linux/arch/powerpc/kernel/fadump.c
<<
>>
Prefs
   1/*
   2 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
   3 * dump with assistance from firmware. This approach does not use kexec,
   4 * instead firmware assists in booting the kdump kernel while preserving
   5 * memory contents. The most of the code implementation has been adapted
   6 * from phyp assisted dump implementation written by Linas Vepstas and
   7 * Manish Ahuja
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22 *
  23 * Copyright 2011 IBM Corporation
  24 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
  25 */
  26
  27#undef DEBUG
  28#define pr_fmt(fmt) "fadump: " fmt
  29
  30#include <linux/string.h>
  31#include <linux/memblock.h>
  32#include <linux/delay.h>
  33#include <linux/seq_file.h>
  34#include <linux/crash_dump.h>
  35#include <linux/kobject.h>
  36#include <linux/sysfs.h>
  37
  38#include <asm/debugfs.h>
  39#include <asm/page.h>
  40#include <asm/prom.h>
  41#include <asm/rtas.h>
  42#include <asm/fadump.h>
  43#include <asm/setup.h>
  44
  45static struct fw_dump fw_dump;
  46static struct fadump_mem_struct fdm;
  47static const struct fadump_mem_struct *fdm_active;
  48
  49static DEFINE_MUTEX(fadump_mutex);
  50struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
  51int crash_mem_ranges;
  52
  53/* Scan the Firmware Assisted dump configuration details. */
  54int __init early_init_dt_scan_fw_dump(unsigned long node,
  55                        const char *uname, int depth, void *data)
  56{
  57        const __be32 *sections;
  58        int i, num_sections;
  59        int size;
  60        const __be32 *token;
  61
  62        if (depth != 1 || strcmp(uname, "rtas") != 0)
  63                return 0;
  64
  65        /*
  66         * Check if Firmware Assisted dump is supported. if yes, check
  67         * if dump has been initiated on last reboot.
  68         */
  69        token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
  70        if (!token)
  71                return 1;
  72
  73        fw_dump.fadump_supported = 1;
  74        fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
  75
  76        /*
  77         * The 'ibm,kernel-dump' rtas node is present only if there is
  78         * dump data waiting for us.
  79         */
  80        fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
  81        if (fdm_active)
  82                fw_dump.dump_active = 1;
  83
  84        /* Get the sizes required to store dump data for the firmware provided
  85         * dump sections.
  86         * For each dump section type supported, a 32bit cell which defines
  87         * the ID of a supported section followed by two 32 bit cells which
  88         * gives teh size of the section in bytes.
  89         */
  90        sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
  91                                        &size);
  92
  93        if (!sections)
  94                return 1;
  95
  96        num_sections = size / (3 * sizeof(u32));
  97
  98        for (i = 0; i < num_sections; i++, sections += 3) {
  99                u32 type = (u32)of_read_number(sections, 1);
 100
 101                switch (type) {
 102                case FADUMP_CPU_STATE_DATA:
 103                        fw_dump.cpu_state_data_size =
 104                                        of_read_ulong(&sections[1], 2);
 105                        break;
 106                case FADUMP_HPTE_REGION:
 107                        fw_dump.hpte_region_size =
 108                                        of_read_ulong(&sections[1], 2);
 109                        break;
 110                }
 111        }
 112
 113        return 1;
 114}
 115
 116/*
 117 * If fadump is registered, check if the memory provided
 118 * falls within boot memory area.
 119 */
 120int is_fadump_boot_memory_area(u64 addr, ulong size)
 121{
 122        if (!fw_dump.dump_registered)
 123                return 0;
 124
 125        return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size;
 126}
 127
 128int should_fadump_crash(void)
 129{
 130        if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
 131                return 0;
 132        return 1;
 133}
 134
 135int is_fadump_active(void)
 136{
 137        return fw_dump.dump_active;
 138}
 139
 140/*
 141 * Returns 1, if there are no holes in boot memory area,
 142 * 0 otherwise.
 143 */
 144static int is_boot_memory_area_contiguous(void)
 145{
 146        struct memblock_region *reg;
 147        unsigned long tstart, tend;
 148        unsigned long start_pfn = PHYS_PFN(RMA_START);
 149        unsigned long end_pfn = PHYS_PFN(RMA_START + fw_dump.boot_memory_size);
 150        unsigned int ret = 0;
 151
 152        for_each_memblock(memory, reg) {
 153                tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
 154                tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
 155                if (tstart < tend) {
 156                        /* Memory hole from start_pfn to tstart */
 157                        if (tstart > start_pfn)
 158                                break;
 159
 160                        if (tend == end_pfn) {
 161                                ret = 1;
 162                                break;
 163                        }
 164
 165                        start_pfn = tend + 1;
 166                }
 167        }
 168
 169        return ret;
 170}
 171
 172/* Print firmware assisted dump configurations for debugging purpose. */
 173static void fadump_show_config(void)
 174{
 175        pr_debug("Support for firmware-assisted dump (fadump): %s\n",
 176                        (fw_dump.fadump_supported ? "present" : "no support"));
 177
 178        if (!fw_dump.fadump_supported)
 179                return;
 180
 181        pr_debug("Fadump enabled    : %s\n",
 182                                (fw_dump.fadump_enabled ? "yes" : "no"));
 183        pr_debug("Dump Active       : %s\n",
 184                                (fw_dump.dump_active ? "yes" : "no"));
 185        pr_debug("Dump section sizes:\n");
 186        pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
 187        pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
 188        pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
 189}
 190
 191static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
 192                                unsigned long addr)
 193{
 194        if (!fdm)
 195                return 0;
 196
 197        memset(fdm, 0, sizeof(struct fadump_mem_struct));
 198        addr = addr & PAGE_MASK;
 199
 200        fdm->header.dump_format_version = cpu_to_be32(0x00000001);
 201        fdm->header.dump_num_sections = cpu_to_be16(3);
 202        fdm->header.dump_status_flag = 0;
 203        fdm->header.offset_first_dump_section =
 204                cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
 205
 206        /*
 207         * Fields for disk dump option.
 208         * We are not using disk dump option, hence set these fields to 0.
 209         */
 210        fdm->header.dd_block_size = 0;
 211        fdm->header.dd_block_offset = 0;
 212        fdm->header.dd_num_blocks = 0;
 213        fdm->header.dd_offset_disk_path = 0;
 214
 215        /* set 0 to disable an automatic dump-reboot. */
 216        fdm->header.max_time_auto = 0;
 217
 218        /* Kernel dump sections */
 219        /* cpu state data section. */
 220        fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 221        fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
 222        fdm->cpu_state_data.source_address = 0;
 223        fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
 224        fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
 225        addr += fw_dump.cpu_state_data_size;
 226
 227        /* hpte region section */
 228        fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 229        fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
 230        fdm->hpte_region.source_address = 0;
 231        fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
 232        fdm->hpte_region.destination_address = cpu_to_be64(addr);
 233        addr += fw_dump.hpte_region_size;
 234
 235        /* RMA region section */
 236        fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 237        fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
 238        fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
 239        fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
 240        fdm->rmr_region.destination_address = cpu_to_be64(addr);
 241        addr += fw_dump.boot_memory_size;
 242
 243        return addr;
 244}
 245
 246/**
 247 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
 248 *
 249 * Function to find the largest memory size we need to reserve during early
 250 * boot process. This will be the size of the memory that is required for a
 251 * kernel to boot successfully.
 252 *
 253 * This function has been taken from phyp-assisted dump feature implementation.
 254 *
 255 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
 256 *
 257 * TODO: Come up with better approach to find out more accurate memory size
 258 * that is required for a kernel to boot successfully.
 259 *
 260 */
 261static inline unsigned long fadump_calculate_reserve_size(void)
 262{
 263        int ret;
 264        unsigned long long base, size;
 265
 266        if (fw_dump.reserve_bootvar)
 267                pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
 268
 269        /*
 270         * Check if the size is specified through crashkernel= cmdline
 271         * option. If yes, then use that but ignore base as fadump reserves
 272         * memory at a predefined offset.
 273         */
 274        ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 275                                &size, &base);
 276        if (ret == 0 && size > 0) {
 277                unsigned long max_size;
 278
 279                if (fw_dump.reserve_bootvar)
 280                        pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
 281
 282                fw_dump.reserve_bootvar = (unsigned long)size;
 283
 284                /*
 285                 * Adjust if the boot memory size specified is above
 286                 * the upper limit.
 287                 */
 288                max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
 289                if (fw_dump.reserve_bootvar > max_size) {
 290                        fw_dump.reserve_bootvar = max_size;
 291                        pr_info("Adjusted boot memory size to %luMB\n",
 292                                (fw_dump.reserve_bootvar >> 20));
 293                }
 294
 295                return fw_dump.reserve_bootvar;
 296        } else if (fw_dump.reserve_bootvar) {
 297                /*
 298                 * 'fadump_reserve_mem=' is being used to reserve memory
 299                 * for firmware-assisted dump.
 300                 */
 301                return fw_dump.reserve_bootvar;
 302        }
 303
 304        /* divide by 20 to get 5% of value */
 305        size = memblock_phys_mem_size() / 20;
 306
 307        /* round it down in multiples of 256 */
 308        size = size & ~0x0FFFFFFFUL;
 309
 310        /* Truncate to memory_limit. We don't want to over reserve the memory.*/
 311        if (memory_limit && size > memory_limit)
 312                size = memory_limit;
 313
 314        return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
 315}
 316
 317/*
 318 * Calculate the total memory size required to be reserved for
 319 * firmware-assisted dump registration.
 320 */
 321static unsigned long get_fadump_area_size(void)
 322{
 323        unsigned long size = 0;
 324
 325        size += fw_dump.cpu_state_data_size;
 326        size += fw_dump.hpte_region_size;
 327        size += fw_dump.boot_memory_size;
 328        size += sizeof(struct fadump_crash_info_header);
 329        size += sizeof(struct elfhdr); /* ELF core header.*/
 330        size += sizeof(struct elf_phdr); /* place holder for cpu notes */
 331        /* Program headers for crash memory regions. */
 332        size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
 333
 334        size = PAGE_ALIGN(size);
 335        return size;
 336}
 337
 338static void __init fadump_reserve_crash_area(unsigned long base,
 339                                             unsigned long size)
 340{
 341        struct memblock_region *reg;
 342        unsigned long mstart, mend, msize;
 343
 344        for_each_memblock(memory, reg) {
 345                mstart = max_t(unsigned long, base, reg->base);
 346                mend = reg->base + reg->size;
 347                mend = min(base + size, mend);
 348
 349                if (mstart < mend) {
 350                        msize = mend - mstart;
 351                        memblock_reserve(mstart, msize);
 352                        pr_info("Reserved %ldMB of memory at %#016lx for saving crash dump\n",
 353                                (msize >> 20), mstart);
 354                }
 355        }
 356}
 357
 358int __init fadump_reserve_mem(void)
 359{
 360        unsigned long base, size, memory_boundary;
 361
 362        if (!fw_dump.fadump_enabled)
 363                return 0;
 364
 365        if (!fw_dump.fadump_supported) {
 366                printk(KERN_INFO "Firmware-assisted dump is not supported on"
 367                                " this hardware\n");
 368                fw_dump.fadump_enabled = 0;
 369                return 0;
 370        }
 371        /*
 372         * Initialize boot memory size
 373         * If dump is active then we have already calculated the size during
 374         * first kernel.
 375         */
 376        if (fdm_active)
 377                fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
 378        else
 379                fw_dump.boot_memory_size = fadump_calculate_reserve_size();
 380
 381        /*
 382         * Calculate the memory boundary.
 383         * If memory_limit is less than actual memory boundary then reserve
 384         * the memory for fadump beyond the memory_limit and adjust the
 385         * memory_limit accordingly, so that the running kernel can run with
 386         * specified memory_limit.
 387         */
 388        if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
 389                size = get_fadump_area_size();
 390                if ((memory_limit + size) < memblock_end_of_DRAM())
 391                        memory_limit += size;
 392                else
 393                        memory_limit = memblock_end_of_DRAM();
 394                printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
 395                                " dump, now %#016llx\n", memory_limit);
 396        }
 397        if (memory_limit)
 398                memory_boundary = memory_limit;
 399        else
 400                memory_boundary = memblock_end_of_DRAM();
 401
 402        if (fw_dump.dump_active) {
 403                pr_info("Firmware-assisted dump is active.\n");
 404
 405#ifdef CONFIG_HUGETLB_PAGE
 406                /*
 407                 * FADump capture kernel doesn't care much about hugepages.
 408                 * In fact, handling hugepages in capture kernel is asking for
 409                 * trouble. So, disable HugeTLB support when fadump is active.
 410                 */
 411                hugetlb_disabled = true;
 412#endif
 413                /*
 414                 * If last boot has crashed then reserve all the memory
 415                 * above boot_memory_size so that we don't touch it until
 416                 * dump is written to disk by userspace tool. This memory
 417                 * will be released for general use once the dump is saved.
 418                 */
 419                base = fw_dump.boot_memory_size;
 420                size = memory_boundary - base;
 421                fadump_reserve_crash_area(base, size);
 422
 423                fw_dump.fadumphdr_addr =
 424                                be64_to_cpu(fdm_active->rmr_region.destination_address) +
 425                                be64_to_cpu(fdm_active->rmr_region.source_len);
 426                pr_debug("fadumphdr_addr = %p\n",
 427                                (void *) fw_dump.fadumphdr_addr);
 428        } else {
 429                size = get_fadump_area_size();
 430
 431                /*
 432                 * Reserve memory at an offset closer to bottom of the RAM to
 433                 * minimize the impact of memory hot-remove operation. We can't
 434                 * use memblock_find_in_range() here since it doesn't allocate
 435                 * from bottom to top.
 436                 */
 437                for (base = fw_dump.boot_memory_size;
 438                     base <= (memory_boundary - size);
 439                     base += size) {
 440                        if (memblock_is_region_memory(base, size) &&
 441                            !memblock_is_region_reserved(base, size))
 442                                break;
 443                }
 444                if ((base > (memory_boundary - size)) ||
 445                    memblock_reserve(base, size)) {
 446                        pr_err("Failed to reserve memory\n");
 447                        return 0;
 448                }
 449
 450                pr_info("Reserved %ldMB of memory at %ldMB for firmware-"
 451                        "assisted dump (System RAM: %ldMB)\n",
 452                        (unsigned long)(size >> 20),
 453                        (unsigned long)(base >> 20),
 454                        (unsigned long)(memblock_phys_mem_size() >> 20));
 455        }
 456
 457        fw_dump.reserve_dump_area_start = base;
 458        fw_dump.reserve_dump_area_size = size;
 459        return 1;
 460}
 461
 462unsigned long __init arch_reserved_kernel_pages(void)
 463{
 464        return memblock_reserved_size() / PAGE_SIZE;
 465}
 466
 467/* Look for fadump= cmdline option. */
 468static int __init early_fadump_param(char *p)
 469{
 470        if (!p)
 471                return 1;
 472
 473        if (strncmp(p, "on", 2) == 0)
 474                fw_dump.fadump_enabled = 1;
 475        else if (strncmp(p, "off", 3) == 0)
 476                fw_dump.fadump_enabled = 0;
 477
 478        return 0;
 479}
 480early_param("fadump", early_fadump_param);
 481
 482/*
 483 * Look for fadump_reserve_mem= cmdline option
 484 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
 485 *       the sooner 'crashkernel=' parameter is accustomed to.
 486 */
 487static int __init early_fadump_reserve_mem(char *p)
 488{
 489        if (p)
 490                fw_dump.reserve_bootvar = memparse(p, &p);
 491        return 0;
 492}
 493early_param("fadump_reserve_mem", early_fadump_reserve_mem);
 494
 495static int register_fw_dump(struct fadump_mem_struct *fdm)
 496{
 497        int rc, err;
 498        unsigned int wait_time;
 499
 500        pr_debug("Registering for firmware-assisted kernel dump...\n");
 501
 502        /* TODO: Add upper time limit for the delay */
 503        do {
 504                rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
 505                        FADUMP_REGISTER, fdm,
 506                        sizeof(struct fadump_mem_struct));
 507
 508                wait_time = rtas_busy_delay_time(rc);
 509                if (wait_time)
 510                        mdelay(wait_time);
 511
 512        } while (wait_time);
 513
 514        err = -EIO;
 515        switch (rc) {
 516        default:
 517                pr_err("Failed to register. Unknown Error(%d).\n", rc);
 518                break;
 519        case -1:
 520                printk(KERN_ERR "Failed to register firmware-assisted kernel"
 521                        " dump. Hardware Error(%d).\n", rc);
 522                break;
 523        case -3:
 524                if (!is_boot_memory_area_contiguous())
 525                        pr_err("Can't have holes in boot memory area while "
 526                               "registering fadump\n");
 527
 528                printk(KERN_ERR "Failed to register firmware-assisted kernel"
 529                        " dump. Parameter Error(%d).\n", rc);
 530                err = -EINVAL;
 531                break;
 532        case -9:
 533                printk(KERN_ERR "firmware-assisted kernel dump is already "
 534                        " registered.");
 535                fw_dump.dump_registered = 1;
 536                err = -EEXIST;
 537                break;
 538        case 0:
 539                printk(KERN_INFO "firmware-assisted kernel dump registration"
 540                        " is successful\n");
 541                fw_dump.dump_registered = 1;
 542                err = 0;
 543                break;
 544        }
 545        return err;
 546}
 547
 548void crash_fadump(struct pt_regs *regs, const char *str)
 549{
 550        struct fadump_crash_info_header *fdh = NULL;
 551        int old_cpu, this_cpu;
 552
 553        if (!should_fadump_crash())
 554                return;
 555
 556        /*
 557         * old_cpu == -1 means this is the first CPU which has come here,
 558         * go ahead and trigger fadump.
 559         *
 560         * old_cpu != -1 means some other CPU has already on it's way
 561         * to trigger fadump, just keep looping here.
 562         */
 563        this_cpu = smp_processor_id();
 564        old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
 565
 566        if (old_cpu != -1) {
 567                /*
 568                 * We can't loop here indefinitely. Wait as long as fadump
 569                 * is in force. If we race with fadump un-registration this
 570                 * loop will break and then we go down to normal panic path
 571                 * and reboot. If fadump is in force the first crashing
 572                 * cpu will definitely trigger fadump.
 573                 */
 574                while (fw_dump.dump_registered)
 575                        cpu_relax();
 576                return;
 577        }
 578
 579        fdh = __va(fw_dump.fadumphdr_addr);
 580        fdh->crashing_cpu = crashing_cpu;
 581        crash_save_vmcoreinfo();
 582
 583        if (regs)
 584                fdh->regs = *regs;
 585        else
 586                ppc_save_regs(&fdh->regs);
 587
 588        fdh->online_mask = *cpu_online_mask;
 589
 590        /* Call ibm,os-term rtas call to trigger firmware assisted dump */
 591        rtas_os_term((char *)str);
 592}
 593
 594#define GPR_MASK        0xffffff0000000000
 595static inline int fadump_gpr_index(u64 id)
 596{
 597        int i = -1;
 598        char str[3];
 599
 600        if ((id & GPR_MASK) == REG_ID("GPR")) {
 601                /* get the digits at the end */
 602                id &= ~GPR_MASK;
 603                id >>= 24;
 604                str[2] = '\0';
 605                str[1] = id & 0xff;
 606                str[0] = (id >> 8) & 0xff;
 607                sscanf(str, "%d", &i);
 608                if (i > 31)
 609                        i = -1;
 610        }
 611        return i;
 612}
 613
 614static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
 615                                                                u64 reg_val)
 616{
 617        int i;
 618
 619        i = fadump_gpr_index(reg_id);
 620        if (i >= 0)
 621                regs->gpr[i] = (unsigned long)reg_val;
 622        else if (reg_id == REG_ID("NIA"))
 623                regs->nip = (unsigned long)reg_val;
 624        else if (reg_id == REG_ID("MSR"))
 625                regs->msr = (unsigned long)reg_val;
 626        else if (reg_id == REG_ID("CTR"))
 627                regs->ctr = (unsigned long)reg_val;
 628        else if (reg_id == REG_ID("LR"))
 629                regs->link = (unsigned long)reg_val;
 630        else if (reg_id == REG_ID("XER"))
 631                regs->xer = (unsigned long)reg_val;
 632        else if (reg_id == REG_ID("CR"))
 633                regs->ccr = (unsigned long)reg_val;
 634        else if (reg_id == REG_ID("DAR"))
 635                regs->dar = (unsigned long)reg_val;
 636        else if (reg_id == REG_ID("DSISR"))
 637                regs->dsisr = (unsigned long)reg_val;
 638}
 639
 640static struct fadump_reg_entry*
 641fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
 642{
 643        memset(regs, 0, sizeof(struct pt_regs));
 644
 645        while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
 646                fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
 647                                        be64_to_cpu(reg_entry->reg_value));
 648                reg_entry++;
 649        }
 650        reg_entry++;
 651        return reg_entry;
 652}
 653
 654static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
 655{
 656        struct elf_prstatus prstatus;
 657
 658        memset(&prstatus, 0, sizeof(prstatus));
 659        /*
 660         * FIXME: How do i get PID? Do I really need it?
 661         * prstatus.pr_pid = ????
 662         */
 663        elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
 664        buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
 665                              &prstatus, sizeof(prstatus));
 666        return buf;
 667}
 668
 669static void fadump_update_elfcore_header(char *bufp)
 670{
 671        struct elfhdr *elf;
 672        struct elf_phdr *phdr;
 673
 674        elf = (struct elfhdr *)bufp;
 675        bufp += sizeof(struct elfhdr);
 676
 677        /* First note is a place holder for cpu notes info. */
 678        phdr = (struct elf_phdr *)bufp;
 679
 680        if (phdr->p_type == PT_NOTE) {
 681                phdr->p_paddr = fw_dump.cpu_notes_buf;
 682                phdr->p_offset  = phdr->p_paddr;
 683                phdr->p_filesz  = fw_dump.cpu_notes_buf_size;
 684                phdr->p_memsz = fw_dump.cpu_notes_buf_size;
 685        }
 686        return;
 687}
 688
 689static void *fadump_cpu_notes_buf_alloc(unsigned long size)
 690{
 691        void *vaddr;
 692        struct page *page;
 693        unsigned long order, count, i;
 694
 695        order = get_order(size);
 696        vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
 697        if (!vaddr)
 698                return NULL;
 699
 700        count = 1 << order;
 701        page = virt_to_page(vaddr);
 702        for (i = 0; i < count; i++)
 703                SetPageReserved(page + i);
 704        return vaddr;
 705}
 706
 707static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
 708{
 709        struct page *page;
 710        unsigned long order, count, i;
 711
 712        order = get_order(size);
 713        count = 1 << order;
 714        page = virt_to_page(vaddr);
 715        for (i = 0; i < count; i++)
 716                ClearPageReserved(page + i);
 717        __free_pages(page, order);
 718}
 719
 720/*
 721 * Read CPU state dump data and convert it into ELF notes.
 722 * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
 723 * used to access the data to allow for additional fields to be added without
 724 * affecting compatibility. Each list of registers for a CPU starts with
 725 * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
 726 * 8 Byte ASCII identifier and 8 Byte register value. The register entry
 727 * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
 728 * of register value. For more details refer to PAPR document.
 729 *
 730 * Only for the crashing cpu we ignore the CPU dump data and get exact
 731 * state from fadump crash info structure populated by first kernel at the
 732 * time of crash.
 733 */
 734static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
 735{
 736        struct fadump_reg_save_area_header *reg_header;
 737        struct fadump_reg_entry *reg_entry;
 738        struct fadump_crash_info_header *fdh = NULL;
 739        void *vaddr;
 740        unsigned long addr;
 741        u32 num_cpus, *note_buf;
 742        struct pt_regs regs;
 743        int i, rc = 0, cpu = 0;
 744
 745        if (!fdm->cpu_state_data.bytes_dumped)
 746                return -EINVAL;
 747
 748        addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
 749        vaddr = __va(addr);
 750
 751        reg_header = vaddr;
 752        if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
 753                printk(KERN_ERR "Unable to read register save area.\n");
 754                return -ENOENT;
 755        }
 756        pr_debug("--------CPU State Data------------\n");
 757        pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
 758        pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
 759
 760        vaddr += be32_to_cpu(reg_header->num_cpu_offset);
 761        num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
 762        pr_debug("NumCpus     : %u\n", num_cpus);
 763        vaddr += sizeof(u32);
 764        reg_entry = (struct fadump_reg_entry *)vaddr;
 765
 766        /* Allocate buffer to hold cpu crash notes. */
 767        fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
 768        fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
 769        note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
 770        if (!note_buf) {
 771                printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
 772                        "cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
 773                return -ENOMEM;
 774        }
 775        fw_dump.cpu_notes_buf = __pa(note_buf);
 776
 777        pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
 778                        (num_cpus * sizeof(note_buf_t)), note_buf);
 779
 780        if (fw_dump.fadumphdr_addr)
 781                fdh = __va(fw_dump.fadumphdr_addr);
 782
 783        for (i = 0; i < num_cpus; i++) {
 784                if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
 785                        printk(KERN_ERR "Unable to read CPU state data\n");
 786                        rc = -ENOENT;
 787                        goto error_out;
 788                }
 789                /* Lower 4 bytes of reg_value contains logical cpu id */
 790                cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
 791                if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
 792                        SKIP_TO_NEXT_CPU(reg_entry);
 793                        continue;
 794                }
 795                pr_debug("Reading register data for cpu %d...\n", cpu);
 796                if (fdh && fdh->crashing_cpu == cpu) {
 797                        regs = fdh->regs;
 798                        note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
 799                        SKIP_TO_NEXT_CPU(reg_entry);
 800                } else {
 801                        reg_entry++;
 802                        reg_entry = fadump_read_registers(reg_entry, &regs);
 803                        note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
 804                }
 805        }
 806        final_note(note_buf);
 807
 808        if (fdh) {
 809                pr_debug("Updating elfcore header (%llx) with cpu notes\n",
 810                                                        fdh->elfcorehdr_addr);
 811                fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
 812        }
 813        return 0;
 814
 815error_out:
 816        fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
 817                                        fw_dump.cpu_notes_buf_size);
 818        fw_dump.cpu_notes_buf = 0;
 819        fw_dump.cpu_notes_buf_size = 0;
 820        return rc;
 821
 822}
 823
 824/*
 825 * Validate and process the dump data stored by firmware before exporting
 826 * it through '/proc/vmcore'.
 827 */
 828static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
 829{
 830        struct fadump_crash_info_header *fdh;
 831        int rc = 0;
 832
 833        if (!fdm_active || !fw_dump.fadumphdr_addr)
 834                return -EINVAL;
 835
 836        /* Check if the dump data is valid. */
 837        if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
 838                        (fdm_active->cpu_state_data.error_flags != 0) ||
 839                        (fdm_active->rmr_region.error_flags != 0)) {
 840                printk(KERN_ERR "Dump taken by platform is not valid\n");
 841                return -EINVAL;
 842        }
 843        if ((fdm_active->rmr_region.bytes_dumped !=
 844                        fdm_active->rmr_region.source_len) ||
 845                        !fdm_active->cpu_state_data.bytes_dumped) {
 846                printk(KERN_ERR "Dump taken by platform is incomplete\n");
 847                return -EINVAL;
 848        }
 849
 850        /* Validate the fadump crash info header */
 851        fdh = __va(fw_dump.fadumphdr_addr);
 852        if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
 853                printk(KERN_ERR "Crash info header is not valid.\n");
 854                return -EINVAL;
 855        }
 856
 857        rc = fadump_build_cpu_notes(fdm_active);
 858        if (rc)
 859                return rc;
 860
 861        /*
 862         * We are done validating dump info and elfcore header is now ready
 863         * to be exported. set elfcorehdr_addr so that vmcore module will
 864         * export the elfcore header through '/proc/vmcore'.
 865         */
 866        elfcorehdr_addr = fdh->elfcorehdr_addr;
 867
 868        return 0;
 869}
 870
 871static inline void fadump_add_crash_memory(unsigned long long base,
 872                                        unsigned long long end)
 873{
 874        if (base == end)
 875                return;
 876
 877        pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
 878                crash_mem_ranges, base, end - 1, (end - base));
 879        crash_memory_ranges[crash_mem_ranges].base = base;
 880        crash_memory_ranges[crash_mem_ranges].size = end - base;
 881        crash_mem_ranges++;
 882}
 883
 884static void fadump_exclude_reserved_area(unsigned long long start,
 885                                        unsigned long long end)
 886{
 887        unsigned long long ra_start, ra_end;
 888
 889        ra_start = fw_dump.reserve_dump_area_start;
 890        ra_end = ra_start + fw_dump.reserve_dump_area_size;
 891
 892        if ((ra_start < end) && (ra_end > start)) {
 893                if ((start < ra_start) && (end > ra_end)) {
 894                        fadump_add_crash_memory(start, ra_start);
 895                        fadump_add_crash_memory(ra_end, end);
 896                } else if (start < ra_start) {
 897                        fadump_add_crash_memory(start, ra_start);
 898                } else if (ra_end < end) {
 899                        fadump_add_crash_memory(ra_end, end);
 900                }
 901        } else
 902                fadump_add_crash_memory(start, end);
 903}
 904
 905static int fadump_init_elfcore_header(char *bufp)
 906{
 907        struct elfhdr *elf;
 908
 909        elf = (struct elfhdr *) bufp;
 910        bufp += sizeof(struct elfhdr);
 911        memcpy(elf->e_ident, ELFMAG, SELFMAG);
 912        elf->e_ident[EI_CLASS] = ELF_CLASS;
 913        elf->e_ident[EI_DATA] = ELF_DATA;
 914        elf->e_ident[EI_VERSION] = EV_CURRENT;
 915        elf->e_ident[EI_OSABI] = ELF_OSABI;
 916        memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 917        elf->e_type = ET_CORE;
 918        elf->e_machine = ELF_ARCH;
 919        elf->e_version = EV_CURRENT;
 920        elf->e_entry = 0;
 921        elf->e_phoff = sizeof(struct elfhdr);
 922        elf->e_shoff = 0;
 923#if defined(_CALL_ELF)
 924        elf->e_flags = _CALL_ELF;
 925#else
 926        elf->e_flags = 0;
 927#endif
 928        elf->e_ehsize = sizeof(struct elfhdr);
 929        elf->e_phentsize = sizeof(struct elf_phdr);
 930        elf->e_phnum = 0;
 931        elf->e_shentsize = 0;
 932        elf->e_shnum = 0;
 933        elf->e_shstrndx = 0;
 934
 935        return 0;
 936}
 937
 938/*
 939 * Traverse through memblock structure and setup crash memory ranges. These
 940 * ranges will be used create PT_LOAD program headers in elfcore header.
 941 */
 942static void fadump_setup_crash_memory_ranges(void)
 943{
 944        struct memblock_region *reg;
 945        unsigned long long start, end;
 946
 947        pr_debug("Setup crash memory ranges.\n");
 948        crash_mem_ranges = 0;
 949        /*
 950         * add the first memory chunk (RMA_START through boot_memory_size) as
 951         * a separate memory chunk. The reason is, at the time crash firmware
 952         * will move the content of this memory chunk to different location
 953         * specified during fadump registration. We need to create a separate
 954         * program header for this chunk with the correct offset.
 955         */
 956        fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
 957
 958        for_each_memblock(memory, reg) {
 959                start = (unsigned long long)reg->base;
 960                end = start + (unsigned long long)reg->size;
 961
 962                /*
 963                 * skip the first memory chunk that is already added (RMA_START
 964                 * through boot_memory_size). This logic needs a relook if and
 965                 * when RMA_START changes to a non-zero value.
 966                 */
 967                BUILD_BUG_ON(RMA_START != 0);
 968                if (start < fw_dump.boot_memory_size) {
 969                        if (end > fw_dump.boot_memory_size)
 970                                start = fw_dump.boot_memory_size;
 971                        else
 972                                continue;
 973                }
 974
 975                /* add this range excluding the reserved dump area. */
 976                fadump_exclude_reserved_area(start, end);
 977        }
 978}
 979
 980/*
 981 * If the given physical address falls within the boot memory region then
 982 * return the relocated address that points to the dump region reserved
 983 * for saving initial boot memory contents.
 984 */
 985static inline unsigned long fadump_relocate(unsigned long paddr)
 986{
 987        if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
 988                return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
 989        else
 990                return paddr;
 991}
 992
 993static int fadump_create_elfcore_headers(char *bufp)
 994{
 995        struct elfhdr *elf;
 996        struct elf_phdr *phdr;
 997        int i;
 998
 999        fadump_init_elfcore_header(bufp);
1000        elf = (struct elfhdr *)bufp;
1001        bufp += sizeof(struct elfhdr);
1002
1003        /*
1004         * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1005         * will be populated during second kernel boot after crash. Hence
1006         * this PT_NOTE will always be the first elf note.
1007         *
1008         * NOTE: Any new ELF note addition should be placed after this note.
1009         */
1010        phdr = (struct elf_phdr *)bufp;
1011        bufp += sizeof(struct elf_phdr);
1012        phdr->p_type = PT_NOTE;
1013        phdr->p_flags = 0;
1014        phdr->p_vaddr = 0;
1015        phdr->p_align = 0;
1016
1017        phdr->p_offset = 0;
1018        phdr->p_paddr = 0;
1019        phdr->p_filesz = 0;
1020        phdr->p_memsz = 0;
1021
1022        (elf->e_phnum)++;
1023
1024        /* setup ELF PT_NOTE for vmcoreinfo */
1025        phdr = (struct elf_phdr *)bufp;
1026        bufp += sizeof(struct elf_phdr);
1027        phdr->p_type    = PT_NOTE;
1028        phdr->p_flags   = 0;
1029        phdr->p_vaddr   = 0;
1030        phdr->p_align   = 0;
1031
1032        phdr->p_paddr   = fadump_relocate(paddr_vmcoreinfo_note());
1033        phdr->p_offset  = phdr->p_paddr;
1034        phdr->p_memsz   = phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1035
1036        /* Increment number of program headers. */
1037        (elf->e_phnum)++;
1038
1039        /* setup PT_LOAD sections. */
1040
1041        for (i = 0; i < crash_mem_ranges; i++) {
1042                unsigned long long mbase, msize;
1043                mbase = crash_memory_ranges[i].base;
1044                msize = crash_memory_ranges[i].size;
1045
1046                if (!msize)
1047                        continue;
1048
1049                phdr = (struct elf_phdr *)bufp;
1050                bufp += sizeof(struct elf_phdr);
1051                phdr->p_type    = PT_LOAD;
1052                phdr->p_flags   = PF_R|PF_W|PF_X;
1053                phdr->p_offset  = mbase;
1054
1055                if (mbase == RMA_START) {
1056                        /*
1057                         * The entire RMA region will be moved by firmware
1058                         * to the specified destination_address. Hence set
1059                         * the correct offset.
1060                         */
1061                        phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
1062                }
1063
1064                phdr->p_paddr = mbase;
1065                phdr->p_vaddr = (unsigned long)__va(mbase);
1066                phdr->p_filesz = msize;
1067                phdr->p_memsz = msize;
1068                phdr->p_align = 0;
1069
1070                /* Increment number of program headers. */
1071                (elf->e_phnum)++;
1072        }
1073        return 0;
1074}
1075
1076static unsigned long init_fadump_header(unsigned long addr)
1077{
1078        struct fadump_crash_info_header *fdh;
1079
1080        if (!addr)
1081                return 0;
1082
1083        fw_dump.fadumphdr_addr = addr;
1084        fdh = __va(addr);
1085        addr += sizeof(struct fadump_crash_info_header);
1086
1087        memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1088        fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1089        fdh->elfcorehdr_addr = addr;
1090        /* We will set the crashing cpu id in crash_fadump() during crash. */
1091        fdh->crashing_cpu = CPU_UNKNOWN;
1092
1093        return addr;
1094}
1095
1096static int register_fadump(void)
1097{
1098        unsigned long addr;
1099        void *vaddr;
1100
1101        /*
1102         * If no memory is reserved then we can not register for firmware-
1103         * assisted dump.
1104         */
1105        if (!fw_dump.reserve_dump_area_size)
1106                return -ENODEV;
1107
1108        fadump_setup_crash_memory_ranges();
1109
1110        addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
1111        /* Initialize fadump crash info header. */
1112        addr = init_fadump_header(addr);
1113        vaddr = __va(addr);
1114
1115        pr_debug("Creating ELF core headers at %#016lx\n", addr);
1116        fadump_create_elfcore_headers(vaddr);
1117
1118        /* register the future kernel dump with firmware. */
1119        return register_fw_dump(&fdm);
1120}
1121
1122static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
1123{
1124        int rc = 0;
1125        unsigned int wait_time;
1126
1127        pr_debug("Un-register firmware-assisted dump\n");
1128
1129        /* TODO: Add upper time limit for the delay */
1130        do {
1131                rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1132                        FADUMP_UNREGISTER, fdm,
1133                        sizeof(struct fadump_mem_struct));
1134
1135                wait_time = rtas_busy_delay_time(rc);
1136                if (wait_time)
1137                        mdelay(wait_time);
1138        } while (wait_time);
1139
1140        if (rc) {
1141                printk(KERN_ERR "Failed to un-register firmware-assisted dump."
1142                        " unexpected error(%d).\n", rc);
1143                return rc;
1144        }
1145        fw_dump.dump_registered = 0;
1146        return 0;
1147}
1148
1149static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
1150{
1151        int rc = 0;
1152        unsigned int wait_time;
1153
1154        pr_debug("Invalidating firmware-assisted dump registration\n");
1155
1156        /* TODO: Add upper time limit for the delay */
1157        do {
1158                rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1159                        FADUMP_INVALIDATE, fdm,
1160                        sizeof(struct fadump_mem_struct));
1161
1162                wait_time = rtas_busy_delay_time(rc);
1163                if (wait_time)
1164                        mdelay(wait_time);
1165        } while (wait_time);
1166
1167        if (rc) {
1168                pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
1169                return rc;
1170        }
1171        fw_dump.dump_active = 0;
1172        fdm_active = NULL;
1173        return 0;
1174}
1175
1176void fadump_cleanup(void)
1177{
1178        /* Invalidate the registration only if dump is active. */
1179        if (fw_dump.dump_active) {
1180                init_fadump_mem_struct(&fdm,
1181                        be64_to_cpu(fdm_active->cpu_state_data.destination_address));
1182                fadump_invalidate_dump(&fdm);
1183        } else if (fw_dump.dump_registered) {
1184                /* Un-register Firmware-assisted dump if it was registered. */
1185                fadump_unregister_dump(&fdm);
1186        }
1187}
1188
1189static void fadump_free_reserved_memory(unsigned long start_pfn,
1190                                        unsigned long end_pfn)
1191{
1192        unsigned long pfn;
1193        unsigned long time_limit = jiffies + HZ;
1194
1195        pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1196                PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1197
1198        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1199                free_reserved_page(pfn_to_page(pfn));
1200
1201                if (time_after(jiffies, time_limit)) {
1202                        cond_resched();
1203                        time_limit = jiffies + HZ;
1204                }
1205        }
1206}
1207
1208/*
1209 * Skip memory holes and free memory that was actually reserved.
1210 */
1211static void fadump_release_reserved_area(unsigned long start, unsigned long end)
1212{
1213        struct memblock_region *reg;
1214        unsigned long tstart, tend;
1215        unsigned long start_pfn = PHYS_PFN(start);
1216        unsigned long end_pfn = PHYS_PFN(end);
1217
1218        for_each_memblock(memory, reg) {
1219                tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
1220                tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
1221                if (tstart < tend) {
1222                        fadump_free_reserved_memory(tstart, tend);
1223
1224                        if (tend == end_pfn)
1225                                break;
1226
1227                        start_pfn = tend + 1;
1228                }
1229        }
1230}
1231
1232/*
1233 * Release the memory that was reserved in early boot to preserve the memory
1234 * contents. The released memory will be available for general use.
1235 */
1236static void fadump_release_memory(unsigned long begin, unsigned long end)
1237{
1238        unsigned long ra_start, ra_end;
1239
1240        ra_start = fw_dump.reserve_dump_area_start;
1241        ra_end = ra_start + fw_dump.reserve_dump_area_size;
1242
1243        /*
1244         * exclude the dump reserve area. Will reuse it for next
1245         * fadump registration.
1246         */
1247        if (begin < ra_end && end > ra_start) {
1248                if (begin < ra_start)
1249                        fadump_release_reserved_area(begin, ra_start);
1250                if (end > ra_end)
1251                        fadump_release_reserved_area(ra_end, end);
1252        } else
1253                fadump_release_reserved_area(begin, end);
1254}
1255
1256static void fadump_invalidate_release_mem(void)
1257{
1258        unsigned long reserved_area_start, reserved_area_end;
1259        unsigned long destination_address;
1260
1261        mutex_lock(&fadump_mutex);
1262        if (!fw_dump.dump_active) {
1263                mutex_unlock(&fadump_mutex);
1264                return;
1265        }
1266
1267        destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
1268        fadump_cleanup();
1269        mutex_unlock(&fadump_mutex);
1270
1271        /*
1272         * Save the current reserved memory bounds we will require them
1273         * later for releasing the memory for general use.
1274         */
1275        reserved_area_start = fw_dump.reserve_dump_area_start;
1276        reserved_area_end = reserved_area_start +
1277                        fw_dump.reserve_dump_area_size;
1278        /*
1279         * Setup reserve_dump_area_start and its size so that we can
1280         * reuse this reserved memory for Re-registration.
1281         */
1282        fw_dump.reserve_dump_area_start = destination_address;
1283        fw_dump.reserve_dump_area_size = get_fadump_area_size();
1284
1285        fadump_release_memory(reserved_area_start, reserved_area_end);
1286        if (fw_dump.cpu_notes_buf) {
1287                fadump_cpu_notes_buf_free(
1288                                (unsigned long)__va(fw_dump.cpu_notes_buf),
1289                                fw_dump.cpu_notes_buf_size);
1290                fw_dump.cpu_notes_buf = 0;
1291                fw_dump.cpu_notes_buf_size = 0;
1292        }
1293        /* Initialize the kernel dump memory structure for FAD registration. */
1294        init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1295}
1296
1297static ssize_t fadump_release_memory_store(struct kobject *kobj,
1298                                        struct kobj_attribute *attr,
1299                                        const char *buf, size_t count)
1300{
1301        int input = -1;
1302
1303        if (!fw_dump.dump_active)
1304                return -EPERM;
1305
1306        if (kstrtoint(buf, 0, &input))
1307                return -EINVAL;
1308
1309        if (input == 1) {
1310                /*
1311                 * Take away the '/proc/vmcore'. We are releasing the dump
1312                 * memory, hence it will not be valid anymore.
1313                 */
1314#ifdef CONFIG_PROC_VMCORE
1315                vmcore_cleanup();
1316#endif
1317                fadump_invalidate_release_mem();
1318
1319        } else
1320                return -EINVAL;
1321        return count;
1322}
1323
1324static ssize_t fadump_enabled_show(struct kobject *kobj,
1325                                        struct kobj_attribute *attr,
1326                                        char *buf)
1327{
1328        return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1329}
1330
1331static ssize_t fadump_register_show(struct kobject *kobj,
1332                                        struct kobj_attribute *attr,
1333                                        char *buf)
1334{
1335        return sprintf(buf, "%d\n", fw_dump.dump_registered);
1336}
1337
1338static ssize_t fadump_register_store(struct kobject *kobj,
1339                                        struct kobj_attribute *attr,
1340                                        const char *buf, size_t count)
1341{
1342        int ret = 0;
1343        int input = -1;
1344
1345        if (!fw_dump.fadump_enabled || fdm_active)
1346                return -EPERM;
1347
1348        if (kstrtoint(buf, 0, &input))
1349                return -EINVAL;
1350
1351        mutex_lock(&fadump_mutex);
1352
1353        switch (input) {
1354        case 0:
1355                if (fw_dump.dump_registered == 0) {
1356                        goto unlock_out;
1357                }
1358                /* Un-register Firmware-assisted dump */
1359                fadump_unregister_dump(&fdm);
1360                break;
1361        case 1:
1362                if (fw_dump.dump_registered == 1) {
1363                        ret = -EEXIST;
1364                        goto unlock_out;
1365                }
1366                /* Register Firmware-assisted dump */
1367                ret = register_fadump();
1368                break;
1369        default:
1370                ret = -EINVAL;
1371                break;
1372        }
1373
1374unlock_out:
1375        mutex_unlock(&fadump_mutex);
1376        return ret < 0 ? ret : count;
1377}
1378
1379static int fadump_region_show(struct seq_file *m, void *private)
1380{
1381        const struct fadump_mem_struct *fdm_ptr;
1382
1383        if (!fw_dump.fadump_enabled)
1384                return 0;
1385
1386        mutex_lock(&fadump_mutex);
1387        if (fdm_active)
1388                fdm_ptr = fdm_active;
1389        else {
1390                mutex_unlock(&fadump_mutex);
1391                fdm_ptr = &fdm;
1392        }
1393
1394        seq_printf(m,
1395                        "CPU : [%#016llx-%#016llx] %#llx bytes, "
1396                        "Dumped: %#llx\n",
1397                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1398                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1399                        be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1400                        be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1401                        be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
1402        seq_printf(m,
1403                        "HPTE: [%#016llx-%#016llx] %#llx bytes, "
1404                        "Dumped: %#llx\n",
1405                        be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1406                        be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1407                        be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1408                        be64_to_cpu(fdm_ptr->hpte_region.source_len),
1409                        be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
1410        seq_printf(m,
1411                        "DUMP: [%#016llx-%#016llx] %#llx bytes, "
1412                        "Dumped: %#llx\n",
1413                        be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1414                        be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1415                        be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1416                        be64_to_cpu(fdm_ptr->rmr_region.source_len),
1417                        be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
1418
1419        if (!fdm_active ||
1420                (fw_dump.reserve_dump_area_start ==
1421                be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
1422                goto out;
1423
1424        /* Dump is active. Show reserved memory region. */
1425        seq_printf(m,
1426                        "    : [%#016llx-%#016llx] %#llx bytes, "
1427                        "Dumped: %#llx\n",
1428                        (unsigned long long)fw_dump.reserve_dump_area_start,
1429                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1430                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1431                        fw_dump.reserve_dump_area_start,
1432                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1433                        fw_dump.reserve_dump_area_start);
1434out:
1435        if (fdm_active)
1436                mutex_unlock(&fadump_mutex);
1437        return 0;
1438}
1439
1440static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1441                                                0200, NULL,
1442                                                fadump_release_memory_store);
1443static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1444                                                0444, fadump_enabled_show,
1445                                                NULL);
1446static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1447                                                0644, fadump_register_show,
1448                                                fadump_register_store);
1449
1450static int fadump_region_open(struct inode *inode, struct file *file)
1451{
1452        return single_open(file, fadump_region_show, inode->i_private);
1453}
1454
1455static const struct file_operations fadump_region_fops = {
1456        .open    = fadump_region_open,
1457        .read    = seq_read,
1458        .llseek  = seq_lseek,
1459        .release = single_release,
1460};
1461
1462static void fadump_init_files(void)
1463{
1464        struct dentry *debugfs_file;
1465        int rc = 0;
1466
1467        rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1468        if (rc)
1469                printk(KERN_ERR "fadump: unable to create sysfs file"
1470                        " fadump_enabled (%d)\n", rc);
1471
1472        rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1473        if (rc)
1474                printk(KERN_ERR "fadump: unable to create sysfs file"
1475                        " fadump_registered (%d)\n", rc);
1476
1477        debugfs_file = debugfs_create_file("fadump_region", 0444,
1478                                        powerpc_debugfs_root, NULL,
1479                                        &fadump_region_fops);
1480        if (!debugfs_file)
1481                printk(KERN_ERR "fadump: unable to create debugfs file"
1482                                " fadump_region\n");
1483
1484        if (fw_dump.dump_active) {
1485                rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1486                if (rc)
1487                        printk(KERN_ERR "fadump: unable to create sysfs file"
1488                                " fadump_release_mem (%d)\n", rc);
1489        }
1490        return;
1491}
1492
1493/*
1494 * Prepare for firmware-assisted dump.
1495 */
1496int __init setup_fadump(void)
1497{
1498        if (!fw_dump.fadump_enabled)
1499                return 0;
1500
1501        if (!fw_dump.fadump_supported) {
1502                printk(KERN_ERR "Firmware-assisted dump is not supported on"
1503                        " this hardware\n");
1504                return 0;
1505        }
1506
1507        fadump_show_config();
1508        /*
1509         * If dump data is available then see if it is valid and prepare for
1510         * saving it to the disk.
1511         */
1512        if (fw_dump.dump_active) {
1513                /*
1514                 * if dump process fails then invalidate the registration
1515                 * and release memory before proceeding for re-registration.
1516                 */
1517                if (process_fadump(fdm_active) < 0)
1518                        fadump_invalidate_release_mem();
1519        }
1520        /* Initialize the kernel dump memory structure for FAD registration. */
1521        else if (fw_dump.reserve_dump_area_size)
1522                init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1523        fadump_init_files();
1524
1525        return 1;
1526}
1527subsys_initcall(setup_fadump);
1528