linux/drivers/clocksource/sh_cmt.c
<<
>>
Prefs
   1/*
   2 * SuperH Timer Support - CMT
   3 *
   4 *  Copyright (C) 2008 Magnus Damm
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
  19#include <linux/delay.h>
  20#include <linux/err.h>
  21#include <linux/init.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/ioport.h>
  25#include <linux/irq.h>
  26#include <linux/module.h>
  27#include <linux/of.h>
  28#include <linux/of_device.h>
  29#include <linux/platform_device.h>
  30#include <linux/pm_domain.h>
  31#include <linux/pm_runtime.h>
  32#include <linux/sh_timer.h>
  33#include <linux/slab.h>
  34#include <linux/spinlock.h>
  35
  36struct sh_cmt_device;
  37
  38/*
  39 * The CMT comes in 5 different identified flavours, depending not only on the
  40 * SoC but also on the particular instance. The following table lists the main
  41 * characteristics of those flavours.
  42 *
  43 *                      16B     32B     32B-F   48B     R-Car Gen2
  44 * -----------------------------------------------------------------------------
  45 * Channels             2       1/4     1       6       2/8
  46 * Control Width        16      16      16      16      32
  47 * Counter Width        16      32      32      32/48   32/48
  48 * Shared Start/Stop    Y       Y       Y       Y       N
  49 *
  50 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  51 * located in the channel registers block. All other versions have a shared
  52 * start/stop register located in the global space.
  53 *
  54 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  55 * infers the start/stop bit position in the control register and the channel
  56 * registers block address. Some CMT instances have a subset of channels
  57 * available, in which case the index in the documentation doesn't match the
  58 * "real" index as implemented in hardware. This is for instance the case with
  59 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  60 * in the documentation but using start/stop bit 5 and having its registers
  61 * block at 0x60.
  62 *
  63 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  64 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  65 */
  66
  67enum sh_cmt_model {
  68        SH_CMT_16BIT,
  69        SH_CMT_32BIT,
  70        SH_CMT_48BIT,
  71        SH_CMT0_RCAR_GEN2,
  72        SH_CMT1_RCAR_GEN2,
  73};
  74
  75struct sh_cmt_info {
  76        enum sh_cmt_model model;
  77
  78        unsigned int channels_mask;
  79
  80        unsigned long width; /* 16 or 32 bit version of hardware block */
  81        unsigned long overflow_bit;
  82        unsigned long clear_bits;
  83
  84        /* callbacks for CMSTR and CMCSR access */
  85        unsigned long (*read_control)(void __iomem *base, unsigned long offs);
  86        void (*write_control)(void __iomem *base, unsigned long offs,
  87                              unsigned long value);
  88
  89        /* callbacks for CMCNT and CMCOR access */
  90        unsigned long (*read_count)(void __iomem *base, unsigned long offs);
  91        void (*write_count)(void __iomem *base, unsigned long offs,
  92                            unsigned long value);
  93};
  94
  95struct sh_cmt_channel {
  96        struct sh_cmt_device *cmt;
  97
  98        unsigned int index;     /* Index in the documentation */
  99        unsigned int hwidx;     /* Real hardware index */
 100
 101        void __iomem *iostart;
 102        void __iomem *ioctrl;
 103
 104        unsigned int timer_bit;
 105        unsigned long flags;
 106        unsigned long match_value;
 107        unsigned long next_match_value;
 108        unsigned long max_match_value;
 109        raw_spinlock_t lock;
 110        struct clock_event_device ced;
 111        struct clocksource cs;
 112        unsigned long total_cycles;
 113        bool cs_enabled;
 114};
 115
 116struct sh_cmt_device {
 117        struct platform_device *pdev;
 118
 119        const struct sh_cmt_info *info;
 120
 121        void __iomem *mapbase;
 122        struct clk *clk;
 123        unsigned long rate;
 124
 125        raw_spinlock_t lock; /* Protect the shared start/stop register */
 126
 127        struct sh_cmt_channel *channels;
 128        unsigned int num_channels;
 129        unsigned int hw_channels;
 130
 131        bool has_clockevent;
 132        bool has_clocksource;
 133};
 134
 135#define SH_CMT16_CMCSR_CMF              (1 << 7)
 136#define SH_CMT16_CMCSR_CMIE             (1 << 6)
 137#define SH_CMT16_CMCSR_CKS8             (0 << 0)
 138#define SH_CMT16_CMCSR_CKS32            (1 << 0)
 139#define SH_CMT16_CMCSR_CKS128           (2 << 0)
 140#define SH_CMT16_CMCSR_CKS512           (3 << 0)
 141#define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
 142
 143#define SH_CMT32_CMCSR_CMF              (1 << 15)
 144#define SH_CMT32_CMCSR_OVF              (1 << 14)
 145#define SH_CMT32_CMCSR_WRFLG            (1 << 13)
 146#define SH_CMT32_CMCSR_STTF             (1 << 12)
 147#define SH_CMT32_CMCSR_STPF             (1 << 11)
 148#define SH_CMT32_CMCSR_SSIE             (1 << 10)
 149#define SH_CMT32_CMCSR_CMS              (1 << 9)
 150#define SH_CMT32_CMCSR_CMM              (1 << 8)
 151#define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
 152#define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
 153#define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
 154#define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
 155#define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
 156#define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
 157#define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
 158#define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
 159#define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
 160#define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
 161#define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
 162
 163static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
 164{
 165        return ioread16(base + (offs << 1));
 166}
 167
 168static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
 169{
 170        return ioread32(base + (offs << 2));
 171}
 172
 173static void sh_cmt_write16(void __iomem *base, unsigned long offs,
 174                           unsigned long value)
 175{
 176        iowrite16(value, base + (offs << 1));
 177}
 178
 179static void sh_cmt_write32(void __iomem *base, unsigned long offs,
 180                           unsigned long value)
 181{
 182        iowrite32(value, base + (offs << 2));
 183}
 184
 185static const struct sh_cmt_info sh_cmt_info[] = {
 186        [SH_CMT_16BIT] = {
 187                .model = SH_CMT_16BIT,
 188                .width = 16,
 189                .overflow_bit = SH_CMT16_CMCSR_CMF,
 190                .clear_bits = ~SH_CMT16_CMCSR_CMF,
 191                .read_control = sh_cmt_read16,
 192                .write_control = sh_cmt_write16,
 193                .read_count = sh_cmt_read16,
 194                .write_count = sh_cmt_write16,
 195        },
 196        [SH_CMT_32BIT] = {
 197                .model = SH_CMT_32BIT,
 198                .width = 32,
 199                .overflow_bit = SH_CMT32_CMCSR_CMF,
 200                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 201                .read_control = sh_cmt_read16,
 202                .write_control = sh_cmt_write16,
 203                .read_count = sh_cmt_read32,
 204                .write_count = sh_cmt_write32,
 205        },
 206        [SH_CMT_48BIT] = {
 207                .model = SH_CMT_48BIT,
 208                .channels_mask = 0x3f,
 209                .width = 32,
 210                .overflow_bit = SH_CMT32_CMCSR_CMF,
 211                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 212                .read_control = sh_cmt_read32,
 213                .write_control = sh_cmt_write32,
 214                .read_count = sh_cmt_read32,
 215                .write_count = sh_cmt_write32,
 216        },
 217        [SH_CMT0_RCAR_GEN2] = {
 218                .model = SH_CMT0_RCAR_GEN2,
 219                .channels_mask = 0x60,
 220                .width = 32,
 221                .overflow_bit = SH_CMT32_CMCSR_CMF,
 222                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 223                .read_control = sh_cmt_read32,
 224                .write_control = sh_cmt_write32,
 225                .read_count = sh_cmt_read32,
 226                .write_count = sh_cmt_write32,
 227        },
 228        [SH_CMT1_RCAR_GEN2] = {
 229                .model = SH_CMT1_RCAR_GEN2,
 230                .channels_mask = 0xff,
 231                .width = 32,
 232                .overflow_bit = SH_CMT32_CMCSR_CMF,
 233                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 234                .read_control = sh_cmt_read32,
 235                .write_control = sh_cmt_write32,
 236                .read_count = sh_cmt_read32,
 237                .write_count = sh_cmt_write32,
 238        },
 239};
 240
 241#define CMCSR 0 /* channel register */
 242#define CMCNT 1 /* channel register */
 243#define CMCOR 2 /* channel register */
 244
 245static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 246{
 247        if (ch->iostart)
 248                return ch->cmt->info->read_control(ch->iostart, 0);
 249        else
 250                return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 251}
 252
 253static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
 254                                      unsigned long value)
 255{
 256        if (ch->iostart)
 257                ch->cmt->info->write_control(ch->iostart, 0, value);
 258        else
 259                ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 260}
 261
 262static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 263{
 264        return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 265}
 266
 267static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
 268                                      unsigned long value)
 269{
 270        ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 271}
 272
 273static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 274{
 275        return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 276}
 277
 278static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
 279                                      unsigned long value)
 280{
 281        ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 282}
 283
 284static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
 285                                      unsigned long value)
 286{
 287        ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 288}
 289
 290static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
 291                                        int *has_wrapped)
 292{
 293        unsigned long v1, v2, v3;
 294        int o1, o2;
 295
 296        o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 297
 298        /* Make sure the timer value is stable. Stolen from acpi_pm.c */
 299        do {
 300                o2 = o1;
 301                v1 = sh_cmt_read_cmcnt(ch);
 302                v2 = sh_cmt_read_cmcnt(ch);
 303                v3 = sh_cmt_read_cmcnt(ch);
 304                o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 305        } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 306                          || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 307
 308        *has_wrapped = o1;
 309        return v2;
 310}
 311
 312static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 313{
 314        unsigned long flags, value;
 315
 316        /* start stop register shared by multiple timer channels */
 317        raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 318        value = sh_cmt_read_cmstr(ch);
 319
 320        if (start)
 321                value |= 1 << ch->timer_bit;
 322        else
 323                value &= ~(1 << ch->timer_bit);
 324
 325        sh_cmt_write_cmstr(ch, value);
 326        raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 327}
 328
 329static int sh_cmt_enable(struct sh_cmt_channel *ch)
 330{
 331        int k, ret;
 332
 333        pm_runtime_get_sync(&ch->cmt->pdev->dev);
 334        dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 335
 336        /* enable clock */
 337        ret = clk_enable(ch->cmt->clk);
 338        if (ret) {
 339                dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 340                        ch->index);
 341                goto err0;
 342        }
 343
 344        /* make sure channel is disabled */
 345        sh_cmt_start_stop_ch(ch, 0);
 346
 347        /* configure channel, periodic mode and maximum timeout */
 348        if (ch->cmt->info->width == 16) {
 349                sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 350                                   SH_CMT16_CMCSR_CKS512);
 351        } else {
 352                sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
 353                                   SH_CMT32_CMCSR_CMTOUT_IE |
 354                                   SH_CMT32_CMCSR_CMR_IRQ |
 355                                   SH_CMT32_CMCSR_CKS_RCLK8);
 356        }
 357
 358        sh_cmt_write_cmcor(ch, 0xffffffff);
 359        sh_cmt_write_cmcnt(ch, 0);
 360
 361        /*
 362         * According to the sh73a0 user's manual, as CMCNT can be operated
 363         * only by the RCLK (Pseudo 32 KHz), there's one restriction on
 364         * modifying CMCNT register; two RCLK cycles are necessary before
 365         * this register is either read or any modification of the value
 366         * it holds is reflected in the LSI's actual operation.
 367         *
 368         * While at it, we're supposed to clear out the CMCNT as of this
 369         * moment, so make sure it's processed properly here.  This will
 370         * take RCLKx2 at maximum.
 371         */
 372        for (k = 0; k < 100; k++) {
 373                if (!sh_cmt_read_cmcnt(ch))
 374                        break;
 375                udelay(1);
 376        }
 377
 378        if (sh_cmt_read_cmcnt(ch)) {
 379                dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 380                        ch->index);
 381                ret = -ETIMEDOUT;
 382                goto err1;
 383        }
 384
 385        /* enable channel */
 386        sh_cmt_start_stop_ch(ch, 1);
 387        return 0;
 388 err1:
 389        /* stop clock */
 390        clk_disable(ch->cmt->clk);
 391
 392 err0:
 393        return ret;
 394}
 395
 396static void sh_cmt_disable(struct sh_cmt_channel *ch)
 397{
 398        /* disable channel */
 399        sh_cmt_start_stop_ch(ch, 0);
 400
 401        /* disable interrupts in CMT block */
 402        sh_cmt_write_cmcsr(ch, 0);
 403
 404        /* stop clock */
 405        clk_disable(ch->cmt->clk);
 406
 407        dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 408        pm_runtime_put(&ch->cmt->pdev->dev);
 409}
 410
 411/* private flags */
 412#define FLAG_CLOCKEVENT (1 << 0)
 413#define FLAG_CLOCKSOURCE (1 << 1)
 414#define FLAG_REPROGRAM (1 << 2)
 415#define FLAG_SKIPEVENT (1 << 3)
 416#define FLAG_IRQCONTEXT (1 << 4)
 417
 418static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 419                                              int absolute)
 420{
 421        unsigned long new_match;
 422        unsigned long value = ch->next_match_value;
 423        unsigned long delay = 0;
 424        unsigned long now = 0;
 425        int has_wrapped;
 426
 427        now = sh_cmt_get_counter(ch, &has_wrapped);
 428        ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 429
 430        if (has_wrapped) {
 431                /* we're competing with the interrupt handler.
 432                 *  -> let the interrupt handler reprogram the timer.
 433                 *  -> interrupt number two handles the event.
 434                 */
 435                ch->flags |= FLAG_SKIPEVENT;
 436                return;
 437        }
 438
 439        if (absolute)
 440                now = 0;
 441
 442        do {
 443                /* reprogram the timer hardware,
 444                 * but don't save the new match value yet.
 445                 */
 446                new_match = now + value + delay;
 447                if (new_match > ch->max_match_value)
 448                        new_match = ch->max_match_value;
 449
 450                sh_cmt_write_cmcor(ch, new_match);
 451
 452                now = sh_cmt_get_counter(ch, &has_wrapped);
 453                if (has_wrapped && (new_match > ch->match_value)) {
 454                        /* we are changing to a greater match value,
 455                         * so this wrap must be caused by the counter
 456                         * matching the old value.
 457                         * -> first interrupt reprograms the timer.
 458                         * -> interrupt number two handles the event.
 459                         */
 460                        ch->flags |= FLAG_SKIPEVENT;
 461                        break;
 462                }
 463
 464                if (has_wrapped) {
 465                        /* we are changing to a smaller match value,
 466                         * so the wrap must be caused by the counter
 467                         * matching the new value.
 468                         * -> save programmed match value.
 469                         * -> let isr handle the event.
 470                         */
 471                        ch->match_value = new_match;
 472                        break;
 473                }
 474
 475                /* be safe: verify hardware settings */
 476                if (now < new_match) {
 477                        /* timer value is below match value, all good.
 478                         * this makes sure we won't miss any match events.
 479                         * -> save programmed match value.
 480                         * -> let isr handle the event.
 481                         */
 482                        ch->match_value = new_match;
 483                        break;
 484                }
 485
 486                /* the counter has reached a value greater
 487                 * than our new match value. and since the
 488                 * has_wrapped flag isn't set we must have
 489                 * programmed a too close event.
 490                 * -> increase delay and retry.
 491                 */
 492                if (delay)
 493                        delay <<= 1;
 494                else
 495                        delay = 1;
 496
 497                if (!delay)
 498                        dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 499                                 ch->index);
 500
 501        } while (delay);
 502}
 503
 504static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 505{
 506        if (delta > ch->max_match_value)
 507                dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 508                         ch->index);
 509
 510        ch->next_match_value = delta;
 511        sh_cmt_clock_event_program_verify(ch, 0);
 512}
 513
 514static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 515{
 516        unsigned long flags;
 517
 518        raw_spin_lock_irqsave(&ch->lock, flags);
 519        __sh_cmt_set_next(ch, delta);
 520        raw_spin_unlock_irqrestore(&ch->lock, flags);
 521}
 522
 523static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 524{
 525        struct sh_cmt_channel *ch = dev_id;
 526
 527        /* clear flags */
 528        sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 529                           ch->cmt->info->clear_bits);
 530
 531        /* update clock source counter to begin with if enabled
 532         * the wrap flag should be cleared by the timer specific
 533         * isr before we end up here.
 534         */
 535        if (ch->flags & FLAG_CLOCKSOURCE)
 536                ch->total_cycles += ch->match_value + 1;
 537
 538        if (!(ch->flags & FLAG_REPROGRAM))
 539                ch->next_match_value = ch->max_match_value;
 540
 541        ch->flags |= FLAG_IRQCONTEXT;
 542
 543        if (ch->flags & FLAG_CLOCKEVENT) {
 544                if (!(ch->flags & FLAG_SKIPEVENT)) {
 545                        if (clockevent_state_oneshot(&ch->ced)) {
 546                                ch->next_match_value = ch->max_match_value;
 547                                ch->flags |= FLAG_REPROGRAM;
 548                        }
 549
 550                        ch->ced.event_handler(&ch->ced);
 551                }
 552        }
 553
 554        ch->flags &= ~FLAG_SKIPEVENT;
 555
 556        if (ch->flags & FLAG_REPROGRAM) {
 557                ch->flags &= ~FLAG_REPROGRAM;
 558                sh_cmt_clock_event_program_verify(ch, 1);
 559
 560                if (ch->flags & FLAG_CLOCKEVENT)
 561                        if ((clockevent_state_shutdown(&ch->ced))
 562                            || (ch->match_value == ch->next_match_value))
 563                                ch->flags &= ~FLAG_REPROGRAM;
 564        }
 565
 566        ch->flags &= ~FLAG_IRQCONTEXT;
 567
 568        return IRQ_HANDLED;
 569}
 570
 571static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 572{
 573        int ret = 0;
 574        unsigned long flags;
 575
 576        raw_spin_lock_irqsave(&ch->lock, flags);
 577
 578        if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 579                ret = sh_cmt_enable(ch);
 580
 581        if (ret)
 582                goto out;
 583        ch->flags |= flag;
 584
 585        /* setup timeout if no clockevent */
 586        if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
 587                __sh_cmt_set_next(ch, ch->max_match_value);
 588 out:
 589        raw_spin_unlock_irqrestore(&ch->lock, flags);
 590
 591        return ret;
 592}
 593
 594static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 595{
 596        unsigned long flags;
 597        unsigned long f;
 598
 599        raw_spin_lock_irqsave(&ch->lock, flags);
 600
 601        f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 602        ch->flags &= ~flag;
 603
 604        if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 605                sh_cmt_disable(ch);
 606
 607        /* adjust the timeout to maximum if only clocksource left */
 608        if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 609                __sh_cmt_set_next(ch, ch->max_match_value);
 610
 611        raw_spin_unlock_irqrestore(&ch->lock, flags);
 612}
 613
 614static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 615{
 616        return container_of(cs, struct sh_cmt_channel, cs);
 617}
 618
 619static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 620{
 621        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 622        unsigned long flags, raw;
 623        unsigned long value;
 624        int has_wrapped;
 625
 626        raw_spin_lock_irqsave(&ch->lock, flags);
 627        value = ch->total_cycles;
 628        raw = sh_cmt_get_counter(ch, &has_wrapped);
 629
 630        if (unlikely(has_wrapped))
 631                raw += ch->match_value + 1;
 632        raw_spin_unlock_irqrestore(&ch->lock, flags);
 633
 634        return value + raw;
 635}
 636
 637static int sh_cmt_clocksource_enable(struct clocksource *cs)
 638{
 639        int ret;
 640        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 641
 642        WARN_ON(ch->cs_enabled);
 643
 644        ch->total_cycles = 0;
 645
 646        ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 647        if (!ret)
 648                ch->cs_enabled = true;
 649
 650        return ret;
 651}
 652
 653static void sh_cmt_clocksource_disable(struct clocksource *cs)
 654{
 655        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 656
 657        WARN_ON(!ch->cs_enabled);
 658
 659        sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 660        ch->cs_enabled = false;
 661}
 662
 663static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 664{
 665        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 666
 667        if (!ch->cs_enabled)
 668                return;
 669
 670        sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 671        pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 672}
 673
 674static void sh_cmt_clocksource_resume(struct clocksource *cs)
 675{
 676        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 677
 678        if (!ch->cs_enabled)
 679                return;
 680
 681        pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 682        sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 683}
 684
 685static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 686                                       const char *name)
 687{
 688        struct clocksource *cs = &ch->cs;
 689
 690        cs->name = name;
 691        cs->rating = 125;
 692        cs->read = sh_cmt_clocksource_read;
 693        cs->enable = sh_cmt_clocksource_enable;
 694        cs->disable = sh_cmt_clocksource_disable;
 695        cs->suspend = sh_cmt_clocksource_suspend;
 696        cs->resume = sh_cmt_clocksource_resume;
 697        cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
 698        cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 699
 700        dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 701                 ch->index);
 702
 703        clocksource_register_hz(cs, ch->cmt->rate);
 704        return 0;
 705}
 706
 707static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 708{
 709        return container_of(ced, struct sh_cmt_channel, ced);
 710}
 711
 712static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 713{
 714        sh_cmt_start(ch, FLAG_CLOCKEVENT);
 715
 716        if (periodic)
 717                sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 718        else
 719                sh_cmt_set_next(ch, ch->max_match_value);
 720}
 721
 722static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 723{
 724        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 725
 726        sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 727        return 0;
 728}
 729
 730static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 731                                        int periodic)
 732{
 733        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 734
 735        /* deal with old setting first */
 736        if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 737                sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 738
 739        dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 740                 ch->index, periodic ? "periodic" : "oneshot");
 741        sh_cmt_clock_event_start(ch, periodic);
 742        return 0;
 743}
 744
 745static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 746{
 747        return sh_cmt_clock_event_set_state(ced, 0);
 748}
 749
 750static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 751{
 752        return sh_cmt_clock_event_set_state(ced, 1);
 753}
 754
 755static int sh_cmt_clock_event_next(unsigned long delta,
 756                                   struct clock_event_device *ced)
 757{
 758        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 759
 760        BUG_ON(!clockevent_state_oneshot(ced));
 761        if (likely(ch->flags & FLAG_IRQCONTEXT))
 762                ch->next_match_value = delta - 1;
 763        else
 764                sh_cmt_set_next(ch, delta - 1);
 765
 766        return 0;
 767}
 768
 769static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 770{
 771        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 772
 773        pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 774        clk_unprepare(ch->cmt->clk);
 775}
 776
 777static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 778{
 779        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 780
 781        clk_prepare(ch->cmt->clk);
 782        pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 783}
 784
 785static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 786                                      const char *name)
 787{
 788        struct clock_event_device *ced = &ch->ced;
 789        int irq;
 790        int ret;
 791
 792        irq = platform_get_irq(ch->cmt->pdev, ch->index);
 793        if (irq < 0) {
 794                dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
 795                        ch->index);
 796                return irq;
 797        }
 798
 799        ret = request_irq(irq, sh_cmt_interrupt,
 800                          IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 801                          dev_name(&ch->cmt->pdev->dev), ch);
 802        if (ret) {
 803                dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 804                        ch->index, irq);
 805                return ret;
 806        }
 807
 808        ced->name = name;
 809        ced->features = CLOCK_EVT_FEAT_PERIODIC;
 810        ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 811        ced->rating = 125;
 812        ced->cpumask = cpu_possible_mask;
 813        ced->set_next_event = sh_cmt_clock_event_next;
 814        ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 815        ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 816        ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 817        ced->suspend = sh_cmt_clock_event_suspend;
 818        ced->resume = sh_cmt_clock_event_resume;
 819
 820        /* TODO: calculate good shift from rate and counter bit width */
 821        ced->shift = 32;
 822        ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 823        ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 824        ced->max_delta_ticks = ch->max_match_value;
 825        ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 826        ced->min_delta_ticks = 0x1f;
 827
 828        dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 829                 ch->index);
 830        clockevents_register_device(ced);
 831
 832        return 0;
 833}
 834
 835static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 836                           bool clockevent, bool clocksource)
 837{
 838        int ret;
 839
 840        if (clockevent) {
 841                ch->cmt->has_clockevent = true;
 842                ret = sh_cmt_register_clockevent(ch, name);
 843                if (ret < 0)
 844                        return ret;
 845        }
 846
 847        if (clocksource) {
 848                ch->cmt->has_clocksource = true;
 849                sh_cmt_register_clocksource(ch, name);
 850        }
 851
 852        return 0;
 853}
 854
 855static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 856                                unsigned int hwidx, bool clockevent,
 857                                bool clocksource, struct sh_cmt_device *cmt)
 858{
 859        int ret;
 860
 861        /* Skip unused channels. */
 862        if (!clockevent && !clocksource)
 863                return 0;
 864
 865        ch->cmt = cmt;
 866        ch->index = index;
 867        ch->hwidx = hwidx;
 868        ch->timer_bit = hwidx;
 869
 870        /*
 871         * Compute the address of the channel control register block. For the
 872         * timers with a per-channel start/stop register, compute its address
 873         * as well.
 874         */
 875        switch (cmt->info->model) {
 876        case SH_CMT_16BIT:
 877                ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 878                break;
 879        case SH_CMT_32BIT:
 880        case SH_CMT_48BIT:
 881                ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 882                break;
 883        case SH_CMT0_RCAR_GEN2:
 884        case SH_CMT1_RCAR_GEN2:
 885                ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 886                ch->ioctrl = ch->iostart + 0x10;
 887                ch->timer_bit = 0;
 888                break;
 889        }
 890
 891        if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 892                ch->max_match_value = ~0;
 893        else
 894                ch->max_match_value = (1 << cmt->info->width) - 1;
 895
 896        ch->match_value = ch->max_match_value;
 897        raw_spin_lock_init(&ch->lock);
 898
 899        ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 900                              clockevent, clocksource);
 901        if (ret) {
 902                dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 903                        ch->index);
 904                return ret;
 905        }
 906        ch->cs_enabled = false;
 907
 908        return 0;
 909}
 910
 911static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 912{
 913        struct resource *mem;
 914
 915        mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 916        if (!mem) {
 917                dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 918                return -ENXIO;
 919        }
 920
 921        cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
 922        if (cmt->mapbase == NULL) {
 923                dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 924                return -ENXIO;
 925        }
 926
 927        return 0;
 928}
 929
 930static const struct platform_device_id sh_cmt_id_table[] = {
 931        { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 932        { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 933        { }
 934};
 935MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 936
 937static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 938        { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
 939        {
 940                /* deprecated, preserved for backward compatibility */
 941                .compatible = "renesas,cmt-48-gen2",
 942                .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 943        },
 944        { .compatible = "renesas,rcar-gen2-cmt0", .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2] },
 945        { .compatible = "renesas,rcar-gen2-cmt1", .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2] },
 946        { }
 947};
 948MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
 949
 950static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
 951{
 952        unsigned int mask;
 953        unsigned int i;
 954        int ret;
 955
 956        cmt->pdev = pdev;
 957        raw_spin_lock_init(&cmt->lock);
 958
 959        if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 960                cmt->info = of_device_get_match_data(&pdev->dev);
 961                cmt->hw_channels = cmt->info->channels_mask;
 962        } else if (pdev->dev.platform_data) {
 963                struct sh_timer_config *cfg = pdev->dev.platform_data;
 964                const struct platform_device_id *id = pdev->id_entry;
 965
 966                cmt->info = (const struct sh_cmt_info *)id->driver_data;
 967                cmt->hw_channels = cfg->channels_mask;
 968        } else {
 969                dev_err(&cmt->pdev->dev, "missing platform data\n");
 970                return -ENXIO;
 971        }
 972
 973        /* Get hold of clock. */
 974        cmt->clk = clk_get(&cmt->pdev->dev, "fck");
 975        if (IS_ERR(cmt->clk)) {
 976                dev_err(&cmt->pdev->dev, "cannot get clock\n");
 977                return PTR_ERR(cmt->clk);
 978        }
 979
 980        ret = clk_prepare(cmt->clk);
 981        if (ret < 0)
 982                goto err_clk_put;
 983
 984        /* Determine clock rate. */
 985        ret = clk_enable(cmt->clk);
 986        if (ret < 0)
 987                goto err_clk_unprepare;
 988
 989        if (cmt->info->width == 16)
 990                cmt->rate = clk_get_rate(cmt->clk) / 512;
 991        else
 992                cmt->rate = clk_get_rate(cmt->clk) / 8;
 993
 994        clk_disable(cmt->clk);
 995
 996        /* Map the memory resource(s). */
 997        ret = sh_cmt_map_memory(cmt);
 998        if (ret < 0)
 999                goto err_clk_unprepare;
1000
1001        /* Allocate and setup the channels. */
1002        cmt->num_channels = hweight8(cmt->hw_channels);
1003        cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1004                                GFP_KERNEL);
1005        if (cmt->channels == NULL) {
1006                ret = -ENOMEM;
1007                goto err_unmap;
1008        }
1009
1010        /*
1011         * Use the first channel as a clock event device and the second channel
1012         * as a clock source. If only one channel is available use it for both.
1013         */
1014        for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1015                unsigned int hwidx = ffs(mask) - 1;
1016                bool clocksource = i == 1 || cmt->num_channels == 1;
1017                bool clockevent = i == 0;
1018
1019                ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1020                                           clockevent, clocksource, cmt);
1021                if (ret < 0)
1022                        goto err_unmap;
1023
1024                mask &= ~(1 << hwidx);
1025        }
1026
1027        platform_set_drvdata(pdev, cmt);
1028
1029        return 0;
1030
1031err_unmap:
1032        kfree(cmt->channels);
1033        iounmap(cmt->mapbase);
1034err_clk_unprepare:
1035        clk_unprepare(cmt->clk);
1036err_clk_put:
1037        clk_put(cmt->clk);
1038        return ret;
1039}
1040
1041static int sh_cmt_probe(struct platform_device *pdev)
1042{
1043        struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1044        int ret;
1045
1046        if (!is_early_platform_device(pdev)) {
1047                pm_runtime_set_active(&pdev->dev);
1048                pm_runtime_enable(&pdev->dev);
1049        }
1050
1051        if (cmt) {
1052                dev_info(&pdev->dev, "kept as earlytimer\n");
1053                goto out;
1054        }
1055
1056        cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1057        if (cmt == NULL)
1058                return -ENOMEM;
1059
1060        ret = sh_cmt_setup(cmt, pdev);
1061        if (ret) {
1062                kfree(cmt);
1063                pm_runtime_idle(&pdev->dev);
1064                return ret;
1065        }
1066        if (is_early_platform_device(pdev))
1067                return 0;
1068
1069 out:
1070        if (cmt->has_clockevent || cmt->has_clocksource)
1071                pm_runtime_irq_safe(&pdev->dev);
1072        else
1073                pm_runtime_idle(&pdev->dev);
1074
1075        return 0;
1076}
1077
1078static int sh_cmt_remove(struct platform_device *pdev)
1079{
1080        return -EBUSY; /* cannot unregister clockevent and clocksource */
1081}
1082
1083static struct platform_driver sh_cmt_device_driver = {
1084        .probe          = sh_cmt_probe,
1085        .remove         = sh_cmt_remove,
1086        .driver         = {
1087                .name   = "sh_cmt",
1088                .of_match_table = of_match_ptr(sh_cmt_of_table),
1089        },
1090        .id_table       = sh_cmt_id_table,
1091};
1092
1093static int __init sh_cmt_init(void)
1094{
1095        return platform_driver_register(&sh_cmt_device_driver);
1096}
1097
1098static void __exit sh_cmt_exit(void)
1099{
1100        platform_driver_unregister(&sh_cmt_device_driver);
1101}
1102
1103early_platform_init("earlytimer", &sh_cmt_device_driver);
1104subsys_initcall(sh_cmt_init);
1105module_exit(sh_cmt_exit);
1106
1107MODULE_AUTHOR("Magnus Damm");
1108MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1109MODULE_LICENSE("GPL v2");
1110