linux/drivers/clk/berlin/berlin2-avpll.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2014 Marvell Technology Group Ltd.
   4 *
   5 * Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
   6 * Alexandre Belloni <alexandre.belloni@free-electrons.com>
   7 */
   8#include <linux/clk-provider.h>
   9#include <linux/io.h>
  10#include <linux/kernel.h>
  11#include <linux/of.h>
  12#include <linux/of_address.h>
  13#include <linux/slab.h>
  14
  15#include "berlin2-avpll.h"
  16
  17/*
  18 * Berlin2 SoCs comprise up to two PLLs called AVPLL built upon a
  19 * VCO with 8 channels each, channel 8 is the odd-one-out and does
  20 * not provide mul/div.
  21 *
  22 * Unfortunately, its registers are not named but just numbered. To
  23 * get in at least some kind of structure, we split each AVPLL into
  24 * the VCOs and each channel into separate clock drivers.
  25 *
  26 * Also, here and there the VCO registers are a bit different with
  27 * respect to bit shifts. Make sure to add a comment for those.
  28 */
  29#define NUM_CHANNELS    8
  30
  31#define AVPLL_CTRL(x)           ((x) * 0x4)
  32
  33#define VCO_CTRL0               AVPLL_CTRL(0)
  34/* BG2/BG2CDs VCO_B has an additional shift of 4 for its VCO_CTRL0 reg */
  35#define  VCO_RESET              BIT(0)
  36#define  VCO_POWERUP            BIT(1)
  37#define  VCO_INTERPOL_SHIFT     2
  38#define  VCO_INTERPOL_MASK      (0xf << VCO_INTERPOL_SHIFT)
  39#define  VCO_REG1V45_SEL_SHIFT  6
  40#define  VCO_REG1V45_SEL(x)     ((x) << VCO_REG1V45_SEL_SHIFT)
  41#define  VCO_REG1V45_SEL_1V40   VCO_REG1V45_SEL(0)
  42#define  VCO_REG1V45_SEL_1V45   VCO_REG1V45_SEL(1)
  43#define  VCO_REG1V45_SEL_1V50   VCO_REG1V45_SEL(2)
  44#define  VCO_REG1V45_SEL_1V55   VCO_REG1V45_SEL(3)
  45#define  VCO_REG1V45_SEL_MASK   VCO_REG1V45_SEL(3)
  46#define  VCO_REG0V9_SEL_SHIFT   8
  47#define  VCO_REG0V9_SEL_MASK    (0xf << VCO_REG0V9_SEL_SHIFT)
  48#define  VCO_VTHCAL_SHIFT       12
  49#define  VCO_VTHCAL(x)          ((x) << VCO_VTHCAL_SHIFT)
  50#define  VCO_VTHCAL_0V90        VCO_VTHCAL(0)
  51#define  VCO_VTHCAL_0V95        VCO_VTHCAL(1)
  52#define  VCO_VTHCAL_1V00        VCO_VTHCAL(2)
  53#define  VCO_VTHCAL_1V05        VCO_VTHCAL(3)
  54#define  VCO_VTHCAL_MASK        VCO_VTHCAL(3)
  55#define  VCO_KVCOEXT_SHIFT      14
  56#define  VCO_KVCOEXT_MASK       (0x3 << VCO_KVCOEXT_SHIFT)
  57#define  VCO_KVCOEXT_ENABLE     BIT(17)
  58#define  VCO_V2IEXT_SHIFT       18
  59#define  VCO_V2IEXT_MASK        (0xf << VCO_V2IEXT_SHIFT)
  60#define  VCO_V2IEXT_ENABLE      BIT(22)
  61#define  VCO_SPEED_SHIFT        23
  62#define  VCO_SPEED(x)           ((x) << VCO_SPEED_SHIFT)
  63#define  VCO_SPEED_1G08_1G21    VCO_SPEED(0)
  64#define  VCO_SPEED_1G21_1G40    VCO_SPEED(1)
  65#define  VCO_SPEED_1G40_1G61    VCO_SPEED(2)
  66#define  VCO_SPEED_1G61_1G86    VCO_SPEED(3)
  67#define  VCO_SPEED_1G86_2G00    VCO_SPEED(4)
  68#define  VCO_SPEED_2G00_2G22    VCO_SPEED(5)
  69#define  VCO_SPEED_2G22         VCO_SPEED(6)
  70#define  VCO_SPEED_MASK         VCO_SPEED(0x7)
  71#define  VCO_CLKDET_ENABLE      BIT(26)
  72#define VCO_CTRL1               AVPLL_CTRL(1)
  73#define  VCO_REFDIV_SHIFT       0
  74#define  VCO_REFDIV(x)          ((x) << VCO_REFDIV_SHIFT)
  75#define  VCO_REFDIV_1           VCO_REFDIV(0)
  76#define  VCO_REFDIV_2           VCO_REFDIV(1)
  77#define  VCO_REFDIV_4           VCO_REFDIV(2)
  78#define  VCO_REFDIV_3           VCO_REFDIV(3)
  79#define  VCO_REFDIV_MASK        VCO_REFDIV(0x3f)
  80#define  VCO_FBDIV_SHIFT        6
  81#define  VCO_FBDIV(x)           ((x) << VCO_FBDIV_SHIFT)
  82#define  VCO_FBDIV_MASK         VCO_FBDIV(0xff)
  83#define  VCO_ICP_SHIFT          14
  84/* PLL Charge Pump Current = 10uA * (x + 1) */
  85#define  VCO_ICP(x)             ((x) << VCO_ICP_SHIFT)
  86#define  VCO_ICP_MASK           VCO_ICP(0xf)
  87#define  VCO_LOAD_CAP           BIT(18)
  88#define  VCO_CALIBRATION_START  BIT(19)
  89#define VCO_FREQOFFSETn(x)      AVPLL_CTRL(3 + (x))
  90#define  VCO_FREQOFFSET_MASK    0x7ffff
  91#define VCO_CTRL10              AVPLL_CTRL(10)
  92#define  VCO_POWERUP_CH1        BIT(20)
  93#define VCO_CTRL11              AVPLL_CTRL(11)
  94#define VCO_CTRL12              AVPLL_CTRL(12)
  95#define VCO_CTRL13              AVPLL_CTRL(13)
  96#define VCO_CTRL14              AVPLL_CTRL(14)
  97#define VCO_CTRL15              AVPLL_CTRL(15)
  98#define VCO_SYNC1n(x)           AVPLL_CTRL(15 + (x))
  99#define  VCO_SYNC1_MASK         0x1ffff
 100#define VCO_SYNC2n(x)           AVPLL_CTRL(23 + (x))
 101#define  VCO_SYNC2_MASK         0x1ffff
 102#define VCO_CTRL30              AVPLL_CTRL(30)
 103#define  VCO_DPLL_CH1_ENABLE    BIT(17)
 104
 105struct berlin2_avpll_vco {
 106        struct clk_hw hw;
 107        void __iomem *base;
 108        u8 flags;
 109};
 110
 111#define to_avpll_vco(hw) container_of(hw, struct berlin2_avpll_vco, hw)
 112
 113static int berlin2_avpll_vco_is_enabled(struct clk_hw *hw)
 114{
 115        struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
 116        u32 reg;
 117
 118        reg = readl_relaxed(vco->base + VCO_CTRL0);
 119        if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
 120                reg >>= 4;
 121
 122        return !!(reg & VCO_POWERUP);
 123}
 124
 125static int berlin2_avpll_vco_enable(struct clk_hw *hw)
 126{
 127        struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
 128        u32 reg;
 129
 130        reg = readl_relaxed(vco->base + VCO_CTRL0);
 131        if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
 132                reg |= VCO_POWERUP << 4;
 133        else
 134                reg |= VCO_POWERUP;
 135        writel_relaxed(reg, vco->base + VCO_CTRL0);
 136
 137        return 0;
 138}
 139
 140static void berlin2_avpll_vco_disable(struct clk_hw *hw)
 141{
 142        struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
 143        u32 reg;
 144
 145        reg = readl_relaxed(vco->base + VCO_CTRL0);
 146        if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
 147                reg &= ~(VCO_POWERUP << 4);
 148        else
 149                reg &= ~VCO_POWERUP;
 150        writel_relaxed(reg, vco->base + VCO_CTRL0);
 151}
 152
 153static u8 vco_refdiv[] = { 1, 2, 4, 3 };
 154
 155static unsigned long
 156berlin2_avpll_vco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
 157{
 158        struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
 159        u32 reg, refdiv, fbdiv;
 160        u64 freq = parent_rate;
 161
 162        /* AVPLL VCO frequency: Fvco = (Fref / refdiv) * fbdiv */
 163        reg = readl_relaxed(vco->base + VCO_CTRL1);
 164        refdiv = (reg & VCO_REFDIV_MASK) >> VCO_REFDIV_SHIFT;
 165        refdiv = vco_refdiv[refdiv];
 166        fbdiv = (reg & VCO_FBDIV_MASK) >> VCO_FBDIV_SHIFT;
 167        freq *= fbdiv;
 168        do_div(freq, refdiv);
 169
 170        return (unsigned long)freq;
 171}
 172
 173static const struct clk_ops berlin2_avpll_vco_ops = {
 174        .is_enabled     = berlin2_avpll_vco_is_enabled,
 175        .enable         = berlin2_avpll_vco_enable,
 176        .disable        = berlin2_avpll_vco_disable,
 177        .recalc_rate    = berlin2_avpll_vco_recalc_rate,
 178};
 179
 180int __init berlin2_avpll_vco_register(void __iomem *base,
 181                               const char *name, const char *parent_name,
 182                               u8 vco_flags, unsigned long flags)
 183{
 184        struct berlin2_avpll_vco *vco;
 185        struct clk_init_data init;
 186
 187        vco = kzalloc(sizeof(*vco), GFP_KERNEL);
 188        if (!vco)
 189                return -ENOMEM;
 190
 191        vco->base = base;
 192        vco->flags = vco_flags;
 193        vco->hw.init = &init;
 194        init.name = name;
 195        init.ops = &berlin2_avpll_vco_ops;
 196        init.parent_names = &parent_name;
 197        init.num_parents = 1;
 198        init.flags = flags;
 199
 200        return clk_hw_register(NULL, &vco->hw);
 201}
 202
 203struct berlin2_avpll_channel {
 204        struct clk_hw hw;
 205        void __iomem *base;
 206        u8 flags;
 207        u8 index;
 208};
 209
 210#define to_avpll_channel(hw) container_of(hw, struct berlin2_avpll_channel, hw)
 211
 212static int berlin2_avpll_channel_is_enabled(struct clk_hw *hw)
 213{
 214        struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
 215        u32 reg;
 216
 217        if (ch->index == 7)
 218                return 1;
 219
 220        reg = readl_relaxed(ch->base + VCO_CTRL10);
 221        reg &= VCO_POWERUP_CH1 << ch->index;
 222
 223        return !!reg;
 224}
 225
 226static int berlin2_avpll_channel_enable(struct clk_hw *hw)
 227{
 228        struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
 229        u32 reg;
 230
 231        reg = readl_relaxed(ch->base + VCO_CTRL10);
 232        reg |= VCO_POWERUP_CH1 << ch->index;
 233        writel_relaxed(reg, ch->base + VCO_CTRL10);
 234
 235        return 0;
 236}
 237
 238static void berlin2_avpll_channel_disable(struct clk_hw *hw)
 239{
 240        struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
 241        u32 reg;
 242
 243        reg = readl_relaxed(ch->base + VCO_CTRL10);
 244        reg &= ~(VCO_POWERUP_CH1 << ch->index);
 245        writel_relaxed(reg, ch->base + VCO_CTRL10);
 246}
 247
 248static const u8 div_hdmi[] = { 1, 2, 4, 6 };
 249static const u8 div_av1[] = { 1, 2, 5, 5 };
 250
 251static unsigned long
 252berlin2_avpll_channel_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
 253{
 254        struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
 255        u32 reg, div_av2, div_av3, divider = 1;
 256        u64 freq = parent_rate;
 257
 258        reg = readl_relaxed(ch->base + VCO_CTRL30);
 259        if ((reg & (VCO_DPLL_CH1_ENABLE << ch->index)) == 0)
 260                goto skip_div;
 261
 262        /*
 263         * Fch = (Fref * sync2) /
 264         *    (sync1 * div_hdmi * div_av1 * div_av2 * div_av3)
 265         */
 266
 267        reg = readl_relaxed(ch->base + VCO_SYNC1n(ch->index));
 268        /* BG2/BG2CDs SYNC1 reg on AVPLL_B channel 1 is shifted by 4 */
 269        if (ch->flags & BERLIN2_AVPLL_BIT_QUIRK && ch->index == 0)
 270                reg >>= 4;
 271        divider = reg & VCO_SYNC1_MASK;
 272
 273        reg = readl_relaxed(ch->base + VCO_SYNC2n(ch->index));
 274        freq *= reg & VCO_SYNC2_MASK;
 275
 276        /* Channel 8 has no dividers */
 277        if (ch->index == 7)
 278                goto skip_div;
 279
 280        /*
 281         * HDMI divider start at VCO_CTRL11, bit 7; MSB is enable, lower 2 bit
 282         * determine divider.
 283         */
 284        reg = readl_relaxed(ch->base + VCO_CTRL11) >> 7;
 285        reg = (reg >> (ch->index * 3));
 286        if (reg & BIT(2))
 287                divider *= div_hdmi[reg & 0x3];
 288
 289        /*
 290         * AV1 divider start at VCO_CTRL11, bit 28; MSB is enable, lower 2 bit
 291         * determine divider.
 292         */
 293        if (ch->index == 0) {
 294                reg = readl_relaxed(ch->base + VCO_CTRL11);
 295                reg >>= 28;
 296        } else {
 297                reg = readl_relaxed(ch->base + VCO_CTRL12);
 298                reg >>= (ch->index-1) * 3;
 299        }
 300        if (reg & BIT(2))
 301                divider *= div_av1[reg & 0x3];
 302
 303        /*
 304         * AV2 divider start at VCO_CTRL12, bit 18; each 7 bits wide,
 305         * zero is not a valid value.
 306         */
 307        if (ch->index < 2) {
 308                reg = readl_relaxed(ch->base + VCO_CTRL12);
 309                reg >>= 18 + (ch->index * 7);
 310        } else if (ch->index < 7) {
 311                reg = readl_relaxed(ch->base + VCO_CTRL13);
 312                reg >>= (ch->index - 2) * 7;
 313        } else {
 314                reg = readl_relaxed(ch->base + VCO_CTRL14);
 315        }
 316        div_av2 = reg & 0x7f;
 317        if (div_av2)
 318                divider *= div_av2;
 319
 320        /*
 321         * AV3 divider start at VCO_CTRL14, bit 7; each 4 bits wide.
 322         * AV2/AV3 form a fractional divider, where only specfic values for AV3
 323         * are allowed. AV3 != 0 divides by AV2/2, AV3=0 is bypass.
 324         */
 325        if (ch->index < 6) {
 326                reg = readl_relaxed(ch->base + VCO_CTRL14);
 327                reg >>= 7 + (ch->index * 4);
 328        } else {
 329                reg = readl_relaxed(ch->base + VCO_CTRL15);
 330        }
 331        div_av3 = reg & 0xf;
 332        if (div_av2 && div_av3)
 333                freq *= 2;
 334
 335skip_div:
 336        do_div(freq, divider);
 337        return (unsigned long)freq;
 338}
 339
 340static const struct clk_ops berlin2_avpll_channel_ops = {
 341        .is_enabled     = berlin2_avpll_channel_is_enabled,
 342        .enable         = berlin2_avpll_channel_enable,
 343        .disable        = berlin2_avpll_channel_disable,
 344        .recalc_rate    = berlin2_avpll_channel_recalc_rate,
 345};
 346
 347/*
 348 * Another nice quirk:
 349 * On some production SoCs, AVPLL channels are scrambled with respect
 350 * to the channel numbering in the registers but still referenced by
 351 * their original channel numbers. We deal with it by having a flag
 352 * and a translation table for the index.
 353 */
 354static const u8 quirk_index[] __initconst = { 0, 6, 5, 4, 3, 2, 1, 7 };
 355
 356int __init berlin2_avpll_channel_register(void __iomem *base,
 357                           const char *name, u8 index, const char *parent_name,
 358                           u8 ch_flags, unsigned long flags)
 359{
 360        struct berlin2_avpll_channel *ch;
 361        struct clk_init_data init;
 362
 363        ch = kzalloc(sizeof(*ch), GFP_KERNEL);
 364        if (!ch)
 365                return -ENOMEM;
 366
 367        ch->base = base;
 368        if (ch_flags & BERLIN2_AVPLL_SCRAMBLE_QUIRK)
 369                ch->index = quirk_index[index];
 370        else
 371                ch->index = index;
 372
 373        ch->flags = ch_flags;
 374        ch->hw.init = &init;
 375        init.name = name;
 376        init.ops = &berlin2_avpll_channel_ops;
 377        init.parent_names = &parent_name;
 378        init.num_parents = 1;
 379        init.flags = flags;
 380
 381        return clk_hw_register(NULL, &ch->hw);
 382}
 383