linux/arch/x86/kvm/mmu.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * MMU support
   8 *
   9 * Copyright (C) 2006 Qumranet, Inc.
  10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11 *
  12 * Authors:
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 *   Avi Kivity   <avi@qumranet.com>
  15 *
  16 * This work is licensed under the terms of the GNU GPL, version 2.  See
  17 * the COPYING file in the top-level directory.
  18 *
  19 */
  20
  21#include "irq.h"
  22#include "mmu.h"
  23#include "x86.h"
  24#include "kvm_cache_regs.h"
  25#include "cpuid.h"
  26
  27#include <linux/kvm_host.h>
  28#include <linux/types.h>
  29#include <linux/string.h>
  30#include <linux/mm.h>
  31#include <linux/highmem.h>
  32#include <linux/moduleparam.h>
  33#include <linux/export.h>
  34#include <linux/swap.h>
  35#include <linux/hugetlb.h>
  36#include <linux/compiler.h>
  37#include <linux/srcu.h>
  38#include <linux/slab.h>
  39#include <linux/sched/signal.h>
  40#include <linux/uaccess.h>
  41#include <linux/hash.h>
  42#include <linux/kern_levels.h>
  43
  44#include <asm/page.h>
  45#include <asm/pat.h>
  46#include <asm/cmpxchg.h>
  47#include <asm/io.h>
  48#include <asm/vmx.h>
  49#include <asm/kvm_page_track.h>
  50#include "trace.h"
  51
  52/*
  53 * When setting this variable to true it enables Two-Dimensional-Paging
  54 * where the hardware walks 2 page tables:
  55 * 1. the guest-virtual to guest-physical
  56 * 2. while doing 1. it walks guest-physical to host-physical
  57 * If the hardware supports that we don't need to do shadow paging.
  58 */
  59bool tdp_enabled = false;
  60
  61enum {
  62        AUDIT_PRE_PAGE_FAULT,
  63        AUDIT_POST_PAGE_FAULT,
  64        AUDIT_PRE_PTE_WRITE,
  65        AUDIT_POST_PTE_WRITE,
  66        AUDIT_PRE_SYNC,
  67        AUDIT_POST_SYNC
  68};
  69
  70#undef MMU_DEBUG
  71
  72#ifdef MMU_DEBUG
  73static bool dbg = 0;
  74module_param(dbg, bool, 0644);
  75
  76#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  77#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  78#define MMU_WARN_ON(x) WARN_ON(x)
  79#else
  80#define pgprintk(x...) do { } while (0)
  81#define rmap_printk(x...) do { } while (0)
  82#define MMU_WARN_ON(x) do { } while (0)
  83#endif
  84
  85#define PTE_PREFETCH_NUM                8
  86
  87#define PT_FIRST_AVAIL_BITS_SHIFT 10
  88#define PT64_SECOND_AVAIL_BITS_SHIFT 52
  89
  90#define PT64_LEVEL_BITS 9
  91
  92#define PT64_LEVEL_SHIFT(level) \
  93                (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  94
  95#define PT64_INDEX(address, level)\
  96        (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  97
  98
  99#define PT32_LEVEL_BITS 10
 100
 101#define PT32_LEVEL_SHIFT(level) \
 102                (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
 103
 104#define PT32_LVL_OFFSET_MASK(level) \
 105        (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 106                                                * PT32_LEVEL_BITS))) - 1))
 107
 108#define PT32_INDEX(address, level)\
 109        (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
 110
 111
 112#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
 113#define PT64_DIR_BASE_ADDR_MASK \
 114        (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
 115#define PT64_LVL_ADDR_MASK(level) \
 116        (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 117                                                * PT64_LEVEL_BITS))) - 1))
 118#define PT64_LVL_OFFSET_MASK(level) \
 119        (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 120                                                * PT64_LEVEL_BITS))) - 1))
 121
 122#define PT32_BASE_ADDR_MASK PAGE_MASK
 123#define PT32_DIR_BASE_ADDR_MASK \
 124        (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
 125#define PT32_LVL_ADDR_MASK(level) \
 126        (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 127                                            * PT32_LEVEL_BITS))) - 1))
 128
 129#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
 130                        | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
 131
 132#define ACC_EXEC_MASK    1
 133#define ACC_WRITE_MASK   PT_WRITABLE_MASK
 134#define ACC_USER_MASK    PT_USER_MASK
 135#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
 136
 137/* The mask for the R/X bits in EPT PTEs */
 138#define PT64_EPT_READABLE_MASK                  0x1ull
 139#define PT64_EPT_EXECUTABLE_MASK                0x4ull
 140
 141#include <trace/events/kvm.h>
 142
 143#define CREATE_TRACE_POINTS
 144#include "mmutrace.h"
 145
 146#define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
 147#define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
 148
 149#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
 150
 151/* make pte_list_desc fit well in cache line */
 152#define PTE_LIST_EXT 3
 153
 154/*
 155 * Return values of handle_mmio_page_fault and mmu.page_fault:
 156 * RET_PF_RETRY: let CPU fault again on the address.
 157 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
 158 *
 159 * For handle_mmio_page_fault only:
 160 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
 161 */
 162enum {
 163        RET_PF_RETRY = 0,
 164        RET_PF_EMULATE = 1,
 165        RET_PF_INVALID = 2,
 166};
 167
 168struct pte_list_desc {
 169        u64 *sptes[PTE_LIST_EXT];
 170        struct pte_list_desc *more;
 171};
 172
 173struct kvm_shadow_walk_iterator {
 174        u64 addr;
 175        hpa_t shadow_addr;
 176        u64 *sptep;
 177        int level;
 178        unsigned index;
 179};
 180
 181#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
 182        for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
 183             shadow_walk_okay(&(_walker));                      \
 184             shadow_walk_next(&(_walker)))
 185
 186#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
 187        for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
 188             shadow_walk_okay(&(_walker)) &&                            \
 189                ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
 190             __shadow_walk_next(&(_walker), spte))
 191
 192static struct kmem_cache *pte_list_desc_cache;
 193static struct kmem_cache *mmu_page_header_cache;
 194static struct percpu_counter kvm_total_used_mmu_pages;
 195
 196static u64 __read_mostly shadow_nx_mask;
 197static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
 198static u64 __read_mostly shadow_user_mask;
 199static u64 __read_mostly shadow_accessed_mask;
 200static u64 __read_mostly shadow_dirty_mask;
 201static u64 __read_mostly shadow_mmio_mask;
 202static u64 __read_mostly shadow_mmio_value;
 203static u64 __read_mostly shadow_present_mask;
 204static u64 __read_mostly shadow_me_mask;
 205
 206/*
 207 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
 208 * Non-present SPTEs with shadow_acc_track_value set are in place for access
 209 * tracking.
 210 */
 211static u64 __read_mostly shadow_acc_track_mask;
 212static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
 213
 214/*
 215 * The mask/shift to use for saving the original R/X bits when marking the PTE
 216 * as not-present for access tracking purposes. We do not save the W bit as the
 217 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 218 * restored only when a write is attempted to the page.
 219 */
 220static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
 221                                                    PT64_EPT_EXECUTABLE_MASK;
 222static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
 223
 224static void mmu_spte_set(u64 *sptep, u64 spte);
 225
 226void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
 227{
 228        BUG_ON((mmio_mask & mmio_value) != mmio_value);
 229        shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
 230        shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
 231}
 232EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
 233
 234static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
 235{
 236        return sp->role.ad_disabled;
 237}
 238
 239static inline bool spte_ad_enabled(u64 spte)
 240{
 241        MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
 242        return !(spte & shadow_acc_track_value);
 243}
 244
 245static inline u64 spte_shadow_accessed_mask(u64 spte)
 246{
 247        MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
 248        return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
 249}
 250
 251static inline u64 spte_shadow_dirty_mask(u64 spte)
 252{
 253        MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
 254        return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
 255}
 256
 257static inline bool is_access_track_spte(u64 spte)
 258{
 259        return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
 260}
 261
 262/*
 263 * the low bit of the generation number is always presumed to be zero.
 264 * This disables mmio caching during memslot updates.  The concept is
 265 * similar to a seqcount but instead of retrying the access we just punt
 266 * and ignore the cache.
 267 *
 268 * spte bits 3-11 are used as bits 1-9 of the generation number,
 269 * the bits 52-61 are used as bits 10-19 of the generation number.
 270 */
 271#define MMIO_SPTE_GEN_LOW_SHIFT         2
 272#define MMIO_SPTE_GEN_HIGH_SHIFT        52
 273
 274#define MMIO_GEN_SHIFT                  20
 275#define MMIO_GEN_LOW_SHIFT              10
 276#define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
 277#define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
 278
 279static u64 generation_mmio_spte_mask(unsigned int gen)
 280{
 281        u64 mask;
 282
 283        WARN_ON(gen & ~MMIO_GEN_MASK);
 284
 285        mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
 286        mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
 287        return mask;
 288}
 289
 290static unsigned int get_mmio_spte_generation(u64 spte)
 291{
 292        unsigned int gen;
 293
 294        spte &= ~shadow_mmio_mask;
 295
 296        gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
 297        gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
 298        return gen;
 299}
 300
 301static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
 302{
 303        return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
 304}
 305
 306static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
 307                           unsigned access)
 308{
 309        unsigned int gen = kvm_current_mmio_generation(vcpu);
 310        u64 mask = generation_mmio_spte_mask(gen);
 311
 312        access &= ACC_WRITE_MASK | ACC_USER_MASK;
 313        mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
 314
 315        trace_mark_mmio_spte(sptep, gfn, access, gen);
 316        mmu_spte_set(sptep, mask);
 317}
 318
 319static bool is_mmio_spte(u64 spte)
 320{
 321        return (spte & shadow_mmio_mask) == shadow_mmio_value;
 322}
 323
 324static gfn_t get_mmio_spte_gfn(u64 spte)
 325{
 326        u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
 327        return (spte & ~mask) >> PAGE_SHIFT;
 328}
 329
 330static unsigned get_mmio_spte_access(u64 spte)
 331{
 332        u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
 333        return (spte & ~mask) & ~PAGE_MASK;
 334}
 335
 336static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
 337                          kvm_pfn_t pfn, unsigned access)
 338{
 339        if (unlikely(is_noslot_pfn(pfn))) {
 340                mark_mmio_spte(vcpu, sptep, gfn, access);
 341                return true;
 342        }
 343
 344        return false;
 345}
 346
 347static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
 348{
 349        unsigned int kvm_gen, spte_gen;
 350
 351        kvm_gen = kvm_current_mmio_generation(vcpu);
 352        spte_gen = get_mmio_spte_generation(spte);
 353
 354        trace_check_mmio_spte(spte, kvm_gen, spte_gen);
 355        return likely(kvm_gen == spte_gen);
 356}
 357
 358/*
 359 * Sets the shadow PTE masks used by the MMU.
 360 *
 361 * Assumptions:
 362 *  - Setting either @accessed_mask or @dirty_mask requires setting both
 363 *  - At least one of @accessed_mask or @acc_track_mask must be set
 364 */
 365void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
 366                u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
 367                u64 acc_track_mask, u64 me_mask)
 368{
 369        BUG_ON(!dirty_mask != !accessed_mask);
 370        BUG_ON(!accessed_mask && !acc_track_mask);
 371        BUG_ON(acc_track_mask & shadow_acc_track_value);
 372
 373        shadow_user_mask = user_mask;
 374        shadow_accessed_mask = accessed_mask;
 375        shadow_dirty_mask = dirty_mask;
 376        shadow_nx_mask = nx_mask;
 377        shadow_x_mask = x_mask;
 378        shadow_present_mask = p_mask;
 379        shadow_acc_track_mask = acc_track_mask;
 380        shadow_me_mask = me_mask;
 381}
 382EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
 383
 384static void kvm_mmu_clear_all_pte_masks(void)
 385{
 386        shadow_user_mask = 0;
 387        shadow_accessed_mask = 0;
 388        shadow_dirty_mask = 0;
 389        shadow_nx_mask = 0;
 390        shadow_x_mask = 0;
 391        shadow_mmio_mask = 0;
 392        shadow_present_mask = 0;
 393        shadow_acc_track_mask = 0;
 394}
 395
 396static int is_cpuid_PSE36(void)
 397{
 398        return 1;
 399}
 400
 401static int is_nx(struct kvm_vcpu *vcpu)
 402{
 403        return vcpu->arch.efer & EFER_NX;
 404}
 405
 406static int is_shadow_present_pte(u64 pte)
 407{
 408        return (pte != 0) && !is_mmio_spte(pte);
 409}
 410
 411static int is_large_pte(u64 pte)
 412{
 413        return pte & PT_PAGE_SIZE_MASK;
 414}
 415
 416static int is_last_spte(u64 pte, int level)
 417{
 418        if (level == PT_PAGE_TABLE_LEVEL)
 419                return 1;
 420        if (is_large_pte(pte))
 421                return 1;
 422        return 0;
 423}
 424
 425static bool is_executable_pte(u64 spte)
 426{
 427        return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
 428}
 429
 430static kvm_pfn_t spte_to_pfn(u64 pte)
 431{
 432        return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
 433}
 434
 435static gfn_t pse36_gfn_delta(u32 gpte)
 436{
 437        int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
 438
 439        return (gpte & PT32_DIR_PSE36_MASK) << shift;
 440}
 441
 442#ifdef CONFIG_X86_64
 443static void __set_spte(u64 *sptep, u64 spte)
 444{
 445        WRITE_ONCE(*sptep, spte);
 446}
 447
 448static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 449{
 450        WRITE_ONCE(*sptep, spte);
 451}
 452
 453static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 454{
 455        return xchg(sptep, spte);
 456}
 457
 458static u64 __get_spte_lockless(u64 *sptep)
 459{
 460        return READ_ONCE(*sptep);
 461}
 462#else
 463union split_spte {
 464        struct {
 465                u32 spte_low;
 466                u32 spte_high;
 467        };
 468        u64 spte;
 469};
 470
 471static void count_spte_clear(u64 *sptep, u64 spte)
 472{
 473        struct kvm_mmu_page *sp =  page_header(__pa(sptep));
 474
 475        if (is_shadow_present_pte(spte))
 476                return;
 477
 478        /* Ensure the spte is completely set before we increase the count */
 479        smp_wmb();
 480        sp->clear_spte_count++;
 481}
 482
 483static void __set_spte(u64 *sptep, u64 spte)
 484{
 485        union split_spte *ssptep, sspte;
 486
 487        ssptep = (union split_spte *)sptep;
 488        sspte = (union split_spte)spte;
 489
 490        ssptep->spte_high = sspte.spte_high;
 491
 492        /*
 493         * If we map the spte from nonpresent to present, We should store
 494         * the high bits firstly, then set present bit, so cpu can not
 495         * fetch this spte while we are setting the spte.
 496         */
 497        smp_wmb();
 498
 499        WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
 500}
 501
 502static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 503{
 504        union split_spte *ssptep, sspte;
 505
 506        ssptep = (union split_spte *)sptep;
 507        sspte = (union split_spte)spte;
 508
 509        WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
 510
 511        /*
 512         * If we map the spte from present to nonpresent, we should clear
 513         * present bit firstly to avoid vcpu fetch the old high bits.
 514         */
 515        smp_wmb();
 516
 517        ssptep->spte_high = sspte.spte_high;
 518        count_spte_clear(sptep, spte);
 519}
 520
 521static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 522{
 523        union split_spte *ssptep, sspte, orig;
 524
 525        ssptep = (union split_spte *)sptep;
 526        sspte = (union split_spte)spte;
 527
 528        /* xchg acts as a barrier before the setting of the high bits */
 529        orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
 530        orig.spte_high = ssptep->spte_high;
 531        ssptep->spte_high = sspte.spte_high;
 532        count_spte_clear(sptep, spte);
 533
 534        return orig.spte;
 535}
 536
 537/*
 538 * The idea using the light way get the spte on x86_32 guest is from
 539 * gup_get_pte(arch/x86/mm/gup.c).
 540 *
 541 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 542 * coalesces them and we are running out of the MMU lock.  Therefore
 543 * we need to protect against in-progress updates of the spte.
 544 *
 545 * Reading the spte while an update is in progress may get the old value
 546 * for the high part of the spte.  The race is fine for a present->non-present
 547 * change (because the high part of the spte is ignored for non-present spte),
 548 * but for a present->present change we must reread the spte.
 549 *
 550 * All such changes are done in two steps (present->non-present and
 551 * non-present->present), hence it is enough to count the number of
 552 * present->non-present updates: if it changed while reading the spte,
 553 * we might have hit the race.  This is done using clear_spte_count.
 554 */
 555static u64 __get_spte_lockless(u64 *sptep)
 556{
 557        struct kvm_mmu_page *sp =  page_header(__pa(sptep));
 558        union split_spte spte, *orig = (union split_spte *)sptep;
 559        int count;
 560
 561retry:
 562        count = sp->clear_spte_count;
 563        smp_rmb();
 564
 565        spte.spte_low = orig->spte_low;
 566        smp_rmb();
 567
 568        spte.spte_high = orig->spte_high;
 569        smp_rmb();
 570
 571        if (unlikely(spte.spte_low != orig->spte_low ||
 572              count != sp->clear_spte_count))
 573                goto retry;
 574
 575        return spte.spte;
 576}
 577#endif
 578
 579static bool spte_can_locklessly_be_made_writable(u64 spte)
 580{
 581        return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
 582                (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
 583}
 584
 585static bool spte_has_volatile_bits(u64 spte)
 586{
 587        if (!is_shadow_present_pte(spte))
 588                return false;
 589
 590        /*
 591         * Always atomically update spte if it can be updated
 592         * out of mmu-lock, it can ensure dirty bit is not lost,
 593         * also, it can help us to get a stable is_writable_pte()
 594         * to ensure tlb flush is not missed.
 595         */
 596        if (spte_can_locklessly_be_made_writable(spte) ||
 597            is_access_track_spte(spte))
 598                return true;
 599
 600        if (spte_ad_enabled(spte)) {
 601                if ((spte & shadow_accessed_mask) == 0 ||
 602                    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
 603                        return true;
 604        }
 605
 606        return false;
 607}
 608
 609static bool is_accessed_spte(u64 spte)
 610{
 611        u64 accessed_mask = spte_shadow_accessed_mask(spte);
 612
 613        return accessed_mask ? spte & accessed_mask
 614                             : !is_access_track_spte(spte);
 615}
 616
 617static bool is_dirty_spte(u64 spte)
 618{
 619        u64 dirty_mask = spte_shadow_dirty_mask(spte);
 620
 621        return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
 622}
 623
 624/* Rules for using mmu_spte_set:
 625 * Set the sptep from nonpresent to present.
 626 * Note: the sptep being assigned *must* be either not present
 627 * or in a state where the hardware will not attempt to update
 628 * the spte.
 629 */
 630static void mmu_spte_set(u64 *sptep, u64 new_spte)
 631{
 632        WARN_ON(is_shadow_present_pte(*sptep));
 633        __set_spte(sptep, new_spte);
 634}
 635
 636/*
 637 * Update the SPTE (excluding the PFN), but do not track changes in its
 638 * accessed/dirty status.
 639 */
 640static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
 641{
 642        u64 old_spte = *sptep;
 643
 644        WARN_ON(!is_shadow_present_pte(new_spte));
 645
 646        if (!is_shadow_present_pte(old_spte)) {
 647                mmu_spte_set(sptep, new_spte);
 648                return old_spte;
 649        }
 650
 651        if (!spte_has_volatile_bits(old_spte))
 652                __update_clear_spte_fast(sptep, new_spte);
 653        else
 654                old_spte = __update_clear_spte_slow(sptep, new_spte);
 655
 656        WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
 657
 658        return old_spte;
 659}
 660
 661/* Rules for using mmu_spte_update:
 662 * Update the state bits, it means the mapped pfn is not changed.
 663 *
 664 * Whenever we overwrite a writable spte with a read-only one we
 665 * should flush remote TLBs. Otherwise rmap_write_protect
 666 * will find a read-only spte, even though the writable spte
 667 * might be cached on a CPU's TLB, the return value indicates this
 668 * case.
 669 *
 670 * Returns true if the TLB needs to be flushed
 671 */
 672static bool mmu_spte_update(u64 *sptep, u64 new_spte)
 673{
 674        bool flush = false;
 675        u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
 676
 677        if (!is_shadow_present_pte(old_spte))
 678                return false;
 679
 680        /*
 681         * For the spte updated out of mmu-lock is safe, since
 682         * we always atomically update it, see the comments in
 683         * spte_has_volatile_bits().
 684         */
 685        if (spte_can_locklessly_be_made_writable(old_spte) &&
 686              !is_writable_pte(new_spte))
 687                flush = true;
 688
 689        /*
 690         * Flush TLB when accessed/dirty states are changed in the page tables,
 691         * to guarantee consistency between TLB and page tables.
 692         */
 693
 694        if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
 695                flush = true;
 696                kvm_set_pfn_accessed(spte_to_pfn(old_spte));
 697        }
 698
 699        if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
 700                flush = true;
 701                kvm_set_pfn_dirty(spte_to_pfn(old_spte));
 702        }
 703
 704        return flush;
 705}
 706
 707/*
 708 * Rules for using mmu_spte_clear_track_bits:
 709 * It sets the sptep from present to nonpresent, and track the
 710 * state bits, it is used to clear the last level sptep.
 711 * Returns non-zero if the PTE was previously valid.
 712 */
 713static int mmu_spte_clear_track_bits(u64 *sptep)
 714{
 715        kvm_pfn_t pfn;
 716        u64 old_spte = *sptep;
 717
 718        if (!spte_has_volatile_bits(old_spte))
 719                __update_clear_spte_fast(sptep, 0ull);
 720        else
 721                old_spte = __update_clear_spte_slow(sptep, 0ull);
 722
 723        if (!is_shadow_present_pte(old_spte))
 724                return 0;
 725
 726        pfn = spte_to_pfn(old_spte);
 727
 728        /*
 729         * KVM does not hold the refcount of the page used by
 730         * kvm mmu, before reclaiming the page, we should
 731         * unmap it from mmu first.
 732         */
 733        WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
 734
 735        if (is_accessed_spte(old_spte))
 736                kvm_set_pfn_accessed(pfn);
 737
 738        if (is_dirty_spte(old_spte))
 739                kvm_set_pfn_dirty(pfn);
 740
 741        return 1;
 742}
 743
 744/*
 745 * Rules for using mmu_spte_clear_no_track:
 746 * Directly clear spte without caring the state bits of sptep,
 747 * it is used to set the upper level spte.
 748 */
 749static void mmu_spte_clear_no_track(u64 *sptep)
 750{
 751        __update_clear_spte_fast(sptep, 0ull);
 752}
 753
 754static u64 mmu_spte_get_lockless(u64 *sptep)
 755{
 756        return __get_spte_lockless(sptep);
 757}
 758
 759static u64 mark_spte_for_access_track(u64 spte)
 760{
 761        if (spte_ad_enabled(spte))
 762                return spte & ~shadow_accessed_mask;
 763
 764        if (is_access_track_spte(spte))
 765                return spte;
 766
 767        /*
 768         * Making an Access Tracking PTE will result in removal of write access
 769         * from the PTE. So, verify that we will be able to restore the write
 770         * access in the fast page fault path later on.
 771         */
 772        WARN_ONCE((spte & PT_WRITABLE_MASK) &&
 773                  !spte_can_locklessly_be_made_writable(spte),
 774                  "kvm: Writable SPTE is not locklessly dirty-trackable\n");
 775
 776        WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
 777                          shadow_acc_track_saved_bits_shift),
 778                  "kvm: Access Tracking saved bit locations are not zero\n");
 779
 780        spte |= (spte & shadow_acc_track_saved_bits_mask) <<
 781                shadow_acc_track_saved_bits_shift;
 782        spte &= ~shadow_acc_track_mask;
 783
 784        return spte;
 785}
 786
 787/* Restore an acc-track PTE back to a regular PTE */
 788static u64 restore_acc_track_spte(u64 spte)
 789{
 790        u64 new_spte = spte;
 791        u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
 792                         & shadow_acc_track_saved_bits_mask;
 793
 794        WARN_ON_ONCE(spte_ad_enabled(spte));
 795        WARN_ON_ONCE(!is_access_track_spte(spte));
 796
 797        new_spte &= ~shadow_acc_track_mask;
 798        new_spte &= ~(shadow_acc_track_saved_bits_mask <<
 799                      shadow_acc_track_saved_bits_shift);
 800        new_spte |= saved_bits;
 801
 802        return new_spte;
 803}
 804
 805/* Returns the Accessed status of the PTE and resets it at the same time. */
 806static bool mmu_spte_age(u64 *sptep)
 807{
 808        u64 spte = mmu_spte_get_lockless(sptep);
 809
 810        if (!is_accessed_spte(spte))
 811                return false;
 812
 813        if (spte_ad_enabled(spte)) {
 814                clear_bit((ffs(shadow_accessed_mask) - 1),
 815                          (unsigned long *)sptep);
 816        } else {
 817                /*
 818                 * Capture the dirty status of the page, so that it doesn't get
 819                 * lost when the SPTE is marked for access tracking.
 820                 */
 821                if (is_writable_pte(spte))
 822                        kvm_set_pfn_dirty(spte_to_pfn(spte));
 823
 824                spte = mark_spte_for_access_track(spte);
 825                mmu_spte_update_no_track(sptep, spte);
 826        }
 827
 828        return true;
 829}
 830
 831static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
 832{
 833        /*
 834         * Prevent page table teardown by making any free-er wait during
 835         * kvm_flush_remote_tlbs() IPI to all active vcpus.
 836         */
 837        local_irq_disable();
 838
 839        /*
 840         * Make sure a following spte read is not reordered ahead of the write
 841         * to vcpu->mode.
 842         */
 843        smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
 844}
 845
 846static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
 847{
 848        /*
 849         * Make sure the write to vcpu->mode is not reordered in front of
 850         * reads to sptes.  If it does, kvm_commit_zap_page() can see us
 851         * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
 852         */
 853        smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
 854        local_irq_enable();
 855}
 856
 857static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
 858                                  struct kmem_cache *base_cache, int min)
 859{
 860        void *obj;
 861
 862        if (cache->nobjs >= min)
 863                return 0;
 864        while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 865                obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
 866                if (!obj)
 867                        return -ENOMEM;
 868                cache->objects[cache->nobjs++] = obj;
 869        }
 870        return 0;
 871}
 872
 873static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
 874{
 875        return cache->nobjs;
 876}
 877
 878static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
 879                                  struct kmem_cache *cache)
 880{
 881        while (mc->nobjs)
 882                kmem_cache_free(cache, mc->objects[--mc->nobjs]);
 883}
 884
 885static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
 886                                       int min)
 887{
 888        void *page;
 889
 890        if (cache->nobjs >= min)
 891                return 0;
 892        while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 893                page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
 894                if (!page)
 895                        return -ENOMEM;
 896                cache->objects[cache->nobjs++] = page;
 897        }
 898        return 0;
 899}
 900
 901static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
 902{
 903        while (mc->nobjs)
 904                free_page((unsigned long)mc->objects[--mc->nobjs]);
 905}
 906
 907static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
 908{
 909        int r;
 910
 911        r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
 912                                   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
 913        if (r)
 914                goto out;
 915        r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
 916        if (r)
 917                goto out;
 918        r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
 919                                   mmu_page_header_cache, 4);
 920out:
 921        return r;
 922}
 923
 924static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
 925{
 926        mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
 927                                pte_list_desc_cache);
 928        mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
 929        mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
 930                                mmu_page_header_cache);
 931}
 932
 933static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
 934{
 935        void *p;
 936
 937        BUG_ON(!mc->nobjs);
 938        p = mc->objects[--mc->nobjs];
 939        return p;
 940}
 941
 942static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
 943{
 944        return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
 945}
 946
 947static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
 948{
 949        kmem_cache_free(pte_list_desc_cache, pte_list_desc);
 950}
 951
 952static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
 953{
 954        if (!sp->role.direct)
 955                return sp->gfns[index];
 956
 957        return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
 958}
 959
 960static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
 961{
 962        if (sp->role.direct)
 963                BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
 964        else
 965                sp->gfns[index] = gfn;
 966}
 967
 968/*
 969 * Return the pointer to the large page information for a given gfn,
 970 * handling slots that are not large page aligned.
 971 */
 972static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
 973                                              struct kvm_memory_slot *slot,
 974                                              int level)
 975{
 976        unsigned long idx;
 977
 978        idx = gfn_to_index(gfn, slot->base_gfn, level);
 979        return &slot->arch.lpage_info[level - 2][idx];
 980}
 981
 982static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
 983                                            gfn_t gfn, int count)
 984{
 985        struct kvm_lpage_info *linfo;
 986        int i;
 987
 988        for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
 989                linfo = lpage_info_slot(gfn, slot, i);
 990                linfo->disallow_lpage += count;
 991                WARN_ON(linfo->disallow_lpage < 0);
 992        }
 993}
 994
 995void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
 996{
 997        update_gfn_disallow_lpage_count(slot, gfn, 1);
 998}
 999
1000void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1001{
1002        update_gfn_disallow_lpage_count(slot, gfn, -1);
1003}
1004
1005static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1006{
1007        struct kvm_memslots *slots;
1008        struct kvm_memory_slot *slot;
1009        gfn_t gfn;
1010
1011        kvm->arch.indirect_shadow_pages++;
1012        gfn = sp->gfn;
1013        slots = kvm_memslots_for_spte_role(kvm, sp->role);
1014        slot = __gfn_to_memslot(slots, gfn);
1015
1016        /* the non-leaf shadow pages are keeping readonly. */
1017        if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1018                return kvm_slot_page_track_add_page(kvm, slot, gfn,
1019                                                    KVM_PAGE_TRACK_WRITE);
1020
1021        kvm_mmu_gfn_disallow_lpage(slot, gfn);
1022}
1023
1024static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1025{
1026        struct kvm_memslots *slots;
1027        struct kvm_memory_slot *slot;
1028        gfn_t gfn;
1029
1030        kvm->arch.indirect_shadow_pages--;
1031        gfn = sp->gfn;
1032        slots = kvm_memslots_for_spte_role(kvm, sp->role);
1033        slot = __gfn_to_memslot(slots, gfn);
1034        if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1035                return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1036                                                       KVM_PAGE_TRACK_WRITE);
1037
1038        kvm_mmu_gfn_allow_lpage(slot, gfn);
1039}
1040
1041static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1042                                          struct kvm_memory_slot *slot)
1043{
1044        struct kvm_lpage_info *linfo;
1045
1046        if (slot) {
1047                linfo = lpage_info_slot(gfn, slot, level);
1048                return !!linfo->disallow_lpage;
1049        }
1050
1051        return true;
1052}
1053
1054static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1055                                        int level)
1056{
1057        struct kvm_memory_slot *slot;
1058
1059        slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1060        return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1061}
1062
1063static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1064{
1065        unsigned long page_size;
1066        int i, ret = 0;
1067
1068        page_size = kvm_host_page_size(kvm, gfn);
1069
1070        for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1071                if (page_size >= KVM_HPAGE_SIZE(i))
1072                        ret = i;
1073                else
1074                        break;
1075        }
1076
1077        return ret;
1078}
1079
1080static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1081                                          bool no_dirty_log)
1082{
1083        if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1084                return false;
1085        if (no_dirty_log && slot->dirty_bitmap)
1086                return false;
1087
1088        return true;
1089}
1090
1091static struct kvm_memory_slot *
1092gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1093                            bool no_dirty_log)
1094{
1095        struct kvm_memory_slot *slot;
1096
1097        slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1098        if (!memslot_valid_for_gpte(slot, no_dirty_log))
1099                slot = NULL;
1100
1101        return slot;
1102}
1103
1104static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1105                         bool *force_pt_level)
1106{
1107        int host_level, level, max_level;
1108        struct kvm_memory_slot *slot;
1109
1110        if (unlikely(*force_pt_level))
1111                return PT_PAGE_TABLE_LEVEL;
1112
1113        slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1114        *force_pt_level = !memslot_valid_for_gpte(slot, true);
1115        if (unlikely(*force_pt_level))
1116                return PT_PAGE_TABLE_LEVEL;
1117
1118        host_level = host_mapping_level(vcpu->kvm, large_gfn);
1119
1120        if (host_level == PT_PAGE_TABLE_LEVEL)
1121                return host_level;
1122
1123        max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1124
1125        for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1126                if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1127                        break;
1128
1129        return level - 1;
1130}
1131
1132/*
1133 * About rmap_head encoding:
1134 *
1135 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1136 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1137 * pte_list_desc containing more mappings.
1138 */
1139
1140/*
1141 * Returns the number of pointers in the rmap chain, not counting the new one.
1142 */
1143static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1144                        struct kvm_rmap_head *rmap_head)
1145{
1146        struct pte_list_desc *desc;
1147        int i, count = 0;
1148
1149        if (!rmap_head->val) {
1150                rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1151                rmap_head->val = (unsigned long)spte;
1152        } else if (!(rmap_head->val & 1)) {
1153                rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1154                desc = mmu_alloc_pte_list_desc(vcpu);
1155                desc->sptes[0] = (u64 *)rmap_head->val;
1156                desc->sptes[1] = spte;
1157                rmap_head->val = (unsigned long)desc | 1;
1158                ++count;
1159        } else {
1160                rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1161                desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1162                while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1163                        desc = desc->more;
1164                        count += PTE_LIST_EXT;
1165                }
1166                if (desc->sptes[PTE_LIST_EXT-1]) {
1167                        desc->more = mmu_alloc_pte_list_desc(vcpu);
1168                        desc = desc->more;
1169                }
1170                for (i = 0; desc->sptes[i]; ++i)
1171                        ++count;
1172                desc->sptes[i] = spte;
1173        }
1174        return count;
1175}
1176
1177static void
1178pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1179                           struct pte_list_desc *desc, int i,
1180                           struct pte_list_desc *prev_desc)
1181{
1182        int j;
1183
1184        for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1185                ;
1186        desc->sptes[i] = desc->sptes[j];
1187        desc->sptes[j] = NULL;
1188        if (j != 0)
1189                return;
1190        if (!prev_desc && !desc->more)
1191                rmap_head->val = (unsigned long)desc->sptes[0];
1192        else
1193                if (prev_desc)
1194                        prev_desc->more = desc->more;
1195                else
1196                        rmap_head->val = (unsigned long)desc->more | 1;
1197        mmu_free_pte_list_desc(desc);
1198}
1199
1200static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1201{
1202        struct pte_list_desc *desc;
1203        struct pte_list_desc *prev_desc;
1204        int i;
1205
1206        if (!rmap_head->val) {
1207                printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1208                BUG();
1209        } else if (!(rmap_head->val & 1)) {
1210                rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1211                if ((u64 *)rmap_head->val != spte) {
1212                        printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1213                        BUG();
1214                }
1215                rmap_head->val = 0;
1216        } else {
1217                rmap_printk("pte_list_remove:  %p many->many\n", spte);
1218                desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1219                prev_desc = NULL;
1220                while (desc) {
1221                        for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1222                                if (desc->sptes[i] == spte) {
1223                                        pte_list_desc_remove_entry(rmap_head,
1224                                                        desc, i, prev_desc);
1225                                        return;
1226                                }
1227                        }
1228                        prev_desc = desc;
1229                        desc = desc->more;
1230                }
1231                pr_err("pte_list_remove: %p many->many\n", spte);
1232                BUG();
1233        }
1234}
1235
1236static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1237                                           struct kvm_memory_slot *slot)
1238{
1239        unsigned long idx;
1240
1241        idx = gfn_to_index(gfn, slot->base_gfn, level);
1242        return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1243}
1244
1245static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1246                                         struct kvm_mmu_page *sp)
1247{
1248        struct kvm_memslots *slots;
1249        struct kvm_memory_slot *slot;
1250
1251        slots = kvm_memslots_for_spte_role(kvm, sp->role);
1252        slot = __gfn_to_memslot(slots, gfn);
1253        return __gfn_to_rmap(gfn, sp->role.level, slot);
1254}
1255
1256static bool rmap_can_add(struct kvm_vcpu *vcpu)
1257{
1258        struct kvm_mmu_memory_cache *cache;
1259
1260        cache = &vcpu->arch.mmu_pte_list_desc_cache;
1261        return mmu_memory_cache_free_objects(cache);
1262}
1263
1264static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1265{
1266        struct kvm_mmu_page *sp;
1267        struct kvm_rmap_head *rmap_head;
1268
1269        sp = page_header(__pa(spte));
1270        kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1271        rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1272        return pte_list_add(vcpu, spte, rmap_head);
1273}
1274
1275static void rmap_remove(struct kvm *kvm, u64 *spte)
1276{
1277        struct kvm_mmu_page *sp;
1278        gfn_t gfn;
1279        struct kvm_rmap_head *rmap_head;
1280
1281        sp = page_header(__pa(spte));
1282        gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1283        rmap_head = gfn_to_rmap(kvm, gfn, sp);
1284        pte_list_remove(spte, rmap_head);
1285}
1286
1287/*
1288 * Used by the following functions to iterate through the sptes linked by a
1289 * rmap.  All fields are private and not assumed to be used outside.
1290 */
1291struct rmap_iterator {
1292        /* private fields */
1293        struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1294        int pos;                        /* index of the sptep */
1295};
1296
1297/*
1298 * Iteration must be started by this function.  This should also be used after
1299 * removing/dropping sptes from the rmap link because in such cases the
1300 * information in the itererator may not be valid.
1301 *
1302 * Returns sptep if found, NULL otherwise.
1303 */
1304static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1305                           struct rmap_iterator *iter)
1306{
1307        u64 *sptep;
1308
1309        if (!rmap_head->val)
1310                return NULL;
1311
1312        if (!(rmap_head->val & 1)) {
1313                iter->desc = NULL;
1314                sptep = (u64 *)rmap_head->val;
1315                goto out;
1316        }
1317
1318        iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1319        iter->pos = 0;
1320        sptep = iter->desc->sptes[iter->pos];
1321out:
1322        BUG_ON(!is_shadow_present_pte(*sptep));
1323        return sptep;
1324}
1325
1326/*
1327 * Must be used with a valid iterator: e.g. after rmap_get_first().
1328 *
1329 * Returns sptep if found, NULL otherwise.
1330 */
1331static u64 *rmap_get_next(struct rmap_iterator *iter)
1332{
1333        u64 *sptep;
1334
1335        if (iter->desc) {
1336                if (iter->pos < PTE_LIST_EXT - 1) {
1337                        ++iter->pos;
1338                        sptep = iter->desc->sptes[iter->pos];
1339                        if (sptep)
1340                                goto out;
1341                }
1342
1343                iter->desc = iter->desc->more;
1344
1345                if (iter->desc) {
1346                        iter->pos = 0;
1347                        /* desc->sptes[0] cannot be NULL */
1348                        sptep = iter->desc->sptes[iter->pos];
1349                        goto out;
1350                }
1351        }
1352
1353        return NULL;
1354out:
1355        BUG_ON(!is_shadow_present_pte(*sptep));
1356        return sptep;
1357}
1358
1359#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1360        for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1361             _spte_; _spte_ = rmap_get_next(_iter_))
1362
1363static void drop_spte(struct kvm *kvm, u64 *sptep)
1364{
1365        if (mmu_spte_clear_track_bits(sptep))
1366                rmap_remove(kvm, sptep);
1367}
1368
1369
1370static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1371{
1372        if (is_large_pte(*sptep)) {
1373                WARN_ON(page_header(__pa(sptep))->role.level ==
1374                        PT_PAGE_TABLE_LEVEL);
1375                drop_spte(kvm, sptep);
1376                --kvm->stat.lpages;
1377                return true;
1378        }
1379
1380        return false;
1381}
1382
1383static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1384{
1385        if (__drop_large_spte(vcpu->kvm, sptep))
1386                kvm_flush_remote_tlbs(vcpu->kvm);
1387}
1388
1389/*
1390 * Write-protect on the specified @sptep, @pt_protect indicates whether
1391 * spte write-protection is caused by protecting shadow page table.
1392 *
1393 * Note: write protection is difference between dirty logging and spte
1394 * protection:
1395 * - for dirty logging, the spte can be set to writable at anytime if
1396 *   its dirty bitmap is properly set.
1397 * - for spte protection, the spte can be writable only after unsync-ing
1398 *   shadow page.
1399 *
1400 * Return true if tlb need be flushed.
1401 */
1402static bool spte_write_protect(u64 *sptep, bool pt_protect)
1403{
1404        u64 spte = *sptep;
1405
1406        if (!is_writable_pte(spte) &&
1407              !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1408                return false;
1409
1410        rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1411
1412        if (pt_protect)
1413                spte &= ~SPTE_MMU_WRITEABLE;
1414        spte = spte & ~PT_WRITABLE_MASK;
1415
1416        return mmu_spte_update(sptep, spte);
1417}
1418
1419static bool __rmap_write_protect(struct kvm *kvm,
1420                                 struct kvm_rmap_head *rmap_head,
1421                                 bool pt_protect)
1422{
1423        u64 *sptep;
1424        struct rmap_iterator iter;
1425        bool flush = false;
1426
1427        for_each_rmap_spte(rmap_head, &iter, sptep)
1428                flush |= spte_write_protect(sptep, pt_protect);
1429
1430        return flush;
1431}
1432
1433static bool spte_clear_dirty(u64 *sptep)
1434{
1435        u64 spte = *sptep;
1436
1437        rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1438
1439        spte &= ~shadow_dirty_mask;
1440
1441        return mmu_spte_update(sptep, spte);
1442}
1443
1444static bool wrprot_ad_disabled_spte(u64 *sptep)
1445{
1446        bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1447                                               (unsigned long *)sptep);
1448        if (was_writable)
1449                kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1450
1451        return was_writable;
1452}
1453
1454/*
1455 * Gets the GFN ready for another round of dirty logging by clearing the
1456 *      - D bit on ad-enabled SPTEs, and
1457 *      - W bit on ad-disabled SPTEs.
1458 * Returns true iff any D or W bits were cleared.
1459 */
1460static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1461{
1462        u64 *sptep;
1463        struct rmap_iterator iter;
1464        bool flush = false;
1465
1466        for_each_rmap_spte(rmap_head, &iter, sptep)
1467                if (spte_ad_enabled(*sptep))
1468                        flush |= spte_clear_dirty(sptep);
1469                else
1470                        flush |= wrprot_ad_disabled_spte(sptep);
1471
1472        return flush;
1473}
1474
1475static bool spte_set_dirty(u64 *sptep)
1476{
1477        u64 spte = *sptep;
1478
1479        rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1480
1481        spte |= shadow_dirty_mask;
1482
1483        return mmu_spte_update(sptep, spte);
1484}
1485
1486static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1487{
1488        u64 *sptep;
1489        struct rmap_iterator iter;
1490        bool flush = false;
1491
1492        for_each_rmap_spte(rmap_head, &iter, sptep)
1493                if (spte_ad_enabled(*sptep))
1494                        flush |= spte_set_dirty(sptep);
1495
1496        return flush;
1497}
1498
1499/**
1500 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1501 * @kvm: kvm instance
1502 * @slot: slot to protect
1503 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1504 * @mask: indicates which pages we should protect
1505 *
1506 * Used when we do not need to care about huge page mappings: e.g. during dirty
1507 * logging we do not have any such mappings.
1508 */
1509static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1510                                     struct kvm_memory_slot *slot,
1511                                     gfn_t gfn_offset, unsigned long mask)
1512{
1513        struct kvm_rmap_head *rmap_head;
1514
1515        while (mask) {
1516                rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1517                                          PT_PAGE_TABLE_LEVEL, slot);
1518                __rmap_write_protect(kvm, rmap_head, false);
1519
1520                /* clear the first set bit */
1521                mask &= mask - 1;
1522        }
1523}
1524
1525/**
1526 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1527 * protect the page if the D-bit isn't supported.
1528 * @kvm: kvm instance
1529 * @slot: slot to clear D-bit
1530 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1531 * @mask: indicates which pages we should clear D-bit
1532 *
1533 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1534 */
1535void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1536                                     struct kvm_memory_slot *slot,
1537                                     gfn_t gfn_offset, unsigned long mask)
1538{
1539        struct kvm_rmap_head *rmap_head;
1540
1541        while (mask) {
1542                rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1543                                          PT_PAGE_TABLE_LEVEL, slot);
1544                __rmap_clear_dirty(kvm, rmap_head);
1545
1546                /* clear the first set bit */
1547                mask &= mask - 1;
1548        }
1549}
1550EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1551
1552/**
1553 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1554 * PT level pages.
1555 *
1556 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1557 * enable dirty logging for them.
1558 *
1559 * Used when we do not need to care about huge page mappings: e.g. during dirty
1560 * logging we do not have any such mappings.
1561 */
1562void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1563                                struct kvm_memory_slot *slot,
1564                                gfn_t gfn_offset, unsigned long mask)
1565{
1566        if (kvm_x86_ops->enable_log_dirty_pt_masked)
1567                kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1568                                mask);
1569        else
1570                kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1571}
1572
1573/**
1574 * kvm_arch_write_log_dirty - emulate dirty page logging
1575 * @vcpu: Guest mode vcpu
1576 *
1577 * Emulate arch specific page modification logging for the
1578 * nested hypervisor
1579 */
1580int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1581{
1582        if (kvm_x86_ops->write_log_dirty)
1583                return kvm_x86_ops->write_log_dirty(vcpu);
1584
1585        return 0;
1586}
1587
1588bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1589                                    struct kvm_memory_slot *slot, u64 gfn)
1590{
1591        struct kvm_rmap_head *rmap_head;
1592        int i;
1593        bool write_protected = false;
1594
1595        for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1596                rmap_head = __gfn_to_rmap(gfn, i, slot);
1597                write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1598        }
1599
1600        return write_protected;
1601}
1602
1603static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1604{
1605        struct kvm_memory_slot *slot;
1606
1607        slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1608        return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1609}
1610
1611static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1612{
1613        u64 *sptep;
1614        struct rmap_iterator iter;
1615        bool flush = false;
1616
1617        while ((sptep = rmap_get_first(rmap_head, &iter))) {
1618                rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1619
1620                drop_spte(kvm, sptep);
1621                flush = true;
1622        }
1623
1624        return flush;
1625}
1626
1627static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1628                           struct kvm_memory_slot *slot, gfn_t gfn, int level,
1629                           unsigned long data)
1630{
1631        return kvm_zap_rmapp(kvm, rmap_head);
1632}
1633
1634static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1635                             struct kvm_memory_slot *slot, gfn_t gfn, int level,
1636                             unsigned long data)
1637{
1638        u64 *sptep;
1639        struct rmap_iterator iter;
1640        int need_flush = 0;
1641        u64 new_spte;
1642        pte_t *ptep = (pte_t *)data;
1643        kvm_pfn_t new_pfn;
1644
1645        WARN_ON(pte_huge(*ptep));
1646        new_pfn = pte_pfn(*ptep);
1647
1648restart:
1649        for_each_rmap_spte(rmap_head, &iter, sptep) {
1650                rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1651                            sptep, *sptep, gfn, level);
1652
1653                need_flush = 1;
1654
1655                if (pte_write(*ptep)) {
1656                        drop_spte(kvm, sptep);
1657                        goto restart;
1658                } else {
1659                        new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1660                        new_spte |= (u64)new_pfn << PAGE_SHIFT;
1661
1662                        new_spte &= ~PT_WRITABLE_MASK;
1663                        new_spte &= ~SPTE_HOST_WRITEABLE;
1664
1665                        new_spte = mark_spte_for_access_track(new_spte);
1666
1667                        mmu_spte_clear_track_bits(sptep);
1668                        mmu_spte_set(sptep, new_spte);
1669                }
1670        }
1671
1672        if (need_flush)
1673                kvm_flush_remote_tlbs(kvm);
1674
1675        return 0;
1676}
1677
1678struct slot_rmap_walk_iterator {
1679        /* input fields. */
1680        struct kvm_memory_slot *slot;
1681        gfn_t start_gfn;
1682        gfn_t end_gfn;
1683        int start_level;
1684        int end_level;
1685
1686        /* output fields. */
1687        gfn_t gfn;
1688        struct kvm_rmap_head *rmap;
1689        int level;
1690
1691        /* private field. */
1692        struct kvm_rmap_head *end_rmap;
1693};
1694
1695static void
1696rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1697{
1698        iterator->level = level;
1699        iterator->gfn = iterator->start_gfn;
1700        iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1701        iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1702                                           iterator->slot);
1703}
1704
1705static void
1706slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1707                    struct kvm_memory_slot *slot, int start_level,
1708                    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1709{
1710        iterator->slot = slot;
1711        iterator->start_level = start_level;
1712        iterator->end_level = end_level;
1713        iterator->start_gfn = start_gfn;
1714        iterator->end_gfn = end_gfn;
1715
1716        rmap_walk_init_level(iterator, iterator->start_level);
1717}
1718
1719static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1720{
1721        return !!iterator->rmap;
1722}
1723
1724static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1725{
1726        if (++iterator->rmap <= iterator->end_rmap) {
1727                iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1728                return;
1729        }
1730
1731        if (++iterator->level > iterator->end_level) {
1732                iterator->rmap = NULL;
1733                return;
1734        }
1735
1736        rmap_walk_init_level(iterator, iterator->level);
1737}
1738
1739#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1740           _start_gfn, _end_gfn, _iter_)                                \
1741        for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1742                                 _end_level_, _start_gfn, _end_gfn);    \
1743             slot_rmap_walk_okay(_iter_);                               \
1744             slot_rmap_walk_next(_iter_))
1745
1746static int kvm_handle_hva_range(struct kvm *kvm,
1747                                unsigned long start,
1748                                unsigned long end,
1749                                unsigned long data,
1750                                int (*handler)(struct kvm *kvm,
1751                                               struct kvm_rmap_head *rmap_head,
1752                                               struct kvm_memory_slot *slot,
1753                                               gfn_t gfn,
1754                                               int level,
1755                                               unsigned long data))
1756{
1757        struct kvm_memslots *slots;
1758        struct kvm_memory_slot *memslot;
1759        struct slot_rmap_walk_iterator iterator;
1760        int ret = 0;
1761        int i;
1762
1763        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1764                slots = __kvm_memslots(kvm, i);
1765                kvm_for_each_memslot(memslot, slots) {
1766                        unsigned long hva_start, hva_end;
1767                        gfn_t gfn_start, gfn_end;
1768
1769                        hva_start = max(start, memslot->userspace_addr);
1770                        hva_end = min(end, memslot->userspace_addr +
1771                                      (memslot->npages << PAGE_SHIFT));
1772                        if (hva_start >= hva_end)
1773                                continue;
1774                        /*
1775                         * {gfn(page) | page intersects with [hva_start, hva_end)} =
1776                         * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1777                         */
1778                        gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1779                        gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1780
1781                        for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1782                                                 PT_MAX_HUGEPAGE_LEVEL,
1783                                                 gfn_start, gfn_end - 1,
1784                                                 &iterator)
1785                                ret |= handler(kvm, iterator.rmap, memslot,
1786                                               iterator.gfn, iterator.level, data);
1787                }
1788        }
1789
1790        return ret;
1791}
1792
1793static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1794                          unsigned long data,
1795                          int (*handler)(struct kvm *kvm,
1796                                         struct kvm_rmap_head *rmap_head,
1797                                         struct kvm_memory_slot *slot,
1798                                         gfn_t gfn, int level,
1799                                         unsigned long data))
1800{
1801        return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1802}
1803
1804int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1805{
1806        return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1807}
1808
1809int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1810{
1811        return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1812}
1813
1814void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1815{
1816        kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1817}
1818
1819static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1820                         struct kvm_memory_slot *slot, gfn_t gfn, int level,
1821                         unsigned long data)
1822{
1823        u64 *sptep;
1824        struct rmap_iterator uninitialized_var(iter);
1825        int young = 0;
1826
1827        for_each_rmap_spte(rmap_head, &iter, sptep)
1828                young |= mmu_spte_age(sptep);
1829
1830        trace_kvm_age_page(gfn, level, slot, young);
1831        return young;
1832}
1833
1834static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1835                              struct kvm_memory_slot *slot, gfn_t gfn,
1836                              int level, unsigned long data)
1837{
1838        u64 *sptep;
1839        struct rmap_iterator iter;
1840
1841        for_each_rmap_spte(rmap_head, &iter, sptep)
1842                if (is_accessed_spte(*sptep))
1843                        return 1;
1844        return 0;
1845}
1846
1847#define RMAP_RECYCLE_THRESHOLD 1000
1848
1849static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1850{
1851        struct kvm_rmap_head *rmap_head;
1852        struct kvm_mmu_page *sp;
1853
1854        sp = page_header(__pa(spte));
1855
1856        rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1857
1858        kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1859        kvm_flush_remote_tlbs(vcpu->kvm);
1860}
1861
1862int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1863{
1864        return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1865}
1866
1867int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1868{
1869        return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1870}
1871
1872#ifdef MMU_DEBUG
1873static int is_empty_shadow_page(u64 *spt)
1874{
1875        u64 *pos;
1876        u64 *end;
1877
1878        for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1879                if (is_shadow_present_pte(*pos)) {
1880                        printk(KERN_ERR "%s: %p %llx\n", __func__,
1881                               pos, *pos);
1882                        return 0;
1883                }
1884        return 1;
1885}
1886#endif
1887
1888/*
1889 * This value is the sum of all of the kvm instances's
1890 * kvm->arch.n_used_mmu_pages values.  We need a global,
1891 * aggregate version in order to make the slab shrinker
1892 * faster
1893 */
1894static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1895{
1896        kvm->arch.n_used_mmu_pages += nr;
1897        percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1898}
1899
1900static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1901{
1902        MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1903        hlist_del(&sp->hash_link);
1904        list_del(&sp->link);
1905        free_page((unsigned long)sp->spt);
1906        if (!sp->role.direct)
1907                free_page((unsigned long)sp->gfns);
1908        kmem_cache_free(mmu_page_header_cache, sp);
1909}
1910
1911static unsigned kvm_page_table_hashfn(gfn_t gfn)
1912{
1913        return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1914}
1915
1916static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1917                                    struct kvm_mmu_page *sp, u64 *parent_pte)
1918{
1919        if (!parent_pte)
1920                return;
1921
1922        pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1923}
1924
1925static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1926                                       u64 *parent_pte)
1927{
1928        pte_list_remove(parent_pte, &sp->parent_ptes);
1929}
1930
1931static void drop_parent_pte(struct kvm_mmu_page *sp,
1932                            u64 *parent_pte)
1933{
1934        mmu_page_remove_parent_pte(sp, parent_pte);
1935        mmu_spte_clear_no_track(parent_pte);
1936}
1937
1938static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1939{
1940        struct kvm_mmu_page *sp;
1941
1942        sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1943        sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1944        if (!direct)
1945                sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1946        set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1947
1948        /*
1949         * The active_mmu_pages list is the FIFO list, do not move the
1950         * page until it is zapped. kvm_zap_obsolete_pages depends on
1951         * this feature. See the comments in kvm_zap_obsolete_pages().
1952         */
1953        list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1954        kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1955        return sp;
1956}
1957
1958static void mark_unsync(u64 *spte);
1959static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1960{
1961        u64 *sptep;
1962        struct rmap_iterator iter;
1963
1964        for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1965                mark_unsync(sptep);
1966        }
1967}
1968
1969static void mark_unsync(u64 *spte)
1970{
1971        struct kvm_mmu_page *sp;
1972        unsigned int index;
1973
1974        sp = page_header(__pa(spte));
1975        index = spte - sp->spt;
1976        if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1977                return;
1978        if (sp->unsync_children++)
1979                return;
1980        kvm_mmu_mark_parents_unsync(sp);
1981}
1982
1983static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1984                               struct kvm_mmu_page *sp)
1985{
1986        return 0;
1987}
1988
1989static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1990{
1991}
1992
1993static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1994                                 struct kvm_mmu_page *sp, u64 *spte,
1995                                 const void *pte)
1996{
1997        WARN_ON(1);
1998}
1999
2000#define KVM_PAGE_ARRAY_NR 16
2001
2002struct kvm_mmu_pages {
2003        struct mmu_page_and_offset {
2004                struct kvm_mmu_page *sp;
2005                unsigned int idx;
2006        } page[KVM_PAGE_ARRAY_NR];
2007        unsigned int nr;
2008};
2009
2010static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2011                         int idx)
2012{
2013        int i;
2014
2015        if (sp->unsync)
2016                for (i=0; i < pvec->nr; i++)
2017                        if (pvec->page[i].sp == sp)
2018                                return 0;
2019
2020        pvec->page[pvec->nr].sp = sp;
2021        pvec->page[pvec->nr].idx = idx;
2022        pvec->nr++;
2023        return (pvec->nr == KVM_PAGE_ARRAY_NR);
2024}
2025
2026static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2027{
2028        --sp->unsync_children;
2029        WARN_ON((int)sp->unsync_children < 0);
2030        __clear_bit(idx, sp->unsync_child_bitmap);
2031}
2032
2033static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2034                           struct kvm_mmu_pages *pvec)
2035{
2036        int i, ret, nr_unsync_leaf = 0;
2037
2038        for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2039                struct kvm_mmu_page *child;
2040                u64 ent = sp->spt[i];
2041
2042                if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2043                        clear_unsync_child_bit(sp, i);
2044                        continue;
2045                }
2046
2047                child = page_header(ent & PT64_BASE_ADDR_MASK);
2048
2049                if (child->unsync_children) {
2050                        if (mmu_pages_add(pvec, child, i))
2051                                return -ENOSPC;
2052
2053                        ret = __mmu_unsync_walk(child, pvec);
2054                        if (!ret) {
2055                                clear_unsync_child_bit(sp, i);
2056                                continue;
2057                        } else if (ret > 0) {
2058                                nr_unsync_leaf += ret;
2059                        } else
2060                                return ret;
2061                } else if (child->unsync) {
2062                        nr_unsync_leaf++;
2063                        if (mmu_pages_add(pvec, child, i))
2064                                return -ENOSPC;
2065                } else
2066                        clear_unsync_child_bit(sp, i);
2067        }
2068
2069        return nr_unsync_leaf;
2070}
2071
2072#define INVALID_INDEX (-1)
2073
2074static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2075                           struct kvm_mmu_pages *pvec)
2076{
2077        pvec->nr = 0;
2078        if (!sp->unsync_children)
2079                return 0;
2080
2081        mmu_pages_add(pvec, sp, INVALID_INDEX);
2082        return __mmu_unsync_walk(sp, pvec);
2083}
2084
2085static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2086{
2087        WARN_ON(!sp->unsync);
2088        trace_kvm_mmu_sync_page(sp);
2089        sp->unsync = 0;
2090        --kvm->stat.mmu_unsync;
2091}
2092
2093static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2094                                    struct list_head *invalid_list);
2095static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2096                                    struct list_head *invalid_list);
2097
2098/*
2099 * NOTE: we should pay more attention on the zapped-obsolete page
2100 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2101 * since it has been deleted from active_mmu_pages but still can be found
2102 * at hast list.
2103 *
2104 * for_each_valid_sp() has skipped that kind of pages.
2105 */
2106#define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2107        hlist_for_each_entry(_sp,                                       \
2108          &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2109                if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
2110                } else
2111
2112#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2113        for_each_valid_sp(_kvm, _sp, _gfn)                              \
2114                if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2115
2116/* @sp->gfn should be write-protected at the call site */
2117static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2118                            struct list_head *invalid_list)
2119{
2120        if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2121                kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2122                return false;
2123        }
2124
2125        if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2126                kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2127                return false;
2128        }
2129
2130        return true;
2131}
2132
2133static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2134                                 struct list_head *invalid_list,
2135                                 bool remote_flush, bool local_flush)
2136{
2137        if (!list_empty(invalid_list)) {
2138                kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2139                return;
2140        }
2141
2142        if (remote_flush)
2143                kvm_flush_remote_tlbs(vcpu->kvm);
2144        else if (local_flush)
2145                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2146}
2147
2148#ifdef CONFIG_KVM_MMU_AUDIT
2149#include "mmu_audit.c"
2150#else
2151static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2152static void mmu_audit_disable(void) { }
2153#endif
2154
2155static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2156{
2157        return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2158}
2159
2160static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2161                         struct list_head *invalid_list)
2162{
2163        kvm_unlink_unsync_page(vcpu->kvm, sp);
2164        return __kvm_sync_page(vcpu, sp, invalid_list);
2165}
2166
2167/* @gfn should be write-protected at the call site */
2168static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2169                           struct list_head *invalid_list)
2170{
2171        struct kvm_mmu_page *s;
2172        bool ret = false;
2173
2174        for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2175                if (!s->unsync)
2176                        continue;
2177
2178                WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2179                ret |= kvm_sync_page(vcpu, s, invalid_list);
2180        }
2181
2182        return ret;
2183}
2184
2185struct mmu_page_path {
2186        struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2187        unsigned int idx[PT64_ROOT_MAX_LEVEL];
2188};
2189
2190#define for_each_sp(pvec, sp, parents, i)                       \
2191                for (i = mmu_pages_first(&pvec, &parents);      \
2192                        i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2193                        i = mmu_pages_next(&pvec, &parents, i))
2194
2195static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2196                          struct mmu_page_path *parents,
2197                          int i)
2198{
2199        int n;
2200
2201        for (n = i+1; n < pvec->nr; n++) {
2202                struct kvm_mmu_page *sp = pvec->page[n].sp;
2203                unsigned idx = pvec->page[n].idx;
2204                int level = sp->role.level;
2205
2206                parents->idx[level-1] = idx;
2207                if (level == PT_PAGE_TABLE_LEVEL)
2208                        break;
2209
2210                parents->parent[level-2] = sp;
2211        }
2212
2213        return n;
2214}
2215
2216static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2217                           struct mmu_page_path *parents)
2218{
2219        struct kvm_mmu_page *sp;
2220        int level;
2221
2222        if (pvec->nr == 0)
2223                return 0;
2224
2225        WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2226
2227        sp = pvec->page[0].sp;
2228        level = sp->role.level;
2229        WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2230
2231        parents->parent[level-2] = sp;
2232
2233        /* Also set up a sentinel.  Further entries in pvec are all
2234         * children of sp, so this element is never overwritten.
2235         */
2236        parents->parent[level-1] = NULL;
2237        return mmu_pages_next(pvec, parents, 0);
2238}
2239
2240static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2241{
2242        struct kvm_mmu_page *sp;
2243        unsigned int level = 0;
2244
2245        do {
2246                unsigned int idx = parents->idx[level];
2247                sp = parents->parent[level];
2248                if (!sp)
2249                        return;
2250
2251                WARN_ON(idx == INVALID_INDEX);
2252                clear_unsync_child_bit(sp, idx);
2253                level++;
2254        } while (!sp->unsync_children);
2255}
2256
2257static void mmu_sync_children(struct kvm_vcpu *vcpu,
2258                              struct kvm_mmu_page *parent)
2259{
2260        int i;
2261        struct kvm_mmu_page *sp;
2262        struct mmu_page_path parents;
2263        struct kvm_mmu_pages pages;
2264        LIST_HEAD(invalid_list);
2265        bool flush = false;
2266
2267        while (mmu_unsync_walk(parent, &pages)) {
2268                bool protected = false;
2269
2270                for_each_sp(pages, sp, parents, i)
2271                        protected |= rmap_write_protect(vcpu, sp->gfn);
2272
2273                if (protected) {
2274                        kvm_flush_remote_tlbs(vcpu->kvm);
2275                        flush = false;
2276                }
2277
2278                for_each_sp(pages, sp, parents, i) {
2279                        flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2280                        mmu_pages_clear_parents(&parents);
2281                }
2282                if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2283                        kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2284                        cond_resched_lock(&vcpu->kvm->mmu_lock);
2285                        flush = false;
2286                }
2287        }
2288
2289        kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2290}
2291
2292static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2293{
2294        atomic_set(&sp->write_flooding_count,  0);
2295}
2296
2297static void clear_sp_write_flooding_count(u64 *spte)
2298{
2299        struct kvm_mmu_page *sp =  page_header(__pa(spte));
2300
2301        __clear_sp_write_flooding_count(sp);
2302}
2303
2304static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2305                                             gfn_t gfn,
2306                                             gva_t gaddr,
2307                                             unsigned level,
2308                                             int direct,
2309                                             unsigned access)
2310{
2311        union kvm_mmu_page_role role;
2312        unsigned quadrant;
2313        struct kvm_mmu_page *sp;
2314        bool need_sync = false;
2315        bool flush = false;
2316        int collisions = 0;
2317        LIST_HEAD(invalid_list);
2318
2319        role = vcpu->arch.mmu.base_role;
2320        role.level = level;
2321        role.direct = direct;
2322        if (role.direct)
2323                role.cr4_pae = 0;
2324        role.access = access;
2325        if (!vcpu->arch.mmu.direct_map
2326            && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2327                quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2328                quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2329                role.quadrant = quadrant;
2330        }
2331        for_each_valid_sp(vcpu->kvm, sp, gfn) {
2332                if (sp->gfn != gfn) {
2333                        collisions++;
2334                        continue;
2335                }
2336
2337                if (!need_sync && sp->unsync)
2338                        need_sync = true;
2339
2340                if (sp->role.word != role.word)
2341                        continue;
2342
2343                if (sp->unsync) {
2344                        /* The page is good, but __kvm_sync_page might still end
2345                         * up zapping it.  If so, break in order to rebuild it.
2346                         */
2347                        if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2348                                break;
2349
2350                        WARN_ON(!list_empty(&invalid_list));
2351                        kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2352                }
2353
2354                if (sp->unsync_children)
2355                        kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2356
2357                __clear_sp_write_flooding_count(sp);
2358                trace_kvm_mmu_get_page(sp, false);
2359                goto out;
2360        }
2361
2362        ++vcpu->kvm->stat.mmu_cache_miss;
2363
2364        sp = kvm_mmu_alloc_page(vcpu, direct);
2365
2366        sp->gfn = gfn;
2367        sp->role = role;
2368        hlist_add_head(&sp->hash_link,
2369                &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2370        if (!direct) {
2371                /*
2372                 * we should do write protection before syncing pages
2373                 * otherwise the content of the synced shadow page may
2374                 * be inconsistent with guest page table.
2375                 */
2376                account_shadowed(vcpu->kvm, sp);
2377                if (level == PT_PAGE_TABLE_LEVEL &&
2378                      rmap_write_protect(vcpu, gfn))
2379                        kvm_flush_remote_tlbs(vcpu->kvm);
2380
2381                if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2382                        flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2383        }
2384        sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2385        clear_page(sp->spt);
2386        trace_kvm_mmu_get_page(sp, true);
2387
2388        kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2389out:
2390        if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2391                vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2392        return sp;
2393}
2394
2395static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2396                             struct kvm_vcpu *vcpu, u64 addr)
2397{
2398        iterator->addr = addr;
2399        iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2400        iterator->level = vcpu->arch.mmu.shadow_root_level;
2401
2402        if (iterator->level == PT64_ROOT_4LEVEL &&
2403            vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2404            !vcpu->arch.mmu.direct_map)
2405                --iterator->level;
2406
2407        if (iterator->level == PT32E_ROOT_LEVEL) {
2408                iterator->shadow_addr
2409                        = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2410                iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2411                --iterator->level;
2412                if (!iterator->shadow_addr)
2413                        iterator->level = 0;
2414        }
2415}
2416
2417static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2418{
2419        if (iterator->level < PT_PAGE_TABLE_LEVEL)
2420                return false;
2421
2422        iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2423        iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2424        return true;
2425}
2426
2427static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2428                               u64 spte)
2429{
2430        if (is_last_spte(spte, iterator->level)) {
2431                iterator->level = 0;
2432                return;
2433        }
2434
2435        iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2436        --iterator->level;
2437}
2438
2439static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2440{
2441        __shadow_walk_next(iterator, *iterator->sptep);
2442}
2443
2444static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2445                             struct kvm_mmu_page *sp)
2446{
2447        u64 spte;
2448
2449        BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2450
2451        spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2452               shadow_user_mask | shadow_x_mask | shadow_me_mask;
2453
2454        if (sp_ad_disabled(sp))
2455                spte |= shadow_acc_track_value;
2456        else
2457                spte |= shadow_accessed_mask;
2458
2459        mmu_spte_set(sptep, spte);
2460
2461        mmu_page_add_parent_pte(vcpu, sp, sptep);
2462
2463        if (sp->unsync_children || sp->unsync)
2464                mark_unsync(sptep);
2465}
2466
2467static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2468                                   unsigned direct_access)
2469{
2470        if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2471                struct kvm_mmu_page *child;
2472
2473                /*
2474                 * For the direct sp, if the guest pte's dirty bit
2475                 * changed form clean to dirty, it will corrupt the
2476                 * sp's access: allow writable in the read-only sp,
2477                 * so we should update the spte at this point to get
2478                 * a new sp with the correct access.
2479                 */
2480                child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2481                if (child->role.access == direct_access)
2482                        return;
2483
2484                drop_parent_pte(child, sptep);
2485                kvm_flush_remote_tlbs(vcpu->kvm);
2486        }
2487}
2488
2489static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2490                             u64 *spte)
2491{
2492        u64 pte;
2493        struct kvm_mmu_page *child;
2494
2495        pte = *spte;
2496        if (is_shadow_present_pte(pte)) {
2497                if (is_last_spte(pte, sp->role.level)) {
2498                        drop_spte(kvm, spte);
2499                        if (is_large_pte(pte))
2500                                --kvm->stat.lpages;
2501                } else {
2502                        child = page_header(pte & PT64_BASE_ADDR_MASK);
2503                        drop_parent_pte(child, spte);
2504                }
2505                return true;
2506        }
2507
2508        if (is_mmio_spte(pte))
2509                mmu_spte_clear_no_track(spte);
2510
2511        return false;
2512}
2513
2514static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2515                                         struct kvm_mmu_page *sp)
2516{
2517        unsigned i;
2518
2519        for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2520                mmu_page_zap_pte(kvm, sp, sp->spt + i);
2521}
2522
2523static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2524{
2525        u64 *sptep;
2526        struct rmap_iterator iter;
2527
2528        while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2529                drop_parent_pte(sp, sptep);
2530}
2531
2532static int mmu_zap_unsync_children(struct kvm *kvm,
2533                                   struct kvm_mmu_page *parent,
2534                                   struct list_head *invalid_list)
2535{
2536        int i, zapped = 0;
2537        struct mmu_page_path parents;
2538        struct kvm_mmu_pages pages;
2539
2540        if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2541                return 0;
2542
2543        while (mmu_unsync_walk(parent, &pages)) {
2544                struct kvm_mmu_page *sp;
2545
2546                for_each_sp(pages, sp, parents, i) {
2547                        kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2548                        mmu_pages_clear_parents(&parents);
2549                        zapped++;
2550                }
2551        }
2552
2553        return zapped;
2554}
2555
2556static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2557                                    struct list_head *invalid_list)
2558{
2559        int ret;
2560
2561        trace_kvm_mmu_prepare_zap_page(sp);
2562        ++kvm->stat.mmu_shadow_zapped;
2563        ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2564        kvm_mmu_page_unlink_children(kvm, sp);
2565        kvm_mmu_unlink_parents(kvm, sp);
2566
2567        if (!sp->role.invalid && !sp->role.direct)
2568                unaccount_shadowed(kvm, sp);
2569
2570        if (sp->unsync)
2571                kvm_unlink_unsync_page(kvm, sp);
2572        if (!sp->root_count) {
2573                /* Count self */
2574                ret++;
2575                list_move(&sp->link, invalid_list);
2576                kvm_mod_used_mmu_pages(kvm, -1);
2577        } else {
2578                list_move(&sp->link, &kvm->arch.active_mmu_pages);
2579
2580                /*
2581                 * The obsolete pages can not be used on any vcpus.
2582                 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2583                 */
2584                if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2585                        kvm_reload_remote_mmus(kvm);
2586        }
2587
2588        sp->role.invalid = 1;
2589        return ret;
2590}
2591
2592static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2593                                    struct list_head *invalid_list)
2594{
2595        struct kvm_mmu_page *sp, *nsp;
2596
2597        if (list_empty(invalid_list))
2598                return;
2599
2600        /*
2601         * We need to make sure everyone sees our modifications to
2602         * the page tables and see changes to vcpu->mode here. The barrier
2603         * in the kvm_flush_remote_tlbs() achieves this. This pairs
2604         * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2605         *
2606         * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2607         * guest mode and/or lockless shadow page table walks.
2608         */
2609        kvm_flush_remote_tlbs(kvm);
2610
2611        list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2612                WARN_ON(!sp->role.invalid || sp->root_count);
2613                kvm_mmu_free_page(sp);
2614        }
2615}
2616
2617static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2618                                        struct list_head *invalid_list)
2619{
2620        struct kvm_mmu_page *sp;
2621
2622        if (list_empty(&kvm->arch.active_mmu_pages))
2623                return false;
2624
2625        sp = list_last_entry(&kvm->arch.active_mmu_pages,
2626                             struct kvm_mmu_page, link);
2627        return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2628}
2629
2630/*
2631 * Changing the number of mmu pages allocated to the vm
2632 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2633 */
2634void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2635{
2636        LIST_HEAD(invalid_list);
2637
2638        spin_lock(&kvm->mmu_lock);
2639
2640        if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2641                /* Need to free some mmu pages to achieve the goal. */
2642                while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2643                        if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2644                                break;
2645
2646                kvm_mmu_commit_zap_page(kvm, &invalid_list);
2647                goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2648        }
2649
2650        kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2651
2652        spin_unlock(&kvm->mmu_lock);
2653}
2654
2655int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2656{
2657        struct kvm_mmu_page *sp;
2658        LIST_HEAD(invalid_list);
2659        int r;
2660
2661        pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2662        r = 0;
2663        spin_lock(&kvm->mmu_lock);
2664        for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2665                pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2666                         sp->role.word);
2667                r = 1;
2668                kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2669        }
2670        kvm_mmu_commit_zap_page(kvm, &invalid_list);
2671        spin_unlock(&kvm->mmu_lock);
2672
2673        return r;
2674}
2675EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2676
2677static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2678{
2679        trace_kvm_mmu_unsync_page(sp);
2680        ++vcpu->kvm->stat.mmu_unsync;
2681        sp->unsync = 1;
2682
2683        kvm_mmu_mark_parents_unsync(sp);
2684}
2685
2686static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2687                                   bool can_unsync)
2688{
2689        struct kvm_mmu_page *sp;
2690
2691        if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2692                return true;
2693
2694        for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2695                if (!can_unsync)
2696                        return true;
2697
2698                if (sp->unsync)
2699                        continue;
2700
2701                WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2702                kvm_unsync_page(vcpu, sp);
2703        }
2704
2705        return false;
2706}
2707
2708static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2709{
2710        if (pfn_valid(pfn))
2711                return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2712                        /*
2713                         * Some reserved pages, such as those from NVDIMM
2714                         * DAX devices, are not for MMIO, and can be mapped
2715                         * with cached memory type for better performance.
2716                         * However, the above check misconceives those pages
2717                         * as MMIO, and results in KVM mapping them with UC
2718                         * memory type, which would hurt the performance.
2719                         * Therefore, we check the host memory type in addition
2720                         * and only treat UC/UC-/WC pages as MMIO.
2721                         */
2722                        (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2723
2724        return true;
2725}
2726
2727static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2728                    unsigned pte_access, int level,
2729                    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2730                    bool can_unsync, bool host_writable)
2731{
2732        u64 spte = 0;
2733        int ret = 0;
2734        struct kvm_mmu_page *sp;
2735
2736        if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2737                return 0;
2738
2739        sp = page_header(__pa(sptep));
2740        if (sp_ad_disabled(sp))
2741                spte |= shadow_acc_track_value;
2742
2743        /*
2744         * For the EPT case, shadow_present_mask is 0 if hardware
2745         * supports exec-only page table entries.  In that case,
2746         * ACC_USER_MASK and shadow_user_mask are used to represent
2747         * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2748         */
2749        spte |= shadow_present_mask;
2750        if (!speculative)
2751                spte |= spte_shadow_accessed_mask(spte);
2752
2753        if (pte_access & ACC_EXEC_MASK)
2754                spte |= shadow_x_mask;
2755        else
2756                spte |= shadow_nx_mask;
2757
2758        if (pte_access & ACC_USER_MASK)
2759                spte |= shadow_user_mask;
2760
2761        if (level > PT_PAGE_TABLE_LEVEL)
2762                spte |= PT_PAGE_SIZE_MASK;
2763        if (tdp_enabled)
2764                spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2765                        kvm_is_mmio_pfn(pfn));
2766
2767        if (host_writable)
2768                spte |= SPTE_HOST_WRITEABLE;
2769        else
2770                pte_access &= ~ACC_WRITE_MASK;
2771
2772        if (!kvm_is_mmio_pfn(pfn))
2773                spte |= shadow_me_mask;
2774
2775        spte |= (u64)pfn << PAGE_SHIFT;
2776
2777        if (pte_access & ACC_WRITE_MASK) {
2778
2779                /*
2780                 * Other vcpu creates new sp in the window between
2781                 * mapping_level() and acquiring mmu-lock. We can
2782                 * allow guest to retry the access, the mapping can
2783                 * be fixed if guest refault.
2784                 */
2785                if (level > PT_PAGE_TABLE_LEVEL &&
2786                    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2787                        goto done;
2788
2789                spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2790
2791                /*
2792                 * Optimization: for pte sync, if spte was writable the hash
2793                 * lookup is unnecessary (and expensive). Write protection
2794                 * is responsibility of mmu_get_page / kvm_sync_page.
2795                 * Same reasoning can be applied to dirty page accounting.
2796                 */
2797                if (!can_unsync && is_writable_pte(*sptep))
2798                        goto set_pte;
2799
2800                if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2801                        pgprintk("%s: found shadow page for %llx, marking ro\n",
2802                                 __func__, gfn);
2803                        ret = 1;
2804                        pte_access &= ~ACC_WRITE_MASK;
2805                        spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2806                }
2807        }
2808
2809        if (pte_access & ACC_WRITE_MASK) {
2810                kvm_vcpu_mark_page_dirty(vcpu, gfn);
2811                spte |= spte_shadow_dirty_mask(spte);
2812        }
2813
2814        if (speculative)
2815                spte = mark_spte_for_access_track(spte);
2816
2817set_pte:
2818        if (mmu_spte_update(sptep, spte))
2819                kvm_flush_remote_tlbs(vcpu->kvm);
2820done:
2821        return ret;
2822}
2823
2824static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2825                        int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2826                        bool speculative, bool host_writable)
2827{
2828        int was_rmapped = 0;
2829        int rmap_count;
2830        int ret = RET_PF_RETRY;
2831
2832        pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2833                 *sptep, write_fault, gfn);
2834
2835        if (is_shadow_present_pte(*sptep)) {
2836                /*
2837                 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2838                 * the parent of the now unreachable PTE.
2839                 */
2840                if (level > PT_PAGE_TABLE_LEVEL &&
2841                    !is_large_pte(*sptep)) {
2842                        struct kvm_mmu_page *child;
2843                        u64 pte = *sptep;
2844
2845                        child = page_header(pte & PT64_BASE_ADDR_MASK);
2846                        drop_parent_pte(child, sptep);
2847                        kvm_flush_remote_tlbs(vcpu->kvm);
2848                } else if (pfn != spte_to_pfn(*sptep)) {
2849                        pgprintk("hfn old %llx new %llx\n",
2850                                 spte_to_pfn(*sptep), pfn);
2851                        drop_spte(vcpu->kvm, sptep);
2852                        kvm_flush_remote_tlbs(vcpu->kvm);
2853                } else
2854                        was_rmapped = 1;
2855        }
2856
2857        if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2858              true, host_writable)) {
2859                if (write_fault)
2860                        ret = RET_PF_EMULATE;
2861                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2862        }
2863
2864        if (unlikely(is_mmio_spte(*sptep)))
2865                ret = RET_PF_EMULATE;
2866
2867        pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2868        pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2869                 is_large_pte(*sptep)? "2MB" : "4kB",
2870                 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2871                 *sptep, sptep);
2872        if (!was_rmapped && is_large_pte(*sptep))
2873                ++vcpu->kvm->stat.lpages;
2874
2875        if (is_shadow_present_pte(*sptep)) {
2876                if (!was_rmapped) {
2877                        rmap_count = rmap_add(vcpu, sptep, gfn);
2878                        if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2879                                rmap_recycle(vcpu, sptep, gfn);
2880                }
2881        }
2882
2883        kvm_release_pfn_clean(pfn);
2884
2885        return ret;
2886}
2887
2888static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2889                                     bool no_dirty_log)
2890{
2891        struct kvm_memory_slot *slot;
2892
2893        slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2894        if (!slot)
2895                return KVM_PFN_ERR_FAULT;
2896
2897        return gfn_to_pfn_memslot_atomic(slot, gfn);
2898}
2899
2900static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2901                                    struct kvm_mmu_page *sp,
2902                                    u64 *start, u64 *end)
2903{
2904        struct page *pages[PTE_PREFETCH_NUM];
2905        struct kvm_memory_slot *slot;
2906        unsigned access = sp->role.access;
2907        int i, ret;
2908        gfn_t gfn;
2909
2910        gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2911        slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2912        if (!slot)
2913                return -1;
2914
2915        ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2916        if (ret <= 0)
2917                return -1;
2918
2919        for (i = 0; i < ret; i++, gfn++, start++)
2920                mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2921                             page_to_pfn(pages[i]), true, true);
2922
2923        return 0;
2924}
2925
2926static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2927                                  struct kvm_mmu_page *sp, u64 *sptep)
2928{
2929        u64 *spte, *start = NULL;
2930        int i;
2931
2932        WARN_ON(!sp->role.direct);
2933
2934        i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2935        spte = sp->spt + i;
2936
2937        for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2938                if (is_shadow_present_pte(*spte) || spte == sptep) {
2939                        if (!start)
2940                                continue;
2941                        if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2942                                break;
2943                        start = NULL;
2944                } else if (!start)
2945                        start = spte;
2946        }
2947}
2948
2949static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2950{
2951        struct kvm_mmu_page *sp;
2952
2953        sp = page_header(__pa(sptep));
2954
2955        /*
2956         * Without accessed bits, there's no way to distinguish between
2957         * actually accessed translations and prefetched, so disable pte
2958         * prefetch if accessed bits aren't available.
2959         */
2960        if (sp_ad_disabled(sp))
2961                return;
2962
2963        if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2964                return;
2965
2966        __direct_pte_prefetch(vcpu, sp, sptep);
2967}
2968
2969static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2970                        int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2971{
2972        struct kvm_shadow_walk_iterator iterator;
2973        struct kvm_mmu_page *sp;
2974        int emulate = 0;
2975        gfn_t pseudo_gfn;
2976
2977        if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2978                return 0;
2979
2980        for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2981                if (iterator.level == level) {
2982                        emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2983                                               write, level, gfn, pfn, prefault,
2984                                               map_writable);
2985                        direct_pte_prefetch(vcpu, iterator.sptep);
2986                        ++vcpu->stat.pf_fixed;
2987                        break;
2988                }
2989
2990                drop_large_spte(vcpu, iterator.sptep);
2991                if (!is_shadow_present_pte(*iterator.sptep)) {
2992                        u64 base_addr = iterator.addr;
2993
2994                        base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2995                        pseudo_gfn = base_addr >> PAGE_SHIFT;
2996                        sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2997                                              iterator.level - 1, 1, ACC_ALL);
2998
2999                        link_shadow_page(vcpu, iterator.sptep, sp);
3000                }
3001        }
3002        return emulate;
3003}
3004
3005static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3006{
3007        siginfo_t info;
3008
3009        clear_siginfo(&info);
3010        info.si_signo   = SIGBUS;
3011        info.si_errno   = 0;
3012        info.si_code    = BUS_MCEERR_AR;
3013        info.si_addr    = (void __user *)address;
3014        info.si_addr_lsb = PAGE_SHIFT;
3015
3016        send_sig_info(SIGBUS, &info, tsk);
3017}
3018
3019static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3020{
3021        /*
3022         * Do not cache the mmio info caused by writing the readonly gfn
3023         * into the spte otherwise read access on readonly gfn also can
3024         * caused mmio page fault and treat it as mmio access.
3025         */
3026        if (pfn == KVM_PFN_ERR_RO_FAULT)
3027                return RET_PF_EMULATE;
3028
3029        if (pfn == KVM_PFN_ERR_HWPOISON) {
3030                kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3031                return RET_PF_RETRY;
3032        }
3033
3034        return -EFAULT;
3035}
3036
3037static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3038                                        gfn_t *gfnp, kvm_pfn_t *pfnp,
3039                                        int *levelp)
3040{
3041        kvm_pfn_t pfn = *pfnp;
3042        gfn_t gfn = *gfnp;
3043        int level = *levelp;
3044
3045        /*
3046         * Check if it's a transparent hugepage. If this would be an
3047         * hugetlbfs page, level wouldn't be set to
3048         * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3049         * here.
3050         */
3051        if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3052            level == PT_PAGE_TABLE_LEVEL &&
3053            PageTransCompoundMap(pfn_to_page(pfn)) &&
3054            !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3055                unsigned long mask;
3056                /*
3057                 * mmu_notifier_retry was successful and we hold the
3058                 * mmu_lock here, so the pmd can't become splitting
3059                 * from under us, and in turn
3060                 * __split_huge_page_refcount() can't run from under
3061                 * us and we can safely transfer the refcount from
3062                 * PG_tail to PG_head as we switch the pfn to tail to
3063                 * head.
3064                 */
3065                *levelp = level = PT_DIRECTORY_LEVEL;
3066                mask = KVM_PAGES_PER_HPAGE(level) - 1;
3067                VM_BUG_ON((gfn & mask) != (pfn & mask));
3068                if (pfn & mask) {
3069                        gfn &= ~mask;
3070                        *gfnp = gfn;
3071                        kvm_release_pfn_clean(pfn);
3072                        pfn &= ~mask;
3073                        kvm_get_pfn(pfn);
3074                        *pfnp = pfn;
3075                }
3076        }
3077}
3078
3079static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3080                                kvm_pfn_t pfn, unsigned access, int *ret_val)
3081{
3082        /* The pfn is invalid, report the error! */
3083        if (unlikely(is_error_pfn(pfn))) {
3084                *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3085                return true;
3086        }
3087
3088        if (unlikely(is_noslot_pfn(pfn)))
3089                vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3090
3091        return false;
3092}
3093
3094static bool page_fault_can_be_fast(u32 error_code)
3095{
3096        /*
3097         * Do not fix the mmio spte with invalid generation number which
3098         * need to be updated by slow page fault path.
3099         */
3100        if (unlikely(error_code & PFERR_RSVD_MASK))
3101                return false;
3102
3103        /* See if the page fault is due to an NX violation */
3104        if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3105                      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3106                return false;
3107
3108        /*
3109         * #PF can be fast if:
3110         * 1. The shadow page table entry is not present, which could mean that
3111         *    the fault is potentially caused by access tracking (if enabled).
3112         * 2. The shadow page table entry is present and the fault
3113         *    is caused by write-protect, that means we just need change the W
3114         *    bit of the spte which can be done out of mmu-lock.
3115         *
3116         * However, if access tracking is disabled we know that a non-present
3117         * page must be a genuine page fault where we have to create a new SPTE.
3118         * So, if access tracking is disabled, we return true only for write
3119         * accesses to a present page.
3120         */
3121
3122        return shadow_acc_track_mask != 0 ||
3123               ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3124                == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3125}
3126
3127/*
3128 * Returns true if the SPTE was fixed successfully. Otherwise,
3129 * someone else modified the SPTE from its original value.
3130 */
3131static bool
3132fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3133                        u64 *sptep, u64 old_spte, u64 new_spte)
3134{
3135        gfn_t gfn;
3136
3137        WARN_ON(!sp->role.direct);
3138
3139        /*
3140         * Theoretically we could also set dirty bit (and flush TLB) here in
3141         * order to eliminate unnecessary PML logging. See comments in
3142         * set_spte. But fast_page_fault is very unlikely to happen with PML
3143         * enabled, so we do not do this. This might result in the same GPA
3144         * to be logged in PML buffer again when the write really happens, and
3145         * eventually to be called by mark_page_dirty twice. But it's also no
3146         * harm. This also avoids the TLB flush needed after setting dirty bit
3147         * so non-PML cases won't be impacted.
3148         *
3149         * Compare with set_spte where instead shadow_dirty_mask is set.
3150         */
3151        if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3152                return false;
3153
3154        if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3155                /*
3156                 * The gfn of direct spte is stable since it is
3157                 * calculated by sp->gfn.
3158                 */
3159                gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3160                kvm_vcpu_mark_page_dirty(vcpu, gfn);
3161        }
3162
3163        return true;
3164}
3165
3166static bool is_access_allowed(u32 fault_err_code, u64 spte)
3167{
3168        if (fault_err_code & PFERR_FETCH_MASK)
3169                return is_executable_pte(spte);
3170
3171        if (fault_err_code & PFERR_WRITE_MASK)
3172                return is_writable_pte(spte);
3173
3174        /* Fault was on Read access */
3175        return spte & PT_PRESENT_MASK;
3176}
3177
3178/*
3179 * Return value:
3180 * - true: let the vcpu to access on the same address again.
3181 * - false: let the real page fault path to fix it.
3182 */
3183static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3184                            u32 error_code)
3185{
3186        struct kvm_shadow_walk_iterator iterator;
3187        struct kvm_mmu_page *sp;
3188        bool fault_handled = false;
3189        u64 spte = 0ull;
3190        uint retry_count = 0;
3191
3192        if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3193                return false;
3194
3195        if (!page_fault_can_be_fast(error_code))
3196                return false;
3197
3198        walk_shadow_page_lockless_begin(vcpu);
3199
3200        do {
3201                u64 new_spte;
3202
3203                for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3204                        if (!is_shadow_present_pte(spte) ||
3205                            iterator.level < level)
3206                                break;
3207
3208                sp = page_header(__pa(iterator.sptep));
3209                if (!is_last_spte(spte, sp->role.level))
3210                        break;
3211
3212                /*
3213                 * Check whether the memory access that caused the fault would
3214                 * still cause it if it were to be performed right now. If not,
3215                 * then this is a spurious fault caused by TLB lazily flushed,
3216                 * or some other CPU has already fixed the PTE after the
3217                 * current CPU took the fault.
3218                 *
3219                 * Need not check the access of upper level table entries since
3220                 * they are always ACC_ALL.
3221                 */
3222                if (is_access_allowed(error_code, spte)) {
3223                        fault_handled = true;
3224                        break;
3225                }
3226
3227                new_spte = spte;
3228
3229                if (is_access_track_spte(spte))
3230                        new_spte = restore_acc_track_spte(new_spte);
3231
3232                /*
3233                 * Currently, to simplify the code, write-protection can
3234                 * be removed in the fast path only if the SPTE was
3235                 * write-protected for dirty-logging or access tracking.
3236                 */
3237                if ((error_code & PFERR_WRITE_MASK) &&
3238                    spte_can_locklessly_be_made_writable(spte))
3239                {
3240                        new_spte |= PT_WRITABLE_MASK;
3241
3242                        /*
3243                         * Do not fix write-permission on the large spte.  Since
3244                         * we only dirty the first page into the dirty-bitmap in
3245                         * fast_pf_fix_direct_spte(), other pages are missed
3246                         * if its slot has dirty logging enabled.
3247                         *
3248                         * Instead, we let the slow page fault path create a
3249                         * normal spte to fix the access.
3250                         *
3251                         * See the comments in kvm_arch_commit_memory_region().
3252                         */
3253                        if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3254                                break;
3255                }
3256
3257                /* Verify that the fault can be handled in the fast path */
3258                if (new_spte == spte ||
3259                    !is_access_allowed(error_code, new_spte))
3260                        break;
3261
3262                /*
3263                 * Currently, fast page fault only works for direct mapping
3264                 * since the gfn is not stable for indirect shadow page. See
3265                 * Documentation/virtual/kvm/locking.txt to get more detail.
3266                 */
3267                fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3268                                                        iterator.sptep, spte,
3269                                                        new_spte);
3270                if (fault_handled)
3271                        break;
3272
3273                if (++retry_count > 4) {
3274                        printk_once(KERN_WARNING
3275                                "kvm: Fast #PF retrying more than 4 times.\n");
3276                        break;
3277                }
3278
3279        } while (true);
3280
3281        trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3282                              spte, fault_handled);
3283        walk_shadow_page_lockless_end(vcpu);
3284
3285        return fault_handled;
3286}
3287
3288static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3289                         gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3290static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3291
3292static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3293                         gfn_t gfn, bool prefault)
3294{
3295        int r;
3296        int level;
3297        bool force_pt_level = false;
3298        kvm_pfn_t pfn;
3299        unsigned long mmu_seq;
3300        bool map_writable, write = error_code & PFERR_WRITE_MASK;
3301
3302        level = mapping_level(vcpu, gfn, &force_pt_level);
3303        if (likely(!force_pt_level)) {
3304                /*
3305                 * This path builds a PAE pagetable - so we can map
3306                 * 2mb pages at maximum. Therefore check if the level
3307                 * is larger than that.
3308                 */
3309                if (level > PT_DIRECTORY_LEVEL)
3310                        level = PT_DIRECTORY_LEVEL;
3311
3312                gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3313        }
3314
3315        if (fast_page_fault(vcpu, v, level, error_code))
3316                return RET_PF_RETRY;
3317
3318        mmu_seq = vcpu->kvm->mmu_notifier_seq;
3319        smp_rmb();
3320
3321        if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3322                return RET_PF_RETRY;
3323
3324        if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3325                return r;
3326
3327        spin_lock(&vcpu->kvm->mmu_lock);
3328        if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3329                goto out_unlock;
3330        if (make_mmu_pages_available(vcpu) < 0)
3331                goto out_unlock;
3332        if (likely(!force_pt_level))
3333                transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3334        r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3335        spin_unlock(&vcpu->kvm->mmu_lock);
3336
3337        return r;
3338
3339out_unlock:
3340        spin_unlock(&vcpu->kvm->mmu_lock);
3341        kvm_release_pfn_clean(pfn);
3342        return RET_PF_RETRY;
3343}
3344
3345static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3346                               struct list_head *invalid_list)
3347{
3348        struct kvm_mmu_page *sp;
3349
3350        if (!VALID_PAGE(*root_hpa))
3351                return;
3352
3353        sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3354        --sp->root_count;
3355        if (!sp->root_count && sp->role.invalid)
3356                kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3357
3358        *root_hpa = INVALID_PAGE;
3359}
3360
3361void kvm_mmu_free_roots(struct kvm_vcpu *vcpu)
3362{
3363        int i;
3364        LIST_HEAD(invalid_list);
3365        struct kvm_mmu *mmu = &vcpu->arch.mmu;
3366
3367        if (!VALID_PAGE(mmu->root_hpa))
3368                return;
3369
3370        spin_lock(&vcpu->kvm->mmu_lock);
3371
3372        if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3373            (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3374                mmu_free_root_page(vcpu->kvm, &mmu->root_hpa, &invalid_list);
3375        } else {
3376                for (i = 0; i < 4; ++i)
3377                        if (mmu->pae_root[i] != 0)
3378                                mmu_free_root_page(vcpu->kvm, &mmu->pae_root[i],
3379                                                   &invalid_list);
3380                mmu->root_hpa = INVALID_PAGE;
3381        }
3382
3383        kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3384        spin_unlock(&vcpu->kvm->mmu_lock);
3385}
3386EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3387
3388static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3389{
3390        int ret = 0;
3391
3392        if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3393                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3394                ret = 1;
3395        }
3396
3397        return ret;
3398}
3399
3400static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3401{
3402        struct kvm_mmu_page *sp;
3403        unsigned i;
3404
3405        if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3406                spin_lock(&vcpu->kvm->mmu_lock);
3407                if(make_mmu_pages_available(vcpu) < 0) {
3408                        spin_unlock(&vcpu->kvm->mmu_lock);
3409                        return -ENOSPC;
3410                }
3411                sp = kvm_mmu_get_page(vcpu, 0, 0,
3412                                vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3413                ++sp->root_count;
3414                spin_unlock(&vcpu->kvm->mmu_lock);
3415                vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3416        } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3417                for (i = 0; i < 4; ++i) {
3418                        hpa_t root = vcpu->arch.mmu.pae_root[i];
3419
3420                        MMU_WARN_ON(VALID_PAGE(root));
3421                        spin_lock(&vcpu->kvm->mmu_lock);
3422                        if (make_mmu_pages_available(vcpu) < 0) {
3423                                spin_unlock(&vcpu->kvm->mmu_lock);
3424                                return -ENOSPC;
3425                        }
3426                        sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3427                                        i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3428                        root = __pa(sp->spt);
3429                        ++sp->root_count;
3430                        spin_unlock(&vcpu->kvm->mmu_lock);
3431                        vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3432                }
3433                vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3434        } else
3435                BUG();
3436
3437        return 0;
3438}
3439
3440static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3441{
3442        struct kvm_mmu_page *sp;
3443        u64 pdptr, pm_mask;
3444        gfn_t root_gfn;
3445        int i;
3446
3447        root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3448
3449        if (mmu_check_root(vcpu, root_gfn))
3450                return 1;
3451
3452        /*
3453         * Do we shadow a long mode page table? If so we need to
3454         * write-protect the guests page table root.
3455         */
3456        if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3457                hpa_t root = vcpu->arch.mmu.root_hpa;
3458
3459                MMU_WARN_ON(VALID_PAGE(root));
3460
3461                spin_lock(&vcpu->kvm->mmu_lock);
3462                if (make_mmu_pages_available(vcpu) < 0) {
3463                        spin_unlock(&vcpu->kvm->mmu_lock);
3464                        return -ENOSPC;
3465                }
3466                sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3467                                vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3468                root = __pa(sp->spt);
3469                ++sp->root_count;
3470                spin_unlock(&vcpu->kvm->mmu_lock);
3471                vcpu->arch.mmu.root_hpa = root;
3472                return 0;
3473        }
3474
3475        /*
3476         * We shadow a 32 bit page table. This may be a legacy 2-level
3477         * or a PAE 3-level page table. In either case we need to be aware that
3478         * the shadow page table may be a PAE or a long mode page table.
3479         */
3480        pm_mask = PT_PRESENT_MASK;
3481        if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3482                pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3483
3484        for (i = 0; i < 4; ++i) {
3485                hpa_t root = vcpu->arch.mmu.pae_root[i];
3486
3487                MMU_WARN_ON(VALID_PAGE(root));
3488                if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3489                        pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3490                        if (!(pdptr & PT_PRESENT_MASK)) {
3491                                vcpu->arch.mmu.pae_root[i] = 0;
3492                                continue;
3493                        }
3494                        root_gfn = pdptr >> PAGE_SHIFT;
3495                        if (mmu_check_root(vcpu, root_gfn))
3496                                return 1;
3497                }
3498                spin_lock(&vcpu->kvm->mmu_lock);
3499                if (make_mmu_pages_available(vcpu) < 0) {
3500                        spin_unlock(&vcpu->kvm->mmu_lock);
3501                        return -ENOSPC;
3502                }
3503                sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3504                                      0, ACC_ALL);
3505                root = __pa(sp->spt);
3506                ++sp->root_count;
3507                spin_unlock(&vcpu->kvm->mmu_lock);
3508
3509                vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3510        }
3511        vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3512
3513        /*
3514         * If we shadow a 32 bit page table with a long mode page
3515         * table we enter this path.
3516         */
3517        if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3518                if (vcpu->arch.mmu.lm_root == NULL) {
3519                        /*
3520                         * The additional page necessary for this is only
3521                         * allocated on demand.
3522                         */
3523
3524                        u64 *lm_root;
3525
3526                        lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3527                        if (lm_root == NULL)
3528                                return 1;
3529
3530                        lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3531
3532                        vcpu->arch.mmu.lm_root = lm_root;
3533                }
3534
3535                vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3536        }
3537
3538        return 0;
3539}
3540
3541static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3542{
3543        if (vcpu->arch.mmu.direct_map)
3544                return mmu_alloc_direct_roots(vcpu);
3545        else
3546                return mmu_alloc_shadow_roots(vcpu);
3547}
3548
3549static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3550{
3551        int i;
3552        struct kvm_mmu_page *sp;
3553
3554        if (vcpu->arch.mmu.direct_map)
3555                return;
3556
3557        if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3558                return;
3559
3560        vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3561        kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3562        if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3563                hpa_t root = vcpu->arch.mmu.root_hpa;
3564                sp = page_header(root);
3565                mmu_sync_children(vcpu, sp);
3566                kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3567                return;
3568        }
3569        for (i = 0; i < 4; ++i) {
3570                hpa_t root = vcpu->arch.mmu.pae_root[i];
3571
3572                if (root && VALID_PAGE(root)) {
3573                        root &= PT64_BASE_ADDR_MASK;
3574                        sp = page_header(root);
3575                        mmu_sync_children(vcpu, sp);
3576                }
3577        }
3578        kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3579}
3580
3581void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3582{
3583        spin_lock(&vcpu->kvm->mmu_lock);
3584        mmu_sync_roots(vcpu);
3585        spin_unlock(&vcpu->kvm->mmu_lock);
3586}
3587EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3588
3589static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3590                                  u32 access, struct x86_exception *exception)
3591{
3592        if (exception)
3593                exception->error_code = 0;
3594        return vaddr;
3595}
3596
3597static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3598                                         u32 access,
3599                                         struct x86_exception *exception)
3600{
3601        if (exception)
3602                exception->error_code = 0;
3603        return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3604}
3605
3606static bool
3607__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3608{
3609        int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3610
3611        return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3612                ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3613}
3614
3615static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3616{
3617        return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3618}
3619
3620static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3621{
3622        return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3623}
3624
3625static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3626{
3627        /*
3628         * A nested guest cannot use the MMIO cache if it is using nested
3629         * page tables, because cr2 is a nGPA while the cache stores GPAs.
3630         */
3631        if (mmu_is_nested(vcpu))
3632                return false;
3633
3634        if (direct)
3635                return vcpu_match_mmio_gpa(vcpu, addr);
3636
3637        return vcpu_match_mmio_gva(vcpu, addr);
3638}
3639
3640/* return true if reserved bit is detected on spte. */
3641static bool
3642walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3643{
3644        struct kvm_shadow_walk_iterator iterator;
3645        u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3646        int root, leaf;
3647        bool reserved = false;
3648
3649        if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3650                goto exit;
3651
3652        walk_shadow_page_lockless_begin(vcpu);
3653
3654        for (shadow_walk_init(&iterator, vcpu, addr),
3655                 leaf = root = iterator.level;
3656             shadow_walk_okay(&iterator);
3657             __shadow_walk_next(&iterator, spte)) {
3658                spte = mmu_spte_get_lockless(iterator.sptep);
3659
3660                sptes[leaf - 1] = spte;
3661                leaf--;
3662
3663                if (!is_shadow_present_pte(spte))
3664                        break;
3665
3666                reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3667                                                    iterator.level);
3668        }
3669
3670        walk_shadow_page_lockless_end(vcpu);
3671
3672        if (reserved) {
3673                pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3674                       __func__, addr);
3675                while (root > leaf) {
3676                        pr_err("------ spte 0x%llx level %d.\n",
3677                               sptes[root - 1], root);
3678                        root--;
3679                }
3680        }
3681exit:
3682        *sptep = spte;
3683        return reserved;
3684}
3685
3686static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3687{
3688        u64 spte;
3689        bool reserved;
3690
3691        if (mmio_info_in_cache(vcpu, addr, direct))
3692                return RET_PF_EMULATE;
3693
3694        reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3695        if (WARN_ON(reserved))
3696                return -EINVAL;
3697
3698        if (is_mmio_spte(spte)) {
3699                gfn_t gfn = get_mmio_spte_gfn(spte);
3700                unsigned access = get_mmio_spte_access(spte);
3701
3702                if (!check_mmio_spte(vcpu, spte))
3703                        return RET_PF_INVALID;
3704
3705                if (direct)
3706                        addr = 0;
3707
3708                trace_handle_mmio_page_fault(addr, gfn, access);
3709                vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3710                return RET_PF_EMULATE;
3711        }
3712
3713        /*
3714         * If the page table is zapped by other cpus, let CPU fault again on
3715         * the address.
3716         */
3717        return RET_PF_RETRY;
3718}
3719
3720static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3721                                         u32 error_code, gfn_t gfn)
3722{
3723        if (unlikely(error_code & PFERR_RSVD_MASK))
3724                return false;
3725
3726        if (!(error_code & PFERR_PRESENT_MASK) ||
3727              !(error_code & PFERR_WRITE_MASK))
3728                return false;
3729
3730        /*
3731         * guest is writing the page which is write tracked which can
3732         * not be fixed by page fault handler.
3733         */
3734        if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3735                return true;
3736
3737        return false;
3738}
3739
3740static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3741{
3742        struct kvm_shadow_walk_iterator iterator;
3743        u64 spte;
3744
3745        if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3746                return;
3747
3748        walk_shadow_page_lockless_begin(vcpu);
3749        for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3750                clear_sp_write_flooding_count(iterator.sptep);
3751                if (!is_shadow_present_pte(spte))
3752                        break;
3753        }
3754        walk_shadow_page_lockless_end(vcpu);
3755}
3756
3757static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3758                                u32 error_code, bool prefault)
3759{
3760        gfn_t gfn = gva >> PAGE_SHIFT;
3761        int r;
3762
3763        pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3764
3765        if (page_fault_handle_page_track(vcpu, error_code, gfn))
3766                return RET_PF_EMULATE;
3767
3768        r = mmu_topup_memory_caches(vcpu);
3769        if (r)
3770                return r;
3771
3772        MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3773
3774
3775        return nonpaging_map(vcpu, gva & PAGE_MASK,
3776                             error_code, gfn, prefault);
3777}
3778
3779static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3780{
3781        struct kvm_arch_async_pf arch;
3782
3783        arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3784        arch.gfn = gfn;
3785        arch.direct_map = vcpu->arch.mmu.direct_map;
3786        arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3787
3788        return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3789}
3790
3791bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3792{
3793        if (unlikely(!lapic_in_kernel(vcpu) ||
3794                     kvm_event_needs_reinjection(vcpu) ||
3795                     vcpu->arch.exception.pending))
3796                return false;
3797
3798        if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3799                return false;
3800
3801        return kvm_x86_ops->interrupt_allowed(vcpu);
3802}
3803
3804static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3805                         gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3806{
3807        struct kvm_memory_slot *slot;
3808        bool async;
3809
3810        /*
3811         * Don't expose private memslots to L2.
3812         */
3813        if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
3814                *pfn = KVM_PFN_NOSLOT;
3815                return false;
3816        }
3817
3818        slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3819        async = false;
3820        *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3821        if (!async)
3822                return false; /* *pfn has correct page already */
3823
3824        if (!prefault && kvm_can_do_async_pf(vcpu)) {
3825                trace_kvm_try_async_get_page(gva, gfn);
3826                if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3827                        trace_kvm_async_pf_doublefault(gva, gfn);
3828                        kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3829                        return true;
3830                } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3831                        return true;
3832        }
3833
3834        *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3835        return false;
3836}
3837
3838int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3839                                u64 fault_address, char *insn, int insn_len)
3840{
3841        int r = 1;
3842
3843        switch (vcpu->arch.apf.host_apf_reason) {
3844        default:
3845                trace_kvm_page_fault(fault_address, error_code);
3846
3847                if (kvm_event_needs_reinjection(vcpu))
3848                        kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3849                r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3850                                insn_len);
3851                break;
3852        case KVM_PV_REASON_PAGE_NOT_PRESENT:
3853                vcpu->arch.apf.host_apf_reason = 0;
3854                local_irq_disable();
3855                kvm_async_pf_task_wait(fault_address, 0);
3856                local_irq_enable();
3857                break;
3858        case KVM_PV_REASON_PAGE_READY:
3859                vcpu->arch.apf.host_apf_reason = 0;
3860                local_irq_disable();
3861                kvm_async_pf_task_wake(fault_address);
3862                local_irq_enable();
3863                break;
3864        }
3865        return r;
3866}
3867EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3868
3869static bool
3870check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3871{
3872        int page_num = KVM_PAGES_PER_HPAGE(level);
3873
3874        gfn &= ~(page_num - 1);
3875
3876        return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3877}
3878
3879static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3880                          bool prefault)
3881{
3882        kvm_pfn_t pfn;
3883        int r;
3884        int level;
3885        bool force_pt_level;
3886        gfn_t gfn = gpa >> PAGE_SHIFT;
3887        unsigned long mmu_seq;
3888        int write = error_code & PFERR_WRITE_MASK;
3889        bool map_writable;
3890
3891        MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3892
3893        if (page_fault_handle_page_track(vcpu, error_code, gfn))
3894                return RET_PF_EMULATE;
3895
3896        r = mmu_topup_memory_caches(vcpu);
3897        if (r)
3898                return r;
3899
3900        force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3901                                                           PT_DIRECTORY_LEVEL);
3902        level = mapping_level(vcpu, gfn, &force_pt_level);
3903        if (likely(!force_pt_level)) {
3904                if (level > PT_DIRECTORY_LEVEL &&
3905                    !check_hugepage_cache_consistency(vcpu, gfn, level))
3906                        level = PT_DIRECTORY_LEVEL;
3907                gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3908        }
3909
3910        if (fast_page_fault(vcpu, gpa, level, error_code))
3911                return RET_PF_RETRY;
3912
3913        mmu_seq = vcpu->kvm->mmu_notifier_seq;
3914        smp_rmb();
3915
3916        if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3917                return RET_PF_RETRY;
3918
3919        if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3920                return r;
3921
3922        spin_lock(&vcpu->kvm->mmu_lock);
3923        if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3924                goto out_unlock;
3925        if (make_mmu_pages_available(vcpu) < 0)
3926                goto out_unlock;
3927        if (likely(!force_pt_level))
3928                transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3929        r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3930        spin_unlock(&vcpu->kvm->mmu_lock);
3931
3932        return r;
3933
3934out_unlock:
3935        spin_unlock(&vcpu->kvm->mmu_lock);
3936        kvm_release_pfn_clean(pfn);
3937        return RET_PF_RETRY;
3938}
3939
3940static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3941                                   struct kvm_mmu *context)
3942{
3943        context->page_fault = nonpaging_page_fault;
3944        context->gva_to_gpa = nonpaging_gva_to_gpa;
3945        context->sync_page = nonpaging_sync_page;
3946        context->invlpg = nonpaging_invlpg;
3947        context->update_pte = nonpaging_update_pte;
3948        context->root_level = 0;
3949        context->shadow_root_level = PT32E_ROOT_LEVEL;
3950        context->root_hpa = INVALID_PAGE;
3951        context->direct_map = true;
3952        context->nx = false;
3953}
3954
3955void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3956{
3957        kvm_mmu_free_roots(vcpu);
3958}
3959
3960static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3961{
3962        return kvm_read_cr3(vcpu);
3963}
3964
3965static void inject_page_fault(struct kvm_vcpu *vcpu,
3966                              struct x86_exception *fault)
3967{
3968        vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3969}
3970
3971static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3972                           unsigned access, int *nr_present)
3973{
3974        if (unlikely(is_mmio_spte(*sptep))) {
3975                if (gfn != get_mmio_spte_gfn(*sptep)) {
3976                        mmu_spte_clear_no_track(sptep);
3977                        return true;
3978                }
3979
3980                (*nr_present)++;
3981                mark_mmio_spte(vcpu, sptep, gfn, access);
3982                return true;
3983        }
3984
3985        return false;
3986}
3987
3988static inline bool is_last_gpte(struct kvm_mmu *mmu,
3989                                unsigned level, unsigned gpte)
3990{
3991        /*
3992         * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3993         * If it is clear, there are no large pages at this level, so clear
3994         * PT_PAGE_SIZE_MASK in gpte if that is the case.
3995         */
3996        gpte &= level - mmu->last_nonleaf_level;
3997
3998        /*
3999         * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4000         * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4001         * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4002         */
4003        gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4004
4005        return gpte & PT_PAGE_SIZE_MASK;
4006}
4007
4008#define PTTYPE_EPT 18 /* arbitrary */
4009#define PTTYPE PTTYPE_EPT
4010#include "paging_tmpl.h"
4011#undef PTTYPE
4012
4013#define PTTYPE 64
4014#include "paging_tmpl.h"
4015#undef PTTYPE
4016
4017#define PTTYPE 32
4018#include "paging_tmpl.h"
4019#undef PTTYPE
4020
4021static void
4022__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4023                        struct rsvd_bits_validate *rsvd_check,
4024                        int maxphyaddr, int level, bool nx, bool gbpages,
4025                        bool pse, bool amd)
4026{
4027        u64 exb_bit_rsvd = 0;
4028        u64 gbpages_bit_rsvd = 0;
4029        u64 nonleaf_bit8_rsvd = 0;
4030
4031        rsvd_check->bad_mt_xwr = 0;
4032
4033        if (!nx)
4034                exb_bit_rsvd = rsvd_bits(63, 63);
4035        if (!gbpages)
4036                gbpages_bit_rsvd = rsvd_bits(7, 7);
4037
4038        /*
4039         * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4040         * leaf entries) on AMD CPUs only.
4041         */
4042        if (amd)
4043                nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4044
4045        switch (level) {
4046        case PT32_ROOT_LEVEL:
4047                /* no rsvd bits for 2 level 4K page table entries */
4048                rsvd_check->rsvd_bits_mask[0][1] = 0;
4049                rsvd_check->rsvd_bits_mask[0][0] = 0;
4050                rsvd_check->rsvd_bits_mask[1][0] =
4051                        rsvd_check->rsvd_bits_mask[0][0];
4052
4053                if (!pse) {
4054                        rsvd_check->rsvd_bits_mask[1][1] = 0;
4055                        break;
4056                }
4057
4058                if (is_cpuid_PSE36())
4059                        /* 36bits PSE 4MB page */
4060                        rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4061                else
4062                        /* 32 bits PSE 4MB page */
4063                        rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4064                break;
4065        case PT32E_ROOT_LEVEL:
4066                rsvd_check->rsvd_bits_mask[0][2] =
4067                        rsvd_bits(maxphyaddr, 63) |
4068                        rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4069                rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4070                        rsvd_bits(maxphyaddr, 62);      /* PDE */
4071                rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4072                        rsvd_bits(maxphyaddr, 62);      /* PTE */
4073                rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4074                        rsvd_bits(maxphyaddr, 62) |
4075                        rsvd_bits(13, 20);              /* large page */
4076                rsvd_check->rsvd_bits_mask[1][0] =
4077                        rsvd_check->rsvd_bits_mask[0][0];
4078                break;
4079        case PT64_ROOT_5LEVEL:
4080                rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4081                        nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4082                        rsvd_bits(maxphyaddr, 51);
4083                rsvd_check->rsvd_bits_mask[1][4] =
4084                        rsvd_check->rsvd_bits_mask[0][4];
4085        case PT64_ROOT_4LEVEL:
4086                rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4087                        nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4088                        rsvd_bits(maxphyaddr, 51);
4089                rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4090                        nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4091                        rsvd_bits(maxphyaddr, 51);
4092                rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4093                        rsvd_bits(maxphyaddr, 51);
4094                rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4095                        rsvd_bits(maxphyaddr, 51);
4096                rsvd_check->rsvd_bits_mask[1][3] =
4097                        rsvd_check->rsvd_bits_mask[0][3];
4098                rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4099                        gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4100                        rsvd_bits(13, 29);
4101                rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4102                        rsvd_bits(maxphyaddr, 51) |
4103                        rsvd_bits(13, 20);              /* large page */
4104                rsvd_check->rsvd_bits_mask[1][0] =
4105                        rsvd_check->rsvd_bits_mask[0][0];
4106                break;
4107        }
4108}
4109
4110static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4111                                  struct kvm_mmu *context)
4112{
4113        __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4114                                cpuid_maxphyaddr(vcpu), context->root_level,
4115                                context->nx,
4116                                guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4117                                is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4118}
4119
4120static void
4121__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4122                            int maxphyaddr, bool execonly)
4123{
4124        u64 bad_mt_xwr;
4125
4126        rsvd_check->rsvd_bits_mask[0][4] =
4127                rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4128        rsvd_check->rsvd_bits_mask[0][3] =
4129                rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4130        rsvd_check->rsvd_bits_mask[0][2] =
4131                rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4132        rsvd_check->rsvd_bits_mask[0][1] =
4133                rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4134        rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4135
4136        /* large page */
4137        rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4138        rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4139        rsvd_check->rsvd_bits_mask[1][2] =
4140                rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4141        rsvd_check->rsvd_bits_mask[1][1] =
4142                rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4143        rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4144
4145        bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4146        bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4147        bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4148        bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4149        bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4150        if (!execonly) {
4151                /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4152                bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4153        }
4154        rsvd_check->bad_mt_xwr = bad_mt_xwr;
4155}
4156
4157static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4158                struct kvm_mmu *context, bool execonly)
4159{
4160        __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4161                                    cpuid_maxphyaddr(vcpu), execonly);
4162}
4163
4164/*
4165 * the page table on host is the shadow page table for the page
4166 * table in guest or amd nested guest, its mmu features completely
4167 * follow the features in guest.
4168 */
4169void
4170reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4171{
4172        bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4173        struct rsvd_bits_validate *shadow_zero_check;
4174        int i;
4175
4176        /*
4177         * Passing "true" to the last argument is okay; it adds a check
4178         * on bit 8 of the SPTEs which KVM doesn't use anyway.
4179         */
4180        shadow_zero_check = &context->shadow_zero_check;
4181        __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4182                                boot_cpu_data.x86_phys_bits,
4183                                context->shadow_root_level, uses_nx,
4184                                guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4185                                is_pse(vcpu), true);
4186
4187        if (!shadow_me_mask)
4188                return;
4189
4190        for (i = context->shadow_root_level; --i >= 0;) {
4191                shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4192                shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4193        }
4194
4195}
4196EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4197
4198static inline bool boot_cpu_is_amd(void)
4199{
4200        WARN_ON_ONCE(!tdp_enabled);
4201        return shadow_x_mask == 0;
4202}
4203
4204/*
4205 * the direct page table on host, use as much mmu features as
4206 * possible, however, kvm currently does not do execution-protection.
4207 */
4208static void
4209reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4210                                struct kvm_mmu *context)
4211{
4212        struct rsvd_bits_validate *shadow_zero_check;
4213        int i;
4214
4215        shadow_zero_check = &context->shadow_zero_check;
4216
4217        if (boot_cpu_is_amd())
4218                __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4219                                        boot_cpu_data.x86_phys_bits,
4220                                        context->shadow_root_level, false,
4221                                        boot_cpu_has(X86_FEATURE_GBPAGES),
4222                                        true, true);
4223        else
4224                __reset_rsvds_bits_mask_ept(shadow_zero_check,
4225                                            boot_cpu_data.x86_phys_bits,
4226                                            false);
4227
4228        if (!shadow_me_mask)
4229                return;
4230
4231        for (i = context->shadow_root_level; --i >= 0;) {
4232                shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4233                shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4234        }
4235}
4236
4237/*
4238 * as the comments in reset_shadow_zero_bits_mask() except it
4239 * is the shadow page table for intel nested guest.
4240 */
4241static void
4242reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4243                                struct kvm_mmu *context, bool execonly)
4244{
4245        __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4246                                    boot_cpu_data.x86_phys_bits, execonly);
4247}
4248
4249#define BYTE_MASK(access) \
4250        ((1 & (access) ? 2 : 0) | \
4251         (2 & (access) ? 4 : 0) | \
4252         (3 & (access) ? 8 : 0) | \
4253         (4 & (access) ? 16 : 0) | \
4254         (5 & (access) ? 32 : 0) | \
4255         (6 & (access) ? 64 : 0) | \
4256         (7 & (access) ? 128 : 0))
4257
4258
4259static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4260                                      struct kvm_mmu *mmu, bool ept)
4261{
4262        unsigned byte;
4263
4264        const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4265        const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4266        const u8 u = BYTE_MASK(ACC_USER_MASK);
4267
4268        bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4269        bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4270        bool cr0_wp = is_write_protection(vcpu);
4271
4272        for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4273                unsigned pfec = byte << 1;
4274
4275                /*
4276                 * Each "*f" variable has a 1 bit for each UWX value
4277                 * that causes a fault with the given PFEC.
4278                 */
4279
4280                /* Faults from writes to non-writable pages */
4281                u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4282                /* Faults from user mode accesses to supervisor pages */
4283                u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4284                /* Faults from fetches of non-executable pages*/
4285                u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4286                /* Faults from kernel mode fetches of user pages */
4287                u8 smepf = 0;
4288                /* Faults from kernel mode accesses of user pages */
4289                u8 smapf = 0;
4290
4291                if (!ept) {
4292                        /* Faults from kernel mode accesses to user pages */
4293                        u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4294
4295                        /* Not really needed: !nx will cause pte.nx to fault */
4296                        if (!mmu->nx)
4297                                ff = 0;
4298
4299                        /* Allow supervisor writes if !cr0.wp */
4300                        if (!cr0_wp)
4301                                wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4302
4303                        /* Disallow supervisor fetches of user code if cr4.smep */
4304                        if (cr4_smep)
4305                                smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4306
4307                        /*
4308                         * SMAP:kernel-mode data accesses from user-mode
4309                         * mappings should fault. A fault is considered
4310                         * as a SMAP violation if all of the following
4311                         * conditions are ture:
4312                         *   - X86_CR4_SMAP is set in CR4
4313                         *   - A user page is accessed
4314                         *   - The access is not a fetch
4315                         *   - Page fault in kernel mode
4316                         *   - if CPL = 3 or X86_EFLAGS_AC is clear
4317                         *
4318                         * Here, we cover the first three conditions.
4319                         * The fourth is computed dynamically in permission_fault();
4320                         * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4321                         * *not* subject to SMAP restrictions.
4322                         */
4323                        if (cr4_smap)
4324                                smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4325                }
4326
4327                mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4328        }
4329}
4330
4331/*
4332* PKU is an additional mechanism by which the paging controls access to
4333* user-mode addresses based on the value in the PKRU register.  Protection
4334* key violations are reported through a bit in the page fault error code.
4335* Unlike other bits of the error code, the PK bit is not known at the
4336* call site of e.g. gva_to_gpa; it must be computed directly in
4337* permission_fault based on two bits of PKRU, on some machine state (CR4,
4338* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4339*
4340* In particular the following conditions come from the error code, the
4341* page tables and the machine state:
4342* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4343* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4344* - PK is always zero if U=0 in the page tables
4345* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4346*
4347* The PKRU bitmask caches the result of these four conditions.  The error
4348* code (minus the P bit) and the page table's U bit form an index into the
4349* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4350* with the two bits of the PKRU register corresponding to the protection key.
4351* For the first three conditions above the bits will be 00, thus masking
4352* away both AD and WD.  For all reads or if the last condition holds, WD
4353* only will be masked away.
4354*/
4355static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4356                                bool ept)
4357{
4358        unsigned bit;
4359        bool wp;
4360
4361        if (ept) {
4362                mmu->pkru_mask = 0;
4363                return;
4364        }
4365
4366        /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4367        if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4368                mmu->pkru_mask = 0;
4369                return;
4370        }
4371
4372        wp = is_write_protection(vcpu);
4373
4374        for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4375                unsigned pfec, pkey_bits;
4376                bool check_pkey, check_write, ff, uf, wf, pte_user;
4377
4378                pfec = bit << 1;
4379                ff = pfec & PFERR_FETCH_MASK;
4380                uf = pfec & PFERR_USER_MASK;
4381                wf = pfec & PFERR_WRITE_MASK;
4382
4383                /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4384                pte_user = pfec & PFERR_RSVD_MASK;
4385
4386                /*
4387                 * Only need to check the access which is not an
4388                 * instruction fetch and is to a user page.
4389                 */
4390                check_pkey = (!ff && pte_user);
4391                /*
4392                 * write access is controlled by PKRU if it is a
4393                 * user access or CR0.WP = 1.
4394                 */
4395                check_write = check_pkey && wf && (uf || wp);
4396
4397                /* PKRU.AD stops both read and write access. */
4398                pkey_bits = !!check_pkey;
4399                /* PKRU.WD stops write access. */
4400                pkey_bits |= (!!check_write) << 1;
4401
4402                mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4403        }
4404}
4405
4406static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4407{
4408        unsigned root_level = mmu->root_level;
4409
4410        mmu->last_nonleaf_level = root_level;
4411        if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4412                mmu->last_nonleaf_level++;
4413}
4414
4415static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4416                                         struct kvm_mmu *context,
4417                                         int level)
4418{
4419        context->nx = is_nx(vcpu);
4420        context->root_level = level;
4421
4422        reset_rsvds_bits_mask(vcpu, context);
4423        update_permission_bitmask(vcpu, context, false);
4424        update_pkru_bitmask(vcpu, context, false);
4425        update_last_nonleaf_level(vcpu, context);
4426
4427        MMU_WARN_ON(!is_pae(vcpu));
4428        context->page_fault = paging64_page_fault;
4429        context->gva_to_gpa = paging64_gva_to_gpa;
4430        context->sync_page = paging64_sync_page;
4431        context->invlpg = paging64_invlpg;
4432        context->update_pte = paging64_update_pte;
4433        context->shadow_root_level = level;
4434        context->root_hpa = INVALID_PAGE;
4435        context->direct_map = false;
4436}
4437
4438static void paging64_init_context(struct kvm_vcpu *vcpu,
4439                                  struct kvm_mmu *context)
4440{
4441        int root_level = is_la57_mode(vcpu) ?
4442                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4443
4444        paging64_init_context_common(vcpu, context, root_level);
4445}
4446
4447static void paging32_init_context(struct kvm_vcpu *vcpu,
4448                                  struct kvm_mmu *context)
4449{
4450        context->nx = false;
4451        context->root_level = PT32_ROOT_LEVEL;
4452
4453        reset_rsvds_bits_mask(vcpu, context);
4454        update_permission_bitmask(vcpu, context, false);
4455        update_pkru_bitmask(vcpu, context, false);
4456        update_last_nonleaf_level(vcpu, context);
4457
4458        context->page_fault = paging32_page_fault;
4459        context->gva_to_gpa = paging32_gva_to_gpa;
4460        context->sync_page = paging32_sync_page;
4461        context->invlpg = paging32_invlpg;
4462        context->update_pte = paging32_update_pte;
4463        context->shadow_root_level = PT32E_ROOT_LEVEL;
4464        context->root_hpa = INVALID_PAGE;
4465        context->direct_map = false;
4466}
4467
4468static void paging32E_init_context(struct kvm_vcpu *vcpu,
4469                                   struct kvm_mmu *context)
4470{
4471        paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4472}
4473
4474static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4475{
4476        struct kvm_mmu *context = &vcpu->arch.mmu;
4477
4478        context->base_role.word = 0;
4479        context->base_role.guest_mode = is_guest_mode(vcpu);
4480        context->base_role.smm = is_smm(vcpu);
4481        context->base_role.ad_disabled = (shadow_accessed_mask == 0);
4482        context->page_fault = tdp_page_fault;
4483        context->sync_page = nonpaging_sync_page;
4484        context->invlpg = nonpaging_invlpg;
4485        context->update_pte = nonpaging_update_pte;
4486        context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4487        context->root_hpa = INVALID_PAGE;
4488        context->direct_map = true;
4489        context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4490        context->get_cr3 = get_cr3;
4491        context->get_pdptr = kvm_pdptr_read;
4492        context->inject_page_fault = kvm_inject_page_fault;
4493
4494        if (!is_paging(vcpu)) {
4495                context->nx = false;
4496                context->gva_to_gpa = nonpaging_gva_to_gpa;
4497                context->root_level = 0;
4498        } else if (is_long_mode(vcpu)) {
4499                context->nx = is_nx(vcpu);
4500                context->root_level = is_la57_mode(vcpu) ?
4501                                PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4502                reset_rsvds_bits_mask(vcpu, context);
4503                context->gva_to_gpa = paging64_gva_to_gpa;
4504        } else if (is_pae(vcpu)) {
4505                context->nx = is_nx(vcpu);
4506                context->root_level = PT32E_ROOT_LEVEL;
4507                reset_rsvds_bits_mask(vcpu, context);
4508                context->gva_to_gpa = paging64_gva_to_gpa;
4509        } else {
4510                context->nx = false;
4511                context->root_level = PT32_ROOT_LEVEL;
4512                reset_rsvds_bits_mask(vcpu, context);
4513                context->gva_to_gpa = paging32_gva_to_gpa;
4514        }
4515
4516        update_permission_bitmask(vcpu, context, false);
4517        update_pkru_bitmask(vcpu, context, false);
4518        update_last_nonleaf_level(vcpu, context);
4519        reset_tdp_shadow_zero_bits_mask(vcpu, context);
4520}
4521
4522void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4523{
4524        bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4525        bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4526        struct kvm_mmu *context = &vcpu->arch.mmu;
4527
4528        MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4529
4530        if (!is_paging(vcpu))
4531                nonpaging_init_context(vcpu, context);
4532        else if (is_long_mode(vcpu))
4533                paging64_init_context(vcpu, context);
4534        else if (is_pae(vcpu))
4535                paging32E_init_context(vcpu, context);
4536        else
4537                paging32_init_context(vcpu, context);
4538
4539        context->base_role.nxe = is_nx(vcpu);
4540        context->base_role.cr4_pae = !!is_pae(vcpu);
4541        context->base_role.cr0_wp  = is_write_protection(vcpu);
4542        context->base_role.smep_andnot_wp
4543                = smep && !is_write_protection(vcpu);
4544        context->base_role.smap_andnot_wp
4545                = smap && !is_write_protection(vcpu);
4546        context->base_role.guest_mode = is_guest_mode(vcpu);
4547        context->base_role.smm = is_smm(vcpu);
4548        reset_shadow_zero_bits_mask(vcpu, context);
4549}
4550EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4551
4552void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4553                             bool accessed_dirty)
4554{
4555        struct kvm_mmu *context = &vcpu->arch.mmu;
4556
4557        MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4558
4559        context->shadow_root_level = PT64_ROOT_4LEVEL;
4560
4561        context->nx = true;
4562        context->ept_ad = accessed_dirty;
4563        context->page_fault = ept_page_fault;
4564        context->gva_to_gpa = ept_gva_to_gpa;
4565        context->sync_page = ept_sync_page;
4566        context->invlpg = ept_invlpg;
4567        context->update_pte = ept_update_pte;
4568        context->root_level = PT64_ROOT_4LEVEL;
4569        context->root_hpa = INVALID_PAGE;
4570        context->direct_map = false;
4571        context->base_role.ad_disabled = !accessed_dirty;
4572        context->base_role.guest_mode = 1;
4573        update_permission_bitmask(vcpu, context, true);
4574        update_pkru_bitmask(vcpu, context, true);
4575        update_last_nonleaf_level(vcpu, context);
4576        reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4577        reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4578}
4579EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4580
4581static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4582{
4583        struct kvm_mmu *context = &vcpu->arch.mmu;
4584
4585        kvm_init_shadow_mmu(vcpu);
4586        context->set_cr3           = kvm_x86_ops->set_cr3;
4587        context->get_cr3           = get_cr3;
4588        context->get_pdptr         = kvm_pdptr_read;
4589        context->inject_page_fault = kvm_inject_page_fault;
4590}
4591
4592static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4593{
4594        struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4595
4596        g_context->get_cr3           = get_cr3;
4597        g_context->get_pdptr         = kvm_pdptr_read;
4598        g_context->inject_page_fault = kvm_inject_page_fault;
4599
4600        /*
4601         * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4602         * L1's nested page tables (e.g. EPT12). The nested translation
4603         * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4604         * L2's page tables as the first level of translation and L1's
4605         * nested page tables as the second level of translation. Basically
4606         * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4607         */
4608        if (!is_paging(vcpu)) {
4609                g_context->nx = false;
4610                g_context->root_level = 0;
4611                g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4612        } else if (is_long_mode(vcpu)) {
4613                g_context->nx = is_nx(vcpu);
4614                g_context->root_level = is_la57_mode(vcpu) ?
4615                                        PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4616                reset_rsvds_bits_mask(vcpu, g_context);
4617                g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4618        } else if (is_pae(vcpu)) {
4619                g_context->nx = is_nx(vcpu);
4620                g_context->root_level = PT32E_ROOT_LEVEL;
4621                reset_rsvds_bits_mask(vcpu, g_context);
4622                g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4623        } else {
4624                g_context->nx = false;
4625                g_context->root_level = PT32_ROOT_LEVEL;
4626                reset_rsvds_bits_mask(vcpu, g_context);
4627                g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4628        }
4629
4630        update_permission_bitmask(vcpu, g_context, false);
4631        update_pkru_bitmask(vcpu, g_context, false);
4632        update_last_nonleaf_level(vcpu, g_context);
4633}
4634
4635static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4636{
4637        if (mmu_is_nested(vcpu))
4638                init_kvm_nested_mmu(vcpu);
4639        else if (tdp_enabled)
4640                init_kvm_tdp_mmu(vcpu);
4641        else
4642                init_kvm_softmmu(vcpu);
4643}
4644
4645void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4646{
4647        kvm_mmu_unload(vcpu);
4648        init_kvm_mmu(vcpu);
4649}
4650EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4651
4652int kvm_mmu_load(struct kvm_vcpu *vcpu)
4653{
4654        int r;
4655
4656        r = mmu_topup_memory_caches(vcpu);
4657        if (r)
4658                goto out;
4659        r = mmu_alloc_roots(vcpu);
4660        kvm_mmu_sync_roots(vcpu);
4661        if (r)
4662                goto out;
4663        /* set_cr3() should ensure TLB has been flushed */
4664        vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4665out:
4666        return r;
4667}
4668EXPORT_SYMBOL_GPL(kvm_mmu_load);
4669
4670void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4671{
4672        kvm_mmu_free_roots(vcpu);
4673        WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4674}
4675EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4676
4677static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4678                                  struct kvm_mmu_page *sp, u64 *spte,
4679                                  const void *new)
4680{
4681        if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4682                ++vcpu->kvm->stat.mmu_pde_zapped;
4683                return;
4684        }
4685
4686        ++vcpu->kvm->stat.mmu_pte_updated;
4687        vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4688}
4689
4690static bool need_remote_flush(u64 old, u64 new)
4691{
4692        if (!is_shadow_present_pte(old))
4693                return false;
4694        if (!is_shadow_present_pte(new))
4695                return true;
4696        if ((old ^ new) & PT64_BASE_ADDR_MASK)
4697                return true;
4698        old ^= shadow_nx_mask;
4699        new ^= shadow_nx_mask;
4700        return (old & ~new & PT64_PERM_MASK) != 0;
4701}
4702
4703static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4704                                    const u8 *new, int *bytes)
4705{
4706        u64 gentry;
4707        int r;
4708
4709        /*
4710         * Assume that the pte write on a page table of the same type
4711         * as the current vcpu paging mode since we update the sptes only
4712         * when they have the same mode.
4713         */
4714        if (is_pae(vcpu) && *bytes == 4) {
4715                /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4716                *gpa &= ~(gpa_t)7;
4717                *bytes = 8;
4718                r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4719                if (r)
4720                        gentry = 0;
4721                new = (const u8 *)&gentry;
4722        }
4723
4724        switch (*bytes) {
4725        case 4:
4726                gentry = *(const u32 *)new;
4727                break;
4728        case 8:
4729                gentry = *(const u64 *)new;
4730                break;
4731        default:
4732                gentry = 0;
4733                break;
4734        }
4735
4736        return gentry;
4737}
4738
4739/*
4740 * If we're seeing too many writes to a page, it may no longer be a page table,
4741 * or we may be forking, in which case it is better to unmap the page.
4742 */
4743static bool detect_write_flooding(struct kvm_mmu_page *sp)
4744{
4745        /*
4746         * Skip write-flooding detected for the sp whose level is 1, because
4747         * it can become unsync, then the guest page is not write-protected.
4748         */
4749        if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4750                return false;
4751
4752        atomic_inc(&sp->write_flooding_count);
4753        return atomic_read(&sp->write_flooding_count) >= 3;
4754}
4755
4756/*
4757 * Misaligned accesses are too much trouble to fix up; also, they usually
4758 * indicate a page is not used as a page table.
4759 */
4760static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4761                                    int bytes)
4762{
4763        unsigned offset, pte_size, misaligned;
4764
4765        pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4766                 gpa, bytes, sp->role.word);
4767
4768        offset = offset_in_page(gpa);
4769        pte_size = sp->role.cr4_pae ? 8 : 4;
4770
4771        /*
4772         * Sometimes, the OS only writes the last one bytes to update status
4773         * bits, for example, in linux, andb instruction is used in clear_bit().
4774         */
4775        if (!(offset & (pte_size - 1)) && bytes == 1)
4776                return false;
4777
4778        misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4779        misaligned |= bytes < 4;
4780
4781        return misaligned;
4782}
4783
4784static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4785{
4786        unsigned page_offset, quadrant;
4787        u64 *spte;
4788        int level;
4789
4790        page_offset = offset_in_page(gpa);
4791        level = sp->role.level;
4792        *nspte = 1;
4793        if (!sp->role.cr4_pae) {
4794                page_offset <<= 1;      /* 32->64 */
4795                /*
4796                 * A 32-bit pde maps 4MB while the shadow pdes map
4797                 * only 2MB.  So we need to double the offset again
4798                 * and zap two pdes instead of one.
4799                 */
4800                if (level == PT32_ROOT_LEVEL) {
4801                        page_offset &= ~7; /* kill rounding error */
4802                        page_offset <<= 1;
4803                        *nspte = 2;
4804                }
4805                quadrant = page_offset >> PAGE_SHIFT;
4806                page_offset &= ~PAGE_MASK;
4807                if (quadrant != sp->role.quadrant)
4808                        return NULL;
4809        }
4810
4811        spte = &sp->spt[page_offset / sizeof(*spte)];
4812        return spte;
4813}
4814
4815static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4816                              const u8 *new, int bytes,
4817                              struct kvm_page_track_notifier_node *node)
4818{
4819        gfn_t gfn = gpa >> PAGE_SHIFT;
4820        struct kvm_mmu_page *sp;
4821        LIST_HEAD(invalid_list);
4822        u64 entry, gentry, *spte;
4823        int npte;
4824        bool remote_flush, local_flush;
4825        union kvm_mmu_page_role mask = { };
4826
4827        mask.cr0_wp = 1;
4828        mask.cr4_pae = 1;
4829        mask.nxe = 1;
4830        mask.smep_andnot_wp = 1;
4831        mask.smap_andnot_wp = 1;
4832        mask.smm = 1;
4833        mask.guest_mode = 1;
4834        mask.ad_disabled = 1;
4835
4836        /*
4837         * If we don't have indirect shadow pages, it means no page is
4838         * write-protected, so we can exit simply.
4839         */
4840        if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4841                return;
4842
4843        remote_flush = local_flush = false;
4844
4845        pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4846
4847        gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4848
4849        /*
4850         * No need to care whether allocation memory is successful
4851         * or not since pte prefetch is skiped if it does not have
4852         * enough objects in the cache.
4853         */
4854        mmu_topup_memory_caches(vcpu);
4855
4856        spin_lock(&vcpu->kvm->mmu_lock);
4857        ++vcpu->kvm->stat.mmu_pte_write;
4858        kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4859
4860        for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4861                if (detect_write_misaligned(sp, gpa, bytes) ||
4862                      detect_write_flooding(sp)) {
4863                        kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4864                        ++vcpu->kvm->stat.mmu_flooded;
4865                        continue;
4866                }
4867
4868                spte = get_written_sptes(sp, gpa, &npte);
4869                if (!spte)
4870                        continue;
4871
4872                local_flush = true;
4873                while (npte--) {
4874                        entry = *spte;
4875                        mmu_page_zap_pte(vcpu->kvm, sp, spte);
4876                        if (gentry &&
4877                              !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4878                              & mask.word) && rmap_can_add(vcpu))
4879                                mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4880                        if (need_remote_flush(entry, *spte))
4881                                remote_flush = true;
4882                        ++spte;
4883                }
4884        }
4885        kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4886        kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4887        spin_unlock(&vcpu->kvm->mmu_lock);
4888}
4889
4890int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4891{
4892        gpa_t gpa;
4893        int r;
4894
4895        if (vcpu->arch.mmu.direct_map)
4896                return 0;
4897
4898        gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4899
4900        r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4901
4902        return r;
4903}
4904EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4905
4906static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
4907{
4908        LIST_HEAD(invalid_list);
4909
4910        if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4911                return 0;
4912
4913        while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4914                if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4915                        break;
4916
4917                ++vcpu->kvm->stat.mmu_recycled;
4918        }
4919        kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4920
4921        if (!kvm_mmu_available_pages(vcpu->kvm))
4922                return -ENOSPC;
4923        return 0;
4924}
4925
4926int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4927                       void *insn, int insn_len)
4928{
4929        int r, emulation_type = EMULTYPE_RETRY;
4930        enum emulation_result er;
4931        bool direct = vcpu->arch.mmu.direct_map;
4932
4933        /* With shadow page tables, fault_address contains a GVA or nGPA.  */
4934        if (vcpu->arch.mmu.direct_map) {
4935                vcpu->arch.gpa_available = true;
4936                vcpu->arch.gpa_val = cr2;
4937        }
4938
4939        r = RET_PF_INVALID;
4940        if (unlikely(error_code & PFERR_RSVD_MASK)) {
4941                r = handle_mmio_page_fault(vcpu, cr2, direct);
4942                if (r == RET_PF_EMULATE) {
4943                        emulation_type = 0;
4944                        goto emulate;
4945                }
4946        }
4947
4948        if (r == RET_PF_INVALID) {
4949                r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4950                                              false);
4951                WARN_ON(r == RET_PF_INVALID);
4952        }
4953
4954        if (r == RET_PF_RETRY)
4955                return 1;
4956        if (r < 0)
4957                return r;
4958
4959        /*
4960         * Before emulating the instruction, check if the error code
4961         * was due to a RO violation while translating the guest page.
4962         * This can occur when using nested virtualization with nested
4963         * paging in both guests. If true, we simply unprotect the page
4964         * and resume the guest.
4965         */
4966        if (vcpu->arch.mmu.direct_map &&
4967            (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
4968                kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4969                return 1;
4970        }
4971
4972        if (mmio_info_in_cache(vcpu, cr2, direct))
4973                emulation_type = 0;
4974emulate:
4975        /*
4976         * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
4977         * This can happen if a guest gets a page-fault on data access but the HW
4978         * table walker is not able to read the instruction page (e.g instruction
4979         * page is not present in memory). In those cases we simply restart the
4980         * guest.
4981         */
4982        if (unlikely(insn && !insn_len))
4983                return 1;
4984
4985        er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4986
4987        switch (er) {
4988        case EMULATE_DONE:
4989                return 1;
4990        case EMULATE_USER_EXIT:
4991                ++vcpu->stat.mmio_exits;
4992                /* fall through */
4993        case EMULATE_FAIL:
4994                return 0;
4995        default:
4996                BUG();
4997        }
4998}
4999EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5000
5001void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5002{
5003        vcpu->arch.mmu.invlpg(vcpu, gva);
5004        kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5005        ++vcpu->stat.invlpg;
5006}
5007EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5008
5009void kvm_enable_tdp(void)
5010{
5011        tdp_enabled = true;
5012}
5013EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5014
5015void kvm_disable_tdp(void)
5016{
5017        tdp_enabled = false;
5018}
5019EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5020
5021static void free_mmu_pages(struct kvm_vcpu *vcpu)
5022{
5023        free_page((unsigned long)vcpu->arch.mmu.pae_root);
5024        free_page((unsigned long)vcpu->arch.mmu.lm_root);
5025}
5026
5027static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5028{
5029        struct page *page;
5030        int i;
5031
5032        /*
5033         * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5034         * Therefore we need to allocate shadow page tables in the first
5035         * 4GB of memory, which happens to fit the DMA32 zone.
5036         */
5037        page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5038        if (!page)
5039                return -ENOMEM;
5040
5041        vcpu->arch.mmu.pae_root = page_address(page);
5042        for (i = 0; i < 4; ++i)
5043                vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5044
5045        return 0;
5046}
5047
5048int kvm_mmu_create(struct kvm_vcpu *vcpu)
5049{
5050        vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5051        vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5052        vcpu->arch.mmu.translate_gpa = translate_gpa;
5053        vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5054
5055        return alloc_mmu_pages(vcpu);
5056}
5057
5058void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5059{
5060        MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5061
5062        init_kvm_mmu(vcpu);
5063}
5064
5065static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5066                        struct kvm_memory_slot *slot,
5067                        struct kvm_page_track_notifier_node *node)
5068{
5069        kvm_mmu_invalidate_zap_all_pages(kvm);
5070}
5071
5072void kvm_mmu_init_vm(struct kvm *kvm)
5073{
5074        struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5075
5076        node->track_write = kvm_mmu_pte_write;
5077        node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5078        kvm_page_track_register_notifier(kvm, node);
5079}
5080
5081void kvm_mmu_uninit_vm(struct kvm *kvm)
5082{
5083        struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5084
5085        kvm_page_track_unregister_notifier(kvm, node);
5086}
5087
5088/* The return value indicates if tlb flush on all vcpus is needed. */
5089typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5090
5091/* The caller should hold mmu-lock before calling this function. */
5092static __always_inline bool
5093slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5094                        slot_level_handler fn, int start_level, int end_level,
5095                        gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5096{
5097        struct slot_rmap_walk_iterator iterator;
5098        bool flush = false;
5099
5100        for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5101                        end_gfn, &iterator) {
5102                if (iterator.rmap)
5103                        flush |= fn(kvm, iterator.rmap);
5104
5105                if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5106                        if (flush && lock_flush_tlb) {
5107                                kvm_flush_remote_tlbs(kvm);
5108                                flush = false;
5109                        }
5110                        cond_resched_lock(&kvm->mmu_lock);
5111                }
5112        }
5113
5114        if (flush && lock_flush_tlb) {
5115                kvm_flush_remote_tlbs(kvm);
5116                flush = false;
5117        }
5118
5119        return flush;
5120}
5121
5122static __always_inline bool
5123slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5124                  slot_level_handler fn, int start_level, int end_level,
5125                  bool lock_flush_tlb)
5126{
5127        return slot_handle_level_range(kvm, memslot, fn, start_level,
5128                        end_level, memslot->base_gfn,
5129                        memslot->base_gfn + memslot->npages - 1,
5130                        lock_flush_tlb);
5131}
5132
5133static __always_inline bool
5134slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5135                      slot_level_handler fn, bool lock_flush_tlb)
5136{
5137        return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5138                                 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5139}
5140
5141static __always_inline bool
5142slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5143                        slot_level_handler fn, bool lock_flush_tlb)
5144{
5145        return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5146                                 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5147}
5148
5149static __always_inline bool
5150slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5151                 slot_level_handler fn, bool lock_flush_tlb)
5152{
5153        return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5154                                 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5155}
5156
5157void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5158{
5159        struct kvm_memslots *slots;
5160        struct kvm_memory_slot *memslot;
5161        int i;
5162
5163        spin_lock(&kvm->mmu_lock);
5164        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5165                slots = __kvm_memslots(kvm, i);
5166                kvm_for_each_memslot(memslot, slots) {
5167                        gfn_t start, end;
5168
5169                        start = max(gfn_start, memslot->base_gfn);
5170                        end = min(gfn_end, memslot->base_gfn + memslot->npages);
5171                        if (start >= end)
5172                                continue;
5173
5174                        slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5175                                                PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5176                                                start, end - 1, true);
5177                }
5178        }
5179
5180        spin_unlock(&kvm->mmu_lock);
5181}
5182
5183static bool slot_rmap_write_protect(struct kvm *kvm,
5184                                    struct kvm_rmap_head *rmap_head)
5185{
5186        return __rmap_write_protect(kvm, rmap_head, false);
5187}
5188
5189void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5190                                      struct kvm_memory_slot *memslot)
5191{
5192        bool flush;
5193
5194        spin_lock(&kvm->mmu_lock);
5195        flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5196                                      false);
5197        spin_unlock(&kvm->mmu_lock);
5198
5199        /*
5200         * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5201         * which do tlb flush out of mmu-lock should be serialized by
5202         * kvm->slots_lock otherwise tlb flush would be missed.
5203         */
5204        lockdep_assert_held(&kvm->slots_lock);
5205
5206        /*
5207         * We can flush all the TLBs out of the mmu lock without TLB
5208         * corruption since we just change the spte from writable to
5209         * readonly so that we only need to care the case of changing
5210         * spte from present to present (changing the spte from present
5211         * to nonpresent will flush all the TLBs immediately), in other
5212         * words, the only case we care is mmu_spte_update() where we
5213         * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5214         * instead of PT_WRITABLE_MASK, that means it does not depend
5215         * on PT_WRITABLE_MASK anymore.
5216         */
5217        if (flush)
5218                kvm_flush_remote_tlbs(kvm);
5219}
5220
5221static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5222                                         struct kvm_rmap_head *rmap_head)
5223{
5224        u64 *sptep;
5225        struct rmap_iterator iter;
5226        int need_tlb_flush = 0;
5227        kvm_pfn_t pfn;
5228        struct kvm_mmu_page *sp;
5229
5230restart:
5231        for_each_rmap_spte(rmap_head, &iter, sptep) {
5232                sp = page_header(__pa(sptep));
5233                pfn = spte_to_pfn(*sptep);
5234
5235                /*
5236                 * We cannot do huge page mapping for indirect shadow pages,
5237                 * which are found on the last rmap (level = 1) when not using
5238                 * tdp; such shadow pages are synced with the page table in
5239                 * the guest, and the guest page table is using 4K page size
5240                 * mapping if the indirect sp has level = 1.
5241                 */
5242                if (sp->role.direct &&
5243                        !kvm_is_reserved_pfn(pfn) &&
5244                        PageTransCompoundMap(pfn_to_page(pfn))) {
5245                        drop_spte(kvm, sptep);
5246                        need_tlb_flush = 1;
5247                        goto restart;
5248                }
5249        }
5250
5251        return need_tlb_flush;
5252}
5253
5254void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5255                                   const struct kvm_memory_slot *memslot)
5256{
5257        /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5258        spin_lock(&kvm->mmu_lock);
5259        slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5260                         kvm_mmu_zap_collapsible_spte, true);
5261        spin_unlock(&kvm->mmu_lock);
5262}
5263
5264void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5265                                   struct kvm_memory_slot *memslot)
5266{
5267        bool flush;
5268
5269        spin_lock(&kvm->mmu_lock);
5270        flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5271        spin_unlock(&kvm->mmu_lock);
5272
5273        lockdep_assert_held(&kvm->slots_lock);
5274
5275        /*
5276         * It's also safe to flush TLBs out of mmu lock here as currently this
5277         * function is only used for dirty logging, in which case flushing TLB
5278         * out of mmu lock also guarantees no dirty pages will be lost in
5279         * dirty_bitmap.
5280         */
5281        if (flush)
5282                kvm_flush_remote_tlbs(kvm);
5283}
5284EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5285
5286void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5287                                        struct kvm_memory_slot *memslot)
5288{
5289        bool flush;
5290
5291        spin_lock(&kvm->mmu_lock);
5292        flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5293                                        false);
5294        spin_unlock(&kvm->mmu_lock);
5295
5296        /* see kvm_mmu_slot_remove_write_access */
5297        lockdep_assert_held(&kvm->slots_lock);
5298
5299        if (flush)
5300                kvm_flush_remote_tlbs(kvm);
5301}
5302EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5303
5304void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5305                            struct kvm_memory_slot *memslot)
5306{
5307        bool flush;
5308
5309        spin_lock(&kvm->mmu_lock);
5310        flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5311        spin_unlock(&kvm->mmu_lock);
5312
5313        lockdep_assert_held(&kvm->slots_lock);
5314
5315        /* see kvm_mmu_slot_leaf_clear_dirty */
5316        if (flush)
5317                kvm_flush_remote_tlbs(kvm);
5318}
5319EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5320
5321#define BATCH_ZAP_PAGES 10
5322static void kvm_zap_obsolete_pages(struct kvm *kvm)
5323{
5324        struct kvm_mmu_page *sp, *node;
5325        int batch = 0;
5326
5327restart:
5328        list_for_each_entry_safe_reverse(sp, node,
5329              &kvm->arch.active_mmu_pages, link) {
5330                int ret;
5331
5332                /*
5333                 * No obsolete page exists before new created page since
5334                 * active_mmu_pages is the FIFO list.
5335                 */
5336                if (!is_obsolete_sp(kvm, sp))
5337                        break;
5338
5339                /*
5340                 * Since we are reversely walking the list and the invalid
5341                 * list will be moved to the head, skip the invalid page
5342                 * can help us to avoid the infinity list walking.
5343                 */
5344                if (sp->role.invalid)
5345                        continue;
5346
5347                /*
5348                 * Need not flush tlb since we only zap the sp with invalid
5349                 * generation number.
5350                 */
5351                if (batch >= BATCH_ZAP_PAGES &&
5352                      cond_resched_lock(&kvm->mmu_lock)) {
5353                        batch = 0;
5354                        goto restart;
5355                }
5356
5357                ret = kvm_mmu_prepare_zap_page(kvm, sp,
5358                                &kvm->arch.zapped_obsolete_pages);
5359                batch += ret;
5360
5361                if (ret)
5362                        goto restart;
5363        }
5364
5365        /*
5366         * Should flush tlb before free page tables since lockless-walking
5367         * may use the pages.
5368         */
5369        kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5370}
5371
5372/*
5373 * Fast invalidate all shadow pages and use lock-break technique
5374 * to zap obsolete pages.
5375 *
5376 * It's required when memslot is being deleted or VM is being
5377 * destroyed, in these cases, we should ensure that KVM MMU does
5378 * not use any resource of the being-deleted slot or all slots
5379 * after calling the function.
5380 */
5381void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5382{
5383        spin_lock(&kvm->mmu_lock);
5384        trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5385        kvm->arch.mmu_valid_gen++;
5386
5387        /*
5388         * Notify all vcpus to reload its shadow page table
5389         * and flush TLB. Then all vcpus will switch to new
5390         * shadow page table with the new mmu_valid_gen.
5391         *
5392         * Note: we should do this under the protection of
5393         * mmu-lock, otherwise, vcpu would purge shadow page
5394         * but miss tlb flush.
5395         */
5396        kvm_reload_remote_mmus(kvm);
5397
5398        kvm_zap_obsolete_pages(kvm);
5399        spin_unlock(&kvm->mmu_lock);
5400}
5401
5402static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5403{
5404        return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5405}
5406
5407void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5408{
5409        /*
5410         * The very rare case: if the generation-number is round,
5411         * zap all shadow pages.
5412         */
5413        if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5414                kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5415                kvm_mmu_invalidate_zap_all_pages(kvm);
5416        }
5417}
5418
5419static unsigned long
5420mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5421{
5422        struct kvm *kvm;
5423        int nr_to_scan = sc->nr_to_scan;
5424        unsigned long freed = 0;
5425
5426        spin_lock(&kvm_lock);
5427
5428        list_for_each_entry(kvm, &vm_list, vm_list) {
5429                int idx;
5430                LIST_HEAD(invalid_list);
5431
5432                /*
5433                 * Never scan more than sc->nr_to_scan VM instances.
5434                 * Will not hit this condition practically since we do not try
5435                 * to shrink more than one VM and it is very unlikely to see
5436                 * !n_used_mmu_pages so many times.
5437                 */
5438                if (!nr_to_scan--)
5439                        break;
5440                /*
5441                 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5442                 * here. We may skip a VM instance errorneosly, but we do not
5443                 * want to shrink a VM that only started to populate its MMU
5444                 * anyway.
5445                 */
5446                if (!kvm->arch.n_used_mmu_pages &&
5447                      !kvm_has_zapped_obsolete_pages(kvm))
5448                        continue;
5449
5450                idx = srcu_read_lock(&kvm->srcu);
5451                spin_lock(&kvm->mmu_lock);
5452
5453                if (kvm_has_zapped_obsolete_pages(kvm)) {
5454                        kvm_mmu_commit_zap_page(kvm,
5455                              &kvm->arch.zapped_obsolete_pages);
5456                        goto unlock;
5457                }
5458
5459                if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5460                        freed++;
5461                kvm_mmu_commit_zap_page(kvm, &invalid_list);
5462
5463unlock:
5464                spin_unlock(&kvm->mmu_lock);
5465                srcu_read_unlock(&kvm->srcu, idx);
5466
5467                /*
5468                 * unfair on small ones
5469                 * per-vm shrinkers cry out
5470                 * sadness comes quickly
5471                 */
5472                list_move_tail(&kvm->vm_list, &vm_list);
5473                break;
5474        }
5475
5476        spin_unlock(&kvm_lock);
5477        return freed;
5478}
5479
5480static unsigned long
5481mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5482{
5483        return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5484}
5485
5486static struct shrinker mmu_shrinker = {
5487        .count_objects = mmu_shrink_count,
5488        .scan_objects = mmu_shrink_scan,
5489        .seeks = DEFAULT_SEEKS * 10,
5490};
5491
5492static void mmu_destroy_caches(void)
5493{
5494        kmem_cache_destroy(pte_list_desc_cache);
5495        kmem_cache_destroy(mmu_page_header_cache);
5496}
5497
5498int kvm_mmu_module_init(void)
5499{
5500        int ret = -ENOMEM;
5501
5502        kvm_mmu_clear_all_pte_masks();
5503
5504        pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5505                                            sizeof(struct pte_list_desc),
5506                                            0, SLAB_ACCOUNT, NULL);
5507        if (!pte_list_desc_cache)
5508                goto out;
5509
5510        mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5511                                                  sizeof(struct kvm_mmu_page),
5512                                                  0, SLAB_ACCOUNT, NULL);
5513        if (!mmu_page_header_cache)
5514                goto out;
5515
5516        if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5517                goto out;
5518
5519        ret = register_shrinker(&mmu_shrinker);
5520        if (ret)
5521                goto out;
5522
5523        return 0;
5524
5525out:
5526        mmu_destroy_caches();
5527        return ret;
5528}
5529
5530/*
5531 * Caculate mmu pages needed for kvm.
5532 */
5533unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5534{
5535        unsigned int nr_mmu_pages;
5536        unsigned int  nr_pages = 0;
5537        struct kvm_memslots *slots;
5538        struct kvm_memory_slot *memslot;
5539        int i;
5540
5541        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5542                slots = __kvm_memslots(kvm, i);
5543
5544                kvm_for_each_memslot(memslot, slots)
5545                        nr_pages += memslot->npages;
5546        }
5547
5548        nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5549        nr_mmu_pages = max(nr_mmu_pages,
5550                           (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5551
5552        return nr_mmu_pages;
5553}
5554
5555void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5556{
5557        kvm_mmu_unload(vcpu);
5558        free_mmu_pages(vcpu);
5559        mmu_free_memory_caches(vcpu);
5560}
5561
5562void kvm_mmu_module_exit(void)
5563{
5564        mmu_destroy_caches();
5565        percpu_counter_destroy(&kvm_total_used_mmu_pages);
5566        unregister_shrinker(&mmu_shrinker);
5567        mmu_audit_disable();
5568}
5569