 0) {          /* Compare */
1010                                kvm_mips_write_compare(vcpu,
1011                                                       vcpu->arch.gprs[rt],
1012                                                       true);
1013                        } else if (rd == MIPS_CP0_LLADDR &&
1014                                   sel == 0) {          /* LLAddr */
1015                                /*
1016                                 * P5600 generates GPSI on guest MTC0 LLAddr.
1017                                 * Only allow the guest to clear LLB.
1018                                 */
1019                                if (cpu_guest_has_rw_llb &&
1020                                    !(val & MIPS_LLADDR_LLB))
1021                                        write_gc0_lladdr(0);
1022                        } else if (rd == MIPS_CP0_LLADDR &&
1023                                   sel == 1 &&          /* MAAR */
1024                                   cpu_guest_has_maar &&
1025                                   !cpu_guest_has_dyn_maar) {
1026                                val = mips_process_maar(inst.c0r_format.rs,
1027                                                        val);
1028
1029                                /* MAARI must be in range */
1030                                BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
1031                                                ARRAY_SIZE(vcpu->arch.maar));
1032                                vcpu->arch.maar[kvm_read_sw_gc0_maari(cop0)] =
1033                                                                        val;
1034                        } else if (rd == MIPS_CP0_LLADDR &&
1035                                   (sel == 2) &&        /* MAARI */
1036                                   cpu_guest_has_maar &&
1037                                   !cpu_guest_has_dyn_maar) {
1038                                kvm_write_maari(vcpu, val);
1039                        } else if (rd == MIPS_CP0_ERRCTL &&
1040                                   (sel == 0)) {        /* ErrCtl */
1041                                /* ignore the written value */
1042                        } else {
1043                                er = EMULATE_FAIL;
1044                        }
1045                        break;
1046
1047                default:
1048                        er = EMULATE_FAIL;
1049                        break;
1050                }
1051        }
1052        /* Rollback PC only if emulation was unsuccessful */
1053        if (er == EMULATE_FAIL) {
1054                kvm_err("[%#lx]%s: unsupported cop0 instruction 0x%08x\n",
1055                        curr_pc, __func__, inst.word);
1056
1057                vcpu->arch.pc = curr_pc;
1058        }
1059
1060        return er;
1061}
1062
1063static enum emulation_result kvm_vz_gpsi_cache(union mips_instruction inst,
1064                                               u32 *opc, u32 cause,
1065                                               struct kvm_run *run,
1066                                               struct kvm_vcpu *vcpu)
1067{
1068        enum emulation_result er = EMULATE_DONE;
1069        u32 cache, op_inst, op, base;
1070        s16 offset;
1071        struct kvm_vcpu_arch *arch = &vcpu->arch;
1072        unsigned long va, curr_pc;
1073
1074        /*
1075         * Update PC and hold onto current PC in case there is
1076         * an error and we want to rollback the PC
1077         */
1078        curr_pc = vcpu->arch.pc;
1079        er = update_pc(vcpu, cause);
1080        if (er == EMULATE_FAIL)
1081                return er;
1082
1083        base = inst.i_format.rs;
1084        op_inst = inst.i_format.rt;
1085        if (cpu_has_mips_r6)
1086                offset = inst.spec3_format.simmediate;
1087        else
1088                offset = inst.i_format.simmediate;
1089        cache = op_inst & CacheOp_Cache;
1090        op = op_inst & CacheOp_Op;
1091
1092        va = arch->gprs[base] + offset;
1093
1094        kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1095                  cache, op, base, arch->gprs[base], offset);
1096
1097        /* Secondary or tirtiary cache ops ignored */
1098        if (cache != Cache_I && cache != Cache_D)
1099                return EMULATE_DONE;
1100
1101        switch (op_inst) {
1102        case Index_Invalidate_I:
1103                flush_icache_line_indexed(va);
1104                return EMULATE_DONE;
1105        case Index_Writeback_Inv_D:
1106                flush_dcache_line_indexed(va);
1107                return EMULATE_DONE;
1108        case Hit_Invalidate_I:
1109        case Hit_Invalidate_D:
1110        case Hit_Writeback_Inv_D:
1111                if (boot_cpu_type() == CPU_CAVIUM_OCTEON3) {
1112                        /* We can just flush entire icache */
1113                        local_flush_icache_range(0, 0);
1114                        return EMULATE_DONE;
1115                }
1116
1117                /* So far, other platforms support guest hit cache ops */
1118                break;
1119        default:
1120                break;
1121        };
1122
1123        kvm_err("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1124                curr_pc, vcpu->arch.gprs[31], cache, op, base, arch->gprs[base],
1125                offset);
1126        /* Rollback PC */
1127        vcpu->arch.pc = curr_pc;
1128
1129        return EMULATE_FAIL;
1130}
1131
1132static enum emulation_result kvm_trap_vz_handle_gpsi(u32 cause, u32 *opc,
1133                                                     struct kvm_vcpu *vcpu)
1134{
1135        enum emulation_result er = EMULATE_DONE;
1136        struct kvm_vcpu_arch *arch = &vcpu->arch;
1137        struct kvm_run *run = vcpu->run;
1138        union mips_instruction inst;
1139        int rd, rt, sel;
1140        int err;
1141
1142        /*
1143         *  Fetch the instruction.
1144         */
1145        if (cause & CAUSEF_BD)
1146                opc += 1;
1147        err = kvm_get_badinstr(opc, vcpu, &inst.word);
1148        if (err)
1149                return EMULATE_FAIL;
1150
1151        switch (inst.r_format.opcode) {
1152        case cop0_op:
1153                er = kvm_vz_gpsi_cop0(inst, opc, cause, run, vcpu);
1154                break;
1155#ifndef CONFIG_CPU_MIPSR6
1156        case cache_op:
1157                trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1158                er = kvm_vz_gpsi_cache(inst, opc, cause, run, vcpu);
1159                break;
1160#endif
1161        case spec3_op:
1162                switch (inst.spec3_format.func) {
1163#ifdef CONFIG_CPU_MIPSR6
1164                case cache6_op:
1165                        trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1166                        er = kvm_vz_gpsi_cache(inst, opc, cause, run, vcpu);
1167                        break;
1168#endif
1169                case rdhwr_op:
1170                        if (inst.r_format.rs || (inst.r_format.re >> 3))
1171                                goto unknown;
1172
1173                        rd = inst.r_format.rd;
1174                        rt = inst.r_format.rt;
1175                        sel = inst.r_format.re & 0x7;
1176
1177                        switch (rd) {
1178                        case MIPS_HWR_CC:       /* Read count register */
1179                                arch->gprs[rt] =
1180                                        (long)(int)kvm_mips_read_count(vcpu);
1181                                break;
1182                        default:
1183                                trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
1184                                              KVM_TRACE_HWR(rd, sel), 0);
1185                                goto unknown;
1186                        };
1187
1188                        trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
1189                                      KVM_TRACE_HWR(rd, sel), arch->gprs[rt]);
1190
1191                        er = update_pc(vcpu, cause);
1192                        break;
1193                default:
1194                        goto unknown;
1195                };
1196                break;
1197unknown:
1198
1199        default:
1200                kvm_err("GPSI exception not supported (%p/%#x)\n",
1201                                opc, inst.word);
1202                kvm_arch_vcpu_dump_regs(vcpu);
1203                er = EMULATE_FAIL;
1204                break;
1205        }
1206
1207        return er;
1208}
1209
1210static enum emulation_result kvm_trap_vz_handle_gsfc(u32 cause, u32 *opc,
1211                                                     struct kvm_vcpu *vcpu)
1212{
1213        enum emulation_result er = EMULATE_DONE;
1214        struct kvm_vcpu_arch *arch = &vcpu->arch;
1215        union mips_instruction inst;
1216        int err;
1217
1218        /*
1219         *  Fetch the instruction.
1220         */
1221        if (cause & CAUSEF_BD)
1222                opc += 1;
1223        err = kvm_get_badinstr(opc, vcpu, &inst.word);
1224        if (err)
1225                return EMULATE_FAIL;
1226
1227        /* complete MTC0 on behalf of guest and advance EPC */
1228        if (inst.c0r_format.opcode == cop0_op &&
1229            inst.c0r_format.rs == mtc_op &&
1230            inst.c0r_format.z == 0) {
1231                int rt = inst.c0r_format.rt;
1232                int rd = inst.c0r_format.rd;
1233                int sel = inst.c0r_format.sel;
1234                unsigned int val = arch->gprs[rt];
1235                unsigned int old_val, change;
1236
1237                trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, KVM_TRACE_COP0(rd, sel),
1238                              val);
1239
1240                if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1241                        /* FR bit should read as zero if no FPU */
1242                        if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1243                                val &= ~(ST0_CU1 | ST0_FR);
1244
1245                        /*
1246                         * Also don't allow FR to be set if host doesn't support
1247                         * it.
1248                         */
1249                        if (!(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
1250                                val &= ~ST0_FR;
1251
1252                        old_val = read_gc0_status();
1253                        change = val ^ old_val;
1254
1255                        if (change & ST0_FR) {
1256                                /*
1257                                 * FPU and Vector register state is made
1258                                 * UNPREDICTABLE by a change of FR, so don't
1259                                 * even bother saving it.
1260                                 */
1261                                kvm_drop_fpu(vcpu);
1262                        }
1263
1264                        /*
1265                         * If MSA state is already live, it is undefined how it
1266                         * interacts with FR=0 FPU state, and we don't want to
1267                         * hit reserved instruction exceptions trying to save
1268                         * the MSA state later when CU=1 && FR=1, so play it
1269                         * safe and save it first.
1270                         */
1271                        if (change & ST0_CU1 && !(val & ST0_FR) &&
1272                            vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1273                                kvm_lose_fpu(vcpu);
1274
1275                        write_gc0_status(val);
1276                } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1277                        u32 old_cause = read_gc0_cause();
1278                        u32 change = old_cause ^ val;
1279
1280                        /* DC bit enabling/disabling timer? */
1281                        if (change & CAUSEF_DC) {
1282                                if (val & CAUSEF_DC) {
1283                                        kvm_vz_lose_htimer(vcpu);
1284                                        kvm_mips_count_disable_cause(vcpu);
1285                                } else {
1286                                        kvm_mips_count_enable_cause(vcpu);
1287                                }
1288                        }
1289
1290                        /* Only certain bits are RW to the guest */
1291                        change &= (CAUSEF_DC | CAUSEF_IV | CAUSEF_WP |
1292                                   CAUSEF_IP0 | CAUSEF_IP1);
1293
1294                        /* WP can only be cleared */
1295                        change &= ~CAUSEF_WP | old_cause;
1296
1297                        write_gc0_cause(old_cause ^ change);
1298                } else if ((rd == MIPS_CP0_STATUS) && (sel == 1)) { /* IntCtl */
1299                        write_gc0_intctl(val);
1300                } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1301                        old_val = read_gc0_config5();
1302                        change = val ^ old_val;
1303                        /* Handle changes in FPU/MSA modes */
1304                        preempt_disable();
1305
1306                        /*
1307                         * Propagate FRE changes immediately if the FPU
1308                         * context is already loaded.
1309                         */
1310                        if (change & MIPS_CONF5_FRE &&
1311                            vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1312                                change_c0_config5(MIPS_CONF5_FRE, val);
1313
1314                        preempt_enable();
1315
1316                        val = old_val ^
1317                                (change & kvm_vz_config5_guest_wrmask(vcpu));
1318                        write_gc0_config5(val);
1319                } else {
1320                        kvm_err("Handle GSFC, unsupported field change @ %p: %#x\n",
1321                            opc, inst.word);
1322                        er = EMULATE_FAIL;
1323                }
1324
1325                if (er != EMULATE_FAIL)
1326                        er = update_pc(vcpu, cause);
1327        } else {
1328                kvm_err("Handle GSFC, unrecognized instruction @ %p: %#x\n",
1329                        opc, inst.word);
1330                er = EMULATE_FAIL;
1331        }
1332
1333        return er;
1334}
1335
1336static enum emulation_result kvm_trap_vz_handle_ghfc(u32 cause, u32 *opc,
1337                                                     struct kvm_vcpu *vcpu)
1338{
1339        /*
1340         * Presumably this is due to MC (guest mode change), so lets trace some
1341         * relevant info.
1342         */
1343        trace_kvm_guest_mode_change(vcpu);
1344
1345        return EMULATE_DONE;
1346}
1347
1348static enum emulation_result kvm_trap_vz_handle_hc(u32 cause, u32 *opc,
1349                                                   struct kvm_vcpu *vcpu)
1350{
1351        enum emulation_result er;
1352        union mips_instruction inst;
1353        unsigned long curr_pc;
1354        int err;
1355
1356        if (cause & CAUSEF_BD)
1357                opc += 1;
1358        err = kvm_get_badinstr(opc, vcpu, &inst.word);
1359        if (err)
1360                return EMULATE_FAIL;
1361
1362        /*
1363         * Update PC and hold onto current PC in case there is
1364         * an error and we want to rollback the PC
1365         */
1366        curr_pc = vcpu->arch.pc;
1367        er = update_pc(vcpu, cause);
1368        if (er == EMULATE_FAIL)
1369                return er;
1370
1371        er = kvm_mips_emul_hypcall(vcpu, inst);
1372        if (er == EMULATE_FAIL)
1373                vcpu->arch.pc = curr_pc;
1374
1375        return er;
1376}
1377
1378static enum emulation_result kvm_trap_vz_no_handler_guest_exit(u32 gexccode,
1379                                                        u32 cause,
1380                                                        u32 *opc,
1381                                                        struct kvm_vcpu *vcpu)
1382{
1383        u32 inst;
1384
1385        /*
1386         *  Fetch the instruction.
1387         */
1388        if (cause & CAUSEF_BD)
1389                opc += 1;
1390        kvm_get_badinstr(opc, vcpu, &inst);
1391
1392        kvm_err("Guest Exception Code: %d not yet handled @ PC: %p, inst: 0x%08x  Status: %#x\n",
1393                gexccode, opc, inst, read_gc0_status());
1394
1395        return EMULATE_FAIL;
1396}
1397
1398static int kvm_trap_vz_handle_guest_exit(struct kvm_vcpu *vcpu)
1399{
1400        u32 *opc = (u32 *) vcpu->arch.pc;
1401        u32 cause = vcpu->arch.host_cp0_cause;
1402        enum emulation_result er = EMULATE_DONE;
1403        u32 gexccode = (vcpu->arch.host_cp0_guestctl0 &
1404                        MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
1405        int ret = RESUME_GUEST;
1406
1407        trace_kvm_exit(vcpu, KVM_TRACE_EXIT_GEXCCODE_BASE + gexccode);
1408        switch (gexccode) {
1409        case MIPS_GCTL0_GEXC_GPSI:
1410                ++vcpu->stat.vz_gpsi_exits;
1411                er = kvm_trap_vz_handle_gpsi(cause, opc, vcpu);
1412                break;
1413        case MIPS_GCTL0_GEXC_GSFC:
1414                ++vcpu->stat.vz_gsfc_exits;
1415                er = kvm_trap_vz_handle_gsfc(cause, opc, vcpu);
1416                break;
1417        case MIPS_GCTL0_GEXC_HC:
1418                ++vcpu->stat.vz_hc_exits;
1419                er = kvm_trap_vz_handle_hc(cause, opc, vcpu);
1420                break;
1421        case MIPS_GCTL0_GEXC_GRR:
1422                ++vcpu->stat.vz_grr_exits;
1423                er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1424                                                       vcpu);
1425                break;
1426        case MIPS_GCTL0_GEXC_GVA:
1427                ++vcpu->stat.vz_gva_exits;
1428                er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1429                                                       vcpu);
1430                break;
1431        case MIPS_GCTL0_GEXC_GHFC:
1432                ++vcpu->stat.vz_ghfc_exits;
1433                er = kvm_trap_vz_handle_ghfc(cause, opc, vcpu);
1434                break;
1435        case MIPS_GCTL0_GEXC_GPA:
1436                ++vcpu->stat.vz_gpa_exits;
1437                er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1438                                                       vcpu);
1439                break;
1440        default:
1441                ++vcpu->stat.vz_resvd_exits;
1442                er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1443                                                       vcpu);
1444                break;
1445
1446        }
1447
1448        if (er == EMULATE_DONE) {
1449                ret = RESUME_GUEST;
1450        } else if (er == EMULATE_HYPERCALL) {
1451                ret = kvm_mips_handle_hypcall(vcpu);
1452        } else {
1453                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1454                ret = RESUME_HOST;
1455        }
1456        return ret;
1457}
1458
1459/**
1460 * kvm_trap_vz_handle_cop_unusuable() - Guest used unusable coprocessor.
1461 * @vcpu:       Virtual CPU context.
1462 *
1463 * Handle when the guest attempts to use a coprocessor which hasn't been allowed
1464 * by the root context.
1465 */
1466static int kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu *vcpu)
1467{
1468        struct kvm_run *run = vcpu->run;
1469        u32 cause = vcpu->arch.host_cp0_cause;
1470        enum emulation_result er = EMULATE_FAIL;
1471        int ret = RESUME_GUEST;
1472
1473        if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) {
1474                /*
1475                 * If guest FPU not present, the FPU operation should have been
1476                 * treated as a reserved instruction!
1477                 * If FPU already in use, we shouldn't get this at all.
1478                 */
1479                if (WARN_ON(!kvm_mips_guest_has_fpu(&vcpu->arch) ||
1480                            vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1481                        preempt_enable();
1482                        return EMULATE_FAIL;
1483                }
1484
1485                kvm_own_fpu(vcpu);
1486                er = EMULATE_DONE;
1487        }
1488        /* other coprocessors not handled */
1489
1490        switch (er) {
1491        case EMULATE_DONE:
1492                ret = RESUME_GUEST;
1493                break;
1494
1495        case EMULATE_FAIL:
1496                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1497                ret = RESUME_HOST;
1498                break;
1499
1500        default:
1501                BUG();
1502        }
1503        return ret;
1504}
1505
1506/**
1507 * kvm_trap_vz_handle_msa_disabled() - Guest used MSA while disabled in root.
1508 * @vcpu:       Virtual CPU context.
1509 *
1510 * Handle when the guest attempts to use MSA when it is disabled in the root
1511 * context.
1512 */
1513static int kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu *vcpu)
1514{
1515        struct kvm_run *run = vcpu->run;
1516
1517        /*
1518         * If MSA not present or not exposed to guest or FR=0, the MSA operation
1519         * should have been treated as a reserved instruction!
1520         * Same if CU1=1, FR=0.
1521         * If MSA already in use, we shouldn't get this at all.
1522         */
1523        if (!kvm_mips_guest_has_msa(&vcpu->arch) ||
1524            (read_gc0_status() & (ST0_CU1 | ST0_FR)) == ST0_CU1 ||
1525            !(read_gc0_config5() & MIPS_CONF5_MSAEN) ||
1526            vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1527                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1528                return RESUME_HOST;
1529        }
1530
1531        kvm_own_msa(vcpu);
1532
1533        return RESUME_GUEST;
1534}
1535
1536static int kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu *vcpu)
1537{
1538        struct kvm_run *run = vcpu->run;
1539        u32 *opc = (u32 *) vcpu->arch.pc;
1540        u32 cause = vcpu->arch.host_cp0_cause;
1541        ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
1542        union mips_instruction inst;
1543        enum emulation_result er = EMULATE_DONE;
1544        int err, ret = RESUME_GUEST;
1545
1546        if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, false)) {
1547                /* A code fetch fault doesn't count as an MMIO */
1548                if (kvm_is_ifetch_fault(&vcpu->arch)) {
1549                        run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1550                        return RESUME_HOST;
1551                }
1552
1553                /* Fetch the instruction */
1554                if (cause & CAUSEF_BD)
1555                        opc += 1;
1556                err = kvm_get_badinstr(opc, vcpu, &inst.word);
1557                if (err) {
1558                        run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1559                        return RESUME_HOST;
1560                }
1561
1562                /* Treat as MMIO */
1563                er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1564                if (er == EMULATE_FAIL) {
1565                        kvm_err("Guest Emulate Load from MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1566                                opc, badvaddr);
1567                        run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1568                }
1569        }
1570
1571        if (er == EMULATE_DONE) {
1572                ret = RESUME_GUEST;
1573        } else if (er == EMULATE_DO_MMIO) {
1574                run->exit_reason = KVM_EXIT_MMIO;
1575                ret = RESUME_HOST;
1576        } else {
1577                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1578                ret = RESUME_HOST;
1579        }
1580        return ret;
1581}
1582
1583static int kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu *vcpu)
1584{
1585        struct kvm_run *run = vcpu->run;
1586        u32 *opc = (u32 *) vcpu->arch.pc;
1587        u32 cause = vcpu->arch.host_cp0_cause;
1588        ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
1589        union mips_instruction inst;
1590        enum emulation_result er = EMULATE_DONE;
1591        int err;
1592        int ret = RESUME_GUEST;
1593
1594        /* Just try the access again if we couldn't do the translation */
1595        if (kvm_vz_badvaddr_to_gpa(vcpu, badvaddr, &badvaddr))
1596                return RESUME_GUEST;
1597        vcpu->arch.host_cp0_badvaddr = badvaddr;
1598
1599        if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, true)) {
1600                /* Fetch the instruction */
1601                if (cause & CAUSEF_BD)
1602                        opc += 1;
1603                err = kvm_get_badinstr(opc, vcpu, &inst.word);
1604                if (err) {
1605                        run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1606                        return RESUME_HOST;
1607                }
1608
1609                /* Treat as MMIO */
1610                er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1611                if (er == EMULATE_FAIL) {
1612                        kvm_err("Guest Emulate Store to MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1613                                opc, badvaddr);
1614                        run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1615                }
1616        }
1617
1618        if (er == EMULATE_DONE) {
1619                ret = RESUME_GUEST;
1620        } else if (er == EMULATE_DO_MMIO) {
1621                run->exit_reason = KVM_EXIT_MMIO;
1622                ret = RESUME_HOST;
1623        } else {
1624                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1625                ret = RESUME_HOST;
1626        }
1627        return ret;
1628}
1629
1630static u64 kvm_vz_get_one_regs[] = {
1631        KVM_REG_MIPS_CP0_INDEX,
1632        KVM_REG_MIPS_CP0_ENTRYLO0,
1633        KVM_REG_MIPS_CP0_ENTRYLO1,
1634        KVM_REG_MIPS_CP0_CONTEXT,
1635        KVM_REG_MIPS_CP0_PAGEMASK,
1636        KVM_REG_MIPS_CP0_PAGEGRAIN,
1637        KVM_REG_MIPS_CP0_WIRED,
1638        KVM_REG_MIPS_CP0_HWRENA,
1639        KVM_REG_MIPS_CP0_BADVADDR,
1640        KVM_REG_MIPS_CP0_COUNT,
1641        KVM_REG_MIPS_CP0_ENTRYHI,
1642        KVM_REG_MIPS_CP0_COMPARE,
1643        KVM_REG_MIPS_CP0_STATUS,
1644        KVM_REG_MIPS_CP0_INTCTL,
1645        KVM_REG_MIPS_CP0_CAUSE,
1646        KVM_REG_MIPS_CP0_EPC,
1647        KVM_REG_MIPS_CP0_PRID,
1648        KVM_REG_MIPS_CP0_EBASE,
1649        KVM_REG_MIPS_CP0_CONFIG,
1650        KVM_REG_MIPS_CP0_CONFIG1,
1651        KVM_REG_MIPS_CP0_CONFIG2,
1652        KVM_REG_MIPS_CP0_CONFIG3,
1653        KVM_REG_MIPS_CP0_CONFIG4,
1654        KVM_REG_MIPS_CP0_CONFIG5,
1655#ifdef CONFIG_64BIT
1656        KVM_REG_MIPS_CP0_XCONTEXT,
1657#endif
1658        KVM_REG_MIPS_CP0_ERROREPC,
1659
1660        KVM_REG_MIPS_COUNT_CTL,
1661        KVM_REG_MIPS_COUNT_RESUME,
1662        KVM_REG_MIPS_COUNT_HZ,
1663};
1664
1665static u64 kvm_vz_get_one_regs_contextconfig[] = {
1666        KVM_REG_MIPS_CP0_CONTEXTCONFIG,
1667#ifdef CONFIG_64BIT
1668        KVM_REG_MIPS_CP0_XCONTEXTCONFIG,
1669#endif
1670};
1671
1672static u64 kvm_vz_get_one_regs_segments[] = {
1673        KVM_REG_MIPS_CP0_SEGCTL0,
1674        KVM_REG_MIPS_CP0_SEGCTL1,
1675        KVM_REG_MIPS_CP0_SEGCTL2,
1676};
1677
1678static u64 kvm_vz_get_one_regs_htw[] = {
1679        KVM_REG_MIPS_CP0_PWBASE,
1680        KVM_REG_MIPS_CP0_PWFIELD,
1681        KVM_REG_MIPS_CP0_PWSIZE,
1682        KVM_REG_MIPS_CP0_PWCTL,
1683};
1684
1685static u64 kvm_vz_get_one_regs_kscratch[] = {
1686        KVM_REG_MIPS_CP0_KSCRATCH1,
1687        KVM_REG_MIPS_CP0_KSCRATCH2,
1688        KVM_REG_MIPS_CP0_KSCRATCH3,
1689        KVM_REG_MIPS_CP0_KSCRATCH4,
1690        KVM_REG_MIPS_CP0_KSCRATCH5,
1691        KVM_REG_MIPS_CP0_KSCRATCH6,
1692};
1693
1694static unsigned long kvm_vz_num_regs(struct kvm_vcpu *vcpu)
1695{
1696        unsigned long ret;
1697
1698        ret = ARRAY_SIZE(kvm_vz_get_one_regs);
1699        if (cpu_guest_has_userlocal)
1700                ++ret;
1701        if (cpu_guest_has_badinstr)
1702                ++ret;
1703        if (cpu_guest_has_badinstrp)
1704                ++ret;
1705        if (cpu_guest_has_contextconfig)
1706                ret += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
1707        if (cpu_guest_has_segments)
1708                ret += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
1709        if (cpu_guest_has_htw)
1710                ret += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
1711        if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar)
1712                ret += 1 + ARRAY_SIZE(vcpu->arch.maar);
1713        ret += __arch_hweight8(cpu_data[0].guest.kscratch_mask);
1714
1715        return ret;
1716}
1717
1718static int kvm_vz_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
1719{
1720        u64 index;
1721        unsigned int i;
1722
1723        if (copy_to_user(indices, kvm_vz_get_one_regs,
1724                         sizeof(kvm_vz_get_one_regs)))
1725                return -EFAULT;
1726        indices += ARRAY_SIZE(kvm_vz_get_one_regs);
1727
1728        if (cpu_guest_has_userlocal) {
1729                index = KVM_REG_MIPS_CP0_USERLOCAL;
1730                if (copy_to_user(indices, &index, sizeof(index)))
1731                        return -EFAULT;
1732                ++indices;
1733        }
1734        if (cpu_guest_has_badinstr) {
1735                index = KVM_REG_MIPS_CP0_BADINSTR;
1736                if (copy_to_user(indices, &index, sizeof(index)))
1737                        return -EFAULT;
1738                ++indices;
1739        }
1740        if (cpu_guest_has_badinstrp) {
1741                index = KVM_REG_MIPS_CP0_BADINSTRP;
1742                if (copy_to_user(indices, &index, sizeof(index)))
1743                        return -EFAULT;
1744                ++indices;
1745        }
1746        if (cpu_guest_has_contextconfig) {
1747                if (copy_to_user(indices, kvm_vz_get_one_regs_contextconfig,
1748                                 sizeof(kvm_vz_get_one_regs_contextconfig)))
1749                        return -EFAULT;
1750                indices += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
1751        }
1752        if (cpu_guest_has_segments) {
1753                if (copy_to_user(indices, kvm_vz_get_one_regs_segments,
1754                                 sizeof(kvm_vz_get_one_regs_segments)))
1755                        return -EFAULT;
1756                indices += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
1757        }
1758        if (cpu_guest_has_htw) {
1759                if (copy_to_user(indices, kvm_vz_get_one_regs_htw,
1760                                 sizeof(kvm_vz_get_one_regs_htw)))
1761                        return -EFAULT;
1762                indices += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
1763        }
1764        if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar) {
1765                for (i = 0; i < ARRAY_SIZE(vcpu->arch.maar); ++i) {
1766                        index = KVM_REG_MIPS_CP0_MAAR(i);
1767                        if (copy_to_user(indices, &index, sizeof(index)))
1768                                return -EFAULT;
1769                        ++indices;
1770                }
1771
1772                index = KVM_REG_MIPS_CP0_MAARI;
1773                if (copy_to_user(indices, &index, sizeof(index)))
1774                        return -EFAULT;
1775                ++indices;
1776        }
1777        for (i = 0; i < 6; ++i) {
1778                if (!cpu_guest_has_kscr(i + 2))
1779                        continue;
1780
1781                if (copy_to_user(indices, &kvm_vz_get_one_regs_kscratch[i],
1782                                 sizeof(kvm_vz_get_one_regs_kscratch[i])))
1783                        return -EFAULT;
1784                ++indices;
1785        }
1786
1787        return 0;
1788}
1789
1790static inline s64 entrylo_kvm_to_user(unsigned long v)
1791{
1792        s64 mask, ret = v;
1793
1794        if (BITS_PER_LONG == 32) {
1795                /*
1796                 * KVM API exposes 64-bit version of the register, so move the
1797                 * RI/XI bits up into place.
1798                 */
1799                mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
1800                ret &= ~mask;
1801                ret |= ((s64)v & mask) << 32;
1802        }
1803        return ret;
1804}
1805
1806static inline unsigned long entrylo_user_to_kvm(s64 v)
1807{
1808        unsigned long mask, ret = v;
1809
1810        if (BITS_PER_LONG == 32) {
1811                /*
1812                 * KVM API exposes 64-bit versiono of the register, so move the
1813                 * RI/XI bits down into place.
1814                 */
1815                mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
1816                ret &= ~mask;
1817                ret |= (v >> 32) & mask;
1818        }
1819        return ret;
1820}
1821
1822static int kvm_vz_get_one_reg(struct kvm_vcpu *vcpu,
1823                              const struct kvm_one_reg *reg,
1824                              s64 *v)
1825{
1826        struct mips_coproc *cop0 = vcpu->arch.cop0;
1827        unsigned int idx;
1828
1829        switch (reg->id) {
1830        case KVM_REG_MIPS_CP0_INDEX:
1831                *v = (long)read_gc0_index();
1832                break;
1833        case KVM_REG_MIPS_CP0_ENTRYLO0:
1834                *v = entrylo_kvm_to_user(read_gc0_entrylo0());
1835                break;
1836        case KVM_REG_MIPS_CP0_ENTRYLO1:
1837                *v = entrylo_kvm_to_user(read_gc0_entrylo1());
1838                break;
1839        case KVM_REG_MIPS_CP0_CONTEXT:
1840                *v = (long)read_gc0_context();
1841                break;
1842        case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
1843                if (!cpu_guest_has_contextconfig)
1844                        return -EINVAL;
1845                *v = read_gc0_contextconfig();
1846                break;
1847        case KVM_REG_MIPS_CP0_USERLOCAL:
1848                if (!cpu_guest_has_userlocal)
1849                        return -EINVAL;
1850                *v = read_gc0_userlocal();
1851                break;
1852#ifdef CONFIG_64BIT
1853        case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
1854                if (!cpu_guest_has_contextconfig)
1855                        return -EINVAL;
1856                *v = read_gc0_xcontextconfig();
1857                break;
1858#endif
1859        case KVM_REG_MIPS_CP0_PAGEMASK:
1860                *v = (long)read_gc0_pagemask();
1861                break;
1862        case KVM_REG_MIPS_CP0_PAGEGRAIN:
1863                *v = (long)read_gc0_pagegrain();
1864                break;
1865        case KVM_REG_MIPS_CP0_SEGCTL0:
1866                if (!cpu_guest_has_segments)
1867                        return -EINVAL;
1868                *v = read_gc0_segctl0();
1869                break;
1870        case KVM_REG_MIPS_CP0_SEGCTL1:
1871                if (!cpu_guest_has_segments)
1872                        return -EINVAL;
1873                *v = read_gc0_segctl1();
1874                break;
1875        case KVM_REG_MIPS_CP0_SEGCTL2:
1876                if (!cpu_guest_has_segments)
1877                        return -EINVAL;
1878                *v = read_gc0_segctl2();
1879                break;
1880        case KVM_REG_MIPS_CP0_PWBASE:
1881                if (!cpu_guest_has_htw)
1882                        return -EINVAL;
1883                *v = read_gc0_pwbase();
1884                break;
1885        case KVM_REG_MIPS_CP0_PWFIELD:
1886                if (!cpu_guest_has_htw)
1887                        return -EINVAL;
1888                *v = read_gc0_pwfield();
1889                break;
1890        case KVM_REG_MIPS_CP0_PWSIZE:
1891                if (!cpu_guest_has_htw)
1892                        return -EINVAL;
1893                *v = read_gc0_pwsize();
1894                break;
1895        case KVM_REG_MIPS_CP0_WIRED:
1896                *v = (long)read_gc0_wired();
1897                break;
1898        case KVM_REG_MIPS_CP0_PWCTL:
1899                if (!cpu_guest_has_htw)
1900                        return -EINVAL;
1901                *v = read_gc0_pwctl();
1902                break;
1903        case KVM_REG_MIPS_CP0_HWRENA:
1904                *v = (long)read_gc0_hwrena();
1905                break;
1906        case KVM_REG_MIPS_CP0_BADVADDR:
1907                *v = (long)read_gc0_badvaddr();
1908                break;
1909        case KVM_REG_MIPS_CP0_BADINSTR:
1910                if (!cpu_guest_has_badinstr)
1911                        return -EINVAL;
1912                *v = read_gc0_badinstr();
1913                break;
1914        case KVM_REG_MIPS_CP0_BADINSTRP:
1915                if (!cpu_guest_has_badinstrp)
1916                        return -EINVAL;
1917                *v = read_gc0_badinstrp();
1918                break;
1919        case KVM_REG_MIPS_CP0_COUNT:
1920                *v = kvm_mips_read_count(vcpu);
1921                break;
1922        case KVM_REG_MIPS_CP0_ENTRYHI:
1923                *v = (long)read_gc0_entryhi();
1924                break;
1925        case KVM_REG_MIPS_CP0_COMPARE:
1926                *v = (long)read_gc0_compare();
1927                break;
1928        case KVM_REG_MIPS_CP0_STATUS:
1929                *v = (long)read_gc0_status();
1930                break;
1931        case KVM_REG_MIPS_CP0_INTCTL:
1932                *v = read_gc0_intctl();
1933                break;
1934        case KVM_REG_MIPS_CP0_CAUSE:
1935                *v = (long)read_gc0_cause();
1936                break;
1937        case KVM_REG_MIPS_CP0_EPC:
1938                *v = (long)read_gc0_epc();
1939                break;
1940        case KVM_REG_MIPS_CP0_PRID:
1941                switch (boot_cpu_type()) {
1942                case CPU_CAVIUM_OCTEON3:
1943                        /* Octeon III has a read-only guest.PRid */
1944                        *v = read_gc0_prid();
1945                        break;
1946                default:
1947                        *v = (long)kvm_read_c0_guest_prid(cop0);
1948                        break;
1949                };
1950                break;
1951        case KVM_REG_MIPS_CP0_EBASE:
1952                *v = kvm_vz_read_gc0_ebase();
1953                break;
1954        case KVM_REG_MIPS_CP0_CONFIG:
1955                *v = read_gc0_config();
1956                break;
1957        case KVM_REG_MIPS_CP0_CONFIG1:
1958                if (!cpu_guest_has_conf1)
1959                        return -EINVAL;
1960                *v = read_gc0_config1();
1961                break;
1962        case KVM_REG_MIPS_CP0_CONFIG2:
1963                if (!cpu_guest_has_conf2)
1964                        return -EINVAL;
1965                *v = read_gc0_config2();
1966                break;
1967        case KVM_REG_MIPS_CP0_CONFIG3:
1968                if (!cpu_guest_has_conf3)
1969                        return -EINVAL;
1970                *v = read_gc0_config3();
1971                break;
1972        case KVM_REG_MIPS_CP0_CONFIG4:
1973                if (!cpu_guest_has_conf4)
1974                        return -EINVAL;
1975                *v = read_gc0_config4();
1976                break;
1977        case KVM_REG_MIPS_CP0_CONFIG5:
1978                if (!cpu_guest_has_conf5)
1979                        return -EINVAL;
1980                *v = read_gc0_config5();
1981                break;
1982        case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
1983                if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
1984                        return -EINVAL;
1985                idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
1986                if (idx >= ARRAY_SIZE(vcpu->arch.maar))
1987                        return -EINVAL;
1988                *v = vcpu->arch.maar[idx];
1989                break;
1990        case KVM_REG_MIPS_CP0_MAARI:
1991                if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
1992                        return -EINVAL;
1993                *v = kvm_read_sw_gc0_maari(vcpu->arch.cop0);
1994                break;
1995#ifdef CONFIG_64BIT
1996        case KVM_REG_MIPS_CP0_XCONTEXT:
1997                *v = read_gc0_xcontext();
1998                break;
1999#endif
2000        case KVM_REG_MIPS_CP0_ERROREPC:
2001                *v = (long)read_gc0_errorepc();
2002                break;
2003        case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
2004                idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
2005                if (!cpu_guest_has_kscr(idx))
2006                        return -EINVAL;
2007                switch (idx) {
2008                case 2:
2009                        *v = (long)read_gc0_kscratch1();
2010                        break;
2011                case 3:
2012                        *v = (long)read_gc0_kscratch2();
2013                        break;
2014                case 4:
2015                        *v = (long)read_gc0_kscratch3();
2016                        break;
2017                case 5:
2018                        *v = (long)read_gc0_kscratch4();
2019                        break;
2020                case 6:
2021                        *v = (long)read_gc0_kscratch5();
2022                        break;
2023                case 7:
2024                        *v = (long)read_gc0_kscratch6();
2025                        break;
2026                }
2027                break;
2028        case KVM_REG_MIPS_COUNT_CTL:
2029                *v = vcpu->arch.count_ctl;
2030                break;
2031        case KVM_REG_MIPS_COUNT_RESUME:
2032                *v = ktime_to_ns(vcpu->arch.count_resume);
2033                break;
2034        case KVM_REG_MIPS_COUNT_HZ:
2035                *v = vcpu->arch.count_hz;
2036                break;
2037        default:
2038                return -EINVAL;
2039        }
2040        return 0;
2041}
2042
2043static int kvm_vz_set_one_reg(struct kvm_vcpu *vcpu,
2044                              const struct kvm_one_reg *reg,
2045                              s64 v)
2046{
2047        struct mips_coproc *cop0 = vcpu->arch.cop0;
2048        unsigned int idx;
2049        int ret = 0;
2050        unsigned int cur, change;
2051
2052        switch (reg->id) {
2053        case KVM_REG_MIPS_CP0_INDEX:
2054                write_gc0_index(v);
2055                break;
2056        case KVM_REG_MIPS_CP0_ENTRYLO0:
2057                write_gc0_entrylo0(entrylo_user_to_kvm(v));
2058                break;
2059        case KVM_REG_MIPS_CP0_ENTRYLO1:
2060                write_gc0_entrylo1(entrylo_user_to_kvm(v));
2061                break;
2062        case KVM_REG_MIPS_CP0_CONTEXT:
2063                write_gc0_context(v);
2064                break;
2065        case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
2066                if (!cpu_guest_has_contextconfig)
2067                        return -EINVAL;
2068                write_gc0_contextconfig(v);
2069                break;
2070        case KVM_REG_MIPS_CP0_USERLOCAL:
2071                if (!cpu_guest_has_userlocal)
2072                        return -EINVAL;
2073                write_gc0_userlocal(v);
2074                break;
2075#ifdef CONFIG_64BIT
2076        case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
2077                if (!cpu_guest_has_contextconfig)
2078                        return -EINVAL;
2079                write_gc0_xcontextconfig(v);
2080                break;
2081#endif
2082        case KVM_REG_MIPS_CP0_PAGEMASK:
2083                write_gc0_pagemask(v);
2084                break;
2085        case KVM_REG_MIPS_CP0_PAGEGRAIN:
2086                write_gc0_pagegrain(v);
2087                break;
2088        case KVM_REG_MIPS_CP0_SEGCTL0:
2089                if (!cpu_guest_has_segments)
2090                        return -EINVAL;
2091                write_gc0_segctl0(v);
2092                break;
2093        case KVM_REG_MIPS_CP0_SEGCTL1:
2094                if (!cpu_guest_has_segments)
2095                        return -EINVAL;
2096                write_gc0_segctl1(v);
2097                break;
2098        case KVM_REG_MIPS_CP0_SEGCTL2:
2099                if (!cpu_guest_has_segments)
2100                        return -EINVAL;
2101                write_gc0_segctl2(v);
2102                break;
2103        case KVM_REG_MIPS_CP0_PWBASE:
2104                if (!cpu_guest_has_htw)
2105                        return -EINVAL;
2106                write_gc0_pwbase(v);
2107                break;
2108        case KVM_REG_MIPS_CP0_PWFIELD:
2109                if (!cpu_guest_has_htw)
2110                        return -EINVAL;
2111                write_gc0_pwfield(v);
2112                break;
2113        case KVM_REG_MIPS_CP0_PWSIZE:
2114                if (!cpu_guest_has_htw)
2115                        return -EINVAL;
2116                write_gc0_pwsize(v);
2117                break;
2118        case KVM_REG_MIPS_CP0_WIRED:
2119                change_gc0_wired(MIPSR6_WIRED_WIRED, v);
2120                break;
2121        case KVM_REG_MIPS_CP0_PWCTL:
2122                if (!cpu_guest_has_htw)
2123                        return -EINVAL;
2124                write_gc0_pwctl(v);
2125                break;
2126        case KVM_REG_MIPS_CP0_HWRENA:
2127                write_gc0_hwrena(v);
2128                break;
2129        case KVM_REG_MIPS_CP0_BADVADDR:
2130                write_gc0_badvaddr(v);
2131                break;
2132        case KVM_REG_MIPS_CP0_BADINSTR:
2133                if (!cpu_guest_has_badinstr)
2134                        return -EINVAL;
2135                write_gc0_badinstr(v);
2136                break;
2137        case KVM_REG_MIPS_CP0_BADINSTRP:
2138                if (!cpu_guest_has_badinstrp)
2139                        return -EINVAL;
2140                write_gc0_badinstrp(v);
2141                break;
2142        case KVM_REG_MIPS_CP0_COUNT:
2143                kvm_mips_write_count(vcpu, v);
2144                break;
2145        case KVM_REG_MIPS_CP0_ENTRYHI:
2146                write_gc0_entryhi(v);
2147                break;
2148        case KVM_REG_MIPS_CP0_COMPARE:
2149                kvm_mips_write_compare(vcpu, v, false);
2150                break;
2151        case KVM_REG_MIPS_CP0_STATUS:
2152                write_gc0_status(v);
2153                break;
2154        case KVM_REG_MIPS_CP0_INTCTL:
2155                write_gc0_intctl(v);
2156                break;
2157        case KVM_REG_MIPS_CP0_CAUSE:
2158                /*
2159                 * If the timer is stopped or started (DC bit) it must look
2160                 * atomic with changes to the timer interrupt pending bit (TI).
2161                 * A timer interrupt should not happen in between.
2162                 */
2163                if ((read_gc0_cause() ^ v) & CAUSEF_DC) {
2164                        if (v & CAUSEF_DC) {
2165                                /* disable timer first */
2166                                kvm_mips_count_disable_cause(vcpu);
2167                                change_gc0_cause((u32)~CAUSEF_DC, v);
2168                        } else {
2169                                /* enable timer last */
2170                                change_gc0_cause((u32)~CAUSEF_DC, v);
2171                                kvm_mips_count_enable_cause(vcpu);
2172                        }
2173                } else {
2174                        write_gc0_cause(v);
2175                }
2176                break;
2177        case KVM_REG_MIPS_CP0_EPC:
2178                write_gc0_epc(v);
2179                break;
2180        case KVM_REG_MIPS_CP0_PRID:
2181                switch (boot_cpu_type()) {
2182                case CPU_CAVIUM_OCTEON3:
2183                        /* Octeon III has a guest.PRid, but its read-only */
2184                        break;
2185                default:
2186                        kvm_write_c0_guest_prid(cop0, v);
2187                        break;
2188                };
2189                break;
2190        case KVM_REG_MIPS_CP0_EBASE:
2191                kvm_vz_write_gc0_ebase(v);
2192                break;
2193        case KVM_REG_MIPS_CP0_CONFIG:
2194                cur = read_gc0_config();
2195                change = (cur ^ v) & kvm_vz_config_user_wrmask(vcpu);
2196                if (change) {
2197                        v = cur ^ change;
2198                        write_gc0_config(v);
2199                }
2200                break;
2201        case KVM_REG_MIPS_CP0_CONFIG1:
2202                if (!cpu_guest_has_conf1)
2203                        break;
2204                cur = read_gc0_config1();
2205                change = (cur ^ v) & kvm_vz_config1_user_wrmask(vcpu);
2206                if (change) {
2207                        v = cur ^ change;
2208                        write_gc0_config1(v);
2209                }
2210                break;
2211        case KVM_REG_MIPS_CP0_CONFIG2:
2212                if (!cpu_guest_has_conf2)
2213                        break;
2214                cur = read_gc0_config2();
2215                change = (cur ^ v) & kvm_vz_config2_user_wrmask(vcpu);
2216                if (change) {
2217                        v = cur ^ change;
2218                        write_gc0_config2(v);
2219                }
2220                break;
2221        case KVM_REG_MIPS_CP0_CONFIG3:
2222                if (!cpu_guest_has_conf3)
2223                        break;
2224                cur = read_gc0_config3();
2225                change = (cur ^ v) & kvm_vz_config3_user_wrmask(vcpu);
2226                if (change) {
2227                        v = cur ^ change;
2228                        write_gc0_config3(v);
2229                }
2230                break;
2231        case KVM_REG_MIPS_CP0_CONFIG4:
2232                if (!cpu_guest_has_conf4)
2233                        break;
2234                cur = read_gc0_config4();
2235                change = (cur ^ v) & kvm_vz_config4_user_wrmask(vcpu);
2236                if (change) {
2237                        v = cur ^ change;
2238                        write_gc0_config4(v);
2239                }
2240                break;
2241        case KVM_REG_MIPS_CP0_CONFIG5:
2242                if (!cpu_guest_has_conf5)
2243                        break;
2244                cur = read_gc0_config5();
2245                change = (cur ^ v) & kvm_vz_config5_user_wrmask(vcpu);
2246                if (change) {
2247                        v = cur ^ change;
2248                        write_gc0_config5(v);
2249                }
2250                break;
2251        case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
2252                if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2253                        return -EINVAL;
2254                idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
2255                if (idx >= ARRAY_SIZE(vcpu->arch.maar))
2256                        return -EINVAL;
2257                vcpu->arch.maar[idx] = mips_process_maar(dmtc_op, v);
2258                break;
2259        case KVM_REG_MIPS_CP0_MAARI:
2260                if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2261                        return -EINVAL;
2262                kvm_write_maari(vcpu, v);
2263                break;
2264#ifdef CONFIG_64BIT
2265        case KVM_REG_MIPS_CP0_XCONTEXT:
2266                write_gc0_xcontext(v);
2267                break;
2268#endif
2269        case KVM_REG_MIPS_CP0_ERROREPC:
2270                write_gc0_errorepc(v);
2271                break;
2272        case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
2273                idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
2274                if (!cpu_guest_has_kscr(idx))
2275                        return -EINVAL;
2276                switch (idx) {
2277                case 2:
2278                        write_gc0_kscratch1(v);
2279                        break;
2280                case 3:
2281                        write_gc0_kscratch2(v);
2282                        break;
2283                case 4:
2284                        write_gc0_kscratch3(v);
2285                        break;
2286                case 5:
2287                        write_gc0_kscratch4(v);
2288                        break;
2289                case 6:
2290                        write_gc0_kscratch5(v);
2291                        break;
2292                case 7:
2293                        write_gc0_kscratch6(v);
2294                        break;
2295                }
2296                break;
2297        case KVM_REG_MIPS_COUNT_CTL:
2298                ret = kvm_mips_set_count_ctl(vcpu, v);
2299                break;
2300        case KVM_REG_MIPS_COUNT_RESUME:
2301                ret = kvm_mips_set_count_resume(vcpu, v);
2302                break;
2303        case KVM_REG_MIPS_COUNT_HZ:
2304                ret = kvm_mips_set_count_hz(vcpu, v);
2305                break;
2306        default:
2307                return -EINVAL;
2308        }
2309        return ret;
2310}
2311
2312#define guestid_cache(cpu)      (cpu_data[cpu].guestid_cache)
2313static void kvm_vz_get_new_guestid(unsigned long cpu, struct kvm_vcpu *vcpu)
2314{
2315        unsigned long guestid = guestid_cache(cpu);
2316
2317        if (!(++guestid & GUESTID_MASK)) {
2318                if (cpu_has_vtag_icache)
2319                        flush_icache_all();
2320
2321                if (!guestid)           /* fix version if needed */
2322                        guestid = GUESTID_FIRST_VERSION;
2323
2324                ++guestid;              /* guestid 0 reserved for root */
2325
2326                /* start new guestid cycle */
2327                kvm_vz_local_flush_roottlb_all_guests();
2328                kvm_vz_local_flush_guesttlb_all();
2329        }
2330
2331        guestid_cache(cpu) = guestid;
2332}
2333
2334/* Returns 1 if the guest TLB may be clobbered */
2335static int kvm_vz_check_requests(struct kvm_vcpu *vcpu, int cpu)
2336{
2337        int ret = 0;
2338        int i;
2339
2340        if (!kvm_request_pending(vcpu))
2341                return 0;
2342
2343        if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
2344                if (cpu_has_guestid) {
2345                        /* Drop all GuestIDs for this VCPU */
2346                        for_each_possible_cpu(i)
2347                                vcpu->arch.vzguestid[i] = 0;
2348                        /* This will clobber guest TLB contents too */
2349                        ret = 1;
2350                }
2351                /*
2352                 * For Root ASID Dealias (RAD) we don't do anything here, but we
2353                 * still need the request to ensure we recheck asid_flush_mask.
2354                 * We can still return 0 as only the root TLB will be affected
2355                 * by a root ASID flush.
2356                 */
2357        }
2358
2359        return ret;
2360}
2361
2362static void kvm_vz_vcpu_save_wired(struct kvm_vcpu *vcpu)
2363{
2364        unsigned int wired = read_gc0_wired();
2365        struct kvm_mips_tlb *tlbs;
2366        int i;
2367
2368        /* Expand the wired TLB array if necessary */
2369        wired &= MIPSR6_WIRED_WIRED;
2370        if (wired > vcpu->arch.wired_tlb_limit) {
2371                tlbs = krealloc(vcpu->arch.wired_tlb, wired *
2372                                sizeof(*vcpu->arch.wired_tlb), GFP_ATOMIC);
2373                if (WARN_ON(!tlbs)) {
2374                        /* Save whatever we can */
2375                        wired = vcpu->arch.wired_tlb_limit;
2376                } else {
2377                        vcpu->arch.wired_tlb = tlbs;
2378                        vcpu->arch.wired_tlb_limit = wired;
2379                }
2380        }
2381
2382        if (wired)
2383                /* Save wired entries from the guest TLB */
2384                kvm_vz_save_guesttlb(vcpu->arch.wired_tlb, 0, wired);
2385        /* Invalidate any dropped entries since last time */
2386        for (i = wired; i < vcpu->arch.wired_tlb_used; ++i) {
2387                vcpu->arch.wired_tlb[i].tlb_hi = UNIQUE_GUEST_ENTRYHI(i);
2388                vcpu->arch.wired_tlb[i].tlb_lo[0] = 0;
2389                vcpu->arch.wired_tlb[i].tlb_lo[1] = 0;
2390                vcpu->arch.wired_tlb[i].tlb_mask = 0;
2391        }
2392        vcpu->arch.wired_tlb_used = wired;
2393}
2394
2395static void kvm_vz_vcpu_load_wired(struct kvm_vcpu *vcpu)
2396{
2397        /* Load wired entries into the guest TLB */
2398        if (vcpu->arch.wired_tlb)
2399                kvm_vz_load_guesttlb(vcpu->arch.wired_tlb, 0,
2400                                     vcpu->arch.wired_tlb_used);
2401}
2402
2403static void kvm_vz_vcpu_load_tlb(struct kvm_vcpu *vcpu, int cpu)
2404{
2405        struct kvm *kvm = vcpu->kvm;
2406        struct mm_struct *gpa_mm = &kvm->arch.gpa_mm;
2407        bool migrated;
2408
2409        /*
2410         * Are we entering guest context on a different CPU to last time?
2411         * If so, the VCPU's guest TLB state on this CPU may be stale.
2412         */
2413        migrated = (vcpu->arch.last_exec_cpu != cpu);
2414        vcpu->arch.last_exec_cpu = cpu;
2415
2416        /*
2417         * A vcpu's GuestID is set in GuestCtl1.ID when the vcpu is loaded and
2418         * remains set until another vcpu is loaded in.  As a rule GuestRID
2419         * remains zeroed when in root context unless the kernel is busy
2420         * manipulating guest tlb entries.
2421         */
2422        if (cpu_has_guestid) {
2423                /*
2424                 * Check if our GuestID is of an older version and thus invalid.
2425                 *
2426                 * We also discard the stored GuestID if we've executed on
2427                 * another CPU, as the guest mappings may have changed without
2428                 * hypervisor knowledge.
2429                 */
2430                if (migrated ||
2431                    (vcpu->arch.vzguestid[cpu] ^ guestid_cache(cpu)) &
2432                                        GUESTID_VERSION_MASK) {
2433                        kvm_vz_get_new_guestid(cpu, vcpu);
2434                        vcpu->arch.vzguestid[cpu] = guestid_cache(cpu);
2435                        trace_kvm_guestid_change(vcpu,
2436                                                 vcpu->arch.vzguestid[cpu]);
2437                }
2438
2439                /* Restore GuestID */
2440                change_c0_guestctl1(GUESTID_MASK, vcpu->arch.vzguestid[cpu]);
2441        } else {
2442                /*
2443                 * The Guest TLB only stores a single guest's TLB state, so
2444                 * flush it if another VCPU has executed on this CPU.
2445                 *
2446                 * We also flush if we've executed on another CPU, as the guest
2447                 * mappings may have changed without hypervisor knowledge.
2448                 */
2449                if (migrated || last_exec_vcpu[cpu] != vcpu)
2450                        kvm_vz_local_flush_guesttlb_all();
2451                last_exec_vcpu[cpu] = vcpu;
2452
2453                /*
2454                 * Root ASID dealiases guest GPA mappings in the root TLB.
2455                 * Allocate new root ASID if needed.
2456                 */
2457                if (cpumask_test_and_clear_cpu(cpu, &kvm->arch.asid_flush_mask)
2458                    || (cpu_context(cpu, gpa_mm) ^ asid_cache(cpu)) &
2459                                                asid_version_mask(cpu))
2460                        get_new_mmu_context(gpa_mm, cpu);
2461        }
2462}
2463
2464static int kvm_vz_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2465{
2466        struct mips_coproc *cop0 = vcpu->arch.cop0;
2467        bool migrated, all;
2468
2469        /*
2470         * Have we migrated to a different CPU?
2471         * If so, any old guest TLB state may be stale.
2472         */
2473        migrated = (vcpu->arch.last_sched_cpu != cpu);
2474
2475        /*
2476         * Was this the last VCPU to run on this CPU?
2477         * If not, any old guest state from this VCPU will have been clobbered.
2478         */
2479        all = migrated || (last_vcpu[cpu] != vcpu);
2480        last_vcpu[cpu] = vcpu;
2481
2482        /*
2483         * Restore CP0_Wired unconditionally as we clear it after use, and
2484         * restore wired guest TLB entries (while in guest context).
2485         */
2486        kvm_restore_gc0_wired(cop0);
2487        if (current->flags & PF_VCPU) {
2488                tlbw_use_hazard();
2489                kvm_vz_vcpu_load_tlb(vcpu, cpu);
2490                kvm_vz_vcpu_load_wired(vcpu);
2491        }
2492
2493        /*
2494         * Restore timer state regardless, as e.g. Cause.TI can change over time
2495         * if left unmaintained.
2496         */
2497        kvm_vz_restore_timer(vcpu);
2498
2499        /* Set MC bit if we want to trace guest mode changes */
2500        if (kvm_trace_guest_mode_change)
2501                set_c0_guestctl0(MIPS_GCTL0_MC);
2502        else
2503                clear_c0_guestctl0(MIPS_GCTL0_MC);
2504
2505        /* Don't bother restoring registers multiple times unless necessary */
2506        if (!all)
2507                return 0;
2508
2509        /*
2510         * Restore config registers first, as some implementations restrict
2511         * writes to other registers when the corresponding feature bits aren't
2512         * set. For example Status.CU1 cannot be set unless Config1.FP is set.
2513         */
2514        kvm_restore_gc0_config(cop0);
2515        if (cpu_guest_has_conf1)
2516                kvm_restore_gc0_config1(cop0);
2517        if (cpu_guest_has_conf2)
2518                kvm_restore_gc0_config2(cop0);
2519        if (cpu_guest_has_conf3)
2520                kvm_restore_gc0_config3(cop0);
2521        if (cpu_guest_has_conf4)
2522                kvm_restore_gc0_config4(cop0);
2523        if (cpu_guest_has_conf5)
2524                kvm_restore_gc0_config5(cop0);
2525        if (cpu_guest_has_conf6)
2526                kvm_restore_gc0_config6(cop0);
2527        if (cpu_guest_has_conf7)
2528                kvm_restore_gc0_config7(cop0);
2529
2530        kvm_restore_gc0_index(cop0);
2531        kvm_restore_gc0_entrylo0(cop0);
2532        kvm_restore_gc0_entrylo1(cop0);
2533        kvm_restore_gc0_context(cop0);
2534        if (cpu_guest_has_contextconfig)
2535                kvm_restore_gc0_contextconfig(cop0);
2536#ifdef CONFIG_64BIT
2537        kvm_restore_gc0_xcontext(cop0);
2538        if (cpu_guest_has_contextconfig)
2539                kvm_restore_gc0_xcontextconfig(cop0);
2540#endif
2541        kvm_restore_gc0_pagemask(cop0);
2542        kvm_restore_gc0_pagegrain(cop0);
2543        kvm_restore_gc0_hwrena(cop0);
2544        kvm_restore_gc0_badvaddr(cop0);
2545        kvm_restore_gc0_entryhi(cop0);
2546        kvm_restore_gc0_status(cop0);
2547        kvm_restore_gc0_intctl(cop0);
2548        kvm_restore_gc0_epc(cop0);
2549        kvm_vz_write_gc0_ebase(kvm_read_sw_gc0_ebase(cop0));
2550        if (cpu_guest_has_userlocal)
2551                kvm_restore_gc0_userlocal(cop0);
2552
2553        kvm_restore_gc0_errorepc(cop0);
2554
2555        /* restore KScratch registers if enabled in guest */
2556        if (cpu_guest_has_conf4) {
2557                if (cpu_guest_has_kscr(2))
2558                        kvm_restore_gc0_kscratch1(cop0);
2559                if (cpu_guest_has_kscr(3))
2560                        kvm_restore_gc0_kscratch2(cop0);
2561                if (cpu_guest_has_kscr(4))
2562                        kvm_restore_gc0_kscratch3(cop0);
2563                if (cpu_guest_has_kscr(5))
2564                        kvm_restore_gc0_kscratch4(cop0);
2565                if (cpu_guest_has_kscr(6))
2566                        kvm_restore_gc0_kscratch5(cop0);
2567                if (cpu_guest_has_kscr(7))
2568                        kvm_restore_gc0_kscratch6(cop0);
2569        }
2570
2571        if (cpu_guest_has_badinstr)
2572                kvm_restore_gc0_badinstr(cop0);
2573        if (cpu_guest_has_badinstrp)
2574                kvm_restore_gc0_badinstrp(cop0);
2575
2576        if (cpu_guest_has_segments) {
2577                kvm_restore_gc0_segctl0(cop0);
2578                kvm_restore_gc0_segctl1(cop0);
2579                kvm_restore_gc0_segctl2(cop0);
2580        }
2581
2582        /* restore HTW registers */
2583        if (cpu_guest_has_htw) {
2584                kvm_restore_gc0_pwbase(cop0);
2585                kvm_restore_gc0_pwfield(cop0);
2586                kvm_restore_gc0_pwsize(cop0);
2587                kvm_restore_gc0_pwctl(cop0);
2588        }
2589
2590        /* restore Root.GuestCtl2 from unused Guest guestctl2 register */
2591        if (cpu_has_guestctl2)
2592                write_c0_guestctl2(
2593                        cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL]);
2594
2595        /*
2596         * We should clear linked load bit to break interrupted atomics. This
2597         * prevents a SC on the next VCPU from succeeding by matching a LL on
2598         * the previous VCPU.
2599         */
2600        if (cpu_guest_has_rw_llb)
2601                write_gc0_lladdr(0);
2602
2603        return 0;
2604}
2605
2606static int kvm_vz_vcpu_put(struct kvm_vcpu *vcpu, int cpu)
2607{
2608        struct mips_coproc *cop0 = vcpu->arch.cop0;
2609
2610        if (current->flags & PF_VCPU)
2611                kvm_vz_vcpu_save_wired(vcpu);
2612
2613        kvm_lose_fpu(vcpu);
2614
2615        kvm_save_gc0_index(cop0);
2616        kvm_save_gc0_entrylo0(cop0);
2617        kvm_save_gc0_entrylo1(cop0);
2618        kvm_save_gc0_context(cop0);
2619        if (cpu_guest_has_contextconfig)
2620                kvm_save_gc0_contextconfig(cop0);
2621#ifdef CONFIG_64BIT
2622        kvm_save_gc0_xcontext(cop0);
2623        if (cpu_guest_has_contextconfig)
2624                kvm_save_gc0_xcontextconfig(cop0);
2625#endif
2626        kvm_save_gc0_pagemask(cop0);
2627        kvm_save_gc0_pagegrain(cop0);
2628        kvm_save_gc0_wired(cop0);
2629        /* allow wired TLB entries to be overwritten */
2630        clear_gc0_wired(MIPSR6_WIRED_WIRED);
2631        kvm_save_gc0_hwrena(cop0);
2632        kvm_save_gc0_badvaddr(cop0);
2633        kvm_save_gc0_entryhi(cop0);
2634        kvm_save_gc0_status(cop0);
2635        kvm_save_gc0_intctl(cop0);
2636        kvm_save_gc0_epc(cop0);
2637        kvm_write_sw_gc0_ebase(cop0, kvm_vz_read_gc0_ebase());
2638        if (cpu_guest_has_userlocal)
2639                kvm_save_gc0_userlocal(cop0);
2640
2641        /* only save implemented config registers */
2642        kvm_save_gc0_config(cop0);
2643        if (cpu_guest_has_conf1)
2644                kvm_save_gc0_config1(cop0);
2645        if (cpu_guest_has_conf2)
2646                kvm_save_gc0_config2(cop0);
2647        if (cpu_guest_has_conf3)
2648                kvm_save_gc0_config3(cop0);
2649        if (cpu_guest_has_conf4)
2650                kvm_save_gc0_config4(cop0);
2651        if (cpu_guest_has_conf5)
2652                kvm_save_gc0_config5(cop0);
2653        if (cpu_guest_has_conf6)
2654                kvm_save_gc0_config6(cop0);
2655        if (cpu_guest_has_conf7)
2656                kvm_save_gc0_config7(cop0);
2657
2658        kvm_save_gc0_errorepc(cop0);
2659
2660        /* save KScratch registers if enabled in guest */
2661        if (cpu_guest_has_conf4) {
2662                if (cpu_guest_has_kscr(2))
2663                        kvm_save_gc0_kscratch1(cop0);
2664                if (cpu_guest_has_kscr(3))
2665                        kvm_save_gc0_kscratch2(cop0);
2666                if (cpu_guest_has_kscr(4))
2667                        kvm_save_gc0_kscratch3(cop0);
2668                if (cpu_guest_has_kscr(5))
2669                        kvm_save_gc0_kscratch4(cop0);
2670                if (cpu_guest_has_kscr(6))
2671                        kvm_save_gc0_kscratch5(cop0);
2672                if (cpu_guest_has_kscr(7))
2673                        kvm_save_gc0_kscratch6(cop0);
2674        }
2675
2676        if (cpu_guest_has_badinstr)
2677                kvm_save_gc0_badinstr(cop0);
2678        if (cpu_guest_has_badinstrp)
2679                kvm_save_gc0_badinstrp(cop0);
2680
2681        if (cpu_guest_has_segments) {
2682                kvm_save_gc0_segctl0(cop0);
2683                kvm_save_gc0_segctl1(cop0);
2684                kvm_save_gc0_segctl2(cop0);
2685        }
2686
2687        /* save HTW registers if enabled in guest */
2688        if (cpu_guest_has_htw &&
2689            kvm_read_sw_gc0_config3(cop0) & MIPS_CONF3_PW) {
2690                kvm_save_gc0_pwbase(cop0);
2691                kvm_save_gc0_pwfield(cop0);
2692                kvm_save_gc0_pwsize(cop0);
2693                kvm_save_gc0_pwctl(cop0);
2694        }
2695
2696        kvm_vz_save_timer(vcpu);
2697
2698        /* save Root.GuestCtl2 in unused Guest guestctl2 register */
2699        if (cpu_has_guestctl2)
2700                cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] =
2701                        read_c0_guestctl2();
2702
2703        return 0;
2704}
2705
2706/**
2707 * kvm_vz_resize_guest_vtlb() - Attempt to resize guest VTLB.
2708 * @size:       Number of guest VTLB entries (0 < @size <= root VTLB entries).
2709 *
2710 * Attempt to resize the guest VTLB by writing guest Config registers. This is
2711 * necessary for cores with a shared root/guest TLB to avoid overlap with wired
2712 * entries in the root VTLB.
2713 *
2714 * Returns:     The resulting guest VTLB size.
2715 */
2716static unsigned int kvm_vz_resize_guest_vtlb(unsigned int size)
2717{
2718        unsigned int config4 = 0, ret = 0, limit;
2719
2720        /* Write MMUSize - 1 into guest Config registers */
2721        if (cpu_guest_has_conf1)
2722                change_gc0_config1(MIPS_CONF1_TLBS,
2723                                   (size - 1) << MIPS_CONF1_TLBS_SHIFT);
2724        if (cpu_guest_has_conf4) {
2725                config4 = read_gc0_config4();
2726                if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
2727                    MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) {
2728                        config4 &= ~MIPS_CONF4_VTLBSIZEEXT;
2729                        config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
2730                                MIPS_CONF4_VTLBSIZEEXT_SHIFT;
2731                } else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
2732                           MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) {
2733                        config4 &= ~MIPS_CONF4_MMUSIZEEXT;
2734                        config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
2735                                MIPS_CONF4_MMUSIZEEXT_SHIFT;
2736                }
2737                write_gc0_config4(config4);
2738        }
2739
2740        /*
2741         * Set Guest.Wired.Limit = 0 (no limit up to Guest.MMUSize-1), unless it
2742         * would exceed Root.Wired.Limit (clearing Guest.Wired.Wired so write
2743         * not dropped)
2744         */
2745        if (cpu_has_mips_r6) {
2746                limit = (read_c0_wired() & MIPSR6_WIRED_LIMIT) >>
2747                                                MIPSR6_WIRED_LIMIT_SHIFT;
2748                if (size - 1 <= limit)
2749                        limit = 0;
2750                write_gc0_wired(limit << MIPSR6_WIRED_LIMIT_SHIFT);
2751        }
2752
2753        /* Read back MMUSize - 1 */
2754        back_to_back_c0_hazard();
2755        if (cpu_guest_has_conf1)
2756                ret = (read_gc0_config1() & MIPS_CONF1_TLBS) >>
2757                                                MIPS_CONF1_TLBS_SHIFT;
2758        if (config4) {
2759                if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
2760                    MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT)
2761                        ret |= ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
2762                                MIPS_CONF4_VTLBSIZEEXT_SHIFT) <<
2763                                MIPS_CONF1_TLBS_SIZE;
2764                else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
2765                         MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT)
2766                        ret |= ((config4 & MIPS_CONF4_MMUSIZEEXT) >>
2767                                MIPS_CONF4_MMUSIZEEXT_SHIFT) <<
2768                                MIPS_CONF1_TLBS_SIZE;
2769        }
2770        return ret + 1;
2771}
2772
2773static int kvm_vz_hardware_enable(void)
2774{
2775        unsigned int mmu_size, guest_mmu_size, ftlb_size;
2776        u64 guest_cvmctl, cvmvmconfig;
2777
2778        switch (current_cpu_type()) {
2779        case CPU_CAVIUM_OCTEON3:
2780                /* Set up guest timer/perfcount IRQ lines */
2781                guest_cvmctl = read_gc0_cvmctl();
2782                guest_cvmctl &= ~CVMCTL_IPTI;
2783                guest_cvmctl |= 7ull << CVMCTL_IPTI_SHIFT;
2784                guest_cvmctl &= ~CVMCTL_IPPCI;
2785                guest_cvmctl |= 6ull << CVMCTL_IPPCI_SHIFT;
2786                write_gc0_cvmctl(guest_cvmctl);
2787
2788                cvmvmconfig = read_c0_cvmvmconfig();
2789                /* No I/O hole translation. */
2790                cvmvmconfig |= CVMVMCONF_DGHT;
2791                /* Halve the root MMU size */
2792                mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
2793                            >> CVMVMCONF_MMUSIZEM1_S) + 1;
2794                guest_mmu_size = mmu_size / 2;
2795                mmu_size -= guest_mmu_size;
2796                cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
2797                cvmvmconfig |= mmu_size - 1;
2798                write_c0_cvmvmconfig(cvmvmconfig);
2799
2800                /* Update our records */
2801                current_cpu_data.tlbsize = mmu_size;
2802                current_cpu_data.tlbsizevtlb = mmu_size;
2803                current_cpu_data.guest.tlbsize = guest_mmu_size;
2804
2805                /* Flush moved entries in new (guest) context */
2806                kvm_vz_local_flush_guesttlb_all();
2807                break;
2808        default:
2809                /*
2810                 * ImgTec cores tend to use a shared root/guest TLB. To avoid
2811                 * overlap of root wired and guest entries, the guest TLB may
2812                 * need resizing.
2813                 */
2814                mmu_size = current_cpu_data.tlbsizevtlb;
2815                ftlb_size = current_cpu_data.tlbsize - mmu_size;
2816
2817                /* Try switching to maximum guest VTLB size for flush */
2818                guest_mmu_size = kvm_vz_resize_guest_vtlb(mmu_size);
2819                current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
2820                kvm_vz_local_flush_guesttlb_all();
2821
2822                /*
2823                 * Reduce to make space for root wired entries and at least 2
2824                 * root non-wired entries. This does assume that long-term wired
2825                 * entries won't be added later.
2826                 */
2827                guest_mmu_size = mmu_size - num_wired_entries() - 2;
2828                guest_mmu_size = kvm_vz_resize_guest_vtlb(guest_mmu_size);
2829                current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
2830
2831                /*
2832                 * Write the VTLB size, but if another CPU has already written,
2833                 * check it matches or we won't provide a consistent view to the
2834                 * guest. If this ever happens it suggests an asymmetric number
2835                 * of wired entries.
2836                 */
2837                if (cmpxchg(&kvm_vz_guest_vtlb_size, 0, guest_mmu_size) &&
2838                    WARN(guest_mmu_size != kvm_vz_guest_vtlb_size,
2839                         "Available guest VTLB size mismatch"))
2840                        return -EINVAL;
2841                break;
2842        }
2843
2844        /*
2845         * Enable virtualization features granting guest direct control of
2846         * certain features:
2847         * CP0=1:       Guest coprocessor 0 context.
2848         * AT=Guest:    Guest MMU.
2849         * CG=1:        Hit (virtual address) CACHE operations (optional).
2850         * CF=1:        Guest Config registers.
2851         * CGI=1:       Indexed flush CACHE operations (optional).
2852         */
2853        write_c0_guestctl0(MIPS_GCTL0_CP0 |
2854                           (MIPS_GCTL0_AT_GUEST << MIPS_GCTL0_AT_SHIFT) |
2855                           MIPS_GCTL0_CG | MIPS_GCTL0_CF);
2856        if (cpu_has_guestctl0ext)
2857                set_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
2858
2859        if (cpu_has_guestid) {
2860                write_c0_guestctl1(0);
2861                kvm_vz_local_flush_roottlb_all_guests();
2862
2863                GUESTID_MASK = current_cpu_data.guestid_mask;
2864                GUESTID_FIRST_VERSION = GUESTID_MASK + 1;
2865                GUESTID_VERSION_MASK = ~GUESTID_MASK;
2866
2867                current_cpu_data.guestid_cache = GUESTID_FIRST_VERSION;
2868        }
2869
2870        /* clear any pending injected virtual guest interrupts */
2871        if (cpu_has_guestctl2)
2872                clear_c0_guestctl2(0x3f << 10);
2873
2874        return 0;
2875}
2876
2877static void kvm_vz_hardware_disable(void)
2878{
2879        u64 cvmvmconfig;
2880        unsigned int mmu_size;
2881
2882        /* Flush any remaining guest TLB entries */
2883        kvm_vz_local_flush_guesttlb_all();
2884
2885        switch (current_cpu_type()) {
2886        case CPU_CAVIUM_OCTEON3:
2887                /*
2888                 * Allocate whole TLB for root. Existing guest TLB entries will
2889                 * change ownership to the root TLB. We should be safe though as
2890                 * they've already been flushed above while in guest TLB.
2891                 */
2892                cvmvmconfig = read_c0_cvmvmconfig();
2893                mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
2894                            >> CVMVMCONF_MMUSIZEM1_S) + 1;
2895                cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
2896                cvmvmconfig |= mmu_size - 1;
2897                write_c0_cvmvmconfig(cvmvmconfig);
2898
2899                /* Update our records */
2900                current_cpu_data.tlbsize = mmu_size;
2901                current_cpu_data.tlbsizevtlb = mmu_size;
2902                current_cpu_data.guest.tlbsize = 0;
2903
2904                /* Flush moved entries in new (root) context */
2905                local_flush_tlb_all();
2906                break;
2907        }
2908
2909        if (cpu_has_guestid) {
2910                write_c0_guestctl1(0);
2911                kvm_vz_local_flush_roottlb_all_guests();
2912        }
2913}
2914
2915static int kvm_vz_check_extension(struct kvm *kvm, long ext)
2916{
2917        int r;
2918
2919        switch (ext) {
2920        case KVM_CAP_MIPS_VZ:
2921                /* we wouldn't be here unless cpu_has_vz */
2922                r = 1;
2923                break;
2924#ifdef CONFIG_64BIT
2925        case KVM_CAP_MIPS_64BIT:
2926                /* We support 64-bit registers/operations and addresses */
2927                r = 2;
2928                break;
2929#endif
2930        default:
2931                r = 0;
2932                break;
2933        }
2934
2935        return r;
2936}
2937
2938static int kvm_vz_vcpu_init(struct kvm_vcpu *vcpu)
2939{
2940        int i;
2941
2942        for_each_possible_cpu(i)
2943                vcpu->arch.vzguestid[i] = 0;
2944
2945        return 0;
2946}
2947
2948static void kvm_vz_vcpu_uninit(struct kvm_vcpu *vcpu)
2949{
2950        int cpu;
2951
2952        /*
2953         * If the VCPU is freed and reused as another VCPU, we don't want the
2954         * matching pointer wrongly hanging around in last_vcpu[] or
2955         * last_exec_vcpu[].
2956         */
2957        for_each_possible_cpu(cpu) {
2958                if (last_vcpu[cpu] == vcpu)
2959                        last_vcpu[cpu] = NULL;
2960                if (last_exec_vcpu[cpu] == vcpu)
2961                        last_exec_vcpu[cpu] = NULL;
2962        }
2963}
2964
2965static int kvm_vz_vcpu_setup(struct kvm_vcpu *vcpu)
2966{
2967        struct mips_coproc *cop0 = vcpu->arch.cop0;
2968        unsigned long count_hz = 100*1000*1000; /* default to 100 MHz */
2969
2970        /*
2971         * Start off the timer at the same frequency as the host timer, but the
2972         * soft timer doesn't handle frequencies greater than 1GHz yet.
2973         */
2974        if (mips_hpt_frequency && mips_hpt_frequency <= NSEC_PER_SEC)
2975                count_hz = mips_hpt_frequency;
2976        kvm_mips_init_count(vcpu, count_hz);
2977
2978        /*
2979         * Initialize guest register state to valid architectural reset state.
2980         */
2981
2982        /* PageGrain */
2983        if (cpu_has_mips_r6)
2984                kvm_write_sw_gc0_pagegrain(cop0, PG_RIE | PG_XIE | PG_IEC);
2985        /* Wired */
2986        if (cpu_has_mips_r6)
2987                kvm_write_sw_gc0_wired(cop0,
2988                                       read_gc0_wired() & MIPSR6_WIRED_LIMIT);
2989        /* Status */
2990        kvm_write_sw_gc0_status(cop0, ST0_BEV | ST0_ERL);
2991        if (cpu_has_mips_r6)
2992                kvm_change_sw_gc0_status(cop0, ST0_FR, read_gc0_status());
2993        /* IntCtl */
2994        kvm_write_sw_gc0_intctl(cop0, read_gc0_intctl() &
2995                                (INTCTLF_IPFDC | INTCTLF_IPPCI | INTCTLF_IPTI));
2996        /* PRId */
2997        kvm_write_sw_gc0_prid(cop0, boot_cpu_data.processor_id);
2998        /* EBase */
2999        kvm_write_sw_gc0_ebase(cop0, (s32)0x80000000 | vcpu->vcpu_id);
3000        /* Config */
3001        kvm_save_gc0_config(cop0);
3002        /* architecturally writable (e.g. from guest) */
3003        kvm_change_sw_gc0_config(cop0, CONF_CM_CMASK,
3004                                 _page_cachable_default >> _CACHE_SHIFT);
3005        /* architecturally read only, but maybe writable from root */
3006        kvm_change_sw_gc0_config(cop0, MIPS_CONF_MT, read_c0_config());
3007        if (cpu_guest_has_conf1) {
3008                kvm_set_sw_gc0_config(cop0, MIPS_CONF_M);
3009                /* Config1 */
3010                kvm_save_gc0_config1(cop0);
3011                /* architecturally read only, but maybe writable from root */
3012                kvm_clear_sw_gc0_config1(cop0, MIPS_CONF1_C2    |
3013                                               MIPS_CONF1_MD    |
3014                                               MIPS_CONF1_PC    |
3015                                               MIPS_CONF1_WR    |
3016                                               MIPS_CONF1_CA    |
3017                                               MIPS_CONF1_FP);
3018        }
3019        if (cpu_guest_has_conf2) {
3020                kvm_set_sw_gc0_config1(cop0, MIPS_CONF_M);
3021                /* Config2 */
3022                kvm_save_gc0_config2(cop0);
3023        }
3024        if (cpu_guest_has_conf3) {
3025                kvm_set_sw_gc0_config2(cop0, MIPS_CONF_M);
3026                /* Config3 */
3027                kvm_save_gc0_config3(cop0);
3028                /* architecturally writable (e.g. from guest) */
3029                kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_ISA_OE);
3030                /* architecturally read only, but maybe writable from root */
3031                kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_MSA   |
3032                                               MIPS_CONF3_BPG   |
3033                                               MIPS_CONF3_ULRI  |
3034                                               MIPS_CONF3_DSP   |
3035                                               MIPS_CONF3_CTXTC |
3036                                               MIPS_CONF3_ITL   |
3037                                               MIPS_CONF3_LPA   |
3038                                               MIPS_CONF3_VEIC  |
3039                                               MIPS_CONF3_VINT  |
3040                                               MIPS_CONF3_SP    |
3041                                               MIPS_CONF3_CDMM  |
3042                                               MIPS_CONF3_MT    |
3043                                               MIPS_CONF3_SM    |
3044                                               MIPS_CONF3_TL);
3045        }
3046        if (cpu_guest_has_conf4) {
3047                kvm_set_sw_gc0_config3(cop0, MIPS_CONF_M);
3048                /* Config4 */
3049                kvm_save_gc0_config4(cop0);
3050        }
3051        if (cpu_guest_has_conf5) {
3052                kvm_set_sw_gc0_config4(cop0, MIPS_CONF_M);
3053                /* Config5 */
3054                kvm_save_gc0_config5(cop0);
3055                /* architecturally writable (e.g. from guest) */
3056                kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_K     |
3057                                               MIPS_CONF5_CV    |
3058                                               MIPS_CONF5_MSAEN |
3059                                               MIPS_CONF5_UFE   |
3060                                               MIPS_CONF5_FRE   |
3061                                               MIPS_CONF5_SBRI  |
3062                                               MIPS_CONF5_UFR);
3063                /* architecturally read only, but maybe writable from root */
3064                kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_MRP);
3065        }
3066
3067        if (cpu_guest_has_contextconfig) {
3068                /* ContextConfig */
3069                kvm_write_sw_gc0_contextconfig(cop0, 0x007ffff0);
3070#ifdef CONFIG_64BIT
3071                /* XContextConfig */
3072                /* bits SEGBITS-13+3:4 set */
3073                kvm_write_sw_gc0_xcontextconfig(cop0,
3074                                        ((1ull << (cpu_vmbits - 13)) - 1) << 4);
3075#endif
3076        }
3077
3078        /* Implementation dependent, use the legacy layout */
3079        if (cpu_guest_has_segments) {
3080                /* SegCtl0, SegCtl1, SegCtl2 */
3081                kvm_write_sw_gc0_segctl0(cop0, 0x00200010);
3082                kvm_write_sw_gc0_segctl1(cop0, 0x00000002 |
3083                                (_page_cachable_default >> _CACHE_SHIFT) <<
3084                                                (16 + MIPS_SEGCFG_C_SHIFT));
3085                kvm_write_sw_gc0_segctl2(cop0, 0x00380438);
3086        }
3087
3088        /* reset HTW registers */
3089        if (cpu_guest_has_htw && cpu_has_mips_r6) {
3090                /* PWField */
3091                kvm_write_sw_gc0_pwfield(cop0, 0x0c30c302);
3092                /* PWSize */
3093                kvm_write_sw_gc0_pwsize(cop0, 1 << MIPS_PWSIZE_PTW_SHIFT);
3094        }
3095
3096        /* start with no pending virtual guest interrupts */
3097        if (cpu_has_guestctl2)
3098                cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = 0;
3099
3100        /* Put PC at reset vector */
3101        vcpu->arch.pc = CKSEG1ADDR(0x1fc00000);
3102
3103        return 0;
3104}
3105
3106static void kvm_vz_flush_shadow_all(struct kvm *kvm)
3107{
3108        if (cpu_has_guestid) {
3109                /* Flush GuestID for each VCPU individually */
3110                kvm_flush_remote_tlbs(kvm);
3111        } else {
3112                /*
3113                 * For each CPU there is a single GPA ASID used by all VCPUs in
3114                 * the VM, so it doesn't make sense for the VCPUs to handle
3115                 * invalidation of these ASIDs individually.
3116                 *
3117                 * Instead mark all CPUs as needing ASID invalidation in
3118                 * asid_flush_mask, and just use kvm_flush_remote_tlbs(kvm) to
3119                 * kick any running VCPUs so they check asid_flush_mask.
3120                 */
3121                cpumask_setall(&kvm->arch.asid_flush_mask);
3122                kvm_flush_remote_tlbs(kvm);
3123        }
3124}
3125
3126static void kvm_vz_flush_shadow_memslot(struct kvm *kvm,
3127                                        const struct kvm_memory_slot *slot)
3128{
3129        kvm_vz_flush_shadow_all(kvm);
3130}
3131
3132static void kvm_vz_vcpu_reenter(struct kvm_run *run, struct kvm_vcpu *vcpu)
3133{
3134        int cpu = smp_processor_id();
3135        int preserve_guest_tlb;
3136
3137        preserve_guest_tlb = kvm_vz_check_requests(vcpu, cpu);
3138
3139        if (preserve_guest_tlb)
3140                kvm_vz_vcpu_save_wired(vcpu);
3141
3142        kvm_vz_vcpu_load_tlb(vcpu, cpu);
3143
3144        if (preserve_guest_tlb)
3145                kvm_vz_vcpu_load_wired(vcpu);
3146}
3147
3148static int kvm_vz_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
3149{
3150        int cpu = smp_processor_id();
3151        int r;
3152
3153        kvm_vz_acquire_htimer(vcpu);
3154        /* Check if we have any exceptions/interrupts pending */
3155        kvm_mips_deliver_interrupts(vcpu, read_gc0_cause());
3156
3157        kvm_vz_check_requests(vcpu, cpu);
3158        kvm_vz_vcpu_load_tlb(vcpu, cpu);
3159        kvm_vz_vcpu_load_wired(vcpu);
3160
3161        r = vcpu->arch.vcpu_run(run, vcpu);
3162
3163        kvm_vz_vcpu_save_wired(vcpu);
3164
3165        return r;
3166}
3167
3168static struct kvm_mips_callbacks kvm_vz_callbacks = {
3169        .handle_cop_unusable = kvm_trap_vz_handle_cop_unusable,
3170        .handle_tlb_mod = kvm_trap_vz_handle_tlb_st_miss,
3171        .handle_tlb_ld_miss = kvm_trap_vz_handle_tlb_ld_miss,
3172        .handle_tlb_st_miss = kvm_trap_vz_handle_tlb_st_miss,
3173        .handle_addr_err_st = kvm_trap_vz_no_handler,
3174        .handle_addr_err_ld = kvm_trap_vz_no_handler,
3175        .handle_syscall = kvm_trap_vz_no_handler,
3176        .handle_res_inst = kvm_trap_vz_no_handler,
3177        .handle_break = kvm_trap_vz_no_handler,
3178        .handle_msa_disabled = kvm_trap_vz_handle_msa_disabled,
3179        .handle_guest_exit = kvm_trap_vz_handle_guest_exit,
3180
3181        .hardware_enable = kvm_vz_hardware_enable,
3182        .hardware_disable = kvm_vz_hardware_disable,
3183        .check_extension = kvm_vz_check_extension,
3184        .vcpu_init = kvm_vz_vcpu_init,
3185        .vcpu_uninit = kvm_vz_vcpu_uninit,
3186        .vcpu_setup = kvm_vz_vcpu_setup,
3187        .flush_shadow_all = kvm_vz_flush_shadow_all,
3188        .flush_shadow_memslot = kvm_vz_flush_shadow_memslot,
3189        .gva_to_gpa = kvm_vz_gva_to_gpa_cb,
3190        .queue_timer_int = kvm_vz_queue_timer_int_cb,
3191        .dequeue_timer_int = kvm_vz_dequeue_timer_int_cb,
3192        .queue_io_int = kvm_vz_queue_io_int_cb,
3193        .dequeue_io_int = kvm_vz_dequeue_io_int_cb,
3194        .irq_deliver = kvm_vz_irq_deliver_cb,
3195        .irq_clear = kvm_vz_irq_clear_cb,
3196        .num_regs = kvm_vz_num_regs,
3197        .copy_reg_indices = kvm_vz_copy_reg_indices,
3198        .get_one_reg = kvm_vz_get_one_reg,
3199        .set_one_reg = kvm_vz_set_one_reg,
3200        .vcpu_load = kvm_vz_vcpu_load,
3201        .vcpu_put = kvm_vz_vcpu_put,
3202        .vcpu_run = kvm_vz_vcpu_run,
3203        .vcpu_reenter = kvm_vz_vcpu_reenter,
3204};
3205
3206int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks)
3207{
3208        if (!cpu_has_vz)
3209                return -ENODEV;
3210
3211        /*
3212         * VZ requires at least 2 KScratch registers, so it should have been
3213         * possible to allocate pgd_reg.
3214         */
3215        if (WARN(pgd_reg == -1,
3216                 "pgd_reg not allocated even though cpu_has_vz\n"))
3217                return -ENODEV;
3218
3219        pr_info("Starting KVM with MIPS VZ extensions\n");
3220
3221        *install_callbacks = &kvm_vz_callbacks;
3222        return 0;
3223}
3224