linux/arch/powerpc/kernel/setup_64.c
<<
>>
Prefs
   1/*
   2 * 
   3 * Common boot and setup code.
   4 *
   5 * Copyright (C) 2001 PPC64 Team, IBM Corp
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 */
  12
  13#include <linux/export.h>
  14#include <linux/string.h>
  15#include <linux/sched.h>
  16#include <linux/init.h>
  17#include <linux/kernel.h>
  18#include <linux/reboot.h>
  19#include <linux/delay.h>
  20#include <linux/initrd.h>
  21#include <linux/seq_file.h>
  22#include <linux/ioport.h>
  23#include <linux/console.h>
  24#include <linux/utsname.h>
  25#include <linux/tty.h>
  26#include <linux/root_dev.h>
  27#include <linux/notifier.h>
  28#include <linux/cpu.h>
  29#include <linux/unistd.h>
  30#include <linux/serial.h>
  31#include <linux/serial_8250.h>
  32#include <linux/bootmem.h>
  33#include <linux/pci.h>
  34#include <linux/lockdep.h>
  35#include <linux/memblock.h>
  36#include <linux/memory.h>
  37#include <linux/nmi.h>
  38
  39#include <asm/debugfs.h>
  40#include <asm/io.h>
  41#include <asm/kdump.h>
  42#include <asm/prom.h>
  43#include <asm/processor.h>
  44#include <asm/pgtable.h>
  45#include <asm/smp.h>
  46#include <asm/elf.h>
  47#include <asm/machdep.h>
  48#include <asm/paca.h>
  49#include <asm/time.h>
  50#include <asm/cputable.h>
  51#include <asm/dt_cpu_ftrs.h>
  52#include <asm/sections.h>
  53#include <asm/btext.h>
  54#include <asm/nvram.h>
  55#include <asm/setup.h>
  56#include <asm/rtas.h>
  57#include <asm/iommu.h>
  58#include <asm/serial.h>
  59#include <asm/cache.h>
  60#include <asm/page.h>
  61#include <asm/mmu.h>
  62#include <asm/firmware.h>
  63#include <asm/xmon.h>
  64#include <asm/udbg.h>
  65#include <asm/kexec.h>
  66#include <asm/code-patching.h>
  67#include <asm/livepatch.h>
  68#include <asm/opal.h>
  69#include <asm/cputhreads.h>
  70#include <asm/hw_irq.h>
  71
  72#include "setup.h"
  73
  74#ifdef DEBUG
  75#define DBG(fmt...) udbg_printf(fmt)
  76#else
  77#define DBG(fmt...)
  78#endif
  79
  80int spinning_secondaries;
  81u64 ppc64_pft_size;
  82
  83struct ppc64_caches ppc64_caches = {
  84        .l1d = {
  85                .block_size = 0x40,
  86                .log_block_size = 6,
  87        },
  88        .l1i = {
  89                .block_size = 0x40,
  90                .log_block_size = 6
  91        },
  92};
  93EXPORT_SYMBOL_GPL(ppc64_caches);
  94
  95#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
  96void __init setup_tlb_core_data(void)
  97{
  98        int cpu;
  99
 100        BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
 101
 102        for_each_possible_cpu(cpu) {
 103                int first = cpu_first_thread_sibling(cpu);
 104
 105                /*
 106                 * If we boot via kdump on a non-primary thread,
 107                 * make sure we point at the thread that actually
 108                 * set up this TLB.
 109                 */
 110                if (cpu_first_thread_sibling(boot_cpuid) == first)
 111                        first = boot_cpuid;
 112
 113                paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
 114
 115                /*
 116                 * If we have threads, we need either tlbsrx.
 117                 * or e6500 tablewalk mode, or else TLB handlers
 118                 * will be racy and could produce duplicate entries.
 119                 * Should we panic instead?
 120                 */
 121                WARN_ONCE(smt_enabled_at_boot >= 2 &&
 122                          !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
 123                          book3e_htw_mode != PPC_HTW_E6500,
 124                          "%s: unsupported MMU configuration\n", __func__);
 125        }
 126}
 127#endif
 128
 129#ifdef CONFIG_SMP
 130
 131static char *smt_enabled_cmdline;
 132
 133/* Look for ibm,smt-enabled OF option */
 134void __init check_smt_enabled(void)
 135{
 136        struct device_node *dn;
 137        const char *smt_option;
 138
 139        /* Default to enabling all threads */
 140        smt_enabled_at_boot = threads_per_core;
 141
 142        /* Allow the command line to overrule the OF option */
 143        if (smt_enabled_cmdline) {
 144                if (!strcmp(smt_enabled_cmdline, "on"))
 145                        smt_enabled_at_boot = threads_per_core;
 146                else if (!strcmp(smt_enabled_cmdline, "off"))
 147                        smt_enabled_at_boot = 0;
 148                else {
 149                        int smt;
 150                        int rc;
 151
 152                        rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
 153                        if (!rc)
 154                                smt_enabled_at_boot =
 155                                        min(threads_per_core, smt);
 156                }
 157        } else {
 158                dn = of_find_node_by_path("/options");
 159                if (dn) {
 160                        smt_option = of_get_property(dn, "ibm,smt-enabled",
 161                                                     NULL);
 162
 163                        if (smt_option) {
 164                                if (!strcmp(smt_option, "on"))
 165                                        smt_enabled_at_boot = threads_per_core;
 166                                else if (!strcmp(smt_option, "off"))
 167                                        smt_enabled_at_boot = 0;
 168                        }
 169
 170                        of_node_put(dn);
 171                }
 172        }
 173}
 174
 175/* Look for smt-enabled= cmdline option */
 176static int __init early_smt_enabled(char *p)
 177{
 178        smt_enabled_cmdline = p;
 179        return 0;
 180}
 181early_param("smt-enabled", early_smt_enabled);
 182
 183#endif /* CONFIG_SMP */
 184
 185/** Fix up paca fields required for the boot cpu */
 186static void __init fixup_boot_paca(void)
 187{
 188        /* The boot cpu is started */
 189        get_paca()->cpu_start = 1;
 190        /* Allow percpu accesses to work until we setup percpu data */
 191        get_paca()->data_offset = 0;
 192        /* Mark interrupts disabled in PACA */
 193        irq_soft_mask_set(IRQS_DISABLED);
 194}
 195
 196static void __init configure_exceptions(void)
 197{
 198        /*
 199         * Setup the trampolines from the lowmem exception vectors
 200         * to the kdump kernel when not using a relocatable kernel.
 201         */
 202        setup_kdump_trampoline();
 203
 204        /* Under a PAPR hypervisor, we need hypercalls */
 205        if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
 206                /* Enable AIL if possible */
 207                pseries_enable_reloc_on_exc();
 208
 209                /*
 210                 * Tell the hypervisor that we want our exceptions to
 211                 * be taken in little endian mode.
 212                 *
 213                 * We don't call this for big endian as our calling convention
 214                 * makes us always enter in BE, and the call may fail under
 215                 * some circumstances with kdump.
 216                 */
 217#ifdef __LITTLE_ENDIAN__
 218                pseries_little_endian_exceptions();
 219#endif
 220        } else {
 221                /* Set endian mode using OPAL */
 222                if (firmware_has_feature(FW_FEATURE_OPAL))
 223                        opal_configure_cores();
 224
 225                /* AIL on native is done in cpu_ready_for_interrupts() */
 226        }
 227}
 228
 229static void cpu_ready_for_interrupts(void)
 230{
 231        /*
 232         * Enable AIL if supported, and we are in hypervisor mode. This
 233         * is called once for every processor.
 234         *
 235         * If we are not in hypervisor mode the job is done once for
 236         * the whole partition in configure_exceptions().
 237         */
 238        if (cpu_has_feature(CPU_FTR_HVMODE) &&
 239            cpu_has_feature(CPU_FTR_ARCH_207S)) {
 240                unsigned long lpcr = mfspr(SPRN_LPCR);
 241                mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
 242        }
 243
 244        /*
 245         * Fixup HFSCR:TM based on CPU features. The bit is set by our
 246         * early asm init because at that point we haven't updated our
 247         * CPU features from firmware and device-tree. Here we have,
 248         * so let's do it.
 249         */
 250        if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
 251                mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
 252
 253        /* Set IR and DR in PACA MSR */
 254        get_paca()->kernel_msr = MSR_KERNEL;
 255}
 256
 257unsigned long spr_default_dscr = 0;
 258
 259void __init record_spr_defaults(void)
 260{
 261        if (early_cpu_has_feature(CPU_FTR_DSCR))
 262                spr_default_dscr = mfspr(SPRN_DSCR);
 263}
 264
 265/*
 266 * Early initialization entry point. This is called by head.S
 267 * with MMU translation disabled. We rely on the "feature" of
 268 * the CPU that ignores the top 2 bits of the address in real
 269 * mode so we can access kernel globals normally provided we
 270 * only toy with things in the RMO region. From here, we do
 271 * some early parsing of the device-tree to setup out MEMBLOCK
 272 * data structures, and allocate & initialize the hash table
 273 * and segment tables so we can start running with translation
 274 * enabled.
 275 *
 276 * It is this function which will call the probe() callback of
 277 * the various platform types and copy the matching one to the
 278 * global ppc_md structure. Your platform can eventually do
 279 * some very early initializations from the probe() routine, but
 280 * this is not recommended, be very careful as, for example, the
 281 * device-tree is not accessible via normal means at this point.
 282 */
 283
 284void __init early_setup(unsigned long dt_ptr)
 285{
 286        static __initdata struct paca_struct boot_paca;
 287
 288        /* -------- printk is _NOT_ safe to use here ! ------- */
 289
 290        /* Try new device tree based feature discovery ... */
 291        if (!dt_cpu_ftrs_init(__va(dt_ptr)))
 292                /* Otherwise use the old style CPU table */
 293                identify_cpu(0, mfspr(SPRN_PVR));
 294
 295        /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
 296        initialise_paca(&boot_paca, 0);
 297        setup_paca(&boot_paca);
 298        fixup_boot_paca();
 299
 300        /* -------- printk is now safe to use ------- */
 301
 302        /* Enable early debugging if any specified (see udbg.h) */
 303        udbg_early_init();
 304
 305        DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
 306
 307        /*
 308         * Do early initialization using the flattened device
 309         * tree, such as retrieving the physical memory map or
 310         * calculating/retrieving the hash table size.
 311         */
 312        early_init_devtree(__va(dt_ptr));
 313
 314        /* Now we know the logical id of our boot cpu, setup the paca. */
 315        if (boot_cpuid != 0) {
 316                /* Poison paca_ptrs[0] again if it's not the boot cpu */
 317                memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
 318        }
 319        setup_paca(paca_ptrs[boot_cpuid]);
 320        fixup_boot_paca();
 321
 322        /*
 323         * Configure exception handlers. This include setting up trampolines
 324         * if needed, setting exception endian mode, etc...
 325         */
 326        configure_exceptions();
 327
 328        /* Apply all the dynamic patching */
 329        apply_feature_fixups();
 330        setup_feature_keys();
 331
 332        /* Initialize the hash table or TLB handling */
 333        early_init_mmu();
 334
 335        /*
 336         * After firmware and early platform setup code has set things up,
 337         * we note the SPR values for configurable control/performance
 338         * registers, and use those as initial defaults.
 339         */
 340        record_spr_defaults();
 341
 342        /*
 343         * At this point, we can let interrupts switch to virtual mode
 344         * (the MMU has been setup), so adjust the MSR in the PACA to
 345         * have IR and DR set and enable AIL if it exists
 346         */
 347        cpu_ready_for_interrupts();
 348
 349        /*
 350         * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
 351         * will only actually get enabled on the boot cpu much later once
 352         * ftrace itself has been initialized.
 353         */
 354        this_cpu_enable_ftrace();
 355
 356        DBG(" <- early_setup()\n");
 357
 358#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
 359        /*
 360         * This needs to be done *last* (after the above DBG() even)
 361         *
 362         * Right after we return from this function, we turn on the MMU
 363         * which means the real-mode access trick that btext does will
 364         * no longer work, it needs to switch to using a real MMU
 365         * mapping. This call will ensure that it does
 366         */
 367        btext_map();
 368#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
 369}
 370
 371#ifdef CONFIG_SMP
 372void early_setup_secondary(void)
 373{
 374        /* Mark interrupts disabled in PACA */
 375        irq_soft_mask_set(IRQS_DISABLED);
 376
 377        /* Initialize the hash table or TLB handling */
 378        early_init_mmu_secondary();
 379
 380        /*
 381         * At this point, we can let interrupts switch to virtual mode
 382         * (the MMU has been setup), so adjust the MSR in the PACA to
 383         * have IR and DR set.
 384         */
 385        cpu_ready_for_interrupts();
 386}
 387
 388#endif /* CONFIG_SMP */
 389
 390void panic_smp_self_stop(void)
 391{
 392        hard_irq_disable();
 393        spin_begin();
 394        while (1)
 395                spin_cpu_relax();
 396}
 397
 398#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
 399static bool use_spinloop(void)
 400{
 401        if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
 402                /*
 403                 * See comments in head_64.S -- not all platforms insert
 404                 * secondaries at __secondary_hold and wait at the spin
 405                 * loop.
 406                 */
 407                if (firmware_has_feature(FW_FEATURE_OPAL))
 408                        return false;
 409                return true;
 410        }
 411
 412        /*
 413         * When book3e boots from kexec, the ePAPR spin table does
 414         * not get used.
 415         */
 416        return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
 417}
 418
 419void smp_release_cpus(void)
 420{
 421        unsigned long *ptr;
 422        int i;
 423
 424        if (!use_spinloop())
 425                return;
 426
 427        DBG(" -> smp_release_cpus()\n");
 428
 429        /* All secondary cpus are spinning on a common spinloop, release them
 430         * all now so they can start to spin on their individual paca
 431         * spinloops. For non SMP kernels, the secondary cpus never get out
 432         * of the common spinloop.
 433         */
 434
 435        ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
 436                        - PHYSICAL_START);
 437        *ptr = ppc_function_entry(generic_secondary_smp_init);
 438
 439        /* And wait a bit for them to catch up */
 440        for (i = 0; i < 100000; i++) {
 441                mb();
 442                HMT_low();
 443                if (spinning_secondaries == 0)
 444                        break;
 445                udelay(1);
 446        }
 447        DBG("spinning_secondaries = %d\n", spinning_secondaries);
 448
 449        DBG(" <- smp_release_cpus()\n");
 450}
 451#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
 452
 453/*
 454 * Initialize some remaining members of the ppc64_caches and systemcfg
 455 * structures
 456 * (at least until we get rid of them completely). This is mostly some
 457 * cache informations about the CPU that will be used by cache flush
 458 * routines and/or provided to userland
 459 */
 460
 461static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
 462                            u32 bsize, u32 sets)
 463{
 464        info->size = size;
 465        info->sets = sets;
 466        info->line_size = lsize;
 467        info->block_size = bsize;
 468        info->log_block_size = __ilog2(bsize);
 469        if (bsize)
 470                info->blocks_per_page = PAGE_SIZE / bsize;
 471        else
 472                info->blocks_per_page = 0;
 473
 474        if (sets == 0)
 475                info->assoc = 0xffff;
 476        else
 477                info->assoc = size / (sets * lsize);
 478}
 479
 480static bool __init parse_cache_info(struct device_node *np,
 481                                    bool icache,
 482                                    struct ppc_cache_info *info)
 483{
 484        static const char *ipropnames[] __initdata = {
 485                "i-cache-size",
 486                "i-cache-sets",
 487                "i-cache-block-size",
 488                "i-cache-line-size",
 489        };
 490        static const char *dpropnames[] __initdata = {
 491                "d-cache-size",
 492                "d-cache-sets",
 493                "d-cache-block-size",
 494                "d-cache-line-size",
 495        };
 496        const char **propnames = icache ? ipropnames : dpropnames;
 497        const __be32 *sizep, *lsizep, *bsizep, *setsp;
 498        u32 size, lsize, bsize, sets;
 499        bool success = true;
 500
 501        size = 0;
 502        sets = -1u;
 503        lsize = bsize = cur_cpu_spec->dcache_bsize;
 504        sizep = of_get_property(np, propnames[0], NULL);
 505        if (sizep != NULL)
 506                size = be32_to_cpu(*sizep);
 507        setsp = of_get_property(np, propnames[1], NULL);
 508        if (setsp != NULL)
 509                sets = be32_to_cpu(*setsp);
 510        bsizep = of_get_property(np, propnames[2], NULL);
 511        lsizep = of_get_property(np, propnames[3], NULL);
 512        if (bsizep == NULL)
 513                bsizep = lsizep;
 514        if (lsizep != NULL)
 515                lsize = be32_to_cpu(*lsizep);
 516        if (bsizep != NULL)
 517                bsize = be32_to_cpu(*bsizep);
 518        if (sizep == NULL || bsizep == NULL || lsizep == NULL)
 519                success = false;
 520
 521        /*
 522         * OF is weird .. it represents fully associative caches
 523         * as "1 way" which doesn't make much sense and doesn't
 524         * leave room for direct mapped. We'll assume that 0
 525         * in OF means direct mapped for that reason.
 526         */
 527        if (sets == 1)
 528                sets = 0;
 529        else if (sets == 0)
 530                sets = 1;
 531
 532        init_cache_info(info, size, lsize, bsize, sets);
 533
 534        return success;
 535}
 536
 537void __init initialize_cache_info(void)
 538{
 539        struct device_node *cpu = NULL, *l2, *l3 = NULL;
 540        u32 pvr;
 541
 542        DBG(" -> initialize_cache_info()\n");
 543
 544        /*
 545         * All shipping POWER8 machines have a firmware bug that
 546         * puts incorrect information in the device-tree. This will
 547         * be (hopefully) fixed for future chips but for now hard
 548         * code the values if we are running on one of these
 549         */
 550        pvr = PVR_VER(mfspr(SPRN_PVR));
 551        if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
 552            pvr == PVR_POWER8NVL) {
 553                                                /* size    lsize   blk  sets */
 554                init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
 555                init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
 556                init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
 557                init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
 558        } else
 559                cpu = of_find_node_by_type(NULL, "cpu");
 560
 561        /*
 562         * We're assuming *all* of the CPUs have the same
 563         * d-cache and i-cache sizes... -Peter
 564         */
 565        if (cpu) {
 566                if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
 567                        DBG("Argh, can't find dcache properties !\n");
 568
 569                if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
 570                        DBG("Argh, can't find icache properties !\n");
 571
 572                /*
 573                 * Try to find the L2 and L3 if any. Assume they are
 574                 * unified and use the D-side properties.
 575                 */
 576                l2 = of_find_next_cache_node(cpu);
 577                of_node_put(cpu);
 578                if (l2) {
 579                        parse_cache_info(l2, false, &ppc64_caches.l2);
 580                        l3 = of_find_next_cache_node(l2);
 581                        of_node_put(l2);
 582                }
 583                if (l3) {
 584                        parse_cache_info(l3, false, &ppc64_caches.l3);
 585                        of_node_put(l3);
 586                }
 587        }
 588
 589        /* For use by binfmt_elf */
 590        dcache_bsize = ppc64_caches.l1d.block_size;
 591        icache_bsize = ppc64_caches.l1i.block_size;
 592
 593        cur_cpu_spec->dcache_bsize = dcache_bsize;
 594        cur_cpu_spec->icache_bsize = icache_bsize;
 595
 596        DBG(" <- initialize_cache_info()\n");
 597}
 598
 599/*
 600 * This returns the limit below which memory accesses to the linear
 601 * mapping are guarnateed not to cause an architectural exception (e.g.,
 602 * TLB or SLB miss fault).
 603 *
 604 * This is used to allocate PACAs and various interrupt stacks that
 605 * that are accessed early in interrupt handlers that must not cause
 606 * re-entrant interrupts.
 607 */
 608__init u64 ppc64_bolted_size(void)
 609{
 610#ifdef CONFIG_PPC_BOOK3E
 611        /* Freescale BookE bolts the entire linear mapping */
 612        /* XXX: BookE ppc64_rma_limit setup seems to disagree? */
 613        if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
 614                return linear_map_top;
 615        /* Other BookE, we assume the first GB is bolted */
 616        return 1ul << 30;
 617#else
 618        /* BookS radix, does not take faults on linear mapping */
 619        if (early_radix_enabled())
 620                return ULONG_MAX;
 621
 622        /* BookS hash, the first segment is bolted */
 623        if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
 624                return 1UL << SID_SHIFT_1T;
 625        return 1UL << SID_SHIFT;
 626#endif
 627}
 628
 629static void *__init alloc_stack(unsigned long limit, int cpu)
 630{
 631        unsigned long pa;
 632
 633        pa = memblock_alloc_base_nid(THREAD_SIZE, THREAD_SIZE, limit,
 634                                        early_cpu_to_node(cpu), MEMBLOCK_NONE);
 635        if (!pa) {
 636                pa = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
 637                if (!pa)
 638                        panic("cannot allocate stacks");
 639        }
 640
 641        return __va(pa);
 642}
 643
 644void __init irqstack_early_init(void)
 645{
 646        u64 limit = ppc64_bolted_size();
 647        unsigned int i;
 648
 649        /*
 650         * Interrupt stacks must be in the first segment since we
 651         * cannot afford to take SLB misses on them. They are not
 652         * accessed in realmode.
 653         */
 654        for_each_possible_cpu(i) {
 655                softirq_ctx[i] = alloc_stack(limit, i);
 656                hardirq_ctx[i] = alloc_stack(limit, i);
 657        }
 658}
 659
 660#ifdef CONFIG_PPC_BOOK3E
 661void __init exc_lvl_early_init(void)
 662{
 663        unsigned int i;
 664
 665        for_each_possible_cpu(i) {
 666                void *sp;
 667
 668                sp = alloc_stack(ULONG_MAX, i);
 669                critirq_ctx[i] = sp;
 670                paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
 671
 672                sp = alloc_stack(ULONG_MAX, i);
 673                dbgirq_ctx[i] = sp;
 674                paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
 675
 676                sp = alloc_stack(ULONG_MAX, i);
 677                mcheckirq_ctx[i] = sp;
 678                paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
 679        }
 680
 681        if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
 682                patch_exception(0x040, exc_debug_debug_book3e);
 683}
 684#endif
 685
 686/*
 687 * Emergency stacks are used for a range of things, from asynchronous
 688 * NMIs (system reset, machine check) to synchronous, process context.
 689 * We set preempt_count to zero, even though that isn't necessarily correct. To
 690 * get the right value we'd need to copy it from the previous thread_info, but
 691 * doing that might fault causing more problems.
 692 * TODO: what to do with accounting?
 693 */
 694static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
 695{
 696        ti->task = NULL;
 697        ti->cpu = cpu;
 698        ti->preempt_count = 0;
 699        ti->local_flags = 0;
 700        ti->flags = 0;
 701        klp_init_thread_info(ti);
 702}
 703
 704/*
 705 * Stack space used when we detect a bad kernel stack pointer, and
 706 * early in SMP boots before relocation is enabled. Exclusive emergency
 707 * stack for machine checks.
 708 */
 709void __init emergency_stack_init(void)
 710{
 711        u64 limit;
 712        unsigned int i;
 713
 714        /*
 715         * Emergency stacks must be under 256MB, we cannot afford to take
 716         * SLB misses on them. The ABI also requires them to be 128-byte
 717         * aligned.
 718         *
 719         * Since we use these as temporary stacks during secondary CPU
 720         * bringup, machine check, system reset, and HMI, we need to get
 721         * at them in real mode. This means they must also be within the RMO
 722         * region.
 723         *
 724         * The IRQ stacks allocated elsewhere in this file are zeroed and
 725         * initialized in kernel/irq.c. These are initialized here in order
 726         * to have emergency stacks available as early as possible.
 727         */
 728        limit = min(ppc64_bolted_size(), ppc64_rma_size);
 729
 730        for_each_possible_cpu(i) {
 731                struct thread_info *ti;
 732
 733                ti = alloc_stack(limit, i);
 734                memset(ti, 0, THREAD_SIZE);
 735                emerg_stack_init_thread_info(ti, i);
 736                paca_ptrs[i]->emergency_sp = (void *)ti + THREAD_SIZE;
 737
 738#ifdef CONFIG_PPC_BOOK3S_64
 739                /* emergency stack for NMI exception handling. */
 740                ti = alloc_stack(limit, i);
 741                memset(ti, 0, THREAD_SIZE);
 742                emerg_stack_init_thread_info(ti, i);
 743                paca_ptrs[i]->nmi_emergency_sp = (void *)ti + THREAD_SIZE;
 744
 745                /* emergency stack for machine check exception handling. */
 746                ti = alloc_stack(limit, i);
 747                memset(ti, 0, THREAD_SIZE);
 748                emerg_stack_init_thread_info(ti, i);
 749                paca_ptrs[i]->mc_emergency_sp = (void *)ti + THREAD_SIZE;
 750#endif
 751        }
 752}
 753
 754#ifdef CONFIG_SMP
 755#define PCPU_DYN_SIZE           ()
 756
 757static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
 758{
 759        return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
 760                                    __pa(MAX_DMA_ADDRESS));
 761}
 762
 763static void __init pcpu_fc_free(void *ptr, size_t size)
 764{
 765        free_bootmem(__pa(ptr), size);
 766}
 767
 768static int pcpu_cpu_distance(unsigned int from, unsigned int to)
 769{
 770        if (early_cpu_to_node(from) == early_cpu_to_node(to))
 771                return LOCAL_DISTANCE;
 772        else
 773                return REMOTE_DISTANCE;
 774}
 775
 776unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
 777EXPORT_SYMBOL(__per_cpu_offset);
 778
 779void __init setup_per_cpu_areas(void)
 780{
 781        const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
 782        size_t atom_size;
 783        unsigned long delta;
 784        unsigned int cpu;
 785        int rc;
 786
 787        /*
 788         * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
 789         * to group units.  For larger mappings, use 1M atom which
 790         * should be large enough to contain a number of units.
 791         */
 792        if (mmu_linear_psize == MMU_PAGE_4K)
 793                atom_size = PAGE_SIZE;
 794        else
 795                atom_size = 1 << 20;
 796
 797        rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
 798                                    pcpu_fc_alloc, pcpu_fc_free);
 799        if (rc < 0)
 800                panic("cannot initialize percpu area (err=%d)", rc);
 801
 802        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
 803        for_each_possible_cpu(cpu) {
 804                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
 805                paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
 806        }
 807}
 808#endif
 809
 810#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 811unsigned long memory_block_size_bytes(void)
 812{
 813        if (ppc_md.memory_block_size)
 814                return ppc_md.memory_block_size();
 815
 816        return MIN_MEMORY_BLOCK_SIZE;
 817}
 818#endif
 819
 820#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
 821struct ppc_pci_io ppc_pci_io;
 822EXPORT_SYMBOL(ppc_pci_io);
 823#endif
 824
 825#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
 826u64 hw_nmi_get_sample_period(int watchdog_thresh)
 827{
 828        return ppc_proc_freq * watchdog_thresh;
 829}
 830#endif
 831
 832/*
 833 * The perf based hardlockup detector breaks PMU event based branches, so
 834 * disable it by default. Book3S has a soft-nmi hardlockup detector based
 835 * on the decrementer interrupt, so it does not suffer from this problem.
 836 *
 837 * It is likely to get false positives in VM guests, so disable it there
 838 * by default too.
 839 */
 840static int __init disable_hardlockup_detector(void)
 841{
 842#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
 843        hardlockup_detector_disable();
 844#else
 845        if (firmware_has_feature(FW_FEATURE_LPAR))
 846                hardlockup_detector_disable();
 847#endif
 848
 849        return 0;
 850}
 851early_initcall(disable_hardlockup_detector);
 852
 853#ifdef CONFIG_PPC_BOOK3S_64
 854static enum l1d_flush_type enabled_flush_types;
 855static void *l1d_flush_fallback_area;
 856static bool no_rfi_flush;
 857bool rfi_flush;
 858
 859static int __init handle_no_rfi_flush(char *p)
 860{
 861        pr_info("rfi-flush: disabled on command line.");
 862        no_rfi_flush = true;
 863        return 0;
 864}
 865early_param("no_rfi_flush", handle_no_rfi_flush);
 866
 867/*
 868 * The RFI flush is not KPTI, but because users will see doco that says to use
 869 * nopti we hijack that option here to also disable the RFI flush.
 870 */
 871static int __init handle_no_pti(char *p)
 872{
 873        pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
 874        handle_no_rfi_flush(NULL);
 875        return 0;
 876}
 877early_param("nopti", handle_no_pti);
 878
 879static void do_nothing(void *unused)
 880{
 881        /*
 882         * We don't need to do the flush explicitly, just enter+exit kernel is
 883         * sufficient, the RFI exit handlers will do the right thing.
 884         */
 885}
 886
 887void rfi_flush_enable(bool enable)
 888{
 889        if (enable) {
 890                do_rfi_flush_fixups(enabled_flush_types);
 891                on_each_cpu(do_nothing, NULL, 1);
 892        } else
 893                do_rfi_flush_fixups(L1D_FLUSH_NONE);
 894
 895        rfi_flush = enable;
 896}
 897
 898static void __ref init_fallback_flush(void)
 899{
 900        u64 l1d_size, limit;
 901        int cpu;
 902
 903        /* Only allocate the fallback flush area once (at boot time). */
 904        if (l1d_flush_fallback_area)
 905                return;
 906
 907        l1d_size = ppc64_caches.l1d.size;
 908
 909        /*
 910         * If there is no d-cache-size property in the device tree, l1d_size
 911         * could be zero. That leads to the loop in the asm wrapping around to
 912         * 2^64-1, and then walking off the end of the fallback area and
 913         * eventually causing a page fault which is fatal. Just default to
 914         * something vaguely sane.
 915         */
 916        if (!l1d_size)
 917                l1d_size = (64 * 1024);
 918
 919        limit = min(ppc64_bolted_size(), ppc64_rma_size);
 920
 921        /*
 922         * Align to L1d size, and size it at 2x L1d size, to catch possible
 923         * hardware prefetch runoff. We don't have a recipe for load patterns to
 924         * reliably avoid the prefetcher.
 925         */
 926        l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
 927        memset(l1d_flush_fallback_area, 0, l1d_size * 2);
 928
 929        for_each_possible_cpu(cpu) {
 930                struct paca_struct *paca = paca_ptrs[cpu];
 931                paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
 932                paca->l1d_flush_size = l1d_size;
 933        }
 934}
 935
 936void setup_rfi_flush(enum l1d_flush_type types, bool enable)
 937{
 938        if (types & L1D_FLUSH_FALLBACK) {
 939                pr_info("rfi-flush: fallback displacement flush available\n");
 940                init_fallback_flush();
 941        }
 942
 943        if (types & L1D_FLUSH_ORI)
 944                pr_info("rfi-flush: ori type flush available\n");
 945
 946        if (types & L1D_FLUSH_MTTRIG)
 947                pr_info("rfi-flush: mttrig type flush available\n");
 948
 949        enabled_flush_types = types;
 950
 951        if (!no_rfi_flush)
 952                rfi_flush_enable(enable);
 953}
 954
 955#ifdef CONFIG_DEBUG_FS
 956static int rfi_flush_set(void *data, u64 val)
 957{
 958        bool enable;
 959
 960        if (val == 1)
 961                enable = true;
 962        else if (val == 0)
 963                enable = false;
 964        else
 965                return -EINVAL;
 966
 967        /* Only do anything if we're changing state */
 968        if (enable != rfi_flush)
 969                rfi_flush_enable(enable);
 970
 971        return 0;
 972}
 973
 974static int rfi_flush_get(void *data, u64 *val)
 975{
 976        *val = rfi_flush ? 1 : 0;
 977        return 0;
 978}
 979
 980DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
 981
 982static __init int rfi_flush_debugfs_init(void)
 983{
 984        debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
 985        return 0;
 986}
 987device_initcall(rfi_flush_debugfs_init);
 988#endif
 989#endif /* CONFIG_PPC_BOOK3S_64 */
 990