linux/arch/powerpc/kvm/book3s_hv.c
<<
>>
Prefs
   1/*
   2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
   4 *
   5 * Authors:
   6 *    Paul Mackerras <paulus@au1.ibm.com>
   7 *    Alexander Graf <agraf@suse.de>
   8 *    Kevin Wolf <mail@kevin-wolf.de>
   9 *
  10 * Description: KVM functions specific to running on Book 3S
  11 * processors in hypervisor mode (specifically POWER7 and later).
  12 *
  13 * This file is derived from arch/powerpc/kvm/book3s.c,
  14 * by Alexander Graf <agraf@suse.de>.
  15 *
  16 * This program is free software; you can redistribute it and/or modify
  17 * it under the terms of the GNU General Public License, version 2, as
  18 * published by the Free Software Foundation.
  19 */
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kernel.h>
  23#include <linux/err.h>
  24#include <linux/slab.h>
  25#include <linux/preempt.h>
  26#include <linux/sched/signal.h>
  27#include <linux/sched/stat.h>
  28#include <linux/delay.h>
  29#include <linux/export.h>
  30#include <linux/fs.h>
  31#include <linux/anon_inodes.h>
  32#include <linux/cpu.h>
  33#include <linux/cpumask.h>
  34#include <linux/spinlock.h>
  35#include <linux/page-flags.h>
  36#include <linux/srcu.h>
  37#include <linux/miscdevice.h>
  38#include <linux/debugfs.h>
  39#include <linux/gfp.h>
  40#include <linux/vmalloc.h>
  41#include <linux/highmem.h>
  42#include <linux/hugetlb.h>
  43#include <linux/kvm_irqfd.h>
  44#include <linux/irqbypass.h>
  45#include <linux/module.h>
  46#include <linux/compiler.h>
  47#include <linux/of.h>
  48
  49#include <asm/reg.h>
  50#include <asm/ppc-opcode.h>
  51#include <asm/asm-prototypes.h>
  52#include <asm/debug.h>
  53#include <asm/disassemble.h>
  54#include <asm/cputable.h>
  55#include <asm/cacheflush.h>
  56#include <asm/tlbflush.h>
  57#include <linux/uaccess.h>
  58#include <asm/io.h>
  59#include <asm/kvm_ppc.h>
  60#include <asm/kvm_book3s.h>
  61#include <asm/mmu_context.h>
  62#include <asm/lppaca.h>
  63#include <asm/processor.h>
  64#include <asm/cputhreads.h>
  65#include <asm/page.h>
  66#include <asm/hvcall.h>
  67#include <asm/switch_to.h>
  68#include <asm/smp.h>
  69#include <asm/dbell.h>
  70#include <asm/hmi.h>
  71#include <asm/pnv-pci.h>
  72#include <asm/mmu.h>
  73#include <asm/opal.h>
  74#include <asm/xics.h>
  75#include <asm/xive.h>
  76
  77#include "book3s.h"
  78
  79#define CREATE_TRACE_POINTS
  80#include "trace_hv.h"
  81
  82/* #define EXIT_DEBUG */
  83/* #define EXIT_DEBUG_SIMPLE */
  84/* #define EXIT_DEBUG_INT */
  85
  86/* Used to indicate that a guest page fault needs to be handled */
  87#define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
  88/* Used to indicate that a guest passthrough interrupt needs to be handled */
  89#define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
  90
  91/* Used as a "null" value for timebase values */
  92#define TB_NIL  (~(u64)0)
  93
  94static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
  95
  96static int dynamic_mt_modes = 6;
  97module_param(dynamic_mt_modes, int, 0644);
  98MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
  99static int target_smt_mode;
 100module_param(target_smt_mode, int, 0644);
 101MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
 102
 103static bool indep_threads_mode = true;
 104module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
 105MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
 106
 107#ifdef CONFIG_KVM_XICS
 108static struct kernel_param_ops module_param_ops = {
 109        .set = param_set_int,
 110        .get = param_get_int,
 111};
 112
 113module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
 114MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
 115
 116module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
 117MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
 118#endif
 119
 120/* If set, the threads on each CPU core have to be in the same MMU mode */
 121static bool no_mixing_hpt_and_radix;
 122
 123static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
 124static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
 125
 126/*
 127 * RWMR values for POWER8.  These control the rate at which PURR
 128 * and SPURR count and should be set according to the number of
 129 * online threads in the vcore being run.
 130 */
 131#define RWMR_RPA_P8_1THREAD     0x164520C62609AECA
 132#define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9
 133#define RWMR_RPA_P8_3THREAD     0x164520C62609AECA
 134#define RWMR_RPA_P8_4THREAD     0x199A421245058DA9
 135#define RWMR_RPA_P8_5THREAD     0x164520C62609AECA
 136#define RWMR_RPA_P8_6THREAD     0x164520C62609AECA
 137#define RWMR_RPA_P8_7THREAD     0x164520C62609AECA
 138#define RWMR_RPA_P8_8THREAD     0x164520C62609AECA
 139
 140static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
 141        RWMR_RPA_P8_1THREAD,
 142        RWMR_RPA_P8_1THREAD,
 143        RWMR_RPA_P8_2THREAD,
 144        RWMR_RPA_P8_3THREAD,
 145        RWMR_RPA_P8_4THREAD,
 146        RWMR_RPA_P8_5THREAD,
 147        RWMR_RPA_P8_6THREAD,
 148        RWMR_RPA_P8_7THREAD,
 149        RWMR_RPA_P8_8THREAD,
 150};
 151
 152static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
 153                int *ip)
 154{
 155        int i = *ip;
 156        struct kvm_vcpu *vcpu;
 157
 158        while (++i < MAX_SMT_THREADS) {
 159                vcpu = READ_ONCE(vc->runnable_threads[i]);
 160                if (vcpu) {
 161                        *ip = i;
 162                        return vcpu;
 163                }
 164        }
 165        return NULL;
 166}
 167
 168/* Used to traverse the list of runnable threads for a given vcore */
 169#define for_each_runnable_thread(i, vcpu, vc) \
 170        for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
 171
 172static bool kvmppc_ipi_thread(int cpu)
 173{
 174        unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
 175
 176        /* On POWER9 we can use msgsnd to IPI any cpu */
 177        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 178                msg |= get_hard_smp_processor_id(cpu);
 179                smp_mb();
 180                __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
 181                return true;
 182        }
 183
 184        /* On POWER8 for IPIs to threads in the same core, use msgsnd */
 185        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
 186                preempt_disable();
 187                if (cpu_first_thread_sibling(cpu) ==
 188                    cpu_first_thread_sibling(smp_processor_id())) {
 189                        msg |= cpu_thread_in_core(cpu);
 190                        smp_mb();
 191                        __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
 192                        preempt_enable();
 193                        return true;
 194                }
 195                preempt_enable();
 196        }
 197
 198#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
 199        if (cpu >= 0 && cpu < nr_cpu_ids) {
 200                if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
 201                        xics_wake_cpu(cpu);
 202                        return true;
 203                }
 204                opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
 205                return true;
 206        }
 207#endif
 208
 209        return false;
 210}
 211
 212static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
 213{
 214        int cpu;
 215        struct swait_queue_head *wqp;
 216
 217        wqp = kvm_arch_vcpu_wq(vcpu);
 218        if (swq_has_sleeper(wqp)) {
 219                swake_up(wqp);
 220                ++vcpu->stat.halt_wakeup;
 221        }
 222
 223        cpu = READ_ONCE(vcpu->arch.thread_cpu);
 224        if (cpu >= 0 && kvmppc_ipi_thread(cpu))
 225                return;
 226
 227        /* CPU points to the first thread of the core */
 228        cpu = vcpu->cpu;
 229        if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
 230                smp_send_reschedule(cpu);
 231}
 232
 233/*
 234 * We use the vcpu_load/put functions to measure stolen time.
 235 * Stolen time is counted as time when either the vcpu is able to
 236 * run as part of a virtual core, but the task running the vcore
 237 * is preempted or sleeping, or when the vcpu needs something done
 238 * in the kernel by the task running the vcpu, but that task is
 239 * preempted or sleeping.  Those two things have to be counted
 240 * separately, since one of the vcpu tasks will take on the job
 241 * of running the core, and the other vcpu tasks in the vcore will
 242 * sleep waiting for it to do that, but that sleep shouldn't count
 243 * as stolen time.
 244 *
 245 * Hence we accumulate stolen time when the vcpu can run as part of
 246 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 247 * needs its task to do other things in the kernel (for example,
 248 * service a page fault) in busy_stolen.  We don't accumulate
 249 * stolen time for a vcore when it is inactive, or for a vcpu
 250 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 251 * a misnomer; it means that the vcpu task is not executing in
 252 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 253 * the kernel.  We don't have any way of dividing up that time
 254 * between time that the vcpu is genuinely stopped, time that
 255 * the task is actively working on behalf of the vcpu, and time
 256 * that the task is preempted, so we don't count any of it as
 257 * stolen.
 258 *
 259 * Updates to busy_stolen are protected by arch.tbacct_lock;
 260 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 261 * lock.  The stolen times are measured in units of timebase ticks.
 262 * (Note that the != TB_NIL checks below are purely defensive;
 263 * they should never fail.)
 264 */
 265
 266static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
 267{
 268        unsigned long flags;
 269
 270        spin_lock_irqsave(&vc->stoltb_lock, flags);
 271        vc->preempt_tb = mftb();
 272        spin_unlock_irqrestore(&vc->stoltb_lock, flags);
 273}
 274
 275static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
 276{
 277        unsigned long flags;
 278
 279        spin_lock_irqsave(&vc->stoltb_lock, flags);
 280        if (vc->preempt_tb != TB_NIL) {
 281                vc->stolen_tb += mftb() - vc->preempt_tb;
 282                vc->preempt_tb = TB_NIL;
 283        }
 284        spin_unlock_irqrestore(&vc->stoltb_lock, flags);
 285}
 286
 287static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
 288{
 289        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 290        unsigned long flags;
 291
 292        /*
 293         * We can test vc->runner without taking the vcore lock,
 294         * because only this task ever sets vc->runner to this
 295         * vcpu, and once it is set to this vcpu, only this task
 296         * ever sets it to NULL.
 297         */
 298        if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
 299                kvmppc_core_end_stolen(vc);
 300
 301        spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 302        if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
 303            vcpu->arch.busy_preempt != TB_NIL) {
 304                vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
 305                vcpu->arch.busy_preempt = TB_NIL;
 306        }
 307        spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 308}
 309
 310static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
 311{
 312        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 313        unsigned long flags;
 314
 315        if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
 316                kvmppc_core_start_stolen(vc);
 317
 318        spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 319        if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
 320                vcpu->arch.busy_preempt = mftb();
 321        spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 322}
 323
 324static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
 325{
 326        /*
 327         * Check for illegal transactional state bit combination
 328         * and if we find it, force the TS field to a safe state.
 329         */
 330        if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
 331                msr &= ~MSR_TS_MASK;
 332        vcpu->arch.shregs.msr = msr;
 333        kvmppc_end_cede(vcpu);
 334}
 335
 336static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
 337{
 338        vcpu->arch.pvr = pvr;
 339}
 340
 341/* Dummy value used in computing PCR value below */
 342#define PCR_ARCH_300    (PCR_ARCH_207 << 1)
 343
 344static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
 345{
 346        unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
 347        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 348
 349        /* We can (emulate) our own architecture version and anything older */
 350        if (cpu_has_feature(CPU_FTR_ARCH_300))
 351                host_pcr_bit = PCR_ARCH_300;
 352        else if (cpu_has_feature(CPU_FTR_ARCH_207S))
 353                host_pcr_bit = PCR_ARCH_207;
 354        else if (cpu_has_feature(CPU_FTR_ARCH_206))
 355                host_pcr_bit = PCR_ARCH_206;
 356        else
 357                host_pcr_bit = PCR_ARCH_205;
 358
 359        /* Determine lowest PCR bit needed to run guest in given PVR level */
 360        guest_pcr_bit = host_pcr_bit;
 361        if (arch_compat) {
 362                switch (arch_compat) {
 363                case PVR_ARCH_205:
 364                        guest_pcr_bit = PCR_ARCH_205;
 365                        break;
 366                case PVR_ARCH_206:
 367                case PVR_ARCH_206p:
 368                        guest_pcr_bit = PCR_ARCH_206;
 369                        break;
 370                case PVR_ARCH_207:
 371                        guest_pcr_bit = PCR_ARCH_207;
 372                        break;
 373                case PVR_ARCH_300:
 374                        guest_pcr_bit = PCR_ARCH_300;
 375                        break;
 376                default:
 377                        return -EINVAL;
 378                }
 379        }
 380
 381        /* Check requested PCR bits don't exceed our capabilities */
 382        if (guest_pcr_bit > host_pcr_bit)
 383                return -EINVAL;
 384
 385        spin_lock(&vc->lock);
 386        vc->arch_compat = arch_compat;
 387        /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
 388        vc->pcr = host_pcr_bit - guest_pcr_bit;
 389        spin_unlock(&vc->lock);
 390
 391        return 0;
 392}
 393
 394static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
 395{
 396        int r;
 397
 398        pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
 399        pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
 400               vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
 401        for (r = 0; r < 16; ++r)
 402                pr_err("r%2d = %.16lx  r%d = %.16lx\n",
 403                       r, kvmppc_get_gpr(vcpu, r),
 404                       r+16, kvmppc_get_gpr(vcpu, r+16));
 405        pr_err("ctr = %.16lx  lr  = %.16lx\n",
 406               vcpu->arch.regs.ctr, vcpu->arch.regs.link);
 407        pr_err("srr0 = %.16llx srr1 = %.16llx\n",
 408               vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
 409        pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
 410               vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
 411        pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
 412               vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
 413        pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
 414               vcpu->arch.cr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
 415        pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
 416        pr_err("fault dar = %.16lx dsisr = %.8x\n",
 417               vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
 418        pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
 419        for (r = 0; r < vcpu->arch.slb_max; ++r)
 420                pr_err("  ESID = %.16llx VSID = %.16llx\n",
 421                       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
 422        pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
 423               vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
 424               vcpu->arch.last_inst);
 425}
 426
 427static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
 428{
 429        struct kvm_vcpu *ret;
 430
 431        mutex_lock(&kvm->lock);
 432        ret = kvm_get_vcpu_by_id(kvm, id);
 433        mutex_unlock(&kvm->lock);
 434        return ret;
 435}
 436
 437static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
 438{
 439        vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
 440        vpa->yield_count = cpu_to_be32(1);
 441}
 442
 443static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
 444                   unsigned long addr, unsigned long len)
 445{
 446        /* check address is cacheline aligned */
 447        if (addr & (L1_CACHE_BYTES - 1))
 448                return -EINVAL;
 449        spin_lock(&vcpu->arch.vpa_update_lock);
 450        if (v->next_gpa != addr || v->len != len) {
 451                v->next_gpa = addr;
 452                v->len = addr ? len : 0;
 453                v->update_pending = 1;
 454        }
 455        spin_unlock(&vcpu->arch.vpa_update_lock);
 456        return 0;
 457}
 458
 459/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
 460struct reg_vpa {
 461        u32 dummy;
 462        union {
 463                __be16 hword;
 464                __be32 word;
 465        } length;
 466};
 467
 468static int vpa_is_registered(struct kvmppc_vpa *vpap)
 469{
 470        if (vpap->update_pending)
 471                return vpap->next_gpa != 0;
 472        return vpap->pinned_addr != NULL;
 473}
 474
 475static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
 476                                       unsigned long flags,
 477                                       unsigned long vcpuid, unsigned long vpa)
 478{
 479        struct kvm *kvm = vcpu->kvm;
 480        unsigned long len, nb;
 481        void *va;
 482        struct kvm_vcpu *tvcpu;
 483        int err;
 484        int subfunc;
 485        struct kvmppc_vpa *vpap;
 486
 487        tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
 488        if (!tvcpu)
 489                return H_PARAMETER;
 490
 491        subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
 492        if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
 493            subfunc == H_VPA_REG_SLB) {
 494                /* Registering new area - address must be cache-line aligned */
 495                if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
 496                        return H_PARAMETER;
 497
 498                /* convert logical addr to kernel addr and read length */
 499                va = kvmppc_pin_guest_page(kvm, vpa, &nb);
 500                if (va == NULL)
 501                        return H_PARAMETER;
 502                if (subfunc == H_VPA_REG_VPA)
 503                        len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
 504                else
 505                        len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
 506                kvmppc_unpin_guest_page(kvm, va, vpa, false);
 507
 508                /* Check length */
 509                if (len > nb || len < sizeof(struct reg_vpa))
 510                        return H_PARAMETER;
 511        } else {
 512                vpa = 0;
 513                len = 0;
 514        }
 515
 516        err = H_PARAMETER;
 517        vpap = NULL;
 518        spin_lock(&tvcpu->arch.vpa_update_lock);
 519
 520        switch (subfunc) {
 521        case H_VPA_REG_VPA:             /* register VPA */
 522                /*
 523                 * The size of our lppaca is 1kB because of the way we align
 524                 * it for the guest to avoid crossing a 4kB boundary. We only
 525                 * use 640 bytes of the structure though, so we should accept
 526                 * clients that set a size of 640.
 527                 */
 528                BUILD_BUG_ON(sizeof(struct lppaca) != 640);
 529                if (len < sizeof(struct lppaca))
 530                        break;
 531                vpap = &tvcpu->arch.vpa;
 532                err = 0;
 533                break;
 534
 535        case H_VPA_REG_DTL:             /* register DTL */
 536                if (len < sizeof(struct dtl_entry))
 537                        break;
 538                len -= len % sizeof(struct dtl_entry);
 539
 540                /* Check that they have previously registered a VPA */
 541                err = H_RESOURCE;
 542                if (!vpa_is_registered(&tvcpu->arch.vpa))
 543                        break;
 544
 545                vpap = &tvcpu->arch.dtl;
 546                err = 0;
 547                break;
 548
 549        case H_VPA_REG_SLB:             /* register SLB shadow buffer */
 550                /* Check that they have previously registered a VPA */
 551                err = H_RESOURCE;
 552                if (!vpa_is_registered(&tvcpu->arch.vpa))
 553                        break;
 554
 555                vpap = &tvcpu->arch.slb_shadow;
 556                err = 0;
 557                break;
 558
 559        case H_VPA_DEREG_VPA:           /* deregister VPA */
 560                /* Check they don't still have a DTL or SLB buf registered */
 561                err = H_RESOURCE;
 562                if (vpa_is_registered(&tvcpu->arch.dtl) ||
 563                    vpa_is_registered(&tvcpu->arch.slb_shadow))
 564                        break;
 565
 566                vpap = &tvcpu->arch.vpa;
 567                err = 0;
 568                break;
 569
 570        case H_VPA_DEREG_DTL:           /* deregister DTL */
 571                vpap = &tvcpu->arch.dtl;
 572                err = 0;
 573                break;
 574
 575        case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
 576                vpap = &tvcpu->arch.slb_shadow;
 577                err = 0;
 578                break;
 579        }
 580
 581        if (vpap) {
 582                vpap->next_gpa = vpa;
 583                vpap->len = len;
 584                vpap->update_pending = 1;
 585        }
 586
 587        spin_unlock(&tvcpu->arch.vpa_update_lock);
 588
 589        return err;
 590}
 591
 592static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
 593{
 594        struct kvm *kvm = vcpu->kvm;
 595        void *va;
 596        unsigned long nb;
 597        unsigned long gpa;
 598
 599        /*
 600         * We need to pin the page pointed to by vpap->next_gpa,
 601         * but we can't call kvmppc_pin_guest_page under the lock
 602         * as it does get_user_pages() and down_read().  So we
 603         * have to drop the lock, pin the page, then get the lock
 604         * again and check that a new area didn't get registered
 605         * in the meantime.
 606         */
 607        for (;;) {
 608                gpa = vpap->next_gpa;
 609                spin_unlock(&vcpu->arch.vpa_update_lock);
 610                va = NULL;
 611                nb = 0;
 612                if (gpa)
 613                        va = kvmppc_pin_guest_page(kvm, gpa, &nb);
 614                spin_lock(&vcpu->arch.vpa_update_lock);
 615                if (gpa == vpap->next_gpa)
 616                        break;
 617                /* sigh... unpin that one and try again */
 618                if (va)
 619                        kvmppc_unpin_guest_page(kvm, va, gpa, false);
 620        }
 621
 622        vpap->update_pending = 0;
 623        if (va && nb < vpap->len) {
 624                /*
 625                 * If it's now too short, it must be that userspace
 626                 * has changed the mappings underlying guest memory,
 627                 * so unregister the region.
 628                 */
 629                kvmppc_unpin_guest_page(kvm, va, gpa, false);
 630                va = NULL;
 631        }
 632        if (vpap->pinned_addr)
 633                kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
 634                                        vpap->dirty);
 635        vpap->gpa = gpa;
 636        vpap->pinned_addr = va;
 637        vpap->dirty = false;
 638        if (va)
 639                vpap->pinned_end = va + vpap->len;
 640}
 641
 642static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
 643{
 644        if (!(vcpu->arch.vpa.update_pending ||
 645              vcpu->arch.slb_shadow.update_pending ||
 646              vcpu->arch.dtl.update_pending))
 647                return;
 648
 649        spin_lock(&vcpu->arch.vpa_update_lock);
 650        if (vcpu->arch.vpa.update_pending) {
 651                kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
 652                if (vcpu->arch.vpa.pinned_addr)
 653                        init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
 654        }
 655        if (vcpu->arch.dtl.update_pending) {
 656                kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
 657                vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
 658                vcpu->arch.dtl_index = 0;
 659        }
 660        if (vcpu->arch.slb_shadow.update_pending)
 661                kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
 662        spin_unlock(&vcpu->arch.vpa_update_lock);
 663}
 664
 665/*
 666 * Return the accumulated stolen time for the vcore up until `now'.
 667 * The caller should hold the vcore lock.
 668 */
 669static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
 670{
 671        u64 p;
 672        unsigned long flags;
 673
 674        spin_lock_irqsave(&vc->stoltb_lock, flags);
 675        p = vc->stolen_tb;
 676        if (vc->vcore_state != VCORE_INACTIVE &&
 677            vc->preempt_tb != TB_NIL)
 678                p += now - vc->preempt_tb;
 679        spin_unlock_irqrestore(&vc->stoltb_lock, flags);
 680        return p;
 681}
 682
 683static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
 684                                    struct kvmppc_vcore *vc)
 685{
 686        struct dtl_entry *dt;
 687        struct lppaca *vpa;
 688        unsigned long stolen;
 689        unsigned long core_stolen;
 690        u64 now;
 691        unsigned long flags;
 692
 693        dt = vcpu->arch.dtl_ptr;
 694        vpa = vcpu->arch.vpa.pinned_addr;
 695        now = mftb();
 696        core_stolen = vcore_stolen_time(vc, now);
 697        stolen = core_stolen - vcpu->arch.stolen_logged;
 698        vcpu->arch.stolen_logged = core_stolen;
 699        spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 700        stolen += vcpu->arch.busy_stolen;
 701        vcpu->arch.busy_stolen = 0;
 702        spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 703        if (!dt || !vpa)
 704                return;
 705        memset(dt, 0, sizeof(struct dtl_entry));
 706        dt->dispatch_reason = 7;
 707        dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
 708        dt->timebase = cpu_to_be64(now + vc->tb_offset);
 709        dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
 710        dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
 711        dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
 712        ++dt;
 713        if (dt == vcpu->arch.dtl.pinned_end)
 714                dt = vcpu->arch.dtl.pinned_addr;
 715        vcpu->arch.dtl_ptr = dt;
 716        /* order writing *dt vs. writing vpa->dtl_idx */
 717        smp_wmb();
 718        vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
 719        vcpu->arch.dtl.dirty = true;
 720}
 721
 722/* See if there is a doorbell interrupt pending for a vcpu */
 723static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
 724{
 725        int thr;
 726        struct kvmppc_vcore *vc;
 727
 728        if (vcpu->arch.doorbell_request)
 729                return true;
 730        /*
 731         * Ensure that the read of vcore->dpdes comes after the read
 732         * of vcpu->doorbell_request.  This barrier matches the
 733         * lwsync in book3s_hv_rmhandlers.S just before the
 734         * fast_guest_return label.
 735         */
 736        smp_rmb();
 737        vc = vcpu->arch.vcore;
 738        thr = vcpu->vcpu_id - vc->first_vcpuid;
 739        return !!(vc->dpdes & (1 << thr));
 740}
 741
 742static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
 743{
 744        if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
 745                return true;
 746        if ((!vcpu->arch.vcore->arch_compat) &&
 747            cpu_has_feature(CPU_FTR_ARCH_207S))
 748                return true;
 749        return false;
 750}
 751
 752static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
 753                             unsigned long resource, unsigned long value1,
 754                             unsigned long value2)
 755{
 756        switch (resource) {
 757        case H_SET_MODE_RESOURCE_SET_CIABR:
 758                if (!kvmppc_power8_compatible(vcpu))
 759                        return H_P2;
 760                if (value2)
 761                        return H_P4;
 762                if (mflags)
 763                        return H_UNSUPPORTED_FLAG_START;
 764                /* Guests can't breakpoint the hypervisor */
 765                if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
 766                        return H_P3;
 767                vcpu->arch.ciabr  = value1;
 768                return H_SUCCESS;
 769        case H_SET_MODE_RESOURCE_SET_DAWR:
 770                if (!kvmppc_power8_compatible(vcpu))
 771                        return H_P2;
 772                if (!ppc_breakpoint_available())
 773                        return H_P2;
 774                if (mflags)
 775                        return H_UNSUPPORTED_FLAG_START;
 776                if (value2 & DABRX_HYP)
 777                        return H_P4;
 778                vcpu->arch.dawr  = value1;
 779                vcpu->arch.dawrx = value2;
 780                return H_SUCCESS;
 781        default:
 782                return H_TOO_HARD;
 783        }
 784}
 785
 786static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
 787{
 788        struct kvmppc_vcore *vcore = target->arch.vcore;
 789
 790        /*
 791         * We expect to have been called by the real mode handler
 792         * (kvmppc_rm_h_confer()) which would have directly returned
 793         * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
 794         * have useful work to do and should not confer) so we don't
 795         * recheck that here.
 796         */
 797
 798        spin_lock(&vcore->lock);
 799        if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
 800            vcore->vcore_state != VCORE_INACTIVE &&
 801            vcore->runner)
 802                target = vcore->runner;
 803        spin_unlock(&vcore->lock);
 804
 805        return kvm_vcpu_yield_to(target);
 806}
 807
 808static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
 809{
 810        int yield_count = 0;
 811        struct lppaca *lppaca;
 812
 813        spin_lock(&vcpu->arch.vpa_update_lock);
 814        lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
 815        if (lppaca)
 816                yield_count = be32_to_cpu(lppaca->yield_count);
 817        spin_unlock(&vcpu->arch.vpa_update_lock);
 818        return yield_count;
 819}
 820
 821int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
 822{
 823        unsigned long req = kvmppc_get_gpr(vcpu, 3);
 824        unsigned long target, ret = H_SUCCESS;
 825        int yield_count;
 826        struct kvm_vcpu *tvcpu;
 827        int idx, rc;
 828
 829        if (req <= MAX_HCALL_OPCODE &&
 830            !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
 831                return RESUME_HOST;
 832
 833        switch (req) {
 834        case H_CEDE:
 835                break;
 836        case H_PROD:
 837                target = kvmppc_get_gpr(vcpu, 4);
 838                tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
 839                if (!tvcpu) {
 840                        ret = H_PARAMETER;
 841                        break;
 842                }
 843                tvcpu->arch.prodded = 1;
 844                smp_mb();
 845                if (tvcpu->arch.ceded)
 846                        kvmppc_fast_vcpu_kick_hv(tvcpu);
 847                break;
 848        case H_CONFER:
 849                target = kvmppc_get_gpr(vcpu, 4);
 850                if (target == -1)
 851                        break;
 852                tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
 853                if (!tvcpu) {
 854                        ret = H_PARAMETER;
 855                        break;
 856                }
 857                yield_count = kvmppc_get_gpr(vcpu, 5);
 858                if (kvmppc_get_yield_count(tvcpu) != yield_count)
 859                        break;
 860                kvm_arch_vcpu_yield_to(tvcpu);
 861                break;
 862        case H_REGISTER_VPA:
 863                ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
 864                                        kvmppc_get_gpr(vcpu, 5),
 865                                        kvmppc_get_gpr(vcpu, 6));
 866                break;
 867        case H_RTAS:
 868                if (list_empty(&vcpu->kvm->arch.rtas_tokens))
 869                        return RESUME_HOST;
 870
 871                idx = srcu_read_lock(&vcpu->kvm->srcu);
 872                rc = kvmppc_rtas_hcall(vcpu);
 873                srcu_read_unlock(&vcpu->kvm->srcu, idx);
 874
 875                if (rc == -ENOENT)
 876                        return RESUME_HOST;
 877                else if (rc == 0)
 878                        break;
 879
 880                /* Send the error out to userspace via KVM_RUN */
 881                return rc;
 882        case H_LOGICAL_CI_LOAD:
 883                ret = kvmppc_h_logical_ci_load(vcpu);
 884                if (ret == H_TOO_HARD)
 885                        return RESUME_HOST;
 886                break;
 887        case H_LOGICAL_CI_STORE:
 888                ret = kvmppc_h_logical_ci_store(vcpu);
 889                if (ret == H_TOO_HARD)
 890                        return RESUME_HOST;
 891                break;
 892        case H_SET_MODE:
 893                ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
 894                                        kvmppc_get_gpr(vcpu, 5),
 895                                        kvmppc_get_gpr(vcpu, 6),
 896                                        kvmppc_get_gpr(vcpu, 7));
 897                if (ret == H_TOO_HARD)
 898                        return RESUME_HOST;
 899                break;
 900        case H_XIRR:
 901        case H_CPPR:
 902        case H_EOI:
 903        case H_IPI:
 904        case H_IPOLL:
 905        case H_XIRR_X:
 906                if (kvmppc_xics_enabled(vcpu)) {
 907                        if (xive_enabled()) {
 908                                ret = H_NOT_AVAILABLE;
 909                                return RESUME_GUEST;
 910                        }
 911                        ret = kvmppc_xics_hcall(vcpu, req);
 912                        break;
 913                }
 914                return RESUME_HOST;
 915        case H_PUT_TCE:
 916                ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
 917                                                kvmppc_get_gpr(vcpu, 5),
 918                                                kvmppc_get_gpr(vcpu, 6));
 919                if (ret == H_TOO_HARD)
 920                        return RESUME_HOST;
 921                break;
 922        case H_PUT_TCE_INDIRECT:
 923                ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
 924                                                kvmppc_get_gpr(vcpu, 5),
 925                                                kvmppc_get_gpr(vcpu, 6),
 926                                                kvmppc_get_gpr(vcpu, 7));
 927                if (ret == H_TOO_HARD)
 928                        return RESUME_HOST;
 929                break;
 930        case H_STUFF_TCE:
 931                ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
 932                                                kvmppc_get_gpr(vcpu, 5),
 933                                                kvmppc_get_gpr(vcpu, 6),
 934                                                kvmppc_get_gpr(vcpu, 7));
 935                if (ret == H_TOO_HARD)
 936                        return RESUME_HOST;
 937                break;
 938        default:
 939                return RESUME_HOST;
 940        }
 941        kvmppc_set_gpr(vcpu, 3, ret);
 942        vcpu->arch.hcall_needed = 0;
 943        return RESUME_GUEST;
 944}
 945
 946static int kvmppc_hcall_impl_hv(unsigned long cmd)
 947{
 948        switch (cmd) {
 949        case H_CEDE:
 950        case H_PROD:
 951        case H_CONFER:
 952        case H_REGISTER_VPA:
 953        case H_SET_MODE:
 954        case H_LOGICAL_CI_LOAD:
 955        case H_LOGICAL_CI_STORE:
 956#ifdef CONFIG_KVM_XICS
 957        case H_XIRR:
 958        case H_CPPR:
 959        case H_EOI:
 960        case H_IPI:
 961        case H_IPOLL:
 962        case H_XIRR_X:
 963#endif
 964                return 1;
 965        }
 966
 967        /* See if it's in the real-mode table */
 968        return kvmppc_hcall_impl_hv_realmode(cmd);
 969}
 970
 971static int kvmppc_emulate_debug_inst(struct kvm_run *run,
 972                                        struct kvm_vcpu *vcpu)
 973{
 974        u32 last_inst;
 975
 976        if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
 977                                        EMULATE_DONE) {
 978                /*
 979                 * Fetch failed, so return to guest and
 980                 * try executing it again.
 981                 */
 982                return RESUME_GUEST;
 983        }
 984
 985        if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
 986                run->exit_reason = KVM_EXIT_DEBUG;
 987                run->debug.arch.address = kvmppc_get_pc(vcpu);
 988                return RESUME_HOST;
 989        } else {
 990                kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
 991                return RESUME_GUEST;
 992        }
 993}
 994
 995static void do_nothing(void *x)
 996{
 997}
 998
 999static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1000{
1001        int thr, cpu, pcpu, nthreads;
1002        struct kvm_vcpu *v;
1003        unsigned long dpdes;
1004
1005        nthreads = vcpu->kvm->arch.emul_smt_mode;
1006        dpdes = 0;
1007        cpu = vcpu->vcpu_id & ~(nthreads - 1);
1008        for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1009                v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1010                if (!v)
1011                        continue;
1012                /*
1013                 * If the vcpu is currently running on a physical cpu thread,
1014                 * interrupt it in order to pull it out of the guest briefly,
1015                 * which will update its vcore->dpdes value.
1016                 */
1017                pcpu = READ_ONCE(v->cpu);
1018                if (pcpu >= 0)
1019                        smp_call_function_single(pcpu, do_nothing, NULL, 1);
1020                if (kvmppc_doorbell_pending(v))
1021                        dpdes |= 1 << thr;
1022        }
1023        return dpdes;
1024}
1025
1026/*
1027 * On POWER9, emulate doorbell-related instructions in order to
1028 * give the guest the illusion of running on a multi-threaded core.
1029 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1030 * and mfspr DPDES.
1031 */
1032static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1033{
1034        u32 inst, rb, thr;
1035        unsigned long arg;
1036        struct kvm *kvm = vcpu->kvm;
1037        struct kvm_vcpu *tvcpu;
1038
1039        if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1040                return RESUME_GUEST;
1041        if (get_op(inst) != 31)
1042                return EMULATE_FAIL;
1043        rb = get_rb(inst);
1044        thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1045        switch (get_xop(inst)) {
1046        case OP_31_XOP_MSGSNDP:
1047                arg = kvmppc_get_gpr(vcpu, rb);
1048                if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1049                        break;
1050                arg &= 0x3f;
1051                if (arg >= kvm->arch.emul_smt_mode)
1052                        break;
1053                tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1054                if (!tvcpu)
1055                        break;
1056                if (!tvcpu->arch.doorbell_request) {
1057                        tvcpu->arch.doorbell_request = 1;
1058                        kvmppc_fast_vcpu_kick_hv(tvcpu);
1059                }
1060                break;
1061        case OP_31_XOP_MSGCLRP:
1062                arg = kvmppc_get_gpr(vcpu, rb);
1063                if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1064                        break;
1065                vcpu->arch.vcore->dpdes = 0;
1066                vcpu->arch.doorbell_request = 0;
1067                break;
1068        case OP_31_XOP_MFSPR:
1069                switch (get_sprn(inst)) {
1070                case SPRN_TIR:
1071                        arg = thr;
1072                        break;
1073                case SPRN_DPDES:
1074                        arg = kvmppc_read_dpdes(vcpu);
1075                        break;
1076                default:
1077                        return EMULATE_FAIL;
1078                }
1079                kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1080                break;
1081        default:
1082                return EMULATE_FAIL;
1083        }
1084        kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1085        return RESUME_GUEST;
1086}
1087
1088/* Called with vcpu->arch.vcore->lock held */
1089static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1090                                 struct task_struct *tsk)
1091{
1092        int r = RESUME_HOST;
1093
1094        vcpu->stat.sum_exits++;
1095
1096        /*
1097         * This can happen if an interrupt occurs in the last stages
1098         * of guest entry or the first stages of guest exit (i.e. after
1099         * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1100         * and before setting it to KVM_GUEST_MODE_HOST_HV).
1101         * That can happen due to a bug, or due to a machine check
1102         * occurring at just the wrong time.
1103         */
1104        if (vcpu->arch.shregs.msr & MSR_HV) {
1105                printk(KERN_EMERG "KVM trap in HV mode!\n");
1106                printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1107                        vcpu->arch.trap, kvmppc_get_pc(vcpu),
1108                        vcpu->arch.shregs.msr);
1109                kvmppc_dump_regs(vcpu);
1110                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1111                run->hw.hardware_exit_reason = vcpu->arch.trap;
1112                return RESUME_HOST;
1113        }
1114        run->exit_reason = KVM_EXIT_UNKNOWN;
1115        run->ready_for_interrupt_injection = 1;
1116        switch (vcpu->arch.trap) {
1117        /* We're good on these - the host merely wanted to get our attention */
1118        case BOOK3S_INTERRUPT_HV_DECREMENTER:
1119                vcpu->stat.dec_exits++;
1120                r = RESUME_GUEST;
1121                break;
1122        case BOOK3S_INTERRUPT_EXTERNAL:
1123        case BOOK3S_INTERRUPT_H_DOORBELL:
1124        case BOOK3S_INTERRUPT_H_VIRT:
1125                vcpu->stat.ext_intr_exits++;
1126                r = RESUME_GUEST;
1127                break;
1128        /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1129        case BOOK3S_INTERRUPT_HMI:
1130        case BOOK3S_INTERRUPT_PERFMON:
1131        case BOOK3S_INTERRUPT_SYSTEM_RESET:
1132                r = RESUME_GUEST;
1133                break;
1134        case BOOK3S_INTERRUPT_MACHINE_CHECK:
1135                /* Exit to guest with KVM_EXIT_NMI as exit reason */
1136                run->exit_reason = KVM_EXIT_NMI;
1137                run->hw.hardware_exit_reason = vcpu->arch.trap;
1138                /* Clear out the old NMI status from run->flags */
1139                run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1140                /* Now set the NMI status */
1141                if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1142                        run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1143                else
1144                        run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1145
1146                r = RESUME_HOST;
1147                /* Print the MCE event to host console. */
1148                machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1149                break;
1150        case BOOK3S_INTERRUPT_PROGRAM:
1151        {
1152                ulong flags;
1153                /*
1154                 * Normally program interrupts are delivered directly
1155                 * to the guest by the hardware, but we can get here
1156                 * as a result of a hypervisor emulation interrupt
1157                 * (e40) getting turned into a 700 by BML RTAS.
1158                 */
1159                flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1160                kvmppc_core_queue_program(vcpu, flags);
1161                r = RESUME_GUEST;
1162                break;
1163        }
1164        case BOOK3S_INTERRUPT_SYSCALL:
1165        {
1166                /* hcall - punt to userspace */
1167                int i;
1168
1169                /* hypercall with MSR_PR has already been handled in rmode,
1170                 * and never reaches here.
1171                 */
1172
1173                run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1174                for (i = 0; i < 9; ++i)
1175                        run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1176                run->exit_reason = KVM_EXIT_PAPR_HCALL;
1177                vcpu->arch.hcall_needed = 1;
1178                r = RESUME_HOST;
1179                break;
1180        }
1181        /*
1182         * We get these next two if the guest accesses a page which it thinks
1183         * it has mapped but which is not actually present, either because
1184         * it is for an emulated I/O device or because the corresonding
1185         * host page has been paged out.  Any other HDSI/HISI interrupts
1186         * have been handled already.
1187         */
1188        case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1189                r = RESUME_PAGE_FAULT;
1190                break;
1191        case BOOK3S_INTERRUPT_H_INST_STORAGE:
1192                vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1193                vcpu->arch.fault_dsisr = 0;
1194                r = RESUME_PAGE_FAULT;
1195                break;
1196        /*
1197         * This occurs if the guest executes an illegal instruction.
1198         * If the guest debug is disabled, generate a program interrupt
1199         * to the guest. If guest debug is enabled, we need to check
1200         * whether the instruction is a software breakpoint instruction.
1201         * Accordingly return to Guest or Host.
1202         */
1203        case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1204                if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1205                        vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1206                                swab32(vcpu->arch.emul_inst) :
1207                                vcpu->arch.emul_inst;
1208                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1209                        /* Need vcore unlocked to call kvmppc_get_last_inst */
1210                        spin_unlock(&vcpu->arch.vcore->lock);
1211                        r = kvmppc_emulate_debug_inst(run, vcpu);
1212                        spin_lock(&vcpu->arch.vcore->lock);
1213                } else {
1214                        kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1215                        r = RESUME_GUEST;
1216                }
1217                break;
1218        /*
1219         * This occurs if the guest (kernel or userspace), does something that
1220         * is prohibited by HFSCR.
1221         * On POWER9, this could be a doorbell instruction that we need
1222         * to emulate.
1223         * Otherwise, we just generate a program interrupt to the guest.
1224         */
1225        case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1226                r = EMULATE_FAIL;
1227                if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1228                    cpu_has_feature(CPU_FTR_ARCH_300)) {
1229                        /* Need vcore unlocked to call kvmppc_get_last_inst */
1230                        spin_unlock(&vcpu->arch.vcore->lock);
1231                        r = kvmppc_emulate_doorbell_instr(vcpu);
1232                        spin_lock(&vcpu->arch.vcore->lock);
1233                }
1234                if (r == EMULATE_FAIL) {
1235                        kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1236                        r = RESUME_GUEST;
1237                }
1238                break;
1239
1240#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1241        case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1242                /*
1243                 * This occurs for various TM-related instructions that
1244                 * we need to emulate on POWER9 DD2.2.  We have already
1245                 * handled the cases where the guest was in real-suspend
1246                 * mode and was transitioning to transactional state.
1247                 */
1248                r = kvmhv_p9_tm_emulation(vcpu);
1249                break;
1250#endif
1251
1252        case BOOK3S_INTERRUPT_HV_RM_HARD:
1253                r = RESUME_PASSTHROUGH;
1254                break;
1255        default:
1256                kvmppc_dump_regs(vcpu);
1257                printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1258                        vcpu->arch.trap, kvmppc_get_pc(vcpu),
1259                        vcpu->arch.shregs.msr);
1260                run->hw.hardware_exit_reason = vcpu->arch.trap;
1261                r = RESUME_HOST;
1262                break;
1263        }
1264
1265        return r;
1266}
1267
1268static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1269                                            struct kvm_sregs *sregs)
1270{
1271        int i;
1272
1273        memset(sregs, 0, sizeof(struct kvm_sregs));
1274        sregs->pvr = vcpu->arch.pvr;
1275        for (i = 0; i < vcpu->arch.slb_max; i++) {
1276                sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1277                sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1278        }
1279
1280        return 0;
1281}
1282
1283static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1284                                            struct kvm_sregs *sregs)
1285{
1286        int i, j;
1287
1288        /* Only accept the same PVR as the host's, since we can't spoof it */
1289        if (sregs->pvr != vcpu->arch.pvr)
1290                return -EINVAL;
1291
1292        j = 0;
1293        for (i = 0; i < vcpu->arch.slb_nr; i++) {
1294                if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1295                        vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1296                        vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1297                        ++j;
1298                }
1299        }
1300        vcpu->arch.slb_max = j;
1301
1302        return 0;
1303}
1304
1305static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1306                bool preserve_top32)
1307{
1308        struct kvm *kvm = vcpu->kvm;
1309        struct kvmppc_vcore *vc = vcpu->arch.vcore;
1310        u64 mask;
1311
1312        mutex_lock(&kvm->lock);
1313        spin_lock(&vc->lock);
1314        /*
1315         * If ILE (interrupt little-endian) has changed, update the
1316         * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1317         */
1318        if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1319                struct kvm_vcpu *vcpu;
1320                int i;
1321
1322                kvm_for_each_vcpu(i, vcpu, kvm) {
1323                        if (vcpu->arch.vcore != vc)
1324                                continue;
1325                        if (new_lpcr & LPCR_ILE)
1326                                vcpu->arch.intr_msr |= MSR_LE;
1327                        else
1328                                vcpu->arch.intr_msr &= ~MSR_LE;
1329                }
1330        }
1331
1332        /*
1333         * Userspace can only modify DPFD (default prefetch depth),
1334         * ILE (interrupt little-endian) and TC (translation control).
1335         * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1336         */
1337        mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1338        if (cpu_has_feature(CPU_FTR_ARCH_207S))
1339                mask |= LPCR_AIL;
1340        /*
1341         * On POWER9, allow userspace to enable large decrementer for the
1342         * guest, whether or not the host has it enabled.
1343         */
1344        if (cpu_has_feature(CPU_FTR_ARCH_300))
1345                mask |= LPCR_LD;
1346
1347        /* Broken 32-bit version of LPCR must not clear top bits */
1348        if (preserve_top32)
1349                mask &= 0xFFFFFFFF;
1350        vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1351        spin_unlock(&vc->lock);
1352        mutex_unlock(&kvm->lock);
1353}
1354
1355static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1356                                 union kvmppc_one_reg *val)
1357{
1358        int r = 0;
1359        long int i;
1360
1361        switch (id) {
1362        case KVM_REG_PPC_DEBUG_INST:
1363                *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1364                break;
1365        case KVM_REG_PPC_HIOR:
1366                *val = get_reg_val(id, 0);
1367                break;
1368        case KVM_REG_PPC_DABR:
1369                *val = get_reg_val(id, vcpu->arch.dabr);
1370                break;
1371        case KVM_REG_PPC_DABRX:
1372                *val = get_reg_val(id, vcpu->arch.dabrx);
1373                break;
1374        case KVM_REG_PPC_DSCR:
1375                *val = get_reg_val(id, vcpu->arch.dscr);
1376                break;
1377        case KVM_REG_PPC_PURR:
1378                *val = get_reg_val(id, vcpu->arch.purr);
1379                break;
1380        case KVM_REG_PPC_SPURR:
1381                *val = get_reg_val(id, vcpu->arch.spurr);
1382                break;
1383        case KVM_REG_PPC_AMR:
1384                *val = get_reg_val(id, vcpu->arch.amr);
1385                break;
1386        case KVM_REG_PPC_UAMOR:
1387                *val = get_reg_val(id, vcpu->arch.uamor);
1388                break;
1389        case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1390                i = id - KVM_REG_PPC_MMCR0;
1391                *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1392                break;
1393        case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1394                i = id - KVM_REG_PPC_PMC1;
1395                *val = get_reg_val(id, vcpu->arch.pmc[i]);
1396                break;
1397        case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1398                i = id - KVM_REG_PPC_SPMC1;
1399                *val = get_reg_val(id, vcpu->arch.spmc[i]);
1400                break;
1401        case KVM_REG_PPC_SIAR:
1402                *val = get_reg_val(id, vcpu->arch.siar);
1403                break;
1404        case KVM_REG_PPC_SDAR:
1405                *val = get_reg_val(id, vcpu->arch.sdar);
1406                break;
1407        case KVM_REG_PPC_SIER:
1408                *val = get_reg_val(id, vcpu->arch.sier);
1409                break;
1410        case KVM_REG_PPC_IAMR:
1411                *val = get_reg_val(id, vcpu->arch.iamr);
1412                break;
1413        case KVM_REG_PPC_PSPB:
1414                *val = get_reg_val(id, vcpu->arch.pspb);
1415                break;
1416        case KVM_REG_PPC_DPDES:
1417                *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1418                break;
1419        case KVM_REG_PPC_VTB:
1420                *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1421                break;
1422        case KVM_REG_PPC_DAWR:
1423                *val = get_reg_val(id, vcpu->arch.dawr);
1424                break;
1425        case KVM_REG_PPC_DAWRX:
1426                *val = get_reg_val(id, vcpu->arch.dawrx);
1427                break;
1428        case KVM_REG_PPC_CIABR:
1429                *val = get_reg_val(id, vcpu->arch.ciabr);
1430                break;
1431        case KVM_REG_PPC_CSIGR:
1432                *val = get_reg_val(id, vcpu->arch.csigr);
1433                break;
1434        case KVM_REG_PPC_TACR:
1435                *val = get_reg_val(id, vcpu->arch.tacr);
1436                break;
1437        case KVM_REG_PPC_TCSCR:
1438                *val = get_reg_val(id, vcpu->arch.tcscr);
1439                break;
1440        case KVM_REG_PPC_PID:
1441                *val = get_reg_val(id, vcpu->arch.pid);
1442                break;
1443        case KVM_REG_PPC_ACOP:
1444                *val = get_reg_val(id, vcpu->arch.acop);
1445                break;
1446        case KVM_REG_PPC_WORT:
1447                *val = get_reg_val(id, vcpu->arch.wort);
1448                break;
1449        case KVM_REG_PPC_TIDR:
1450                *val = get_reg_val(id, vcpu->arch.tid);
1451                break;
1452        case KVM_REG_PPC_PSSCR:
1453                *val = get_reg_val(id, vcpu->arch.psscr);
1454                break;
1455        case KVM_REG_PPC_VPA_ADDR:
1456                spin_lock(&vcpu->arch.vpa_update_lock);
1457                *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1458                spin_unlock(&vcpu->arch.vpa_update_lock);
1459                break;
1460        case KVM_REG_PPC_VPA_SLB:
1461                spin_lock(&vcpu->arch.vpa_update_lock);
1462                val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1463                val->vpaval.length = vcpu->arch.slb_shadow.len;
1464                spin_unlock(&vcpu->arch.vpa_update_lock);
1465                break;
1466        case KVM_REG_PPC_VPA_DTL:
1467                spin_lock(&vcpu->arch.vpa_update_lock);
1468                val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1469                val->vpaval.length = vcpu->arch.dtl.len;
1470                spin_unlock(&vcpu->arch.vpa_update_lock);
1471                break;
1472        case KVM_REG_PPC_TB_OFFSET:
1473                *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1474                break;
1475        case KVM_REG_PPC_LPCR:
1476        case KVM_REG_PPC_LPCR_64:
1477                *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1478                break;
1479        case KVM_REG_PPC_PPR:
1480                *val = get_reg_val(id, vcpu->arch.ppr);
1481                break;
1482#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1483        case KVM_REG_PPC_TFHAR:
1484                *val = get_reg_val(id, vcpu->arch.tfhar);
1485                break;
1486        case KVM_REG_PPC_TFIAR:
1487                *val = get_reg_val(id, vcpu->arch.tfiar);
1488                break;
1489        case KVM_REG_PPC_TEXASR:
1490                *val = get_reg_val(id, vcpu->arch.texasr);
1491                break;
1492        case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1493                i = id - KVM_REG_PPC_TM_GPR0;
1494                *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1495                break;
1496        case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1497        {
1498                int j;
1499                i = id - KVM_REG_PPC_TM_VSR0;
1500                if (i < 32)
1501                        for (j = 0; j < TS_FPRWIDTH; j++)
1502                                val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1503                else {
1504                        if (cpu_has_feature(CPU_FTR_ALTIVEC))
1505                                val->vval = vcpu->arch.vr_tm.vr[i-32];
1506                        else
1507                                r = -ENXIO;
1508                }
1509                break;
1510        }
1511        case KVM_REG_PPC_TM_CR:
1512                *val = get_reg_val(id, vcpu->arch.cr_tm);
1513                break;
1514        case KVM_REG_PPC_TM_XER:
1515                *val = get_reg_val(id, vcpu->arch.xer_tm);
1516                break;
1517        case KVM_REG_PPC_TM_LR:
1518                *val = get_reg_val(id, vcpu->arch.lr_tm);
1519                break;
1520        case KVM_REG_PPC_TM_CTR:
1521                *val = get_reg_val(id, vcpu->arch.ctr_tm);
1522                break;
1523        case KVM_REG_PPC_TM_FPSCR:
1524                *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1525                break;
1526        case KVM_REG_PPC_TM_AMR:
1527                *val = get_reg_val(id, vcpu->arch.amr_tm);
1528                break;
1529        case KVM_REG_PPC_TM_PPR:
1530                *val = get_reg_val(id, vcpu->arch.ppr_tm);
1531                break;
1532        case KVM_REG_PPC_TM_VRSAVE:
1533                *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1534                break;
1535        case KVM_REG_PPC_TM_VSCR:
1536                if (cpu_has_feature(CPU_FTR_ALTIVEC))
1537                        *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1538                else
1539                        r = -ENXIO;
1540                break;
1541        case KVM_REG_PPC_TM_DSCR:
1542                *val = get_reg_val(id, vcpu->arch.dscr_tm);
1543                break;
1544        case KVM_REG_PPC_TM_TAR:
1545                *val = get_reg_val(id, vcpu->arch.tar_tm);
1546                break;
1547#endif
1548        case KVM_REG_PPC_ARCH_COMPAT:
1549                *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1550                break;
1551        case KVM_REG_PPC_DEC_EXPIRY:
1552                *val = get_reg_val(id, vcpu->arch.dec_expires +
1553                                   vcpu->arch.vcore->tb_offset);
1554                break;
1555        case KVM_REG_PPC_ONLINE:
1556                *val = get_reg_val(id, vcpu->arch.online);
1557                break;
1558        default:
1559                r = -EINVAL;
1560                break;
1561        }
1562
1563        return r;
1564}
1565
1566static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1567                                 union kvmppc_one_reg *val)
1568{
1569        int r = 0;
1570        long int i;
1571        unsigned long addr, len;
1572
1573        switch (id) {
1574        case KVM_REG_PPC_HIOR:
1575                /* Only allow this to be set to zero */
1576                if (set_reg_val(id, *val))
1577                        r = -EINVAL;
1578                break;
1579        case KVM_REG_PPC_DABR:
1580                vcpu->arch.dabr = set_reg_val(id, *val);
1581                break;
1582        case KVM_REG_PPC_DABRX:
1583                vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1584                break;
1585        case KVM_REG_PPC_DSCR:
1586                vcpu->arch.dscr = set_reg_val(id, *val);
1587                break;
1588        case KVM_REG_PPC_PURR:
1589                vcpu->arch.purr = set_reg_val(id, *val);
1590                break;
1591        case KVM_REG_PPC_SPURR:
1592                vcpu->arch.spurr = set_reg_val(id, *val);
1593                break;
1594        case KVM_REG_PPC_AMR:
1595                vcpu->arch.amr = set_reg_val(id, *val);
1596                break;
1597        case KVM_REG_PPC_UAMOR:
1598                vcpu->arch.uamor = set_reg_val(id, *val);
1599                break;
1600        case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1601                i = id - KVM_REG_PPC_MMCR0;
1602                vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1603                break;
1604        case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1605                i = id - KVM_REG_PPC_PMC1;
1606                vcpu->arch.pmc[i] = set_reg_val(id, *val);
1607                break;
1608        case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1609                i = id - KVM_REG_PPC_SPMC1;
1610                vcpu->arch.spmc[i] = set_reg_val(id, *val);
1611                break;
1612        case KVM_REG_PPC_SIAR:
1613                vcpu->arch.siar = set_reg_val(id, *val);
1614                break;
1615        case KVM_REG_PPC_SDAR:
1616                vcpu->arch.sdar = set_reg_val(id, *val);
1617                break;
1618        case KVM_REG_PPC_SIER:
1619                vcpu->arch.sier = set_reg_val(id, *val);
1620                break;
1621        case KVM_REG_PPC_IAMR:
1622                vcpu->arch.iamr = set_reg_val(id, *val);
1623                break;
1624        case KVM_REG_PPC_PSPB:
1625                vcpu->arch.pspb = set_reg_val(id, *val);
1626                break;
1627        case KVM_REG_PPC_DPDES:
1628                vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1629                break;
1630        case KVM_REG_PPC_VTB:
1631                vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1632                break;
1633        case KVM_REG_PPC_DAWR:
1634                vcpu->arch.dawr = set_reg_val(id, *val);
1635                break;
1636        case KVM_REG_PPC_DAWRX:
1637                vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1638                break;
1639        case KVM_REG_PPC_CIABR:
1640                vcpu->arch.ciabr = set_reg_val(id, *val);
1641                /* Don't allow setting breakpoints in hypervisor code */
1642                if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1643                        vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1644                break;
1645        case KVM_REG_PPC_CSIGR:
1646                vcpu->arch.csigr = set_reg_val(id, *val);
1647                break;
1648        case KVM_REG_PPC_TACR:
1649                vcpu->arch.tacr = set_reg_val(id, *val);
1650                break;
1651        case KVM_REG_PPC_TCSCR:
1652                vcpu->arch.tcscr = set_reg_val(id, *val);
1653                break;
1654        case KVM_REG_PPC_PID:
1655                vcpu->arch.pid = set_reg_val(id, *val);
1656                break;
1657        case KVM_REG_PPC_ACOP:
1658                vcpu->arch.acop = set_reg_val(id, *val);
1659                break;
1660        case KVM_REG_PPC_WORT:
1661                vcpu->arch.wort = set_reg_val(id, *val);
1662                break;
1663        case KVM_REG_PPC_TIDR:
1664                vcpu->arch.tid = set_reg_val(id, *val);
1665                break;
1666        case KVM_REG_PPC_PSSCR:
1667                vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1668                break;
1669        case KVM_REG_PPC_VPA_ADDR:
1670                addr = set_reg_val(id, *val);
1671                r = -EINVAL;
1672                if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1673                              vcpu->arch.dtl.next_gpa))
1674                        break;
1675                r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1676                break;
1677        case KVM_REG_PPC_VPA_SLB:
1678                addr = val->vpaval.addr;
1679                len = val->vpaval.length;
1680                r = -EINVAL;
1681                if (addr && !vcpu->arch.vpa.next_gpa)
1682                        break;
1683                r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1684                break;
1685        case KVM_REG_PPC_VPA_DTL:
1686                addr = val->vpaval.addr;
1687                len = val->vpaval.length;
1688                r = -EINVAL;
1689                if (addr && (len < sizeof(struct dtl_entry) ||
1690                             !vcpu->arch.vpa.next_gpa))
1691                        break;
1692                len -= len % sizeof(struct dtl_entry);
1693                r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1694                break;
1695        case KVM_REG_PPC_TB_OFFSET:
1696                /*
1697                 * POWER9 DD1 has an erratum where writing TBU40 causes
1698                 * the timebase to lose ticks.  So we don't let the
1699                 * timebase offset be changed on P9 DD1.  (It is
1700                 * initialized to zero.)
1701                 */
1702                if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1703                        break;
1704                /* round up to multiple of 2^24 */
1705                vcpu->arch.vcore->tb_offset =
1706                        ALIGN(set_reg_val(id, *val), 1UL << 24);
1707                break;
1708        case KVM_REG_PPC_LPCR:
1709                kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1710                break;
1711        case KVM_REG_PPC_LPCR_64:
1712                kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1713                break;
1714        case KVM_REG_PPC_PPR:
1715                vcpu->arch.ppr = set_reg_val(id, *val);
1716                break;
1717#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1718        case KVM_REG_PPC_TFHAR:
1719                vcpu->arch.tfhar = set_reg_val(id, *val);
1720                break;
1721        case KVM_REG_PPC_TFIAR:
1722                vcpu->arch.tfiar = set_reg_val(id, *val);
1723                break;
1724        case KVM_REG_PPC_TEXASR:
1725                vcpu->arch.texasr = set_reg_val(id, *val);
1726                break;
1727        case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1728                i = id - KVM_REG_PPC_TM_GPR0;
1729                vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1730                break;
1731        case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1732        {
1733                int j;
1734                i = id - KVM_REG_PPC_TM_VSR0;
1735                if (i < 32)
1736                        for (j = 0; j < TS_FPRWIDTH; j++)
1737                                vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1738                else
1739                        if (cpu_has_feature(CPU_FTR_ALTIVEC))
1740                                vcpu->arch.vr_tm.vr[i-32] = val->vval;
1741                        else
1742                                r = -ENXIO;
1743                break;
1744        }
1745        case KVM_REG_PPC_TM_CR:
1746                vcpu->arch.cr_tm = set_reg_val(id, *val);
1747                break;
1748        case KVM_REG_PPC_TM_XER:
1749                vcpu->arch.xer_tm = set_reg_val(id, *val);
1750                break;
1751        case KVM_REG_PPC_TM_LR:
1752                vcpu->arch.lr_tm = set_reg_val(id, *val);
1753                break;
1754        case KVM_REG_PPC_TM_CTR:
1755                vcpu->arch.ctr_tm = set_reg_val(id, *val);
1756                break;
1757        case KVM_REG_PPC_TM_FPSCR:
1758                vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1759                break;
1760        case KVM_REG_PPC_TM_AMR:
1761                vcpu->arch.amr_tm = set_reg_val(id, *val);
1762                break;
1763        case KVM_REG_PPC_TM_PPR:
1764                vcpu->arch.ppr_tm = set_reg_val(id, *val);
1765                break;
1766        case KVM_REG_PPC_TM_VRSAVE:
1767                vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1768                break;
1769        case KVM_REG_PPC_TM_VSCR:
1770                if (cpu_has_feature(CPU_FTR_ALTIVEC))
1771                        vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1772                else
1773                        r = - ENXIO;
1774                break;
1775        case KVM_REG_PPC_TM_DSCR:
1776                vcpu->arch.dscr_tm = set_reg_val(id, *val);
1777                break;
1778        case KVM_REG_PPC_TM_TAR:
1779                vcpu->arch.tar_tm = set_reg_val(id, *val);
1780                break;
1781#endif
1782        case KVM_REG_PPC_ARCH_COMPAT:
1783                r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1784                break;
1785        case KVM_REG_PPC_DEC_EXPIRY:
1786                vcpu->arch.dec_expires = set_reg_val(id, *val) -
1787                        vcpu->arch.vcore->tb_offset;
1788                break;
1789        case KVM_REG_PPC_ONLINE:
1790                i = set_reg_val(id, *val);
1791                if (i && !vcpu->arch.online)
1792                        atomic_inc(&vcpu->arch.vcore->online_count);
1793                else if (!i && vcpu->arch.online)
1794                        atomic_dec(&vcpu->arch.vcore->online_count);
1795                vcpu->arch.online = i;
1796                break;
1797        default:
1798                r = -EINVAL;
1799                break;
1800        }
1801
1802        return r;
1803}
1804
1805/*
1806 * On POWER9, threads are independent and can be in different partitions.
1807 * Therefore we consider each thread to be a subcore.
1808 * There is a restriction that all threads have to be in the same
1809 * MMU mode (radix or HPT), unfortunately, but since we only support
1810 * HPT guests on a HPT host so far, that isn't an impediment yet.
1811 */
1812static int threads_per_vcore(struct kvm *kvm)
1813{
1814        if (kvm->arch.threads_indep)
1815                return 1;
1816        return threads_per_subcore;
1817}
1818
1819static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1820{
1821        struct kvmppc_vcore *vcore;
1822
1823        vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1824
1825        if (vcore == NULL)
1826                return NULL;
1827
1828        spin_lock_init(&vcore->lock);
1829        spin_lock_init(&vcore->stoltb_lock);
1830        init_swait_queue_head(&vcore->wq);
1831        vcore->preempt_tb = TB_NIL;
1832        vcore->lpcr = kvm->arch.lpcr;
1833        vcore->first_vcpuid = core * kvm->arch.smt_mode;
1834        vcore->kvm = kvm;
1835        INIT_LIST_HEAD(&vcore->preempt_list);
1836
1837        return vcore;
1838}
1839
1840#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1841static struct debugfs_timings_element {
1842        const char *name;
1843        size_t offset;
1844} timings[] = {
1845        {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
1846        {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
1847        {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
1848        {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
1849        {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
1850};
1851
1852#define N_TIMINGS       (ARRAY_SIZE(timings))
1853
1854struct debugfs_timings_state {
1855        struct kvm_vcpu *vcpu;
1856        unsigned int    buflen;
1857        char            buf[N_TIMINGS * 100];
1858};
1859
1860static int debugfs_timings_open(struct inode *inode, struct file *file)
1861{
1862        struct kvm_vcpu *vcpu = inode->i_private;
1863        struct debugfs_timings_state *p;
1864
1865        p = kzalloc(sizeof(*p), GFP_KERNEL);
1866        if (!p)
1867                return -ENOMEM;
1868
1869        kvm_get_kvm(vcpu->kvm);
1870        p->vcpu = vcpu;
1871        file->private_data = p;
1872
1873        return nonseekable_open(inode, file);
1874}
1875
1876static int debugfs_timings_release(struct inode *inode, struct file *file)
1877{
1878        struct debugfs_timings_state *p = file->private_data;
1879
1880        kvm_put_kvm(p->vcpu->kvm);
1881        kfree(p);
1882        return 0;
1883}
1884
1885static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1886                                    size_t len, loff_t *ppos)
1887{
1888        struct debugfs_timings_state *p = file->private_data;
1889        struct kvm_vcpu *vcpu = p->vcpu;
1890        char *s, *buf_end;
1891        struct kvmhv_tb_accumulator tb;
1892        u64 count;
1893        loff_t pos;
1894        ssize_t n;
1895        int i, loops;
1896        bool ok;
1897
1898        if (!p->buflen) {
1899                s = p->buf;
1900                buf_end = s + sizeof(p->buf);
1901                for (i = 0; i < N_TIMINGS; ++i) {
1902                        struct kvmhv_tb_accumulator *acc;
1903
1904                        acc = (struct kvmhv_tb_accumulator *)
1905                                ((unsigned long)vcpu + timings[i].offset);
1906                        ok = false;
1907                        for (loops = 0; loops < 1000; ++loops) {
1908                                count = acc->seqcount;
1909                                if (!(count & 1)) {
1910                                        smp_rmb();
1911                                        tb = *acc;
1912                                        smp_rmb();
1913                                        if (count == acc->seqcount) {
1914                                                ok = true;
1915                                                break;
1916                                        }
1917                                }
1918                                udelay(1);
1919                        }
1920                        if (!ok)
1921                                snprintf(s, buf_end - s, "%s: stuck\n",
1922                                        timings[i].name);
1923                        else
1924                                snprintf(s, buf_end - s,
1925                                        "%s: %llu %llu %llu %llu\n",
1926                                        timings[i].name, count / 2,
1927                                        tb_to_ns(tb.tb_total),
1928                                        tb_to_ns(tb.tb_min),
1929                                        tb_to_ns(tb.tb_max));
1930                        s += strlen(s);
1931                }
1932                p->buflen = s - p->buf;
1933        }
1934
1935        pos = *ppos;
1936        if (pos >= p->buflen)
1937                return 0;
1938        if (len > p->buflen - pos)
1939                len = p->buflen - pos;
1940        n = copy_to_user(buf, p->buf + pos, len);
1941        if (n) {
1942                if (n == len)
1943                        return -EFAULT;
1944                len -= n;
1945        }
1946        *ppos = pos + len;
1947        return len;
1948}
1949
1950static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1951                                     size_t len, loff_t *ppos)
1952{
1953        return -EACCES;
1954}
1955
1956static const struct file_operations debugfs_timings_ops = {
1957        .owner   = THIS_MODULE,
1958        .open    = debugfs_timings_open,
1959        .release = debugfs_timings_release,
1960        .read    = debugfs_timings_read,
1961        .write   = debugfs_timings_write,
1962        .llseek  = generic_file_llseek,
1963};
1964
1965/* Create a debugfs directory for the vcpu */
1966static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1967{
1968        char buf[16];
1969        struct kvm *kvm = vcpu->kvm;
1970
1971        snprintf(buf, sizeof(buf), "vcpu%u", id);
1972        if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1973                return;
1974        vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1975        if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1976                return;
1977        vcpu->arch.debugfs_timings =
1978                debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1979                                    vcpu, &debugfs_timings_ops);
1980}
1981
1982#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1983static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1984{
1985}
1986#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1987
1988static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1989                                                   unsigned int id)
1990{
1991        struct kvm_vcpu *vcpu;
1992        int err;
1993        int core;
1994        struct kvmppc_vcore *vcore;
1995
1996        err = -ENOMEM;
1997        vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1998        if (!vcpu)
1999                goto out;
2000
2001        err = kvm_vcpu_init(vcpu, kvm, id);
2002        if (err)
2003                goto free_vcpu;
2004
2005        vcpu->arch.shared = &vcpu->arch.shregs;
2006#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2007        /*
2008         * The shared struct is never shared on HV,
2009         * so we can always use host endianness
2010         */
2011#ifdef __BIG_ENDIAN__
2012        vcpu->arch.shared_big_endian = true;
2013#else
2014        vcpu->arch.shared_big_endian = false;
2015#endif
2016#endif
2017        vcpu->arch.mmcr[0] = MMCR0_FC;
2018        vcpu->arch.ctrl = CTRL_RUNLATCH;
2019        /* default to host PVR, since we can't spoof it */
2020        kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2021        spin_lock_init(&vcpu->arch.vpa_update_lock);
2022        spin_lock_init(&vcpu->arch.tbacct_lock);
2023        vcpu->arch.busy_preempt = TB_NIL;
2024        vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2025
2026        /*
2027         * Set the default HFSCR for the guest from the host value.
2028         * This value is only used on POWER9.
2029         * On POWER9 DD1, TM doesn't work, so we make sure to
2030         * prevent the guest from using it.
2031         * On POWER9, we want to virtualize the doorbell facility, so we
2032         * turn off the HFSCR bit, which causes those instructions to trap.
2033         */
2034        vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
2035        if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2036                vcpu->arch.hfscr |= HFSCR_TM;
2037        else if (!cpu_has_feature(CPU_FTR_TM_COMP))
2038                vcpu->arch.hfscr &= ~HFSCR_TM;
2039        if (cpu_has_feature(CPU_FTR_ARCH_300))
2040                vcpu->arch.hfscr &= ~HFSCR_MSGP;
2041
2042        kvmppc_mmu_book3s_hv_init(vcpu);
2043
2044        vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2045
2046        init_waitqueue_head(&vcpu->arch.cpu_run);
2047
2048        mutex_lock(&kvm->lock);
2049        vcore = NULL;
2050        err = -EINVAL;
2051        core = id / kvm->arch.smt_mode;
2052        if (core < KVM_MAX_VCORES) {
2053                vcore = kvm->arch.vcores[core];
2054                if (!vcore) {
2055                        err = -ENOMEM;
2056                        vcore = kvmppc_vcore_create(kvm, core);
2057                        kvm->arch.vcores[core] = vcore;
2058                        kvm->arch.online_vcores++;
2059                }
2060        }
2061        mutex_unlock(&kvm->lock);
2062
2063        if (!vcore)
2064                goto free_vcpu;
2065
2066        spin_lock(&vcore->lock);
2067        ++vcore->num_threads;
2068        spin_unlock(&vcore->lock);
2069        vcpu->arch.vcore = vcore;
2070        vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2071        vcpu->arch.thread_cpu = -1;
2072        vcpu->arch.prev_cpu = -1;
2073
2074        vcpu->arch.cpu_type = KVM_CPU_3S_64;
2075        kvmppc_sanity_check(vcpu);
2076
2077        debugfs_vcpu_init(vcpu, id);
2078
2079        return vcpu;
2080
2081free_vcpu:
2082        kmem_cache_free(kvm_vcpu_cache, vcpu);
2083out:
2084        return ERR_PTR(err);
2085}
2086
2087static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2088                              unsigned long flags)
2089{
2090        int err;
2091        int esmt = 0;
2092
2093        if (flags)
2094                return -EINVAL;
2095        if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2096                return -EINVAL;
2097        if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2098                /*
2099                 * On POWER8 (or POWER7), the threading mode is "strict",
2100                 * so we pack smt_mode vcpus per vcore.
2101                 */
2102                if (smt_mode > threads_per_subcore)
2103                        return -EINVAL;
2104        } else {
2105                /*
2106                 * On POWER9, the threading mode is "loose",
2107                 * so each vcpu gets its own vcore.
2108                 */
2109                esmt = smt_mode;
2110                smt_mode = 1;
2111        }
2112        mutex_lock(&kvm->lock);
2113        err = -EBUSY;
2114        if (!kvm->arch.online_vcores) {
2115                kvm->arch.smt_mode = smt_mode;
2116                kvm->arch.emul_smt_mode = esmt;
2117                err = 0;
2118        }
2119        mutex_unlock(&kvm->lock);
2120
2121        return err;
2122}
2123
2124static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2125{
2126        if (vpa->pinned_addr)
2127                kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2128                                        vpa->dirty);
2129}
2130
2131static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2132{
2133        spin_lock(&vcpu->arch.vpa_update_lock);
2134        unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2135        unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2136        unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2137        spin_unlock(&vcpu->arch.vpa_update_lock);
2138        kvm_vcpu_uninit(vcpu);
2139        kmem_cache_free(kvm_vcpu_cache, vcpu);
2140}
2141
2142static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2143{
2144        /* Indicate we want to get back into the guest */
2145        return 1;
2146}
2147
2148static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2149{
2150        unsigned long dec_nsec, now;
2151
2152        now = get_tb();
2153        if (now > vcpu->arch.dec_expires) {
2154                /* decrementer has already gone negative */
2155                kvmppc_core_queue_dec(vcpu);
2156                kvmppc_core_prepare_to_enter(vcpu);
2157                return;
2158        }
2159        dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2160                   / tb_ticks_per_sec;
2161        hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2162        vcpu->arch.timer_running = 1;
2163}
2164
2165static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2166{
2167        vcpu->arch.ceded = 0;
2168        if (vcpu->arch.timer_running) {
2169                hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2170                vcpu->arch.timer_running = 0;
2171        }
2172}
2173
2174extern int __kvmppc_vcore_entry(void);
2175
2176static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2177                                   struct kvm_vcpu *vcpu)
2178{
2179        u64 now;
2180
2181        if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2182                return;
2183        spin_lock_irq(&vcpu->arch.tbacct_lock);
2184        now = mftb();
2185        vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2186                vcpu->arch.stolen_logged;
2187        vcpu->arch.busy_preempt = now;
2188        vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2189        spin_unlock_irq(&vcpu->arch.tbacct_lock);
2190        --vc->n_runnable;
2191        WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2192}
2193
2194static int kvmppc_grab_hwthread(int cpu)
2195{
2196        struct paca_struct *tpaca;
2197        long timeout = 10000;
2198
2199        tpaca = paca_ptrs[cpu];
2200
2201        /* Ensure the thread won't go into the kernel if it wakes */
2202        tpaca->kvm_hstate.kvm_vcpu = NULL;
2203        tpaca->kvm_hstate.kvm_vcore = NULL;
2204        tpaca->kvm_hstate.napping = 0;
2205        smp_wmb();
2206        tpaca->kvm_hstate.hwthread_req = 1;
2207
2208        /*
2209         * If the thread is already executing in the kernel (e.g. handling
2210         * a stray interrupt), wait for it to get back to nap mode.
2211         * The smp_mb() is to ensure that our setting of hwthread_req
2212         * is visible before we look at hwthread_state, so if this
2213         * races with the code at system_reset_pSeries and the thread
2214         * misses our setting of hwthread_req, we are sure to see its
2215         * setting of hwthread_state, and vice versa.
2216         */
2217        smp_mb();
2218        while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2219                if (--timeout <= 0) {
2220                        pr_err("KVM: couldn't grab cpu %d\n", cpu);
2221                        return -EBUSY;
2222                }
2223                udelay(1);
2224        }
2225        return 0;
2226}
2227
2228static void kvmppc_release_hwthread(int cpu)
2229{
2230        struct paca_struct *tpaca;
2231
2232        tpaca = paca_ptrs[cpu];
2233        tpaca->kvm_hstate.hwthread_req = 0;
2234        tpaca->kvm_hstate.kvm_vcpu = NULL;
2235        tpaca->kvm_hstate.kvm_vcore = NULL;
2236        tpaca->kvm_hstate.kvm_split_mode = NULL;
2237}
2238
2239static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2240{
2241        int i;
2242
2243        cpu = cpu_first_thread_sibling(cpu);
2244        cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2245        /*
2246         * Make sure setting of bit in need_tlb_flush precedes
2247         * testing of cpu_in_guest bits.  The matching barrier on
2248         * the other side is the first smp_mb() in kvmppc_run_core().
2249         */
2250        smp_mb();
2251        for (i = 0; i < threads_per_core; ++i)
2252                if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2253                        smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2254}
2255
2256static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2257{
2258        struct kvm *kvm = vcpu->kvm;
2259
2260        /*
2261         * With radix, the guest can do TLB invalidations itself,
2262         * and it could choose to use the local form (tlbiel) if
2263         * it is invalidating a translation that has only ever been
2264         * used on one vcpu.  However, that doesn't mean it has
2265         * only ever been used on one physical cpu, since vcpus
2266         * can move around between pcpus.  To cope with this, when
2267         * a vcpu moves from one pcpu to another, we need to tell
2268         * any vcpus running on the same core as this vcpu previously
2269         * ran to flush the TLB.  The TLB is shared between threads,
2270         * so we use a single bit in .need_tlb_flush for all 4 threads.
2271         */
2272        if (vcpu->arch.prev_cpu != pcpu) {
2273                if (vcpu->arch.prev_cpu >= 0 &&
2274                    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2275                    cpu_first_thread_sibling(pcpu))
2276                        radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2277                vcpu->arch.prev_cpu = pcpu;
2278        }
2279}
2280
2281static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2282{
2283        int cpu;
2284        struct paca_struct *tpaca;
2285        struct kvm *kvm = vc->kvm;
2286
2287        cpu = vc->pcpu;
2288        if (vcpu) {
2289                if (vcpu->arch.timer_running) {
2290                        hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2291                        vcpu->arch.timer_running = 0;
2292                }
2293                cpu += vcpu->arch.ptid;
2294                vcpu->cpu = vc->pcpu;
2295                vcpu->arch.thread_cpu = cpu;
2296                cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2297        }
2298        tpaca = paca_ptrs[cpu];
2299        tpaca->kvm_hstate.kvm_vcpu = vcpu;
2300        tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2301        tpaca->kvm_hstate.fake_suspend = 0;
2302        /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2303        smp_wmb();
2304        tpaca->kvm_hstate.kvm_vcore = vc;
2305        if (cpu != smp_processor_id())
2306                kvmppc_ipi_thread(cpu);
2307}
2308
2309static void kvmppc_wait_for_nap(int n_threads)
2310{
2311        int cpu = smp_processor_id();
2312        int i, loops;
2313
2314        if (n_threads <= 1)
2315                return;
2316        for (loops = 0; loops < 1000000; ++loops) {
2317                /*
2318                 * Check if all threads are finished.
2319                 * We set the vcore pointer when starting a thread
2320                 * and the thread clears it when finished, so we look
2321                 * for any threads that still have a non-NULL vcore ptr.
2322                 */
2323                for (i = 1; i < n_threads; ++i)
2324                        if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2325                                break;
2326                if (i == n_threads) {
2327                        HMT_medium();
2328                        return;
2329                }
2330                HMT_low();
2331        }
2332        HMT_medium();
2333        for (i = 1; i < n_threads; ++i)
2334                if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2335                        pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2336}
2337
2338/*
2339 * Check that we are on thread 0 and that any other threads in
2340 * this core are off-line.  Then grab the threads so they can't
2341 * enter the kernel.
2342 */
2343static int on_primary_thread(void)
2344{
2345        int cpu = smp_processor_id();
2346        int thr;
2347
2348        /* Are we on a primary subcore? */
2349        if (cpu_thread_in_subcore(cpu))
2350                return 0;
2351
2352        thr = 0;
2353        while (++thr < threads_per_subcore)
2354                if (cpu_online(cpu + thr))
2355                        return 0;
2356
2357        /* Grab all hw threads so they can't go into the kernel */
2358        for (thr = 1; thr < threads_per_subcore; ++thr) {
2359                if (kvmppc_grab_hwthread(cpu + thr)) {
2360                        /* Couldn't grab one; let the others go */
2361                        do {
2362                                kvmppc_release_hwthread(cpu + thr);
2363                        } while (--thr > 0);
2364                        return 0;
2365                }
2366        }
2367        return 1;
2368}
2369
2370/*
2371 * A list of virtual cores for each physical CPU.
2372 * These are vcores that could run but their runner VCPU tasks are
2373 * (or may be) preempted.
2374 */
2375struct preempted_vcore_list {
2376        struct list_head        list;
2377        spinlock_t              lock;
2378};
2379
2380static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2381
2382static void init_vcore_lists(void)
2383{
2384        int cpu;
2385
2386        for_each_possible_cpu(cpu) {
2387                struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2388                spin_lock_init(&lp->lock);
2389                INIT_LIST_HEAD(&lp->list);
2390        }
2391}
2392
2393static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2394{
2395        struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2396
2397        vc->vcore_state = VCORE_PREEMPT;
2398        vc->pcpu = smp_processor_id();
2399        if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2400                spin_lock(&lp->lock);
2401                list_add_tail(&vc->preempt_list, &lp->list);
2402                spin_unlock(&lp->lock);
2403        }
2404
2405        /* Start accumulating stolen time */
2406        kvmppc_core_start_stolen(vc);
2407}
2408
2409static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2410{
2411        struct preempted_vcore_list *lp;
2412
2413        kvmppc_core_end_stolen(vc);
2414        if (!list_empty(&vc->preempt_list)) {
2415                lp = &per_cpu(preempted_vcores, vc->pcpu);
2416                spin_lock(&lp->lock);
2417                list_del_init(&vc->preempt_list);
2418                spin_unlock(&lp->lock);
2419        }
2420        vc->vcore_state = VCORE_INACTIVE;
2421}
2422
2423/*
2424 * This stores information about the virtual cores currently
2425 * assigned to a physical core.
2426 */
2427struct core_info {
2428        int             n_subcores;
2429        int             max_subcore_threads;
2430        int             total_threads;
2431        int             subcore_threads[MAX_SUBCORES];
2432        struct kvmppc_vcore *vc[MAX_SUBCORES];
2433};
2434
2435/*
2436 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2437 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2438 */
2439static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2440
2441static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2442{
2443        memset(cip, 0, sizeof(*cip));
2444        cip->n_subcores = 1;
2445        cip->max_subcore_threads = vc->num_threads;
2446        cip->total_threads = vc->num_threads;
2447        cip->subcore_threads[0] = vc->num_threads;
2448        cip->vc[0] = vc;
2449}
2450
2451static bool subcore_config_ok(int n_subcores, int n_threads)
2452{
2453        /*
2454         * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2455         * split-core mode, with one thread per subcore.
2456         */
2457        if (cpu_has_feature(CPU_FTR_ARCH_300))
2458                return n_subcores <= 4 && n_threads == 1;
2459
2460        /* On POWER8, can only dynamically split if unsplit to begin with */
2461        if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2462                return false;
2463        if (n_subcores > MAX_SUBCORES)
2464                return false;
2465        if (n_subcores > 1) {
2466                if (!(dynamic_mt_modes & 2))
2467                        n_subcores = 4;
2468                if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2469                        return false;
2470        }
2471
2472        return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2473}
2474
2475static void init_vcore_to_run(struct kvmppc_vcore *vc)
2476{
2477        vc->entry_exit_map = 0;
2478        vc->in_guest = 0;
2479        vc->napping_threads = 0;
2480        vc->conferring_threads = 0;
2481        vc->tb_offset_applied = 0;
2482}
2483
2484static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2485{
2486        int n_threads = vc->num_threads;
2487        int sub;
2488
2489        if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2490                return false;
2491
2492        /* Some POWER9 chips require all threads to be in the same MMU mode */
2493        if (no_mixing_hpt_and_radix &&
2494            kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2495                return false;
2496
2497        if (n_threads < cip->max_subcore_threads)
2498                n_threads = cip->max_subcore_threads;
2499        if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2500                return false;
2501        cip->max_subcore_threads = n_threads;
2502
2503        sub = cip->n_subcores;
2504        ++cip->n_subcores;
2505        cip->total_threads += vc->num_threads;
2506        cip->subcore_threads[sub] = vc->num_threads;
2507        cip->vc[sub] = vc;
2508        init_vcore_to_run(vc);
2509        list_del_init(&vc->preempt_list);
2510
2511        return true;
2512}
2513
2514/*
2515 * Work out whether it is possible to piggyback the execution of
2516 * vcore *pvc onto the execution of the other vcores described in *cip.
2517 */
2518static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2519                          int target_threads)
2520{
2521        if (cip->total_threads + pvc->num_threads > target_threads)
2522                return false;
2523
2524        return can_dynamic_split(pvc, cip);
2525}
2526
2527static void prepare_threads(struct kvmppc_vcore *vc)
2528{
2529        int i;
2530        struct kvm_vcpu *vcpu;
2531
2532        for_each_runnable_thread(i, vcpu, vc) {
2533                if (signal_pending(vcpu->arch.run_task))
2534                        vcpu->arch.ret = -EINTR;
2535                else if (vcpu->arch.vpa.update_pending ||
2536                         vcpu->arch.slb_shadow.update_pending ||
2537                         vcpu->arch.dtl.update_pending)
2538                        vcpu->arch.ret = RESUME_GUEST;
2539                else
2540                        continue;
2541                kvmppc_remove_runnable(vc, vcpu);
2542                wake_up(&vcpu->arch.cpu_run);
2543        }
2544}
2545
2546static void collect_piggybacks(struct core_info *cip, int target_threads)
2547{
2548        struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2549        struct kvmppc_vcore *pvc, *vcnext;
2550
2551        spin_lock(&lp->lock);
2552        list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2553                if (!spin_trylock(&pvc->lock))
2554                        continue;
2555                prepare_threads(pvc);
2556                if (!pvc->n_runnable) {
2557                        list_del_init(&pvc->preempt_list);
2558                        if (pvc->runner == NULL) {
2559                                pvc->vcore_state = VCORE_INACTIVE;
2560                                kvmppc_core_end_stolen(pvc);
2561                        }
2562                        spin_unlock(&pvc->lock);
2563                        continue;
2564                }
2565                if (!can_piggyback(pvc, cip, target_threads)) {
2566                        spin_unlock(&pvc->lock);
2567                        continue;
2568                }
2569                kvmppc_core_end_stolen(pvc);
2570                pvc->vcore_state = VCORE_PIGGYBACK;
2571                if (cip->total_threads >= target_threads)
2572                        break;
2573        }
2574        spin_unlock(&lp->lock);
2575}
2576
2577static bool recheck_signals(struct core_info *cip)
2578{
2579        int sub, i;
2580        struct kvm_vcpu *vcpu;
2581
2582        for (sub = 0; sub < cip->n_subcores; ++sub)
2583                for_each_runnable_thread(i, vcpu, cip->vc[sub])
2584                        if (signal_pending(vcpu->arch.run_task))
2585                                return true;
2586        return false;
2587}
2588
2589static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2590{
2591        int still_running = 0, i;
2592        u64 now;
2593        long ret;
2594        struct kvm_vcpu *vcpu;
2595
2596        spin_lock(&vc->lock);
2597        now = get_tb();
2598        for_each_runnable_thread(i, vcpu, vc) {
2599                /* cancel pending dec exception if dec is positive */
2600                if (now < vcpu->arch.dec_expires &&
2601                    kvmppc_core_pending_dec(vcpu))
2602                        kvmppc_core_dequeue_dec(vcpu);
2603
2604                trace_kvm_guest_exit(vcpu);
2605
2606                ret = RESUME_GUEST;
2607                if (vcpu->arch.trap)
2608                        ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2609                                                    vcpu->arch.run_task);
2610
2611                vcpu->arch.ret = ret;
2612                vcpu->arch.trap = 0;
2613
2614                if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2615                        if (vcpu->arch.pending_exceptions)
2616                                kvmppc_core_prepare_to_enter(vcpu);
2617                        if (vcpu->arch.ceded)
2618                                kvmppc_set_timer(vcpu);
2619                        else
2620                                ++still_running;
2621                } else {
2622                        kvmppc_remove_runnable(vc, vcpu);
2623                        wake_up(&vcpu->arch.cpu_run);
2624                }
2625        }
2626        if (!is_master) {
2627                if (still_running > 0) {
2628                        kvmppc_vcore_preempt(vc);
2629                } else if (vc->runner) {
2630                        vc->vcore_state = VCORE_PREEMPT;
2631                        kvmppc_core_start_stolen(vc);
2632                } else {
2633                        vc->vcore_state = VCORE_INACTIVE;
2634                }
2635                if (vc->n_runnable > 0 && vc->runner == NULL) {
2636                        /* make sure there's a candidate runner awake */
2637                        i = -1;
2638                        vcpu = next_runnable_thread(vc, &i);
2639                        wake_up(&vcpu->arch.cpu_run);
2640                }
2641        }
2642        spin_unlock(&vc->lock);
2643}
2644
2645/*
2646 * Clear core from the list of active host cores as we are about to
2647 * enter the guest. Only do this if it is the primary thread of the
2648 * core (not if a subcore) that is entering the guest.
2649 */
2650static inline int kvmppc_clear_host_core(unsigned int cpu)
2651{
2652        int core;
2653
2654        if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2655                return 0;
2656        /*
2657         * Memory barrier can be omitted here as we will do a smp_wmb()
2658         * later in kvmppc_start_thread and we need ensure that state is
2659         * visible to other CPUs only after we enter guest.
2660         */
2661        core = cpu >> threads_shift;
2662        kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2663        return 0;
2664}
2665
2666/*
2667 * Advertise this core as an active host core since we exited the guest
2668 * Only need to do this if it is the primary thread of the core that is
2669 * exiting.
2670 */
2671static inline int kvmppc_set_host_core(unsigned int cpu)
2672{
2673        int core;
2674
2675        if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2676                return 0;
2677
2678        /*
2679         * Memory barrier can be omitted here because we do a spin_unlock
2680         * immediately after this which provides the memory barrier.
2681         */
2682        core = cpu >> threads_shift;
2683        kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2684        return 0;
2685}
2686
2687static void set_irq_happened(int trap)
2688{
2689        switch (trap) {
2690        case BOOK3S_INTERRUPT_EXTERNAL:
2691                local_paca->irq_happened |= PACA_IRQ_EE;
2692                break;
2693        case BOOK3S_INTERRUPT_H_DOORBELL:
2694                local_paca->irq_happened |= PACA_IRQ_DBELL;
2695                break;
2696        case BOOK3S_INTERRUPT_HMI:
2697                local_paca->irq_happened |= PACA_IRQ_HMI;
2698                break;
2699        case BOOK3S_INTERRUPT_SYSTEM_RESET:
2700                replay_system_reset();
2701                break;
2702        }
2703}
2704
2705/*
2706 * Run a set of guest threads on a physical core.
2707 * Called with vc->lock held.
2708 */
2709static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2710{
2711        struct kvm_vcpu *vcpu;
2712        int i;
2713        int srcu_idx;
2714        struct core_info core_info;
2715        struct kvmppc_vcore *pvc;
2716        struct kvm_split_mode split_info, *sip;
2717        int split, subcore_size, active;
2718        int sub;
2719        bool thr0_done;
2720        unsigned long cmd_bit, stat_bit;
2721        int pcpu, thr;
2722        int target_threads;
2723        int controlled_threads;
2724        int trap;
2725        bool is_power8;
2726        bool hpt_on_radix;
2727
2728        /*
2729         * Remove from the list any threads that have a signal pending
2730         * or need a VPA update done
2731         */
2732        prepare_threads(vc);
2733
2734        /* if the runner is no longer runnable, let the caller pick a new one */
2735        if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2736                return;
2737
2738        /*
2739         * Initialize *vc.
2740         */
2741        init_vcore_to_run(vc);
2742        vc->preempt_tb = TB_NIL;
2743
2744        /*
2745         * Number of threads that we will be controlling: the same as
2746         * the number of threads per subcore, except on POWER9,
2747         * where it's 1 because the threads are (mostly) independent.
2748         */
2749        controlled_threads = threads_per_vcore(vc->kvm);
2750
2751        /*
2752         * Make sure we are running on primary threads, and that secondary
2753         * threads are offline.  Also check if the number of threads in this
2754         * guest are greater than the current system threads per guest.
2755         * On POWER9, we need to be not in independent-threads mode if
2756         * this is a HPT guest on a radix host machine where the
2757         * CPU threads may not be in different MMU modes.
2758         */
2759        hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
2760                !kvm_is_radix(vc->kvm);
2761        if (((controlled_threads > 1) &&
2762             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2763            (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2764                for_each_runnable_thread(i, vcpu, vc) {
2765                        vcpu->arch.ret = -EBUSY;
2766                        kvmppc_remove_runnable(vc, vcpu);
2767                        wake_up(&vcpu->arch.cpu_run);
2768                }
2769                goto out;
2770        }
2771
2772        /*
2773         * See if we could run any other vcores on the physical core
2774         * along with this one.
2775         */
2776        init_core_info(&core_info, vc);
2777        pcpu = smp_processor_id();
2778        target_threads = controlled_threads;
2779        if (target_smt_mode && target_smt_mode < target_threads)
2780                target_threads = target_smt_mode;
2781        if (vc->num_threads < target_threads)
2782                collect_piggybacks(&core_info, target_threads);
2783
2784        /*
2785         * On radix, arrange for TLB flushing if necessary.
2786         * This has to be done before disabling interrupts since
2787         * it uses smp_call_function().
2788         */
2789        pcpu = smp_processor_id();
2790        if (kvm_is_radix(vc->kvm)) {
2791                for (sub = 0; sub < core_info.n_subcores; ++sub)
2792                        for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2793                                kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2794        }
2795
2796        /*
2797         * Hard-disable interrupts, and check resched flag and signals.
2798         * If we need to reschedule or deliver a signal, clean up
2799         * and return without going into the guest(s).
2800         * If the mmu_ready flag has been cleared, don't go into the
2801         * guest because that means a HPT resize operation is in progress.
2802         */
2803        local_irq_disable();
2804        hard_irq_disable();
2805        if (lazy_irq_pending() || need_resched() ||
2806            recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2807                local_irq_enable();
2808                vc->vcore_state = VCORE_INACTIVE;
2809                /* Unlock all except the primary vcore */
2810                for (sub = 1; sub < core_info.n_subcores; ++sub) {
2811                        pvc = core_info.vc[sub];
2812                        /* Put back on to the preempted vcores list */
2813                        kvmppc_vcore_preempt(pvc);
2814                        spin_unlock(&pvc->lock);
2815                }
2816                for (i = 0; i < controlled_threads; ++i)
2817                        kvmppc_release_hwthread(pcpu + i);
2818                return;
2819        }
2820
2821        kvmppc_clear_host_core(pcpu);
2822
2823        /* Decide on micro-threading (split-core) mode */
2824        subcore_size = threads_per_subcore;
2825        cmd_bit = stat_bit = 0;
2826        split = core_info.n_subcores;
2827        sip = NULL;
2828        is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2829                && !cpu_has_feature(CPU_FTR_ARCH_300);
2830
2831        if (split > 1 || hpt_on_radix) {
2832                sip = &split_info;
2833                memset(&split_info, 0, sizeof(split_info));
2834                for (sub = 0; sub < core_info.n_subcores; ++sub)
2835                        split_info.vc[sub] = core_info.vc[sub];
2836
2837                if (is_power8) {
2838                        if (split == 2 && (dynamic_mt_modes & 2)) {
2839                                cmd_bit = HID0_POWER8_1TO2LPAR;
2840                                stat_bit = HID0_POWER8_2LPARMODE;
2841                        } else {
2842                                split = 4;
2843                                cmd_bit = HID0_POWER8_1TO4LPAR;
2844                                stat_bit = HID0_POWER8_4LPARMODE;
2845                        }
2846                        subcore_size = MAX_SMT_THREADS / split;
2847                        split_info.rpr = mfspr(SPRN_RPR);
2848                        split_info.pmmar = mfspr(SPRN_PMMAR);
2849                        split_info.ldbar = mfspr(SPRN_LDBAR);
2850                        split_info.subcore_size = subcore_size;
2851                } else {
2852                        split_info.subcore_size = 1;
2853                        if (hpt_on_radix) {
2854                                /* Use the split_info for LPCR/LPIDR changes */
2855                                split_info.lpcr_req = vc->lpcr;
2856                                split_info.lpidr_req = vc->kvm->arch.lpid;
2857                                split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2858                                split_info.do_set = 1;
2859                        }
2860                }
2861
2862                /* order writes to split_info before kvm_split_mode pointer */
2863                smp_wmb();
2864        }
2865
2866        for (thr = 0; thr < controlled_threads; ++thr) {
2867                struct paca_struct *paca = paca_ptrs[pcpu + thr];
2868
2869                paca->kvm_hstate.tid = thr;
2870                paca->kvm_hstate.napping = 0;
2871                paca->kvm_hstate.kvm_split_mode = sip;
2872        }
2873
2874        /* Initiate micro-threading (split-core) on POWER8 if required */
2875        if (cmd_bit) {
2876                unsigned long hid0 = mfspr(SPRN_HID0);
2877
2878                hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2879                mb();
2880                mtspr(SPRN_HID0, hid0);
2881                isync();
2882                for (;;) {
2883                        hid0 = mfspr(SPRN_HID0);
2884                        if (hid0 & stat_bit)
2885                                break;
2886                        cpu_relax();
2887                }
2888        }
2889
2890        /*
2891         * On POWER8, set RWMR register.
2892         * Since it only affects PURR and SPURR, it doesn't affect
2893         * the host, so we don't save/restore the host value.
2894         */
2895        if (is_power8) {
2896                unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
2897                int n_online = atomic_read(&vc->online_count);
2898
2899                /*
2900                 * Use the 8-thread value if we're doing split-core
2901                 * or if the vcore's online count looks bogus.
2902                 */
2903                if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
2904                    n_online >= 1 && n_online <= MAX_SMT_THREADS)
2905                        rwmr_val = p8_rwmr_values[n_online];
2906                mtspr(SPRN_RWMR, rwmr_val);
2907        }
2908
2909        /* Start all the threads */
2910        active = 0;
2911        for (sub = 0; sub < core_info.n_subcores; ++sub) {
2912                thr = is_power8 ? subcore_thread_map[sub] : sub;
2913                thr0_done = false;
2914                active |= 1 << thr;
2915                pvc = core_info.vc[sub];
2916                pvc->pcpu = pcpu + thr;
2917                for_each_runnable_thread(i, vcpu, pvc) {
2918                        kvmppc_start_thread(vcpu, pvc);
2919                        kvmppc_create_dtl_entry(vcpu, pvc);
2920                        trace_kvm_guest_enter(vcpu);
2921                        if (!vcpu->arch.ptid)
2922                                thr0_done = true;
2923                        active |= 1 << (thr + vcpu->arch.ptid);
2924                }
2925                /*
2926                 * We need to start the first thread of each subcore
2927                 * even if it doesn't have a vcpu.
2928                 */
2929                if (!thr0_done)
2930                        kvmppc_start_thread(NULL, pvc);
2931        }
2932
2933        /*
2934         * Ensure that split_info.do_nap is set after setting
2935         * the vcore pointer in the PACA of the secondaries.
2936         */
2937        smp_mb();
2938
2939        /*
2940         * When doing micro-threading, poke the inactive threads as well.
2941         * This gets them to the nap instruction after kvm_do_nap,
2942         * which reduces the time taken to unsplit later.
2943         * For POWER9 HPT guest on radix host, we need all the secondary
2944         * threads woken up so they can do the LPCR/LPIDR change.
2945         */
2946        if (cmd_bit || hpt_on_radix) {
2947                split_info.do_nap = 1;  /* ask secondaries to nap when done */
2948                for (thr = 1; thr < threads_per_subcore; ++thr)
2949                        if (!(active & (1 << thr)))
2950                                kvmppc_ipi_thread(pcpu + thr);
2951        }
2952
2953        vc->vcore_state = VCORE_RUNNING;
2954        preempt_disable();
2955
2956        trace_kvmppc_run_core(vc, 0);
2957
2958        for (sub = 0; sub < core_info.n_subcores; ++sub)
2959                spin_unlock(&core_info.vc[sub]->lock);
2960
2961        if (kvm_is_radix(vc->kvm)) {
2962                int tmp = pcpu;
2963
2964                /*
2965                 * Do we need to flush the process scoped TLB for the LPAR?
2966                 *
2967                 * On POWER9, individual threads can come in here, but the
2968                 * TLB is shared between the 4 threads in a core, hence
2969                 * invalidating on one thread invalidates for all.
2970                 * Thus we make all 4 threads use the same bit here.
2971                 *
2972                 * Hash must be flushed in realmode in order to use tlbiel.
2973                 */
2974                mtspr(SPRN_LPID, vc->kvm->arch.lpid);
2975                isync();
2976
2977                if (cpu_has_feature(CPU_FTR_ARCH_300))
2978                        tmp &= ~0x3UL;
2979
2980                if (cpumask_test_cpu(tmp, &vc->kvm->arch.need_tlb_flush)) {
2981                        radix__local_flush_tlb_lpid_guest(vc->kvm->arch.lpid);
2982                        /* Clear the bit after the TLB flush */
2983                        cpumask_clear_cpu(tmp, &vc->kvm->arch.need_tlb_flush);
2984                }
2985        }
2986
2987        /*
2988         * Interrupts will be enabled once we get into the guest,
2989         * so tell lockdep that we're about to enable interrupts.
2990         */
2991        trace_hardirqs_on();
2992
2993        guest_enter_irqoff();
2994
2995        srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2996
2997        this_cpu_disable_ftrace();
2998
2999        trap = __kvmppc_vcore_entry();
3000
3001        this_cpu_enable_ftrace();
3002
3003        srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3004
3005        trace_hardirqs_off();
3006        set_irq_happened(trap);
3007
3008        spin_lock(&vc->lock);
3009        /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3010        vc->vcore_state = VCORE_EXITING;
3011
3012        /* wait for secondary threads to finish writing their state to memory */
3013        kvmppc_wait_for_nap(controlled_threads);
3014
3015        /* Return to whole-core mode if we split the core earlier */
3016        if (cmd_bit) {
3017                unsigned long hid0 = mfspr(SPRN_HID0);
3018                unsigned long loops = 0;
3019
3020                hid0 &= ~HID0_POWER8_DYNLPARDIS;
3021                stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3022                mb();
3023                mtspr(SPRN_HID0, hid0);
3024                isync();
3025                for (;;) {
3026                        hid0 = mfspr(SPRN_HID0);
3027                        if (!(hid0 & stat_bit))
3028                                break;
3029                        cpu_relax();
3030                        ++loops;
3031                }
3032        } else if (hpt_on_radix) {
3033                /* Wait for all threads to have seen final sync */
3034                for (thr = 1; thr < controlled_threads; ++thr) {
3035                        struct paca_struct *paca = paca_ptrs[pcpu + thr];
3036
3037                        while (paca->kvm_hstate.kvm_split_mode) {
3038                                HMT_low();
3039                                barrier();
3040                        }
3041                        HMT_medium();
3042                }
3043        }
3044        split_info.do_nap = 0;
3045
3046        kvmppc_set_host_core(pcpu);
3047
3048        local_irq_enable();
3049        guest_exit();
3050
3051        /* Let secondaries go back to the offline loop */
3052        for (i = 0; i < controlled_threads; ++i) {
3053                kvmppc_release_hwthread(pcpu + i);
3054                if (sip && sip->napped[i])
3055                        kvmppc_ipi_thread(pcpu + i);
3056                cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3057        }
3058
3059        spin_unlock(&vc->lock);
3060
3061        /* make sure updates to secondary vcpu structs are visible now */
3062        smp_mb();
3063
3064        preempt_enable();
3065
3066        for (sub = 0; sub < core_info.n_subcores; ++sub) {
3067                pvc = core_info.vc[sub];
3068                post_guest_process(pvc, pvc == vc);
3069        }
3070
3071        spin_lock(&vc->lock);
3072
3073 out:
3074        vc->vcore_state = VCORE_INACTIVE;
3075        trace_kvmppc_run_core(vc, 1);
3076}
3077
3078/*
3079 * Wait for some other vcpu thread to execute us, and
3080 * wake us up when we need to handle something in the host.
3081 */
3082static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3083                                 struct kvm_vcpu *vcpu, int wait_state)
3084{
3085        DEFINE_WAIT(wait);
3086
3087        prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3088        if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3089                spin_unlock(&vc->lock);
3090                schedule();
3091                spin_lock(&vc->lock);
3092        }
3093        finish_wait(&vcpu->arch.cpu_run, &wait);
3094}
3095
3096static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3097{
3098        /* 10us base */
3099        if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
3100                vc->halt_poll_ns = 10000;
3101        else
3102                vc->halt_poll_ns *= halt_poll_ns_grow;
3103}
3104
3105static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3106{
3107        if (halt_poll_ns_shrink == 0)
3108                vc->halt_poll_ns = 0;
3109        else
3110                vc->halt_poll_ns /= halt_poll_ns_shrink;
3111}
3112
3113#ifdef CONFIG_KVM_XICS
3114static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3115{
3116        if (!xive_enabled())
3117                return false;
3118        return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3119                vcpu->arch.xive_saved_state.cppr;
3120}
3121#else
3122static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3123{
3124        return false;
3125}
3126#endif /* CONFIG_KVM_XICS */
3127
3128static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3129{
3130        if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3131            kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3132                return true;
3133
3134        return false;
3135}
3136
3137/*
3138 * Check to see if any of the runnable vcpus on the vcore have pending
3139 * exceptions or are no longer ceded
3140 */
3141static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3142{
3143        struct kvm_vcpu *vcpu;
3144        int i;
3145
3146        for_each_runnable_thread(i, vcpu, vc) {
3147                if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3148                        return 1;
3149        }
3150
3151        return 0;
3152}
3153
3154/*
3155 * All the vcpus in this vcore are idle, so wait for a decrementer
3156 * or external interrupt to one of the vcpus.  vc->lock is held.
3157 */
3158static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3159{
3160        ktime_t cur, start_poll, start_wait;
3161        int do_sleep = 1;
3162        u64 block_ns;
3163        DECLARE_SWAITQUEUE(wait);
3164
3165        /* Poll for pending exceptions and ceded state */
3166        cur = start_poll = ktime_get();
3167        if (vc->halt_poll_ns) {
3168                ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3169                ++vc->runner->stat.halt_attempted_poll;
3170
3171                vc->vcore_state = VCORE_POLLING;
3172                spin_unlock(&vc->lock);
3173
3174                do {
3175                        if (kvmppc_vcore_check_block(vc)) {
3176                                do_sleep = 0;
3177                                break;
3178                        }
3179                        cur = ktime_get();
3180                } while (single_task_running() && ktime_before(cur, stop));
3181
3182                spin_lock(&vc->lock);
3183                vc->vcore_state = VCORE_INACTIVE;
3184
3185                if (!do_sleep) {
3186                        ++vc->runner->stat.halt_successful_poll;
3187                        goto out;
3188                }
3189        }
3190
3191        prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3192
3193        if (kvmppc_vcore_check_block(vc)) {
3194                finish_swait(&vc->wq, &wait);
3195                do_sleep = 0;
3196                /* If we polled, count this as a successful poll */
3197                if (vc->halt_poll_ns)
3198                        ++vc->runner->stat.halt_successful_poll;
3199                goto out;
3200        }
3201
3202        start_wait = ktime_get();
3203
3204        vc->vcore_state = VCORE_SLEEPING;
3205        trace_kvmppc_vcore_blocked(vc, 0);
3206        spin_unlock(&vc->lock);
3207        schedule();
3208        finish_swait(&vc->wq, &wait);
3209        spin_lock(&vc->lock);
3210        vc->vcore_state = VCORE_INACTIVE;
3211        trace_kvmppc_vcore_blocked(vc, 1);
3212        ++vc->runner->stat.halt_successful_wait;
3213
3214        cur = ktime_get();
3215
3216out:
3217        block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3218
3219        /* Attribute wait time */
3220        if (do_sleep) {
3221                vc->runner->stat.halt_wait_ns +=
3222                        ktime_to_ns(cur) - ktime_to_ns(start_wait);
3223                /* Attribute failed poll time */
3224                if (vc->halt_poll_ns)
3225                        vc->runner->stat.halt_poll_fail_ns +=
3226                                ktime_to_ns(start_wait) -
3227                                ktime_to_ns(start_poll);
3228        } else {
3229                /* Attribute successful poll time */
3230                if (vc->halt_poll_ns)
3231                        vc->runner->stat.halt_poll_success_ns +=
3232                                ktime_to_ns(cur) -
3233                                ktime_to_ns(start_poll);
3234        }
3235
3236        /* Adjust poll time */
3237        if (halt_poll_ns) {
3238                if (block_ns <= vc->halt_poll_ns)
3239                        ;
3240                /* We slept and blocked for longer than the max halt time */
3241                else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3242                        shrink_halt_poll_ns(vc);
3243                /* We slept and our poll time is too small */
3244                else if (vc->halt_poll_ns < halt_poll_ns &&
3245                                block_ns < halt_poll_ns)
3246                        grow_halt_poll_ns(vc);
3247                if (vc->halt_poll_ns > halt_poll_ns)
3248                        vc->halt_poll_ns = halt_poll_ns;
3249        } else
3250                vc->halt_poll_ns = 0;
3251
3252        trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3253}
3254
3255static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3256{
3257        int r = 0;
3258        struct kvm *kvm = vcpu->kvm;
3259
3260        mutex_lock(&kvm->lock);
3261        if (!kvm->arch.mmu_ready) {
3262                if (!kvm_is_radix(kvm))
3263                        r = kvmppc_hv_setup_htab_rma(vcpu);
3264                if (!r) {
3265                        if (cpu_has_feature(CPU_FTR_ARCH_300))
3266                                kvmppc_setup_partition_table(kvm);
3267                        kvm->arch.mmu_ready = 1;
3268                }
3269        }
3270        mutex_unlock(&kvm->lock);
3271        return r;
3272}
3273
3274static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3275{
3276        int n_ceded, i, r;
3277        struct kvmppc_vcore *vc;
3278        struct kvm_vcpu *v;
3279
3280        trace_kvmppc_run_vcpu_enter(vcpu);
3281
3282        kvm_run->exit_reason = 0;
3283        vcpu->arch.ret = RESUME_GUEST;
3284        vcpu->arch.trap = 0;
3285        kvmppc_update_vpas(vcpu);
3286
3287        /*
3288         * Synchronize with other threads in this virtual core
3289         */
3290        vc = vcpu->arch.vcore;
3291        spin_lock(&vc->lock);
3292        vcpu->arch.ceded = 0;
3293        vcpu->arch.run_task = current;
3294        vcpu->arch.kvm_run = kvm_run;
3295        vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3296        vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3297        vcpu->arch.busy_preempt = TB_NIL;
3298        WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3299        ++vc->n_runnable;
3300
3301        /*
3302         * This happens the first time this is called for a vcpu.
3303         * If the vcore is already running, we may be able to start
3304         * this thread straight away and have it join in.
3305         */
3306        if (!signal_pending(current)) {
3307                if ((vc->vcore_state == VCORE_PIGGYBACK ||
3308                     vc->vcore_state == VCORE_RUNNING) &&
3309                           !VCORE_IS_EXITING(vc)) {
3310                        kvmppc_create_dtl_entry(vcpu, vc);
3311                        kvmppc_start_thread(vcpu, vc);
3312                        trace_kvm_guest_enter(vcpu);
3313                } else if (vc->vcore_state == VCORE_SLEEPING) {
3314                        swake_up(&vc->wq);
3315                }
3316
3317        }
3318
3319        while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3320               !signal_pending(current)) {
3321                /* See if the MMU is ready to go */
3322                if (!vcpu->kvm->arch.mmu_ready) {
3323                        spin_unlock(&vc->lock);
3324                        r = kvmhv_setup_mmu(vcpu);
3325                        spin_lock(&vc->lock);
3326                        if (r) {
3327                                kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3328                                kvm_run->fail_entry.
3329                                        hardware_entry_failure_reason = 0;
3330                                vcpu->arch.ret = r;
3331                                break;
3332                        }
3333                }
3334
3335                if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3336                        kvmppc_vcore_end_preempt(vc);
3337
3338                if (vc->vcore_state != VCORE_INACTIVE) {
3339                        kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3340                        continue;
3341                }
3342                for_each_runnable_thread(i, v, vc) {
3343                        kvmppc_core_prepare_to_enter(v);
3344                        if (signal_pending(v->arch.run_task)) {
3345                                kvmppc_remove_runnable(vc, v);
3346                                v->stat.signal_exits++;
3347                                v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3348                                v->arch.ret = -EINTR;
3349                                wake_up(&v->arch.cpu_run);
3350                        }
3351                }
3352                if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3353                        break;
3354                n_ceded = 0;
3355                for_each_runnable_thread(i, v, vc) {
3356                        if (!kvmppc_vcpu_woken(v))
3357                                n_ceded += v->arch.ceded;
3358                        else
3359                                v->arch.ceded = 0;
3360                }
3361                vc->runner = vcpu;
3362                if (n_ceded == vc->n_runnable) {
3363                        kvmppc_vcore_blocked(vc);
3364                } else if (need_resched()) {
3365                        kvmppc_vcore_preempt(vc);
3366                        /* Let something else run */
3367                        cond_resched_lock(&vc->lock);
3368                        if (vc->vcore_state == VCORE_PREEMPT)
3369                                kvmppc_vcore_end_preempt(vc);
3370                } else {
3371                        kvmppc_run_core(vc);
3372                }
3373                vc->runner = NULL;
3374        }
3375
3376        while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3377               (vc->vcore_state == VCORE_RUNNING ||
3378                vc->vcore_state == VCORE_EXITING ||
3379                vc->vcore_state == VCORE_PIGGYBACK))
3380                kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3381
3382        if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3383                kvmppc_vcore_end_preempt(vc);
3384
3385        if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3386                kvmppc_remove_runnable(vc, vcpu);
3387                vcpu->stat.signal_exits++;
3388                kvm_run->exit_reason = KVM_EXIT_INTR;
3389                vcpu->arch.ret = -EINTR;
3390        }
3391
3392        if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3393                /* Wake up some vcpu to run the core */
3394                i = -1;
3395                v = next_runnable_thread(vc, &i);
3396                wake_up(&v->arch.cpu_run);
3397        }
3398
3399        trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3400        spin_unlock(&vc->lock);
3401        return vcpu->arch.ret;
3402}
3403
3404static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3405{
3406        int r;
3407        int srcu_idx;
3408        unsigned long ebb_regs[3] = {}; /* shut up GCC */
3409        unsigned long user_tar = 0;
3410        unsigned int user_vrsave;
3411        struct kvm *kvm;
3412
3413        if (!vcpu->arch.sane) {
3414                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3415                return -EINVAL;
3416        }
3417
3418        /*
3419         * Don't allow entry with a suspended transaction, because
3420         * the guest entry/exit code will lose it.
3421         * If the guest has TM enabled, save away their TM-related SPRs
3422         * (they will get restored by the TM unavailable interrupt).
3423         */
3424#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3425        if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3426            (current->thread.regs->msr & MSR_TM)) {
3427                if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3428                        run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3429                        run->fail_entry.hardware_entry_failure_reason = 0;
3430                        return -EINVAL;
3431                }
3432                /* Enable TM so we can read the TM SPRs */
3433                mtmsr(mfmsr() | MSR_TM);
3434                current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3435                current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3436                current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3437                current->thread.regs->msr &= ~MSR_TM;
3438        }
3439#endif
3440
3441        /*
3442         * Force online to 1 for the sake of old userspace which doesn't
3443         * set it.
3444         */
3445        if (!vcpu->arch.online) {
3446                atomic_inc(&vcpu->arch.vcore->online_count);
3447                vcpu->arch.online = 1;
3448        }
3449
3450        kvmppc_core_prepare_to_enter(vcpu);
3451
3452        /* No need to go into the guest when all we'll do is come back out */
3453        if (signal_pending(current)) {
3454                run->exit_reason = KVM_EXIT_INTR;
3455                return -EINTR;
3456        }
3457
3458        kvm = vcpu->kvm;
3459        atomic_inc(&kvm->arch.vcpus_running);
3460        /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3461        smp_mb();
3462
3463        flush_all_to_thread(current);
3464
3465        /* Save userspace EBB and other register values */
3466        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3467                ebb_regs[0] = mfspr(SPRN_EBBHR);
3468                ebb_regs[1] = mfspr(SPRN_EBBRR);
3469                ebb_regs[2] = mfspr(SPRN_BESCR);
3470                user_tar = mfspr(SPRN_TAR);
3471        }
3472        user_vrsave = mfspr(SPRN_VRSAVE);
3473
3474        vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3475        vcpu->arch.pgdir = current->mm->pgd;
3476        vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3477
3478        do {
3479                r = kvmppc_run_vcpu(run, vcpu);
3480
3481                if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3482                    !(vcpu->arch.shregs.msr & MSR_PR)) {
3483                        trace_kvm_hcall_enter(vcpu);
3484                        r = kvmppc_pseries_do_hcall(vcpu);
3485                        trace_kvm_hcall_exit(vcpu, r);
3486                        kvmppc_core_prepare_to_enter(vcpu);
3487                } else if (r == RESUME_PAGE_FAULT) {
3488                        srcu_idx = srcu_read_lock(&kvm->srcu);
3489                        r = kvmppc_book3s_hv_page_fault(run, vcpu,
3490                                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3491                        srcu_read_unlock(&kvm->srcu, srcu_idx);
3492                } else if (r == RESUME_PASSTHROUGH) {
3493                        if (WARN_ON(xive_enabled()))
3494                                r = H_SUCCESS;
3495                        else
3496                                r = kvmppc_xics_rm_complete(vcpu, 0);
3497                }
3498        } while (is_kvmppc_resume_guest(r));
3499
3500        /* Restore userspace EBB and other register values */
3501        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3502                mtspr(SPRN_EBBHR, ebb_regs[0]);
3503                mtspr(SPRN_EBBRR, ebb_regs[1]);
3504                mtspr(SPRN_BESCR, ebb_regs[2]);
3505                mtspr(SPRN_TAR, user_tar);
3506                mtspr(SPRN_FSCR, current->thread.fscr);
3507        }
3508        mtspr(SPRN_VRSAVE, user_vrsave);
3509
3510        vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3511        atomic_dec(&kvm->arch.vcpus_running);
3512        return r;
3513}
3514
3515static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3516                                     int shift, int sllp)
3517{
3518        (*sps)->page_shift = shift;
3519        (*sps)->slb_enc = sllp;
3520        (*sps)->enc[0].page_shift = shift;
3521        (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3522        /*
3523         * Add 16MB MPSS support (may get filtered out by userspace)
3524         */
3525        if (shift != 24) {
3526                int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3527                if (penc != -1) {
3528                        (*sps)->enc[1].page_shift = 24;
3529                        (*sps)->enc[1].pte_enc = penc;
3530                }
3531        }
3532        (*sps)++;
3533}
3534
3535static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3536                                         struct kvm_ppc_smmu_info *info)
3537{
3538        struct kvm_ppc_one_seg_page_size *sps;
3539
3540        /*
3541         * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3542         * POWER7 doesn't support keys for instruction accesses,
3543         * POWER8 and POWER9 do.
3544         */
3545        info->data_keys = 32;
3546        info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3547
3548        /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3549        info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3550        info->slb_size = 32;
3551
3552        /* We only support these sizes for now, and no muti-size segments */
3553        sps = &info->sps[0];
3554        kvmppc_add_seg_page_size(&sps, 12, 0);
3555        kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3556        kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3557
3558        return 0;
3559}
3560
3561/*
3562 * Get (and clear) the dirty memory log for a memory slot.
3563 */
3564static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3565                                         struct kvm_dirty_log *log)
3566{
3567        struct kvm_memslots *slots;
3568        struct kvm_memory_slot *memslot;
3569        int i, r;
3570        unsigned long n;
3571        unsigned long *buf, *p;
3572        struct kvm_vcpu *vcpu;
3573
3574        mutex_lock(&kvm->slots_lock);
3575
3576        r = -EINVAL;
3577        if (log->slot >= KVM_USER_MEM_SLOTS)
3578                goto out;
3579
3580        slots = kvm_memslots(kvm);
3581        memslot = id_to_memslot(slots, log->slot);
3582        r = -ENOENT;
3583        if (!memslot->dirty_bitmap)
3584                goto out;
3585
3586        /*
3587         * Use second half of bitmap area because both HPT and radix
3588         * accumulate bits in the first half.
3589         */
3590        n = kvm_dirty_bitmap_bytes(memslot);
3591        buf = memslot->dirty_bitmap + n / sizeof(long);
3592        memset(buf, 0, n);
3593
3594        if (kvm_is_radix(kvm))
3595                r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3596        else
3597                r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3598        if (r)
3599                goto out;
3600
3601        /*
3602         * We accumulate dirty bits in the first half of the
3603         * memslot's dirty_bitmap area, for when pages are paged
3604         * out or modified by the host directly.  Pick up these
3605         * bits and add them to the map.
3606         */
3607        p = memslot->dirty_bitmap;
3608        for (i = 0; i < n / sizeof(long); ++i)
3609                buf[i] |= xchg(&p[i], 0);
3610
3611        /* Harvest dirty bits from VPA and DTL updates */
3612        /* Note: we never modify the SLB shadow buffer areas */
3613        kvm_for_each_vcpu(i, vcpu, kvm) {
3614                spin_lock(&vcpu->arch.vpa_update_lock);
3615                kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3616                kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3617                spin_unlock(&vcpu->arch.vpa_update_lock);
3618        }
3619
3620        r = -EFAULT;
3621        if (copy_to_user(log->dirty_bitmap, buf, n))
3622                goto out;
3623
3624        r = 0;
3625out:
3626        mutex_unlock(&kvm->slots_lock);
3627        return r;
3628}
3629
3630static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3631                                        struct kvm_memory_slot *dont)
3632{
3633        if (!dont || free->arch.rmap != dont->arch.rmap) {
3634                vfree(free->arch.rmap);
3635                free->arch.rmap = NULL;
3636        }
3637}
3638
3639static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3640                                         unsigned long npages)
3641{
3642        slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
3643        if (!slot->arch.rmap)
3644                return -ENOMEM;
3645
3646        return 0;
3647}
3648
3649static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3650                                        struct kvm_memory_slot *memslot,
3651                                        const struct kvm_userspace_memory_region *mem)
3652{
3653        return 0;
3654}
3655
3656static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3657                                const struct kvm_userspace_memory_region *mem,
3658                                const struct kvm_memory_slot *old,
3659                                const struct kvm_memory_slot *new)
3660{
3661        unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3662
3663        /*
3664         * If we are making a new memslot, it might make
3665         * some address that was previously cached as emulated
3666         * MMIO be no longer emulated MMIO, so invalidate
3667         * all the caches of emulated MMIO translations.
3668         */
3669        if (npages)
3670                atomic64_inc(&kvm->arch.mmio_update);
3671}
3672
3673/*
3674 * Update LPCR values in kvm->arch and in vcores.
3675 * Caller must hold kvm->lock.
3676 */
3677void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3678{
3679        long int i;
3680        u32 cores_done = 0;
3681
3682        if ((kvm->arch.lpcr & mask) == lpcr)
3683                return;
3684
3685        kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3686
3687        for (i = 0; i < KVM_MAX_VCORES; ++i) {
3688                struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3689                if (!vc)
3690                        continue;
3691                spin_lock(&vc->lock);
3692                vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3693                spin_unlock(&vc->lock);
3694                if (++cores_done >= kvm->arch.online_vcores)
3695                        break;
3696        }
3697}
3698
3699static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3700{
3701        return;
3702}
3703
3704void kvmppc_setup_partition_table(struct kvm *kvm)
3705{
3706        unsigned long dw0, dw1;
3707
3708        if (!kvm_is_radix(kvm)) {
3709                /* PS field - page size for VRMA */
3710                dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3711                        ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3712                /* HTABSIZE and HTABORG fields */
3713                dw0 |= kvm->arch.sdr1;
3714
3715                /* Second dword as set by userspace */
3716                dw1 = kvm->arch.process_table;
3717        } else {
3718                dw0 = PATB_HR | radix__get_tree_size() |
3719                        __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3720                dw1 = PATB_GR | kvm->arch.process_table;
3721        }
3722
3723        mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3724}
3725
3726/*
3727 * Set up HPT (hashed page table) and RMA (real-mode area).
3728 * Must be called with kvm->lock held.
3729 */
3730static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3731{
3732        int err = 0;
3733        struct kvm *kvm = vcpu->kvm;
3734        unsigned long hva;
3735        struct kvm_memory_slot *memslot;
3736        struct vm_area_struct *vma;
3737        unsigned long lpcr = 0, senc;
3738        unsigned long psize, porder;
3739        int srcu_idx;
3740
3741        /* Allocate hashed page table (if not done already) and reset it */
3742        if (!kvm->arch.hpt.virt) {
3743                int order = KVM_DEFAULT_HPT_ORDER;
3744                struct kvm_hpt_info info;
3745
3746                err = kvmppc_allocate_hpt(&info, order);
3747                /* If we get here, it means userspace didn't specify a
3748                 * size explicitly.  So, try successively smaller
3749                 * sizes if the default failed. */
3750                while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3751                        err  = kvmppc_allocate_hpt(&info, order);
3752
3753                if (err < 0) {
3754                        pr_err("KVM: Couldn't alloc HPT\n");
3755                        goto out;
3756                }
3757
3758                kvmppc_set_hpt(kvm, &info);
3759        }
3760
3761        /* Look up the memslot for guest physical address 0 */
3762        srcu_idx = srcu_read_lock(&kvm->srcu);
3763        memslot = gfn_to_memslot(kvm, 0);
3764
3765        /* We must have some memory at 0 by now */
3766        err = -EINVAL;
3767        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3768                goto out_srcu;
3769
3770        /* Look up the VMA for the start of this memory slot */
3771        hva = memslot->userspace_addr;
3772        down_read(&current->mm->mmap_sem);
3773        vma = find_vma(current->mm, hva);
3774        if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3775                goto up_out;
3776
3777        psize = vma_kernel_pagesize(vma);
3778
3779        up_read(&current->mm->mmap_sem);
3780
3781        /* We can handle 4k, 64k or 16M pages in the VRMA */
3782        if (psize >= 0x1000000)
3783                psize = 0x1000000;
3784        else if (psize >= 0x10000)
3785                psize = 0x10000;
3786        else
3787                psize = 0x1000;
3788        porder = __ilog2(psize);
3789
3790        senc = slb_pgsize_encoding(psize);
3791        kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3792                (VRMA_VSID << SLB_VSID_SHIFT_1T);
3793        /* Create HPTEs in the hash page table for the VRMA */
3794        kvmppc_map_vrma(vcpu, memslot, porder);
3795
3796        /* Update VRMASD field in the LPCR */
3797        if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3798                /* the -4 is to account for senc values starting at 0x10 */
3799                lpcr = senc << (LPCR_VRMASD_SH - 4);
3800                kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3801        }
3802
3803        /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3804        smp_wmb();
3805        err = 0;
3806 out_srcu:
3807        srcu_read_unlock(&kvm->srcu, srcu_idx);
3808 out:
3809        return err;
3810
3811 up_out:
3812        up_read(&current->mm->mmap_sem);
3813        goto out_srcu;
3814}
3815
3816/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3817int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3818{
3819        kvmppc_free_radix(kvm);
3820        kvmppc_update_lpcr(kvm, LPCR_VPM1,
3821                           LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3822        kvmppc_rmap_reset(kvm);
3823        kvm->arch.radix = 0;
3824        kvm->arch.process_table = 0;
3825        return 0;
3826}
3827
3828/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3829int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3830{
3831        int err;
3832
3833        err = kvmppc_init_vm_radix(kvm);
3834        if (err)
3835                return err;
3836
3837        kvmppc_free_hpt(&kvm->arch.hpt);
3838        kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3839                           LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3840        kvm->arch.radix = 1;
3841        return 0;
3842}
3843
3844#ifdef CONFIG_KVM_XICS
3845/*
3846 * Allocate a per-core structure for managing state about which cores are
3847 * running in the host versus the guest and for exchanging data between
3848 * real mode KVM and CPU running in the host.
3849 * This is only done for the first VM.
3850 * The allocated structure stays even if all VMs have stopped.
3851 * It is only freed when the kvm-hv module is unloaded.
3852 * It's OK for this routine to fail, we just don't support host
3853 * core operations like redirecting H_IPI wakeups.
3854 */
3855void kvmppc_alloc_host_rm_ops(void)
3856{
3857        struct kvmppc_host_rm_ops *ops;
3858        unsigned long l_ops;
3859        int cpu, core;
3860        int size;
3861
3862        /* Not the first time here ? */
3863        if (kvmppc_host_rm_ops_hv != NULL)
3864                return;
3865
3866        ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3867        if (!ops)
3868                return;
3869
3870        size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3871        ops->rm_core = kzalloc(size, GFP_KERNEL);
3872
3873        if (!ops->rm_core) {
3874                kfree(ops);
3875                return;
3876        }
3877
3878        cpus_read_lock();
3879
3880        for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3881                if (!cpu_online(cpu))
3882                        continue;
3883
3884                core = cpu >> threads_shift;
3885                ops->rm_core[core].rm_state.in_host = 1;
3886        }
3887
3888        ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3889
3890        /*
3891         * Make the contents of the kvmppc_host_rm_ops structure visible
3892         * to other CPUs before we assign it to the global variable.
3893         * Do an atomic assignment (no locks used here), but if someone
3894         * beats us to it, just free our copy and return.
3895         */
3896        smp_wmb();
3897        l_ops = (unsigned long) ops;
3898
3899        if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3900                cpus_read_unlock();
3901                kfree(ops->rm_core);
3902                kfree(ops);
3903                return;
3904        }
3905
3906        cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3907                                             "ppc/kvm_book3s:prepare",
3908                                             kvmppc_set_host_core,
3909                                             kvmppc_clear_host_core);
3910        cpus_read_unlock();
3911}
3912
3913void kvmppc_free_host_rm_ops(void)
3914{
3915        if (kvmppc_host_rm_ops_hv) {
3916                cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3917                kfree(kvmppc_host_rm_ops_hv->rm_core);
3918                kfree(kvmppc_host_rm_ops_hv);
3919                kvmppc_host_rm_ops_hv = NULL;
3920        }
3921}
3922#endif
3923
3924static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3925{
3926        unsigned long lpcr, lpid;
3927        char buf[32];
3928        int ret;
3929
3930        /* Allocate the guest's logical partition ID */
3931
3932        lpid = kvmppc_alloc_lpid();
3933        if ((long)lpid < 0)
3934                return -ENOMEM;
3935        kvm->arch.lpid = lpid;
3936
3937        kvmppc_alloc_host_rm_ops();
3938
3939        /*
3940         * Since we don't flush the TLB when tearing down a VM,
3941         * and this lpid might have previously been used,
3942         * make sure we flush on each core before running the new VM.
3943         * On POWER9, the tlbie in mmu_partition_table_set_entry()
3944         * does this flush for us.
3945         */
3946        if (!cpu_has_feature(CPU_FTR_ARCH_300))
3947                cpumask_setall(&kvm->arch.need_tlb_flush);
3948
3949        /* Start out with the default set of hcalls enabled */
3950        memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3951               sizeof(kvm->arch.enabled_hcalls));
3952
3953        if (!cpu_has_feature(CPU_FTR_ARCH_300))
3954                kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3955
3956        /* Init LPCR for virtual RMA mode */
3957        kvm->arch.host_lpid = mfspr(SPRN_LPID);
3958        kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3959        lpcr &= LPCR_PECE | LPCR_LPES;
3960        lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3961                LPCR_VPM0 | LPCR_VPM1;
3962        kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3963                (VRMA_VSID << SLB_VSID_SHIFT_1T);
3964        /* On POWER8 turn on online bit to enable PURR/SPURR */
3965        if (cpu_has_feature(CPU_FTR_ARCH_207S))
3966                lpcr |= LPCR_ONL;
3967        /*
3968         * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3969         * Set HVICE bit to enable hypervisor virtualization interrupts.
3970         * Set HEIC to prevent OS interrupts to go to hypervisor (should
3971         * be unnecessary but better safe than sorry in case we re-enable
3972         * EE in HV mode with this LPCR still set)
3973         */
3974        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3975                lpcr &= ~LPCR_VPM0;
3976                lpcr |= LPCR_HVICE | LPCR_HEIC;
3977
3978                /*
3979                 * If xive is enabled, we route 0x500 interrupts directly
3980                 * to the guest.
3981                 */
3982                if (xive_enabled())
3983                        lpcr |= LPCR_LPES;
3984        }
3985
3986        /*
3987         * If the host uses radix, the guest starts out as radix.
3988         */
3989        if (radix_enabled()) {
3990                kvm->arch.radix = 1;
3991                kvm->arch.mmu_ready = 1;
3992                lpcr &= ~LPCR_VPM1;
3993                lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3994                ret = kvmppc_init_vm_radix(kvm);
3995                if (ret) {
3996                        kvmppc_free_lpid(kvm->arch.lpid);
3997                        return ret;
3998                }
3999                kvmppc_setup_partition_table(kvm);
4000        }
4001
4002        kvm->arch.lpcr = lpcr;
4003
4004        /* Initialization for future HPT resizes */
4005        kvm->arch.resize_hpt = NULL;
4006
4007        /*
4008         * Work out how many sets the TLB has, for the use of
4009         * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4010         */
4011        if (radix_enabled())
4012                kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
4013        else if (cpu_has_feature(CPU_FTR_ARCH_300))
4014                kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
4015        else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4016                kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
4017        else
4018                kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
4019
4020        /*
4021         * Track that we now have a HV mode VM active. This blocks secondary
4022         * CPU threads from coming online.
4023         * On POWER9, we only need to do this if the "indep_threads_mode"
4024         * module parameter has been set to N.
4025         */
4026        if (cpu_has_feature(CPU_FTR_ARCH_300))
4027                kvm->arch.threads_indep = indep_threads_mode;
4028        if (!kvm->arch.threads_indep)
4029                kvm_hv_vm_activated();
4030
4031        /*
4032         * Initialize smt_mode depending on processor.
4033         * POWER8 and earlier have to use "strict" threading, where
4034         * all vCPUs in a vcore have to run on the same (sub)core,
4035         * whereas on POWER9 the threads can each run a different
4036         * guest.
4037         */
4038        if (!cpu_has_feature(CPU_FTR_ARCH_300))
4039                kvm->arch.smt_mode = threads_per_subcore;
4040        else
4041                kvm->arch.smt_mode = 1;
4042        kvm->arch.emul_smt_mode = 1;
4043
4044        /*
4045         * Create a debugfs directory for the VM
4046         */
4047        snprintf(buf, sizeof(buf), "vm%d", current->pid);
4048        kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4049        kvmppc_mmu_debugfs_init(kvm);
4050
4051        return 0;
4052}
4053
4054static void kvmppc_free_vcores(struct kvm *kvm)
4055{
4056        long int i;
4057
4058        for (i = 0; i < KVM_MAX_VCORES; ++i)
4059                kfree(kvm->arch.vcores[i]);
4060        kvm->arch.online_vcores = 0;
4061}
4062
4063static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4064{
4065        debugfs_remove_recursive(kvm->arch.debugfs_dir);
4066
4067        if (!kvm->arch.threads_indep)
4068                kvm_hv_vm_deactivated();
4069
4070        kvmppc_free_vcores(kvm);
4071
4072        kvmppc_free_lpid(kvm->arch.lpid);
4073
4074        if (kvm_is_radix(kvm))
4075                kvmppc_free_radix(kvm);
4076        else
4077                kvmppc_free_hpt(&kvm->arch.hpt);
4078
4079        kvmppc_free_pimap(kvm);
4080}
4081
4082/* We don't need to emulate any privileged instructions or dcbz */
4083static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4084                                     unsigned int inst, int *advance)
4085{
4086        return EMULATE_FAIL;
4087}
4088
4089static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4090                                        ulong spr_val)
4091{
4092        return EMULATE_FAIL;
4093}
4094
4095static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4096                                        ulong *spr_val)
4097{
4098        return EMULATE_FAIL;
4099}
4100
4101static int kvmppc_core_check_processor_compat_hv(void)
4102{
4103        if (!cpu_has_feature(CPU_FTR_HVMODE) ||
4104            !cpu_has_feature(CPU_FTR_ARCH_206))
4105                return -EIO;
4106
4107        return 0;
4108}
4109
4110#ifdef CONFIG_KVM_XICS
4111
4112void kvmppc_free_pimap(struct kvm *kvm)
4113{
4114        kfree(kvm->arch.pimap);
4115}
4116
4117static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4118{
4119        return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4120}
4121
4122static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4123{
4124        struct irq_desc *desc;
4125        struct kvmppc_irq_map *irq_map;
4126        struct kvmppc_passthru_irqmap *pimap;
4127        struct irq_chip *chip;
4128        int i, rc = 0;
4129
4130        if (!kvm_irq_bypass)
4131                return 1;
4132
4133        desc = irq_to_desc(host_irq);
4134        if (!desc)
4135                return -EIO;
4136
4137        mutex_lock(&kvm->lock);
4138
4139        pimap = kvm->arch.pimap;
4140        if (pimap == NULL) {
4141                /* First call, allocate structure to hold IRQ map */
4142                pimap = kvmppc_alloc_pimap();
4143                if (pimap == NULL) {
4144                        mutex_unlock(&kvm->lock);
4145                        return -ENOMEM;
4146                }
4147                kvm->arch.pimap = pimap;
4148        }
4149
4150        /*
4151         * For now, we only support interrupts for which the EOI operation
4152         * is an OPAL call followed by a write to XIRR, since that's
4153         * what our real-mode EOI code does, or a XIVE interrupt
4154         */
4155        chip = irq_data_get_irq_chip(&desc->irq_data);
4156        if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4157                pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4158                        host_irq, guest_gsi);
4159                mutex_unlock(&kvm->lock);
4160                return -ENOENT;
4161        }
4162
4163        /*
4164         * See if we already have an entry for this guest IRQ number.
4165         * If it's mapped to a hardware IRQ number, that's an error,
4166         * otherwise re-use this entry.
4167         */
4168        for (i = 0; i < pimap->n_mapped; i++) {
4169                if (guest_gsi == pimap->mapped[i].v_hwirq) {
4170                        if (pimap->mapped[i].r_hwirq) {
4171                                mutex_unlock(&kvm->lock);
4172                                return -EINVAL;
4173                        }
4174                        break;
4175                }
4176        }
4177
4178        if (i == KVMPPC_PIRQ_MAPPED) {
4179                mutex_unlock(&kvm->lock);
4180                return -EAGAIN;         /* table is full */
4181        }
4182
4183        irq_map = &pimap->mapped[i];
4184
4185        irq_map->v_hwirq = guest_gsi;
4186        irq_map->desc = desc;
4187
4188        /*
4189         * Order the above two stores before the next to serialize with
4190         * the KVM real mode handler.
4191         */
4192        smp_wmb();
4193        irq_map->r_hwirq = desc->irq_data.hwirq;
4194
4195        if (i == pimap->n_mapped)
4196                pimap->n_mapped++;
4197
4198        if (xive_enabled())
4199                rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4200        else
4201                kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4202        if (rc)
4203                irq_map->r_hwirq = 0;
4204
4205        mutex_unlock(&kvm->lock);
4206
4207        return 0;
4208}
4209
4210static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4211{
4212        struct irq_desc *desc;
4213        struct kvmppc_passthru_irqmap *pimap;
4214        int i, rc = 0;
4215
4216        if (!kvm_irq_bypass)
4217                return 0;
4218
4219        desc = irq_to_desc(host_irq);
4220        if (!desc)
4221                return -EIO;
4222
4223        mutex_lock(&kvm->lock);
4224        if (!kvm->arch.pimap)
4225                goto unlock;
4226
4227        pimap = kvm->arch.pimap;
4228
4229        for (i = 0; i < pimap->n_mapped; i++) {
4230                if (guest_gsi == pimap->mapped[i].v_hwirq)
4231                        break;
4232        }
4233
4234        if (i == pimap->n_mapped) {
4235                mutex_unlock(&kvm->lock);
4236                return -ENODEV;
4237        }
4238
4239        if (xive_enabled())
4240                rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4241        else
4242                kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4243
4244        /* invalidate the entry (what do do on error from the above ?) */
4245        pimap->mapped[i].r_hwirq = 0;
4246
4247        /*
4248         * We don't free this structure even when the count goes to
4249         * zero. The structure is freed when we destroy the VM.
4250         */
4251 unlock:
4252        mutex_unlock(&kvm->lock);
4253        return rc;
4254}
4255
4256static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4257                                             struct irq_bypass_producer *prod)
4258{
4259        int ret = 0;
4260        struct kvm_kernel_irqfd *irqfd =
4261                container_of(cons, struct kvm_kernel_irqfd, consumer);
4262
4263        irqfd->producer = prod;
4264
4265        ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4266        if (ret)
4267                pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4268                        prod->irq, irqfd->gsi, ret);
4269
4270        return ret;
4271}
4272
4273static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4274                                              struct irq_bypass_producer *prod)
4275{
4276        int ret;
4277        struct kvm_kernel_irqfd *irqfd =
4278                container_of(cons, struct kvm_kernel_irqfd, consumer);
4279
4280        irqfd->producer = NULL;
4281
4282        /*
4283         * When producer of consumer is unregistered, we change back to
4284         * default external interrupt handling mode - KVM real mode
4285         * will switch back to host.
4286         */
4287        ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4288        if (ret)
4289                pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4290                        prod->irq, irqfd->gsi, ret);
4291}
4292#endif
4293
4294static long kvm_arch_vm_ioctl_hv(struct file *filp,
4295                                 unsigned int ioctl, unsigned long arg)
4296{
4297        struct kvm *kvm __maybe_unused = filp->private_data;
4298        void __user *argp = (void __user *)arg;
4299        long r;
4300
4301        switch (ioctl) {
4302
4303        case KVM_PPC_ALLOCATE_HTAB: {
4304                u32 htab_order;
4305
4306                r = -EFAULT;
4307                if (get_user(htab_order, (u32 __user *)argp))
4308                        break;
4309                r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4310                if (r)
4311                        break;
4312                r = 0;
4313                break;
4314        }
4315
4316        case KVM_PPC_GET_HTAB_FD: {
4317                struct kvm_get_htab_fd ghf;
4318
4319                r = -EFAULT;
4320                if (copy_from_user(&ghf, argp, sizeof(ghf)))
4321                        break;
4322                r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4323                break;
4324        }
4325
4326        case KVM_PPC_RESIZE_HPT_PREPARE: {
4327                struct kvm_ppc_resize_hpt rhpt;
4328
4329                r = -EFAULT;
4330                if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4331                        break;
4332
4333                r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4334                break;
4335        }
4336
4337        case KVM_PPC_RESIZE_HPT_COMMIT: {
4338                struct kvm_ppc_resize_hpt rhpt;
4339
4340                r = -EFAULT;
4341                if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4342                        break;
4343
4344                r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4345                break;
4346        }
4347
4348        default:
4349                r = -ENOTTY;
4350        }
4351
4352        return r;
4353}
4354
4355/*
4356 * List of hcall numbers to enable by default.
4357 * For compatibility with old userspace, we enable by default
4358 * all hcalls that were implemented before the hcall-enabling
4359 * facility was added.  Note this list should not include H_RTAS.
4360 */
4361static unsigned int default_hcall_list[] = {
4362        H_REMOVE,
4363        H_ENTER,
4364        H_READ,
4365        H_PROTECT,
4366        H_BULK_REMOVE,
4367        H_GET_TCE,
4368        H_PUT_TCE,
4369        H_SET_DABR,
4370        H_SET_XDABR,
4371        H_CEDE,
4372        H_PROD,
4373        H_CONFER,
4374        H_REGISTER_VPA,
4375#ifdef CONFIG_KVM_XICS
4376        H_EOI,
4377        H_CPPR,
4378        H_IPI,
4379        H_IPOLL,
4380        H_XIRR,
4381        H_XIRR_X,
4382#endif
4383        0
4384};
4385
4386static void init_default_hcalls(void)
4387{
4388        int i;
4389        unsigned int hcall;
4390
4391        for (i = 0; default_hcall_list[i]; ++i) {
4392                hcall = default_hcall_list[i];
4393                WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4394                __set_bit(hcall / 4, default_enabled_hcalls);
4395        }
4396}
4397
4398static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4399{
4400        unsigned long lpcr;
4401        int radix;
4402        int err;
4403
4404        /* If not on a POWER9, reject it */
4405        if (!cpu_has_feature(CPU_FTR_ARCH_300))
4406                return -ENODEV;
4407
4408        /* If any unknown flags set, reject it */
4409        if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4410                return -EINVAL;
4411
4412        /* GR (guest radix) bit in process_table field must match */
4413        radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4414        if (!!(cfg->process_table & PATB_GR) != radix)
4415                return -EINVAL;
4416
4417        /* Process table size field must be reasonable, i.e. <= 24 */
4418        if ((cfg->process_table & PRTS_MASK) > 24)
4419                return -EINVAL;
4420
4421        /* We can change a guest to/from radix now, if the host is radix */
4422        if (radix && !radix_enabled())
4423                return -EINVAL;
4424
4425        mutex_lock(&kvm->lock);
4426        if (radix != kvm_is_radix(kvm)) {
4427                if (kvm->arch.mmu_ready) {
4428                        kvm->arch.mmu_ready = 0;
4429                        /* order mmu_ready vs. vcpus_running */
4430                        smp_mb();
4431                        if (atomic_read(&kvm->arch.vcpus_running)) {
4432                                kvm->arch.mmu_ready = 1;
4433                                err = -EBUSY;
4434                                goto out_unlock;
4435                        }
4436                }
4437                if (radix)
4438                        err = kvmppc_switch_mmu_to_radix(kvm);
4439                else
4440                        err = kvmppc_switch_mmu_to_hpt(kvm);
4441                if (err)
4442                        goto out_unlock;
4443        }
4444
4445        kvm->arch.process_table = cfg->process_table;
4446        kvmppc_setup_partition_table(kvm);
4447
4448        lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4449        kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4450        err = 0;
4451
4452 out_unlock:
4453        mutex_unlock(&kvm->lock);
4454        return err;
4455}
4456
4457static struct kvmppc_ops kvm_ops_hv = {
4458        .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4459        .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4460        .get_one_reg = kvmppc_get_one_reg_hv,
4461        .set_one_reg = kvmppc_set_one_reg_hv,
4462        .vcpu_load   = kvmppc_core_vcpu_load_hv,
4463        .vcpu_put    = kvmppc_core_vcpu_put_hv,
4464        .set_msr     = kvmppc_set_msr_hv,
4465        .vcpu_run    = kvmppc_vcpu_run_hv,
4466        .vcpu_create = kvmppc_core_vcpu_create_hv,
4467        .vcpu_free   = kvmppc_core_vcpu_free_hv,
4468        .check_requests = kvmppc_core_check_requests_hv,
4469        .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4470        .flush_memslot  = kvmppc_core_flush_memslot_hv,
4471        .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4472        .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4473        .unmap_hva_range = kvm_unmap_hva_range_hv,
4474        .age_hva  = kvm_age_hva_hv,
4475        .test_age_hva = kvm_test_age_hva_hv,
4476        .set_spte_hva = kvm_set_spte_hva_hv,
4477        .mmu_destroy  = kvmppc_mmu_destroy_hv,
4478        .free_memslot = kvmppc_core_free_memslot_hv,
4479        .create_memslot = kvmppc_core_create_memslot_hv,
4480        .init_vm =  kvmppc_core_init_vm_hv,
4481        .destroy_vm = kvmppc_core_destroy_vm_hv,
4482        .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4483        .emulate_op = kvmppc_core_emulate_op_hv,
4484        .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4485        .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4486        .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4487        .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4488        .hcall_implemented = kvmppc_hcall_impl_hv,
4489#ifdef CONFIG_KVM_XICS
4490        .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4491        .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4492#endif
4493        .configure_mmu = kvmhv_configure_mmu,
4494        .get_rmmu_info = kvmhv_get_rmmu_info,
4495        .set_smt_mode = kvmhv_set_smt_mode,
4496};
4497
4498static int kvm_init_subcore_bitmap(void)
4499{
4500        int i, j;
4501        int nr_cores = cpu_nr_cores();
4502        struct sibling_subcore_state *sibling_subcore_state;
4503
4504        for (i = 0; i < nr_cores; i++) {
4505                int first_cpu = i * threads_per_core;
4506                int node = cpu_to_node(first_cpu);
4507
4508                /* Ignore if it is already allocated. */
4509                if (paca_ptrs[first_cpu]->sibling_subcore_state)
4510                        continue;
4511
4512                sibling_subcore_state =
4513                        kmalloc_node(sizeof(struct sibling_subcore_state),
4514                                                        GFP_KERNEL, node);
4515                if (!sibling_subcore_state)
4516                        return -ENOMEM;
4517
4518                memset(sibling_subcore_state, 0,
4519                                sizeof(struct sibling_subcore_state));
4520
4521                for (j = 0; j < threads_per_core; j++) {
4522                        int cpu = first_cpu + j;
4523
4524                        paca_ptrs[cpu]->sibling_subcore_state =
4525                                                sibling_subcore_state;
4526                }
4527        }
4528        return 0;
4529}
4530
4531static int kvmppc_radix_possible(void)
4532{
4533        return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4534}
4535
4536static int kvmppc_book3s_init_hv(void)
4537{
4538        int r;
4539        /*
4540         * FIXME!! Do we need to check on all cpus ?
4541         */
4542        r = kvmppc_core_check_processor_compat_hv();
4543        if (r < 0)
4544                return -ENODEV;
4545
4546        r = kvm_init_subcore_bitmap();
4547        if (r)
4548                return r;
4549
4550        /*
4551         * We need a way of accessing the XICS interrupt controller,
4552         * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
4553         * indirectly, via OPAL.
4554         */
4555#ifdef CONFIG_SMP
4556        if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4557                struct device_node *np;
4558
4559                np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4560                if (!np) {
4561                        pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4562                        return -ENODEV;
4563                }
4564        }
4565#endif
4566
4567        kvm_ops_hv.owner = THIS_MODULE;
4568        kvmppc_hv_ops = &kvm_ops_hv;
4569
4570        init_default_hcalls();
4571
4572        init_vcore_lists();
4573
4574        r = kvmppc_mmu_hv_init();
4575        if (r)
4576                return r;
4577
4578        if (kvmppc_radix_possible())
4579                r = kvmppc_radix_init();
4580
4581        /*
4582         * POWER9 chips before version 2.02 can't have some threads in
4583         * HPT mode and some in radix mode on the same core.
4584         */
4585        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4586                unsigned int pvr = mfspr(SPRN_PVR);
4587                if ((pvr >> 16) == PVR_POWER9 &&
4588                    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
4589                     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
4590                        no_mixing_hpt_and_radix = true;
4591        }
4592
4593        return r;
4594}
4595
4596static void kvmppc_book3s_exit_hv(void)
4597{
4598        kvmppc_free_host_rm_ops();
4599        if (kvmppc_radix_possible())
4600                kvmppc_radix_exit();
4601        kvmppc_hv_ops = NULL;
4602}
4603
4604module_init(kvmppc_book3s_init_hv);
4605module_exit(kvmppc_book3s_exit_hv);
4606MODULE_LICENSE("GPL");
4607MODULE_ALIAS_MISCDEV(KVM_MINOR);
4608MODULE_ALIAS("devname:kvm");
4609