linux/drivers/cpufreq/ia64-acpi-cpufreq.c
<<
>>
Prefs
   1/*
   2 * This file provides the ACPI based P-state support. This
   3 * module works with generic cpufreq infrastructure. Most of
   4 * the code is based on i386 version
   5 * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c)
   6 *
   7 * Copyright (C) 2005 Intel Corp
   8 *      Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/cpufreq.h>
  18#include <linux/proc_fs.h>
  19#include <linux/seq_file.h>
  20#include <asm/io.h>
  21#include <linux/uaccess.h>
  22#include <asm/pal.h>
  23
  24#include <linux/acpi.h>
  25#include <acpi/processor.h>
  26
  27MODULE_AUTHOR("Venkatesh Pallipadi");
  28MODULE_DESCRIPTION("ACPI Processor P-States Driver");
  29MODULE_LICENSE("GPL");
  30
  31
  32struct cpufreq_acpi_io {
  33        struct acpi_processor_performance       acpi_data;
  34        unsigned int                            resume;
  35};
  36
  37struct cpufreq_acpi_req {
  38        unsigned int            cpu;
  39        unsigned int            state;
  40};
  41
  42static struct cpufreq_acpi_io   *acpi_io_data[NR_CPUS];
  43
  44static struct cpufreq_driver acpi_cpufreq_driver;
  45
  46
  47static int
  48processor_set_pstate (
  49        u32     value)
  50{
  51        s64 retval;
  52
  53        pr_debug("processor_set_pstate\n");
  54
  55        retval = ia64_pal_set_pstate((u64)value);
  56
  57        if (retval) {
  58                pr_debug("Failed to set freq to 0x%x, with error 0x%lx\n",
  59                        value, retval);
  60                return -ENODEV;
  61        }
  62        return (int)retval;
  63}
  64
  65
  66static int
  67processor_get_pstate (
  68        u32     *value)
  69{
  70        u64     pstate_index = 0;
  71        s64     retval;
  72
  73        pr_debug("processor_get_pstate\n");
  74
  75        retval = ia64_pal_get_pstate(&pstate_index,
  76                                     PAL_GET_PSTATE_TYPE_INSTANT);
  77        *value = (u32) pstate_index;
  78
  79        if (retval)
  80                pr_debug("Failed to get current freq with "
  81                        "error 0x%lx, idx 0x%x\n", retval, *value);
  82
  83        return (int)retval;
  84}
  85
  86
  87/* To be used only after data->acpi_data is initialized */
  88static unsigned
  89extract_clock (
  90        struct cpufreq_acpi_io *data,
  91        unsigned value)
  92{
  93        unsigned long i;
  94
  95        pr_debug("extract_clock\n");
  96
  97        for (i = 0; i < data->acpi_data.state_count; i++) {
  98                if (value == data->acpi_data.states[i].status)
  99                        return data->acpi_data.states[i].core_frequency;
 100        }
 101        return data->acpi_data.states[i-1].core_frequency;
 102}
 103
 104
 105static long
 106processor_get_freq (
 107        void *arg)
 108{
 109        struct cpufreq_acpi_req *req = arg;
 110        unsigned int            cpu = req->cpu;
 111        struct cpufreq_acpi_io  *data = acpi_io_data[cpu];
 112        u32                     value;
 113        int                     ret;
 114
 115        pr_debug("processor_get_freq\n");
 116        if (smp_processor_id() != cpu)
 117                return -EAGAIN;
 118
 119        /* processor_get_pstate gets the instantaneous frequency */
 120        ret = processor_get_pstate(&value);
 121        if (ret) {
 122                pr_warn("get performance failed with error %d\n", ret);
 123                return ret;
 124        }
 125        return 1000 * extract_clock(data, value);
 126}
 127
 128
 129static long
 130processor_set_freq (
 131        void *arg)
 132{
 133        struct cpufreq_acpi_req *req = arg;
 134        unsigned int            cpu = req->cpu;
 135        struct cpufreq_acpi_io  *data = acpi_io_data[cpu];
 136        int                     ret, state = req->state;
 137        u32                     value;
 138
 139        pr_debug("processor_set_freq\n");
 140        if (smp_processor_id() != cpu)
 141                return -EAGAIN;
 142
 143        if (state == data->acpi_data.state) {
 144                if (unlikely(data->resume)) {
 145                        pr_debug("Called after resume, resetting to P%d\n", state);
 146                        data->resume = 0;
 147                } else {
 148                        pr_debug("Already at target state (P%d)\n", state);
 149                        return 0;
 150                }
 151        }
 152
 153        pr_debug("Transitioning from P%d to P%d\n",
 154                data->acpi_data.state, state);
 155
 156        /*
 157         * First we write the target state's 'control' value to the
 158         * control_register.
 159         */
 160        value = (u32) data->acpi_data.states[state].control;
 161
 162        pr_debug("Transitioning to state: 0x%08x\n", value);
 163
 164        ret = processor_set_pstate(value);
 165        if (ret) {
 166                pr_warn("Transition failed with error %d\n", ret);
 167                return -ENODEV;
 168        }
 169
 170        data->acpi_data.state = state;
 171        return 0;
 172}
 173
 174
 175static unsigned int
 176acpi_cpufreq_get (
 177        unsigned int            cpu)
 178{
 179        struct cpufreq_acpi_req req;
 180        long ret;
 181
 182        req.cpu = cpu;
 183        ret = work_on_cpu(cpu, processor_get_freq, &req);
 184
 185        return ret > 0 ? (unsigned int) ret : 0;
 186}
 187
 188
 189static int
 190acpi_cpufreq_target (
 191        struct cpufreq_policy   *policy,
 192        unsigned int index)
 193{
 194        struct cpufreq_acpi_req req;
 195
 196        req.cpu = policy->cpu;
 197        req.state = index;
 198
 199        return work_on_cpu(req.cpu, processor_set_freq, &req);
 200}
 201
 202static int
 203acpi_cpufreq_cpu_init (
 204        struct cpufreq_policy   *policy)
 205{
 206        unsigned int            i;
 207        unsigned int            cpu = policy->cpu;
 208        struct cpufreq_acpi_io  *data;
 209        unsigned int            result = 0;
 210        struct cpufreq_frequency_table *freq_table;
 211
 212        pr_debug("acpi_cpufreq_cpu_init\n");
 213
 214        data = kzalloc(sizeof(*data), GFP_KERNEL);
 215        if (!data)
 216                return (-ENOMEM);
 217
 218        acpi_io_data[cpu] = data;
 219
 220        result = acpi_processor_register_performance(&data->acpi_data, cpu);
 221
 222        if (result)
 223                goto err_free;
 224
 225        /* capability check */
 226        if (data->acpi_data.state_count <= 1) {
 227                pr_debug("No P-States\n");
 228                result = -ENODEV;
 229                goto err_unreg;
 230        }
 231
 232        if ((data->acpi_data.control_register.space_id !=
 233                                        ACPI_ADR_SPACE_FIXED_HARDWARE) ||
 234            (data->acpi_data.status_register.space_id !=
 235                                        ACPI_ADR_SPACE_FIXED_HARDWARE)) {
 236                pr_debug("Unsupported address space [%d, %d]\n",
 237                        (u32) (data->acpi_data.control_register.space_id),
 238                        (u32) (data->acpi_data.status_register.space_id));
 239                result = -ENODEV;
 240                goto err_unreg;
 241        }
 242
 243        /* alloc freq_table */
 244        freq_table = kcalloc(data->acpi_data.state_count + 1,
 245                                   sizeof(*freq_table),
 246                                   GFP_KERNEL);
 247        if (!freq_table) {
 248                result = -ENOMEM;
 249                goto err_unreg;
 250        }
 251
 252        /* detect transition latency */
 253        policy->cpuinfo.transition_latency = 0;
 254        for (i=0; i<data->acpi_data.state_count; i++) {
 255                if ((data->acpi_data.states[i].transition_latency * 1000) >
 256                    policy->cpuinfo.transition_latency) {
 257                        policy->cpuinfo.transition_latency =
 258                            data->acpi_data.states[i].transition_latency * 1000;
 259                }
 260        }
 261
 262        /* table init */
 263        for (i = 0; i <= data->acpi_data.state_count; i++)
 264        {
 265                if (i < data->acpi_data.state_count) {
 266                        freq_table[i].frequency =
 267                              data->acpi_data.states[i].core_frequency * 1000;
 268                } else {
 269                        freq_table[i].frequency = CPUFREQ_TABLE_END;
 270                }
 271        }
 272
 273        policy->freq_table = freq_table;
 274
 275        /* notify BIOS that we exist */
 276        acpi_processor_notify_smm(THIS_MODULE);
 277
 278        pr_info("CPU%u - ACPI performance management activated\n", cpu);
 279
 280        for (i = 0; i < data->acpi_data.state_count; i++)
 281                pr_debug("     %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
 282                        (i == data->acpi_data.state?'*':' '), i,
 283                        (u32) data->acpi_data.states[i].core_frequency,
 284                        (u32) data->acpi_data.states[i].power,
 285                        (u32) data->acpi_data.states[i].transition_latency,
 286                        (u32) data->acpi_data.states[i].bus_master_latency,
 287                        (u32) data->acpi_data.states[i].status,
 288                        (u32) data->acpi_data.states[i].control);
 289
 290        /* the first call to ->target() should result in us actually
 291         * writing something to the appropriate registers. */
 292        data->resume = 1;
 293
 294        return (result);
 295
 296 err_unreg:
 297        acpi_processor_unregister_performance(cpu);
 298 err_free:
 299        kfree(data);
 300        acpi_io_data[cpu] = NULL;
 301
 302        return (result);
 303}
 304
 305
 306static int
 307acpi_cpufreq_cpu_exit (
 308        struct cpufreq_policy   *policy)
 309{
 310        struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
 311
 312        pr_debug("acpi_cpufreq_cpu_exit\n");
 313
 314        if (data) {
 315                acpi_io_data[policy->cpu] = NULL;
 316                acpi_processor_unregister_performance(policy->cpu);
 317                kfree(policy->freq_table);
 318                kfree(data);
 319        }
 320
 321        return (0);
 322}
 323
 324
 325static struct cpufreq_driver acpi_cpufreq_driver = {
 326        .verify         = cpufreq_generic_frequency_table_verify,
 327        .target_index   = acpi_cpufreq_target,
 328        .get            = acpi_cpufreq_get,
 329        .init           = acpi_cpufreq_cpu_init,
 330        .exit           = acpi_cpufreq_cpu_exit,
 331        .name           = "acpi-cpufreq",
 332        .attr           = cpufreq_generic_attr,
 333};
 334
 335
 336static int __init
 337acpi_cpufreq_init (void)
 338{
 339        pr_debug("acpi_cpufreq_init\n");
 340
 341        return cpufreq_register_driver(&acpi_cpufreq_driver);
 342}
 343
 344
 345static void __exit
 346acpi_cpufreq_exit (void)
 347{
 348        pr_debug("acpi_cpufreq_exit\n");
 349
 350        cpufreq_unregister_driver(&acpi_cpufreq_driver);
 351        return;
 352}
 353
 354
 355late_initcall(acpi_cpufreq_init);
 356module_exit(acpi_cpufreq_exit);
 357
 358