linux/arch/x86/events/intel/core.c
<<
>>
Prefs
   1/*
   2 * Per core/cpu state
   3 *
   4 * Used to coordinate shared registers between HT threads or
   5 * among events on a single PMU.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/stddef.h>
  11#include <linux/types.h>
  12#include <linux/init.h>
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/nmi.h>
  16
  17#include <asm/cpufeature.h>
  18#include <asm/hardirq.h>
  19#include <asm/intel-family.h>
  20#include <asm/apic.h>
  21
  22#include "../perf_event.h"
  23
  24/*
  25 * Intel PerfMon, used on Core and later.
  26 */
  27static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
  28{
  29        [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
  30        [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
  31        [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
  32        [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
  33        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
  34        [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
  35        [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
  36        [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
  37};
  38
  39static struct event_constraint intel_core_event_constraints[] __read_mostly =
  40{
  41        INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  42        INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  43        INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  44        INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  45        INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  46        INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  47        EVENT_CONSTRAINT_END
  48};
  49
  50static struct event_constraint intel_core2_event_constraints[] __read_mostly =
  51{
  52        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  53        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  54        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  55        INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  56        INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  57        INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  58        INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  59        INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  60        INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  61        INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  62        INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  63        INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  64        INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  65        EVENT_CONSTRAINT_END
  66};
  67
  68static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
  69{
  70        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  71        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  72        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  73        INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  74        INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  75        INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  76        INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  77        INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  78        INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  79        INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  80        INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  81        EVENT_CONSTRAINT_END
  82};
  83
  84static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
  85{
  86        /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  87        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  88        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
  89        EVENT_EXTRA_END
  90};
  91
  92static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
  93{
  94        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  95        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  96        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  97        INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  98        INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
  99        INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
 100        INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
 101        EVENT_CONSTRAINT_END
 102};
 103
 104static struct event_constraint intel_snb_event_constraints[] __read_mostly =
 105{
 106        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 107        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 108        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 109        INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
 110        INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
 111        INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 112        INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
 113        INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
 114        INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 115        INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
 116        INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
 117        INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 118
 119        /*
 120         * When HT is off these events can only run on the bottom 4 counters
 121         * When HT is on, they are impacted by the HT bug and require EXCL access
 122         */
 123        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
 124        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
 125        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
 126        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
 127
 128        EVENT_CONSTRAINT_END
 129};
 130
 131static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
 132{
 133        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 134        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 135        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 136        INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
 137        INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
 138        INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
 139        INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
 140        INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
 141        INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
 142        INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
 143        INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 144        INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
 145        INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 146
 147        /*
 148         * When HT is off these events can only run on the bottom 4 counters
 149         * When HT is on, they are impacted by the HT bug and require EXCL access
 150         */
 151        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
 152        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
 153        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
 154        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
 155
 156        EVENT_CONSTRAINT_END
 157};
 158
 159static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
 160{
 161        /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 162        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
 163        INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
 164        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
 165        EVENT_EXTRA_END
 166};
 167
 168static struct event_constraint intel_v1_event_constraints[] __read_mostly =
 169{
 170        EVENT_CONSTRAINT_END
 171};
 172
 173static struct event_constraint intel_gen_event_constraints[] __read_mostly =
 174{
 175        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 176        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 177        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 178        EVENT_CONSTRAINT_END
 179};
 180
 181static struct event_constraint intel_slm_event_constraints[] __read_mostly =
 182{
 183        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 184        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 185        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
 186        EVENT_CONSTRAINT_END
 187};
 188
 189static struct event_constraint intel_skl_event_constraints[] = {
 190        FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
 191        FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
 192        FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
 193        INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
 194
 195        /*
 196         * when HT is off, these can only run on the bottom 4 counters
 197         */
 198        INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
 199        INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
 200        INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
 201        INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
 202        INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
 203
 204        EVENT_CONSTRAINT_END
 205};
 206
 207static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
 208        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
 209        INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
 210        EVENT_EXTRA_END
 211};
 212
 213static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
 214        /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 215        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
 216        INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
 217        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 218        EVENT_EXTRA_END
 219};
 220
 221static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
 222        /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 223        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
 224        INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
 225        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 226        EVENT_EXTRA_END
 227};
 228
 229static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
 230        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
 231        INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
 232        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 233        /*
 234         * Note the low 8 bits eventsel code is not a continuous field, containing
 235         * some #GPing bits. These are masked out.
 236         */
 237        INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
 238        EVENT_EXTRA_END
 239};
 240
 241EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
 242EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
 243EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
 244
 245static struct attribute *nhm_events_attrs[] = {
 246        EVENT_PTR(mem_ld_nhm),
 247        NULL,
 248};
 249
 250/*
 251 * topdown events for Intel Core CPUs.
 252 *
 253 * The events are all in slots, which is a free slot in a 4 wide
 254 * pipeline. Some events are already reported in slots, for cycle
 255 * events we multiply by the pipeline width (4).
 256 *
 257 * With Hyper Threading on, topdown metrics are either summed or averaged
 258 * between the threads of a core: (count_t0 + count_t1).
 259 *
 260 * For the average case the metric is always scaled to pipeline width,
 261 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
 262 */
 263
 264EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
 265        "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
 266        "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
 267EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
 268EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
 269        "event=0xe,umask=0x1");                 /* uops_issued.any */
 270EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
 271        "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
 272EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
 273        "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
 274EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
 275        "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
 276        "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
 277EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
 278        "4", "2");
 279
 280static struct attribute *snb_events_attrs[] = {
 281        EVENT_PTR(mem_ld_snb),
 282        EVENT_PTR(mem_st_snb),
 283        EVENT_PTR(td_slots_issued),
 284        EVENT_PTR(td_slots_retired),
 285        EVENT_PTR(td_fetch_bubbles),
 286        EVENT_PTR(td_total_slots),
 287        EVENT_PTR(td_total_slots_scale),
 288        EVENT_PTR(td_recovery_bubbles),
 289        EVENT_PTR(td_recovery_bubbles_scale),
 290        NULL,
 291};
 292
 293static struct event_constraint intel_hsw_event_constraints[] = {
 294        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 295        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 296        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 297        INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
 298        INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 299        INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
 300        /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 301        INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
 302        /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
 303        INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
 304        /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
 305        INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
 306
 307        /*
 308         * When HT is off these events can only run on the bottom 4 counters
 309         * When HT is on, they are impacted by the HT bug and require EXCL access
 310         */
 311        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
 312        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
 313        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
 314        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
 315
 316        EVENT_CONSTRAINT_END
 317};
 318
 319static struct event_constraint intel_bdw_event_constraints[] = {
 320        FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
 321        FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
 322        FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
 323        INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
 324        INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
 325        /*
 326         * when HT is off, these can only run on the bottom 4 counters
 327         */
 328        INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
 329        INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
 330        INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
 331        INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
 332        EVENT_CONSTRAINT_END
 333};
 334
 335static u64 intel_pmu_event_map(int hw_event)
 336{
 337        return intel_perfmon_event_map[hw_event];
 338}
 339
 340/*
 341 * Notes on the events:
 342 * - data reads do not include code reads (comparable to earlier tables)
 343 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 344 * - remote node access includes remote memory, remote cache, remote mmio.
 345 * - prefetches are not included in the counts.
 346 * - icache miss does not include decoded icache
 347 */
 348
 349#define SKL_DEMAND_DATA_RD              BIT_ULL(0)
 350#define SKL_DEMAND_RFO                  BIT_ULL(1)
 351#define SKL_ANY_RESPONSE                BIT_ULL(16)
 352#define SKL_SUPPLIER_NONE               BIT_ULL(17)
 353#define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
 354#define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
 355#define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
 356#define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
 357#define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
 358                                         SKL_L3_MISS_REMOTE_HOP0_DRAM| \
 359                                         SKL_L3_MISS_REMOTE_HOP1_DRAM| \
 360                                         SKL_L3_MISS_REMOTE_HOP2P_DRAM)
 361#define SKL_SPL_HIT                     BIT_ULL(30)
 362#define SKL_SNOOP_NONE                  BIT_ULL(31)
 363#define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
 364#define SKL_SNOOP_MISS                  BIT_ULL(33)
 365#define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
 366#define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
 367#define SKL_SNOOP_HITM                  BIT_ULL(36)
 368#define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
 369#define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
 370                                         SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
 371                                         SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
 372                                         SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
 373#define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
 374#define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
 375                                         SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
 376                                         SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
 377                                         SKL_SNOOP_HITM|SKL_SPL_HIT)
 378#define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
 379#define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
 380#define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
 381                                         SKL_L3_MISS_REMOTE_HOP1_DRAM| \
 382                                         SKL_L3_MISS_REMOTE_HOP2P_DRAM)
 383
 384static __initconst const u64 skl_hw_cache_event_ids
 385                                [PERF_COUNT_HW_CACHE_MAX]
 386                                [PERF_COUNT_HW_CACHE_OP_MAX]
 387                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 388{
 389 [ C(L1D ) ] = {
 390        [ C(OP_READ) ] = {
 391                [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
 392                [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
 393        },
 394        [ C(OP_WRITE) ] = {
 395                [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
 396                [ C(RESULT_MISS)   ] = 0x0,
 397        },
 398        [ C(OP_PREFETCH) ] = {
 399                [ C(RESULT_ACCESS) ] = 0x0,
 400                [ C(RESULT_MISS)   ] = 0x0,
 401        },
 402 },
 403 [ C(L1I ) ] = {
 404        [ C(OP_READ) ] = {
 405                [ C(RESULT_ACCESS) ] = 0x0,
 406                [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
 407        },
 408        [ C(OP_WRITE) ] = {
 409                [ C(RESULT_ACCESS) ] = -1,
 410                [ C(RESULT_MISS)   ] = -1,
 411        },
 412        [ C(OP_PREFETCH) ] = {
 413                [ C(RESULT_ACCESS) ] = 0x0,
 414                [ C(RESULT_MISS)   ] = 0x0,
 415        },
 416 },
 417 [ C(LL  ) ] = {
 418        [ C(OP_READ) ] = {
 419                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 420                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 421        },
 422        [ C(OP_WRITE) ] = {
 423                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 424                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 425        },
 426        [ C(OP_PREFETCH) ] = {
 427                [ C(RESULT_ACCESS) ] = 0x0,
 428                [ C(RESULT_MISS)   ] = 0x0,
 429        },
 430 },
 431 [ C(DTLB) ] = {
 432        [ C(OP_READ) ] = {
 433                [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
 434                [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
 435        },
 436        [ C(OP_WRITE) ] = {
 437                [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
 438                [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
 439        },
 440        [ C(OP_PREFETCH) ] = {
 441                [ C(RESULT_ACCESS) ] = 0x0,
 442                [ C(RESULT_MISS)   ] = 0x0,
 443        },
 444 },
 445 [ C(ITLB) ] = {
 446        [ C(OP_READ) ] = {
 447                [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
 448                [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
 449        },
 450        [ C(OP_WRITE) ] = {
 451                [ C(RESULT_ACCESS) ] = -1,
 452                [ C(RESULT_MISS)   ] = -1,
 453        },
 454        [ C(OP_PREFETCH) ] = {
 455                [ C(RESULT_ACCESS) ] = -1,
 456                [ C(RESULT_MISS)   ] = -1,
 457        },
 458 },
 459 [ C(BPU ) ] = {
 460        [ C(OP_READ) ] = {
 461                [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
 462                [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
 463        },
 464        [ C(OP_WRITE) ] = {
 465                [ C(RESULT_ACCESS) ] = -1,
 466                [ C(RESULT_MISS)   ] = -1,
 467        },
 468        [ C(OP_PREFETCH) ] = {
 469                [ C(RESULT_ACCESS) ] = -1,
 470                [ C(RESULT_MISS)   ] = -1,
 471        },
 472 },
 473 [ C(NODE) ] = {
 474        [ C(OP_READ) ] = {
 475                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 476                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 477        },
 478        [ C(OP_WRITE) ] = {
 479                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 480                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 481        },
 482        [ C(OP_PREFETCH) ] = {
 483                [ C(RESULT_ACCESS) ] = 0x0,
 484                [ C(RESULT_MISS)   ] = 0x0,
 485        },
 486 },
 487};
 488
 489static __initconst const u64 skl_hw_cache_extra_regs
 490                                [PERF_COUNT_HW_CACHE_MAX]
 491                                [PERF_COUNT_HW_CACHE_OP_MAX]
 492                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 493{
 494 [ C(LL  ) ] = {
 495        [ C(OP_READ) ] = {
 496                [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
 497                                       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
 498                [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
 499                                       SKL_L3_MISS|SKL_ANY_SNOOP|
 500                                       SKL_SUPPLIER_NONE,
 501        },
 502        [ C(OP_WRITE) ] = {
 503                [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
 504                                       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
 505                [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
 506                                       SKL_L3_MISS|SKL_ANY_SNOOP|
 507                                       SKL_SUPPLIER_NONE,
 508        },
 509        [ C(OP_PREFETCH) ] = {
 510                [ C(RESULT_ACCESS) ] = 0x0,
 511                [ C(RESULT_MISS)   ] = 0x0,
 512        },
 513 },
 514 [ C(NODE) ] = {
 515        [ C(OP_READ) ] = {
 516                [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
 517                                       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
 518                [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
 519                                       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
 520        },
 521        [ C(OP_WRITE) ] = {
 522                [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
 523                                       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
 524                [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
 525                                       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
 526        },
 527        [ C(OP_PREFETCH) ] = {
 528                [ C(RESULT_ACCESS) ] = 0x0,
 529                [ C(RESULT_MISS)   ] = 0x0,
 530        },
 531 },
 532};
 533
 534#define SNB_DMND_DATA_RD        (1ULL << 0)
 535#define SNB_DMND_RFO            (1ULL << 1)
 536#define SNB_DMND_IFETCH         (1ULL << 2)
 537#define SNB_DMND_WB             (1ULL << 3)
 538#define SNB_PF_DATA_RD          (1ULL << 4)
 539#define SNB_PF_RFO              (1ULL << 5)
 540#define SNB_PF_IFETCH           (1ULL << 6)
 541#define SNB_LLC_DATA_RD         (1ULL << 7)
 542#define SNB_LLC_RFO             (1ULL << 8)
 543#define SNB_LLC_IFETCH          (1ULL << 9)
 544#define SNB_BUS_LOCKS           (1ULL << 10)
 545#define SNB_STRM_ST             (1ULL << 11)
 546#define SNB_OTHER               (1ULL << 15)
 547#define SNB_RESP_ANY            (1ULL << 16)
 548#define SNB_NO_SUPP             (1ULL << 17)
 549#define SNB_LLC_HITM            (1ULL << 18)
 550#define SNB_LLC_HITE            (1ULL << 19)
 551#define SNB_LLC_HITS            (1ULL << 20)
 552#define SNB_LLC_HITF            (1ULL << 21)
 553#define SNB_LOCAL               (1ULL << 22)
 554#define SNB_REMOTE              (0xffULL << 23)
 555#define SNB_SNP_NONE            (1ULL << 31)
 556#define SNB_SNP_NOT_NEEDED      (1ULL << 32)
 557#define SNB_SNP_MISS            (1ULL << 33)
 558#define SNB_NO_FWD              (1ULL << 34)
 559#define SNB_SNP_FWD             (1ULL << 35)
 560#define SNB_HITM                (1ULL << 36)
 561#define SNB_NON_DRAM            (1ULL << 37)
 562
 563#define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
 564#define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
 565#define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
 566
 567#define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
 568                                 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
 569                                 SNB_HITM)
 570
 571#define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
 572#define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
 573
 574#define SNB_L3_ACCESS           SNB_RESP_ANY
 575#define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
 576
 577static __initconst const u64 snb_hw_cache_extra_regs
 578                                [PERF_COUNT_HW_CACHE_MAX]
 579                                [PERF_COUNT_HW_CACHE_OP_MAX]
 580                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 581{
 582 [ C(LL  ) ] = {
 583        [ C(OP_READ) ] = {
 584                [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
 585                [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
 586        },
 587        [ C(OP_WRITE) ] = {
 588                [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
 589                [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
 590        },
 591        [ C(OP_PREFETCH) ] = {
 592                [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
 593                [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
 594        },
 595 },
 596 [ C(NODE) ] = {
 597        [ C(OP_READ) ] = {
 598                [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
 599                [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
 600        },
 601        [ C(OP_WRITE) ] = {
 602                [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
 603                [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
 604        },
 605        [ C(OP_PREFETCH) ] = {
 606                [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
 607                [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
 608        },
 609 },
 610};
 611
 612static __initconst const u64 snb_hw_cache_event_ids
 613                                [PERF_COUNT_HW_CACHE_MAX]
 614                                [PERF_COUNT_HW_CACHE_OP_MAX]
 615                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 616{
 617 [ C(L1D) ] = {
 618        [ C(OP_READ) ] = {
 619                [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
 620                [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
 621        },
 622        [ C(OP_WRITE) ] = {
 623                [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
 624                [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
 625        },
 626        [ C(OP_PREFETCH) ] = {
 627                [ C(RESULT_ACCESS) ] = 0x0,
 628                [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
 629        },
 630 },
 631 [ C(L1I ) ] = {
 632        [ C(OP_READ) ] = {
 633                [ C(RESULT_ACCESS) ] = 0x0,
 634                [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
 635        },
 636        [ C(OP_WRITE) ] = {
 637                [ C(RESULT_ACCESS) ] = -1,
 638                [ C(RESULT_MISS)   ] = -1,
 639        },
 640        [ C(OP_PREFETCH) ] = {
 641                [ C(RESULT_ACCESS) ] = 0x0,
 642                [ C(RESULT_MISS)   ] = 0x0,
 643        },
 644 },
 645 [ C(LL  ) ] = {
 646        [ C(OP_READ) ] = {
 647                /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
 648                [ C(RESULT_ACCESS) ] = 0x01b7,
 649                /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
 650                [ C(RESULT_MISS)   ] = 0x01b7,
 651        },
 652        [ C(OP_WRITE) ] = {
 653                /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
 654                [ C(RESULT_ACCESS) ] = 0x01b7,
 655                /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
 656                [ C(RESULT_MISS)   ] = 0x01b7,
 657        },
 658        [ C(OP_PREFETCH) ] = {
 659                /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
 660                [ C(RESULT_ACCESS) ] = 0x01b7,
 661                /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
 662                [ C(RESULT_MISS)   ] = 0x01b7,
 663        },
 664 },
 665 [ C(DTLB) ] = {
 666        [ C(OP_READ) ] = {
 667                [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
 668                [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
 669        },
 670        [ C(OP_WRITE) ] = {
 671                [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
 672                [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
 673        },
 674        [ C(OP_PREFETCH) ] = {
 675                [ C(RESULT_ACCESS) ] = 0x0,
 676                [ C(RESULT_MISS)   ] = 0x0,
 677        },
 678 },
 679 [ C(ITLB) ] = {
 680        [ C(OP_READ) ] = {
 681                [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
 682                [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
 683        },
 684        [ C(OP_WRITE) ] = {
 685                [ C(RESULT_ACCESS) ] = -1,
 686                [ C(RESULT_MISS)   ] = -1,
 687        },
 688        [ C(OP_PREFETCH) ] = {
 689                [ C(RESULT_ACCESS) ] = -1,
 690                [ C(RESULT_MISS)   ] = -1,
 691        },
 692 },
 693 [ C(BPU ) ] = {
 694        [ C(OP_READ) ] = {
 695                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
 696                [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
 697        },
 698        [ C(OP_WRITE) ] = {
 699                [ C(RESULT_ACCESS) ] = -1,
 700                [ C(RESULT_MISS)   ] = -1,
 701        },
 702        [ C(OP_PREFETCH) ] = {
 703                [ C(RESULT_ACCESS) ] = -1,
 704                [ C(RESULT_MISS)   ] = -1,
 705        },
 706 },
 707 [ C(NODE) ] = {
 708        [ C(OP_READ) ] = {
 709                [ C(RESULT_ACCESS) ] = 0x01b7,
 710                [ C(RESULT_MISS)   ] = 0x01b7,
 711        },
 712        [ C(OP_WRITE) ] = {
 713                [ C(RESULT_ACCESS) ] = 0x01b7,
 714                [ C(RESULT_MISS)   ] = 0x01b7,
 715        },
 716        [ C(OP_PREFETCH) ] = {
 717                [ C(RESULT_ACCESS) ] = 0x01b7,
 718                [ C(RESULT_MISS)   ] = 0x01b7,
 719        },
 720 },
 721
 722};
 723
 724/*
 725 * Notes on the events:
 726 * - data reads do not include code reads (comparable to earlier tables)
 727 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 728 * - remote node access includes remote memory, remote cache, remote mmio.
 729 * - prefetches are not included in the counts because they are not
 730 *   reliably counted.
 731 */
 732
 733#define HSW_DEMAND_DATA_RD              BIT_ULL(0)
 734#define HSW_DEMAND_RFO                  BIT_ULL(1)
 735#define HSW_ANY_RESPONSE                BIT_ULL(16)
 736#define HSW_SUPPLIER_NONE               BIT_ULL(17)
 737#define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
 738#define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
 739#define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
 740#define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
 741#define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
 742                                         HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
 743                                         HSW_L3_MISS_REMOTE_HOP2P)
 744#define HSW_SNOOP_NONE                  BIT_ULL(31)
 745#define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
 746#define HSW_SNOOP_MISS                  BIT_ULL(33)
 747#define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
 748#define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
 749#define HSW_SNOOP_HITM                  BIT_ULL(36)
 750#define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
 751#define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
 752                                         HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
 753                                         HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
 754                                         HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
 755#define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
 756#define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
 757#define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
 758#define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
 759                                         HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
 760#define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
 761
 762#define BDW_L3_MISS_LOCAL               BIT(26)
 763#define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
 764                                         HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
 765                                         HSW_L3_MISS_REMOTE_HOP2P)
 766
 767
 768static __initconst const u64 hsw_hw_cache_event_ids
 769                                [PERF_COUNT_HW_CACHE_MAX]
 770                                [PERF_COUNT_HW_CACHE_OP_MAX]
 771                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 772{
 773 [ C(L1D ) ] = {
 774        [ C(OP_READ) ] = {
 775                [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
 776                [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
 777        },
 778        [ C(OP_WRITE) ] = {
 779                [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
 780                [ C(RESULT_MISS)   ] = 0x0,
 781        },
 782        [ C(OP_PREFETCH) ] = {
 783                [ C(RESULT_ACCESS) ] = 0x0,
 784                [ C(RESULT_MISS)   ] = 0x0,
 785        },
 786 },
 787 [ C(L1I ) ] = {
 788        [ C(OP_READ) ] = {
 789                [ C(RESULT_ACCESS) ] = 0x0,
 790                [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
 791        },
 792        [ C(OP_WRITE) ] = {
 793                [ C(RESULT_ACCESS) ] = -1,
 794                [ C(RESULT_MISS)   ] = -1,
 795        },
 796        [ C(OP_PREFETCH) ] = {
 797                [ C(RESULT_ACCESS) ] = 0x0,
 798                [ C(RESULT_MISS)   ] = 0x0,
 799        },
 800 },
 801 [ C(LL  ) ] = {
 802        [ C(OP_READ) ] = {
 803                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 804                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 805        },
 806        [ C(OP_WRITE) ] = {
 807                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 808                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 809        },
 810        [ C(OP_PREFETCH) ] = {
 811                [ C(RESULT_ACCESS) ] = 0x0,
 812                [ C(RESULT_MISS)   ] = 0x0,
 813        },
 814 },
 815 [ C(DTLB) ] = {
 816        [ C(OP_READ) ] = {
 817                [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
 818                [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
 819        },
 820        [ C(OP_WRITE) ] = {
 821                [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
 822                [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
 823        },
 824        [ C(OP_PREFETCH) ] = {
 825                [ C(RESULT_ACCESS) ] = 0x0,
 826                [ C(RESULT_MISS)   ] = 0x0,
 827        },
 828 },
 829 [ C(ITLB) ] = {
 830        [ C(OP_READ) ] = {
 831                [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
 832                [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
 833        },
 834        [ C(OP_WRITE) ] = {
 835                [ C(RESULT_ACCESS) ] = -1,
 836                [ C(RESULT_MISS)   ] = -1,
 837        },
 838        [ C(OP_PREFETCH) ] = {
 839                [ C(RESULT_ACCESS) ] = -1,
 840                [ C(RESULT_MISS)   ] = -1,
 841        },
 842 },
 843 [ C(BPU ) ] = {
 844        [ C(OP_READ) ] = {
 845                [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
 846                [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
 847        },
 848        [ C(OP_WRITE) ] = {
 849                [ C(RESULT_ACCESS) ] = -1,
 850                [ C(RESULT_MISS)   ] = -1,
 851        },
 852        [ C(OP_PREFETCH) ] = {
 853                [ C(RESULT_ACCESS) ] = -1,
 854                [ C(RESULT_MISS)   ] = -1,
 855        },
 856 },
 857 [ C(NODE) ] = {
 858        [ C(OP_READ) ] = {
 859                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 860                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 861        },
 862        [ C(OP_WRITE) ] = {
 863                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 864                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 865        },
 866        [ C(OP_PREFETCH) ] = {
 867                [ C(RESULT_ACCESS) ] = 0x0,
 868                [ C(RESULT_MISS)   ] = 0x0,
 869        },
 870 },
 871};
 872
 873static __initconst const u64 hsw_hw_cache_extra_regs
 874                                [PERF_COUNT_HW_CACHE_MAX]
 875                                [PERF_COUNT_HW_CACHE_OP_MAX]
 876                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 877{
 878 [ C(LL  ) ] = {
 879        [ C(OP_READ) ] = {
 880                [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
 881                                       HSW_LLC_ACCESS,
 882                [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
 883                                       HSW_L3_MISS|HSW_ANY_SNOOP,
 884        },
 885        [ C(OP_WRITE) ] = {
 886                [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
 887                                       HSW_LLC_ACCESS,
 888                [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
 889                                       HSW_L3_MISS|HSW_ANY_SNOOP,
 890        },
 891        [ C(OP_PREFETCH) ] = {
 892                [ C(RESULT_ACCESS) ] = 0x0,
 893                [ C(RESULT_MISS)   ] = 0x0,
 894        },
 895 },
 896 [ C(NODE) ] = {
 897        [ C(OP_READ) ] = {
 898                [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
 899                                       HSW_L3_MISS_LOCAL_DRAM|
 900                                       HSW_SNOOP_DRAM,
 901                [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
 902                                       HSW_L3_MISS_REMOTE|
 903                                       HSW_SNOOP_DRAM,
 904        },
 905        [ C(OP_WRITE) ] = {
 906                [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
 907                                       HSW_L3_MISS_LOCAL_DRAM|
 908                                       HSW_SNOOP_DRAM,
 909                [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
 910                                       HSW_L3_MISS_REMOTE|
 911                                       HSW_SNOOP_DRAM,
 912        },
 913        [ C(OP_PREFETCH) ] = {
 914                [ C(RESULT_ACCESS) ] = 0x0,
 915                [ C(RESULT_MISS)   ] = 0x0,
 916        },
 917 },
 918};
 919
 920static __initconst const u64 westmere_hw_cache_event_ids
 921                                [PERF_COUNT_HW_CACHE_MAX]
 922                                [PERF_COUNT_HW_CACHE_OP_MAX]
 923                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 924{
 925 [ C(L1D) ] = {
 926        [ C(OP_READ) ] = {
 927                [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
 928                [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
 929        },
 930        [ C(OP_WRITE) ] = {
 931                [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
 932                [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
 933        },
 934        [ C(OP_PREFETCH) ] = {
 935                [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
 936                [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
 937        },
 938 },
 939 [ C(L1I ) ] = {
 940        [ C(OP_READ) ] = {
 941                [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
 942                [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
 943        },
 944        [ C(OP_WRITE) ] = {
 945                [ C(RESULT_ACCESS) ] = -1,
 946                [ C(RESULT_MISS)   ] = -1,
 947        },
 948        [ C(OP_PREFETCH) ] = {
 949                [ C(RESULT_ACCESS) ] = 0x0,
 950                [ C(RESULT_MISS)   ] = 0x0,
 951        },
 952 },
 953 [ C(LL  ) ] = {
 954        [ C(OP_READ) ] = {
 955                /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
 956                [ C(RESULT_ACCESS) ] = 0x01b7,
 957                /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
 958                [ C(RESULT_MISS)   ] = 0x01b7,
 959        },
 960        /*
 961         * Use RFO, not WRITEBACK, because a write miss would typically occur
 962         * on RFO.
 963         */
 964        [ C(OP_WRITE) ] = {
 965                /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
 966                [ C(RESULT_ACCESS) ] = 0x01b7,
 967                /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
 968                [ C(RESULT_MISS)   ] = 0x01b7,
 969        },
 970        [ C(OP_PREFETCH) ] = {
 971                /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
 972                [ C(RESULT_ACCESS) ] = 0x01b7,
 973                /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
 974                [ C(RESULT_MISS)   ] = 0x01b7,
 975        },
 976 },
 977 [ C(DTLB) ] = {
 978        [ C(OP_READ) ] = {
 979                [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
 980                [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
 981        },
 982        [ C(OP_WRITE) ] = {
 983                [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
 984                [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
 985        },
 986        [ C(OP_PREFETCH) ] = {
 987                [ C(RESULT_ACCESS) ] = 0x0,
 988                [ C(RESULT_MISS)   ] = 0x0,
 989        },
 990 },
 991 [ C(ITLB) ] = {
 992        [ C(OP_READ) ] = {
 993                [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
 994                [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
 995        },
 996        [ C(OP_WRITE) ] = {
 997                [ C(RESULT_ACCESS) ] = -1,
 998                [ C(RESULT_MISS)   ] = -1,
 999        },
1000        [ C(OP_PREFETCH) ] = {
1001                [ C(RESULT_ACCESS) ] = -1,
1002                [ C(RESULT_MISS)   ] = -1,
1003        },
1004 },
1005 [ C(BPU ) ] = {
1006        [ C(OP_READ) ] = {
1007                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1008                [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1009        },
1010        [ C(OP_WRITE) ] = {
1011                [ C(RESULT_ACCESS) ] = -1,
1012                [ C(RESULT_MISS)   ] = -1,
1013        },
1014        [ C(OP_PREFETCH) ] = {
1015                [ C(RESULT_ACCESS) ] = -1,
1016                [ C(RESULT_MISS)   ] = -1,
1017        },
1018 },
1019 [ C(NODE) ] = {
1020        [ C(OP_READ) ] = {
1021                [ C(RESULT_ACCESS) ] = 0x01b7,
1022                [ C(RESULT_MISS)   ] = 0x01b7,
1023        },
1024        [ C(OP_WRITE) ] = {
1025                [ C(RESULT_ACCESS) ] = 0x01b7,
1026                [ C(RESULT_MISS)   ] = 0x01b7,
1027        },
1028        [ C(OP_PREFETCH) ] = {
1029                [ C(RESULT_ACCESS) ] = 0x01b7,
1030                [ C(RESULT_MISS)   ] = 0x01b7,
1031        },
1032 },
1033};
1034
1035/*
1036 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1037 * See IA32 SDM Vol 3B 30.6.1.3
1038 */
1039
1040#define NHM_DMND_DATA_RD        (1 << 0)
1041#define NHM_DMND_RFO            (1 << 1)
1042#define NHM_DMND_IFETCH         (1 << 2)
1043#define NHM_DMND_WB             (1 << 3)
1044#define NHM_PF_DATA_RD          (1 << 4)
1045#define NHM_PF_DATA_RFO         (1 << 5)
1046#define NHM_PF_IFETCH           (1 << 6)
1047#define NHM_OFFCORE_OTHER       (1 << 7)
1048#define NHM_UNCORE_HIT          (1 << 8)
1049#define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1050#define NHM_OTHER_CORE_HITM     (1 << 10)
1051                                /* reserved */
1052#define NHM_REMOTE_CACHE_FWD    (1 << 12)
1053#define NHM_REMOTE_DRAM         (1 << 13)
1054#define NHM_LOCAL_DRAM          (1 << 14)
1055#define NHM_NON_DRAM            (1 << 15)
1056
1057#define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1058#define NHM_REMOTE              (NHM_REMOTE_DRAM)
1059
1060#define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1061#define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1062#define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1063
1064#define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1065#define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1066#define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1067
1068static __initconst const u64 nehalem_hw_cache_extra_regs
1069                                [PERF_COUNT_HW_CACHE_MAX]
1070                                [PERF_COUNT_HW_CACHE_OP_MAX]
1071                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1072{
1073 [ C(LL  ) ] = {
1074        [ C(OP_READ) ] = {
1075                [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1076                [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1077        },
1078        [ C(OP_WRITE) ] = {
1079                [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1080                [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1081        },
1082        [ C(OP_PREFETCH) ] = {
1083                [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1084                [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1085        },
1086 },
1087 [ C(NODE) ] = {
1088        [ C(OP_READ) ] = {
1089                [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1090                [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1091        },
1092        [ C(OP_WRITE) ] = {
1093                [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1094                [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1095        },
1096        [ C(OP_PREFETCH) ] = {
1097                [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1098                [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1099        },
1100 },
1101};
1102
1103static __initconst const u64 nehalem_hw_cache_event_ids
1104                                [PERF_COUNT_HW_CACHE_MAX]
1105                                [PERF_COUNT_HW_CACHE_OP_MAX]
1106                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1107{
1108 [ C(L1D) ] = {
1109        [ C(OP_READ) ] = {
1110                [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1111                [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1112        },
1113        [ C(OP_WRITE) ] = {
1114                [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1115                [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1116        },
1117        [ C(OP_PREFETCH) ] = {
1118                [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1119                [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1120        },
1121 },
1122 [ C(L1I ) ] = {
1123        [ C(OP_READ) ] = {
1124                [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1125                [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1126        },
1127        [ C(OP_WRITE) ] = {
1128                [ C(RESULT_ACCESS) ] = -1,
1129                [ C(RESULT_MISS)   ] = -1,
1130        },
1131        [ C(OP_PREFETCH) ] = {
1132                [ C(RESULT_ACCESS) ] = 0x0,
1133                [ C(RESULT_MISS)   ] = 0x0,
1134        },
1135 },
1136 [ C(LL  ) ] = {
1137        [ C(OP_READ) ] = {
1138                /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1139                [ C(RESULT_ACCESS) ] = 0x01b7,
1140                /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1141                [ C(RESULT_MISS)   ] = 0x01b7,
1142        },
1143        /*
1144         * Use RFO, not WRITEBACK, because a write miss would typically occur
1145         * on RFO.
1146         */
1147        [ C(OP_WRITE) ] = {
1148                /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1149                [ C(RESULT_ACCESS) ] = 0x01b7,
1150                /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1151                [ C(RESULT_MISS)   ] = 0x01b7,
1152        },
1153        [ C(OP_PREFETCH) ] = {
1154                /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1155                [ C(RESULT_ACCESS) ] = 0x01b7,
1156                /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1157                [ C(RESULT_MISS)   ] = 0x01b7,
1158        },
1159 },
1160 [ C(DTLB) ] = {
1161        [ C(OP_READ) ] = {
1162                [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1163                [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1164        },
1165        [ C(OP_WRITE) ] = {
1166                [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1167                [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1168        },
1169        [ C(OP_PREFETCH) ] = {
1170                [ C(RESULT_ACCESS) ] = 0x0,
1171                [ C(RESULT_MISS)   ] = 0x0,
1172        },
1173 },
1174 [ C(ITLB) ] = {
1175        [ C(OP_READ) ] = {
1176                [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1177                [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1178        },
1179        [ C(OP_WRITE) ] = {
1180                [ C(RESULT_ACCESS) ] = -1,
1181                [ C(RESULT_MISS)   ] = -1,
1182        },
1183        [ C(OP_PREFETCH) ] = {
1184                [ C(RESULT_ACCESS) ] = -1,
1185                [ C(RESULT_MISS)   ] = -1,
1186        },
1187 },
1188 [ C(BPU ) ] = {
1189        [ C(OP_READ) ] = {
1190                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1191                [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1192        },
1193        [ C(OP_WRITE) ] = {
1194                [ C(RESULT_ACCESS) ] = -1,
1195                [ C(RESULT_MISS)   ] = -1,
1196        },
1197        [ C(OP_PREFETCH) ] = {
1198                [ C(RESULT_ACCESS) ] = -1,
1199                [ C(RESULT_MISS)   ] = -1,
1200        },
1201 },
1202 [ C(NODE) ] = {
1203        [ C(OP_READ) ] = {
1204                [ C(RESULT_ACCESS) ] = 0x01b7,
1205                [ C(RESULT_MISS)   ] = 0x01b7,
1206        },
1207        [ C(OP_WRITE) ] = {
1208                [ C(RESULT_ACCESS) ] = 0x01b7,
1209                [ C(RESULT_MISS)   ] = 0x01b7,
1210        },
1211        [ C(OP_PREFETCH) ] = {
1212                [ C(RESULT_ACCESS) ] = 0x01b7,
1213                [ C(RESULT_MISS)   ] = 0x01b7,
1214        },
1215 },
1216};
1217
1218static __initconst const u64 core2_hw_cache_event_ids
1219                                [PERF_COUNT_HW_CACHE_MAX]
1220                                [PERF_COUNT_HW_CACHE_OP_MAX]
1221                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1222{
1223 [ C(L1D) ] = {
1224        [ C(OP_READ) ] = {
1225                [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1226                [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1227        },
1228        [ C(OP_WRITE) ] = {
1229                [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1230                [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1231        },
1232        [ C(OP_PREFETCH) ] = {
1233                [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1234                [ C(RESULT_MISS)   ] = 0,
1235        },
1236 },
1237 [ C(L1I ) ] = {
1238        [ C(OP_READ) ] = {
1239                [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1240                [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1241        },
1242        [ C(OP_WRITE) ] = {
1243                [ C(RESULT_ACCESS) ] = -1,
1244                [ C(RESULT_MISS)   ] = -1,
1245        },
1246        [ C(OP_PREFETCH) ] = {
1247                [ C(RESULT_ACCESS) ] = 0,
1248                [ C(RESULT_MISS)   ] = 0,
1249        },
1250 },
1251 [ C(LL  ) ] = {
1252        [ C(OP_READ) ] = {
1253                [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1254                [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1255        },
1256        [ C(OP_WRITE) ] = {
1257                [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1258                [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1259        },
1260        [ C(OP_PREFETCH) ] = {
1261                [ C(RESULT_ACCESS) ] = 0,
1262                [ C(RESULT_MISS)   ] = 0,
1263        },
1264 },
1265 [ C(DTLB) ] = {
1266        [ C(OP_READ) ] = {
1267                [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1268                [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1269        },
1270        [ C(OP_WRITE) ] = {
1271                [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1272                [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1273        },
1274        [ C(OP_PREFETCH) ] = {
1275                [ C(RESULT_ACCESS) ] = 0,
1276                [ C(RESULT_MISS)   ] = 0,
1277        },
1278 },
1279 [ C(ITLB) ] = {
1280        [ C(OP_READ) ] = {
1281                [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1282                [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1283        },
1284        [ C(OP_WRITE) ] = {
1285                [ C(RESULT_ACCESS) ] = -1,
1286                [ C(RESULT_MISS)   ] = -1,
1287        },
1288        [ C(OP_PREFETCH) ] = {
1289                [ C(RESULT_ACCESS) ] = -1,
1290                [ C(RESULT_MISS)   ] = -1,
1291        },
1292 },
1293 [ C(BPU ) ] = {
1294        [ C(OP_READ) ] = {
1295                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1296                [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1297        },
1298        [ C(OP_WRITE) ] = {
1299                [ C(RESULT_ACCESS) ] = -1,
1300                [ C(RESULT_MISS)   ] = -1,
1301        },
1302        [ C(OP_PREFETCH) ] = {
1303                [ C(RESULT_ACCESS) ] = -1,
1304                [ C(RESULT_MISS)   ] = -1,
1305        },
1306 },
1307};
1308
1309static __initconst const u64 atom_hw_cache_event_ids
1310                                [PERF_COUNT_HW_CACHE_MAX]
1311                                [PERF_COUNT_HW_CACHE_OP_MAX]
1312                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313{
1314 [ C(L1D) ] = {
1315        [ C(OP_READ) ] = {
1316                [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1317                [ C(RESULT_MISS)   ] = 0,
1318        },
1319        [ C(OP_WRITE) ] = {
1320                [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1321                [ C(RESULT_MISS)   ] = 0,
1322        },
1323        [ C(OP_PREFETCH) ] = {
1324                [ C(RESULT_ACCESS) ] = 0x0,
1325                [ C(RESULT_MISS)   ] = 0,
1326        },
1327 },
1328 [ C(L1I ) ] = {
1329        [ C(OP_READ) ] = {
1330                [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1331                [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1332        },
1333        [ C(OP_WRITE) ] = {
1334                [ C(RESULT_ACCESS) ] = -1,
1335                [ C(RESULT_MISS)   ] = -1,
1336        },
1337        [ C(OP_PREFETCH) ] = {
1338                [ C(RESULT_ACCESS) ] = 0,
1339                [ C(RESULT_MISS)   ] = 0,
1340        },
1341 },
1342 [ C(LL  ) ] = {
1343        [ C(OP_READ) ] = {
1344                [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1345                [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1346        },
1347        [ C(OP_WRITE) ] = {
1348                [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1349                [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1350        },
1351        [ C(OP_PREFETCH) ] = {
1352                [ C(RESULT_ACCESS) ] = 0,
1353                [ C(RESULT_MISS)   ] = 0,
1354        },
1355 },
1356 [ C(DTLB) ] = {
1357        [ C(OP_READ) ] = {
1358                [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1359                [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1360        },
1361        [ C(OP_WRITE) ] = {
1362                [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1363                [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1364        },
1365        [ C(OP_PREFETCH) ] = {
1366                [ C(RESULT_ACCESS) ] = 0,
1367                [ C(RESULT_MISS)   ] = 0,
1368        },
1369 },
1370 [ C(ITLB) ] = {
1371        [ C(OP_READ) ] = {
1372                [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1373                [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1374        },
1375        [ C(OP_WRITE) ] = {
1376                [ C(RESULT_ACCESS) ] = -1,
1377                [ C(RESULT_MISS)   ] = -1,
1378        },
1379        [ C(OP_PREFETCH) ] = {
1380                [ C(RESULT_ACCESS) ] = -1,
1381                [ C(RESULT_MISS)   ] = -1,
1382        },
1383 },
1384 [ C(BPU ) ] = {
1385        [ C(OP_READ) ] = {
1386                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1387                [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1388        },
1389        [ C(OP_WRITE) ] = {
1390                [ C(RESULT_ACCESS) ] = -1,
1391                [ C(RESULT_MISS)   ] = -1,
1392        },
1393        [ C(OP_PREFETCH) ] = {
1394                [ C(RESULT_ACCESS) ] = -1,
1395                [ C(RESULT_MISS)   ] = -1,
1396        },
1397 },
1398};
1399
1400EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1401EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1402/* no_alloc_cycles.not_delivered */
1403EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1404               "event=0xca,umask=0x50");
1405EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1406/* uops_retired.all */
1407EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1408               "event=0xc2,umask=0x10");
1409/* uops_retired.all */
1410EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1411               "event=0xc2,umask=0x10");
1412
1413static struct attribute *slm_events_attrs[] = {
1414        EVENT_PTR(td_total_slots_slm),
1415        EVENT_PTR(td_total_slots_scale_slm),
1416        EVENT_PTR(td_fetch_bubbles_slm),
1417        EVENT_PTR(td_fetch_bubbles_scale_slm),
1418        EVENT_PTR(td_slots_issued_slm),
1419        EVENT_PTR(td_slots_retired_slm),
1420        NULL
1421};
1422
1423static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1424{
1425        /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1426        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1427        INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1428        EVENT_EXTRA_END
1429};
1430
1431#define SLM_DMND_READ           SNB_DMND_DATA_RD
1432#define SLM_DMND_WRITE          SNB_DMND_RFO
1433#define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1434
1435#define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1436#define SLM_LLC_ACCESS          SNB_RESP_ANY
1437#define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1438
1439static __initconst const u64 slm_hw_cache_extra_regs
1440                                [PERF_COUNT_HW_CACHE_MAX]
1441                                [PERF_COUNT_HW_CACHE_OP_MAX]
1442                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1443{
1444 [ C(LL  ) ] = {
1445        [ C(OP_READ) ] = {
1446                [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1447                [ C(RESULT_MISS)   ] = 0,
1448        },
1449        [ C(OP_WRITE) ] = {
1450                [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1451                [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1452        },
1453        [ C(OP_PREFETCH) ] = {
1454                [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1455                [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1456        },
1457 },
1458};
1459
1460static __initconst const u64 slm_hw_cache_event_ids
1461                                [PERF_COUNT_HW_CACHE_MAX]
1462                                [PERF_COUNT_HW_CACHE_OP_MAX]
1463                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1464{
1465 [ C(L1D) ] = {
1466        [ C(OP_READ) ] = {
1467                [ C(RESULT_ACCESS) ] = 0,
1468                [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1469        },
1470        [ C(OP_WRITE) ] = {
1471                [ C(RESULT_ACCESS) ] = 0,
1472                [ C(RESULT_MISS)   ] = 0,
1473        },
1474        [ C(OP_PREFETCH) ] = {
1475                [ C(RESULT_ACCESS) ] = 0,
1476                [ C(RESULT_MISS)   ] = 0,
1477        },
1478 },
1479 [ C(L1I ) ] = {
1480        [ C(OP_READ) ] = {
1481                [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1482                [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1483        },
1484        [ C(OP_WRITE) ] = {
1485                [ C(RESULT_ACCESS) ] = -1,
1486                [ C(RESULT_MISS)   ] = -1,
1487        },
1488        [ C(OP_PREFETCH) ] = {
1489                [ C(RESULT_ACCESS) ] = 0,
1490                [ C(RESULT_MISS)   ] = 0,
1491        },
1492 },
1493 [ C(LL  ) ] = {
1494        [ C(OP_READ) ] = {
1495                /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1496                [ C(RESULT_ACCESS) ] = 0x01b7,
1497                [ C(RESULT_MISS)   ] = 0,
1498        },
1499        [ C(OP_WRITE) ] = {
1500                /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1501                [ C(RESULT_ACCESS) ] = 0x01b7,
1502                /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1503                [ C(RESULT_MISS)   ] = 0x01b7,
1504        },
1505        [ C(OP_PREFETCH) ] = {
1506                /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1507                [ C(RESULT_ACCESS) ] = 0x01b7,
1508                /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1509                [ C(RESULT_MISS)   ] = 0x01b7,
1510        },
1511 },
1512 [ C(DTLB) ] = {
1513        [ C(OP_READ) ] = {
1514                [ C(RESULT_ACCESS) ] = 0,
1515                [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1516        },
1517        [ C(OP_WRITE) ] = {
1518                [ C(RESULT_ACCESS) ] = 0,
1519                [ C(RESULT_MISS)   ] = 0,
1520        },
1521        [ C(OP_PREFETCH) ] = {
1522                [ C(RESULT_ACCESS) ] = 0,
1523                [ C(RESULT_MISS)   ] = 0,
1524        },
1525 },
1526 [ C(ITLB) ] = {
1527        [ C(OP_READ) ] = {
1528                [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1529                [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1530        },
1531        [ C(OP_WRITE) ] = {
1532                [ C(RESULT_ACCESS) ] = -1,
1533                [ C(RESULT_MISS)   ] = -1,
1534        },
1535        [ C(OP_PREFETCH) ] = {
1536                [ C(RESULT_ACCESS) ] = -1,
1537                [ C(RESULT_MISS)   ] = -1,
1538        },
1539 },
1540 [ C(BPU ) ] = {
1541        [ C(OP_READ) ] = {
1542                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1543                [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1544        },
1545        [ C(OP_WRITE) ] = {
1546                [ C(RESULT_ACCESS) ] = -1,
1547                [ C(RESULT_MISS)   ] = -1,
1548        },
1549        [ C(OP_PREFETCH) ] = {
1550                [ C(RESULT_ACCESS) ] = -1,
1551                [ C(RESULT_MISS)   ] = -1,
1552        },
1553 },
1554};
1555
1556EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1557EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1558/* UOPS_NOT_DELIVERED.ANY */
1559EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1560/* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1561EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1562/* UOPS_RETIRED.ANY */
1563EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1564/* UOPS_ISSUED.ANY */
1565EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1566
1567static struct attribute *glm_events_attrs[] = {
1568        EVENT_PTR(td_total_slots_glm),
1569        EVENT_PTR(td_total_slots_scale_glm),
1570        EVENT_PTR(td_fetch_bubbles_glm),
1571        EVENT_PTR(td_recovery_bubbles_glm),
1572        EVENT_PTR(td_slots_issued_glm),
1573        EVENT_PTR(td_slots_retired_glm),
1574        NULL
1575};
1576
1577static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1578        /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1579        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1580        INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1581        EVENT_EXTRA_END
1582};
1583
1584#define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1585#define GLM_DEMAND_RFO                  BIT_ULL(1)
1586#define GLM_ANY_RESPONSE                BIT_ULL(16)
1587#define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1588#define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1589#define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1590#define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1591#define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1592#define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1593#define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1594
1595static __initconst const u64 glm_hw_cache_event_ids
1596                                [PERF_COUNT_HW_CACHE_MAX]
1597                                [PERF_COUNT_HW_CACHE_OP_MAX]
1598                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1599        [C(L1D)] = {
1600                [C(OP_READ)] = {
1601                        [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1602                        [C(RESULT_MISS)]        = 0x0,
1603                },
1604                [C(OP_WRITE)] = {
1605                        [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1606                        [C(RESULT_MISS)]        = 0x0,
1607                },
1608                [C(OP_PREFETCH)] = {
1609                        [C(RESULT_ACCESS)]      = 0x0,
1610                        [C(RESULT_MISS)]        = 0x0,
1611                },
1612        },
1613        [C(L1I)] = {
1614                [C(OP_READ)] = {
1615                        [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1616                        [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1617                },
1618                [C(OP_WRITE)] = {
1619                        [C(RESULT_ACCESS)]      = -1,
1620                        [C(RESULT_MISS)]        = -1,
1621                },
1622                [C(OP_PREFETCH)] = {
1623                        [C(RESULT_ACCESS)]      = 0x0,
1624                        [C(RESULT_MISS)]        = 0x0,
1625                },
1626        },
1627        [C(LL)] = {
1628                [C(OP_READ)] = {
1629                        [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1630                        [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1631                },
1632                [C(OP_WRITE)] = {
1633                        [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1634                        [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1635                },
1636                [C(OP_PREFETCH)] = {
1637                        [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1638                        [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1639                },
1640        },
1641        [C(DTLB)] = {
1642                [C(OP_READ)] = {
1643                        [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1644                        [C(RESULT_MISS)]        = 0x0,
1645                },
1646                [C(OP_WRITE)] = {
1647                        [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1648                        [C(RESULT_MISS)]        = 0x0,
1649                },
1650                [C(OP_PREFETCH)] = {
1651                        [C(RESULT_ACCESS)]      = 0x0,
1652                        [C(RESULT_MISS)]        = 0x0,
1653                },
1654        },
1655        [C(ITLB)] = {
1656                [C(OP_READ)] = {
1657                        [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1658                        [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1659                },
1660                [C(OP_WRITE)] = {
1661                        [C(RESULT_ACCESS)]      = -1,
1662                        [C(RESULT_MISS)]        = -1,
1663                },
1664                [C(OP_PREFETCH)] = {
1665                        [C(RESULT_ACCESS)]      = -1,
1666                        [C(RESULT_MISS)]        = -1,
1667                },
1668        },
1669        [C(BPU)] = {
1670                [C(OP_READ)] = {
1671                        [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1672                        [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1673                },
1674                [C(OP_WRITE)] = {
1675                        [C(RESULT_ACCESS)]      = -1,
1676                        [C(RESULT_MISS)]        = -1,
1677                },
1678                [C(OP_PREFETCH)] = {
1679                        [C(RESULT_ACCESS)]      = -1,
1680                        [C(RESULT_MISS)]        = -1,
1681                },
1682        },
1683};
1684
1685static __initconst const u64 glm_hw_cache_extra_regs
1686                                [PERF_COUNT_HW_CACHE_MAX]
1687                                [PERF_COUNT_HW_CACHE_OP_MAX]
1688                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1689        [C(LL)] = {
1690                [C(OP_READ)] = {
1691                        [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1692                                                  GLM_LLC_ACCESS,
1693                        [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1694                                                  GLM_LLC_MISS,
1695                },
1696                [C(OP_WRITE)] = {
1697                        [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1698                                                  GLM_LLC_ACCESS,
1699                        [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1700                                                  GLM_LLC_MISS,
1701                },
1702                [C(OP_PREFETCH)] = {
1703                        [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1704                                                  GLM_LLC_ACCESS,
1705                        [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1706                                                  GLM_LLC_MISS,
1707                },
1708        },
1709};
1710
1711static __initconst const u64 glp_hw_cache_event_ids
1712                                [PERF_COUNT_HW_CACHE_MAX]
1713                                [PERF_COUNT_HW_CACHE_OP_MAX]
1714                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1715        [C(L1D)] = {
1716                [C(OP_READ)] = {
1717                        [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1718                        [C(RESULT_MISS)]        = 0x0,
1719                },
1720                [C(OP_WRITE)] = {
1721                        [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1722                        [C(RESULT_MISS)]        = 0x0,
1723                },
1724                [C(OP_PREFETCH)] = {
1725                        [C(RESULT_ACCESS)]      = 0x0,
1726                        [C(RESULT_MISS)]        = 0x0,
1727                },
1728        },
1729        [C(L1I)] = {
1730                [C(OP_READ)] = {
1731                        [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1732                        [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1733                },
1734                [C(OP_WRITE)] = {
1735                        [C(RESULT_ACCESS)]      = -1,
1736                        [C(RESULT_MISS)]        = -1,
1737                },
1738                [C(OP_PREFETCH)] = {
1739                        [C(RESULT_ACCESS)]      = 0x0,
1740                        [C(RESULT_MISS)]        = 0x0,
1741                },
1742        },
1743        [C(LL)] = {
1744                [C(OP_READ)] = {
1745                        [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1746                        [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1747                },
1748                [C(OP_WRITE)] = {
1749                        [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1750                        [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1751                },
1752                [C(OP_PREFETCH)] = {
1753                        [C(RESULT_ACCESS)]      = 0x0,
1754                        [C(RESULT_MISS)]        = 0x0,
1755                },
1756        },
1757        [C(DTLB)] = {
1758                [C(OP_READ)] = {
1759                        [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1760                        [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1761                },
1762                [C(OP_WRITE)] = {
1763                        [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1764                        [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1765                },
1766                [C(OP_PREFETCH)] = {
1767                        [C(RESULT_ACCESS)]      = 0x0,
1768                        [C(RESULT_MISS)]        = 0x0,
1769                },
1770        },
1771        [C(ITLB)] = {
1772                [C(OP_READ)] = {
1773                        [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1774                        [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1775                },
1776                [C(OP_WRITE)] = {
1777                        [C(RESULT_ACCESS)]      = -1,
1778                        [C(RESULT_MISS)]        = -1,
1779                },
1780                [C(OP_PREFETCH)] = {
1781                        [C(RESULT_ACCESS)]      = -1,
1782                        [C(RESULT_MISS)]        = -1,
1783                },
1784        },
1785        [C(BPU)] = {
1786                [C(OP_READ)] = {
1787                        [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1788                        [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1789                },
1790                [C(OP_WRITE)] = {
1791                        [C(RESULT_ACCESS)]      = -1,
1792                        [C(RESULT_MISS)]        = -1,
1793                },
1794                [C(OP_PREFETCH)] = {
1795                        [C(RESULT_ACCESS)]      = -1,
1796                        [C(RESULT_MISS)]        = -1,
1797                },
1798        },
1799};
1800
1801static __initconst const u64 glp_hw_cache_extra_regs
1802                                [PERF_COUNT_HW_CACHE_MAX]
1803                                [PERF_COUNT_HW_CACHE_OP_MAX]
1804                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1805        [C(LL)] = {
1806                [C(OP_READ)] = {
1807                        [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1808                                                  GLM_LLC_ACCESS,
1809                        [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1810                                                  GLM_LLC_MISS,
1811                },
1812                [C(OP_WRITE)] = {
1813                        [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1814                                                  GLM_LLC_ACCESS,
1815                        [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1816                                                  GLM_LLC_MISS,
1817                },
1818                [C(OP_PREFETCH)] = {
1819                        [C(RESULT_ACCESS)]      = 0x0,
1820                        [C(RESULT_MISS)]        = 0x0,
1821                },
1822        },
1823};
1824
1825#define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
1826#define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
1827#define KNL_MCDRAM_LOCAL        BIT_ULL(21)
1828#define KNL_MCDRAM_FAR          BIT_ULL(22)
1829#define KNL_DDR_LOCAL           BIT_ULL(23)
1830#define KNL_DDR_FAR             BIT_ULL(24)
1831#define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1832                                    KNL_DDR_LOCAL | KNL_DDR_FAR)
1833#define KNL_L2_READ             SLM_DMND_READ
1834#define KNL_L2_WRITE            SLM_DMND_WRITE
1835#define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
1836#define KNL_L2_ACCESS           SLM_LLC_ACCESS
1837#define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1838                                   KNL_DRAM_ANY | SNB_SNP_ANY | \
1839                                                  SNB_NON_DRAM)
1840
1841static __initconst const u64 knl_hw_cache_extra_regs
1842                                [PERF_COUNT_HW_CACHE_MAX]
1843                                [PERF_COUNT_HW_CACHE_OP_MAX]
1844                                [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1845        [C(LL)] = {
1846                [C(OP_READ)] = {
1847                        [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1848                        [C(RESULT_MISS)]   = 0,
1849                },
1850                [C(OP_WRITE)] = {
1851                        [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1852                        [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1853                },
1854                [C(OP_PREFETCH)] = {
1855                        [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1856                        [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1857                },
1858        },
1859};
1860
1861/*
1862 * Used from PMIs where the LBRs are already disabled.
1863 *
1864 * This function could be called consecutively. It is required to remain in
1865 * disabled state if called consecutively.
1866 *
1867 * During consecutive calls, the same disable value will be written to related
1868 * registers, so the PMU state remains unchanged.
1869 *
1870 * intel_bts events don't coexist with intel PMU's BTS events because of
1871 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1872 * disabled around intel PMU's event batching etc, only inside the PMI handler.
1873 */
1874static void __intel_pmu_disable_all(void)
1875{
1876        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1877
1878        wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1879
1880        if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1881                intel_pmu_disable_bts();
1882
1883        intel_pmu_pebs_disable_all();
1884}
1885
1886static void intel_pmu_disable_all(void)
1887{
1888        __intel_pmu_disable_all();
1889        intel_pmu_lbr_disable_all();
1890}
1891
1892static void __intel_pmu_enable_all(int added, bool pmi)
1893{
1894        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1895
1896        intel_pmu_pebs_enable_all();
1897        intel_pmu_lbr_enable_all(pmi);
1898        wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1899                        x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1900
1901        if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1902                struct perf_event *event =
1903                        cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1904
1905                if (WARN_ON_ONCE(!event))
1906                        return;
1907
1908                intel_pmu_enable_bts(event->hw.config);
1909        }
1910}
1911
1912static void intel_pmu_enable_all(int added)
1913{
1914        __intel_pmu_enable_all(added, false);
1915}
1916
1917/*
1918 * Workaround for:
1919 *   Intel Errata AAK100 (model 26)
1920 *   Intel Errata AAP53  (model 30)
1921 *   Intel Errata BD53   (model 44)
1922 *
1923 * The official story:
1924 *   These chips need to be 'reset' when adding counters by programming the
1925 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1926 *   in sequence on the same PMC or on different PMCs.
1927 *
1928 * In practise it appears some of these events do in fact count, and
1929 * we need to programm all 4 events.
1930 */
1931static void intel_pmu_nhm_workaround(void)
1932{
1933        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1934        static const unsigned long nhm_magic[4] = {
1935                0x4300B5,
1936                0x4300D2,
1937                0x4300B1,
1938                0x4300B1
1939        };
1940        struct perf_event *event;
1941        int i;
1942
1943        /*
1944         * The Errata requires below steps:
1945         * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1946         * 2) Configure 4 PERFEVTSELx with the magic events and clear
1947         *    the corresponding PMCx;
1948         * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1949         * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1950         * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1951         */
1952
1953        /*
1954         * The real steps we choose are a little different from above.
1955         * A) To reduce MSR operations, we don't run step 1) as they
1956         *    are already cleared before this function is called;
1957         * B) Call x86_perf_event_update to save PMCx before configuring
1958         *    PERFEVTSELx with magic number;
1959         * C) With step 5), we do clear only when the PERFEVTSELx is
1960         *    not used currently.
1961         * D) Call x86_perf_event_set_period to restore PMCx;
1962         */
1963
1964        /* We always operate 4 pairs of PERF Counters */
1965        for (i = 0; i < 4; i++) {
1966                event = cpuc->events[i];
1967                if (event)
1968                        x86_perf_event_update(event);
1969        }
1970
1971        for (i = 0; i < 4; i++) {
1972                wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1973                wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1974        }
1975
1976        wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1977        wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1978
1979        for (i = 0; i < 4; i++) {
1980                event = cpuc->events[i];
1981
1982                if (event) {
1983                        x86_perf_event_set_period(event);
1984                        __x86_pmu_enable_event(&event->hw,
1985                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1986                } else
1987                        wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1988        }
1989}
1990
1991static void intel_pmu_nhm_enable_all(int added)
1992{
1993        if (added)
1994                intel_pmu_nhm_workaround();
1995        intel_pmu_enable_all(added);
1996}
1997
1998static inline u64 intel_pmu_get_status(void)
1999{
2000        u64 status;
2001
2002        rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2003
2004        return status;
2005}
2006
2007static inline void intel_pmu_ack_status(u64 ack)
2008{
2009        wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2010}
2011
2012static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2013{
2014        int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2015        u64 ctrl_val, mask;
2016
2017        mask = 0xfULL << (idx * 4);
2018
2019        rdmsrl(hwc->config_base, ctrl_val);
2020        ctrl_val &= ~mask;
2021        wrmsrl(hwc->config_base, ctrl_val);
2022}
2023
2024static inline bool event_is_checkpointed(struct perf_event *event)
2025{
2026        return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2027}
2028
2029static void intel_pmu_disable_event(struct perf_event *event)
2030{
2031        struct hw_perf_event *hwc = &event->hw;
2032        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2033
2034        if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2035                intel_pmu_disable_bts();
2036                intel_pmu_drain_bts_buffer();
2037                return;
2038        }
2039
2040        cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2041        cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2042        cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2043
2044        if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2045                intel_pmu_disable_fixed(hwc);
2046                return;
2047        }
2048
2049        x86_pmu_disable_event(event);
2050
2051        if (unlikely(event->attr.precise_ip))
2052                intel_pmu_pebs_disable(event);
2053}
2054
2055static void intel_pmu_del_event(struct perf_event *event)
2056{
2057        if (needs_branch_stack(event))
2058                intel_pmu_lbr_del(event);
2059        if (event->attr.precise_ip)
2060                intel_pmu_pebs_del(event);
2061}
2062
2063static void intel_pmu_read_event(struct perf_event *event)
2064{
2065        if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2066                intel_pmu_auto_reload_read(event);
2067        else
2068                x86_perf_event_update(event);
2069}
2070
2071static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
2072{
2073        int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2074        u64 ctrl_val, bits, mask;
2075
2076        /*
2077         * Enable IRQ generation (0x8),
2078         * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2079         * if requested:
2080         */
2081        bits = 0x8ULL;
2082        if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2083                bits |= 0x2;
2084        if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2085                bits |= 0x1;
2086
2087        /*
2088         * ANY bit is supported in v3 and up
2089         */
2090        if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2091                bits |= 0x4;
2092
2093        bits <<= (idx * 4);
2094        mask = 0xfULL << (idx * 4);
2095
2096        rdmsrl(hwc->config_base, ctrl_val);
2097        ctrl_val &= ~mask;
2098        ctrl_val |= bits;
2099        wrmsrl(hwc->config_base, ctrl_val);
2100}
2101
2102static void intel_pmu_enable_event(struct perf_event *event)
2103{
2104        struct hw_perf_event *hwc = &event->hw;
2105        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2106
2107        if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2108                if (!__this_cpu_read(cpu_hw_events.enabled))
2109                        return;
2110
2111                intel_pmu_enable_bts(hwc->config);
2112                return;
2113        }
2114
2115        if (event->attr.exclude_host)
2116                cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2117        if (event->attr.exclude_guest)
2118                cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2119
2120        if (unlikely(event_is_checkpointed(event)))
2121                cpuc->intel_cp_status |= (1ull << hwc->idx);
2122
2123        if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2124                intel_pmu_enable_fixed(hwc);
2125                return;
2126        }
2127
2128        if (unlikely(event->attr.precise_ip))
2129                intel_pmu_pebs_enable(event);
2130
2131        __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2132}
2133
2134static void intel_pmu_add_event(struct perf_event *event)
2135{
2136        if (event->attr.precise_ip)
2137                intel_pmu_pebs_add(event);
2138        if (needs_branch_stack(event))
2139                intel_pmu_lbr_add(event);
2140}
2141
2142/*
2143 * Save and restart an expired event. Called by NMI contexts,
2144 * so it has to be careful about preempting normal event ops:
2145 */
2146int intel_pmu_save_and_restart(struct perf_event *event)
2147{
2148        x86_perf_event_update(event);
2149        /*
2150         * For a checkpointed counter always reset back to 0.  This
2151         * avoids a situation where the counter overflows, aborts the
2152         * transaction and is then set back to shortly before the
2153         * overflow, and overflows and aborts again.
2154         */
2155        if (unlikely(event_is_checkpointed(event))) {
2156                /* No race with NMIs because the counter should not be armed */
2157                wrmsrl(event->hw.event_base, 0);
2158                local64_set(&event->hw.prev_count, 0);
2159        }
2160        return x86_perf_event_set_period(event);
2161}
2162
2163static void intel_pmu_reset(void)
2164{
2165        struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2166        unsigned long flags;
2167        int idx;
2168
2169        if (!x86_pmu.num_counters)
2170                return;
2171
2172        local_irq_save(flags);
2173
2174        pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2175
2176        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2177                wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2178                wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2179        }
2180        for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2181                wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2182
2183        if (ds)
2184                ds->bts_index = ds->bts_buffer_base;
2185
2186        /* Ack all overflows and disable fixed counters */
2187        if (x86_pmu.version >= 2) {
2188                intel_pmu_ack_status(intel_pmu_get_status());
2189                wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2190        }
2191
2192        /* Reset LBRs and LBR freezing */
2193        if (x86_pmu.lbr_nr) {
2194                update_debugctlmsr(get_debugctlmsr() &
2195                        ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2196        }
2197
2198        local_irq_restore(flags);
2199}
2200
2201/*
2202 * This handler is triggered by the local APIC, so the APIC IRQ handling
2203 * rules apply:
2204 */
2205static int intel_pmu_handle_irq(struct pt_regs *regs)
2206{
2207        struct perf_sample_data data;
2208        struct cpu_hw_events *cpuc;
2209        int bit, loops;
2210        u64 status;
2211        int handled;
2212        int pmu_enabled;
2213
2214        cpuc = this_cpu_ptr(&cpu_hw_events);
2215
2216        /*
2217         * Save the PMU state.
2218         * It needs to be restored when leaving the handler.
2219         */
2220        pmu_enabled = cpuc->enabled;
2221        /*
2222         * No known reason to not always do late ACK,
2223         * but just in case do it opt-in.
2224         */
2225        if (!x86_pmu.late_ack)
2226                apic_write(APIC_LVTPC, APIC_DM_NMI);
2227        intel_bts_disable_local();
2228        cpuc->enabled = 0;
2229        __intel_pmu_disable_all();
2230        handled = intel_pmu_drain_bts_buffer();
2231        handled += intel_bts_interrupt();
2232        status = intel_pmu_get_status();
2233        if (!status)
2234                goto done;
2235
2236        loops = 0;
2237again:
2238        intel_pmu_lbr_read();
2239        intel_pmu_ack_status(status);
2240        if (++loops > 100) {
2241                static bool warned = false;
2242                if (!warned) {
2243                        WARN(1, "perfevents: irq loop stuck!\n");
2244                        perf_event_print_debug();
2245                        warned = true;
2246                }
2247                intel_pmu_reset();
2248                goto done;
2249        }
2250
2251        inc_irq_stat(apic_perf_irqs);
2252
2253
2254        /*
2255         * Ignore a range of extra bits in status that do not indicate
2256         * overflow by themselves.
2257         */
2258        status &= ~(GLOBAL_STATUS_COND_CHG |
2259                    GLOBAL_STATUS_ASIF |
2260                    GLOBAL_STATUS_LBRS_FROZEN);
2261        if (!status)
2262                goto done;
2263        /*
2264         * In case multiple PEBS events are sampled at the same time,
2265         * it is possible to have GLOBAL_STATUS bit 62 set indicating
2266         * PEBS buffer overflow and also seeing at most 3 PEBS counters
2267         * having their bits set in the status register. This is a sign
2268         * that there was at least one PEBS record pending at the time
2269         * of the PMU interrupt. PEBS counters must only be processed
2270         * via the drain_pebs() calls and not via the regular sample
2271         * processing loop coming after that the function, otherwise
2272         * phony regular samples may be generated in the sampling buffer
2273         * not marked with the EXACT tag. Another possibility is to have
2274         * one PEBS event and at least one non-PEBS event whic hoverflows
2275         * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2276         * not be set, yet the overflow status bit for the PEBS counter will
2277         * be on Skylake.
2278         *
2279         * To avoid this problem, we systematically ignore the PEBS-enabled
2280         * counters from the GLOBAL_STATUS mask and we always process PEBS
2281         * events via drain_pebs().
2282         */
2283        status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2284
2285        /*
2286         * PEBS overflow sets bit 62 in the global status register
2287         */
2288        if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2289                handled++;
2290                x86_pmu.drain_pebs(regs);
2291                status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2292        }
2293
2294        /*
2295         * Intel PT
2296         */
2297        if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2298                handled++;
2299                intel_pt_interrupt();
2300        }
2301
2302        /*
2303         * Checkpointed counters can lead to 'spurious' PMIs because the
2304         * rollback caused by the PMI will have cleared the overflow status
2305         * bit. Therefore always force probe these counters.
2306         */
2307        status |= cpuc->intel_cp_status;
2308
2309        for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2310                struct perf_event *event = cpuc->events[bit];
2311
2312                handled++;
2313
2314                if (!test_bit(bit, cpuc->active_mask))
2315                        continue;
2316
2317                if (!intel_pmu_save_and_restart(event))
2318                        continue;
2319
2320                perf_sample_data_init(&data, 0, event->hw.last_period);
2321
2322                if (has_branch_stack(event))
2323                        data.br_stack = &cpuc->lbr_stack;
2324
2325                if (perf_event_overflow(event, &data, regs))
2326                        x86_pmu_stop(event, 0);
2327        }
2328
2329        /*
2330         * Repeat if there is more work to be done:
2331         */
2332        status = intel_pmu_get_status();
2333        if (status)
2334                goto again;
2335
2336done:
2337        /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2338        cpuc->enabled = pmu_enabled;
2339        if (pmu_enabled)
2340                __intel_pmu_enable_all(0, true);
2341        intel_bts_enable_local();
2342
2343        /*
2344         * Only unmask the NMI after the overflow counters
2345         * have been reset. This avoids spurious NMIs on
2346         * Haswell CPUs.
2347         */
2348        if (x86_pmu.late_ack)
2349                apic_write(APIC_LVTPC, APIC_DM_NMI);
2350        return handled;
2351}
2352
2353static struct event_constraint *
2354intel_bts_constraints(struct perf_event *event)
2355{
2356        struct hw_perf_event *hwc = &event->hw;
2357        unsigned int hw_event, bts_event;
2358
2359        if (event->attr.freq)
2360                return NULL;
2361
2362        hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2363        bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2364
2365        if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2366                return &bts_constraint;
2367
2368        return NULL;
2369}
2370
2371static int intel_alt_er(int idx, u64 config)
2372{
2373        int alt_idx = idx;
2374
2375        if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2376                return idx;
2377
2378        if (idx == EXTRA_REG_RSP_0)
2379                alt_idx = EXTRA_REG_RSP_1;
2380
2381        if (idx == EXTRA_REG_RSP_1)
2382                alt_idx = EXTRA_REG_RSP_0;
2383
2384        if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2385                return idx;
2386
2387        return alt_idx;
2388}
2389
2390static void intel_fixup_er(struct perf_event *event, int idx)
2391{
2392        event->hw.extra_reg.idx = idx;
2393
2394        if (idx == EXTRA_REG_RSP_0) {
2395                event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2396                event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2397                event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2398        } else if (idx == EXTRA_REG_RSP_1) {
2399                event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2400                event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2401                event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2402        }
2403}
2404
2405/*
2406 * manage allocation of shared extra msr for certain events
2407 *
2408 * sharing can be:
2409 * per-cpu: to be shared between the various events on a single PMU
2410 * per-core: per-cpu + shared by HT threads
2411 */
2412static struct event_constraint *
2413__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2414                                   struct perf_event *event,
2415                                   struct hw_perf_event_extra *reg)
2416{
2417        struct event_constraint *c = &emptyconstraint;
2418        struct er_account *era;
2419        unsigned long flags;
2420        int idx = reg->idx;
2421
2422        /*
2423         * reg->alloc can be set due to existing state, so for fake cpuc we
2424         * need to ignore this, otherwise we might fail to allocate proper fake
2425         * state for this extra reg constraint. Also see the comment below.
2426         */
2427        if (reg->alloc && !cpuc->is_fake)
2428                return NULL; /* call x86_get_event_constraint() */
2429
2430again:
2431        era = &cpuc->shared_regs->regs[idx];
2432        /*
2433         * we use spin_lock_irqsave() to avoid lockdep issues when
2434         * passing a fake cpuc
2435         */
2436        raw_spin_lock_irqsave(&era->lock, flags);
2437
2438        if (!atomic_read(&era->ref) || era->config == reg->config) {
2439
2440                /*
2441                 * If its a fake cpuc -- as per validate_{group,event}() we
2442                 * shouldn't touch event state and we can avoid doing so
2443                 * since both will only call get_event_constraints() once
2444                 * on each event, this avoids the need for reg->alloc.
2445                 *
2446                 * Not doing the ER fixup will only result in era->reg being
2447                 * wrong, but since we won't actually try and program hardware
2448                 * this isn't a problem either.
2449                 */
2450                if (!cpuc->is_fake) {
2451                        if (idx != reg->idx)
2452                                intel_fixup_er(event, idx);
2453
2454                        /*
2455                         * x86_schedule_events() can call get_event_constraints()
2456                         * multiple times on events in the case of incremental
2457                         * scheduling(). reg->alloc ensures we only do the ER
2458                         * allocation once.
2459                         */
2460                        reg->alloc = 1;
2461                }
2462
2463                /* lock in msr value */
2464                era->config = reg->config;
2465                era->reg = reg->reg;
2466
2467                /* one more user */
2468                atomic_inc(&era->ref);
2469
2470                /*
2471                 * need to call x86_get_event_constraint()
2472                 * to check if associated event has constraints
2473                 */
2474                c = NULL;
2475        } else {
2476                idx = intel_alt_er(idx, reg->config);
2477                if (idx != reg->idx) {
2478                        raw_spin_unlock_irqrestore(&era->lock, flags);
2479                        goto again;
2480                }
2481        }
2482        raw_spin_unlock_irqrestore(&era->lock, flags);
2483
2484        return c;
2485}
2486
2487static void
2488__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2489                                   struct hw_perf_event_extra *reg)
2490{
2491        struct er_account *era;
2492
2493        /*
2494         * Only put constraint if extra reg was actually allocated. Also takes
2495         * care of event which do not use an extra shared reg.
2496         *
2497         * Also, if this is a fake cpuc we shouldn't touch any event state
2498         * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2499         * either since it'll be thrown out.
2500         */
2501        if (!reg->alloc || cpuc->is_fake)
2502                return;
2503
2504        era = &cpuc->shared_regs->regs[reg->idx];
2505
2506        /* one fewer user */
2507        atomic_dec(&era->ref);
2508
2509        /* allocate again next time */
2510        reg->alloc = 0;
2511}
2512
2513static struct event_constraint *
2514intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2515                              struct perf_event *event)
2516{
2517        struct event_constraint *c = NULL, *d;
2518        struct hw_perf_event_extra *xreg, *breg;
2519
2520        xreg = &event->hw.extra_reg;
2521        if (xreg->idx != EXTRA_REG_NONE) {
2522                c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2523                if (c == &emptyconstraint)
2524                        return c;
2525        }
2526        breg = &event->hw.branch_reg;
2527        if (breg->idx != EXTRA_REG_NONE) {
2528                d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2529                if (d == &emptyconstraint) {
2530                        __intel_shared_reg_put_constraints(cpuc, xreg);
2531                        c = d;
2532                }
2533        }
2534        return c;
2535}
2536
2537struct event_constraint *
2538x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2539                          struct perf_event *event)
2540{
2541        struct event_constraint *c;
2542
2543        if (x86_pmu.event_constraints) {
2544                for_each_event_constraint(c, x86_pmu.event_constraints) {
2545                        if ((event->hw.config & c->cmask) == c->code) {
2546                                event->hw.flags |= c->flags;
2547                                return c;
2548                        }
2549                }
2550        }
2551
2552        return &unconstrained;
2553}
2554
2555static struct event_constraint *
2556__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2557                            struct perf_event *event)
2558{
2559        struct event_constraint *c;
2560
2561        c = intel_bts_constraints(event);
2562        if (c)
2563                return c;
2564
2565        c = intel_shared_regs_constraints(cpuc, event);
2566        if (c)
2567                return c;
2568
2569        c = intel_pebs_constraints(event);
2570        if (c)
2571                return c;
2572
2573        return x86_get_event_constraints(cpuc, idx, event);
2574}
2575
2576static void
2577intel_start_scheduling(struct cpu_hw_events *cpuc)
2578{
2579        struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2580        struct intel_excl_states *xl;
2581        int tid = cpuc->excl_thread_id;
2582
2583        /*
2584         * nothing needed if in group validation mode
2585         */
2586        if (cpuc->is_fake || !is_ht_workaround_enabled())
2587                return;
2588
2589        /*
2590         * no exclusion needed
2591         */
2592        if (WARN_ON_ONCE(!excl_cntrs))
2593                return;
2594
2595        xl = &excl_cntrs->states[tid];
2596
2597        xl->sched_started = true;
2598        /*
2599         * lock shared state until we are done scheduling
2600         * in stop_event_scheduling()
2601         * makes scheduling appear as a transaction
2602         */
2603        raw_spin_lock(&excl_cntrs->lock);
2604}
2605
2606static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2607{
2608        struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2609        struct event_constraint *c = cpuc->event_constraint[idx];
2610        struct intel_excl_states *xl;
2611        int tid = cpuc->excl_thread_id;
2612
2613        if (cpuc->is_fake || !is_ht_workaround_enabled())
2614                return;
2615
2616        if (WARN_ON_ONCE(!excl_cntrs))
2617                return;
2618
2619        if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2620                return;
2621
2622        xl = &excl_cntrs->states[tid];
2623
2624        lockdep_assert_held(&excl_cntrs->lock);
2625
2626        if (c->flags & PERF_X86_EVENT_EXCL)
2627                xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2628        else
2629                xl->state[cntr] = INTEL_EXCL_SHARED;
2630}
2631
2632static void
2633intel_stop_scheduling(struct cpu_hw_events *cpuc)
2634{
2635        struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2636        struct intel_excl_states *xl;
2637        int tid = cpuc->excl_thread_id;
2638
2639        /*
2640         * nothing needed if in group validation mode
2641         */
2642        if (cpuc->is_fake || !is_ht_workaround_enabled())
2643                return;
2644        /*
2645         * no exclusion needed
2646         */
2647        if (WARN_ON_ONCE(!excl_cntrs))
2648                return;
2649
2650        xl = &excl_cntrs->states[tid];
2651
2652        xl->sched_started = false;
2653        /*
2654         * release shared state lock (acquired in intel_start_scheduling())
2655         */
2656        raw_spin_unlock(&excl_cntrs->lock);
2657}
2658
2659static struct event_constraint *
2660intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2661                           int idx, struct event_constraint *c)
2662{
2663        struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2664        struct intel_excl_states *xlo;
2665        int tid = cpuc->excl_thread_id;
2666        int is_excl, i;
2667
2668        /*
2669         * validating a group does not require
2670         * enforcing cross-thread  exclusion
2671         */
2672        if (cpuc->is_fake || !is_ht_workaround_enabled())
2673                return c;
2674
2675        /*
2676         * no exclusion needed
2677         */
2678        if (WARN_ON_ONCE(!excl_cntrs))
2679                return c;
2680
2681        /*
2682         * because we modify the constraint, we need
2683         * to make a copy. Static constraints come
2684         * from static const tables.
2685         *
2686         * only needed when constraint has not yet
2687         * been cloned (marked dynamic)
2688         */
2689        if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2690                struct event_constraint *cx;
2691
2692                /*
2693                 * grab pre-allocated constraint entry
2694                 */
2695                cx = &cpuc->constraint_list[idx];
2696
2697                /*
2698                 * initialize dynamic constraint
2699                 * with static constraint
2700                 */
2701                *cx = *c;
2702
2703                /*
2704                 * mark constraint as dynamic, so we
2705                 * can free it later on
2706                 */
2707                cx->flags |= PERF_X86_EVENT_DYNAMIC;
2708                c = cx;
2709        }
2710
2711        /*
2712         * From here on, the constraint is dynamic.
2713         * Either it was just allocated above, or it
2714         * was allocated during a earlier invocation
2715         * of this function
2716         */
2717
2718        /*
2719         * state of sibling HT
2720         */
2721        xlo = &excl_cntrs->states[tid ^ 1];
2722
2723        /*
2724         * event requires exclusive counter access
2725         * across HT threads
2726         */
2727        is_excl = c->flags & PERF_X86_EVENT_EXCL;
2728        if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2729                event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2730                if (!cpuc->n_excl++)
2731                        WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2732        }
2733
2734        /*
2735         * Modify static constraint with current dynamic
2736         * state of thread
2737         *
2738         * EXCLUSIVE: sibling counter measuring exclusive event
2739         * SHARED   : sibling counter measuring non-exclusive event
2740         * UNUSED   : sibling counter unused
2741         */
2742        for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2743                /*
2744                 * exclusive event in sibling counter
2745                 * our corresponding counter cannot be used
2746                 * regardless of our event
2747                 */
2748                if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2749                        __clear_bit(i, c->idxmsk);
2750                /*
2751                 * if measuring an exclusive event, sibling
2752                 * measuring non-exclusive, then counter cannot
2753                 * be used
2754                 */
2755                if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2756                        __clear_bit(i, c->idxmsk);
2757        }
2758
2759        /*
2760         * recompute actual bit weight for scheduling algorithm
2761         */
2762        c->weight = hweight64(c->idxmsk64);
2763
2764        /*
2765         * if we return an empty mask, then switch
2766         * back to static empty constraint to avoid
2767         * the cost of freeing later on
2768         */
2769        if (c->weight == 0)
2770                c = &emptyconstraint;
2771
2772        return c;
2773}
2774
2775static struct event_constraint *
2776intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2777                            struct perf_event *event)
2778{
2779        struct event_constraint *c1 = NULL;
2780        struct event_constraint *c2;
2781
2782        if (idx >= 0) /* fake does < 0 */
2783                c1 = cpuc->event_constraint[idx];
2784
2785        /*
2786         * first time only
2787         * - static constraint: no change across incremental scheduling calls
2788         * - dynamic constraint: handled by intel_get_excl_constraints()
2789         */
2790        c2 = __intel_get_event_constraints(cpuc, idx, event);
2791        if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2792                bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2793                c1->weight = c2->weight;
2794                c2 = c1;
2795        }
2796
2797        if (cpuc->excl_cntrs)
2798                return intel_get_excl_constraints(cpuc, event, idx, c2);
2799
2800        return c2;
2801}
2802
2803static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2804                struct perf_event *event)
2805{
2806        struct hw_perf_event *hwc = &event->hw;
2807        struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2808        int tid = cpuc->excl_thread_id;
2809        struct intel_excl_states *xl;
2810
2811        /*
2812         * nothing needed if in group validation mode
2813         */
2814        if (cpuc->is_fake)
2815                return;
2816
2817        if (WARN_ON_ONCE(!excl_cntrs))
2818                return;
2819
2820        if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2821                hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2822                if (!--cpuc->n_excl)
2823                        WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2824        }
2825
2826        /*
2827         * If event was actually assigned, then mark the counter state as
2828         * unused now.
2829         */
2830        if (hwc->idx >= 0) {
2831                xl = &excl_cntrs->states[tid];
2832
2833                /*
2834                 * put_constraint may be called from x86_schedule_events()
2835                 * which already has the lock held so here make locking
2836                 * conditional.
2837                 */
2838                if (!xl->sched_started)
2839                        raw_spin_lock(&excl_cntrs->lock);
2840
2841                xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2842
2843                if (!xl->sched_started)
2844                        raw_spin_unlock(&excl_cntrs->lock);
2845        }
2846}
2847
2848static void
2849intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2850                                        struct perf_event *event)
2851{
2852        struct hw_perf_event_extra *reg;
2853
2854        reg = &event->hw.extra_reg;
2855        if (reg->idx != EXTRA_REG_NONE)
2856                __intel_shared_reg_put_constraints(cpuc, reg);
2857
2858        reg = &event->hw.branch_reg;
2859        if (reg->idx != EXTRA_REG_NONE)
2860                __intel_shared_reg_put_constraints(cpuc, reg);
2861}
2862
2863static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2864                                        struct perf_event *event)
2865{
2866        intel_put_shared_regs_event_constraints(cpuc, event);
2867
2868        /*
2869         * is PMU has exclusive counter restrictions, then
2870         * all events are subject to and must call the
2871         * put_excl_constraints() routine
2872         */
2873        if (cpuc->excl_cntrs)
2874                intel_put_excl_constraints(cpuc, event);
2875}
2876
2877static void intel_pebs_aliases_core2(struct perf_event *event)
2878{
2879        if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2880                /*
2881                 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2882                 * (0x003c) so that we can use it with PEBS.
2883                 *
2884                 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2885                 * PEBS capable. However we can use INST_RETIRED.ANY_P
2886                 * (0x00c0), which is a PEBS capable event, to get the same
2887                 * count.
2888                 *
2889                 * INST_RETIRED.ANY_P counts the number of cycles that retires
2890                 * CNTMASK instructions. By setting CNTMASK to a value (16)
2891                 * larger than the maximum number of instructions that can be
2892                 * retired per cycle (4) and then inverting the condition, we
2893                 * count all cycles that retire 16 or less instructions, which
2894                 * is every cycle.
2895                 *
2896                 * Thereby we gain a PEBS capable cycle counter.
2897                 */
2898                u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2899
2900                alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2901                event->hw.config = alt_config;
2902        }
2903}
2904
2905static void intel_pebs_aliases_snb(struct perf_event *event)
2906{
2907        if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2908                /*
2909                 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2910                 * (0x003c) so that we can use it with PEBS.
2911                 *
2912                 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2913                 * PEBS capable. However we can use UOPS_RETIRED.ALL
2914                 * (0x01c2), which is a PEBS capable event, to get the same
2915                 * count.
2916                 *
2917                 * UOPS_RETIRED.ALL counts the number of cycles that retires
2918                 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2919                 * larger than the maximum number of micro-ops that can be
2920                 * retired per cycle (4) and then inverting the condition, we
2921                 * count all cycles that retire 16 or less micro-ops, which
2922                 * is every cycle.
2923                 *
2924                 * Thereby we gain a PEBS capable cycle counter.
2925                 */
2926                u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2927
2928                alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2929                event->hw.config = alt_config;
2930        }
2931}
2932
2933static void intel_pebs_aliases_precdist(struct perf_event *event)
2934{
2935        if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2936                /*
2937                 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2938                 * (0x003c) so that we can use it with PEBS.
2939                 *
2940                 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2941                 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2942                 * (0x01c0), which is a PEBS capable event, to get the same
2943                 * count.
2944                 *
2945                 * The PREC_DIST event has special support to minimize sample
2946                 * shadowing effects. One drawback is that it can be
2947                 * only programmed on counter 1, but that seems like an
2948                 * acceptable trade off.
2949                 */
2950                u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2951
2952                alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2953                event->hw.config = alt_config;
2954        }
2955}
2956
2957static void intel_pebs_aliases_ivb(struct perf_event *event)
2958{
2959        if (event->attr.precise_ip < 3)
2960                return intel_pebs_aliases_snb(event);
2961        return intel_pebs_aliases_precdist(event);
2962}
2963
2964static void intel_pebs_aliases_skl(struct perf_event *event)
2965{
2966        if (event->attr.precise_ip < 3)
2967                return intel_pebs_aliases_core2(event);
2968        return intel_pebs_aliases_precdist(event);
2969}
2970
2971static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
2972{
2973        unsigned long flags = x86_pmu.large_pebs_flags;
2974
2975        if (event->attr.use_clockid)
2976                flags &= ~PERF_SAMPLE_TIME;
2977        if (!event->attr.exclude_kernel)
2978                flags &= ~PERF_SAMPLE_REGS_USER;
2979        if (event->attr.sample_regs_user & ~PEBS_REGS)
2980                flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
2981        return flags;
2982}
2983
2984static int intel_pmu_hw_config(struct perf_event *event)
2985{
2986        int ret = x86_pmu_hw_config(event);
2987
2988        if (ret)
2989                return ret;
2990
2991        if (event->attr.precise_ip) {
2992                if (!event->attr.freq) {
2993                        event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2994                        if (!(event->attr.sample_type &
2995                              ~intel_pmu_large_pebs_flags(event)))
2996                                event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
2997                }
2998                if (x86_pmu.pebs_aliases)
2999                        x86_pmu.pebs_aliases(event);
3000
3001                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3002                        event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3003        }
3004
3005        if (needs_branch_stack(event)) {
3006                ret = intel_pmu_setup_lbr_filter(event);
3007                if (ret)
3008                        return ret;
3009
3010                /*
3011                 * BTS is set up earlier in this path, so don't account twice
3012                 */
3013                if (!intel_pmu_has_bts(event)) {
3014                        /* disallow lbr if conflicting events are present */
3015                        if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3016                                return -EBUSY;
3017
3018                        event->destroy = hw_perf_lbr_event_destroy;
3019                }
3020        }
3021
3022        if (event->attr.type != PERF_TYPE_RAW)
3023                return 0;
3024
3025        if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3026                return 0;
3027
3028        if (x86_pmu.version < 3)
3029                return -EINVAL;
3030
3031        if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3032                return -EACCES;
3033
3034        event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3035
3036        return 0;
3037}
3038
3039struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3040{
3041        if (x86_pmu.guest_get_msrs)
3042                return x86_pmu.guest_get_msrs(nr);
3043        *nr = 0;
3044        return NULL;
3045}
3046EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3047
3048static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3049{
3050        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3051        struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3052
3053        arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3054        arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3055        arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3056        /*
3057         * If PMU counter has PEBS enabled it is not enough to disable counter
3058         * on a guest entry since PEBS memory write can overshoot guest entry
3059         * and corrupt guest memory. Disabling PEBS solves the problem.
3060         */
3061        arr[1].msr = MSR_IA32_PEBS_ENABLE;
3062        arr[1].host = cpuc->pebs_enabled;
3063        arr[1].guest = 0;
3064
3065        *nr = 2;
3066        return arr;
3067}
3068
3069static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3070{
3071        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3072        struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3073        int idx;
3074
3075        for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3076                struct perf_event *event = cpuc->events[idx];
3077
3078                arr[idx].msr = x86_pmu_config_addr(idx);
3079                arr[idx].host = arr[idx].guest = 0;
3080
3081                if (!test_bit(idx, cpuc->active_mask))
3082                        continue;
3083
3084                arr[idx].host = arr[idx].guest =
3085                        event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3086
3087                if (event->attr.exclude_host)
3088                        arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3089                else if (event->attr.exclude_guest)
3090                        arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3091        }
3092
3093        *nr = x86_pmu.num_counters;
3094        return arr;
3095}
3096
3097static void core_pmu_enable_event(struct perf_event *event)
3098{
3099        if (!event->attr.exclude_host)
3100                x86_pmu_enable_event(event);
3101}
3102
3103static void core_pmu_enable_all(int added)
3104{
3105        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3106        int idx;
3107
3108        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3109                struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3110
3111                if (!test_bit(idx, cpuc->active_mask) ||
3112                                cpuc->events[idx]->attr.exclude_host)
3113                        continue;
3114
3115                __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3116        }
3117}
3118
3119static int hsw_hw_config(struct perf_event *event)
3120{
3121        int ret = intel_pmu_hw_config(event);
3122
3123        if (ret)
3124                return ret;
3125        if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3126                return 0;
3127        event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3128
3129        /*
3130         * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3131         * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3132         * this combination.
3133         */
3134        if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3135             ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3136              event->attr.precise_ip > 0))
3137                return -EOPNOTSUPP;
3138
3139        if (event_is_checkpointed(event)) {
3140                /*
3141                 * Sampling of checkpointed events can cause situations where
3142                 * the CPU constantly aborts because of a overflow, which is
3143                 * then checkpointed back and ignored. Forbid checkpointing
3144                 * for sampling.
3145                 *
3146                 * But still allow a long sampling period, so that perf stat
3147                 * from KVM works.
3148                 */
3149                if (event->attr.sample_period > 0 &&
3150                    event->attr.sample_period < 0x7fffffff)
3151                        return -EOPNOTSUPP;
3152        }
3153        return 0;
3154}
3155
3156static struct event_constraint counter0_constraint =
3157                        INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3158
3159static struct event_constraint counter2_constraint =
3160                        EVENT_CONSTRAINT(0, 0x4, 0);
3161
3162static struct event_constraint *
3163hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3164                          struct perf_event *event)
3165{
3166        struct event_constraint *c;
3167
3168        c = intel_get_event_constraints(cpuc, idx, event);
3169
3170        /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3171        if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3172                if (c->idxmsk64 & (1U << 2))
3173                        return &counter2_constraint;
3174                return &emptyconstraint;
3175        }
3176
3177        return c;
3178}
3179
3180static struct event_constraint *
3181glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3182                          struct perf_event *event)
3183{
3184        struct event_constraint *c;
3185
3186        /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3187        if (event->attr.precise_ip == 3)
3188                return &counter0_constraint;
3189
3190        c = intel_get_event_constraints(cpuc, idx, event);
3191
3192        return c;
3193}
3194
3195/*
3196 * Broadwell:
3197 *
3198 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3199 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3200 * the two to enforce a minimum period of 128 (the smallest value that has bits
3201 * 0-5 cleared and >= 100).
3202 *
3203 * Because of how the code in x86_perf_event_set_period() works, the truncation
3204 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3205 * to make up for the 'lost' events due to carrying the 'error' in period_left.
3206 *
3207 * Therefore the effective (average) period matches the requested period,
3208 * despite coarser hardware granularity.
3209 */
3210static u64 bdw_limit_period(struct perf_event *event, u64 left)
3211{
3212        if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3213                        X86_CONFIG(.event=0xc0, .umask=0x01)) {
3214                if (left < 128)
3215                        left = 128;
3216                left &= ~0x3fULL;
3217        }
3218        return left;
3219}
3220
3221PMU_FORMAT_ATTR(event,  "config:0-7"    );
3222PMU_FORMAT_ATTR(umask,  "config:8-15"   );
3223PMU_FORMAT_ATTR(edge,   "config:18"     );
3224PMU_FORMAT_ATTR(pc,     "config:19"     );
3225PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
3226PMU_FORMAT_ATTR(inv,    "config:23"     );
3227PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
3228PMU_FORMAT_ATTR(in_tx,  "config:32");
3229PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3230
3231static struct attribute *intel_arch_formats_attr[] = {
3232        &format_attr_event.attr,
3233        &format_attr_umask.attr,
3234        &format_attr_edge.attr,
3235        &format_attr_pc.attr,
3236        &format_attr_inv.attr,
3237        &format_attr_cmask.attr,
3238        NULL,
3239};
3240
3241ssize_t intel_event_sysfs_show(char *page, u64 config)
3242{
3243        u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3244
3245        return x86_event_sysfs_show(page, config, event);
3246}
3247
3248struct intel_shared_regs *allocate_shared_regs(int cpu)
3249{
3250        struct intel_shared_regs *regs;
3251        int i;
3252
3253        regs = kzalloc_node(sizeof(struct intel_shared_regs),
3254                            GFP_KERNEL, cpu_to_node(cpu));
3255        if (regs) {
3256                /*
3257                 * initialize the locks to keep lockdep happy
3258                 */
3259                for (i = 0; i < EXTRA_REG_MAX; i++)
3260                        raw_spin_lock_init(&regs->regs[i].lock);
3261
3262                regs->core_id = -1;
3263        }
3264        return regs;
3265}
3266
3267static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3268{
3269        struct intel_excl_cntrs *c;
3270
3271        c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3272                         GFP_KERNEL, cpu_to_node(cpu));
3273        if (c) {
3274                raw_spin_lock_init(&c->lock);
3275                c->core_id = -1;
3276        }
3277        return c;
3278}
3279
3280static int intel_pmu_cpu_prepare(int cpu)
3281{
3282        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3283
3284        if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3285                cpuc->shared_regs = allocate_shared_regs(cpu);
3286                if (!cpuc->shared_regs)
3287                        goto err;
3288        }
3289
3290        if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3291                size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3292
3293                cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3294                if (!cpuc->constraint_list)
3295                        goto err_shared_regs;
3296
3297                cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3298                if (!cpuc->excl_cntrs)
3299                        goto err_constraint_list;
3300
3301                cpuc->excl_thread_id = 0;
3302        }
3303
3304        return 0;
3305
3306err_constraint_list:
3307        kfree(cpuc->constraint_list);
3308        cpuc->constraint_list = NULL;
3309
3310err_shared_regs:
3311        kfree(cpuc->shared_regs);
3312        cpuc->shared_regs = NULL;
3313
3314err:
3315        return -ENOMEM;
3316}
3317
3318static void flip_smm_bit(void *data)
3319{
3320        unsigned long set = *(unsigned long *)data;
3321
3322        if (set > 0) {
3323                msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3324                            DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3325        } else {
3326                msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3327                              DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3328        }
3329}
3330
3331static void intel_pmu_cpu_starting(int cpu)
3332{
3333        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3334        int core_id = topology_core_id(cpu);
3335        int i;
3336
3337        init_debug_store_on_cpu(cpu);
3338        /*
3339         * Deal with CPUs that don't clear their LBRs on power-up.
3340         */
3341        intel_pmu_lbr_reset();
3342
3343        cpuc->lbr_sel = NULL;
3344
3345        if (x86_pmu.version > 1)
3346                flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3347
3348        if (!cpuc->shared_regs)
3349                return;
3350
3351        if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3352                for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3353                        struct intel_shared_regs *pc;
3354
3355                        pc = per_cpu(cpu_hw_events, i).shared_regs;
3356                        if (pc && pc->core_id == core_id) {
3357                                cpuc->kfree_on_online[0] = cpuc->shared_regs;
3358                                cpuc->shared_regs = pc;
3359                                break;
3360                        }
3361                }
3362                cpuc->shared_regs->core_id = core_id;
3363                cpuc->shared_regs->refcnt++;
3364        }
3365
3366        if (x86_pmu.lbr_sel_map)
3367                cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3368
3369        if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3370                for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3371                        struct cpu_hw_events *sibling;
3372                        struct intel_excl_cntrs *c;
3373
3374                        sibling = &per_cpu(cpu_hw_events, i);
3375                        c = sibling->excl_cntrs;
3376                        if (c && c->core_id == core_id) {
3377                                cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3378                                cpuc->excl_cntrs = c;
3379                                if (!sibling->excl_thread_id)
3380                                        cpuc->excl_thread_id = 1;
3381                                break;
3382                        }
3383                }
3384                cpuc->excl_cntrs->core_id = core_id;
3385                cpuc->excl_cntrs->refcnt++;
3386        }
3387}
3388
3389static void free_excl_cntrs(int cpu)
3390{
3391        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3392        struct intel_excl_cntrs *c;
3393
3394        c = cpuc->excl_cntrs;
3395        if (c) {
3396                if (c->core_id == -1 || --c->refcnt == 0)
3397                        kfree(c);
3398                cpuc->excl_cntrs = NULL;
3399                kfree(cpuc->constraint_list);
3400                cpuc->constraint_list = NULL;
3401        }
3402}
3403
3404static void intel_pmu_cpu_dying(int cpu)
3405{
3406        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3407        struct intel_shared_regs *pc;
3408
3409        pc = cpuc->shared_regs;
3410        if (pc) {
3411                if (pc->core_id == -1 || --pc->refcnt == 0)
3412                        kfree(pc);
3413                cpuc->shared_regs = NULL;
3414        }
3415
3416        free_excl_cntrs(cpu);
3417
3418        fini_debug_store_on_cpu(cpu);
3419}
3420
3421static void intel_pmu_sched_task(struct perf_event_context *ctx,
3422                                 bool sched_in)
3423{
3424        intel_pmu_pebs_sched_task(ctx, sched_in);
3425        intel_pmu_lbr_sched_task(ctx, sched_in);
3426}
3427
3428PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3429
3430PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3431
3432PMU_FORMAT_ATTR(frontend, "config1:0-23");
3433
3434static struct attribute *intel_arch3_formats_attr[] = {
3435        &format_attr_event.attr,
3436        &format_attr_umask.attr,
3437        &format_attr_edge.attr,
3438        &format_attr_pc.attr,
3439        &format_attr_any.attr,
3440        &format_attr_inv.attr,
3441        &format_attr_cmask.attr,
3442        NULL,
3443};
3444
3445static struct attribute *hsw_format_attr[] = {
3446        &format_attr_in_tx.attr,
3447        &format_attr_in_tx_cp.attr,
3448        &format_attr_offcore_rsp.attr,
3449        &format_attr_ldlat.attr,
3450        NULL
3451};
3452
3453static struct attribute *nhm_format_attr[] = {
3454        &format_attr_offcore_rsp.attr,
3455        &format_attr_ldlat.attr,
3456        NULL
3457};
3458
3459static struct attribute *slm_format_attr[] = {
3460        &format_attr_offcore_rsp.attr,
3461        NULL
3462};
3463
3464static struct attribute *skl_format_attr[] = {
3465        &format_attr_frontend.attr,
3466        NULL,
3467};
3468
3469static __initconst const struct x86_pmu core_pmu = {
3470        .name                   = "core",
3471        .handle_irq             = x86_pmu_handle_irq,
3472        .disable_all            = x86_pmu_disable_all,
3473        .enable_all             = core_pmu_enable_all,
3474        .enable                 = core_pmu_enable_event,
3475        .disable                = x86_pmu_disable_event,
3476        .hw_config              = x86_pmu_hw_config,
3477        .schedule_events        = x86_schedule_events,
3478        .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3479        .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3480        .event_map              = intel_pmu_event_map,
3481        .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3482        .apic                   = 1,
3483        .large_pebs_flags       = LARGE_PEBS_FLAGS,
3484
3485        /*
3486         * Intel PMCs cannot be accessed sanely above 32-bit width,
3487         * so we install an artificial 1<<31 period regardless of
3488         * the generic event period:
3489         */
3490        .max_period             = (1ULL<<31) - 1,
3491        .get_event_constraints  = intel_get_event_constraints,
3492        .put_event_constraints  = intel_put_event_constraints,
3493        .event_constraints      = intel_core_event_constraints,
3494        .guest_get_msrs         = core_guest_get_msrs,
3495        .format_attrs           = intel_arch_formats_attr,
3496        .events_sysfs_show      = intel_event_sysfs_show,
3497
3498        /*
3499         * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3500         * together with PMU version 1 and thus be using core_pmu with
3501         * shared_regs. We need following callbacks here to allocate
3502         * it properly.
3503         */
3504        .cpu_prepare            = intel_pmu_cpu_prepare,
3505        .cpu_starting           = intel_pmu_cpu_starting,
3506        .cpu_dying              = intel_pmu_cpu_dying,
3507};
3508
3509static struct attribute *intel_pmu_attrs[];
3510
3511static __initconst const struct x86_pmu intel_pmu = {
3512        .name                   = "Intel",
3513        .handle_irq             = intel_pmu_handle_irq,
3514        .disable_all            = intel_pmu_disable_all,
3515        .enable_all             = intel_pmu_enable_all,
3516        .enable                 = intel_pmu_enable_event,
3517        .disable                = intel_pmu_disable_event,
3518        .add                    = intel_pmu_add_event,
3519        .del                    = intel_pmu_del_event,
3520        .read                   = intel_pmu_read_event,
3521        .hw_config              = intel_pmu_hw_config,
3522        .schedule_events        = x86_schedule_events,
3523        .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3524        .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3525        .event_map              = intel_pmu_event_map,
3526        .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3527        .apic                   = 1,
3528        .large_pebs_flags       = LARGE_PEBS_FLAGS,
3529        /*
3530         * Intel PMCs cannot be accessed sanely above 32 bit width,
3531         * so we install an artificial 1<<31 period regardless of
3532         * the generic event period:
3533         */
3534        .max_period             = (1ULL << 31) - 1,
3535        .get_event_constraints  = intel_get_event_constraints,
3536        .put_event_constraints  = intel_put_event_constraints,
3537        .pebs_aliases           = intel_pebs_aliases_core2,
3538
3539        .format_attrs           = intel_arch3_formats_attr,
3540        .events_sysfs_show      = intel_event_sysfs_show,
3541
3542        .attrs                  = intel_pmu_attrs,
3543
3544        .cpu_prepare            = intel_pmu_cpu_prepare,
3545        .cpu_starting           = intel_pmu_cpu_starting,
3546        .cpu_dying              = intel_pmu_cpu_dying,
3547        .guest_get_msrs         = intel_guest_get_msrs,
3548        .sched_task             = intel_pmu_sched_task,
3549};
3550
3551static __init void intel_clovertown_quirk(void)
3552{
3553        /*
3554         * PEBS is unreliable due to:
3555         *
3556         *   AJ67  - PEBS may experience CPL leaks
3557         *   AJ68  - PEBS PMI may be delayed by one event
3558         *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3559         *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3560         *
3561         * AJ67 could be worked around by restricting the OS/USR flags.
3562         * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3563         *
3564         * AJ106 could possibly be worked around by not allowing LBR
3565         *       usage from PEBS, including the fixup.
3566         * AJ68  could possibly be worked around by always programming
3567         *       a pebs_event_reset[0] value and coping with the lost events.
3568         *
3569         * But taken together it might just make sense to not enable PEBS on
3570         * these chips.
3571         */
3572        pr_warn("PEBS disabled due to CPU errata\n");
3573        x86_pmu.pebs = 0;
3574        x86_pmu.pebs_constraints = NULL;
3575}
3576
3577static int intel_snb_pebs_broken(int cpu)
3578{
3579        u32 rev = UINT_MAX; /* default to broken for unknown models */
3580
3581        switch (cpu_data(cpu).x86_model) {
3582        case INTEL_FAM6_SANDYBRIDGE:
3583                rev = 0x28;
3584                break;
3585
3586        case INTEL_FAM6_SANDYBRIDGE_X:
3587                switch (cpu_data(cpu).x86_stepping) {
3588                case 6: rev = 0x618; break;
3589                case 7: rev = 0x70c; break;
3590                }
3591        }
3592
3593        return (cpu_data(cpu).microcode < rev);
3594}
3595
3596static void intel_snb_check_microcode(void)
3597{
3598        int pebs_broken = 0;
3599        int cpu;
3600
3601        for_each_online_cpu(cpu) {
3602                if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3603                        break;
3604        }
3605
3606        if (pebs_broken == x86_pmu.pebs_broken)
3607                return;
3608
3609        /*
3610         * Serialized by the microcode lock..
3611         */
3612        if (x86_pmu.pebs_broken) {
3613                pr_info("PEBS enabled due to microcode update\n");
3614                x86_pmu.pebs_broken = 0;
3615        } else {
3616                pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3617                x86_pmu.pebs_broken = 1;
3618        }
3619}
3620
3621static bool is_lbr_from(unsigned long msr)
3622{
3623        unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3624
3625        return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3626}
3627
3628/*
3629 * Under certain circumstances, access certain MSR may cause #GP.
3630 * The function tests if the input MSR can be safely accessed.
3631 */
3632static bool check_msr(unsigned long msr, u64 mask)
3633{
3634        u64 val_old, val_new, val_tmp;
3635
3636        /*
3637         * Read the current value, change it and read it back to see if it
3638         * matches, this is needed to detect certain hardware emulators
3639         * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3640         */
3641        if (rdmsrl_safe(msr, &val_old))
3642                return false;
3643
3644        /*
3645         * Only change the bits which can be updated by wrmsrl.
3646         */
3647        val_tmp = val_old ^ mask;
3648
3649        if (is_lbr_from(msr))
3650                val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3651
3652        if (wrmsrl_safe(msr, val_tmp) ||
3653            rdmsrl_safe(msr, &val_new))
3654                return false;
3655
3656        /*
3657         * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3658         * should equal rdmsrl()'s even with the quirk.
3659         */
3660        if (val_new != val_tmp)
3661                return false;
3662
3663        if (is_lbr_from(msr))
3664                val_old = lbr_from_signext_quirk_wr(val_old);
3665
3666        /* Here it's sure that the MSR can be safely accessed.
3667         * Restore the old value and return.
3668         */
3669        wrmsrl(msr, val_old);
3670
3671        return true;
3672}
3673
3674static __init void intel_sandybridge_quirk(void)
3675{
3676        x86_pmu.check_microcode = intel_snb_check_microcode;
3677        cpus_read_lock();
3678        intel_snb_check_microcode();
3679        cpus_read_unlock();
3680}
3681
3682static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3683        { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3684        { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3685        { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3686        { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3687        { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3688        { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3689        { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3690};
3691
3692static __init void intel_arch_events_quirk(void)
3693{
3694        int bit;
3695
3696        /* disable event that reported as not presend by cpuid */
3697        for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3698                intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3699                pr_warn("CPUID marked event: \'%s\' unavailable\n",
3700                        intel_arch_events_map[bit].name);
3701        }
3702}
3703
3704static __init void intel_nehalem_quirk(void)
3705{
3706        union cpuid10_ebx ebx;
3707
3708        ebx.full = x86_pmu.events_maskl;
3709        if (ebx.split.no_branch_misses_retired) {
3710                /*
3711                 * Erratum AAJ80 detected, we work it around by using
3712                 * the BR_MISP_EXEC.ANY event. This will over-count
3713                 * branch-misses, but it's still much better than the
3714                 * architectural event which is often completely bogus:
3715                 */
3716                intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3717                ebx.split.no_branch_misses_retired = 0;
3718                x86_pmu.events_maskl = ebx.full;
3719                pr_info("CPU erratum AAJ80 worked around\n");
3720        }
3721}
3722
3723/*
3724 * enable software workaround for errata:
3725 * SNB: BJ122
3726 * IVB: BV98
3727 * HSW: HSD29
3728 *
3729 * Only needed when HT is enabled. However detecting
3730 * if HT is enabled is difficult (model specific). So instead,
3731 * we enable the workaround in the early boot, and verify if
3732 * it is needed in a later initcall phase once we have valid
3733 * topology information to check if HT is actually enabled
3734 */
3735static __init void intel_ht_bug(void)
3736{
3737        x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3738
3739        x86_pmu.start_scheduling = intel_start_scheduling;
3740        x86_pmu.commit_scheduling = intel_commit_scheduling;
3741        x86_pmu.stop_scheduling = intel_stop_scheduling;
3742}
3743
3744EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
3745EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
3746
3747/* Haswell special events */
3748EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
3749EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
3750EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
3751EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
3752EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
3753EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
3754EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
3755EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
3756EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
3757EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
3758EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
3759EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
3760
3761static struct attribute *hsw_events_attrs[] = {
3762        EVENT_PTR(mem_ld_hsw),
3763        EVENT_PTR(mem_st_hsw),
3764        EVENT_PTR(td_slots_issued),
3765        EVENT_PTR(td_slots_retired),
3766        EVENT_PTR(td_fetch_bubbles),
3767        EVENT_PTR(td_total_slots),
3768        EVENT_PTR(td_total_slots_scale),
3769        EVENT_PTR(td_recovery_bubbles),
3770        EVENT_PTR(td_recovery_bubbles_scale),
3771        NULL
3772};
3773
3774static struct attribute *hsw_tsx_events_attrs[] = {
3775        EVENT_PTR(tx_start),
3776        EVENT_PTR(tx_commit),
3777        EVENT_PTR(tx_abort),
3778        EVENT_PTR(tx_capacity),
3779        EVENT_PTR(tx_conflict),
3780        EVENT_PTR(el_start),
3781        EVENT_PTR(el_commit),
3782        EVENT_PTR(el_abort),
3783        EVENT_PTR(el_capacity),
3784        EVENT_PTR(el_conflict),
3785        EVENT_PTR(cycles_t),
3786        EVENT_PTR(cycles_ct),
3787        NULL
3788};
3789
3790static __init struct attribute **get_hsw_events_attrs(void)
3791{
3792        return boot_cpu_has(X86_FEATURE_RTM) ?
3793                merge_attr(hsw_events_attrs, hsw_tsx_events_attrs) :
3794                hsw_events_attrs;
3795}
3796
3797static ssize_t freeze_on_smi_show(struct device *cdev,
3798                                  struct device_attribute *attr,
3799                                  char *buf)
3800{
3801        return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
3802}
3803
3804static DEFINE_MUTEX(freeze_on_smi_mutex);
3805
3806static ssize_t freeze_on_smi_store(struct device *cdev,
3807                                   struct device_attribute *attr,
3808                                   const char *buf, size_t count)
3809{
3810        unsigned long val;
3811        ssize_t ret;
3812
3813        ret = kstrtoul(buf, 0, &val);
3814        if (ret)
3815                return ret;
3816
3817        if (val > 1)
3818                return -EINVAL;
3819
3820        mutex_lock(&freeze_on_smi_mutex);
3821
3822        if (x86_pmu.attr_freeze_on_smi == val)
3823                goto done;
3824
3825        x86_pmu.attr_freeze_on_smi = val;
3826
3827        get_online_cpus();
3828        on_each_cpu(flip_smm_bit, &val, 1);
3829        put_online_cpus();
3830done:
3831        mutex_unlock(&freeze_on_smi_mutex);
3832
3833        return count;
3834}
3835
3836static DEVICE_ATTR_RW(freeze_on_smi);
3837
3838static ssize_t branches_show(struct device *cdev,
3839                             struct device_attribute *attr,
3840                             char *buf)
3841{
3842        return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
3843}
3844
3845static DEVICE_ATTR_RO(branches);
3846
3847static struct attribute *lbr_attrs[] = {
3848        &dev_attr_branches.attr,
3849        NULL
3850};
3851
3852static char pmu_name_str[30];
3853
3854static ssize_t pmu_name_show(struct device *cdev,
3855                             struct device_attribute *attr,
3856                             char *buf)
3857{
3858        return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
3859}
3860
3861static DEVICE_ATTR_RO(pmu_name);
3862
3863static struct attribute *intel_pmu_caps_attrs[] = {
3864       &dev_attr_pmu_name.attr,
3865       NULL
3866};
3867
3868static struct attribute *intel_pmu_attrs[] = {
3869        &dev_attr_freeze_on_smi.attr,
3870        NULL,
3871};
3872
3873__init int intel_pmu_init(void)
3874{
3875        struct attribute **extra_attr = NULL;
3876        struct attribute **to_free = NULL;
3877        union cpuid10_edx edx;
3878        union cpuid10_eax eax;
3879        union cpuid10_ebx ebx;
3880        struct event_constraint *c;
3881        unsigned int unused;
3882        struct extra_reg *er;
3883        int version, i;
3884        char *name;
3885
3886        if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3887                switch (boot_cpu_data.x86) {
3888                case 0x6:
3889                        return p6_pmu_init();
3890                case 0xb:
3891                        return knc_pmu_init();
3892                case 0xf:
3893                        return p4_pmu_init();
3894                }
3895                return -ENODEV;
3896        }
3897
3898        /*
3899         * Check whether the Architectural PerfMon supports
3900         * Branch Misses Retired hw_event or not.
3901         */
3902        cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3903        if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3904                return -ENODEV;
3905
3906        version = eax.split.version_id;
3907        if (version < 2)
3908                x86_pmu = core_pmu;
3909        else
3910                x86_pmu = intel_pmu;
3911
3912        x86_pmu.version                 = version;
3913        x86_pmu.num_counters            = eax.split.num_counters;
3914        x86_pmu.cntval_bits             = eax.split.bit_width;
3915        x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
3916
3917        x86_pmu.events_maskl            = ebx.full;
3918        x86_pmu.events_mask_len         = eax.split.mask_length;
3919
3920        x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3921
3922        /*
3923         * Quirk: v2 perfmon does not report fixed-purpose events, so
3924         * assume at least 3 events, when not running in a hypervisor:
3925         */
3926        if (version > 1) {
3927                int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
3928
3929                x86_pmu.num_counters_fixed =
3930                        max((int)edx.split.num_counters_fixed, assume);
3931        }
3932
3933        if (boot_cpu_has(X86_FEATURE_PDCM)) {
3934                u64 capabilities;
3935
3936                rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3937                x86_pmu.intel_cap.capabilities = capabilities;
3938        }
3939
3940        intel_ds_init();
3941
3942        x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3943
3944        /*
3945         * Install the hw-cache-events table:
3946         */
3947        switch (boot_cpu_data.x86_model) {
3948        case INTEL_FAM6_CORE_YONAH:
3949                pr_cont("Core events, ");
3950                name = "core";
3951                break;
3952
3953        case INTEL_FAM6_CORE2_MEROM:
3954                x86_add_quirk(intel_clovertown_quirk);
3955        case INTEL_FAM6_CORE2_MEROM_L:
3956        case INTEL_FAM6_CORE2_PENRYN:
3957        case INTEL_FAM6_CORE2_DUNNINGTON:
3958                memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3959                       sizeof(hw_cache_event_ids));
3960
3961                intel_pmu_lbr_init_core();
3962
3963                x86_pmu.event_constraints = intel_core2_event_constraints;
3964                x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3965                pr_cont("Core2 events, ");
3966                name = "core2";
3967                break;
3968
3969        case INTEL_FAM6_NEHALEM:
3970        case INTEL_FAM6_NEHALEM_EP:
3971        case INTEL_FAM6_NEHALEM_EX:
3972                memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3973                       sizeof(hw_cache_event_ids));
3974                memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3975                       sizeof(hw_cache_extra_regs));
3976
3977                intel_pmu_lbr_init_nhm();
3978
3979                x86_pmu.event_constraints = intel_nehalem_event_constraints;
3980                x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3981                x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3982                x86_pmu.extra_regs = intel_nehalem_extra_regs;
3983
3984                x86_pmu.cpu_events = nhm_events_attrs;
3985
3986                /* UOPS_ISSUED.STALLED_CYCLES */
3987                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3988                        X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3989                /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3990                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3991                        X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3992
3993                intel_pmu_pebs_data_source_nhm();
3994                x86_add_quirk(intel_nehalem_quirk);
3995                x86_pmu.pebs_no_tlb = 1;
3996                extra_attr = nhm_format_attr;
3997
3998                pr_cont("Nehalem events, ");
3999                name = "nehalem";
4000                break;
4001
4002        case INTEL_FAM6_ATOM_PINEVIEW:
4003        case INTEL_FAM6_ATOM_LINCROFT:
4004        case INTEL_FAM6_ATOM_PENWELL:
4005        case INTEL_FAM6_ATOM_CLOVERVIEW:
4006        case INTEL_FAM6_ATOM_CEDARVIEW:
4007                memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4008                       sizeof(hw_cache_event_ids));
4009
4010                intel_pmu_lbr_init_atom();
4011
4012                x86_pmu.event_constraints = intel_gen_event_constraints;
4013                x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4014                x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4015                pr_cont("Atom events, ");
4016                name = "bonnell";
4017                break;
4018
4019        case INTEL_FAM6_ATOM_SILVERMONT1:
4020        case INTEL_FAM6_ATOM_SILVERMONT2:
4021        case INTEL_FAM6_ATOM_AIRMONT:
4022                memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4023                        sizeof(hw_cache_event_ids));
4024                memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4025                       sizeof(hw_cache_extra_regs));
4026
4027                intel_pmu_lbr_init_slm();
4028
4029                x86_pmu.event_constraints = intel_slm_event_constraints;
4030                x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4031                x86_pmu.extra_regs = intel_slm_extra_regs;
4032                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4033                x86_pmu.cpu_events = slm_events_attrs;
4034                extra_attr = slm_format_attr;
4035                pr_cont("Silvermont events, ");
4036                name = "silvermont";
4037                break;
4038
4039        case INTEL_FAM6_ATOM_GOLDMONT:
4040        case INTEL_FAM6_ATOM_DENVERTON:
4041                memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4042                       sizeof(hw_cache_event_ids));
4043                memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4044                       sizeof(hw_cache_extra_regs));
4045
4046                intel_pmu_lbr_init_skl();
4047
4048                x86_pmu.event_constraints = intel_slm_event_constraints;
4049                x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4050                x86_pmu.extra_regs = intel_glm_extra_regs;
4051                /*
4052                 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4053                 * for precise cycles.
4054                 * :pp is identical to :ppp
4055                 */
4056                x86_pmu.pebs_aliases = NULL;
4057                x86_pmu.pebs_prec_dist = true;
4058                x86_pmu.lbr_pt_coexist = true;
4059                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4060                x86_pmu.cpu_events = glm_events_attrs;
4061                extra_attr = slm_format_attr;
4062                pr_cont("Goldmont events, ");
4063                name = "goldmont";
4064                break;
4065
4066        case INTEL_FAM6_ATOM_GEMINI_LAKE:
4067                memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4068                       sizeof(hw_cache_event_ids));
4069                memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4070                       sizeof(hw_cache_extra_regs));
4071
4072                intel_pmu_lbr_init_skl();
4073
4074                x86_pmu.event_constraints = intel_slm_event_constraints;
4075                x86_pmu.pebs_constraints = intel_glp_pebs_event_constraints;
4076                x86_pmu.extra_regs = intel_glm_extra_regs;
4077                /*
4078                 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4079                 * for precise cycles.
4080                 */
4081                x86_pmu.pebs_aliases = NULL;
4082                x86_pmu.pebs_prec_dist = true;
4083                x86_pmu.lbr_pt_coexist = true;
4084                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4085                x86_pmu.get_event_constraints = glp_get_event_constraints;
4086                x86_pmu.cpu_events = glm_events_attrs;
4087                /* Goldmont Plus has 4-wide pipeline */
4088                event_attr_td_total_slots_scale_glm.event_str = "4";
4089                extra_attr = slm_format_attr;
4090                pr_cont("Goldmont plus events, ");
4091                name = "goldmont_plus";
4092                break;
4093
4094        case INTEL_FAM6_WESTMERE:
4095        case INTEL_FAM6_WESTMERE_EP:
4096        case INTEL_FAM6_WESTMERE_EX:
4097                memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4098                       sizeof(hw_cache_event_ids));
4099                memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4100                       sizeof(hw_cache_extra_regs));
4101
4102                intel_pmu_lbr_init_nhm();
4103
4104                x86_pmu.event_constraints = intel_westmere_event_constraints;
4105                x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4106                x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4107                x86_pmu.extra_regs = intel_westmere_extra_regs;
4108                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4109
4110                x86_pmu.cpu_events = nhm_events_attrs;
4111
4112                /* UOPS_ISSUED.STALLED_CYCLES */
4113                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4114                        X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4115                /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4116                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4117                        X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4118
4119                intel_pmu_pebs_data_source_nhm();
4120                extra_attr = nhm_format_attr;
4121                pr_cont("Westmere events, ");
4122                name = "westmere";
4123                break;
4124
4125        case INTEL_FAM6_SANDYBRIDGE:
4126        case INTEL_FAM6_SANDYBRIDGE_X:
4127                x86_add_quirk(intel_sandybridge_quirk);
4128                x86_add_quirk(intel_ht_bug);
4129                memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4130                       sizeof(hw_cache_event_ids));
4131                memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4132                       sizeof(hw_cache_extra_regs));
4133
4134                intel_pmu_lbr_init_snb();
4135
4136                x86_pmu.event_constraints = intel_snb_event_constraints;
4137                x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4138                x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4139                if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4140                        x86_pmu.extra_regs = intel_snbep_extra_regs;
4141                else
4142                        x86_pmu.extra_regs = intel_snb_extra_regs;
4143
4144
4145                /* all extra regs are per-cpu when HT is on */
4146                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4147                x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4148
4149                x86_pmu.cpu_events = snb_events_attrs;
4150
4151                /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4152                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4153                        X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4154                /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4155                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4156                        X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4157
4158                extra_attr = nhm_format_attr;
4159
4160                pr_cont("SandyBridge events, ");
4161                name = "sandybridge";
4162                break;
4163
4164        case INTEL_FAM6_IVYBRIDGE:
4165        case INTEL_FAM6_IVYBRIDGE_X:
4166                x86_add_quirk(intel_ht_bug);
4167                memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4168                       sizeof(hw_cache_event_ids));
4169                /* dTLB-load-misses on IVB is different than SNB */
4170                hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4171
4172                memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4173                       sizeof(hw_cache_extra_regs));
4174
4175                intel_pmu_lbr_init_snb();
4176
4177                x86_pmu.event_constraints = intel_ivb_event_constraints;
4178                x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4179                x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4180                x86_pmu.pebs_prec_dist = true;
4181                if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4182                        x86_pmu.extra_regs = intel_snbep_extra_regs;
4183                else
4184                        x86_pmu.extra_regs = intel_snb_extra_regs;
4185                /* all extra regs are per-cpu when HT is on */
4186                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4187                x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4188
4189                x86_pmu.cpu_events = snb_events_attrs;
4190
4191                /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4192                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4193                        X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4194
4195                extra_attr = nhm_format_attr;
4196
4197                pr_cont("IvyBridge events, ");
4198                name = "ivybridge";
4199                break;
4200
4201
4202        case INTEL_FAM6_HASWELL_CORE:
4203        case INTEL_FAM6_HASWELL_X:
4204        case INTEL_FAM6_HASWELL_ULT:
4205        case INTEL_FAM6_HASWELL_GT3E:
4206                x86_add_quirk(intel_ht_bug);
4207                x86_pmu.late_ack = true;
4208                memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4209                memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4210
4211                intel_pmu_lbr_init_hsw();
4212
4213                x86_pmu.event_constraints = intel_hsw_event_constraints;
4214                x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4215                x86_pmu.extra_regs = intel_snbep_extra_regs;
4216                x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4217                x86_pmu.pebs_prec_dist = true;
4218                /* all extra regs are per-cpu when HT is on */
4219                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4220                x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4221
4222                x86_pmu.hw_config = hsw_hw_config;
4223                x86_pmu.get_event_constraints = hsw_get_event_constraints;
4224                x86_pmu.cpu_events = get_hsw_events_attrs();
4225                x86_pmu.lbr_double_abort = true;
4226                extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4227                        hsw_format_attr : nhm_format_attr;
4228                pr_cont("Haswell events, ");
4229                name = "haswell";
4230                break;
4231
4232        case INTEL_FAM6_BROADWELL_CORE:
4233        case INTEL_FAM6_BROADWELL_XEON_D:
4234        case INTEL_FAM6_BROADWELL_GT3E:
4235        case INTEL_FAM6_BROADWELL_X:
4236                x86_pmu.late_ack = true;
4237                memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4238                memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4239
4240                /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4241                hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4242                                                                         BDW_L3_MISS|HSW_SNOOP_DRAM;
4243                hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4244                                                                          HSW_SNOOP_DRAM;
4245                hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4246                                                                             BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4247                hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4248                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4249
4250                intel_pmu_lbr_init_hsw();
4251
4252                x86_pmu.event_constraints = intel_bdw_event_constraints;
4253                x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4254                x86_pmu.extra_regs = intel_snbep_extra_regs;
4255                x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4256                x86_pmu.pebs_prec_dist = true;
4257                /* all extra regs are per-cpu when HT is on */
4258                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4259                x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4260
4261                x86_pmu.hw_config = hsw_hw_config;
4262                x86_pmu.get_event_constraints = hsw_get_event_constraints;
4263                x86_pmu.cpu_events = get_hsw_events_attrs();
4264                x86_pmu.limit_period = bdw_limit_period;
4265                extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4266                        hsw_format_attr : nhm_format_attr;
4267                pr_cont("Broadwell events, ");
4268                name = "broadwell";
4269                break;
4270
4271        case INTEL_FAM6_XEON_PHI_KNL:
4272        case INTEL_FAM6_XEON_PHI_KNM:
4273                memcpy(hw_cache_event_ids,
4274                       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4275                memcpy(hw_cache_extra_regs,
4276                       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4277                intel_pmu_lbr_init_knl();
4278
4279                x86_pmu.event_constraints = intel_slm_event_constraints;
4280                x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4281                x86_pmu.extra_regs = intel_knl_extra_regs;
4282
4283                /* all extra regs are per-cpu when HT is on */
4284                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4285                x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4286                extra_attr = slm_format_attr;
4287                pr_cont("Knights Landing/Mill events, ");
4288                name = "knights-landing";
4289                break;
4290
4291        case INTEL_FAM6_SKYLAKE_MOBILE:
4292        case INTEL_FAM6_SKYLAKE_DESKTOP:
4293        case INTEL_FAM6_SKYLAKE_X:
4294        case INTEL_FAM6_KABYLAKE_MOBILE:
4295        case INTEL_FAM6_KABYLAKE_DESKTOP:
4296                x86_pmu.late_ack = true;
4297                memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4298                memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4299                intel_pmu_lbr_init_skl();
4300
4301                /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4302                event_attr_td_recovery_bubbles.event_str_noht =
4303                        "event=0xd,umask=0x1,cmask=1";
4304                event_attr_td_recovery_bubbles.event_str_ht =
4305                        "event=0xd,umask=0x1,cmask=1,any=1";
4306
4307                x86_pmu.event_constraints = intel_skl_event_constraints;
4308                x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
4309                x86_pmu.extra_regs = intel_skl_extra_regs;
4310                x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
4311                x86_pmu.pebs_prec_dist = true;
4312                /* all extra regs are per-cpu when HT is on */
4313                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4314                x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4315
4316                x86_pmu.hw_config = hsw_hw_config;
4317                x86_pmu.get_event_constraints = hsw_get_event_constraints;
4318                extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4319                        hsw_format_attr : nhm_format_attr;
4320                extra_attr = merge_attr(extra_attr, skl_format_attr);
4321                to_free = extra_attr;
4322                x86_pmu.cpu_events = get_hsw_events_attrs();
4323                intel_pmu_pebs_data_source_skl(
4324                        boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X);
4325                pr_cont("Skylake events, ");
4326                name = "skylake";
4327                break;
4328
4329        default:
4330                switch (x86_pmu.version) {
4331                case 1:
4332                        x86_pmu.event_constraints = intel_v1_event_constraints;
4333                        pr_cont("generic architected perfmon v1, ");
4334                        name = "generic_arch_v1";
4335                        break;
4336                default:
4337                        /*
4338                         * default constraints for v2 and up
4339                         */
4340                        x86_pmu.event_constraints = intel_gen_event_constraints;
4341                        pr_cont("generic architected perfmon, ");
4342                        name = "generic_arch_v2+";
4343                        break;
4344                }
4345        }
4346
4347        snprintf(pmu_name_str, sizeof pmu_name_str, "%s", name);
4348
4349        if (version >= 2 && extra_attr) {
4350                x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
4351                                                  extra_attr);
4352                WARN_ON(!x86_pmu.format_attrs);
4353        }
4354
4355        if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
4356                WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4357                     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
4358                x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
4359        }
4360        x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
4361
4362        if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
4363                WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4364                     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
4365                x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
4366        }
4367
4368        x86_pmu.intel_ctrl |=
4369                ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
4370
4371        if (x86_pmu.event_constraints) {
4372                /*
4373                 * event on fixed counter2 (REF_CYCLES) only works on this
4374                 * counter, so do not extend mask to generic counters
4375                 */
4376                for_each_event_constraint(c, x86_pmu.event_constraints) {
4377                        if (c->cmask == FIXED_EVENT_FLAGS
4378                            && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
4379                                c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
4380                        }
4381                        c->idxmsk64 &=
4382                                ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4383                        c->weight = hweight64(c->idxmsk64);
4384                }
4385        }
4386
4387        /*
4388         * Access LBR MSR may cause #GP under certain circumstances.
4389         * E.g. KVM doesn't support LBR MSR
4390         * Check all LBT MSR here.
4391         * Disable LBR access if any LBR MSRs can not be accessed.
4392         */
4393        if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4394                x86_pmu.lbr_nr = 0;
4395        for (i = 0; i < x86_pmu.lbr_nr; i++) {
4396                if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4397                      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4398                        x86_pmu.lbr_nr = 0;
4399        }
4400
4401        x86_pmu.caps_attrs = intel_pmu_caps_attrs;
4402
4403        if (x86_pmu.lbr_nr) {
4404                x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs);
4405                pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4406        }
4407
4408        /*
4409         * Access extra MSR may cause #GP under certain circumstances.
4410         * E.g. KVM doesn't support offcore event
4411         * Check all extra_regs here.
4412         */
4413        if (x86_pmu.extra_regs) {
4414                for (er = x86_pmu.extra_regs; er->msr; er++) {
4415                        er->extra_msr_access = check_msr(er->msr, 0x11UL);
4416                        /* Disable LBR select mapping */
4417                        if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4418                                x86_pmu.lbr_sel_map = NULL;
4419                }
4420        }
4421
4422        /* Support full width counters using alternative MSR range */
4423        if (x86_pmu.intel_cap.full_width_write) {
4424                x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4425                x86_pmu.perfctr = MSR_IA32_PMC0;
4426                pr_cont("full-width counters, ");
4427        }
4428
4429        kfree(to_free);
4430        return 0;
4431}
4432
4433/*
4434 * HT bug: phase 2 init
4435 * Called once we have valid topology information to check
4436 * whether or not HT is enabled
4437 * If HT is off, then we disable the workaround
4438 */
4439static __init int fixup_ht_bug(void)
4440{
4441        int c;
4442        /*
4443         * problem not present on this CPU model, nothing to do
4444         */
4445        if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4446                return 0;
4447
4448        if (topology_max_smt_threads() > 1) {
4449                pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4450                return 0;
4451        }
4452
4453        cpus_read_lock();
4454
4455        hardlockup_detector_perf_stop();
4456
4457        x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4458
4459        x86_pmu.start_scheduling = NULL;
4460        x86_pmu.commit_scheduling = NULL;
4461        x86_pmu.stop_scheduling = NULL;
4462
4463        hardlockup_detector_perf_restart();
4464
4465        for_each_online_cpu(c)
4466                free_excl_cntrs(c);
4467
4468        cpus_read_unlock();
4469        pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4470        return 0;
4471}
4472subsys_initcall(fixup_ht_bug)
4473