1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21#include "irq.h"
22#include "mmu.h"
23#include "x86.h"
24#include "kvm_cache_regs.h"
25#include "cpuid.h"
26
27#include <linux/kvm_host.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/moduleparam.h>
33#include <linux/export.h>
34#include <linux/swap.h>
35#include <linux/hugetlb.h>
36#include <linux/compiler.h>
37#include <linux/srcu.h>
38#include <linux/slab.h>
39#include <linux/sched/signal.h>
40#include <linux/uaccess.h>
41#include <linux/hash.h>
42#include <linux/kern_levels.h>
43
44#include <asm/page.h>
45#include <asm/pat.h>
46#include <asm/cmpxchg.h>
47#include <asm/io.h>
48#include <asm/vmx.h>
49#include <asm/kvm_page_track.h>
50#include "trace.h"
51
52
53
54
55
56
57
58
59bool tdp_enabled = false;
60
61enum {
62 AUDIT_PRE_PAGE_FAULT,
63 AUDIT_POST_PAGE_FAULT,
64 AUDIT_PRE_PTE_WRITE,
65 AUDIT_POST_PTE_WRITE,
66 AUDIT_PRE_SYNC,
67 AUDIT_POST_SYNC
68};
69
70#undef MMU_DEBUG
71
72#ifdef MMU_DEBUG
73static bool dbg = 0;
74module_param(dbg, bool, 0644);
75
76#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78#define MMU_WARN_ON(x) WARN_ON(x)
79#else
80#define pgprintk(x...) do { } while (0)
81#define rmap_printk(x...) do { } while (0)
82#define MMU_WARN_ON(x) do { } while (0)
83#endif
84
85#define PTE_PREFETCH_NUM 8
86
87#define PT_FIRST_AVAIL_BITS_SHIFT 10
88#define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
90#define PT64_LEVEL_BITS 9
91
92#define PT64_LEVEL_SHIFT(level) \
93 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
94
95#define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99#define PT32_LEVEL_BITS 10
100
101#define PT32_LEVEL_SHIFT(level) \
102 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
103
104#define PT32_LVL_OFFSET_MASK(level) \
105 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106 * PT32_LEVEL_BITS))) - 1))
107
108#define PT32_INDEX(address, level)\
109 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
112#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
113#define PT64_DIR_BASE_ADDR_MASK \
114 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115#define PT64_LVL_ADDR_MASK(level) \
116 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117 * PT64_LEVEL_BITS))) - 1))
118#define PT64_LVL_OFFSET_MASK(level) \
119 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT64_LEVEL_BITS))) - 1))
121
122#define PT32_BASE_ADDR_MASK PAGE_MASK
123#define PT32_DIR_BASE_ADDR_MASK \
124 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
125#define PT32_LVL_ADDR_MASK(level) \
126 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT32_LEVEL_BITS))) - 1))
128
129#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
130 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
131
132#define ACC_EXEC_MASK 1
133#define ACC_WRITE_MASK PT_WRITABLE_MASK
134#define ACC_USER_MASK PT_USER_MASK
135#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
136
137
138#define PT64_EPT_READABLE_MASK 0x1ull
139#define PT64_EPT_EXECUTABLE_MASK 0x4ull
140
141#include <trace/events/kvm.h>
142
143#define CREATE_TRACE_POINTS
144#include "mmutrace.h"
145
146#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
147#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
148
149#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
150
151
152#define PTE_LIST_EXT 3
153
154
155
156
157
158
159
160
161
162enum {
163 RET_PF_RETRY = 0,
164 RET_PF_EMULATE = 1,
165 RET_PF_INVALID = 2,
166};
167
168struct pte_list_desc {
169 u64 *sptes[PTE_LIST_EXT];
170 struct pte_list_desc *more;
171};
172
173struct kvm_shadow_walk_iterator {
174 u64 addr;
175 hpa_t shadow_addr;
176 u64 *sptep;
177 int level;
178 unsigned index;
179};
180
181#define for_each_shadow_entry(_vcpu, _addr, _walker) \
182 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
183 shadow_walk_okay(&(_walker)); \
184 shadow_walk_next(&(_walker)))
185
186#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
187 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
188 shadow_walk_okay(&(_walker)) && \
189 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
190 __shadow_walk_next(&(_walker), spte))
191
192static struct kmem_cache *pte_list_desc_cache;
193static struct kmem_cache *mmu_page_header_cache;
194static struct percpu_counter kvm_total_used_mmu_pages;
195
196static u64 __read_mostly shadow_nx_mask;
197static u64 __read_mostly shadow_x_mask;
198static u64 __read_mostly shadow_user_mask;
199static u64 __read_mostly shadow_accessed_mask;
200static u64 __read_mostly shadow_dirty_mask;
201static u64 __read_mostly shadow_mmio_mask;
202static u64 __read_mostly shadow_mmio_value;
203static u64 __read_mostly shadow_present_mask;
204static u64 __read_mostly shadow_me_mask;
205
206
207
208
209
210
211static u64 __read_mostly shadow_acc_track_mask;
212static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
213
214
215
216
217
218
219
220static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
221 PT64_EPT_EXECUTABLE_MASK;
222static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
223
224static void mmu_spte_set(u64 *sptep, u64 spte);
225
226void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
227{
228 BUG_ON((mmio_mask & mmio_value) != mmio_value);
229 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
230 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
231}
232EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
233
234static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
235{
236 return sp->role.ad_disabled;
237}
238
239static inline bool spte_ad_enabled(u64 spte)
240{
241 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
242 return !(spte & shadow_acc_track_value);
243}
244
245static inline u64 spte_shadow_accessed_mask(u64 spte)
246{
247 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
248 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
249}
250
251static inline u64 spte_shadow_dirty_mask(u64 spte)
252{
253 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
254 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
255}
256
257static inline bool is_access_track_spte(u64 spte)
258{
259 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
260}
261
262
263
264
265
266
267
268
269
270
271#define MMIO_SPTE_GEN_LOW_SHIFT 2
272#define MMIO_SPTE_GEN_HIGH_SHIFT 52
273
274#define MMIO_GEN_SHIFT 20
275#define MMIO_GEN_LOW_SHIFT 10
276#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
277#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
278
279static u64 generation_mmio_spte_mask(unsigned int gen)
280{
281 u64 mask;
282
283 WARN_ON(gen & ~MMIO_GEN_MASK);
284
285 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
286 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
287 return mask;
288}
289
290static unsigned int get_mmio_spte_generation(u64 spte)
291{
292 unsigned int gen;
293
294 spte &= ~shadow_mmio_mask;
295
296 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
297 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
298 return gen;
299}
300
301static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
302{
303 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
304}
305
306static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
307 unsigned access)
308{
309 unsigned int gen = kvm_current_mmio_generation(vcpu);
310 u64 mask = generation_mmio_spte_mask(gen);
311
312 access &= ACC_WRITE_MASK | ACC_USER_MASK;
313 mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
314
315 trace_mark_mmio_spte(sptep, gfn, access, gen);
316 mmu_spte_set(sptep, mask);
317}
318
319static bool is_mmio_spte(u64 spte)
320{
321 return (spte & shadow_mmio_mask) == shadow_mmio_value;
322}
323
324static gfn_t get_mmio_spte_gfn(u64 spte)
325{
326 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
327 return (spte & ~mask) >> PAGE_SHIFT;
328}
329
330static unsigned get_mmio_spte_access(u64 spte)
331{
332 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
333 return (spte & ~mask) & ~PAGE_MASK;
334}
335
336static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
337 kvm_pfn_t pfn, unsigned access)
338{
339 if (unlikely(is_noslot_pfn(pfn))) {
340 mark_mmio_spte(vcpu, sptep, gfn, access);
341 return true;
342 }
343
344 return false;
345}
346
347static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
348{
349 unsigned int kvm_gen, spte_gen;
350
351 kvm_gen = kvm_current_mmio_generation(vcpu);
352 spte_gen = get_mmio_spte_generation(spte);
353
354 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
355 return likely(kvm_gen == spte_gen);
356}
357
358
359
360
361
362
363
364
365void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
366 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
367 u64 acc_track_mask, u64 me_mask)
368{
369 BUG_ON(!dirty_mask != !accessed_mask);
370 BUG_ON(!accessed_mask && !acc_track_mask);
371 BUG_ON(acc_track_mask & shadow_acc_track_value);
372
373 shadow_user_mask = user_mask;
374 shadow_accessed_mask = accessed_mask;
375 shadow_dirty_mask = dirty_mask;
376 shadow_nx_mask = nx_mask;
377 shadow_x_mask = x_mask;
378 shadow_present_mask = p_mask;
379 shadow_acc_track_mask = acc_track_mask;
380 shadow_me_mask = me_mask;
381}
382EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
383
384static void kvm_mmu_clear_all_pte_masks(void)
385{
386 shadow_user_mask = 0;
387 shadow_accessed_mask = 0;
388 shadow_dirty_mask = 0;
389 shadow_nx_mask = 0;
390 shadow_x_mask = 0;
391 shadow_mmio_mask = 0;
392 shadow_present_mask = 0;
393 shadow_acc_track_mask = 0;
394}
395
396static int is_cpuid_PSE36(void)
397{
398 return 1;
399}
400
401static int is_nx(struct kvm_vcpu *vcpu)
402{
403 return vcpu->arch.efer & EFER_NX;
404}
405
406static int is_shadow_present_pte(u64 pte)
407{
408 return (pte != 0) && !is_mmio_spte(pte);
409}
410
411static int is_large_pte(u64 pte)
412{
413 return pte & PT_PAGE_SIZE_MASK;
414}
415
416static int is_last_spte(u64 pte, int level)
417{
418 if (level == PT_PAGE_TABLE_LEVEL)
419 return 1;
420 if (is_large_pte(pte))
421 return 1;
422 return 0;
423}
424
425static bool is_executable_pte(u64 spte)
426{
427 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
428}
429
430static kvm_pfn_t spte_to_pfn(u64 pte)
431{
432 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
433}
434
435static gfn_t pse36_gfn_delta(u32 gpte)
436{
437 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
438
439 return (gpte & PT32_DIR_PSE36_MASK) << shift;
440}
441
442#ifdef CONFIG_X86_64
443static void __set_spte(u64 *sptep, u64 spte)
444{
445 WRITE_ONCE(*sptep, spte);
446}
447
448static void __update_clear_spte_fast(u64 *sptep, u64 spte)
449{
450 WRITE_ONCE(*sptep, spte);
451}
452
453static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
454{
455 return xchg(sptep, spte);
456}
457
458static u64 __get_spte_lockless(u64 *sptep)
459{
460 return READ_ONCE(*sptep);
461}
462#else
463union split_spte {
464 struct {
465 u32 spte_low;
466 u32 spte_high;
467 };
468 u64 spte;
469};
470
471static void count_spte_clear(u64 *sptep, u64 spte)
472{
473 struct kvm_mmu_page *sp = page_header(__pa(sptep));
474
475 if (is_shadow_present_pte(spte))
476 return;
477
478
479 smp_wmb();
480 sp->clear_spte_count++;
481}
482
483static void __set_spte(u64 *sptep, u64 spte)
484{
485 union split_spte *ssptep, sspte;
486
487 ssptep = (union split_spte *)sptep;
488 sspte = (union split_spte)spte;
489
490 ssptep->spte_high = sspte.spte_high;
491
492
493
494
495
496
497 smp_wmb();
498
499 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
500}
501
502static void __update_clear_spte_fast(u64 *sptep, u64 spte)
503{
504 union split_spte *ssptep, sspte;
505
506 ssptep = (union split_spte *)sptep;
507 sspte = (union split_spte)spte;
508
509 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
510
511
512
513
514
515 smp_wmb();
516
517 ssptep->spte_high = sspte.spte_high;
518 count_spte_clear(sptep, spte);
519}
520
521static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
522{
523 union split_spte *ssptep, sspte, orig;
524
525 ssptep = (union split_spte *)sptep;
526 sspte = (union split_spte)spte;
527
528
529 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
530 orig.spte_high = ssptep->spte_high;
531 ssptep->spte_high = sspte.spte_high;
532 count_spte_clear(sptep, spte);
533
534 return orig.spte;
535}
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555static u64 __get_spte_lockless(u64 *sptep)
556{
557 struct kvm_mmu_page *sp = page_header(__pa(sptep));
558 union split_spte spte, *orig = (union split_spte *)sptep;
559 int count;
560
561retry:
562 count = sp->clear_spte_count;
563 smp_rmb();
564
565 spte.spte_low = orig->spte_low;
566 smp_rmb();
567
568 spte.spte_high = orig->spte_high;
569 smp_rmb();
570
571 if (unlikely(spte.spte_low != orig->spte_low ||
572 count != sp->clear_spte_count))
573 goto retry;
574
575 return spte.spte;
576}
577#endif
578
579static bool spte_can_locklessly_be_made_writable(u64 spte)
580{
581 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
582 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
583}
584
585static bool spte_has_volatile_bits(u64 spte)
586{
587 if (!is_shadow_present_pte(spte))
588 return false;
589
590
591
592
593
594
595
596 if (spte_can_locklessly_be_made_writable(spte) ||
597 is_access_track_spte(spte))
598 return true;
599
600 if (spte_ad_enabled(spte)) {
601 if ((spte & shadow_accessed_mask) == 0 ||
602 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
603 return true;
604 }
605
606 return false;
607}
608
609static bool is_accessed_spte(u64 spte)
610{
611 u64 accessed_mask = spte_shadow_accessed_mask(spte);
612
613 return accessed_mask ? spte & accessed_mask
614 : !is_access_track_spte(spte);
615}
616
617static bool is_dirty_spte(u64 spte)
618{
619 u64 dirty_mask = spte_shadow_dirty_mask(spte);
620
621 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
622}
623
624
625
626
627
628
629
630static void mmu_spte_set(u64 *sptep, u64 new_spte)
631{
632 WARN_ON(is_shadow_present_pte(*sptep));
633 __set_spte(sptep, new_spte);
634}
635
636
637
638
639
640static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
641{
642 u64 old_spte = *sptep;
643
644 WARN_ON(!is_shadow_present_pte(new_spte));
645
646 if (!is_shadow_present_pte(old_spte)) {
647 mmu_spte_set(sptep, new_spte);
648 return old_spte;
649 }
650
651 if (!spte_has_volatile_bits(old_spte))
652 __update_clear_spte_fast(sptep, new_spte);
653 else
654 old_spte = __update_clear_spte_slow(sptep, new_spte);
655
656 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
657
658 return old_spte;
659}
660
661
662
663
664
665
666
667
668
669
670
671
672static bool mmu_spte_update(u64 *sptep, u64 new_spte)
673{
674 bool flush = false;
675 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
676
677 if (!is_shadow_present_pte(old_spte))
678 return false;
679
680
681
682
683
684
685 if (spte_can_locklessly_be_made_writable(old_spte) &&
686 !is_writable_pte(new_spte))
687 flush = true;
688
689
690
691
692
693
694 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
695 flush = true;
696 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
697 }
698
699 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
700 flush = true;
701 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
702 }
703
704 return flush;
705}
706
707
708
709
710
711
712
713static int mmu_spte_clear_track_bits(u64 *sptep)
714{
715 kvm_pfn_t pfn;
716 u64 old_spte = *sptep;
717
718 if (!spte_has_volatile_bits(old_spte))
719 __update_clear_spte_fast(sptep, 0ull);
720 else
721 old_spte = __update_clear_spte_slow(sptep, 0ull);
722
723 if (!is_shadow_present_pte(old_spte))
724 return 0;
725
726 pfn = spte_to_pfn(old_spte);
727
728
729
730
731
732
733 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
734
735 if (is_accessed_spte(old_spte))
736 kvm_set_pfn_accessed(pfn);
737
738 if (is_dirty_spte(old_spte))
739 kvm_set_pfn_dirty(pfn);
740
741 return 1;
742}
743
744
745
746
747
748
749static void mmu_spte_clear_no_track(u64 *sptep)
750{
751 __update_clear_spte_fast(sptep, 0ull);
752}
753
754static u64 mmu_spte_get_lockless(u64 *sptep)
755{
756 return __get_spte_lockless(sptep);
757}
758
759static u64 mark_spte_for_access_track(u64 spte)
760{
761 if (spte_ad_enabled(spte))
762 return spte & ~shadow_accessed_mask;
763
764 if (is_access_track_spte(spte))
765 return spte;
766
767
768
769
770
771
772 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
773 !spte_can_locklessly_be_made_writable(spte),
774 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
775
776 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
777 shadow_acc_track_saved_bits_shift),
778 "kvm: Access Tracking saved bit locations are not zero\n");
779
780 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
781 shadow_acc_track_saved_bits_shift;
782 spte &= ~shadow_acc_track_mask;
783
784 return spte;
785}
786
787
788static u64 restore_acc_track_spte(u64 spte)
789{
790 u64 new_spte = spte;
791 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
792 & shadow_acc_track_saved_bits_mask;
793
794 WARN_ON_ONCE(spte_ad_enabled(spte));
795 WARN_ON_ONCE(!is_access_track_spte(spte));
796
797 new_spte &= ~shadow_acc_track_mask;
798 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
799 shadow_acc_track_saved_bits_shift);
800 new_spte |= saved_bits;
801
802 return new_spte;
803}
804
805
806static bool mmu_spte_age(u64 *sptep)
807{
808 u64 spte = mmu_spte_get_lockless(sptep);
809
810 if (!is_accessed_spte(spte))
811 return false;
812
813 if (spte_ad_enabled(spte)) {
814 clear_bit((ffs(shadow_accessed_mask) - 1),
815 (unsigned long *)sptep);
816 } else {
817
818
819
820
821 if (is_writable_pte(spte))
822 kvm_set_pfn_dirty(spte_to_pfn(spte));
823
824 spte = mark_spte_for_access_track(spte);
825 mmu_spte_update_no_track(sptep, spte);
826 }
827
828 return true;
829}
830
831static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
832{
833
834
835
836
837 local_irq_disable();
838
839
840
841
842
843 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
844}
845
846static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
847{
848
849
850
851
852
853 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
854 local_irq_enable();
855}
856
857static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
858 struct kmem_cache *base_cache, int min)
859{
860 void *obj;
861
862 if (cache->nobjs >= min)
863 return 0;
864 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
865 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
866 if (!obj)
867 return -ENOMEM;
868 cache->objects[cache->nobjs++] = obj;
869 }
870 return 0;
871}
872
873static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
874{
875 return cache->nobjs;
876}
877
878static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
879 struct kmem_cache *cache)
880{
881 while (mc->nobjs)
882 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
883}
884
885static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
886 int min)
887{
888 void *page;
889
890 if (cache->nobjs >= min)
891 return 0;
892 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
893 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
894 if (!page)
895 return -ENOMEM;
896 cache->objects[cache->nobjs++] = page;
897 }
898 return 0;
899}
900
901static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
902{
903 while (mc->nobjs)
904 free_page((unsigned long)mc->objects[--mc->nobjs]);
905}
906
907static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
908{
909 int r;
910
911 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
912 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
913 if (r)
914 goto out;
915 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
916 if (r)
917 goto out;
918 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
919 mmu_page_header_cache, 4);
920out:
921 return r;
922}
923
924static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
925{
926 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
927 pte_list_desc_cache);
928 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
929 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
930 mmu_page_header_cache);
931}
932
933static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
934{
935 void *p;
936
937 BUG_ON(!mc->nobjs);
938 p = mc->objects[--mc->nobjs];
939 return p;
940}
941
942static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
943{
944 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
945}
946
947static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
948{
949 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
950}
951
952static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
953{
954 if (!sp->role.direct)
955 return sp->gfns[index];
956
957 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
958}
959
960static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
961{
962 if (sp->role.direct)
963 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
964 else
965 sp->gfns[index] = gfn;
966}
967
968
969
970
971
972static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
973 struct kvm_memory_slot *slot,
974 int level)
975{
976 unsigned long idx;
977
978 idx = gfn_to_index(gfn, slot->base_gfn, level);
979 return &slot->arch.lpage_info[level - 2][idx];
980}
981
982static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
983 gfn_t gfn, int count)
984{
985 struct kvm_lpage_info *linfo;
986 int i;
987
988 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
989 linfo = lpage_info_slot(gfn, slot, i);
990 linfo->disallow_lpage += count;
991 WARN_ON(linfo->disallow_lpage < 0);
992 }
993}
994
995void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
996{
997 update_gfn_disallow_lpage_count(slot, gfn, 1);
998}
999
1000void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1001{
1002 update_gfn_disallow_lpage_count(slot, gfn, -1);
1003}
1004
1005static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1006{
1007 struct kvm_memslots *slots;
1008 struct kvm_memory_slot *slot;
1009 gfn_t gfn;
1010
1011 kvm->arch.indirect_shadow_pages++;
1012 gfn = sp->gfn;
1013 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1014 slot = __gfn_to_memslot(slots, gfn);
1015
1016
1017 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1018 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1019 KVM_PAGE_TRACK_WRITE);
1020
1021 kvm_mmu_gfn_disallow_lpage(slot, gfn);
1022}
1023
1024static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1025{
1026 struct kvm_memslots *slots;
1027 struct kvm_memory_slot *slot;
1028 gfn_t gfn;
1029
1030 kvm->arch.indirect_shadow_pages--;
1031 gfn = sp->gfn;
1032 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1033 slot = __gfn_to_memslot(slots, gfn);
1034 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1035 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1036 KVM_PAGE_TRACK_WRITE);
1037
1038 kvm_mmu_gfn_allow_lpage(slot, gfn);
1039}
1040
1041static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1042 struct kvm_memory_slot *slot)
1043{
1044 struct kvm_lpage_info *linfo;
1045
1046 if (slot) {
1047 linfo = lpage_info_slot(gfn, slot, level);
1048 return !!linfo->disallow_lpage;
1049 }
1050
1051 return true;
1052}
1053
1054static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1055 int level)
1056{
1057 struct kvm_memory_slot *slot;
1058
1059 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1060 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1061}
1062
1063static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1064{
1065 unsigned long page_size;
1066 int i, ret = 0;
1067
1068 page_size = kvm_host_page_size(kvm, gfn);
1069
1070 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1071 if (page_size >= KVM_HPAGE_SIZE(i))
1072 ret = i;
1073 else
1074 break;
1075 }
1076
1077 return ret;
1078}
1079
1080static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1081 bool no_dirty_log)
1082{
1083 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1084 return false;
1085 if (no_dirty_log && slot->dirty_bitmap)
1086 return false;
1087
1088 return true;
1089}
1090
1091static struct kvm_memory_slot *
1092gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1093 bool no_dirty_log)
1094{
1095 struct kvm_memory_slot *slot;
1096
1097 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1098 if (!memslot_valid_for_gpte(slot, no_dirty_log))
1099 slot = NULL;
1100
1101 return slot;
1102}
1103
1104static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1105 bool *force_pt_level)
1106{
1107 int host_level, level, max_level;
1108 struct kvm_memory_slot *slot;
1109
1110 if (unlikely(*force_pt_level))
1111 return PT_PAGE_TABLE_LEVEL;
1112
1113 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1114 *force_pt_level = !memslot_valid_for_gpte(slot, true);
1115 if (unlikely(*force_pt_level))
1116 return PT_PAGE_TABLE_LEVEL;
1117
1118 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1119
1120 if (host_level == PT_PAGE_TABLE_LEVEL)
1121 return host_level;
1122
1123 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1124
1125 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1126 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1127 break;
1128
1129 return level - 1;
1130}
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1144 struct kvm_rmap_head *rmap_head)
1145{
1146 struct pte_list_desc *desc;
1147 int i, count = 0;
1148
1149 if (!rmap_head->val) {
1150 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1151 rmap_head->val = (unsigned long)spte;
1152 } else if (!(rmap_head->val & 1)) {
1153 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1154 desc = mmu_alloc_pte_list_desc(vcpu);
1155 desc->sptes[0] = (u64 *)rmap_head->val;
1156 desc->sptes[1] = spte;
1157 rmap_head->val = (unsigned long)desc | 1;
1158 ++count;
1159 } else {
1160 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1161 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1162 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1163 desc = desc->more;
1164 count += PTE_LIST_EXT;
1165 }
1166 if (desc->sptes[PTE_LIST_EXT-1]) {
1167 desc->more = mmu_alloc_pte_list_desc(vcpu);
1168 desc = desc->more;
1169 }
1170 for (i = 0; desc->sptes[i]; ++i)
1171 ++count;
1172 desc->sptes[i] = spte;
1173 }
1174 return count;
1175}
1176
1177static void
1178pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1179 struct pte_list_desc *desc, int i,
1180 struct pte_list_desc *prev_desc)
1181{
1182 int j;
1183
1184 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1185 ;
1186 desc->sptes[i] = desc->sptes[j];
1187 desc->sptes[j] = NULL;
1188 if (j != 0)
1189 return;
1190 if (!prev_desc && !desc->more)
1191 rmap_head->val = (unsigned long)desc->sptes[0];
1192 else
1193 if (prev_desc)
1194 prev_desc->more = desc->more;
1195 else
1196 rmap_head->val = (unsigned long)desc->more | 1;
1197 mmu_free_pte_list_desc(desc);
1198}
1199
1200static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1201{
1202 struct pte_list_desc *desc;
1203 struct pte_list_desc *prev_desc;
1204 int i;
1205
1206 if (!rmap_head->val) {
1207 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1208 BUG();
1209 } else if (!(rmap_head->val & 1)) {
1210 rmap_printk("pte_list_remove: %p 1->0\n", spte);
1211 if ((u64 *)rmap_head->val != spte) {
1212 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
1213 BUG();
1214 }
1215 rmap_head->val = 0;
1216 } else {
1217 rmap_printk("pte_list_remove: %p many->many\n", spte);
1218 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1219 prev_desc = NULL;
1220 while (desc) {
1221 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1222 if (desc->sptes[i] == spte) {
1223 pte_list_desc_remove_entry(rmap_head,
1224 desc, i, prev_desc);
1225 return;
1226 }
1227 }
1228 prev_desc = desc;
1229 desc = desc->more;
1230 }
1231 pr_err("pte_list_remove: %p many->many\n", spte);
1232 BUG();
1233 }
1234}
1235
1236static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1237 struct kvm_memory_slot *slot)
1238{
1239 unsigned long idx;
1240
1241 idx = gfn_to_index(gfn, slot->base_gfn, level);
1242 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1243}
1244
1245static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1246 struct kvm_mmu_page *sp)
1247{
1248 struct kvm_memslots *slots;
1249 struct kvm_memory_slot *slot;
1250
1251 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1252 slot = __gfn_to_memslot(slots, gfn);
1253 return __gfn_to_rmap(gfn, sp->role.level, slot);
1254}
1255
1256static bool rmap_can_add(struct kvm_vcpu *vcpu)
1257{
1258 struct kvm_mmu_memory_cache *cache;
1259
1260 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1261 return mmu_memory_cache_free_objects(cache);
1262}
1263
1264static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1265{
1266 struct kvm_mmu_page *sp;
1267 struct kvm_rmap_head *rmap_head;
1268
1269 sp = page_header(__pa(spte));
1270 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1271 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1272 return pte_list_add(vcpu, spte, rmap_head);
1273}
1274
1275static void rmap_remove(struct kvm *kvm, u64 *spte)
1276{
1277 struct kvm_mmu_page *sp;
1278 gfn_t gfn;
1279 struct kvm_rmap_head *rmap_head;
1280
1281 sp = page_header(__pa(spte));
1282 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1283 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1284 pte_list_remove(spte, rmap_head);
1285}
1286
1287
1288
1289
1290
1291struct rmap_iterator {
1292
1293 struct pte_list_desc *desc;
1294 int pos;
1295};
1296
1297
1298
1299
1300
1301
1302
1303
1304static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1305 struct rmap_iterator *iter)
1306{
1307 u64 *sptep;
1308
1309 if (!rmap_head->val)
1310 return NULL;
1311
1312 if (!(rmap_head->val & 1)) {
1313 iter->desc = NULL;
1314 sptep = (u64 *)rmap_head->val;
1315 goto out;
1316 }
1317
1318 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1319 iter->pos = 0;
1320 sptep = iter->desc->sptes[iter->pos];
1321out:
1322 BUG_ON(!is_shadow_present_pte(*sptep));
1323 return sptep;
1324}
1325
1326
1327
1328
1329
1330
1331static u64 *rmap_get_next(struct rmap_iterator *iter)
1332{
1333 u64 *sptep;
1334
1335 if (iter->desc) {
1336 if (iter->pos < PTE_LIST_EXT - 1) {
1337 ++iter->pos;
1338 sptep = iter->desc->sptes[iter->pos];
1339 if (sptep)
1340 goto out;
1341 }
1342
1343 iter->desc = iter->desc->more;
1344
1345 if (iter->desc) {
1346 iter->pos = 0;
1347
1348 sptep = iter->desc->sptes[iter->pos];
1349 goto out;
1350 }
1351 }
1352
1353 return NULL;
1354out:
1355 BUG_ON(!is_shadow_present_pte(*sptep));
1356 return sptep;
1357}
1358
1359#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1360 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1361 _spte_; _spte_ = rmap_get_next(_iter_))
1362
1363static void drop_spte(struct kvm *kvm, u64 *sptep)
1364{
1365 if (mmu_spte_clear_track_bits(sptep))
1366 rmap_remove(kvm, sptep);
1367}
1368
1369
1370static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1371{
1372 if (is_large_pte(*sptep)) {
1373 WARN_ON(page_header(__pa(sptep))->role.level ==
1374 PT_PAGE_TABLE_LEVEL);
1375 drop_spte(kvm, sptep);
1376 --kvm->stat.lpages;
1377 return true;
1378 }
1379
1380 return false;
1381}
1382
1383static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1384{
1385 if (__drop_large_spte(vcpu->kvm, sptep))
1386 kvm_flush_remote_tlbs(vcpu->kvm);
1387}
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402static bool spte_write_protect(u64 *sptep, bool pt_protect)
1403{
1404 u64 spte = *sptep;
1405
1406 if (!is_writable_pte(spte) &&
1407 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1408 return false;
1409
1410 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1411
1412 if (pt_protect)
1413 spte &= ~SPTE_MMU_WRITEABLE;
1414 spte = spte & ~PT_WRITABLE_MASK;
1415
1416 return mmu_spte_update(sptep, spte);
1417}
1418
1419static bool __rmap_write_protect(struct kvm *kvm,
1420 struct kvm_rmap_head *rmap_head,
1421 bool pt_protect)
1422{
1423 u64 *sptep;
1424 struct rmap_iterator iter;
1425 bool flush = false;
1426
1427 for_each_rmap_spte(rmap_head, &iter, sptep)
1428 flush |= spte_write_protect(sptep, pt_protect);
1429
1430 return flush;
1431}
1432
1433static bool spte_clear_dirty(u64 *sptep)
1434{
1435 u64 spte = *sptep;
1436
1437 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1438
1439 spte &= ~shadow_dirty_mask;
1440
1441 return mmu_spte_update(sptep, spte);
1442}
1443
1444static bool wrprot_ad_disabled_spte(u64 *sptep)
1445{
1446 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1447 (unsigned long *)sptep);
1448 if (was_writable)
1449 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1450
1451 return was_writable;
1452}
1453
1454
1455
1456
1457
1458
1459
1460static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1461{
1462 u64 *sptep;
1463 struct rmap_iterator iter;
1464 bool flush = false;
1465
1466 for_each_rmap_spte(rmap_head, &iter, sptep)
1467 if (spte_ad_enabled(*sptep))
1468 flush |= spte_clear_dirty(sptep);
1469 else
1470 flush |= wrprot_ad_disabled_spte(sptep);
1471
1472 return flush;
1473}
1474
1475static bool spte_set_dirty(u64 *sptep)
1476{
1477 u64 spte = *sptep;
1478
1479 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1480
1481 spte |= shadow_dirty_mask;
1482
1483 return mmu_spte_update(sptep, spte);
1484}
1485
1486static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1487{
1488 u64 *sptep;
1489 struct rmap_iterator iter;
1490 bool flush = false;
1491
1492 for_each_rmap_spte(rmap_head, &iter, sptep)
1493 if (spte_ad_enabled(*sptep))
1494 flush |= spte_set_dirty(sptep);
1495
1496 return flush;
1497}
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1510 struct kvm_memory_slot *slot,
1511 gfn_t gfn_offset, unsigned long mask)
1512{
1513 struct kvm_rmap_head *rmap_head;
1514
1515 while (mask) {
1516 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1517 PT_PAGE_TABLE_LEVEL, slot);
1518 __rmap_write_protect(kvm, rmap_head, false);
1519
1520
1521 mask &= mask - 1;
1522 }
1523}
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1536 struct kvm_memory_slot *slot,
1537 gfn_t gfn_offset, unsigned long mask)
1538{
1539 struct kvm_rmap_head *rmap_head;
1540
1541 while (mask) {
1542 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1543 PT_PAGE_TABLE_LEVEL, slot);
1544 __rmap_clear_dirty(kvm, rmap_head);
1545
1546
1547 mask &= mask - 1;
1548 }
1549}
1550EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1563 struct kvm_memory_slot *slot,
1564 gfn_t gfn_offset, unsigned long mask)
1565{
1566 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1567 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1568 mask);
1569 else
1570 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1571}
1572
1573
1574
1575
1576
1577
1578
1579
1580int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1581{
1582 if (kvm_x86_ops->write_log_dirty)
1583 return kvm_x86_ops->write_log_dirty(vcpu);
1584
1585 return 0;
1586}
1587
1588bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1589 struct kvm_memory_slot *slot, u64 gfn)
1590{
1591 struct kvm_rmap_head *rmap_head;
1592 int i;
1593 bool write_protected = false;
1594
1595 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1596 rmap_head = __gfn_to_rmap(gfn, i, slot);
1597 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1598 }
1599
1600 return write_protected;
1601}
1602
1603static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1604{
1605 struct kvm_memory_slot *slot;
1606
1607 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1608 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1609}
1610
1611static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1612{
1613 u64 *sptep;
1614 struct rmap_iterator iter;
1615 bool flush = false;
1616
1617 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1618 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1619
1620 drop_spte(kvm, sptep);
1621 flush = true;
1622 }
1623
1624 return flush;
1625}
1626
1627static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1628 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1629 unsigned long data)
1630{
1631 return kvm_zap_rmapp(kvm, rmap_head);
1632}
1633
1634static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1635 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1636 unsigned long data)
1637{
1638 u64 *sptep;
1639 struct rmap_iterator iter;
1640 int need_flush = 0;
1641 u64 new_spte;
1642 pte_t *ptep = (pte_t *)data;
1643 kvm_pfn_t new_pfn;
1644
1645 WARN_ON(pte_huge(*ptep));
1646 new_pfn = pte_pfn(*ptep);
1647
1648restart:
1649 for_each_rmap_spte(rmap_head, &iter, sptep) {
1650 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1651 sptep, *sptep, gfn, level);
1652
1653 need_flush = 1;
1654
1655 if (pte_write(*ptep)) {
1656 drop_spte(kvm, sptep);
1657 goto restart;
1658 } else {
1659 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1660 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1661
1662 new_spte &= ~PT_WRITABLE_MASK;
1663 new_spte &= ~SPTE_HOST_WRITEABLE;
1664
1665 new_spte = mark_spte_for_access_track(new_spte);
1666
1667 mmu_spte_clear_track_bits(sptep);
1668 mmu_spte_set(sptep, new_spte);
1669 }
1670 }
1671
1672 if (need_flush)
1673 kvm_flush_remote_tlbs(kvm);
1674
1675 return 0;
1676}
1677
1678struct slot_rmap_walk_iterator {
1679
1680 struct kvm_memory_slot *slot;
1681 gfn_t start_gfn;
1682 gfn_t end_gfn;
1683 int start_level;
1684 int end_level;
1685
1686
1687 gfn_t gfn;
1688 struct kvm_rmap_head *rmap;
1689 int level;
1690
1691
1692 struct kvm_rmap_head *end_rmap;
1693};
1694
1695static void
1696rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1697{
1698 iterator->level = level;
1699 iterator->gfn = iterator->start_gfn;
1700 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1701 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1702 iterator->slot);
1703}
1704
1705static void
1706slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1707 struct kvm_memory_slot *slot, int start_level,
1708 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1709{
1710 iterator->slot = slot;
1711 iterator->start_level = start_level;
1712 iterator->end_level = end_level;
1713 iterator->start_gfn = start_gfn;
1714 iterator->end_gfn = end_gfn;
1715
1716 rmap_walk_init_level(iterator, iterator->start_level);
1717}
1718
1719static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1720{
1721 return !!iterator->rmap;
1722}
1723
1724static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1725{
1726 if (++iterator->rmap <= iterator->end_rmap) {
1727 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1728 return;
1729 }
1730
1731 if (++iterator->level > iterator->end_level) {
1732 iterator->rmap = NULL;
1733 return;
1734 }
1735
1736 rmap_walk_init_level(iterator, iterator->level);
1737}
1738
1739#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1740 _start_gfn, _end_gfn, _iter_) \
1741 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1742 _end_level_, _start_gfn, _end_gfn); \
1743 slot_rmap_walk_okay(_iter_); \
1744 slot_rmap_walk_next(_iter_))
1745
1746static int kvm_handle_hva_range(struct kvm *kvm,
1747 unsigned long start,
1748 unsigned long end,
1749 unsigned long data,
1750 int (*handler)(struct kvm *kvm,
1751 struct kvm_rmap_head *rmap_head,
1752 struct kvm_memory_slot *slot,
1753 gfn_t gfn,
1754 int level,
1755 unsigned long data))
1756{
1757 struct kvm_memslots *slots;
1758 struct kvm_memory_slot *memslot;
1759 struct slot_rmap_walk_iterator iterator;
1760 int ret = 0;
1761 int i;
1762
1763 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1764 slots = __kvm_memslots(kvm, i);
1765 kvm_for_each_memslot(memslot, slots) {
1766 unsigned long hva_start, hva_end;
1767 gfn_t gfn_start, gfn_end;
1768
1769 hva_start = max(start, memslot->userspace_addr);
1770 hva_end = min(end, memslot->userspace_addr +
1771 (memslot->npages << PAGE_SHIFT));
1772 if (hva_start >= hva_end)
1773 continue;
1774
1775
1776
1777
1778 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1779 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1780
1781 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1782 PT_MAX_HUGEPAGE_LEVEL,
1783 gfn_start, gfn_end - 1,
1784 &iterator)
1785 ret |= handler(kvm, iterator.rmap, memslot,
1786 iterator.gfn, iterator.level, data);
1787 }
1788 }
1789
1790 return ret;
1791}
1792
1793static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1794 unsigned long data,
1795 int (*handler)(struct kvm *kvm,
1796 struct kvm_rmap_head *rmap_head,
1797 struct kvm_memory_slot *slot,
1798 gfn_t gfn, int level,
1799 unsigned long data))
1800{
1801 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1802}
1803
1804int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1805{
1806 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1807}
1808
1809int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1810{
1811 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1812}
1813
1814void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1815{
1816 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1817}
1818
1819static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1820 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1821 unsigned long data)
1822{
1823 u64 *sptep;
1824 struct rmap_iterator uninitialized_var(iter);
1825 int young = 0;
1826
1827 for_each_rmap_spte(rmap_head, &iter, sptep)
1828 young |= mmu_spte_age(sptep);
1829
1830 trace_kvm_age_page(gfn, level, slot, young);
1831 return young;
1832}
1833
1834static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1835 struct kvm_memory_slot *slot, gfn_t gfn,
1836 int level, unsigned long data)
1837{
1838 u64 *sptep;
1839 struct rmap_iterator iter;
1840
1841 for_each_rmap_spte(rmap_head, &iter, sptep)
1842 if (is_accessed_spte(*sptep))
1843 return 1;
1844 return 0;
1845}
1846
1847#define RMAP_RECYCLE_THRESHOLD 1000
1848
1849static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1850{
1851 struct kvm_rmap_head *rmap_head;
1852 struct kvm_mmu_page *sp;
1853
1854 sp = page_header(__pa(spte));
1855
1856 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1857
1858 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1859 kvm_flush_remote_tlbs(vcpu->kvm);
1860}
1861
1862int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1863{
1864 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1865}
1866
1867int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1868{
1869 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1870}
1871
1872#ifdef MMU_DEBUG
1873static int is_empty_shadow_page(u64 *spt)
1874{
1875 u64 *pos;
1876 u64 *end;
1877
1878 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1879 if (is_shadow_present_pte(*pos)) {
1880 printk(KERN_ERR "%s: %p %llx\n", __func__,
1881 pos, *pos);
1882 return 0;
1883 }
1884 return 1;
1885}
1886#endif
1887
1888
1889
1890
1891
1892
1893
1894static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1895{
1896 kvm->arch.n_used_mmu_pages += nr;
1897 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1898}
1899
1900static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1901{
1902 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1903 hlist_del(&sp->hash_link);
1904 list_del(&sp->link);
1905 free_page((unsigned long)sp->spt);
1906 if (!sp->role.direct)
1907 free_page((unsigned long)sp->gfns);
1908 kmem_cache_free(mmu_page_header_cache, sp);
1909}
1910
1911static unsigned kvm_page_table_hashfn(gfn_t gfn)
1912{
1913 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1914}
1915
1916static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1917 struct kvm_mmu_page *sp, u64 *parent_pte)
1918{
1919 if (!parent_pte)
1920 return;
1921
1922 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1923}
1924
1925static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1926 u64 *parent_pte)
1927{
1928 pte_list_remove(parent_pte, &sp->parent_ptes);
1929}
1930
1931static void drop_parent_pte(struct kvm_mmu_page *sp,
1932 u64 *parent_pte)
1933{
1934 mmu_page_remove_parent_pte(sp, parent_pte);
1935 mmu_spte_clear_no_track(parent_pte);
1936}
1937
1938static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1939{
1940 struct kvm_mmu_page *sp;
1941
1942 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1943 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1944 if (!direct)
1945 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1946 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1947
1948
1949
1950
1951
1952
1953 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1954 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1955 return sp;
1956}
1957
1958static void mark_unsync(u64 *spte);
1959static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1960{
1961 u64 *sptep;
1962 struct rmap_iterator iter;
1963
1964 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1965 mark_unsync(sptep);
1966 }
1967}
1968
1969static void mark_unsync(u64 *spte)
1970{
1971 struct kvm_mmu_page *sp;
1972 unsigned int index;
1973
1974 sp = page_header(__pa(spte));
1975 index = spte - sp->spt;
1976 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1977 return;
1978 if (sp->unsync_children++)
1979 return;
1980 kvm_mmu_mark_parents_unsync(sp);
1981}
1982
1983static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1984 struct kvm_mmu_page *sp)
1985{
1986 return 0;
1987}
1988
1989static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1990{
1991}
1992
1993static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1994 struct kvm_mmu_page *sp, u64 *spte,
1995 const void *pte)
1996{
1997 WARN_ON(1);
1998}
1999
2000#define KVM_PAGE_ARRAY_NR 16
2001
2002struct kvm_mmu_pages {
2003 struct mmu_page_and_offset {
2004 struct kvm_mmu_page *sp;
2005 unsigned int idx;
2006 } page[KVM_PAGE_ARRAY_NR];
2007 unsigned int nr;
2008};
2009
2010static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2011 int idx)
2012{
2013 int i;
2014
2015 if (sp->unsync)
2016 for (i=0; i < pvec->nr; i++)
2017 if (pvec->page[i].sp == sp)
2018 return 0;
2019
2020 pvec->page[pvec->nr].sp = sp;
2021 pvec->page[pvec->nr].idx = idx;
2022 pvec->nr++;
2023 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2024}
2025
2026static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2027{
2028 --sp->unsync_children;
2029 WARN_ON((int)sp->unsync_children < 0);
2030 __clear_bit(idx, sp->unsync_child_bitmap);
2031}
2032
2033static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2034 struct kvm_mmu_pages *pvec)
2035{
2036 int i, ret, nr_unsync_leaf = 0;
2037
2038 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2039 struct kvm_mmu_page *child;
2040 u64 ent = sp->spt[i];
2041
2042 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2043 clear_unsync_child_bit(sp, i);
2044 continue;
2045 }
2046
2047 child = page_header(ent & PT64_BASE_ADDR_MASK);
2048
2049 if (child->unsync_children) {
2050 if (mmu_pages_add(pvec, child, i))
2051 return -ENOSPC;
2052
2053 ret = __mmu_unsync_walk(child, pvec);
2054 if (!ret) {
2055 clear_unsync_child_bit(sp, i);
2056 continue;
2057 } else if (ret > 0) {
2058 nr_unsync_leaf += ret;
2059 } else
2060 return ret;
2061 } else if (child->unsync) {
2062 nr_unsync_leaf++;
2063 if (mmu_pages_add(pvec, child, i))
2064 return -ENOSPC;
2065 } else
2066 clear_unsync_child_bit(sp, i);
2067 }
2068
2069 return nr_unsync_leaf;
2070}
2071
2072#define INVALID_INDEX (-1)
2073
2074static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2075 struct kvm_mmu_pages *pvec)
2076{
2077 pvec->nr = 0;
2078 if (!sp->unsync_children)
2079 return 0;
2080
2081 mmu_pages_add(pvec, sp, INVALID_INDEX);
2082 return __mmu_unsync_walk(sp, pvec);
2083}
2084
2085static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2086{
2087 WARN_ON(!sp->unsync);
2088 trace_kvm_mmu_sync_page(sp);
2089 sp->unsync = 0;
2090 --kvm->stat.mmu_unsync;
2091}
2092
2093static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2094 struct list_head *invalid_list);
2095static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2096 struct list_head *invalid_list);
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106#define for_each_valid_sp(_kvm, _sp, _gfn) \
2107 hlist_for_each_entry(_sp, \
2108 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2109 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2110 } else
2111
2112#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
2113 for_each_valid_sp(_kvm, _sp, _gfn) \
2114 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2115
2116
2117static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2118 struct list_head *invalid_list)
2119{
2120 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2121 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2122 return false;
2123 }
2124
2125 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2126 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2127 return false;
2128 }
2129
2130 return true;
2131}
2132
2133static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2134 struct list_head *invalid_list,
2135 bool remote_flush, bool local_flush)
2136{
2137 if (!list_empty(invalid_list)) {
2138 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2139 return;
2140 }
2141
2142 if (remote_flush)
2143 kvm_flush_remote_tlbs(vcpu->kvm);
2144 else if (local_flush)
2145 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2146}
2147
2148#ifdef CONFIG_KVM_MMU_AUDIT
2149#include "mmu_audit.c"
2150#else
2151static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2152static void mmu_audit_disable(void) { }
2153#endif
2154
2155static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2156{
2157 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2158}
2159
2160static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2161 struct list_head *invalid_list)
2162{
2163 kvm_unlink_unsync_page(vcpu->kvm, sp);
2164 return __kvm_sync_page(vcpu, sp, invalid_list);
2165}
2166
2167
2168static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2169 struct list_head *invalid_list)
2170{
2171 struct kvm_mmu_page *s;
2172 bool ret = false;
2173
2174 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2175 if (!s->unsync)
2176 continue;
2177
2178 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2179 ret |= kvm_sync_page(vcpu, s, invalid_list);
2180 }
2181
2182 return ret;
2183}
2184
2185struct mmu_page_path {
2186 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2187 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2188};
2189
2190#define for_each_sp(pvec, sp, parents, i) \
2191 for (i = mmu_pages_first(&pvec, &parents); \
2192 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2193 i = mmu_pages_next(&pvec, &parents, i))
2194
2195static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2196 struct mmu_page_path *parents,
2197 int i)
2198{
2199 int n;
2200
2201 for (n = i+1; n < pvec->nr; n++) {
2202 struct kvm_mmu_page *sp = pvec->page[n].sp;
2203 unsigned idx = pvec->page[n].idx;
2204 int level = sp->role.level;
2205
2206 parents->idx[level-1] = idx;
2207 if (level == PT_PAGE_TABLE_LEVEL)
2208 break;
2209
2210 parents->parent[level-2] = sp;
2211 }
2212
2213 return n;
2214}
2215
2216static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2217 struct mmu_page_path *parents)
2218{
2219 struct kvm_mmu_page *sp;
2220 int level;
2221
2222 if (pvec->nr == 0)
2223 return 0;
2224
2225 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2226
2227 sp = pvec->page[0].sp;
2228 level = sp->role.level;
2229 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2230
2231 parents->parent[level-2] = sp;
2232
2233
2234
2235
2236 parents->parent[level-1] = NULL;
2237 return mmu_pages_next(pvec, parents, 0);
2238}
2239
2240static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2241{
2242 struct kvm_mmu_page *sp;
2243 unsigned int level = 0;
2244
2245 do {
2246 unsigned int idx = parents->idx[level];
2247 sp = parents->parent[level];
2248 if (!sp)
2249 return;
2250
2251 WARN_ON(idx == INVALID_INDEX);
2252 clear_unsync_child_bit(sp, idx);
2253 level++;
2254 } while (!sp->unsync_children);
2255}
2256
2257static void mmu_sync_children(struct kvm_vcpu *vcpu,
2258 struct kvm_mmu_page *parent)
2259{
2260 int i;
2261 struct kvm_mmu_page *sp;
2262 struct mmu_page_path parents;
2263 struct kvm_mmu_pages pages;
2264 LIST_HEAD(invalid_list);
2265 bool flush = false;
2266
2267 while (mmu_unsync_walk(parent, &pages)) {
2268 bool protected = false;
2269
2270 for_each_sp(pages, sp, parents, i)
2271 protected |= rmap_write_protect(vcpu, sp->gfn);
2272
2273 if (protected) {
2274 kvm_flush_remote_tlbs(vcpu->kvm);
2275 flush = false;
2276 }
2277
2278 for_each_sp(pages, sp, parents, i) {
2279 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2280 mmu_pages_clear_parents(&parents);
2281 }
2282 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2283 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2284 cond_resched_lock(&vcpu->kvm->mmu_lock);
2285 flush = false;
2286 }
2287 }
2288
2289 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2290}
2291
2292static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2293{
2294 atomic_set(&sp->write_flooding_count, 0);
2295}
2296
2297static void clear_sp_write_flooding_count(u64 *spte)
2298{
2299 struct kvm_mmu_page *sp = page_header(__pa(spte));
2300
2301 __clear_sp_write_flooding_count(sp);
2302}
2303
2304static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2305 gfn_t gfn,
2306 gva_t gaddr,
2307 unsigned level,
2308 int direct,
2309 unsigned access)
2310{
2311 union kvm_mmu_page_role role;
2312 unsigned quadrant;
2313 struct kvm_mmu_page *sp;
2314 bool need_sync = false;
2315 bool flush = false;
2316 int collisions = 0;
2317 LIST_HEAD(invalid_list);
2318
2319 role = vcpu->arch.mmu.base_role;
2320 role.level = level;
2321 role.direct = direct;
2322 if (role.direct)
2323 role.cr4_pae = 0;
2324 role.access = access;
2325 if (!vcpu->arch.mmu.direct_map
2326 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2327 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2328 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2329 role.quadrant = quadrant;
2330 }
2331 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2332 if (sp->gfn != gfn) {
2333 collisions++;
2334 continue;
2335 }
2336
2337 if (!need_sync && sp->unsync)
2338 need_sync = true;
2339
2340 if (sp->role.word != role.word)
2341 continue;
2342
2343 if (sp->unsync) {
2344
2345
2346
2347 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2348 break;
2349
2350 WARN_ON(!list_empty(&invalid_list));
2351 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2352 }
2353
2354 if (sp->unsync_children)
2355 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2356
2357 __clear_sp_write_flooding_count(sp);
2358 trace_kvm_mmu_get_page(sp, false);
2359 goto out;
2360 }
2361
2362 ++vcpu->kvm->stat.mmu_cache_miss;
2363
2364 sp = kvm_mmu_alloc_page(vcpu, direct);
2365
2366 sp->gfn = gfn;
2367 sp->role = role;
2368 hlist_add_head(&sp->hash_link,
2369 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2370 if (!direct) {
2371
2372
2373
2374
2375
2376 account_shadowed(vcpu->kvm, sp);
2377 if (level == PT_PAGE_TABLE_LEVEL &&
2378 rmap_write_protect(vcpu, gfn))
2379 kvm_flush_remote_tlbs(vcpu->kvm);
2380
2381 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2382 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2383 }
2384 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2385 clear_page(sp->spt);
2386 trace_kvm_mmu_get_page(sp, true);
2387
2388 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2389out:
2390 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2391 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2392 return sp;
2393}
2394
2395static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2396 struct kvm_vcpu *vcpu, u64 addr)
2397{
2398 iterator->addr = addr;
2399 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2400 iterator->level = vcpu->arch.mmu.shadow_root_level;
2401
2402 if (iterator->level == PT64_ROOT_4LEVEL &&
2403 vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2404 !vcpu->arch.mmu.direct_map)
2405 --iterator->level;
2406
2407 if (iterator->level == PT32E_ROOT_LEVEL) {
2408 iterator->shadow_addr
2409 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2410 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2411 --iterator->level;
2412 if (!iterator->shadow_addr)
2413 iterator->level = 0;
2414 }
2415}
2416
2417static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2418{
2419 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2420 return false;
2421
2422 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2423 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2424 return true;
2425}
2426
2427static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2428 u64 spte)
2429{
2430 if (is_last_spte(spte, iterator->level)) {
2431 iterator->level = 0;
2432 return;
2433 }
2434
2435 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2436 --iterator->level;
2437}
2438
2439static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2440{
2441 __shadow_walk_next(iterator, *iterator->sptep);
2442}
2443
2444static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2445 struct kvm_mmu_page *sp)
2446{
2447 u64 spte;
2448
2449 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2450
2451 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2452 shadow_user_mask | shadow_x_mask | shadow_me_mask;
2453
2454 if (sp_ad_disabled(sp))
2455 spte |= shadow_acc_track_value;
2456 else
2457 spte |= shadow_accessed_mask;
2458
2459 mmu_spte_set(sptep, spte);
2460
2461 mmu_page_add_parent_pte(vcpu, sp, sptep);
2462
2463 if (sp->unsync_children || sp->unsync)
2464 mark_unsync(sptep);
2465}
2466
2467static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2468 unsigned direct_access)
2469{
2470 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2471 struct kvm_mmu_page *child;
2472
2473
2474
2475
2476
2477
2478
2479
2480 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2481 if (child->role.access == direct_access)
2482 return;
2483
2484 drop_parent_pte(child, sptep);
2485 kvm_flush_remote_tlbs(vcpu->kvm);
2486 }
2487}
2488
2489static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2490 u64 *spte)
2491{
2492 u64 pte;
2493 struct kvm_mmu_page *child;
2494
2495 pte = *spte;
2496 if (is_shadow_present_pte(pte)) {
2497 if (is_last_spte(pte, sp->role.level)) {
2498 drop_spte(kvm, spte);
2499 if (is_large_pte(pte))
2500 --kvm->stat.lpages;
2501 } else {
2502 child = page_header(pte & PT64_BASE_ADDR_MASK);
2503 drop_parent_pte(child, spte);
2504 }
2505 return true;
2506 }
2507
2508 if (is_mmio_spte(pte))
2509 mmu_spte_clear_no_track(spte);
2510
2511 return false;
2512}
2513
2514static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2515 struct kvm_mmu_page *sp)
2516{
2517 unsigned i;
2518
2519 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2520 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2521}
2522
2523static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2524{
2525 u64 *sptep;
2526 struct rmap_iterator iter;
2527
2528 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2529 drop_parent_pte(sp, sptep);
2530}
2531
2532static int mmu_zap_unsync_children(struct kvm *kvm,
2533 struct kvm_mmu_page *parent,
2534 struct list_head *invalid_list)
2535{
2536 int i, zapped = 0;
2537 struct mmu_page_path parents;
2538 struct kvm_mmu_pages pages;
2539
2540 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2541 return 0;
2542
2543 while (mmu_unsync_walk(parent, &pages)) {
2544 struct kvm_mmu_page *sp;
2545
2546 for_each_sp(pages, sp, parents, i) {
2547 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2548 mmu_pages_clear_parents(&parents);
2549 zapped++;
2550 }
2551 }
2552
2553 return zapped;
2554}
2555
2556static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2557 struct list_head *invalid_list)
2558{
2559 int ret;
2560
2561 trace_kvm_mmu_prepare_zap_page(sp);
2562 ++kvm->stat.mmu_shadow_zapped;
2563 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2564 kvm_mmu_page_unlink_children(kvm, sp);
2565 kvm_mmu_unlink_parents(kvm, sp);
2566
2567 if (!sp->role.invalid && !sp->role.direct)
2568 unaccount_shadowed(kvm, sp);
2569
2570 if (sp->unsync)
2571 kvm_unlink_unsync_page(kvm, sp);
2572 if (!sp->root_count) {
2573
2574 ret++;
2575 list_move(&sp->link, invalid_list);
2576 kvm_mod_used_mmu_pages(kvm, -1);
2577 } else {
2578 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2579
2580
2581
2582
2583
2584 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2585 kvm_reload_remote_mmus(kvm);
2586 }
2587
2588 sp->role.invalid = 1;
2589 return ret;
2590}
2591
2592static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2593 struct list_head *invalid_list)
2594{
2595 struct kvm_mmu_page *sp, *nsp;
2596
2597 if (list_empty(invalid_list))
2598 return;
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609 kvm_flush_remote_tlbs(kvm);
2610
2611 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2612 WARN_ON(!sp->role.invalid || sp->root_count);
2613 kvm_mmu_free_page(sp);
2614 }
2615}
2616
2617static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2618 struct list_head *invalid_list)
2619{
2620 struct kvm_mmu_page *sp;
2621
2622 if (list_empty(&kvm->arch.active_mmu_pages))
2623 return false;
2624
2625 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2626 struct kvm_mmu_page, link);
2627 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2628}
2629
2630
2631
2632
2633
2634void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2635{
2636 LIST_HEAD(invalid_list);
2637
2638 spin_lock(&kvm->mmu_lock);
2639
2640 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2641
2642 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2643 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2644 break;
2645
2646 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2647 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2648 }
2649
2650 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2651
2652 spin_unlock(&kvm->mmu_lock);
2653}
2654
2655int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2656{
2657 struct kvm_mmu_page *sp;
2658 LIST_HEAD(invalid_list);
2659 int r;
2660
2661 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2662 r = 0;
2663 spin_lock(&kvm->mmu_lock);
2664 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2665 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2666 sp->role.word);
2667 r = 1;
2668 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2669 }
2670 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2671 spin_unlock(&kvm->mmu_lock);
2672
2673 return r;
2674}
2675EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2676
2677static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2678{
2679 trace_kvm_mmu_unsync_page(sp);
2680 ++vcpu->kvm->stat.mmu_unsync;
2681 sp->unsync = 1;
2682
2683 kvm_mmu_mark_parents_unsync(sp);
2684}
2685
2686static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2687 bool can_unsync)
2688{
2689 struct kvm_mmu_page *sp;
2690
2691 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2692 return true;
2693
2694 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2695 if (!can_unsync)
2696 return true;
2697
2698 if (sp->unsync)
2699 continue;
2700
2701 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2702 kvm_unsync_page(vcpu, sp);
2703 }
2704
2705 return false;
2706}
2707
2708static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2709{
2710 if (pfn_valid(pfn))
2711 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2723
2724 return true;
2725}
2726
2727static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2728 unsigned pte_access, int level,
2729 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2730 bool can_unsync, bool host_writable)
2731{
2732 u64 spte = 0;
2733 int ret = 0;
2734 struct kvm_mmu_page *sp;
2735
2736 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2737 return 0;
2738
2739 sp = page_header(__pa(sptep));
2740 if (sp_ad_disabled(sp))
2741 spte |= shadow_acc_track_value;
2742
2743
2744
2745
2746
2747
2748
2749 spte |= shadow_present_mask;
2750 if (!speculative)
2751 spte |= spte_shadow_accessed_mask(spte);
2752
2753 if (pte_access & ACC_EXEC_MASK)
2754 spte |= shadow_x_mask;
2755 else
2756 spte |= shadow_nx_mask;
2757
2758 if (pte_access & ACC_USER_MASK)
2759 spte |= shadow_user_mask;
2760
2761 if (level > PT_PAGE_TABLE_LEVEL)
2762 spte |= PT_PAGE_SIZE_MASK;
2763 if (tdp_enabled)
2764 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2765 kvm_is_mmio_pfn(pfn));
2766
2767 if (host_writable)
2768 spte |= SPTE_HOST_WRITEABLE;
2769 else
2770 pte_access &= ~ACC_WRITE_MASK;
2771
2772 if (!kvm_is_mmio_pfn(pfn))
2773 spte |= shadow_me_mask;
2774
2775 spte |= (u64)pfn << PAGE_SHIFT;
2776
2777 if (pte_access & ACC_WRITE_MASK) {
2778
2779
2780
2781
2782
2783
2784
2785 if (level > PT_PAGE_TABLE_LEVEL &&
2786 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2787 goto done;
2788
2789 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2790
2791
2792
2793
2794
2795
2796
2797 if (!can_unsync && is_writable_pte(*sptep))
2798 goto set_pte;
2799
2800 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2801 pgprintk("%s: found shadow page for %llx, marking ro\n",
2802 __func__, gfn);
2803 ret = 1;
2804 pte_access &= ~ACC_WRITE_MASK;
2805 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2806 }
2807 }
2808
2809 if (pte_access & ACC_WRITE_MASK) {
2810 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2811 spte |= spte_shadow_dirty_mask(spte);
2812 }
2813
2814 if (speculative)
2815 spte = mark_spte_for_access_track(spte);
2816
2817set_pte:
2818 if (mmu_spte_update(sptep, spte))
2819 kvm_flush_remote_tlbs(vcpu->kvm);
2820done:
2821 return ret;
2822}
2823
2824static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2825 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2826 bool speculative, bool host_writable)
2827{
2828 int was_rmapped = 0;
2829 int rmap_count;
2830 int ret = RET_PF_RETRY;
2831
2832 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2833 *sptep, write_fault, gfn);
2834
2835 if (is_shadow_present_pte(*sptep)) {
2836
2837
2838
2839
2840 if (level > PT_PAGE_TABLE_LEVEL &&
2841 !is_large_pte(*sptep)) {
2842 struct kvm_mmu_page *child;
2843 u64 pte = *sptep;
2844
2845 child = page_header(pte & PT64_BASE_ADDR_MASK);
2846 drop_parent_pte(child, sptep);
2847 kvm_flush_remote_tlbs(vcpu->kvm);
2848 } else if (pfn != spte_to_pfn(*sptep)) {
2849 pgprintk("hfn old %llx new %llx\n",
2850 spte_to_pfn(*sptep), pfn);
2851 drop_spte(vcpu->kvm, sptep);
2852 kvm_flush_remote_tlbs(vcpu->kvm);
2853 } else
2854 was_rmapped = 1;
2855 }
2856
2857 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2858 true, host_writable)) {
2859 if (write_fault)
2860 ret = RET_PF_EMULATE;
2861 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2862 }
2863
2864 if (unlikely(is_mmio_spte(*sptep)))
2865 ret = RET_PF_EMULATE;
2866
2867 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2868 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2869 is_large_pte(*sptep)? "2MB" : "4kB",
2870 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2871 *sptep, sptep);
2872 if (!was_rmapped && is_large_pte(*sptep))
2873 ++vcpu->kvm->stat.lpages;
2874
2875 if (is_shadow_present_pte(*sptep)) {
2876 if (!was_rmapped) {
2877 rmap_count = rmap_add(vcpu, sptep, gfn);
2878 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2879 rmap_recycle(vcpu, sptep, gfn);
2880 }
2881 }
2882
2883 kvm_release_pfn_clean(pfn);
2884
2885 return ret;
2886}
2887
2888static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2889 bool no_dirty_log)
2890{
2891 struct kvm_memory_slot *slot;
2892
2893 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2894 if (!slot)
2895 return KVM_PFN_ERR_FAULT;
2896
2897 return gfn_to_pfn_memslot_atomic(slot, gfn);
2898}
2899
2900static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2901 struct kvm_mmu_page *sp,
2902 u64 *start, u64 *end)
2903{
2904 struct page *pages[PTE_PREFETCH_NUM];
2905 struct kvm_memory_slot *slot;
2906 unsigned access = sp->role.access;
2907 int i, ret;
2908 gfn_t gfn;
2909
2910 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2911 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2912 if (!slot)
2913 return -1;
2914
2915 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2916 if (ret <= 0)
2917 return -1;
2918
2919 for (i = 0; i < ret; i++, gfn++, start++)
2920 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2921 page_to_pfn(pages[i]), true, true);
2922
2923 return 0;
2924}
2925
2926static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2927 struct kvm_mmu_page *sp, u64 *sptep)
2928{
2929 u64 *spte, *start = NULL;
2930 int i;
2931
2932 WARN_ON(!sp->role.direct);
2933
2934 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2935 spte = sp->spt + i;
2936
2937 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2938 if (is_shadow_present_pte(*spte) || spte == sptep) {
2939 if (!start)
2940 continue;
2941 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2942 break;
2943 start = NULL;
2944 } else if (!start)
2945 start = spte;
2946 }
2947}
2948
2949static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2950{
2951 struct kvm_mmu_page *sp;
2952
2953 sp = page_header(__pa(sptep));
2954
2955
2956
2957
2958
2959
2960 if (sp_ad_disabled(sp))
2961 return;
2962
2963 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2964 return;
2965
2966 __direct_pte_prefetch(vcpu, sp, sptep);
2967}
2968
2969static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2970 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2971{
2972 struct kvm_shadow_walk_iterator iterator;
2973 struct kvm_mmu_page *sp;
2974 int emulate = 0;
2975 gfn_t pseudo_gfn;
2976
2977 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2978 return 0;
2979
2980 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2981 if (iterator.level == level) {
2982 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2983 write, level, gfn, pfn, prefault,
2984 map_writable);
2985 direct_pte_prefetch(vcpu, iterator.sptep);
2986 ++vcpu->stat.pf_fixed;
2987 break;
2988 }
2989
2990 drop_large_spte(vcpu, iterator.sptep);
2991 if (!is_shadow_present_pte(*iterator.sptep)) {
2992 u64 base_addr = iterator.addr;
2993
2994 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2995 pseudo_gfn = base_addr >> PAGE_SHIFT;
2996 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2997 iterator.level - 1, 1, ACC_ALL);
2998
2999 link_shadow_page(vcpu, iterator.sptep, sp);
3000 }
3001 }
3002 return emulate;
3003}
3004
3005static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3006{
3007 siginfo_t info;
3008
3009 clear_siginfo(&info);
3010 info.si_signo = SIGBUS;
3011 info.si_errno = 0;
3012 info.si_code = BUS_MCEERR_AR;
3013 info.si_addr = (void __user *)address;
3014 info.si_addr_lsb = PAGE_SHIFT;
3015
3016 send_sig_info(SIGBUS, &info, tsk);
3017}
3018
3019static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3020{
3021
3022
3023
3024
3025
3026 if (pfn == KVM_PFN_ERR_RO_FAULT)
3027 return RET_PF_EMULATE;
3028
3029 if (pfn == KVM_PFN_ERR_HWPOISON) {
3030 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3031 return RET_PF_RETRY;
3032 }
3033
3034 return -EFAULT;
3035}
3036
3037static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3038 gfn_t *gfnp, kvm_pfn_t *pfnp,
3039 int *levelp)
3040{
3041 kvm_pfn_t pfn = *pfnp;
3042 gfn_t gfn = *gfnp;
3043 int level = *levelp;
3044
3045
3046
3047
3048
3049
3050
3051 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3052 level == PT_PAGE_TABLE_LEVEL &&
3053 PageTransCompoundMap(pfn_to_page(pfn)) &&
3054 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3055 unsigned long mask;
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065 *levelp = level = PT_DIRECTORY_LEVEL;
3066 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3067 VM_BUG_ON((gfn & mask) != (pfn & mask));
3068 if (pfn & mask) {
3069 gfn &= ~mask;
3070 *gfnp = gfn;
3071 kvm_release_pfn_clean(pfn);
3072 pfn &= ~mask;
3073 kvm_get_pfn(pfn);
3074 *pfnp = pfn;
3075 }
3076 }
3077}
3078
3079static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3080 kvm_pfn_t pfn, unsigned access, int *ret_val)
3081{
3082
3083 if (unlikely(is_error_pfn(pfn))) {
3084 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3085 return true;
3086 }
3087
3088 if (unlikely(is_noslot_pfn(pfn)))
3089 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3090
3091 return false;
3092}
3093
3094static bool page_fault_can_be_fast(u32 error_code)
3095{
3096
3097
3098
3099
3100 if (unlikely(error_code & PFERR_RSVD_MASK))
3101 return false;
3102
3103
3104 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3105 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3106 return false;
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122 return shadow_acc_track_mask != 0 ||
3123 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3124 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3125}
3126
3127
3128
3129
3130
3131static bool
3132fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3133 u64 *sptep, u64 old_spte, u64 new_spte)
3134{
3135 gfn_t gfn;
3136
3137 WARN_ON(!sp->role.direct);
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3152 return false;
3153
3154 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3155
3156
3157
3158
3159 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3160 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3161 }
3162
3163 return true;
3164}
3165
3166static bool is_access_allowed(u32 fault_err_code, u64 spte)
3167{
3168 if (fault_err_code & PFERR_FETCH_MASK)
3169 return is_executable_pte(spte);
3170
3171 if (fault_err_code & PFERR_WRITE_MASK)
3172 return is_writable_pte(spte);
3173
3174
3175 return spte & PT_PRESENT_MASK;
3176}
3177
3178
3179
3180
3181
3182
3183static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3184 u32 error_code)
3185{
3186 struct kvm_shadow_walk_iterator iterator;
3187 struct kvm_mmu_page *sp;
3188 bool fault_handled = false;
3189 u64 spte = 0ull;
3190 uint retry_count = 0;
3191
3192 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3193 return false;
3194
3195 if (!page_fault_can_be_fast(error_code))
3196 return false;
3197
3198 walk_shadow_page_lockless_begin(vcpu);
3199
3200 do {
3201 u64 new_spte;
3202
3203 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3204 if (!is_shadow_present_pte(spte) ||
3205 iterator.level < level)
3206 break;
3207
3208 sp = page_header(__pa(iterator.sptep));
3209 if (!is_last_spte(spte, sp->role.level))
3210 break;
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222 if (is_access_allowed(error_code, spte)) {
3223 fault_handled = true;
3224 break;
3225 }
3226
3227 new_spte = spte;
3228
3229 if (is_access_track_spte(spte))
3230 new_spte = restore_acc_track_spte(new_spte);
3231
3232
3233
3234
3235
3236
3237 if ((error_code & PFERR_WRITE_MASK) &&
3238 spte_can_locklessly_be_made_writable(spte))
3239 {
3240 new_spte |= PT_WRITABLE_MASK;
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3254 break;
3255 }
3256
3257
3258 if (new_spte == spte ||
3259 !is_access_allowed(error_code, new_spte))
3260 break;
3261
3262
3263
3264
3265
3266
3267 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3268 iterator.sptep, spte,
3269 new_spte);
3270 if (fault_handled)
3271 break;
3272
3273 if (++retry_count > 4) {
3274 printk_once(KERN_WARNING
3275 "kvm: Fast #PF retrying more than 4 times.\n");
3276 break;
3277 }
3278
3279 } while (true);
3280
3281 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3282 spte, fault_handled);
3283 walk_shadow_page_lockless_end(vcpu);
3284
3285 return fault_handled;
3286}
3287
3288static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3289 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3290static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3291
3292static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3293 gfn_t gfn, bool prefault)
3294{
3295 int r;
3296 int level;
3297 bool force_pt_level = false;
3298 kvm_pfn_t pfn;
3299 unsigned long mmu_seq;
3300 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3301
3302 level = mapping_level(vcpu, gfn, &force_pt_level);
3303 if (likely(!force_pt_level)) {
3304
3305
3306
3307
3308
3309 if (level > PT_DIRECTORY_LEVEL)
3310 level = PT_DIRECTORY_LEVEL;
3311
3312 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3313 }
3314
3315 if (fast_page_fault(vcpu, v, level, error_code))
3316 return RET_PF_RETRY;
3317
3318 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3319 smp_rmb();
3320
3321 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3322 return RET_PF_RETRY;
3323
3324 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3325 return r;
3326
3327 spin_lock(&vcpu->kvm->mmu_lock);
3328 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3329 goto out_unlock;
3330 if (make_mmu_pages_available(vcpu) < 0)
3331 goto out_unlock;
3332 if (likely(!force_pt_level))
3333 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3334 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3335 spin_unlock(&vcpu->kvm->mmu_lock);
3336
3337 return r;
3338
3339out_unlock:
3340 spin_unlock(&vcpu->kvm->mmu_lock);
3341 kvm_release_pfn_clean(pfn);
3342 return RET_PF_RETRY;
3343}
3344
3345static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3346 struct list_head *invalid_list)
3347{
3348 struct kvm_mmu_page *sp;
3349
3350 if (!VALID_PAGE(*root_hpa))
3351 return;
3352
3353 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3354 --sp->root_count;
3355 if (!sp->root_count && sp->role.invalid)
3356 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3357
3358 *root_hpa = INVALID_PAGE;
3359}
3360
3361void kvm_mmu_free_roots(struct kvm_vcpu *vcpu)
3362{
3363 int i;
3364 LIST_HEAD(invalid_list);
3365 struct kvm_mmu *mmu = &vcpu->arch.mmu;
3366
3367 if (!VALID_PAGE(mmu->root_hpa))
3368 return;
3369
3370 spin_lock(&vcpu->kvm->mmu_lock);
3371
3372 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3373 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3374 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa, &invalid_list);
3375 } else {
3376 for (i = 0; i < 4; ++i)
3377 if (mmu->pae_root[i] != 0)
3378 mmu_free_root_page(vcpu->kvm, &mmu->pae_root[i],
3379 &invalid_list);
3380 mmu->root_hpa = INVALID_PAGE;
3381 }
3382
3383 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3384 spin_unlock(&vcpu->kvm->mmu_lock);
3385}
3386EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3387
3388static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3389{
3390 int ret = 0;
3391
3392 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3393 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3394 ret = 1;
3395 }
3396
3397 return ret;
3398}
3399
3400static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3401{
3402 struct kvm_mmu_page *sp;
3403 unsigned i;
3404
3405 if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3406 spin_lock(&vcpu->kvm->mmu_lock);
3407 if(make_mmu_pages_available(vcpu) < 0) {
3408 spin_unlock(&vcpu->kvm->mmu_lock);
3409 return -ENOSPC;
3410 }
3411 sp = kvm_mmu_get_page(vcpu, 0, 0,
3412 vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3413 ++sp->root_count;
3414 spin_unlock(&vcpu->kvm->mmu_lock);
3415 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3416 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3417 for (i = 0; i < 4; ++i) {
3418 hpa_t root = vcpu->arch.mmu.pae_root[i];
3419
3420 MMU_WARN_ON(VALID_PAGE(root));
3421 spin_lock(&vcpu->kvm->mmu_lock);
3422 if (make_mmu_pages_available(vcpu) < 0) {
3423 spin_unlock(&vcpu->kvm->mmu_lock);
3424 return -ENOSPC;
3425 }
3426 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3427 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3428 root = __pa(sp->spt);
3429 ++sp->root_count;
3430 spin_unlock(&vcpu->kvm->mmu_lock);
3431 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3432 }
3433 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3434 } else
3435 BUG();
3436
3437 return 0;
3438}
3439
3440static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3441{
3442 struct kvm_mmu_page *sp;
3443 u64 pdptr, pm_mask;
3444 gfn_t root_gfn;
3445 int i;
3446
3447 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3448
3449 if (mmu_check_root(vcpu, root_gfn))
3450 return 1;
3451
3452
3453
3454
3455
3456 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3457 hpa_t root = vcpu->arch.mmu.root_hpa;
3458
3459 MMU_WARN_ON(VALID_PAGE(root));
3460
3461 spin_lock(&vcpu->kvm->mmu_lock);
3462 if (make_mmu_pages_available(vcpu) < 0) {
3463 spin_unlock(&vcpu->kvm->mmu_lock);
3464 return -ENOSPC;
3465 }
3466 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3467 vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3468 root = __pa(sp->spt);
3469 ++sp->root_count;
3470 spin_unlock(&vcpu->kvm->mmu_lock);
3471 vcpu->arch.mmu.root_hpa = root;
3472 return 0;
3473 }
3474
3475
3476
3477
3478
3479
3480 pm_mask = PT_PRESENT_MASK;
3481 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3482 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3483
3484 for (i = 0; i < 4; ++i) {
3485 hpa_t root = vcpu->arch.mmu.pae_root[i];
3486
3487 MMU_WARN_ON(VALID_PAGE(root));
3488 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3489 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3490 if (!(pdptr & PT_PRESENT_MASK)) {
3491 vcpu->arch.mmu.pae_root[i] = 0;
3492 continue;
3493 }
3494 root_gfn = pdptr >> PAGE_SHIFT;
3495 if (mmu_check_root(vcpu, root_gfn))
3496 return 1;
3497 }
3498 spin_lock(&vcpu->kvm->mmu_lock);
3499 if (make_mmu_pages_available(vcpu) < 0) {
3500 spin_unlock(&vcpu->kvm->mmu_lock);
3501 return -ENOSPC;
3502 }
3503 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3504 0, ACC_ALL);
3505 root = __pa(sp->spt);
3506 ++sp->root_count;
3507 spin_unlock(&vcpu->kvm->mmu_lock);
3508
3509 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3510 }
3511 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3512
3513
3514
3515
3516
3517 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3518 if (vcpu->arch.mmu.lm_root == NULL) {
3519
3520
3521
3522
3523
3524 u64 *lm_root;
3525
3526 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3527 if (lm_root == NULL)
3528 return 1;
3529
3530 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3531
3532 vcpu->arch.mmu.lm_root = lm_root;
3533 }
3534
3535 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3536 }
3537
3538 return 0;
3539}
3540
3541static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3542{
3543 if (vcpu->arch.mmu.direct_map)
3544 return mmu_alloc_direct_roots(vcpu);
3545 else
3546 return mmu_alloc_shadow_roots(vcpu);
3547}
3548
3549static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3550{
3551 int i;
3552 struct kvm_mmu_page *sp;
3553
3554 if (vcpu->arch.mmu.direct_map)
3555 return;
3556
3557 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3558 return;
3559
3560 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3561 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3562 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3563 hpa_t root = vcpu->arch.mmu.root_hpa;
3564 sp = page_header(root);
3565 mmu_sync_children(vcpu, sp);
3566 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3567 return;
3568 }
3569 for (i = 0; i < 4; ++i) {
3570 hpa_t root = vcpu->arch.mmu.pae_root[i];
3571
3572 if (root && VALID_PAGE(root)) {
3573 root &= PT64_BASE_ADDR_MASK;
3574 sp = page_header(root);
3575 mmu_sync_children(vcpu, sp);
3576 }
3577 }
3578 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3579}
3580
3581void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3582{
3583 spin_lock(&vcpu->kvm->mmu_lock);
3584 mmu_sync_roots(vcpu);
3585 spin_unlock(&vcpu->kvm->mmu_lock);
3586}
3587EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3588
3589static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3590 u32 access, struct x86_exception *exception)
3591{
3592 if (exception)
3593 exception->error_code = 0;
3594 return vaddr;
3595}
3596
3597static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3598 u32 access,
3599 struct x86_exception *exception)
3600{
3601 if (exception)
3602 exception->error_code = 0;
3603 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3604}
3605
3606static bool
3607__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3608{
3609 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3610
3611 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3612 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3613}
3614
3615static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3616{
3617 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3618}
3619
3620static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3621{
3622 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3623}
3624
3625static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3626{
3627
3628
3629
3630
3631 if (mmu_is_nested(vcpu))
3632 return false;
3633
3634 if (direct)
3635 return vcpu_match_mmio_gpa(vcpu, addr);
3636
3637 return vcpu_match_mmio_gva(vcpu, addr);
3638}
3639
3640
3641static bool
3642walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3643{
3644 struct kvm_shadow_walk_iterator iterator;
3645 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3646 int root, leaf;
3647 bool reserved = false;
3648
3649 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3650 goto exit;
3651
3652 walk_shadow_page_lockless_begin(vcpu);
3653
3654 for (shadow_walk_init(&iterator, vcpu, addr),
3655 leaf = root = iterator.level;
3656 shadow_walk_okay(&iterator);
3657 __shadow_walk_next(&iterator, spte)) {
3658 spte = mmu_spte_get_lockless(iterator.sptep);
3659
3660 sptes[leaf - 1] = spte;
3661 leaf--;
3662
3663 if (!is_shadow_present_pte(spte))
3664 break;
3665
3666 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3667 iterator.level);
3668 }
3669
3670 walk_shadow_page_lockless_end(vcpu);
3671
3672 if (reserved) {
3673 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3674 __func__, addr);
3675 while (root > leaf) {
3676 pr_err("------ spte 0x%llx level %d.\n",
3677 sptes[root - 1], root);
3678 root--;
3679 }
3680 }
3681exit:
3682 *sptep = spte;
3683 return reserved;
3684}
3685
3686static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3687{
3688 u64 spte;
3689 bool reserved;
3690
3691 if (mmio_info_in_cache(vcpu, addr, direct))
3692 return RET_PF_EMULATE;
3693
3694 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3695 if (WARN_ON(reserved))
3696 return -EINVAL;
3697
3698 if (is_mmio_spte(spte)) {
3699 gfn_t gfn = get_mmio_spte_gfn(spte);
3700 unsigned access = get_mmio_spte_access(spte);
3701
3702 if (!check_mmio_spte(vcpu, spte))
3703 return RET_PF_INVALID;
3704
3705 if (direct)
3706 addr = 0;
3707
3708 trace_handle_mmio_page_fault(addr, gfn, access);
3709 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3710 return RET_PF_EMULATE;
3711 }
3712
3713
3714
3715
3716
3717 return RET_PF_RETRY;
3718}
3719
3720static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3721 u32 error_code, gfn_t gfn)
3722{
3723 if (unlikely(error_code & PFERR_RSVD_MASK))
3724 return false;
3725
3726 if (!(error_code & PFERR_PRESENT_MASK) ||
3727 !(error_code & PFERR_WRITE_MASK))
3728 return false;
3729
3730
3731
3732
3733
3734 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3735 return true;
3736
3737 return false;
3738}
3739
3740static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3741{
3742 struct kvm_shadow_walk_iterator iterator;
3743 u64 spte;
3744
3745 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3746 return;
3747
3748 walk_shadow_page_lockless_begin(vcpu);
3749 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3750 clear_sp_write_flooding_count(iterator.sptep);
3751 if (!is_shadow_present_pte(spte))
3752 break;
3753 }
3754 walk_shadow_page_lockless_end(vcpu);
3755}
3756
3757static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3758 u32 error_code, bool prefault)
3759{
3760 gfn_t gfn = gva >> PAGE_SHIFT;
3761 int r;
3762
3763 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3764
3765 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3766 return RET_PF_EMULATE;
3767
3768 r = mmu_topup_memory_caches(vcpu);
3769 if (r)
3770 return r;
3771
3772 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3773
3774
3775 return nonpaging_map(vcpu, gva & PAGE_MASK,
3776 error_code, gfn, prefault);
3777}
3778
3779static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3780{
3781 struct kvm_arch_async_pf arch;
3782
3783 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3784 arch.gfn = gfn;
3785 arch.direct_map = vcpu->arch.mmu.direct_map;
3786 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3787
3788 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3789}
3790
3791bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3792{
3793 if (unlikely(!lapic_in_kernel(vcpu) ||
3794 kvm_event_needs_reinjection(vcpu) ||
3795 vcpu->arch.exception.pending))
3796 return false;
3797
3798 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3799 return false;
3800
3801 return kvm_x86_ops->interrupt_allowed(vcpu);
3802}
3803
3804static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3805 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3806{
3807 struct kvm_memory_slot *slot;
3808 bool async;
3809
3810
3811
3812
3813 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
3814 *pfn = KVM_PFN_NOSLOT;
3815 return false;
3816 }
3817
3818 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3819 async = false;
3820 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3821 if (!async)
3822 return false;
3823
3824 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3825 trace_kvm_try_async_get_page(gva, gfn);
3826 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3827 trace_kvm_async_pf_doublefault(gva, gfn);
3828 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3829 return true;
3830 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3831 return true;
3832 }
3833
3834 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3835 return false;
3836}
3837
3838int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3839 u64 fault_address, char *insn, int insn_len)
3840{
3841 int r = 1;
3842
3843 switch (vcpu->arch.apf.host_apf_reason) {
3844 default:
3845 trace_kvm_page_fault(fault_address, error_code);
3846
3847 if (kvm_event_needs_reinjection(vcpu))
3848 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3849 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3850 insn_len);
3851 break;
3852 case KVM_PV_REASON_PAGE_NOT_PRESENT:
3853 vcpu->arch.apf.host_apf_reason = 0;
3854 local_irq_disable();
3855 kvm_async_pf_task_wait(fault_address, 0);
3856 local_irq_enable();
3857 break;
3858 case KVM_PV_REASON_PAGE_READY:
3859 vcpu->arch.apf.host_apf_reason = 0;
3860 local_irq_disable();
3861 kvm_async_pf_task_wake(fault_address);
3862 local_irq_enable();
3863 break;
3864 }
3865 return r;
3866}
3867EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3868
3869static bool
3870check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3871{
3872 int page_num = KVM_PAGES_PER_HPAGE(level);
3873
3874 gfn &= ~(page_num - 1);
3875
3876 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3877}
3878
3879static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3880 bool prefault)
3881{
3882 kvm_pfn_t pfn;
3883 int r;
3884 int level;
3885 bool force_pt_level;
3886 gfn_t gfn = gpa >> PAGE_SHIFT;
3887 unsigned long mmu_seq;
3888 int write = error_code & PFERR_WRITE_MASK;
3889 bool map_writable;
3890
3891 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3892
3893 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3894 return RET_PF_EMULATE;
3895
3896 r = mmu_topup_memory_caches(vcpu);
3897 if (r)
3898 return r;
3899
3900 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3901 PT_DIRECTORY_LEVEL);
3902 level = mapping_level(vcpu, gfn, &force_pt_level);
3903 if (likely(!force_pt_level)) {
3904 if (level > PT_DIRECTORY_LEVEL &&
3905 !check_hugepage_cache_consistency(vcpu, gfn, level))
3906 level = PT_DIRECTORY_LEVEL;
3907 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3908 }
3909
3910 if (fast_page_fault(vcpu, gpa, level, error_code))
3911 return RET_PF_RETRY;
3912
3913 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3914 smp_rmb();
3915
3916 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3917 return RET_PF_RETRY;
3918
3919 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3920 return r;
3921
3922 spin_lock(&vcpu->kvm->mmu_lock);
3923 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3924 goto out_unlock;
3925 if (make_mmu_pages_available(vcpu) < 0)
3926 goto out_unlock;
3927 if (likely(!force_pt_level))
3928 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3929 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3930 spin_unlock(&vcpu->kvm->mmu_lock);
3931
3932 return r;
3933
3934out_unlock:
3935 spin_unlock(&vcpu->kvm->mmu_lock);
3936 kvm_release_pfn_clean(pfn);
3937 return RET_PF_RETRY;
3938}
3939
3940static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3941 struct kvm_mmu *context)
3942{
3943 context->page_fault = nonpaging_page_fault;
3944 context->gva_to_gpa = nonpaging_gva_to_gpa;
3945 context->sync_page = nonpaging_sync_page;
3946 context->invlpg = nonpaging_invlpg;
3947 context->update_pte = nonpaging_update_pte;
3948 context->root_level = 0;
3949 context->shadow_root_level = PT32E_ROOT_LEVEL;
3950 context->root_hpa = INVALID_PAGE;
3951 context->direct_map = true;
3952 context->nx = false;
3953}
3954
3955void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3956{
3957 kvm_mmu_free_roots(vcpu);
3958}
3959
3960static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3961{
3962 return kvm_read_cr3(vcpu);
3963}
3964
3965static void inject_page_fault(struct kvm_vcpu *vcpu,
3966 struct x86_exception *fault)
3967{
3968 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3969}
3970
3971static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3972 unsigned access, int *nr_present)
3973{
3974 if (unlikely(is_mmio_spte(*sptep))) {
3975 if (gfn != get_mmio_spte_gfn(*sptep)) {
3976 mmu_spte_clear_no_track(sptep);
3977 return true;
3978 }
3979
3980 (*nr_present)++;
3981 mark_mmio_spte(vcpu, sptep, gfn, access);
3982 return true;
3983 }
3984
3985 return false;
3986}
3987
3988static inline bool is_last_gpte(struct kvm_mmu *mmu,
3989 unsigned level, unsigned gpte)
3990{
3991
3992
3993
3994
3995
3996 gpte &= level - mmu->last_nonleaf_level;
3997
3998
3999
4000
4001
4002
4003 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4004
4005 return gpte & PT_PAGE_SIZE_MASK;
4006}
4007
4008#define PTTYPE_EPT 18
4009#define PTTYPE PTTYPE_EPT
4010#include "paging_tmpl.h"
4011#undef PTTYPE
4012
4013#define PTTYPE 64
4014#include "paging_tmpl.h"
4015#undef PTTYPE
4016
4017#define PTTYPE 32
4018#include "paging_tmpl.h"
4019#undef PTTYPE
4020
4021static void
4022__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4023 struct rsvd_bits_validate *rsvd_check,
4024 int maxphyaddr, int level, bool nx, bool gbpages,
4025 bool pse, bool amd)
4026{
4027 u64 exb_bit_rsvd = 0;
4028 u64 gbpages_bit_rsvd = 0;
4029 u64 nonleaf_bit8_rsvd = 0;
4030
4031 rsvd_check->bad_mt_xwr = 0;
4032
4033 if (!nx)
4034 exb_bit_rsvd = rsvd_bits(63, 63);
4035 if (!gbpages)
4036 gbpages_bit_rsvd = rsvd_bits(7, 7);
4037
4038
4039
4040
4041
4042 if (amd)
4043 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4044
4045 switch (level) {
4046 case PT32_ROOT_LEVEL:
4047
4048 rsvd_check->rsvd_bits_mask[0][1] = 0;
4049 rsvd_check->rsvd_bits_mask[0][0] = 0;
4050 rsvd_check->rsvd_bits_mask[1][0] =
4051 rsvd_check->rsvd_bits_mask[0][0];
4052
4053 if (!pse) {
4054 rsvd_check->rsvd_bits_mask[1][1] = 0;
4055 break;
4056 }
4057
4058 if (is_cpuid_PSE36())
4059
4060 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4061 else
4062
4063 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4064 break;
4065 case PT32E_ROOT_LEVEL:
4066 rsvd_check->rsvd_bits_mask[0][2] =
4067 rsvd_bits(maxphyaddr, 63) |
4068 rsvd_bits(5, 8) | rsvd_bits(1, 2);
4069 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4070 rsvd_bits(maxphyaddr, 62);
4071 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4072 rsvd_bits(maxphyaddr, 62);
4073 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4074 rsvd_bits(maxphyaddr, 62) |
4075 rsvd_bits(13, 20);
4076 rsvd_check->rsvd_bits_mask[1][0] =
4077 rsvd_check->rsvd_bits_mask[0][0];
4078 break;
4079 case PT64_ROOT_5LEVEL:
4080 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4081 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4082 rsvd_bits(maxphyaddr, 51);
4083 rsvd_check->rsvd_bits_mask[1][4] =
4084 rsvd_check->rsvd_bits_mask[0][4];
4085 case PT64_ROOT_4LEVEL:
4086 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4087 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4088 rsvd_bits(maxphyaddr, 51);
4089 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4090 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4091 rsvd_bits(maxphyaddr, 51);
4092 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4093 rsvd_bits(maxphyaddr, 51);
4094 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4095 rsvd_bits(maxphyaddr, 51);
4096 rsvd_check->rsvd_bits_mask[1][3] =
4097 rsvd_check->rsvd_bits_mask[0][3];
4098 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4099 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4100 rsvd_bits(13, 29);
4101 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4102 rsvd_bits(maxphyaddr, 51) |
4103 rsvd_bits(13, 20);
4104 rsvd_check->rsvd_bits_mask[1][0] =
4105 rsvd_check->rsvd_bits_mask[0][0];
4106 break;
4107 }
4108}
4109
4110static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4111 struct kvm_mmu *context)
4112{
4113 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4114 cpuid_maxphyaddr(vcpu), context->root_level,
4115 context->nx,
4116 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4117 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4118}
4119
4120static void
4121__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4122 int maxphyaddr, bool execonly)
4123{
4124 u64 bad_mt_xwr;
4125
4126 rsvd_check->rsvd_bits_mask[0][4] =
4127 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4128 rsvd_check->rsvd_bits_mask[0][3] =
4129 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4130 rsvd_check->rsvd_bits_mask[0][2] =
4131 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4132 rsvd_check->rsvd_bits_mask[0][1] =
4133 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4134 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4135
4136
4137 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4138 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4139 rsvd_check->rsvd_bits_mask[1][2] =
4140 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4141 rsvd_check->rsvd_bits_mask[1][1] =
4142 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4143 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4144
4145 bad_mt_xwr = 0xFFull << (2 * 8);
4146 bad_mt_xwr |= 0xFFull << (3 * 8);
4147 bad_mt_xwr |= 0xFFull << (7 * 8);
4148 bad_mt_xwr |= REPEAT_BYTE(1ull << 2);
4149 bad_mt_xwr |= REPEAT_BYTE(1ull << 6);
4150 if (!execonly) {
4151
4152 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4153 }
4154 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4155}
4156
4157static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4158 struct kvm_mmu *context, bool execonly)
4159{
4160 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4161 cpuid_maxphyaddr(vcpu), execonly);
4162}
4163
4164
4165
4166
4167
4168
4169void
4170reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4171{
4172 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4173 struct rsvd_bits_validate *shadow_zero_check;
4174 int i;
4175
4176
4177
4178
4179
4180 shadow_zero_check = &context->shadow_zero_check;
4181 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4182 boot_cpu_data.x86_phys_bits,
4183 context->shadow_root_level, uses_nx,
4184 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4185 is_pse(vcpu), true);
4186
4187 if (!shadow_me_mask)
4188 return;
4189
4190 for (i = context->shadow_root_level; --i >= 0;) {
4191 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4192 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4193 }
4194
4195}
4196EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4197
4198static inline bool boot_cpu_is_amd(void)
4199{
4200 WARN_ON_ONCE(!tdp_enabled);
4201 return shadow_x_mask == 0;
4202}
4203
4204
4205
4206
4207
4208static void
4209reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4210 struct kvm_mmu *context)
4211{
4212 struct rsvd_bits_validate *shadow_zero_check;
4213 int i;
4214
4215 shadow_zero_check = &context->shadow_zero_check;
4216
4217 if (boot_cpu_is_amd())
4218 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4219 boot_cpu_data.x86_phys_bits,
4220 context->shadow_root_level, false,
4221 boot_cpu_has(X86_FEATURE_GBPAGES),
4222 true, true);
4223 else
4224 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4225 boot_cpu_data.x86_phys_bits,
4226 false);
4227
4228 if (!shadow_me_mask)
4229 return;
4230
4231 for (i = context->shadow_root_level; --i >= 0;) {
4232 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4233 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4234 }
4235}
4236
4237
4238
4239
4240
4241static void
4242reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4243 struct kvm_mmu *context, bool execonly)
4244{
4245 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4246 boot_cpu_data.x86_phys_bits, execonly);
4247}
4248
4249#define BYTE_MASK(access) \
4250 ((1 & (access) ? 2 : 0) | \
4251 (2 & (access) ? 4 : 0) | \
4252 (3 & (access) ? 8 : 0) | \
4253 (4 & (access) ? 16 : 0) | \
4254 (5 & (access) ? 32 : 0) | \
4255 (6 & (access) ? 64 : 0) | \
4256 (7 & (access) ? 128 : 0))
4257
4258
4259static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4260 struct kvm_mmu *mmu, bool ept)
4261{
4262 unsigned byte;
4263
4264 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4265 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4266 const u8 u = BYTE_MASK(ACC_USER_MASK);
4267
4268 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4269 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4270 bool cr0_wp = is_write_protection(vcpu);
4271
4272 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4273 unsigned pfec = byte << 1;
4274
4275
4276
4277
4278
4279
4280
4281 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4282
4283 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4284
4285 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4286
4287 u8 smepf = 0;
4288
4289 u8 smapf = 0;
4290
4291 if (!ept) {
4292
4293 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4294
4295
4296 if (!mmu->nx)
4297 ff = 0;
4298
4299
4300 if (!cr0_wp)
4301 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4302
4303
4304 if (cr4_smep)
4305 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323 if (cr4_smap)
4324 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4325 }
4326
4327 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4328 }
4329}
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4356 bool ept)
4357{
4358 unsigned bit;
4359 bool wp;
4360
4361 if (ept) {
4362 mmu->pkru_mask = 0;
4363 return;
4364 }
4365
4366
4367 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4368 mmu->pkru_mask = 0;
4369 return;
4370 }
4371
4372 wp = is_write_protection(vcpu);
4373
4374 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4375 unsigned pfec, pkey_bits;
4376 bool check_pkey, check_write, ff, uf, wf, pte_user;
4377
4378 pfec = bit << 1;
4379 ff = pfec & PFERR_FETCH_MASK;
4380 uf = pfec & PFERR_USER_MASK;
4381 wf = pfec & PFERR_WRITE_MASK;
4382
4383
4384 pte_user = pfec & PFERR_RSVD_MASK;
4385
4386
4387
4388
4389
4390 check_pkey = (!ff && pte_user);
4391
4392
4393
4394
4395 check_write = check_pkey && wf && (uf || wp);
4396
4397
4398 pkey_bits = !!check_pkey;
4399
4400 pkey_bits |= (!!check_write) << 1;
4401
4402 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4403 }
4404}
4405
4406static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4407{
4408 unsigned root_level = mmu->root_level;
4409
4410 mmu->last_nonleaf_level = root_level;
4411 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4412 mmu->last_nonleaf_level++;
4413}
4414
4415static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4416 struct kvm_mmu *context,
4417 int level)
4418{
4419 context->nx = is_nx(vcpu);
4420 context->root_level = level;
4421
4422 reset_rsvds_bits_mask(vcpu, context);
4423 update_permission_bitmask(vcpu, context, false);
4424 update_pkru_bitmask(vcpu, context, false);
4425 update_last_nonleaf_level(vcpu, context);
4426
4427 MMU_WARN_ON(!is_pae(vcpu));
4428 context->page_fault = paging64_page_fault;
4429 context->gva_to_gpa = paging64_gva_to_gpa;
4430 context->sync_page = paging64_sync_page;
4431 context->invlpg = paging64_invlpg;
4432 context->update_pte = paging64_update_pte;
4433 context->shadow_root_level = level;
4434 context->root_hpa = INVALID_PAGE;
4435 context->direct_map = false;
4436}
4437
4438static void paging64_init_context(struct kvm_vcpu *vcpu,
4439 struct kvm_mmu *context)
4440{
4441 int root_level = is_la57_mode(vcpu) ?
4442 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4443
4444 paging64_init_context_common(vcpu, context, root_level);
4445}
4446
4447static void paging32_init_context(struct kvm_vcpu *vcpu,
4448 struct kvm_mmu *context)
4449{
4450 context->nx = false;
4451 context->root_level = PT32_ROOT_LEVEL;
4452
4453 reset_rsvds_bits_mask(vcpu, context);
4454 update_permission_bitmask(vcpu, context, false);
4455 update_pkru_bitmask(vcpu, context, false);
4456 update_last_nonleaf_level(vcpu, context);
4457
4458 context->page_fault = paging32_page_fault;
4459 context->gva_to_gpa = paging32_gva_to_gpa;
4460 context->sync_page = paging32_sync_page;
4461 context->invlpg = paging32_invlpg;
4462 context->update_pte = paging32_update_pte;
4463 context->shadow_root_level = PT32E_ROOT_LEVEL;
4464 context->root_hpa = INVALID_PAGE;
4465 context->direct_map = false;
4466}
4467
4468static void paging32E_init_context(struct kvm_vcpu *vcpu,
4469 struct kvm_mmu *context)
4470{
4471 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4472}
4473
4474static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4475{
4476 struct kvm_mmu *context = &vcpu->arch.mmu;
4477
4478 context->base_role.word = 0;
4479 context->base_role.guest_mode = is_guest_mode(vcpu);
4480 context->base_role.smm = is_smm(vcpu);
4481 context->base_role.ad_disabled = (shadow_accessed_mask == 0);
4482 context->page_fault = tdp_page_fault;
4483 context->sync_page = nonpaging_sync_page;
4484 context->invlpg = nonpaging_invlpg;
4485 context->update_pte = nonpaging_update_pte;
4486 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4487 context->root_hpa = INVALID_PAGE;
4488 context->direct_map = true;
4489 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4490 context->get_cr3 = get_cr3;
4491 context->get_pdptr = kvm_pdptr_read;
4492 context->inject_page_fault = kvm_inject_page_fault;
4493
4494 if (!is_paging(vcpu)) {
4495 context->nx = false;
4496 context->gva_to_gpa = nonpaging_gva_to_gpa;
4497 context->root_level = 0;
4498 } else if (is_long_mode(vcpu)) {
4499 context->nx = is_nx(vcpu);
4500 context->root_level = is_la57_mode(vcpu) ?
4501 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4502 reset_rsvds_bits_mask(vcpu, context);
4503 context->gva_to_gpa = paging64_gva_to_gpa;
4504 } else if (is_pae(vcpu)) {
4505 context->nx = is_nx(vcpu);
4506 context->root_level = PT32E_ROOT_LEVEL;
4507 reset_rsvds_bits_mask(vcpu, context);
4508 context->gva_to_gpa = paging64_gva_to_gpa;
4509 } else {
4510 context->nx = false;
4511 context->root_level = PT32_ROOT_LEVEL;
4512 reset_rsvds_bits_mask(vcpu, context);
4513 context->gva_to_gpa = paging32_gva_to_gpa;
4514 }
4515
4516 update_permission_bitmask(vcpu, context, false);
4517 update_pkru_bitmask(vcpu, context, false);
4518 update_last_nonleaf_level(vcpu, context);
4519 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4520}
4521
4522void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4523{
4524 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4525 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4526 struct kvm_mmu *context = &vcpu->arch.mmu;
4527
4528 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4529
4530 if (!is_paging(vcpu))
4531 nonpaging_init_context(vcpu, context);
4532 else if (is_long_mode(vcpu))
4533 paging64_init_context(vcpu, context);
4534 else if (is_pae(vcpu))
4535 paging32E_init_context(vcpu, context);
4536 else
4537 paging32_init_context(vcpu, context);
4538
4539 context->base_role.nxe = is_nx(vcpu);
4540 context->base_role.cr4_pae = !!is_pae(vcpu);
4541 context->base_role.cr0_wp = is_write_protection(vcpu);
4542 context->base_role.smep_andnot_wp
4543 = smep && !is_write_protection(vcpu);
4544 context->base_role.smap_andnot_wp
4545 = smap && !is_write_protection(vcpu);
4546 context->base_role.guest_mode = is_guest_mode(vcpu);
4547 context->base_role.smm = is_smm(vcpu);
4548 reset_shadow_zero_bits_mask(vcpu, context);
4549}
4550EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4551
4552void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4553 bool accessed_dirty)
4554{
4555 struct kvm_mmu *context = &vcpu->arch.mmu;
4556
4557 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4558
4559 context->shadow_root_level = PT64_ROOT_4LEVEL;
4560
4561 context->nx = true;
4562 context->ept_ad = accessed_dirty;
4563 context->page_fault = ept_page_fault;
4564 context->gva_to_gpa = ept_gva_to_gpa;
4565 context->sync_page = ept_sync_page;
4566 context->invlpg = ept_invlpg;
4567 context->update_pte = ept_update_pte;
4568 context->root_level = PT64_ROOT_4LEVEL;
4569 context->root_hpa = INVALID_PAGE;
4570 context->direct_map = false;
4571 context->base_role.ad_disabled = !accessed_dirty;
4572 context->base_role.guest_mode = 1;
4573 update_permission_bitmask(vcpu, context, true);
4574 update_pkru_bitmask(vcpu, context, true);
4575 update_last_nonleaf_level(vcpu, context);
4576 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4577 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4578}
4579EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4580
4581static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4582{
4583 struct kvm_mmu *context = &vcpu->arch.mmu;
4584
4585 kvm_init_shadow_mmu(vcpu);
4586 context->set_cr3 = kvm_x86_ops->set_cr3;
4587 context->get_cr3 = get_cr3;
4588 context->get_pdptr = kvm_pdptr_read;
4589 context->inject_page_fault = kvm_inject_page_fault;
4590}
4591
4592static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4593{
4594 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4595
4596 g_context->get_cr3 = get_cr3;
4597 g_context->get_pdptr = kvm_pdptr_read;
4598 g_context->inject_page_fault = kvm_inject_page_fault;
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608 if (!is_paging(vcpu)) {
4609 g_context->nx = false;
4610 g_context->root_level = 0;
4611 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4612 } else if (is_long_mode(vcpu)) {
4613 g_context->nx = is_nx(vcpu);
4614 g_context->root_level = is_la57_mode(vcpu) ?
4615 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4616 reset_rsvds_bits_mask(vcpu, g_context);
4617 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4618 } else if (is_pae(vcpu)) {
4619 g_context->nx = is_nx(vcpu);
4620 g_context->root_level = PT32E_ROOT_LEVEL;
4621 reset_rsvds_bits_mask(vcpu, g_context);
4622 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4623 } else {
4624 g_context->nx = false;
4625 g_context->root_level = PT32_ROOT_LEVEL;
4626 reset_rsvds_bits_mask(vcpu, g_context);
4627 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4628 }
4629
4630 update_permission_bitmask(vcpu, g_context, false);
4631 update_pkru_bitmask(vcpu, g_context, false);
4632 update_last_nonleaf_level(vcpu, g_context);
4633}
4634
4635static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4636{
4637 if (mmu_is_nested(vcpu))
4638 init_kvm_nested_mmu(vcpu);
4639 else if (tdp_enabled)
4640 init_kvm_tdp_mmu(vcpu);
4641 else
4642 init_kvm_softmmu(vcpu);
4643}
4644
4645void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4646{
4647 kvm_mmu_unload(vcpu);
4648 init_kvm_mmu(vcpu);
4649}
4650EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4651
4652int kvm_mmu_load(struct kvm_vcpu *vcpu)
4653{
4654 int r;
4655
4656 r = mmu_topup_memory_caches(vcpu);
4657 if (r)
4658 goto out;
4659 r = mmu_alloc_roots(vcpu);
4660 kvm_mmu_sync_roots(vcpu);
4661 if (r)
4662 goto out;
4663
4664 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4665out:
4666 return r;
4667}
4668EXPORT_SYMBOL_GPL(kvm_mmu_load);
4669
4670void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4671{
4672 kvm_mmu_free_roots(vcpu);
4673 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4674}
4675EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4676
4677static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4678 struct kvm_mmu_page *sp, u64 *spte,
4679 const void *new)
4680{
4681 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4682 ++vcpu->kvm->stat.mmu_pde_zapped;
4683 return;
4684 }
4685
4686 ++vcpu->kvm->stat.mmu_pte_updated;
4687 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4688}
4689
4690static bool need_remote_flush(u64 old, u64 new)
4691{
4692 if (!is_shadow_present_pte(old))
4693 return false;
4694 if (!is_shadow_present_pte(new))
4695 return true;
4696 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4697 return true;
4698 old ^= shadow_nx_mask;
4699 new ^= shadow_nx_mask;
4700 return (old & ~new & PT64_PERM_MASK) != 0;
4701}
4702
4703static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4704 const u8 *new, int *bytes)
4705{
4706 u64 gentry;
4707 int r;
4708
4709
4710
4711
4712
4713
4714 if (is_pae(vcpu) && *bytes == 4) {
4715
4716 *gpa &= ~(gpa_t)7;
4717 *bytes = 8;
4718 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4719 if (r)
4720 gentry = 0;
4721 new = (const u8 *)&gentry;
4722 }
4723
4724 switch (*bytes) {
4725 case 4:
4726 gentry = *(const u32 *)new;
4727 break;
4728 case 8:
4729 gentry = *(const u64 *)new;
4730 break;
4731 default:
4732 gentry = 0;
4733 break;
4734 }
4735
4736 return gentry;
4737}
4738
4739
4740
4741
4742
4743static bool detect_write_flooding(struct kvm_mmu_page *sp)
4744{
4745
4746
4747
4748
4749 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4750 return false;
4751
4752 atomic_inc(&sp->write_flooding_count);
4753 return atomic_read(&sp->write_flooding_count) >= 3;
4754}
4755
4756
4757
4758
4759
4760static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4761 int bytes)
4762{
4763 unsigned offset, pte_size, misaligned;
4764
4765 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4766 gpa, bytes, sp->role.word);
4767
4768 offset = offset_in_page(gpa);
4769 pte_size = sp->role.cr4_pae ? 8 : 4;
4770
4771
4772
4773
4774
4775 if (!(offset & (pte_size - 1)) && bytes == 1)
4776 return false;
4777
4778 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4779 misaligned |= bytes < 4;
4780
4781 return misaligned;
4782}
4783
4784static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4785{
4786 unsigned page_offset, quadrant;
4787 u64 *spte;
4788 int level;
4789
4790 page_offset = offset_in_page(gpa);
4791 level = sp->role.level;
4792 *nspte = 1;
4793 if (!sp->role.cr4_pae) {
4794 page_offset <<= 1;
4795
4796
4797
4798
4799
4800 if (level == PT32_ROOT_LEVEL) {
4801 page_offset &= ~7;
4802 page_offset <<= 1;
4803 *nspte = 2;
4804 }
4805 quadrant = page_offset >> PAGE_SHIFT;
4806 page_offset &= ~PAGE_MASK;
4807 if (quadrant != sp->role.quadrant)
4808 return NULL;
4809 }
4810
4811 spte = &sp->spt[page_offset / sizeof(*spte)];
4812 return spte;
4813}
4814
4815static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4816 const u8 *new, int bytes,
4817 struct kvm_page_track_notifier_node *node)
4818{
4819 gfn_t gfn = gpa >> PAGE_SHIFT;
4820 struct kvm_mmu_page *sp;
4821 LIST_HEAD(invalid_list);
4822 u64 entry, gentry, *spte;
4823 int npte;
4824 bool remote_flush, local_flush;
4825 union kvm_mmu_page_role mask = { };
4826
4827 mask.cr0_wp = 1;
4828 mask.cr4_pae = 1;
4829 mask.nxe = 1;
4830 mask.smep_andnot_wp = 1;
4831 mask.smap_andnot_wp = 1;
4832 mask.smm = 1;
4833 mask.guest_mode = 1;
4834 mask.ad_disabled = 1;
4835
4836
4837
4838
4839
4840 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4841 return;
4842
4843 remote_flush = local_flush = false;
4844
4845 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4846
4847 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4848
4849
4850
4851
4852
4853
4854 mmu_topup_memory_caches(vcpu);
4855
4856 spin_lock(&vcpu->kvm->mmu_lock);
4857 ++vcpu->kvm->stat.mmu_pte_write;
4858 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4859
4860 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4861 if (detect_write_misaligned(sp, gpa, bytes) ||
4862 detect_write_flooding(sp)) {
4863 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4864 ++vcpu->kvm->stat.mmu_flooded;
4865 continue;
4866 }
4867
4868 spte = get_written_sptes(sp, gpa, &npte);
4869 if (!spte)
4870 continue;
4871
4872 local_flush = true;
4873 while (npte--) {
4874 entry = *spte;
4875 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4876 if (gentry &&
4877 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4878 & mask.word) && rmap_can_add(vcpu))
4879 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4880 if (need_remote_flush(entry, *spte))
4881 remote_flush = true;
4882 ++spte;
4883 }
4884 }
4885 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4886 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4887 spin_unlock(&vcpu->kvm->mmu_lock);
4888}
4889
4890int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4891{
4892 gpa_t gpa;
4893 int r;
4894
4895 if (vcpu->arch.mmu.direct_map)
4896 return 0;
4897
4898 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4899
4900 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4901
4902 return r;
4903}
4904EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4905
4906static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
4907{
4908 LIST_HEAD(invalid_list);
4909
4910 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4911 return 0;
4912
4913 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4914 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4915 break;
4916
4917 ++vcpu->kvm->stat.mmu_recycled;
4918 }
4919 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4920
4921 if (!kvm_mmu_available_pages(vcpu->kvm))
4922 return -ENOSPC;
4923 return 0;
4924}
4925
4926int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4927 void *insn, int insn_len)
4928{
4929 int r, emulation_type = EMULTYPE_RETRY;
4930 enum emulation_result er;
4931 bool direct = vcpu->arch.mmu.direct_map;
4932
4933
4934 if (vcpu->arch.mmu.direct_map) {
4935 vcpu->arch.gpa_available = true;
4936 vcpu->arch.gpa_val = cr2;
4937 }
4938
4939 r = RET_PF_INVALID;
4940 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4941 r = handle_mmio_page_fault(vcpu, cr2, direct);
4942 if (r == RET_PF_EMULATE) {
4943 emulation_type = 0;
4944 goto emulate;
4945 }
4946 }
4947
4948 if (r == RET_PF_INVALID) {
4949 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4950 false);
4951 WARN_ON(r == RET_PF_INVALID);
4952 }
4953
4954 if (r == RET_PF_RETRY)
4955 return 1;
4956 if (r < 0)
4957 return r;
4958
4959
4960
4961
4962
4963
4964
4965
4966 if (vcpu->arch.mmu.direct_map &&
4967 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
4968 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4969 return 1;
4970 }
4971
4972 if (mmio_info_in_cache(vcpu, cr2, direct))
4973 emulation_type = 0;
4974emulate:
4975
4976
4977
4978
4979
4980
4981
4982 if (unlikely(insn && !insn_len))
4983 return 1;
4984
4985 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4986
4987 switch (er) {
4988 case EMULATE_DONE:
4989 return 1;
4990 case EMULATE_USER_EXIT:
4991 ++vcpu->stat.mmio_exits;
4992
4993 case EMULATE_FAIL:
4994 return 0;
4995 default:
4996 BUG();
4997 }
4998}
4999EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5000
5001void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5002{
5003 vcpu->arch.mmu.invlpg(vcpu, gva);
5004 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5005 ++vcpu->stat.invlpg;
5006}
5007EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5008
5009void kvm_enable_tdp(void)
5010{
5011 tdp_enabled = true;
5012}
5013EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5014
5015void kvm_disable_tdp(void)
5016{
5017 tdp_enabled = false;
5018}
5019EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5020
5021static void free_mmu_pages(struct kvm_vcpu *vcpu)
5022{
5023 free_page((unsigned long)vcpu->arch.mmu.pae_root);
5024 free_page((unsigned long)vcpu->arch.mmu.lm_root);
5025}
5026
5027static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5028{
5029 struct page *page;
5030 int i;
5031
5032
5033
5034
5035
5036
5037 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5038 if (!page)
5039 return -ENOMEM;
5040
5041 vcpu->arch.mmu.pae_root = page_address(page);
5042 for (i = 0; i < 4; ++i)
5043 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5044
5045 return 0;
5046}
5047
5048int kvm_mmu_create(struct kvm_vcpu *vcpu)
5049{
5050 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5051 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5052 vcpu->arch.mmu.translate_gpa = translate_gpa;
5053 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5054
5055 return alloc_mmu_pages(vcpu);
5056}
5057
5058void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5059{
5060 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5061
5062 init_kvm_mmu(vcpu);
5063}
5064
5065static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5066 struct kvm_memory_slot *slot,
5067 struct kvm_page_track_notifier_node *node)
5068{
5069 kvm_mmu_invalidate_zap_all_pages(kvm);
5070}
5071
5072void kvm_mmu_init_vm(struct kvm *kvm)
5073{
5074 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5075
5076 node->track_write = kvm_mmu_pte_write;
5077 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5078 kvm_page_track_register_notifier(kvm, node);
5079}
5080
5081void kvm_mmu_uninit_vm(struct kvm *kvm)
5082{
5083 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5084
5085 kvm_page_track_unregister_notifier(kvm, node);
5086}
5087
5088
5089typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5090
5091
5092static __always_inline bool
5093slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5094 slot_level_handler fn, int start_level, int end_level,
5095 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5096{
5097 struct slot_rmap_walk_iterator iterator;
5098 bool flush = false;
5099
5100 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5101 end_gfn, &iterator) {
5102 if (iterator.rmap)
5103 flush |= fn(kvm, iterator.rmap);
5104
5105 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5106 if (flush && lock_flush_tlb) {
5107 kvm_flush_remote_tlbs(kvm);
5108 flush = false;
5109 }
5110 cond_resched_lock(&kvm->mmu_lock);
5111 }
5112 }
5113
5114 if (flush && lock_flush_tlb) {
5115 kvm_flush_remote_tlbs(kvm);
5116 flush = false;
5117 }
5118
5119 return flush;
5120}
5121
5122static __always_inline bool
5123slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5124 slot_level_handler fn, int start_level, int end_level,
5125 bool lock_flush_tlb)
5126{
5127 return slot_handle_level_range(kvm, memslot, fn, start_level,
5128 end_level, memslot->base_gfn,
5129 memslot->base_gfn + memslot->npages - 1,
5130 lock_flush_tlb);
5131}
5132
5133static __always_inline bool
5134slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5135 slot_level_handler fn, bool lock_flush_tlb)
5136{
5137 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5138 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5139}
5140
5141static __always_inline bool
5142slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5143 slot_level_handler fn, bool lock_flush_tlb)
5144{
5145 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5146 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5147}
5148
5149static __always_inline bool
5150slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5151 slot_level_handler fn, bool lock_flush_tlb)
5152{
5153 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5154 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5155}
5156
5157void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5158{
5159 struct kvm_memslots *slots;
5160 struct kvm_memory_slot *memslot;
5161 int i;
5162
5163 spin_lock(&kvm->mmu_lock);
5164 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5165 slots = __kvm_memslots(kvm, i);
5166 kvm_for_each_memslot(memslot, slots) {
5167 gfn_t start, end;
5168
5169 start = max(gfn_start, memslot->base_gfn);
5170 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5171 if (start >= end)
5172 continue;
5173
5174 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5175 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5176 start, end - 1, true);
5177 }
5178 }
5179
5180 spin_unlock(&kvm->mmu_lock);
5181}
5182
5183static bool slot_rmap_write_protect(struct kvm *kvm,
5184 struct kvm_rmap_head *rmap_head)
5185{
5186 return __rmap_write_protect(kvm, rmap_head, false);
5187}
5188
5189void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5190 struct kvm_memory_slot *memslot)
5191{
5192 bool flush;
5193
5194 spin_lock(&kvm->mmu_lock);
5195 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5196 false);
5197 spin_unlock(&kvm->mmu_lock);
5198
5199
5200
5201
5202
5203
5204 lockdep_assert_held(&kvm->slots_lock);
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217 if (flush)
5218 kvm_flush_remote_tlbs(kvm);
5219}
5220
5221static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5222 struct kvm_rmap_head *rmap_head)
5223{
5224 u64 *sptep;
5225 struct rmap_iterator iter;
5226 int need_tlb_flush = 0;
5227 kvm_pfn_t pfn;
5228 struct kvm_mmu_page *sp;
5229
5230restart:
5231 for_each_rmap_spte(rmap_head, &iter, sptep) {
5232 sp = page_header(__pa(sptep));
5233 pfn = spte_to_pfn(*sptep);
5234
5235
5236
5237
5238
5239
5240
5241
5242 if (sp->role.direct &&
5243 !kvm_is_reserved_pfn(pfn) &&
5244 PageTransCompoundMap(pfn_to_page(pfn))) {
5245 drop_spte(kvm, sptep);
5246 need_tlb_flush = 1;
5247 goto restart;
5248 }
5249 }
5250
5251 return need_tlb_flush;
5252}
5253
5254void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5255 const struct kvm_memory_slot *memslot)
5256{
5257
5258 spin_lock(&kvm->mmu_lock);
5259 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5260 kvm_mmu_zap_collapsible_spte, true);
5261 spin_unlock(&kvm->mmu_lock);
5262}
5263
5264void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5265 struct kvm_memory_slot *memslot)
5266{
5267 bool flush;
5268
5269 spin_lock(&kvm->mmu_lock);
5270 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5271 spin_unlock(&kvm->mmu_lock);
5272
5273 lockdep_assert_held(&kvm->slots_lock);
5274
5275
5276
5277
5278
5279
5280
5281 if (flush)
5282 kvm_flush_remote_tlbs(kvm);
5283}
5284EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5285
5286void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5287 struct kvm_memory_slot *memslot)
5288{
5289 bool flush;
5290
5291 spin_lock(&kvm->mmu_lock);
5292 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5293 false);
5294 spin_unlock(&kvm->mmu_lock);
5295
5296
5297 lockdep_assert_held(&kvm->slots_lock);
5298
5299 if (flush)
5300 kvm_flush_remote_tlbs(kvm);
5301}
5302EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5303
5304void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5305 struct kvm_memory_slot *memslot)
5306{
5307 bool flush;
5308
5309 spin_lock(&kvm->mmu_lock);
5310 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5311 spin_unlock(&kvm->mmu_lock);
5312
5313 lockdep_assert_held(&kvm->slots_lock);
5314
5315
5316 if (flush)
5317 kvm_flush_remote_tlbs(kvm);
5318}
5319EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5320
5321#define BATCH_ZAP_PAGES 10
5322static void kvm_zap_obsolete_pages(struct kvm *kvm)
5323{
5324 struct kvm_mmu_page *sp, *node;
5325 int batch = 0;
5326
5327restart:
5328 list_for_each_entry_safe_reverse(sp, node,
5329 &kvm->arch.active_mmu_pages, link) {
5330 int ret;
5331
5332
5333
5334
5335
5336 if (!is_obsolete_sp(kvm, sp))
5337 break;
5338
5339
5340
5341
5342
5343
5344 if (sp->role.invalid)
5345 continue;
5346
5347
5348
5349
5350
5351 if (batch >= BATCH_ZAP_PAGES &&
5352 cond_resched_lock(&kvm->mmu_lock)) {
5353 batch = 0;
5354 goto restart;
5355 }
5356
5357 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5358 &kvm->arch.zapped_obsolete_pages);
5359 batch += ret;
5360
5361 if (ret)
5362 goto restart;
5363 }
5364
5365
5366
5367
5368
5369 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5370}
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5382{
5383 spin_lock(&kvm->mmu_lock);
5384 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5385 kvm->arch.mmu_valid_gen++;
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396 kvm_reload_remote_mmus(kvm);
5397
5398 kvm_zap_obsolete_pages(kvm);
5399 spin_unlock(&kvm->mmu_lock);
5400}
5401
5402static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5403{
5404 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5405}
5406
5407void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5408{
5409
5410
5411
5412
5413 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5414 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5415 kvm_mmu_invalidate_zap_all_pages(kvm);
5416 }
5417}
5418
5419static unsigned long
5420mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5421{
5422 struct kvm *kvm;
5423 int nr_to_scan = sc->nr_to_scan;
5424 unsigned long freed = 0;
5425
5426 spin_lock(&kvm_lock);
5427
5428 list_for_each_entry(kvm, &vm_list, vm_list) {
5429 int idx;
5430 LIST_HEAD(invalid_list);
5431
5432
5433
5434
5435
5436
5437
5438 if (!nr_to_scan--)
5439 break;
5440
5441
5442
5443
5444
5445
5446 if (!kvm->arch.n_used_mmu_pages &&
5447 !kvm_has_zapped_obsolete_pages(kvm))
5448 continue;
5449
5450 idx = srcu_read_lock(&kvm->srcu);
5451 spin_lock(&kvm->mmu_lock);
5452
5453 if (kvm_has_zapped_obsolete_pages(kvm)) {
5454 kvm_mmu_commit_zap_page(kvm,
5455 &kvm->arch.zapped_obsolete_pages);
5456 goto unlock;
5457 }
5458
5459 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5460 freed++;
5461 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5462
5463unlock:
5464 spin_unlock(&kvm->mmu_lock);
5465 srcu_read_unlock(&kvm->srcu, idx);
5466
5467
5468
5469
5470
5471
5472 list_move_tail(&kvm->vm_list, &vm_list);
5473 break;
5474 }
5475
5476 spin_unlock(&kvm_lock);
5477 return freed;
5478}
5479
5480static unsigned long
5481mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5482{
5483 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5484}
5485
5486static struct shrinker mmu_shrinker = {
5487 .count_objects = mmu_shrink_count,
5488 .scan_objects = mmu_shrink_scan,
5489 .seeks = DEFAULT_SEEKS * 10,
5490};
5491
5492static void mmu_destroy_caches(void)
5493{
5494 kmem_cache_destroy(pte_list_desc_cache);
5495 kmem_cache_destroy(mmu_page_header_cache);
5496}
5497
5498int kvm_mmu_module_init(void)
5499{
5500 int ret = -ENOMEM;
5501
5502 kvm_mmu_clear_all_pte_masks();
5503
5504 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5505 sizeof(struct pte_list_desc),
5506 0, SLAB_ACCOUNT, NULL);
5507 if (!pte_list_desc_cache)
5508 goto out;
5509
5510 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5511 sizeof(struct kvm_mmu_page),
5512 0, SLAB_ACCOUNT, NULL);
5513 if (!mmu_page_header_cache)
5514 goto out;
5515
5516 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5517 goto out;
5518
5519 ret = register_shrinker(&mmu_shrinker);
5520 if (ret)
5521 goto out;
5522
5523 return 0;
5524
5525out:
5526 mmu_destroy_caches();
5527 return ret;
5528}
5529
5530
5531
5532
5533unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5534{
5535 unsigned int nr_mmu_pages;
5536 unsigned int nr_pages = 0;
5537 struct kvm_memslots *slots;
5538 struct kvm_memory_slot *memslot;
5539 int i;
5540
5541 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5542 slots = __kvm_memslots(kvm, i);
5543
5544 kvm_for_each_memslot(memslot, slots)
5545 nr_pages += memslot->npages;
5546 }
5547
5548 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5549 nr_mmu_pages = max(nr_mmu_pages,
5550 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5551
5552 return nr_mmu_pages;
5553}
5554
5555void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5556{
5557 kvm_mmu_unload(vcpu);
5558 free_mmu_pages(vcpu);
5559 mmu_free_memory_caches(vcpu);
5560}
5561
5562void kvm_mmu_module_exit(void)
5563{
5564 mmu_destroy_caches();
5565 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5566 unregister_shrinker(&mmu_shrinker);
5567 mmu_audit_disable();
5568}
5569