linux/drivers/iommu/amd_iommu.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
   3 * Author: Joerg Roedel <jroedel@suse.de>
   4 *         Leo Duran <leo.duran@amd.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  18 */
  19
  20#include <linux/ratelimit.h>
  21#include <linux/pci.h>
  22#include <linux/acpi.h>
  23#include <linux/amba/bus.h>
  24#include <linux/platform_device.h>
  25#include <linux/pci-ats.h>
  26#include <linux/bitmap.h>
  27#include <linux/slab.h>
  28#include <linux/debugfs.h>
  29#include <linux/scatterlist.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/dma-direct.h>
  32#include <linux/iommu-helper.h>
  33#include <linux/iommu.h>
  34#include <linux/delay.h>
  35#include <linux/amd-iommu.h>
  36#include <linux/notifier.h>
  37#include <linux/export.h>
  38#include <linux/irq.h>
  39#include <linux/msi.h>
  40#include <linux/dma-contiguous.h>
  41#include <linux/irqdomain.h>
  42#include <linux/percpu.h>
  43#include <linux/iova.h>
  44#include <asm/irq_remapping.h>
  45#include <asm/io_apic.h>
  46#include <asm/apic.h>
  47#include <asm/hw_irq.h>
  48#include <asm/msidef.h>
  49#include <asm/proto.h>
  50#include <asm/iommu.h>
  51#include <asm/gart.h>
  52#include <asm/dma.h>
  53
  54#include "amd_iommu_proto.h"
  55#include "amd_iommu_types.h"
  56#include "irq_remapping.h"
  57
  58#define AMD_IOMMU_MAPPING_ERROR 0
  59
  60#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  61
  62#define LOOP_TIMEOUT    100000
  63
  64/* IO virtual address start page frame number */
  65#define IOVA_START_PFN          (1)
  66#define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
  67
  68/* Reserved IOVA ranges */
  69#define MSI_RANGE_START         (0xfee00000)
  70#define MSI_RANGE_END           (0xfeefffff)
  71#define HT_RANGE_START          (0xfd00000000ULL)
  72#define HT_RANGE_END            (0xffffffffffULL)
  73
  74/*
  75 * This bitmap is used to advertise the page sizes our hardware support
  76 * to the IOMMU core, which will then use this information to split
  77 * physically contiguous memory regions it is mapping into page sizes
  78 * that we support.
  79 *
  80 * 512GB Pages are not supported due to a hardware bug
  81 */
  82#define AMD_IOMMU_PGSIZES       ((~0xFFFUL) & ~(2ULL << 38))
  83
  84static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
  85static DEFINE_SPINLOCK(pd_bitmap_lock);
  86
  87/* List of all available dev_data structures */
  88static LLIST_HEAD(dev_data_list);
  89
  90LIST_HEAD(ioapic_map);
  91LIST_HEAD(hpet_map);
  92LIST_HEAD(acpihid_map);
  93
  94/*
  95 * Domain for untranslated devices - only allocated
  96 * if iommu=pt passed on kernel cmd line.
  97 */
  98const struct iommu_ops amd_iommu_ops;
  99
 100static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
 101int amd_iommu_max_glx_val = -1;
 102
 103static const struct dma_map_ops amd_iommu_dma_ops;
 104
 105/*
 106 * general struct to manage commands send to an IOMMU
 107 */
 108struct iommu_cmd {
 109        u32 data[4];
 110};
 111
 112struct kmem_cache *amd_iommu_irq_cache;
 113
 114static void update_domain(struct protection_domain *domain);
 115static int protection_domain_init(struct protection_domain *domain);
 116static void detach_device(struct device *dev);
 117static void iova_domain_flush_tlb(struct iova_domain *iovad);
 118
 119/*
 120 * Data container for a dma_ops specific protection domain
 121 */
 122struct dma_ops_domain {
 123        /* generic protection domain information */
 124        struct protection_domain domain;
 125
 126        /* IOVA RB-Tree */
 127        struct iova_domain iovad;
 128};
 129
 130static struct iova_domain reserved_iova_ranges;
 131static struct lock_class_key reserved_rbtree_key;
 132
 133/****************************************************************************
 134 *
 135 * Helper functions
 136 *
 137 ****************************************************************************/
 138
 139static inline int match_hid_uid(struct device *dev,
 140                                struct acpihid_map_entry *entry)
 141{
 142        const char *hid, *uid;
 143
 144        hid = acpi_device_hid(ACPI_COMPANION(dev));
 145        uid = acpi_device_uid(ACPI_COMPANION(dev));
 146
 147        if (!hid || !(*hid))
 148                return -ENODEV;
 149
 150        if (!uid || !(*uid))
 151                return strcmp(hid, entry->hid);
 152
 153        if (!(*entry->uid))
 154                return strcmp(hid, entry->hid);
 155
 156        return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
 157}
 158
 159static inline u16 get_pci_device_id(struct device *dev)
 160{
 161        struct pci_dev *pdev = to_pci_dev(dev);
 162
 163        return PCI_DEVID(pdev->bus->number, pdev->devfn);
 164}
 165
 166static inline int get_acpihid_device_id(struct device *dev,
 167                                        struct acpihid_map_entry **entry)
 168{
 169        struct acpihid_map_entry *p;
 170
 171        list_for_each_entry(p, &acpihid_map, list) {
 172                if (!match_hid_uid(dev, p)) {
 173                        if (entry)
 174                                *entry = p;
 175                        return p->devid;
 176                }
 177        }
 178        return -EINVAL;
 179}
 180
 181static inline int get_device_id(struct device *dev)
 182{
 183        int devid;
 184
 185        if (dev_is_pci(dev))
 186                devid = get_pci_device_id(dev);
 187        else
 188                devid = get_acpihid_device_id(dev, NULL);
 189
 190        return devid;
 191}
 192
 193static struct protection_domain *to_pdomain(struct iommu_domain *dom)
 194{
 195        return container_of(dom, struct protection_domain, domain);
 196}
 197
 198static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
 199{
 200        BUG_ON(domain->flags != PD_DMA_OPS_MASK);
 201        return container_of(domain, struct dma_ops_domain, domain);
 202}
 203
 204static struct iommu_dev_data *alloc_dev_data(u16 devid)
 205{
 206        struct iommu_dev_data *dev_data;
 207
 208        dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
 209        if (!dev_data)
 210                return NULL;
 211
 212        dev_data->devid = devid;
 213        ratelimit_default_init(&dev_data->rs);
 214
 215        llist_add(&dev_data->dev_data_list, &dev_data_list);
 216        return dev_data;
 217}
 218
 219static struct iommu_dev_data *search_dev_data(u16 devid)
 220{
 221        struct iommu_dev_data *dev_data;
 222        struct llist_node *node;
 223
 224        if (llist_empty(&dev_data_list))
 225                return NULL;
 226
 227        node = dev_data_list.first;
 228        llist_for_each_entry(dev_data, node, dev_data_list) {
 229                if (dev_data->devid == devid)
 230                        return dev_data;
 231        }
 232
 233        return NULL;
 234}
 235
 236static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
 237{
 238        *(u16 *)data = alias;
 239        return 0;
 240}
 241
 242static u16 get_alias(struct device *dev)
 243{
 244        struct pci_dev *pdev = to_pci_dev(dev);
 245        u16 devid, ivrs_alias, pci_alias;
 246
 247        /* The callers make sure that get_device_id() does not fail here */
 248        devid = get_device_id(dev);
 249        ivrs_alias = amd_iommu_alias_table[devid];
 250        pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
 251
 252        if (ivrs_alias == pci_alias)
 253                return ivrs_alias;
 254
 255        /*
 256         * DMA alias showdown
 257         *
 258         * The IVRS is fairly reliable in telling us about aliases, but it
 259         * can't know about every screwy device.  If we don't have an IVRS
 260         * reported alias, use the PCI reported alias.  In that case we may
 261         * still need to initialize the rlookup and dev_table entries if the
 262         * alias is to a non-existent device.
 263         */
 264        if (ivrs_alias == devid) {
 265                if (!amd_iommu_rlookup_table[pci_alias]) {
 266                        amd_iommu_rlookup_table[pci_alias] =
 267                                amd_iommu_rlookup_table[devid];
 268                        memcpy(amd_iommu_dev_table[pci_alias].data,
 269                               amd_iommu_dev_table[devid].data,
 270                               sizeof(amd_iommu_dev_table[pci_alias].data));
 271                }
 272
 273                return pci_alias;
 274        }
 275
 276        pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
 277                "for device %s[%04x:%04x], kernel reported alias "
 278                "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
 279                PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
 280                PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
 281                PCI_FUNC(pci_alias));
 282
 283        /*
 284         * If we don't have a PCI DMA alias and the IVRS alias is on the same
 285         * bus, then the IVRS table may know about a quirk that we don't.
 286         */
 287        if (pci_alias == devid &&
 288            PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
 289                pci_add_dma_alias(pdev, ivrs_alias & 0xff);
 290                pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
 291                        PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
 292                        dev_name(dev));
 293        }
 294
 295        return ivrs_alias;
 296}
 297
 298static struct iommu_dev_data *find_dev_data(u16 devid)
 299{
 300        struct iommu_dev_data *dev_data;
 301        struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
 302
 303        dev_data = search_dev_data(devid);
 304
 305        if (dev_data == NULL) {
 306                dev_data = alloc_dev_data(devid);
 307                if (!dev_data)
 308                        return NULL;
 309
 310                if (translation_pre_enabled(iommu))
 311                        dev_data->defer_attach = true;
 312        }
 313
 314        return dev_data;
 315}
 316
 317struct iommu_dev_data *get_dev_data(struct device *dev)
 318{
 319        return dev->archdata.iommu;
 320}
 321EXPORT_SYMBOL(get_dev_data);
 322
 323/*
 324* Find or create an IOMMU group for a acpihid device.
 325*/
 326static struct iommu_group *acpihid_device_group(struct device *dev)
 327{
 328        struct acpihid_map_entry *p, *entry = NULL;
 329        int devid;
 330
 331        devid = get_acpihid_device_id(dev, &entry);
 332        if (devid < 0)
 333                return ERR_PTR(devid);
 334
 335        list_for_each_entry(p, &acpihid_map, list) {
 336                if ((devid == p->devid) && p->group)
 337                        entry->group = p->group;
 338        }
 339
 340        if (!entry->group)
 341                entry->group = generic_device_group(dev);
 342        else
 343                iommu_group_ref_get(entry->group);
 344
 345        return entry->group;
 346}
 347
 348static bool pci_iommuv2_capable(struct pci_dev *pdev)
 349{
 350        static const int caps[] = {
 351                PCI_EXT_CAP_ID_ATS,
 352                PCI_EXT_CAP_ID_PRI,
 353                PCI_EXT_CAP_ID_PASID,
 354        };
 355        int i, pos;
 356
 357        if (pci_ats_disabled())
 358                return false;
 359
 360        for (i = 0; i < 3; ++i) {
 361                pos = pci_find_ext_capability(pdev, caps[i]);
 362                if (pos == 0)
 363                        return false;
 364        }
 365
 366        return true;
 367}
 368
 369static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
 370{
 371        struct iommu_dev_data *dev_data;
 372
 373        dev_data = get_dev_data(&pdev->dev);
 374
 375        return dev_data->errata & (1 << erratum) ? true : false;
 376}
 377
 378/*
 379 * This function checks if the driver got a valid device from the caller to
 380 * avoid dereferencing invalid pointers.
 381 */
 382static bool check_device(struct device *dev)
 383{
 384        int devid;
 385
 386        if (!dev || !dev->dma_mask)
 387                return false;
 388
 389        devid = get_device_id(dev);
 390        if (devid < 0)
 391                return false;
 392
 393        /* Out of our scope? */
 394        if (devid > amd_iommu_last_bdf)
 395                return false;
 396
 397        if (amd_iommu_rlookup_table[devid] == NULL)
 398                return false;
 399
 400        return true;
 401}
 402
 403static void init_iommu_group(struct device *dev)
 404{
 405        struct iommu_group *group;
 406
 407        group = iommu_group_get_for_dev(dev);
 408        if (IS_ERR(group))
 409                return;
 410
 411        iommu_group_put(group);
 412}
 413
 414static int iommu_init_device(struct device *dev)
 415{
 416        struct iommu_dev_data *dev_data;
 417        struct amd_iommu *iommu;
 418        int devid;
 419
 420        if (dev->archdata.iommu)
 421                return 0;
 422
 423        devid = get_device_id(dev);
 424        if (devid < 0)
 425                return devid;
 426
 427        iommu = amd_iommu_rlookup_table[devid];
 428
 429        dev_data = find_dev_data(devid);
 430        if (!dev_data)
 431                return -ENOMEM;
 432
 433        dev_data->alias = get_alias(dev);
 434
 435        if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
 436                struct amd_iommu *iommu;
 437
 438                iommu = amd_iommu_rlookup_table[dev_data->devid];
 439                dev_data->iommu_v2 = iommu->is_iommu_v2;
 440        }
 441
 442        dev->archdata.iommu = dev_data;
 443
 444        iommu_device_link(&iommu->iommu, dev);
 445
 446        return 0;
 447}
 448
 449static void iommu_ignore_device(struct device *dev)
 450{
 451        u16 alias;
 452        int devid;
 453
 454        devid = get_device_id(dev);
 455        if (devid < 0)
 456                return;
 457
 458        alias = get_alias(dev);
 459
 460        memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
 461        memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
 462
 463        amd_iommu_rlookup_table[devid] = NULL;
 464        amd_iommu_rlookup_table[alias] = NULL;
 465}
 466
 467static void iommu_uninit_device(struct device *dev)
 468{
 469        struct iommu_dev_data *dev_data;
 470        struct amd_iommu *iommu;
 471        int devid;
 472
 473        devid = get_device_id(dev);
 474        if (devid < 0)
 475                return;
 476
 477        iommu = amd_iommu_rlookup_table[devid];
 478
 479        dev_data = search_dev_data(devid);
 480        if (!dev_data)
 481                return;
 482
 483        if (dev_data->domain)
 484                detach_device(dev);
 485
 486        iommu_device_unlink(&iommu->iommu, dev);
 487
 488        iommu_group_remove_device(dev);
 489
 490        /* Remove dma-ops */
 491        dev->dma_ops = NULL;
 492
 493        /*
 494         * We keep dev_data around for unplugged devices and reuse it when the
 495         * device is re-plugged - not doing so would introduce a ton of races.
 496         */
 497}
 498
 499/****************************************************************************
 500 *
 501 * Interrupt handling functions
 502 *
 503 ****************************************************************************/
 504
 505static void dump_dte_entry(u16 devid)
 506{
 507        int i;
 508
 509        for (i = 0; i < 4; ++i)
 510                pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
 511                        amd_iommu_dev_table[devid].data[i]);
 512}
 513
 514static void dump_command(unsigned long phys_addr)
 515{
 516        struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
 517        int i;
 518
 519        for (i = 0; i < 4; ++i)
 520                pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
 521}
 522
 523static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
 524                                        u64 address, int flags)
 525{
 526        struct iommu_dev_data *dev_data = NULL;
 527        struct pci_dev *pdev;
 528
 529        pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
 530                                           devid & 0xff);
 531        if (pdev)
 532                dev_data = get_dev_data(&pdev->dev);
 533
 534        if (dev_data && __ratelimit(&dev_data->rs)) {
 535                dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 536                        domain_id, address, flags);
 537        } else if (printk_ratelimit()) {
 538                pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 539                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 540                        domain_id, address, flags);
 541        }
 542
 543        if (pdev)
 544                pci_dev_put(pdev);
 545}
 546
 547static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
 548{
 549        struct device *dev = iommu->iommu.dev;
 550        int type, devid, pasid, flags, tag;
 551        volatile u32 *event = __evt;
 552        int count = 0;
 553        u64 address;
 554
 555retry:
 556        type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
 557        devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
 558        pasid   = PPR_PASID(*(u64 *)&event[0]);
 559        flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
 560        address = (u64)(((u64)event[3]) << 32) | event[2];
 561
 562        if (type == 0) {
 563                /* Did we hit the erratum? */
 564                if (++count == LOOP_TIMEOUT) {
 565                        pr_err("AMD-Vi: No event written to event log\n");
 566                        return;
 567                }
 568                udelay(1);
 569                goto retry;
 570        }
 571
 572        if (type == EVENT_TYPE_IO_FAULT) {
 573                amd_iommu_report_page_fault(devid, pasid, address, flags);
 574                return;
 575        } else {
 576                dev_err(dev, "AMD-Vi: Event logged [");
 577        }
 578
 579        switch (type) {
 580        case EVENT_TYPE_ILL_DEV:
 581                dev_err(dev, "ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
 582                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 583                        pasid, address, flags);
 584                dump_dte_entry(devid);
 585                break;
 586        case EVENT_TYPE_DEV_TAB_ERR:
 587                dev_err(dev, "DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 588                        "address=0x%016llx flags=0x%04x]\n",
 589                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 590                        address, flags);
 591                break;
 592        case EVENT_TYPE_PAGE_TAB_ERR:
 593                dev_err(dev, "PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 594                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 595                        pasid, address, flags);
 596                break;
 597        case EVENT_TYPE_ILL_CMD:
 598                dev_err(dev, "ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
 599                dump_command(address);
 600                break;
 601        case EVENT_TYPE_CMD_HARD_ERR:
 602                dev_err(dev, "COMMAND_HARDWARE_ERROR address=0x%016llx flags=0x%04x]\n",
 603                        address, flags);
 604                break;
 605        case EVENT_TYPE_IOTLB_INV_TO:
 606                dev_err(dev, "IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%016llx]\n",
 607                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 608                        address);
 609                break;
 610        case EVENT_TYPE_INV_DEV_REQ:
 611                dev_err(dev, "INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
 612                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 613                        pasid, address, flags);
 614                break;
 615        case EVENT_TYPE_INV_PPR_REQ:
 616                pasid = ((event[0] >> 16) & 0xFFFF)
 617                        | ((event[1] << 6) & 0xF0000);
 618                tag = event[1] & 0x03FF;
 619                dev_err(dev, "INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
 620                        PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 621                        pasid, address, flags);
 622                break;
 623        default:
 624                dev_err(dev, "UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
 625                        event[0], event[1], event[2], event[3]);
 626        }
 627
 628        memset(__evt, 0, 4 * sizeof(u32));
 629}
 630
 631static void iommu_poll_events(struct amd_iommu *iommu)
 632{
 633        u32 head, tail;
 634
 635        head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 636        tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
 637
 638        while (head != tail) {
 639                iommu_print_event(iommu, iommu->evt_buf + head);
 640                head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
 641        }
 642
 643        writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 644}
 645
 646static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
 647{
 648        struct amd_iommu_fault fault;
 649
 650        if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
 651                pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
 652                return;
 653        }
 654
 655        fault.address   = raw[1];
 656        fault.pasid     = PPR_PASID(raw[0]);
 657        fault.device_id = PPR_DEVID(raw[0]);
 658        fault.tag       = PPR_TAG(raw[0]);
 659        fault.flags     = PPR_FLAGS(raw[0]);
 660
 661        atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
 662}
 663
 664static void iommu_poll_ppr_log(struct amd_iommu *iommu)
 665{
 666        u32 head, tail;
 667
 668        if (iommu->ppr_log == NULL)
 669                return;
 670
 671        head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 672        tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 673
 674        while (head != tail) {
 675                volatile u64 *raw;
 676                u64 entry[2];
 677                int i;
 678
 679                raw = (u64 *)(iommu->ppr_log + head);
 680
 681                /*
 682                 * Hardware bug: Interrupt may arrive before the entry is
 683                 * written to memory. If this happens we need to wait for the
 684                 * entry to arrive.
 685                 */
 686                for (i = 0; i < LOOP_TIMEOUT; ++i) {
 687                        if (PPR_REQ_TYPE(raw[0]) != 0)
 688                                break;
 689                        udelay(1);
 690                }
 691
 692                /* Avoid memcpy function-call overhead */
 693                entry[0] = raw[0];
 694                entry[1] = raw[1];
 695
 696                /*
 697                 * To detect the hardware bug we need to clear the entry
 698                 * back to zero.
 699                 */
 700                raw[0] = raw[1] = 0UL;
 701
 702                /* Update head pointer of hardware ring-buffer */
 703                head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
 704                writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 705
 706                /* Handle PPR entry */
 707                iommu_handle_ppr_entry(iommu, entry);
 708
 709                /* Refresh ring-buffer information */
 710                head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 711                tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 712        }
 713}
 714
 715#ifdef CONFIG_IRQ_REMAP
 716static int (*iommu_ga_log_notifier)(u32);
 717
 718int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
 719{
 720        iommu_ga_log_notifier = notifier;
 721
 722        return 0;
 723}
 724EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
 725
 726static void iommu_poll_ga_log(struct amd_iommu *iommu)
 727{
 728        u32 head, tail, cnt = 0;
 729
 730        if (iommu->ga_log == NULL)
 731                return;
 732
 733        head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
 734        tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
 735
 736        while (head != tail) {
 737                volatile u64 *raw;
 738                u64 log_entry;
 739
 740                raw = (u64 *)(iommu->ga_log + head);
 741                cnt++;
 742
 743                /* Avoid memcpy function-call overhead */
 744                log_entry = *raw;
 745
 746                /* Update head pointer of hardware ring-buffer */
 747                head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
 748                writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
 749
 750                /* Handle GA entry */
 751                switch (GA_REQ_TYPE(log_entry)) {
 752                case GA_GUEST_NR:
 753                        if (!iommu_ga_log_notifier)
 754                                break;
 755
 756                        pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
 757                                 __func__, GA_DEVID(log_entry),
 758                                 GA_TAG(log_entry));
 759
 760                        if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
 761                                pr_err("AMD-Vi: GA log notifier failed.\n");
 762                        break;
 763                default:
 764                        break;
 765                }
 766        }
 767}
 768#endif /* CONFIG_IRQ_REMAP */
 769
 770#define AMD_IOMMU_INT_MASK      \
 771        (MMIO_STATUS_EVT_INT_MASK | \
 772         MMIO_STATUS_PPR_INT_MASK | \
 773         MMIO_STATUS_GALOG_INT_MASK)
 774
 775irqreturn_t amd_iommu_int_thread(int irq, void *data)
 776{
 777        struct amd_iommu *iommu = (struct amd_iommu *) data;
 778        u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 779
 780        while (status & AMD_IOMMU_INT_MASK) {
 781                /* Enable EVT and PPR and GA interrupts again */
 782                writel(AMD_IOMMU_INT_MASK,
 783                        iommu->mmio_base + MMIO_STATUS_OFFSET);
 784
 785                if (status & MMIO_STATUS_EVT_INT_MASK) {
 786                        pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
 787                        iommu_poll_events(iommu);
 788                }
 789
 790                if (status & MMIO_STATUS_PPR_INT_MASK) {
 791                        pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
 792                        iommu_poll_ppr_log(iommu);
 793                }
 794
 795#ifdef CONFIG_IRQ_REMAP
 796                if (status & MMIO_STATUS_GALOG_INT_MASK) {
 797                        pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
 798                        iommu_poll_ga_log(iommu);
 799                }
 800#endif
 801
 802                /*
 803                 * Hardware bug: ERBT1312
 804                 * When re-enabling interrupt (by writing 1
 805                 * to clear the bit), the hardware might also try to set
 806                 * the interrupt bit in the event status register.
 807                 * In this scenario, the bit will be set, and disable
 808                 * subsequent interrupts.
 809                 *
 810                 * Workaround: The IOMMU driver should read back the
 811                 * status register and check if the interrupt bits are cleared.
 812                 * If not, driver will need to go through the interrupt handler
 813                 * again and re-clear the bits
 814                 */
 815                status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 816        }
 817        return IRQ_HANDLED;
 818}
 819
 820irqreturn_t amd_iommu_int_handler(int irq, void *data)
 821{
 822        return IRQ_WAKE_THREAD;
 823}
 824
 825/****************************************************************************
 826 *
 827 * IOMMU command queuing functions
 828 *
 829 ****************************************************************************/
 830
 831static int wait_on_sem(volatile u64 *sem)
 832{
 833        int i = 0;
 834
 835        while (*sem == 0 && i < LOOP_TIMEOUT) {
 836                udelay(1);
 837                i += 1;
 838        }
 839
 840        if (i == LOOP_TIMEOUT) {
 841                pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
 842                return -EIO;
 843        }
 844
 845        return 0;
 846}
 847
 848static void copy_cmd_to_buffer(struct amd_iommu *iommu,
 849                               struct iommu_cmd *cmd)
 850{
 851        u8 *target;
 852
 853        target = iommu->cmd_buf + iommu->cmd_buf_tail;
 854
 855        iommu->cmd_buf_tail += sizeof(*cmd);
 856        iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
 857
 858        /* Copy command to buffer */
 859        memcpy(target, cmd, sizeof(*cmd));
 860
 861        /* Tell the IOMMU about it */
 862        writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 863}
 864
 865static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
 866{
 867        u64 paddr = iommu_virt_to_phys((void *)address);
 868
 869        WARN_ON(address & 0x7ULL);
 870
 871        memset(cmd, 0, sizeof(*cmd));
 872        cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
 873        cmd->data[1] = upper_32_bits(paddr);
 874        cmd->data[2] = 1;
 875        CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
 876}
 877
 878static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
 879{
 880        memset(cmd, 0, sizeof(*cmd));
 881        cmd->data[0] = devid;
 882        CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
 883}
 884
 885static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
 886                                  size_t size, u16 domid, int pde)
 887{
 888        u64 pages;
 889        bool s;
 890
 891        pages = iommu_num_pages(address, size, PAGE_SIZE);
 892        s     = false;
 893
 894        if (pages > 1) {
 895                /*
 896                 * If we have to flush more than one page, flush all
 897                 * TLB entries for this domain
 898                 */
 899                address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 900                s = true;
 901        }
 902
 903        address &= PAGE_MASK;
 904
 905        memset(cmd, 0, sizeof(*cmd));
 906        cmd->data[1] |= domid;
 907        cmd->data[2]  = lower_32_bits(address);
 908        cmd->data[3]  = upper_32_bits(address);
 909        CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 910        if (s) /* size bit - we flush more than one 4kb page */
 911                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 912        if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
 913                cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 914}
 915
 916static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
 917                                  u64 address, size_t size)
 918{
 919        u64 pages;
 920        bool s;
 921
 922        pages = iommu_num_pages(address, size, PAGE_SIZE);
 923        s     = false;
 924
 925        if (pages > 1) {
 926                /*
 927                 * If we have to flush more than one page, flush all
 928                 * TLB entries for this domain
 929                 */
 930                address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 931                s = true;
 932        }
 933
 934        address &= PAGE_MASK;
 935
 936        memset(cmd, 0, sizeof(*cmd));
 937        cmd->data[0]  = devid;
 938        cmd->data[0] |= (qdep & 0xff) << 24;
 939        cmd->data[1]  = devid;
 940        cmd->data[2]  = lower_32_bits(address);
 941        cmd->data[3]  = upper_32_bits(address);
 942        CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 943        if (s)
 944                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 945}
 946
 947static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
 948                                  u64 address, bool size)
 949{
 950        memset(cmd, 0, sizeof(*cmd));
 951
 952        address &= ~(0xfffULL);
 953
 954        cmd->data[0]  = pasid;
 955        cmd->data[1]  = domid;
 956        cmd->data[2]  = lower_32_bits(address);
 957        cmd->data[3]  = upper_32_bits(address);
 958        cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 959        cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 960        if (size)
 961                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 962        CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 963}
 964
 965static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
 966                                  int qdep, u64 address, bool size)
 967{
 968        memset(cmd, 0, sizeof(*cmd));
 969
 970        address &= ~(0xfffULL);
 971
 972        cmd->data[0]  = devid;
 973        cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
 974        cmd->data[0] |= (qdep  & 0xff) << 24;
 975        cmd->data[1]  = devid;
 976        cmd->data[1] |= (pasid & 0xff) << 16;
 977        cmd->data[2]  = lower_32_bits(address);
 978        cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 979        cmd->data[3]  = upper_32_bits(address);
 980        if (size)
 981                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 982        CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 983}
 984
 985static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
 986                               int status, int tag, bool gn)
 987{
 988        memset(cmd, 0, sizeof(*cmd));
 989
 990        cmd->data[0]  = devid;
 991        if (gn) {
 992                cmd->data[1]  = pasid;
 993                cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
 994        }
 995        cmd->data[3]  = tag & 0x1ff;
 996        cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
 997
 998        CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
 999}
1000
1001static void build_inv_all(struct iommu_cmd *cmd)
1002{
1003        memset(cmd, 0, sizeof(*cmd));
1004        CMD_SET_TYPE(cmd, CMD_INV_ALL);
1005}
1006
1007static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1008{
1009        memset(cmd, 0, sizeof(*cmd));
1010        cmd->data[0] = devid;
1011        CMD_SET_TYPE(cmd, CMD_INV_IRT);
1012}
1013
1014/*
1015 * Writes the command to the IOMMUs command buffer and informs the
1016 * hardware about the new command.
1017 */
1018static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1019                                      struct iommu_cmd *cmd,
1020                                      bool sync)
1021{
1022        unsigned int count = 0;
1023        u32 left, next_tail;
1024
1025        next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1026again:
1027        left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1028
1029        if (left <= 0x20) {
1030                /* Skip udelay() the first time around */
1031                if (count++) {
1032                        if (count == LOOP_TIMEOUT) {
1033                                pr_err("AMD-Vi: Command buffer timeout\n");
1034                                return -EIO;
1035                        }
1036
1037                        udelay(1);
1038                }
1039
1040                /* Update head and recheck remaining space */
1041                iommu->cmd_buf_head = readl(iommu->mmio_base +
1042                                            MMIO_CMD_HEAD_OFFSET);
1043
1044                goto again;
1045        }
1046
1047        copy_cmd_to_buffer(iommu, cmd);
1048
1049        /* Do we need to make sure all commands are processed? */
1050        iommu->need_sync = sync;
1051
1052        return 0;
1053}
1054
1055static int iommu_queue_command_sync(struct amd_iommu *iommu,
1056                                    struct iommu_cmd *cmd,
1057                                    bool sync)
1058{
1059        unsigned long flags;
1060        int ret;
1061
1062        raw_spin_lock_irqsave(&iommu->lock, flags);
1063        ret = __iommu_queue_command_sync(iommu, cmd, sync);
1064        raw_spin_unlock_irqrestore(&iommu->lock, flags);
1065
1066        return ret;
1067}
1068
1069static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1070{
1071        return iommu_queue_command_sync(iommu, cmd, true);
1072}
1073
1074/*
1075 * This function queues a completion wait command into the command
1076 * buffer of an IOMMU
1077 */
1078static int iommu_completion_wait(struct amd_iommu *iommu)
1079{
1080        struct iommu_cmd cmd;
1081        unsigned long flags;
1082        int ret;
1083
1084        if (!iommu->need_sync)
1085                return 0;
1086
1087
1088        build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1089
1090        raw_spin_lock_irqsave(&iommu->lock, flags);
1091
1092        iommu->cmd_sem = 0;
1093
1094        ret = __iommu_queue_command_sync(iommu, &cmd, false);
1095        if (ret)
1096                goto out_unlock;
1097
1098        ret = wait_on_sem(&iommu->cmd_sem);
1099
1100out_unlock:
1101        raw_spin_unlock_irqrestore(&iommu->lock, flags);
1102
1103        return ret;
1104}
1105
1106static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1107{
1108        struct iommu_cmd cmd;
1109
1110        build_inv_dte(&cmd, devid);
1111
1112        return iommu_queue_command(iommu, &cmd);
1113}
1114
1115static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1116{
1117        u32 devid;
1118
1119        for (devid = 0; devid <= 0xffff; ++devid)
1120                iommu_flush_dte(iommu, devid);
1121
1122        iommu_completion_wait(iommu);
1123}
1124
1125/*
1126 * This function uses heavy locking and may disable irqs for some time. But
1127 * this is no issue because it is only called during resume.
1128 */
1129static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1130{
1131        u32 dom_id;
1132
1133        for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1134                struct iommu_cmd cmd;
1135                build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1136                                      dom_id, 1);
1137                iommu_queue_command(iommu, &cmd);
1138        }
1139
1140        iommu_completion_wait(iommu);
1141}
1142
1143static void amd_iommu_flush_all(struct amd_iommu *iommu)
1144{
1145        struct iommu_cmd cmd;
1146
1147        build_inv_all(&cmd);
1148
1149        iommu_queue_command(iommu, &cmd);
1150        iommu_completion_wait(iommu);
1151}
1152
1153static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1154{
1155        struct iommu_cmd cmd;
1156
1157        build_inv_irt(&cmd, devid);
1158
1159        iommu_queue_command(iommu, &cmd);
1160}
1161
1162static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1163{
1164        u32 devid;
1165
1166        for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1167                iommu_flush_irt(iommu, devid);
1168
1169        iommu_completion_wait(iommu);
1170}
1171
1172void iommu_flush_all_caches(struct amd_iommu *iommu)
1173{
1174        if (iommu_feature(iommu, FEATURE_IA)) {
1175                amd_iommu_flush_all(iommu);
1176        } else {
1177                amd_iommu_flush_dte_all(iommu);
1178                amd_iommu_flush_irt_all(iommu);
1179                amd_iommu_flush_tlb_all(iommu);
1180        }
1181}
1182
1183/*
1184 * Command send function for flushing on-device TLB
1185 */
1186static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1187                              u64 address, size_t size)
1188{
1189        struct amd_iommu *iommu;
1190        struct iommu_cmd cmd;
1191        int qdep;
1192
1193        qdep     = dev_data->ats.qdep;
1194        iommu    = amd_iommu_rlookup_table[dev_data->devid];
1195
1196        build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1197
1198        return iommu_queue_command(iommu, &cmd);
1199}
1200
1201/*
1202 * Command send function for invalidating a device table entry
1203 */
1204static int device_flush_dte(struct iommu_dev_data *dev_data)
1205{
1206        struct amd_iommu *iommu;
1207        u16 alias;
1208        int ret;
1209
1210        iommu = amd_iommu_rlookup_table[dev_data->devid];
1211        alias = dev_data->alias;
1212
1213        ret = iommu_flush_dte(iommu, dev_data->devid);
1214        if (!ret && alias != dev_data->devid)
1215                ret = iommu_flush_dte(iommu, alias);
1216        if (ret)
1217                return ret;
1218
1219        if (dev_data->ats.enabled)
1220                ret = device_flush_iotlb(dev_data, 0, ~0UL);
1221
1222        return ret;
1223}
1224
1225/*
1226 * TLB invalidation function which is called from the mapping functions.
1227 * It invalidates a single PTE if the range to flush is within a single
1228 * page. Otherwise it flushes the whole TLB of the IOMMU.
1229 */
1230static void __domain_flush_pages(struct protection_domain *domain,
1231                                 u64 address, size_t size, int pde)
1232{
1233        struct iommu_dev_data *dev_data;
1234        struct iommu_cmd cmd;
1235        int ret = 0, i;
1236
1237        build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1238
1239        for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1240                if (!domain->dev_iommu[i])
1241                        continue;
1242
1243                /*
1244                 * Devices of this domain are behind this IOMMU
1245                 * We need a TLB flush
1246                 */
1247                ret |= iommu_queue_command(amd_iommus[i], &cmd);
1248        }
1249
1250        list_for_each_entry(dev_data, &domain->dev_list, list) {
1251
1252                if (!dev_data->ats.enabled)
1253                        continue;
1254
1255                ret |= device_flush_iotlb(dev_data, address, size);
1256        }
1257
1258        WARN_ON(ret);
1259}
1260
1261static void domain_flush_pages(struct protection_domain *domain,
1262                               u64 address, size_t size)
1263{
1264        __domain_flush_pages(domain, address, size, 0);
1265}
1266
1267/* Flush the whole IO/TLB for a given protection domain */
1268static void domain_flush_tlb(struct protection_domain *domain)
1269{
1270        __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1271}
1272
1273/* Flush the whole IO/TLB for a given protection domain - including PDE */
1274static void domain_flush_tlb_pde(struct protection_domain *domain)
1275{
1276        __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1277}
1278
1279static void domain_flush_complete(struct protection_domain *domain)
1280{
1281        int i;
1282
1283        for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1284                if (domain && !domain->dev_iommu[i])
1285                        continue;
1286
1287                /*
1288                 * Devices of this domain are behind this IOMMU
1289                 * We need to wait for completion of all commands.
1290                 */
1291                iommu_completion_wait(amd_iommus[i]);
1292        }
1293}
1294
1295
1296/*
1297 * This function flushes the DTEs for all devices in domain
1298 */
1299static void domain_flush_devices(struct protection_domain *domain)
1300{
1301        struct iommu_dev_data *dev_data;
1302
1303        list_for_each_entry(dev_data, &domain->dev_list, list)
1304                device_flush_dte(dev_data);
1305}
1306
1307/****************************************************************************
1308 *
1309 * The functions below are used the create the page table mappings for
1310 * unity mapped regions.
1311 *
1312 ****************************************************************************/
1313
1314/*
1315 * This function is used to add another level to an IO page table. Adding
1316 * another level increases the size of the address space by 9 bits to a size up
1317 * to 64 bits.
1318 */
1319static bool increase_address_space(struct protection_domain *domain,
1320                                   gfp_t gfp)
1321{
1322        u64 *pte;
1323
1324        if (domain->mode == PAGE_MODE_6_LEVEL)
1325                /* address space already 64 bit large */
1326                return false;
1327
1328        pte = (void *)get_zeroed_page(gfp);
1329        if (!pte)
1330                return false;
1331
1332        *pte             = PM_LEVEL_PDE(domain->mode,
1333                                        iommu_virt_to_phys(domain->pt_root));
1334        domain->pt_root  = pte;
1335        domain->mode    += 1;
1336        domain->updated  = true;
1337
1338        return true;
1339}
1340
1341static u64 *alloc_pte(struct protection_domain *domain,
1342                      unsigned long address,
1343                      unsigned long page_size,
1344                      u64 **pte_page,
1345                      gfp_t gfp)
1346{
1347        int level, end_lvl;
1348        u64 *pte, *page;
1349
1350        BUG_ON(!is_power_of_2(page_size));
1351
1352        while (address > PM_LEVEL_SIZE(domain->mode))
1353                increase_address_space(domain, gfp);
1354
1355        level   = domain->mode - 1;
1356        pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1357        address = PAGE_SIZE_ALIGN(address, page_size);
1358        end_lvl = PAGE_SIZE_LEVEL(page_size);
1359
1360        while (level > end_lvl) {
1361                u64 __pte, __npte;
1362
1363                __pte = *pte;
1364
1365                if (!IOMMU_PTE_PRESENT(__pte)) {
1366                        page = (u64 *)get_zeroed_page(gfp);
1367                        if (!page)
1368                                return NULL;
1369
1370                        __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1371
1372                        /* pte could have been changed somewhere. */
1373                        if (cmpxchg64(pte, __pte, __npte) != __pte) {
1374                                free_page((unsigned long)page);
1375                                continue;
1376                        }
1377                }
1378
1379                /* No level skipping support yet */
1380                if (PM_PTE_LEVEL(*pte) != level)
1381                        return NULL;
1382
1383                level -= 1;
1384
1385                pte = IOMMU_PTE_PAGE(*pte);
1386
1387                if (pte_page && level == end_lvl)
1388                        *pte_page = pte;
1389
1390                pte = &pte[PM_LEVEL_INDEX(level, address)];
1391        }
1392
1393        return pte;
1394}
1395
1396/*
1397 * This function checks if there is a PTE for a given dma address. If
1398 * there is one, it returns the pointer to it.
1399 */
1400static u64 *fetch_pte(struct protection_domain *domain,
1401                      unsigned long address,
1402                      unsigned long *page_size)
1403{
1404        int level;
1405        u64 *pte;
1406
1407        if (address > PM_LEVEL_SIZE(domain->mode))
1408                return NULL;
1409
1410        level      =  domain->mode - 1;
1411        pte        = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1412        *page_size =  PTE_LEVEL_PAGE_SIZE(level);
1413
1414        while (level > 0) {
1415
1416                /* Not Present */
1417                if (!IOMMU_PTE_PRESENT(*pte))
1418                        return NULL;
1419
1420                /* Large PTE */
1421                if (PM_PTE_LEVEL(*pte) == 7 ||
1422                    PM_PTE_LEVEL(*pte) == 0)
1423                        break;
1424
1425                /* No level skipping support yet */
1426                if (PM_PTE_LEVEL(*pte) != level)
1427                        return NULL;
1428
1429                level -= 1;
1430
1431                /* Walk to the next level */
1432                pte        = IOMMU_PTE_PAGE(*pte);
1433                pte        = &pte[PM_LEVEL_INDEX(level, address)];
1434                *page_size = PTE_LEVEL_PAGE_SIZE(level);
1435        }
1436
1437        if (PM_PTE_LEVEL(*pte) == 0x07) {
1438                unsigned long pte_mask;
1439
1440                /*
1441                 * If we have a series of large PTEs, make
1442                 * sure to return a pointer to the first one.
1443                 */
1444                *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1445                pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1446                pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1447        }
1448
1449        return pte;
1450}
1451
1452/*
1453 * Generic mapping functions. It maps a physical address into a DMA
1454 * address space. It allocates the page table pages if necessary.
1455 * In the future it can be extended to a generic mapping function
1456 * supporting all features of AMD IOMMU page tables like level skipping
1457 * and full 64 bit address spaces.
1458 */
1459static int iommu_map_page(struct protection_domain *dom,
1460                          unsigned long bus_addr,
1461                          unsigned long phys_addr,
1462                          unsigned long page_size,
1463                          int prot,
1464                          gfp_t gfp)
1465{
1466        u64 __pte, *pte;
1467        int i, count;
1468
1469        BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1470        BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1471
1472        if (!(prot & IOMMU_PROT_MASK))
1473                return -EINVAL;
1474
1475        count = PAGE_SIZE_PTE_COUNT(page_size);
1476        pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1477
1478        if (!pte)
1479                return -ENOMEM;
1480
1481        for (i = 0; i < count; ++i)
1482                if (IOMMU_PTE_PRESENT(pte[i]))
1483                        return -EBUSY;
1484
1485        if (count > 1) {
1486                __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1487                __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1488        } else
1489                __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1490
1491        if (prot & IOMMU_PROT_IR)
1492                __pte |= IOMMU_PTE_IR;
1493        if (prot & IOMMU_PROT_IW)
1494                __pte |= IOMMU_PTE_IW;
1495
1496        for (i = 0; i < count; ++i)
1497                pte[i] = __pte;
1498
1499        update_domain(dom);
1500
1501        return 0;
1502}
1503
1504static unsigned long iommu_unmap_page(struct protection_domain *dom,
1505                                      unsigned long bus_addr,
1506                                      unsigned long page_size)
1507{
1508        unsigned long long unmapped;
1509        unsigned long unmap_size;
1510        u64 *pte;
1511
1512        BUG_ON(!is_power_of_2(page_size));
1513
1514        unmapped = 0;
1515
1516        while (unmapped < page_size) {
1517
1518                pte = fetch_pte(dom, bus_addr, &unmap_size);
1519
1520                if (pte) {
1521                        int i, count;
1522
1523                        count = PAGE_SIZE_PTE_COUNT(unmap_size);
1524                        for (i = 0; i < count; i++)
1525                                pte[i] = 0ULL;
1526                }
1527
1528                bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1529                unmapped += unmap_size;
1530        }
1531
1532        BUG_ON(unmapped && !is_power_of_2(unmapped));
1533
1534        return unmapped;
1535}
1536
1537/****************************************************************************
1538 *
1539 * The next functions belong to the address allocator for the dma_ops
1540 * interface functions.
1541 *
1542 ****************************************************************************/
1543
1544
1545static unsigned long dma_ops_alloc_iova(struct device *dev,
1546                                        struct dma_ops_domain *dma_dom,
1547                                        unsigned int pages, u64 dma_mask)
1548{
1549        unsigned long pfn = 0;
1550
1551        pages = __roundup_pow_of_two(pages);
1552
1553        if (dma_mask > DMA_BIT_MASK(32))
1554                pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1555                                      IOVA_PFN(DMA_BIT_MASK(32)), false);
1556
1557        if (!pfn)
1558                pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1559                                      IOVA_PFN(dma_mask), true);
1560
1561        return (pfn << PAGE_SHIFT);
1562}
1563
1564static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1565                              unsigned long address,
1566                              unsigned int pages)
1567{
1568        pages = __roundup_pow_of_two(pages);
1569        address >>= PAGE_SHIFT;
1570
1571        free_iova_fast(&dma_dom->iovad, address, pages);
1572}
1573
1574/****************************************************************************
1575 *
1576 * The next functions belong to the domain allocation. A domain is
1577 * allocated for every IOMMU as the default domain. If device isolation
1578 * is enabled, every device get its own domain. The most important thing
1579 * about domains is the page table mapping the DMA address space they
1580 * contain.
1581 *
1582 ****************************************************************************/
1583
1584/*
1585 * This function adds a protection domain to the global protection domain list
1586 */
1587static void add_domain_to_list(struct protection_domain *domain)
1588{
1589        unsigned long flags;
1590
1591        spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1592        list_add(&domain->list, &amd_iommu_pd_list);
1593        spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1594}
1595
1596/*
1597 * This function removes a protection domain to the global
1598 * protection domain list
1599 */
1600static void del_domain_from_list(struct protection_domain *domain)
1601{
1602        unsigned long flags;
1603
1604        spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1605        list_del(&domain->list);
1606        spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1607}
1608
1609static u16 domain_id_alloc(void)
1610{
1611        int id;
1612
1613        spin_lock(&pd_bitmap_lock);
1614        id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1615        BUG_ON(id == 0);
1616        if (id > 0 && id < MAX_DOMAIN_ID)
1617                __set_bit(id, amd_iommu_pd_alloc_bitmap);
1618        else
1619                id = 0;
1620        spin_unlock(&pd_bitmap_lock);
1621
1622        return id;
1623}
1624
1625static void domain_id_free(int id)
1626{
1627        spin_lock(&pd_bitmap_lock);
1628        if (id > 0 && id < MAX_DOMAIN_ID)
1629                __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1630        spin_unlock(&pd_bitmap_lock);
1631}
1632
1633#define DEFINE_FREE_PT_FN(LVL, FN)                              \
1634static void free_pt_##LVL (unsigned long __pt)                  \
1635{                                                               \
1636        unsigned long p;                                        \
1637        u64 *pt;                                                \
1638        int i;                                                  \
1639                                                                \
1640        pt = (u64 *)__pt;                                       \
1641                                                                \
1642        for (i = 0; i < 512; ++i) {                             \
1643                /* PTE present? */                              \
1644                if (!IOMMU_PTE_PRESENT(pt[i]))                  \
1645                        continue;                               \
1646                                                                \
1647                /* Large PTE? */                                \
1648                if (PM_PTE_LEVEL(pt[i]) == 0 ||                 \
1649                    PM_PTE_LEVEL(pt[i]) == 7)                   \
1650                        continue;                               \
1651                                                                \
1652                p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);       \
1653                FN(p);                                          \
1654        }                                                       \
1655        free_page((unsigned long)pt);                           \
1656}
1657
1658DEFINE_FREE_PT_FN(l2, free_page)
1659DEFINE_FREE_PT_FN(l3, free_pt_l2)
1660DEFINE_FREE_PT_FN(l4, free_pt_l3)
1661DEFINE_FREE_PT_FN(l5, free_pt_l4)
1662DEFINE_FREE_PT_FN(l6, free_pt_l5)
1663
1664static void free_pagetable(struct protection_domain *domain)
1665{
1666        unsigned long root = (unsigned long)domain->pt_root;
1667
1668        switch (domain->mode) {
1669        case PAGE_MODE_NONE:
1670                break;
1671        case PAGE_MODE_1_LEVEL:
1672                free_page(root);
1673                break;
1674        case PAGE_MODE_2_LEVEL:
1675                free_pt_l2(root);
1676                break;
1677        case PAGE_MODE_3_LEVEL:
1678                free_pt_l3(root);
1679                break;
1680        case PAGE_MODE_4_LEVEL:
1681                free_pt_l4(root);
1682                break;
1683        case PAGE_MODE_5_LEVEL:
1684                free_pt_l5(root);
1685                break;
1686        case PAGE_MODE_6_LEVEL:
1687                free_pt_l6(root);
1688                break;
1689        default:
1690                BUG();
1691        }
1692}
1693
1694static void free_gcr3_tbl_level1(u64 *tbl)
1695{
1696        u64 *ptr;
1697        int i;
1698
1699        for (i = 0; i < 512; ++i) {
1700                if (!(tbl[i] & GCR3_VALID))
1701                        continue;
1702
1703                ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1704
1705                free_page((unsigned long)ptr);
1706        }
1707}
1708
1709static void free_gcr3_tbl_level2(u64 *tbl)
1710{
1711        u64 *ptr;
1712        int i;
1713
1714        for (i = 0; i < 512; ++i) {
1715                if (!(tbl[i] & GCR3_VALID))
1716                        continue;
1717
1718                ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1719
1720                free_gcr3_tbl_level1(ptr);
1721        }
1722}
1723
1724static void free_gcr3_table(struct protection_domain *domain)
1725{
1726        if (domain->glx == 2)
1727                free_gcr3_tbl_level2(domain->gcr3_tbl);
1728        else if (domain->glx == 1)
1729                free_gcr3_tbl_level1(domain->gcr3_tbl);
1730        else
1731                BUG_ON(domain->glx != 0);
1732
1733        free_page((unsigned long)domain->gcr3_tbl);
1734}
1735
1736static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1737{
1738        domain_flush_tlb(&dom->domain);
1739        domain_flush_complete(&dom->domain);
1740}
1741
1742static void iova_domain_flush_tlb(struct iova_domain *iovad)
1743{
1744        struct dma_ops_domain *dom;
1745
1746        dom = container_of(iovad, struct dma_ops_domain, iovad);
1747
1748        dma_ops_domain_flush_tlb(dom);
1749}
1750
1751/*
1752 * Free a domain, only used if something went wrong in the
1753 * allocation path and we need to free an already allocated page table
1754 */
1755static void dma_ops_domain_free(struct dma_ops_domain *dom)
1756{
1757        if (!dom)
1758                return;
1759
1760        del_domain_from_list(&dom->domain);
1761
1762        put_iova_domain(&dom->iovad);
1763
1764        free_pagetable(&dom->domain);
1765
1766        if (dom->domain.id)
1767                domain_id_free(dom->domain.id);
1768
1769        kfree(dom);
1770}
1771
1772/*
1773 * Allocates a new protection domain usable for the dma_ops functions.
1774 * It also initializes the page table and the address allocator data
1775 * structures required for the dma_ops interface
1776 */
1777static struct dma_ops_domain *dma_ops_domain_alloc(void)
1778{
1779        struct dma_ops_domain *dma_dom;
1780
1781        dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1782        if (!dma_dom)
1783                return NULL;
1784
1785        if (protection_domain_init(&dma_dom->domain))
1786                goto free_dma_dom;
1787
1788        dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1789        dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1790        dma_dom->domain.flags = PD_DMA_OPS_MASK;
1791        if (!dma_dom->domain.pt_root)
1792                goto free_dma_dom;
1793
1794        init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1795
1796        if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1797                goto free_dma_dom;
1798
1799        /* Initialize reserved ranges */
1800        copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1801
1802        add_domain_to_list(&dma_dom->domain);
1803
1804        return dma_dom;
1805
1806free_dma_dom:
1807        dma_ops_domain_free(dma_dom);
1808
1809        return NULL;
1810}
1811
1812/*
1813 * little helper function to check whether a given protection domain is a
1814 * dma_ops domain
1815 */
1816static bool dma_ops_domain(struct protection_domain *domain)
1817{
1818        return domain->flags & PD_DMA_OPS_MASK;
1819}
1820
1821static void set_dte_entry(u16 devid, struct protection_domain *domain,
1822                          bool ats, bool ppr)
1823{
1824        u64 pte_root = 0;
1825        u64 flags = 0;
1826
1827        if (domain->mode != PAGE_MODE_NONE)
1828                pte_root = iommu_virt_to_phys(domain->pt_root);
1829
1830        pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1831                    << DEV_ENTRY_MODE_SHIFT;
1832        pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1833
1834        flags = amd_iommu_dev_table[devid].data[1];
1835
1836        if (ats)
1837                flags |= DTE_FLAG_IOTLB;
1838
1839        if (ppr) {
1840                struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1841
1842                if (iommu_feature(iommu, FEATURE_EPHSUP))
1843                        pte_root |= 1ULL << DEV_ENTRY_PPR;
1844        }
1845
1846        if (domain->flags & PD_IOMMUV2_MASK) {
1847                u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1848                u64 glx  = domain->glx;
1849                u64 tmp;
1850
1851                pte_root |= DTE_FLAG_GV;
1852                pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1853
1854                /* First mask out possible old values for GCR3 table */
1855                tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1856                flags    &= ~tmp;
1857
1858                tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1859                flags    &= ~tmp;
1860
1861                /* Encode GCR3 table into DTE */
1862                tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1863                pte_root |= tmp;
1864
1865                tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1866                flags    |= tmp;
1867
1868                tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1869                flags    |= tmp;
1870        }
1871
1872        flags &= ~DEV_DOMID_MASK;
1873        flags |= domain->id;
1874
1875        amd_iommu_dev_table[devid].data[1]  = flags;
1876        amd_iommu_dev_table[devid].data[0]  = pte_root;
1877}
1878
1879static void clear_dte_entry(u16 devid)
1880{
1881        /* remove entry from the device table seen by the hardware */
1882        amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1883        amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1884
1885        amd_iommu_apply_erratum_63(devid);
1886}
1887
1888static void do_attach(struct iommu_dev_data *dev_data,
1889                      struct protection_domain *domain)
1890{
1891        struct amd_iommu *iommu;
1892        u16 alias;
1893        bool ats;
1894
1895        iommu = amd_iommu_rlookup_table[dev_data->devid];
1896        alias = dev_data->alias;
1897        ats   = dev_data->ats.enabled;
1898
1899        /* Update data structures */
1900        dev_data->domain = domain;
1901        list_add(&dev_data->list, &domain->dev_list);
1902
1903        /* Do reference counting */
1904        domain->dev_iommu[iommu->index] += 1;
1905        domain->dev_cnt                 += 1;
1906
1907        /* Update device table */
1908        set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1909        if (alias != dev_data->devid)
1910                set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1911
1912        device_flush_dte(dev_data);
1913}
1914
1915static void do_detach(struct iommu_dev_data *dev_data)
1916{
1917        struct amd_iommu *iommu;
1918        u16 alias;
1919
1920        iommu = amd_iommu_rlookup_table[dev_data->devid];
1921        alias = dev_data->alias;
1922
1923        /* decrease reference counters */
1924        dev_data->domain->dev_iommu[iommu->index] -= 1;
1925        dev_data->domain->dev_cnt                 -= 1;
1926
1927        /* Update data structures */
1928        dev_data->domain = NULL;
1929        list_del(&dev_data->list);
1930        clear_dte_entry(dev_data->devid);
1931        if (alias != dev_data->devid)
1932                clear_dte_entry(alias);
1933
1934        /* Flush the DTE entry */
1935        device_flush_dte(dev_data);
1936}
1937
1938/*
1939 * If a device is not yet associated with a domain, this function makes the
1940 * device visible in the domain
1941 */
1942static int __attach_device(struct iommu_dev_data *dev_data,
1943                           struct protection_domain *domain)
1944{
1945        int ret;
1946
1947        /*
1948         * Must be called with IRQs disabled. Warn here to detect early
1949         * when its not.
1950         */
1951        WARN_ON(!irqs_disabled());
1952
1953        /* lock domain */
1954        spin_lock(&domain->lock);
1955
1956        ret = -EBUSY;
1957        if (dev_data->domain != NULL)
1958                goto out_unlock;
1959
1960        /* Attach alias group root */
1961        do_attach(dev_data, domain);
1962
1963        ret = 0;
1964
1965out_unlock:
1966
1967        /* ready */
1968        spin_unlock(&domain->lock);
1969
1970        return ret;
1971}
1972
1973
1974static void pdev_iommuv2_disable(struct pci_dev *pdev)
1975{
1976        pci_disable_ats(pdev);
1977        pci_disable_pri(pdev);
1978        pci_disable_pasid(pdev);
1979}
1980
1981/* FIXME: Change generic reset-function to do the same */
1982static int pri_reset_while_enabled(struct pci_dev *pdev)
1983{
1984        u16 control;
1985        int pos;
1986
1987        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1988        if (!pos)
1989                return -EINVAL;
1990
1991        pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
1992        control |= PCI_PRI_CTRL_RESET;
1993        pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1994
1995        return 0;
1996}
1997
1998static int pdev_iommuv2_enable(struct pci_dev *pdev)
1999{
2000        bool reset_enable;
2001        int reqs, ret;
2002
2003        /* FIXME: Hardcode number of outstanding requests for now */
2004        reqs = 32;
2005        if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2006                reqs = 1;
2007        reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2008
2009        /* Only allow access to user-accessible pages */
2010        ret = pci_enable_pasid(pdev, 0);
2011        if (ret)
2012                goto out_err;
2013
2014        /* First reset the PRI state of the device */
2015        ret = pci_reset_pri(pdev);
2016        if (ret)
2017                goto out_err;
2018
2019        /* Enable PRI */
2020        ret = pci_enable_pri(pdev, reqs);
2021        if (ret)
2022                goto out_err;
2023
2024        if (reset_enable) {
2025                ret = pri_reset_while_enabled(pdev);
2026                if (ret)
2027                        goto out_err;
2028        }
2029
2030        ret = pci_enable_ats(pdev, PAGE_SHIFT);
2031        if (ret)
2032                goto out_err;
2033
2034        return 0;
2035
2036out_err:
2037        pci_disable_pri(pdev);
2038        pci_disable_pasid(pdev);
2039
2040        return ret;
2041}
2042
2043/* FIXME: Move this to PCI code */
2044#define PCI_PRI_TLP_OFF         (1 << 15)
2045
2046static bool pci_pri_tlp_required(struct pci_dev *pdev)
2047{
2048        u16 status;
2049        int pos;
2050
2051        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2052        if (!pos)
2053                return false;
2054
2055        pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2056
2057        return (status & PCI_PRI_TLP_OFF) ? true : false;
2058}
2059
2060/*
2061 * If a device is not yet associated with a domain, this function makes the
2062 * device visible in the domain
2063 */
2064static int attach_device(struct device *dev,
2065                         struct protection_domain *domain)
2066{
2067        struct pci_dev *pdev;
2068        struct iommu_dev_data *dev_data;
2069        unsigned long flags;
2070        int ret;
2071
2072        dev_data = get_dev_data(dev);
2073
2074        if (!dev_is_pci(dev))
2075                goto skip_ats_check;
2076
2077        pdev = to_pci_dev(dev);
2078        if (domain->flags & PD_IOMMUV2_MASK) {
2079                if (!dev_data->passthrough)
2080                        return -EINVAL;
2081
2082                if (dev_data->iommu_v2) {
2083                        if (pdev_iommuv2_enable(pdev) != 0)
2084                                return -EINVAL;
2085
2086                        dev_data->ats.enabled = true;
2087                        dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2088                        dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2089                }
2090        } else if (amd_iommu_iotlb_sup &&
2091                   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2092                dev_data->ats.enabled = true;
2093                dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2094        }
2095
2096skip_ats_check:
2097        spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2098        ret = __attach_device(dev_data, domain);
2099        spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2100
2101        /*
2102         * We might boot into a crash-kernel here. The crashed kernel
2103         * left the caches in the IOMMU dirty. So we have to flush
2104         * here to evict all dirty stuff.
2105         */
2106        domain_flush_tlb_pde(domain);
2107
2108        return ret;
2109}
2110
2111/*
2112 * Removes a device from a protection domain (unlocked)
2113 */
2114static void __detach_device(struct iommu_dev_data *dev_data)
2115{
2116        struct protection_domain *domain;
2117
2118        /*
2119         * Must be called with IRQs disabled. Warn here to detect early
2120         * when its not.
2121         */
2122        WARN_ON(!irqs_disabled());
2123
2124        domain = dev_data->domain;
2125
2126        spin_lock(&domain->lock);
2127
2128        do_detach(dev_data);
2129
2130        spin_unlock(&domain->lock);
2131}
2132
2133/*
2134 * Removes a device from a protection domain (with devtable_lock held)
2135 */
2136static void detach_device(struct device *dev)
2137{
2138        struct protection_domain *domain;
2139        struct iommu_dev_data *dev_data;
2140        unsigned long flags;
2141
2142        dev_data = get_dev_data(dev);
2143        domain   = dev_data->domain;
2144
2145        /*
2146         * First check if the device is still attached. It might already
2147         * be detached from its domain because the generic
2148         * iommu_detach_group code detached it and we try again here in
2149         * our alias handling.
2150         */
2151        if (WARN_ON(!dev_data->domain))
2152                return;
2153
2154        /* lock device table */
2155        spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2156        __detach_device(dev_data);
2157        spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2158
2159        if (!dev_is_pci(dev))
2160                return;
2161
2162        if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2163                pdev_iommuv2_disable(to_pci_dev(dev));
2164        else if (dev_data->ats.enabled)
2165                pci_disable_ats(to_pci_dev(dev));
2166
2167        dev_data->ats.enabled = false;
2168}
2169
2170static int amd_iommu_add_device(struct device *dev)
2171{
2172        struct iommu_dev_data *dev_data;
2173        struct iommu_domain *domain;
2174        struct amd_iommu *iommu;
2175        int ret, devid;
2176
2177        if (!check_device(dev) || get_dev_data(dev))
2178                return 0;
2179
2180        devid = get_device_id(dev);
2181        if (devid < 0)
2182                return devid;
2183
2184        iommu = amd_iommu_rlookup_table[devid];
2185
2186        ret = iommu_init_device(dev);
2187        if (ret) {
2188                if (ret != -ENOTSUPP)
2189                        pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2190                                dev_name(dev));
2191
2192                iommu_ignore_device(dev);
2193                dev->dma_ops = &dma_direct_ops;
2194                goto out;
2195        }
2196        init_iommu_group(dev);
2197
2198        dev_data = get_dev_data(dev);
2199
2200        BUG_ON(!dev_data);
2201
2202        if (iommu_pass_through || dev_data->iommu_v2)
2203                iommu_request_dm_for_dev(dev);
2204
2205        /* Domains are initialized for this device - have a look what we ended up with */
2206        domain = iommu_get_domain_for_dev(dev);
2207        if (domain->type == IOMMU_DOMAIN_IDENTITY)
2208                dev_data->passthrough = true;
2209        else
2210                dev->dma_ops = &amd_iommu_dma_ops;
2211
2212out:
2213        iommu_completion_wait(iommu);
2214
2215        return 0;
2216}
2217
2218static void amd_iommu_remove_device(struct device *dev)
2219{
2220        struct amd_iommu *iommu;
2221        int devid;
2222
2223        if (!check_device(dev))
2224                return;
2225
2226        devid = get_device_id(dev);
2227        if (devid < 0)
2228                return;
2229
2230        iommu = amd_iommu_rlookup_table[devid];
2231
2232        iommu_uninit_device(dev);
2233        iommu_completion_wait(iommu);
2234}
2235
2236static struct iommu_group *amd_iommu_device_group(struct device *dev)
2237{
2238        if (dev_is_pci(dev))
2239                return pci_device_group(dev);
2240
2241        return acpihid_device_group(dev);
2242}
2243
2244/*****************************************************************************
2245 *
2246 * The next functions belong to the dma_ops mapping/unmapping code.
2247 *
2248 *****************************************************************************/
2249
2250/*
2251 * In the dma_ops path we only have the struct device. This function
2252 * finds the corresponding IOMMU, the protection domain and the
2253 * requestor id for a given device.
2254 * If the device is not yet associated with a domain this is also done
2255 * in this function.
2256 */
2257static struct protection_domain *get_domain(struct device *dev)
2258{
2259        struct protection_domain *domain;
2260        struct iommu_domain *io_domain;
2261
2262        if (!check_device(dev))
2263                return ERR_PTR(-EINVAL);
2264
2265        domain = get_dev_data(dev)->domain;
2266        if (domain == NULL && get_dev_data(dev)->defer_attach) {
2267                get_dev_data(dev)->defer_attach = false;
2268                io_domain = iommu_get_domain_for_dev(dev);
2269                domain = to_pdomain(io_domain);
2270                attach_device(dev, domain);
2271        }
2272        if (domain == NULL)
2273                return ERR_PTR(-EBUSY);
2274
2275        if (!dma_ops_domain(domain))
2276                return ERR_PTR(-EBUSY);
2277
2278        return domain;
2279}
2280
2281static void update_device_table(struct protection_domain *domain)
2282{
2283        struct iommu_dev_data *dev_data;
2284
2285        list_for_each_entry(dev_data, &domain->dev_list, list) {
2286                set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
2287                              dev_data->iommu_v2);
2288
2289                if (dev_data->devid == dev_data->alias)
2290                        continue;
2291
2292                /* There is an alias, update device table entry for it */
2293                set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
2294                              dev_data->iommu_v2);
2295        }
2296}
2297
2298static void update_domain(struct protection_domain *domain)
2299{
2300        if (!domain->updated)
2301                return;
2302
2303        update_device_table(domain);
2304
2305        domain_flush_devices(domain);
2306        domain_flush_tlb_pde(domain);
2307
2308        domain->updated = false;
2309}
2310
2311static int dir2prot(enum dma_data_direction direction)
2312{
2313        if (direction == DMA_TO_DEVICE)
2314                return IOMMU_PROT_IR;
2315        else if (direction == DMA_FROM_DEVICE)
2316                return IOMMU_PROT_IW;
2317        else if (direction == DMA_BIDIRECTIONAL)
2318                return IOMMU_PROT_IW | IOMMU_PROT_IR;
2319        else
2320                return 0;
2321}
2322
2323/*
2324 * This function contains common code for mapping of a physically
2325 * contiguous memory region into DMA address space. It is used by all
2326 * mapping functions provided with this IOMMU driver.
2327 * Must be called with the domain lock held.
2328 */
2329static dma_addr_t __map_single(struct device *dev,
2330                               struct dma_ops_domain *dma_dom,
2331                               phys_addr_t paddr,
2332                               size_t size,
2333                               enum dma_data_direction direction,
2334                               u64 dma_mask)
2335{
2336        dma_addr_t offset = paddr & ~PAGE_MASK;
2337        dma_addr_t address, start, ret;
2338        unsigned int pages;
2339        int prot = 0;
2340        int i;
2341
2342        pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2343        paddr &= PAGE_MASK;
2344
2345        address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2346        if (address == AMD_IOMMU_MAPPING_ERROR)
2347                goto out;
2348
2349        prot = dir2prot(direction);
2350
2351        start = address;
2352        for (i = 0; i < pages; ++i) {
2353                ret = iommu_map_page(&dma_dom->domain, start, paddr,
2354                                     PAGE_SIZE, prot, GFP_ATOMIC);
2355                if (ret)
2356                        goto out_unmap;
2357
2358                paddr += PAGE_SIZE;
2359                start += PAGE_SIZE;
2360        }
2361        address += offset;
2362
2363        if (unlikely(amd_iommu_np_cache)) {
2364                domain_flush_pages(&dma_dom->domain, address, size);
2365                domain_flush_complete(&dma_dom->domain);
2366        }
2367
2368out:
2369        return address;
2370
2371out_unmap:
2372
2373        for (--i; i >= 0; --i) {
2374                start -= PAGE_SIZE;
2375                iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2376        }
2377
2378        domain_flush_tlb(&dma_dom->domain);
2379        domain_flush_complete(&dma_dom->domain);
2380
2381        dma_ops_free_iova(dma_dom, address, pages);
2382
2383        return AMD_IOMMU_MAPPING_ERROR;
2384}
2385
2386/*
2387 * Does the reverse of the __map_single function. Must be called with
2388 * the domain lock held too
2389 */
2390static void __unmap_single(struct dma_ops_domain *dma_dom,
2391                           dma_addr_t dma_addr,
2392                           size_t size,
2393                           int dir)
2394{
2395        dma_addr_t i, start;
2396        unsigned int pages;
2397
2398        pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2399        dma_addr &= PAGE_MASK;
2400        start = dma_addr;
2401
2402        for (i = 0; i < pages; ++i) {
2403                iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2404                start += PAGE_SIZE;
2405        }
2406
2407        if (amd_iommu_unmap_flush) {
2408                dma_ops_free_iova(dma_dom, dma_addr, pages);
2409                domain_flush_tlb(&dma_dom->domain);
2410                domain_flush_complete(&dma_dom->domain);
2411        } else {
2412                pages = __roundup_pow_of_two(pages);
2413                queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
2414        }
2415}
2416
2417/*
2418 * The exported map_single function for dma_ops.
2419 */
2420static dma_addr_t map_page(struct device *dev, struct page *page,
2421                           unsigned long offset, size_t size,
2422                           enum dma_data_direction dir,
2423                           unsigned long attrs)
2424{
2425        phys_addr_t paddr = page_to_phys(page) + offset;
2426        struct protection_domain *domain;
2427        struct dma_ops_domain *dma_dom;
2428        u64 dma_mask;
2429
2430        domain = get_domain(dev);
2431        if (PTR_ERR(domain) == -EINVAL)
2432                return (dma_addr_t)paddr;
2433        else if (IS_ERR(domain))
2434                return AMD_IOMMU_MAPPING_ERROR;
2435
2436        dma_mask = *dev->dma_mask;
2437        dma_dom = to_dma_ops_domain(domain);
2438
2439        return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2440}
2441
2442/*
2443 * The exported unmap_single function for dma_ops.
2444 */
2445static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2446                       enum dma_data_direction dir, unsigned long attrs)
2447{
2448        struct protection_domain *domain;
2449        struct dma_ops_domain *dma_dom;
2450
2451        domain = get_domain(dev);
2452        if (IS_ERR(domain))
2453                return;
2454
2455        dma_dom = to_dma_ops_domain(domain);
2456
2457        __unmap_single(dma_dom, dma_addr, size, dir);
2458}
2459
2460static int sg_num_pages(struct device *dev,
2461                        struct scatterlist *sglist,
2462                        int nelems)
2463{
2464        unsigned long mask, boundary_size;
2465        struct scatterlist *s;
2466        int i, npages = 0;
2467
2468        mask          = dma_get_seg_boundary(dev);
2469        boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2470                                   1UL << (BITS_PER_LONG - PAGE_SHIFT);
2471
2472        for_each_sg(sglist, s, nelems, i) {
2473                int p, n;
2474
2475                s->dma_address = npages << PAGE_SHIFT;
2476                p = npages % boundary_size;
2477                n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2478                if (p + n > boundary_size)
2479                        npages += boundary_size - p;
2480                npages += n;
2481        }
2482
2483        return npages;
2484}
2485
2486/*
2487 * The exported map_sg function for dma_ops (handles scatter-gather
2488 * lists).
2489 */
2490static int map_sg(struct device *dev, struct scatterlist *sglist,
2491                  int nelems, enum dma_data_direction direction,
2492                  unsigned long attrs)
2493{
2494        int mapped_pages = 0, npages = 0, prot = 0, i;
2495        struct protection_domain *domain;
2496        struct dma_ops_domain *dma_dom;
2497        struct scatterlist *s;
2498        unsigned long address;
2499        u64 dma_mask;
2500
2501        domain = get_domain(dev);
2502        if (IS_ERR(domain))
2503                return 0;
2504
2505        dma_dom  = to_dma_ops_domain(domain);
2506        dma_mask = *dev->dma_mask;
2507
2508        npages = sg_num_pages(dev, sglist, nelems);
2509
2510        address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2511        if (address == AMD_IOMMU_MAPPING_ERROR)
2512                goto out_err;
2513
2514        prot = dir2prot(direction);
2515
2516        /* Map all sg entries */
2517        for_each_sg(sglist, s, nelems, i) {
2518                int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2519
2520                for (j = 0; j < pages; ++j) {
2521                        unsigned long bus_addr, phys_addr;
2522                        int ret;
2523
2524                        bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2525                        phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2526                        ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
2527                        if (ret)
2528                                goto out_unmap;
2529
2530                        mapped_pages += 1;
2531                }
2532        }
2533
2534        /* Everything is mapped - write the right values into s->dma_address */
2535        for_each_sg(sglist, s, nelems, i) {
2536                s->dma_address += address + s->offset;
2537                s->dma_length   = s->length;
2538        }
2539
2540        return nelems;
2541
2542out_unmap:
2543        pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2544               dev_name(dev), npages);
2545
2546        for_each_sg(sglist, s, nelems, i) {
2547                int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2548
2549                for (j = 0; j < pages; ++j) {
2550                        unsigned long bus_addr;
2551
2552                        bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
2553                        iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2554
2555                        if (--mapped_pages)
2556                                goto out_free_iova;
2557                }
2558        }
2559
2560out_free_iova:
2561        free_iova_fast(&dma_dom->iovad, address, npages);
2562
2563out_err:
2564        return 0;
2565}
2566
2567/*
2568 * The exported map_sg function for dma_ops (handles scatter-gather
2569 * lists).
2570 */
2571static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2572                     int nelems, enum dma_data_direction dir,
2573                     unsigned long attrs)
2574{
2575        struct protection_domain *domain;
2576        struct dma_ops_domain *dma_dom;
2577        unsigned long startaddr;
2578        int npages = 2;
2579
2580        domain = get_domain(dev);
2581        if (IS_ERR(domain))
2582                return;
2583
2584        startaddr = sg_dma_address(sglist) & PAGE_MASK;
2585        dma_dom   = to_dma_ops_domain(domain);
2586        npages    = sg_num_pages(dev, sglist, nelems);
2587
2588        __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2589}
2590
2591/*
2592 * The exported alloc_coherent function for dma_ops.
2593 */
2594static void *alloc_coherent(struct device *dev, size_t size,
2595                            dma_addr_t *dma_addr, gfp_t flag,
2596                            unsigned long attrs)
2597{
2598        u64 dma_mask = dev->coherent_dma_mask;
2599        struct protection_domain *domain;
2600        struct dma_ops_domain *dma_dom;
2601        struct page *page;
2602
2603        domain = get_domain(dev);
2604        if (PTR_ERR(domain) == -EINVAL) {
2605                page = alloc_pages(flag, get_order(size));
2606                *dma_addr = page_to_phys(page);
2607                return page_address(page);
2608        } else if (IS_ERR(domain))
2609                return NULL;
2610
2611        dma_dom   = to_dma_ops_domain(domain);
2612        size      = PAGE_ALIGN(size);
2613        dma_mask  = dev->coherent_dma_mask;
2614        flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2615        flag     |= __GFP_ZERO;
2616
2617        page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
2618        if (!page) {
2619                if (!gfpflags_allow_blocking(flag))
2620                        return NULL;
2621
2622                page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2623                                                 get_order(size), flag);
2624                if (!page)
2625                        return NULL;
2626        }
2627
2628        if (!dma_mask)
2629                dma_mask = *dev->dma_mask;
2630
2631        *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2632                                 size, DMA_BIDIRECTIONAL, dma_mask);
2633
2634        if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2635                goto out_free;
2636
2637        return page_address(page);
2638
2639out_free:
2640
2641        if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2642                __free_pages(page, get_order(size));
2643
2644        return NULL;
2645}
2646
2647/*
2648 * The exported free_coherent function for dma_ops.
2649 */
2650static void free_coherent(struct device *dev, size_t size,
2651                          void *virt_addr, dma_addr_t dma_addr,
2652                          unsigned long attrs)
2653{
2654        struct protection_domain *domain;
2655        struct dma_ops_domain *dma_dom;
2656        struct page *page;
2657
2658        page = virt_to_page(virt_addr);
2659        size = PAGE_ALIGN(size);
2660
2661        domain = get_domain(dev);
2662        if (IS_ERR(domain))
2663                goto free_mem;
2664
2665        dma_dom = to_dma_ops_domain(domain);
2666
2667        __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2668
2669free_mem:
2670        if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2671                __free_pages(page, get_order(size));
2672}
2673
2674/*
2675 * This function is called by the DMA layer to find out if we can handle a
2676 * particular device. It is part of the dma_ops.
2677 */
2678static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2679{
2680        if (!dma_direct_supported(dev, mask))
2681                return 0;
2682        return check_device(dev);
2683}
2684
2685static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
2686{
2687        return dma_addr == AMD_IOMMU_MAPPING_ERROR;
2688}
2689
2690static const struct dma_map_ops amd_iommu_dma_ops = {
2691        .alloc          = alloc_coherent,
2692        .free           = free_coherent,
2693        .map_page       = map_page,
2694        .unmap_page     = unmap_page,
2695        .map_sg         = map_sg,
2696        .unmap_sg       = unmap_sg,
2697        .dma_supported  = amd_iommu_dma_supported,
2698        .mapping_error  = amd_iommu_mapping_error,
2699};
2700
2701static int init_reserved_iova_ranges(void)
2702{
2703        struct pci_dev *pdev = NULL;
2704        struct iova *val;
2705
2706        init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2707
2708        lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2709                          &reserved_rbtree_key);
2710
2711        /* MSI memory range */
2712        val = reserve_iova(&reserved_iova_ranges,
2713                           IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2714        if (!val) {
2715                pr_err("Reserving MSI range failed\n");
2716                return -ENOMEM;
2717        }
2718
2719        /* HT memory range */
2720        val = reserve_iova(&reserved_iova_ranges,
2721                           IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2722        if (!val) {
2723                pr_err("Reserving HT range failed\n");
2724                return -ENOMEM;
2725        }
2726
2727        /*
2728         * Memory used for PCI resources
2729         * FIXME: Check whether we can reserve the PCI-hole completly
2730         */
2731        for_each_pci_dev(pdev) {
2732                int i;
2733
2734                for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2735                        struct resource *r = &pdev->resource[i];
2736
2737                        if (!(r->flags & IORESOURCE_MEM))
2738                                continue;
2739
2740                        val = reserve_iova(&reserved_iova_ranges,
2741                                           IOVA_PFN(r->start),
2742                                           IOVA_PFN(r->end));
2743                        if (!val) {
2744                                pr_err("Reserve pci-resource range failed\n");
2745                                return -ENOMEM;
2746                        }
2747                }
2748        }
2749
2750        return 0;
2751}
2752
2753int __init amd_iommu_init_api(void)
2754{
2755        int ret, err = 0;
2756
2757        ret = iova_cache_get();
2758        if (ret)
2759                return ret;
2760
2761        ret = init_reserved_iova_ranges();
2762        if (ret)
2763                return ret;
2764
2765        err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2766        if (err)
2767                return err;
2768#ifdef CONFIG_ARM_AMBA
2769        err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2770        if (err)
2771                return err;
2772#endif
2773        err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2774        if (err)
2775                return err;
2776
2777        return 0;
2778}
2779
2780int __init amd_iommu_init_dma_ops(void)
2781{
2782        swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2783        iommu_detected = 1;
2784
2785        /*
2786         * In case we don't initialize SWIOTLB (actually the common case
2787         * when AMD IOMMU is enabled and SME is not active), make sure there
2788         * are global dma_ops set as a fall-back for devices not handled by
2789         * this driver (for example non-PCI devices). When SME is active,
2790         * make sure that swiotlb variable remains set so the global dma_ops
2791         * continue to be SWIOTLB.
2792         */
2793        if (!swiotlb)
2794                dma_ops = &dma_direct_ops;
2795
2796        if (amd_iommu_unmap_flush)
2797                pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2798        else
2799                pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2800
2801        return 0;
2802
2803}
2804
2805/*****************************************************************************
2806 *
2807 * The following functions belong to the exported interface of AMD IOMMU
2808 *
2809 * This interface allows access to lower level functions of the IOMMU
2810 * like protection domain handling and assignement of devices to domains
2811 * which is not possible with the dma_ops interface.
2812 *
2813 *****************************************************************************/
2814
2815static void cleanup_domain(struct protection_domain *domain)
2816{
2817        struct iommu_dev_data *entry;
2818        unsigned long flags;
2819
2820        spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2821
2822        while (!list_empty(&domain->dev_list)) {
2823                entry = list_first_entry(&domain->dev_list,
2824                                         struct iommu_dev_data, list);
2825                BUG_ON(!entry->domain);
2826                __detach_device(entry);
2827        }
2828
2829        spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2830}
2831
2832static void protection_domain_free(struct protection_domain *domain)
2833{
2834        if (!domain)
2835                return;
2836
2837        del_domain_from_list(domain);
2838
2839        if (domain->id)
2840                domain_id_free(domain->id);
2841
2842        kfree(domain);
2843}
2844
2845static int protection_domain_init(struct protection_domain *domain)
2846{
2847        spin_lock_init(&domain->lock);
2848        mutex_init(&domain->api_lock);
2849        domain->id = domain_id_alloc();
2850        if (!domain->id)
2851                return -ENOMEM;
2852        INIT_LIST_HEAD(&domain->dev_list);
2853
2854        return 0;
2855}
2856
2857static struct protection_domain *protection_domain_alloc(void)
2858{
2859        struct protection_domain *domain;
2860
2861        domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2862        if (!domain)
2863                return NULL;
2864
2865        if (protection_domain_init(domain))
2866                goto out_err;
2867
2868        add_domain_to_list(domain);
2869
2870        return domain;
2871
2872out_err:
2873        kfree(domain);
2874
2875        return NULL;
2876}
2877
2878static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2879{
2880        struct protection_domain *pdomain;
2881        struct dma_ops_domain *dma_domain;
2882
2883        switch (type) {
2884        case IOMMU_DOMAIN_UNMANAGED:
2885                pdomain = protection_domain_alloc();
2886                if (!pdomain)
2887                        return NULL;
2888
2889                pdomain->mode    = PAGE_MODE_3_LEVEL;
2890                pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2891                if (!pdomain->pt_root) {
2892                        protection_domain_free(pdomain);
2893                        return NULL;
2894                }
2895
2896                pdomain->domain.geometry.aperture_start = 0;
2897                pdomain->domain.geometry.aperture_end   = ~0ULL;
2898                pdomain->domain.geometry.force_aperture = true;
2899
2900                break;
2901        case IOMMU_DOMAIN_DMA:
2902                dma_domain = dma_ops_domain_alloc();
2903                if (!dma_domain) {
2904                        pr_err("AMD-Vi: Failed to allocate\n");
2905                        return NULL;
2906                }
2907                pdomain = &dma_domain->domain;
2908                break;
2909        case IOMMU_DOMAIN_IDENTITY:
2910                pdomain = protection_domain_alloc();
2911                if (!pdomain)
2912                        return NULL;
2913
2914                pdomain->mode = PAGE_MODE_NONE;
2915                break;
2916        default:
2917                return NULL;
2918        }
2919
2920        return &pdomain->domain;
2921}
2922
2923static void amd_iommu_domain_free(struct iommu_domain *dom)
2924{
2925        struct protection_domain *domain;
2926        struct dma_ops_domain *dma_dom;
2927
2928        domain = to_pdomain(dom);
2929
2930        if (domain->dev_cnt > 0)
2931                cleanup_domain(domain);
2932
2933        BUG_ON(domain->dev_cnt != 0);
2934
2935        if (!dom)
2936                return;
2937
2938        switch (dom->type) {
2939        case IOMMU_DOMAIN_DMA:
2940                /* Now release the domain */
2941                dma_dom = to_dma_ops_domain(domain);
2942                dma_ops_domain_free(dma_dom);
2943                break;
2944        default:
2945                if (domain->mode != PAGE_MODE_NONE)
2946                        free_pagetable(domain);
2947
2948                if (domain->flags & PD_IOMMUV2_MASK)
2949                        free_gcr3_table(domain);
2950
2951                protection_domain_free(domain);
2952                break;
2953        }
2954}
2955
2956static void amd_iommu_detach_device(struct iommu_domain *dom,
2957                                    struct device *dev)
2958{
2959        struct iommu_dev_data *dev_data = dev->archdata.iommu;
2960        struct amd_iommu *iommu;
2961        int devid;
2962
2963        if (!check_device(dev))
2964                return;
2965
2966        devid = get_device_id(dev);
2967        if (devid < 0)
2968                return;
2969
2970        if (dev_data->domain != NULL)
2971                detach_device(dev);
2972
2973        iommu = amd_iommu_rlookup_table[devid];
2974        if (!iommu)
2975                return;
2976
2977#ifdef CONFIG_IRQ_REMAP
2978        if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2979            (dom->type == IOMMU_DOMAIN_UNMANAGED))
2980                dev_data->use_vapic = 0;
2981#endif
2982
2983        iommu_completion_wait(iommu);
2984}
2985
2986static int amd_iommu_attach_device(struct iommu_domain *dom,
2987                                   struct device *dev)
2988{
2989        struct protection_domain *domain = to_pdomain(dom);
2990        struct iommu_dev_data *dev_data;
2991        struct amd_iommu *iommu;
2992        int ret;
2993
2994        if (!check_device(dev))
2995                return -EINVAL;
2996
2997        dev_data = dev->archdata.iommu;
2998
2999        iommu = amd_iommu_rlookup_table[dev_data->devid];
3000        if (!iommu)
3001                return -EINVAL;
3002
3003        if (dev_data->domain)
3004                detach_device(dev);
3005
3006        ret = attach_device(dev, domain);
3007
3008#ifdef CONFIG_IRQ_REMAP
3009        if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3010                if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3011                        dev_data->use_vapic = 1;
3012                else
3013                        dev_data->use_vapic = 0;
3014        }
3015#endif
3016
3017        iommu_completion_wait(iommu);
3018
3019        return ret;
3020}
3021
3022static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3023                         phys_addr_t paddr, size_t page_size, int iommu_prot)
3024{
3025        struct protection_domain *domain = to_pdomain(dom);
3026        int prot = 0;
3027        int ret;
3028
3029        if (domain->mode == PAGE_MODE_NONE)
3030                return -EINVAL;
3031
3032        if (iommu_prot & IOMMU_READ)
3033                prot |= IOMMU_PROT_IR;
3034        if (iommu_prot & IOMMU_WRITE)
3035                prot |= IOMMU_PROT_IW;
3036
3037        mutex_lock(&domain->api_lock);
3038        ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3039        mutex_unlock(&domain->api_lock);
3040
3041        return ret;
3042}
3043
3044static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3045                           size_t page_size)
3046{
3047        struct protection_domain *domain = to_pdomain(dom);
3048        size_t unmap_size;
3049
3050        if (domain->mode == PAGE_MODE_NONE)
3051                return 0;
3052
3053        mutex_lock(&domain->api_lock);
3054        unmap_size = iommu_unmap_page(domain, iova, page_size);
3055        mutex_unlock(&domain->api_lock);
3056
3057        return unmap_size;
3058}
3059
3060static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3061                                          dma_addr_t iova)
3062{
3063        struct protection_domain *domain = to_pdomain(dom);
3064        unsigned long offset_mask, pte_pgsize;
3065        u64 *pte, __pte;
3066
3067        if (domain->mode == PAGE_MODE_NONE)
3068                return iova;
3069
3070        pte = fetch_pte(domain, iova, &pte_pgsize);
3071
3072        if (!pte || !IOMMU_PTE_PRESENT(*pte))
3073                return 0;
3074
3075        offset_mask = pte_pgsize - 1;
3076        __pte       = *pte & PM_ADDR_MASK;
3077
3078        return (__pte & ~offset_mask) | (iova & offset_mask);
3079}
3080
3081static bool amd_iommu_capable(enum iommu_cap cap)
3082{
3083        switch (cap) {
3084        case IOMMU_CAP_CACHE_COHERENCY:
3085                return true;
3086        case IOMMU_CAP_INTR_REMAP:
3087                return (irq_remapping_enabled == 1);
3088        case IOMMU_CAP_NOEXEC:
3089                return false;
3090        }
3091
3092        return false;
3093}
3094
3095static void amd_iommu_get_resv_regions(struct device *dev,
3096                                       struct list_head *head)
3097{
3098        struct iommu_resv_region *region;
3099        struct unity_map_entry *entry;
3100        int devid;
3101
3102        devid = get_device_id(dev);
3103        if (devid < 0)
3104                return;
3105
3106        list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3107                size_t length;
3108                int prot = 0;
3109
3110                if (devid < entry->devid_start || devid > entry->devid_end)
3111                        continue;
3112
3113                length = entry->address_end - entry->address_start;
3114                if (entry->prot & IOMMU_PROT_IR)
3115                        prot |= IOMMU_READ;
3116                if (entry->prot & IOMMU_PROT_IW)
3117                        prot |= IOMMU_WRITE;
3118
3119                region = iommu_alloc_resv_region(entry->address_start,
3120                                                 length, prot,
3121                                                 IOMMU_RESV_DIRECT);
3122                if (!region) {
3123                        pr_err("Out of memory allocating dm-regions for %s\n",
3124                                dev_name(dev));
3125                        return;
3126                }
3127                list_add_tail(&region->list, head);
3128        }
3129
3130        region = iommu_alloc_resv_region(MSI_RANGE_START,
3131                                         MSI_RANGE_END - MSI_RANGE_START + 1,
3132                                         0, IOMMU_RESV_MSI);
3133        if (!region)
3134                return;
3135        list_add_tail(&region->list, head);
3136
3137        region = iommu_alloc_resv_region(HT_RANGE_START,
3138                                         HT_RANGE_END - HT_RANGE_START + 1,
3139                                         0, IOMMU_RESV_RESERVED);
3140        if (!region)
3141                return;
3142        list_add_tail(&region->list, head);
3143}
3144
3145static void amd_iommu_put_resv_regions(struct device *dev,
3146                                     struct list_head *head)
3147{
3148        struct iommu_resv_region *entry, *next;
3149
3150        list_for_each_entry_safe(entry, next, head, list)
3151                kfree(entry);
3152}
3153
3154static void amd_iommu_apply_resv_region(struct device *dev,
3155                                      struct iommu_domain *domain,
3156                                      struct iommu_resv_region *region)
3157{
3158        struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3159        unsigned long start, end;
3160
3161        start = IOVA_PFN(region->start);
3162        end   = IOVA_PFN(region->start + region->length - 1);
3163
3164        WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3165}
3166
3167static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
3168                                         struct device *dev)
3169{
3170        struct iommu_dev_data *dev_data = dev->archdata.iommu;
3171        return dev_data->defer_attach;
3172}
3173
3174static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
3175{
3176        struct protection_domain *dom = to_pdomain(domain);
3177
3178        domain_flush_tlb_pde(dom);
3179        domain_flush_complete(dom);
3180}
3181
3182static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
3183                                      unsigned long iova, size_t size)
3184{
3185}
3186
3187const struct iommu_ops amd_iommu_ops = {
3188        .capable = amd_iommu_capable,
3189        .domain_alloc = amd_iommu_domain_alloc,
3190        .domain_free  = amd_iommu_domain_free,
3191        .attach_dev = amd_iommu_attach_device,
3192        .detach_dev = amd_iommu_detach_device,
3193        .map = amd_iommu_map,
3194        .unmap = amd_iommu_unmap,
3195        .map_sg = default_iommu_map_sg,
3196        .iova_to_phys = amd_iommu_iova_to_phys,
3197        .add_device = amd_iommu_add_device,
3198        .remove_device = amd_iommu_remove_device,
3199        .device_group = amd_iommu_device_group,
3200        .get_resv_regions = amd_iommu_get_resv_regions,
3201        .put_resv_regions = amd_iommu_put_resv_regions,
3202        .apply_resv_region = amd_iommu_apply_resv_region,
3203        .is_attach_deferred = amd_iommu_is_attach_deferred,
3204        .pgsize_bitmap  = AMD_IOMMU_PGSIZES,
3205        .flush_iotlb_all = amd_iommu_flush_iotlb_all,
3206        .iotlb_range_add = amd_iommu_iotlb_range_add,
3207        .iotlb_sync = amd_iommu_flush_iotlb_all,
3208};
3209
3210/*****************************************************************************
3211 *
3212 * The next functions do a basic initialization of IOMMU for pass through
3213 * mode
3214 *
3215 * In passthrough mode the IOMMU is initialized and enabled but not used for
3216 * DMA-API translation.
3217 *
3218 *****************************************************************************/
3219
3220/* IOMMUv2 specific functions */
3221int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3222{
3223        return atomic_notifier_chain_register(&ppr_notifier, nb);
3224}
3225EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3226
3227int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3228{
3229        return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3230}
3231EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3232
3233void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3234{
3235        struct protection_domain *domain = to_pdomain(dom);
3236        unsigned long flags;
3237
3238        spin_lock_irqsave(&domain->lock, flags);
3239
3240        /* Update data structure */
3241        domain->mode    = PAGE_MODE_NONE;
3242        domain->updated = true;
3243
3244        /* Make changes visible to IOMMUs */
3245        update_domain(domain);
3246
3247        /* Page-table is not visible to IOMMU anymore, so free it */
3248        free_pagetable(domain);
3249
3250        spin_unlock_irqrestore(&domain->lock, flags);
3251}
3252EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3253
3254int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3255{
3256        struct protection_domain *domain = to_pdomain(dom);
3257        unsigned long flags;
3258        int levels, ret;
3259
3260        if (pasids <= 0 || pasids > (PASID_MASK + 1))
3261                return -EINVAL;
3262
3263        /* Number of GCR3 table levels required */
3264        for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3265                levels += 1;
3266
3267        if (levels > amd_iommu_max_glx_val)
3268                return -EINVAL;
3269
3270        spin_lock_irqsave(&domain->lock, flags);
3271
3272        /*
3273         * Save us all sanity checks whether devices already in the
3274         * domain support IOMMUv2. Just force that the domain has no
3275         * devices attached when it is switched into IOMMUv2 mode.
3276         */
3277        ret = -EBUSY;
3278        if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3279                goto out;
3280
3281        ret = -ENOMEM;
3282        domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3283        if (domain->gcr3_tbl == NULL)
3284                goto out;
3285
3286        domain->glx      = levels;
3287        domain->flags   |= PD_IOMMUV2_MASK;
3288        domain->updated  = true;
3289
3290        update_domain(domain);
3291
3292        ret = 0;
3293
3294out:
3295        spin_unlock_irqrestore(&domain->lock, flags);
3296
3297        return ret;
3298}
3299EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3300
3301static int __flush_pasid(struct protection_domain *domain, int pasid,
3302                         u64 address, bool size)
3303{
3304        struct iommu_dev_data *dev_data;
3305        struct iommu_cmd cmd;
3306        int i, ret;
3307
3308        if (!(domain->flags & PD_IOMMUV2_MASK))
3309                return -EINVAL;
3310
3311        build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3312
3313        /*
3314         * IOMMU TLB needs to be flushed before Device TLB to
3315         * prevent device TLB refill from IOMMU TLB
3316         */
3317        for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3318                if (domain->dev_iommu[i] == 0)
3319                        continue;
3320
3321                ret = iommu_queue_command(amd_iommus[i], &cmd);
3322                if (ret != 0)
3323                        goto out;
3324        }
3325
3326        /* Wait until IOMMU TLB flushes are complete */
3327        domain_flush_complete(domain);
3328
3329        /* Now flush device TLBs */
3330        list_for_each_entry(dev_data, &domain->dev_list, list) {
3331                struct amd_iommu *iommu;
3332                int qdep;
3333
3334                /*
3335                   There might be non-IOMMUv2 capable devices in an IOMMUv2
3336                 * domain.
3337                 */
3338                if (!dev_data->ats.enabled)
3339                        continue;
3340
3341                qdep  = dev_data->ats.qdep;
3342                iommu = amd_iommu_rlookup_table[dev_data->devid];
3343
3344                build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3345                                      qdep, address, size);
3346
3347                ret = iommu_queue_command(iommu, &cmd);
3348                if (ret != 0)
3349                        goto out;
3350        }
3351
3352        /* Wait until all device TLBs are flushed */
3353        domain_flush_complete(domain);
3354
3355        ret = 0;
3356
3357out:
3358
3359        return ret;
3360}
3361
3362static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3363                                  u64 address)
3364{
3365        return __flush_pasid(domain, pasid, address, false);
3366}
3367
3368int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3369                         u64 address)
3370{
3371        struct protection_domain *domain = to_pdomain(dom);
3372        unsigned long flags;
3373        int ret;
3374
3375        spin_lock_irqsave(&domain->lock, flags);
3376        ret = __amd_iommu_flush_page(domain, pasid, address);
3377        spin_unlock_irqrestore(&domain->lock, flags);
3378
3379        return ret;
3380}
3381EXPORT_SYMBOL(amd_iommu_flush_page);
3382
3383static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3384{
3385        return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3386                             true);
3387}
3388
3389int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3390{
3391        struct protection_domain *domain = to_pdomain(dom);
3392        unsigned long flags;
3393        int ret;
3394
3395        spin_lock_irqsave(&domain->lock, flags);
3396        ret = __amd_iommu_flush_tlb(domain, pasid);
3397        spin_unlock_irqrestore(&domain->lock, flags);
3398
3399        return ret;
3400}
3401EXPORT_SYMBOL(amd_iommu_flush_tlb);
3402
3403static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3404{
3405        int index;
3406        u64 *pte;
3407
3408        while (true) {
3409
3410                index = (pasid >> (9 * level)) & 0x1ff;
3411                pte   = &root[index];
3412
3413                if (level == 0)
3414                        break;
3415
3416                if (!(*pte & GCR3_VALID)) {
3417                        if (!alloc)
3418                                return NULL;
3419
3420                        root = (void *)get_zeroed_page(GFP_ATOMIC);
3421                        if (root == NULL)
3422                                return NULL;
3423
3424                        *pte = iommu_virt_to_phys(root) | GCR3_VALID;
3425                }
3426
3427                root = iommu_phys_to_virt(*pte & PAGE_MASK);
3428
3429                level -= 1;
3430        }
3431
3432        return pte;
3433}
3434
3435static int __set_gcr3(struct protection_domain *domain, int pasid,
3436                      unsigned long cr3)
3437{
3438        u64 *pte;
3439
3440        if (domain->mode != PAGE_MODE_NONE)
3441                return -EINVAL;
3442
3443        pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3444        if (pte == NULL)
3445                return -ENOMEM;
3446
3447        *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3448
3449        return __amd_iommu_flush_tlb(domain, pasid);
3450}
3451
3452static int __clear_gcr3(struct protection_domain *domain, int pasid)
3453{
3454        u64 *pte;
3455
3456        if (domain->mode != PAGE_MODE_NONE)
3457                return -EINVAL;
3458
3459        pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3460        if (pte == NULL)
3461                return 0;
3462
3463        *pte = 0;
3464
3465        return __amd_iommu_flush_tlb(domain, pasid);
3466}
3467
3468int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3469                              unsigned long cr3)
3470{
3471        struct protection_domain *domain = to_pdomain(dom);
3472        unsigned long flags;
3473        int ret;
3474
3475        spin_lock_irqsave(&domain->lock, flags);
3476        ret = __set_gcr3(domain, pasid, cr3);
3477        spin_unlock_irqrestore(&domain->lock, flags);
3478
3479        return ret;
3480}
3481EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3482
3483int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3484{
3485        struct protection_domain *domain = to_pdomain(dom);
3486        unsigned long flags;
3487        int ret;
3488
3489        spin_lock_irqsave(&domain->lock, flags);
3490        ret = __clear_gcr3(domain, pasid);
3491        spin_unlock_irqrestore(&domain->lock, flags);
3492
3493        return ret;
3494}
3495EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3496
3497int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3498                           int status, int tag)
3499{
3500        struct iommu_dev_data *dev_data;
3501        struct amd_iommu *iommu;
3502        struct iommu_cmd cmd;
3503
3504        dev_data = get_dev_data(&pdev->dev);
3505        iommu    = amd_iommu_rlookup_table[dev_data->devid];
3506
3507        build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3508                           tag, dev_data->pri_tlp);
3509
3510        return iommu_queue_command(iommu, &cmd);
3511}
3512EXPORT_SYMBOL(amd_iommu_complete_ppr);
3513
3514struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3515{
3516        struct protection_domain *pdomain;
3517
3518        pdomain = get_domain(&pdev->dev);
3519        if (IS_ERR(pdomain))
3520                return NULL;
3521
3522        /* Only return IOMMUv2 domains */
3523        if (!(pdomain->flags & PD_IOMMUV2_MASK))
3524                return NULL;
3525
3526        return &pdomain->domain;
3527}
3528EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3529
3530void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3531{
3532        struct iommu_dev_data *dev_data;
3533
3534        if (!amd_iommu_v2_supported())
3535                return;
3536
3537        dev_data = get_dev_data(&pdev->dev);
3538        dev_data->errata |= (1 << erratum);
3539}
3540EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3541
3542int amd_iommu_device_info(struct pci_dev *pdev,
3543                          struct amd_iommu_device_info *info)
3544{
3545        int max_pasids;
3546        int pos;
3547
3548        if (pdev == NULL || info == NULL)
3549                return -EINVAL;
3550
3551        if (!amd_iommu_v2_supported())
3552                return -EINVAL;
3553
3554        memset(info, 0, sizeof(*info));
3555
3556        if (!pci_ats_disabled()) {
3557                pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3558                if (pos)
3559                        info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3560        }
3561
3562        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3563        if (pos)
3564                info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3565
3566        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3567        if (pos) {
3568                int features;
3569
3570                max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3571                max_pasids = min(max_pasids, (1 << 20));
3572
3573                info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3574                info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3575
3576                features = pci_pasid_features(pdev);
3577                if (features & PCI_PASID_CAP_EXEC)
3578                        info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3579                if (features & PCI_PASID_CAP_PRIV)
3580                        info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3581        }
3582
3583        return 0;
3584}
3585EXPORT_SYMBOL(amd_iommu_device_info);
3586
3587#ifdef CONFIG_IRQ_REMAP
3588
3589/*****************************************************************************
3590 *
3591 * Interrupt Remapping Implementation
3592 *
3593 *****************************************************************************/
3594
3595static struct irq_chip amd_ir_chip;
3596static DEFINE_SPINLOCK(iommu_table_lock);
3597
3598static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3599{
3600        u64 dte;
3601
3602        dte     = amd_iommu_dev_table[devid].data[2];
3603        dte     &= ~DTE_IRQ_PHYS_ADDR_MASK;
3604        dte     |= iommu_virt_to_phys(table->table);
3605        dte     |= DTE_IRQ_REMAP_INTCTL;
3606        dte     |= DTE_IRQ_TABLE_LEN;
3607        dte     |= DTE_IRQ_REMAP_ENABLE;
3608
3609        amd_iommu_dev_table[devid].data[2] = dte;
3610}
3611
3612static struct irq_remap_table *get_irq_table(u16 devid)
3613{
3614        struct irq_remap_table *table;
3615
3616        if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3617                      "%s: no iommu for devid %x\n", __func__, devid))
3618                return NULL;
3619
3620        table = irq_lookup_table[devid];
3621        if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3622                return NULL;
3623
3624        return table;
3625}
3626
3627static struct irq_remap_table *__alloc_irq_table(void)
3628{
3629        struct irq_remap_table *table;
3630
3631        table = kzalloc(sizeof(*table), GFP_KERNEL);
3632        if (!table)
3633                return NULL;
3634
3635        table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3636        if (!table->table) {
3637                kfree(table);
3638                return NULL;
3639        }
3640        raw_spin_lock_init(&table->lock);
3641
3642        if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3643                memset(table->table, 0,
3644                       MAX_IRQS_PER_TABLE * sizeof(u32));
3645        else
3646                memset(table->table, 0,
3647                       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3648        return table;
3649}
3650
3651static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3652                                  struct irq_remap_table *table)
3653{
3654        irq_lookup_table[devid] = table;
3655        set_dte_irq_entry(devid, table);
3656        iommu_flush_dte(iommu, devid);
3657}
3658
3659static struct irq_remap_table *alloc_irq_table(u16 devid)
3660{
3661        struct irq_remap_table *table = NULL;
3662        struct irq_remap_table *new_table = NULL;
3663        struct amd_iommu *iommu;
3664        unsigned long flags;
3665        u16 alias;
3666
3667        spin_lock_irqsave(&iommu_table_lock, flags);
3668
3669        iommu = amd_iommu_rlookup_table[devid];
3670        if (!iommu)
3671                goto out_unlock;
3672
3673        table = irq_lookup_table[devid];
3674        if (table)
3675                goto out_unlock;
3676
3677        alias = amd_iommu_alias_table[devid];
3678        table = irq_lookup_table[alias];
3679        if (table) {
3680                set_remap_table_entry(iommu, devid, table);
3681                goto out_wait;
3682        }
3683        spin_unlock_irqrestore(&iommu_table_lock, flags);
3684
3685        /* Nothing there yet, allocate new irq remapping table */
3686        new_table = __alloc_irq_table();
3687        if (!new_table)
3688                return NULL;
3689
3690        spin_lock_irqsave(&iommu_table_lock, flags);
3691
3692        table = irq_lookup_table[devid];
3693        if (table)
3694                goto out_unlock;
3695
3696        table = irq_lookup_table[alias];
3697        if (table) {
3698                set_remap_table_entry(iommu, devid, table);
3699                goto out_wait;
3700        }
3701
3702        table = new_table;
3703        new_table = NULL;
3704
3705        set_remap_table_entry(iommu, devid, table);
3706        if (devid != alias)
3707                set_remap_table_entry(iommu, alias, table);
3708
3709out_wait:
3710        iommu_completion_wait(iommu);
3711
3712out_unlock:
3713        spin_unlock_irqrestore(&iommu_table_lock, flags);
3714
3715        if (new_table) {
3716                kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3717                kfree(new_table);
3718        }
3719        return table;
3720}
3721
3722static int alloc_irq_index(u16 devid, int count, bool align)
3723{
3724        struct irq_remap_table *table;
3725        int index, c, alignment = 1;
3726        unsigned long flags;
3727        struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3728
3729        if (!iommu)
3730                return -ENODEV;
3731
3732        table = alloc_irq_table(devid);
3733        if (!table)
3734                return -ENODEV;
3735
3736        if (align)
3737                alignment = roundup_pow_of_two(count);
3738
3739        raw_spin_lock_irqsave(&table->lock, flags);
3740
3741        /* Scan table for free entries */
3742        for (index = ALIGN(table->min_index, alignment), c = 0;
3743             index < MAX_IRQS_PER_TABLE;) {
3744                if (!iommu->irte_ops->is_allocated(table, index)) {
3745                        c += 1;
3746                } else {
3747                        c     = 0;
3748                        index = ALIGN(index + 1, alignment);
3749                        continue;
3750                }
3751
3752                if (c == count) {
3753                        for (; c != 0; --c)
3754                                iommu->irte_ops->set_allocated(table, index - c + 1);
3755
3756                        index -= count - 1;
3757                        goto out;
3758                }
3759
3760                index++;
3761        }
3762
3763        index = -ENOSPC;
3764
3765out:
3766        raw_spin_unlock_irqrestore(&table->lock, flags);
3767
3768        return index;
3769}
3770
3771static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3772                          struct amd_ir_data *data)
3773{
3774        struct irq_remap_table *table;
3775        struct amd_iommu *iommu;
3776        unsigned long flags;
3777        struct irte_ga *entry;
3778
3779        iommu = amd_iommu_rlookup_table[devid];
3780        if (iommu == NULL)
3781                return -EINVAL;
3782
3783        table = get_irq_table(devid);
3784        if (!table)
3785                return -ENOMEM;
3786
3787        raw_spin_lock_irqsave(&table->lock, flags);
3788
3789        entry = (struct irte_ga *)table->table;
3790        entry = &entry[index];
3791        entry->lo.fields_remap.valid = 0;
3792        entry->hi.val = irte->hi.val;
3793        entry->lo.val = irte->lo.val;
3794        entry->lo.fields_remap.valid = 1;
3795        if (data)
3796                data->ref = entry;
3797
3798        raw_spin_unlock_irqrestore(&table->lock, flags);
3799
3800        iommu_flush_irt(iommu, devid);
3801        iommu_completion_wait(iommu);
3802
3803        return 0;
3804}
3805
3806static int modify_irte(u16 devid, int index, union irte *irte)
3807{
3808        struct irq_remap_table *table;
3809        struct amd_iommu *iommu;
3810        unsigned long flags;
3811
3812        iommu = amd_iommu_rlookup_table[devid];
3813        if (iommu == NULL)
3814                return -EINVAL;
3815
3816        table = get_irq_table(devid);
3817        if (!table)
3818                return -ENOMEM;
3819
3820        raw_spin_lock_irqsave(&table->lock, flags);
3821        table->table[index] = irte->val;
3822        raw_spin_unlock_irqrestore(&table->lock, flags);
3823
3824        iommu_flush_irt(iommu, devid);
3825        iommu_completion_wait(iommu);
3826
3827        return 0;
3828}
3829
3830static void free_irte(u16 devid, int index)
3831{
3832        struct irq_remap_table *table;
3833        struct amd_iommu *iommu;
3834        unsigned long flags;
3835
3836        iommu = amd_iommu_rlookup_table[devid];
3837        if (iommu == NULL)
3838                return;
3839
3840        table = get_irq_table(devid);
3841        if (!table)
3842                return;
3843
3844        raw_spin_lock_irqsave(&table->lock, flags);
3845        iommu->irte_ops->clear_allocated(table, index);
3846        raw_spin_unlock_irqrestore(&table->lock, flags);
3847
3848        iommu_flush_irt(iommu, devid);
3849        iommu_completion_wait(iommu);
3850}
3851
3852static void irte_prepare(void *entry,
3853                         u32 delivery_mode, u32 dest_mode,
3854                         u8 vector, u32 dest_apicid, int devid)
3855{
3856        union irte *irte = (union irte *) entry;
3857
3858        irte->val                = 0;
3859        irte->fields.vector      = vector;
3860        irte->fields.int_type    = delivery_mode;
3861        irte->fields.destination = dest_apicid;
3862        irte->fields.dm          = dest_mode;
3863        irte->fields.valid       = 1;
3864}
3865
3866static void irte_ga_prepare(void *entry,
3867                            u32 delivery_mode, u32 dest_mode,
3868                            u8 vector, u32 dest_apicid, int devid)
3869{
3870        struct irte_ga *irte = (struct irte_ga *) entry;
3871
3872        irte->lo.val                      = 0;
3873        irte->hi.val                      = 0;
3874        irte->lo.fields_remap.int_type    = delivery_mode;
3875        irte->lo.fields_remap.dm          = dest_mode;
3876        irte->hi.fields.vector            = vector;
3877        irte->lo.fields_remap.destination = dest_apicid;
3878        irte->lo.fields_remap.valid       = 1;
3879}
3880
3881static void irte_activate(void *entry, u16 devid, u16 index)
3882{
3883        union irte *irte = (union irte *) entry;
3884
3885        irte->fields.valid = 1;
3886        modify_irte(devid, index, irte);
3887}
3888
3889static void irte_ga_activate(void *entry, u16 devid, u16 index)
3890{
3891        struct irte_ga *irte = (struct irte_ga *) entry;
3892
3893        irte->lo.fields_remap.valid = 1;
3894        modify_irte_ga(devid, index, irte, NULL);
3895}
3896
3897static void irte_deactivate(void *entry, u16 devid, u16 index)
3898{
3899        union irte *irte = (union irte *) entry;
3900
3901        irte->fields.valid = 0;
3902        modify_irte(devid, index, irte);
3903}
3904
3905static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3906{
3907        struct irte_ga *irte = (struct irte_ga *) entry;
3908
3909        irte->lo.fields_remap.valid = 0;
3910        modify_irte_ga(devid, index, irte, NULL);
3911}
3912
3913static void irte_set_affinity(void *entry, u16 devid, u16 index,
3914                              u8 vector, u32 dest_apicid)
3915{
3916        union irte *irte = (union irte *) entry;
3917
3918        irte->fields.vector = vector;
3919        irte->fields.destination = dest_apicid;
3920        modify_irte(devid, index, irte);
3921}
3922
3923static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3924                                 u8 vector, u32 dest_apicid)
3925{
3926        struct irte_ga *irte = (struct irte_ga *) entry;
3927
3928        if (!irte->lo.fields_remap.guest_mode) {
3929                irte->hi.fields.vector = vector;
3930                irte->lo.fields_remap.destination = dest_apicid;
3931                modify_irte_ga(devid, index, irte, NULL);
3932        }
3933}
3934
3935#define IRTE_ALLOCATED (~1U)
3936static void irte_set_allocated(struct irq_remap_table *table, int index)
3937{
3938        table->table[index] = IRTE_ALLOCATED;
3939}
3940
3941static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3942{
3943        struct irte_ga *ptr = (struct irte_ga *)table->table;
3944        struct irte_ga *irte = &ptr[index];
3945
3946        memset(&irte->lo.val, 0, sizeof(u64));
3947        memset(&irte->hi.val, 0, sizeof(u64));
3948        irte->hi.fields.vector = 0xff;
3949}
3950
3951static bool irte_is_allocated(struct irq_remap_table *table, int index)
3952{
3953        union irte *ptr = (union irte *)table->table;
3954        union irte *irte = &ptr[index];
3955
3956        return irte->val != 0;
3957}
3958
3959static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3960{
3961        struct irte_ga *ptr = (struct irte_ga *)table->table;
3962        struct irte_ga *irte = &ptr[index];
3963
3964        return irte->hi.fields.vector != 0;
3965}
3966
3967static void irte_clear_allocated(struct irq_remap_table *table, int index)
3968{
3969        table->table[index] = 0;
3970}
3971
3972static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3973{
3974        struct irte_ga *ptr = (struct irte_ga *)table->table;
3975        struct irte_ga *irte = &ptr[index];
3976
3977        memset(&irte->lo.val, 0, sizeof(u64));
3978        memset(&irte->hi.val, 0, sizeof(u64));
3979}
3980
3981static int get_devid(struct irq_alloc_info *info)
3982{
3983        int devid = -1;
3984
3985        switch (info->type) {
3986        case X86_IRQ_ALLOC_TYPE_IOAPIC:
3987                devid     = get_ioapic_devid(info->ioapic_id);
3988                break;
3989        case X86_IRQ_ALLOC_TYPE_HPET:
3990                devid     = get_hpet_devid(info->hpet_id);
3991                break;
3992        case X86_IRQ_ALLOC_TYPE_MSI:
3993        case X86_IRQ_ALLOC_TYPE_MSIX:
3994                devid = get_device_id(&info->msi_dev->dev);
3995                break;
3996        default:
3997                BUG_ON(1);
3998                break;
3999        }
4000
4001        return devid;
4002}
4003
4004static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4005{
4006        struct amd_iommu *iommu;
4007        int devid;
4008
4009        if (!info)
4010                return NULL;
4011
4012        devid = get_devid(info);
4013        if (devid >= 0) {
4014                iommu = amd_iommu_rlookup_table[devid];
4015                if (iommu)
4016                        return iommu->ir_domain;
4017        }
4018
4019        return NULL;
4020}
4021
4022static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4023{
4024        struct amd_iommu *iommu;
4025        int devid;
4026
4027        if (!info)
4028                return NULL;
4029
4030        switch (info->type) {
4031        case X86_IRQ_ALLOC_TYPE_MSI:
4032        case X86_IRQ_ALLOC_TYPE_MSIX:
4033                devid = get_device_id(&info->msi_dev->dev);
4034                if (devid < 0)
4035                        return NULL;
4036
4037                iommu = amd_iommu_rlookup_table[devid];
4038                if (iommu)
4039                        return iommu->msi_domain;
4040                break;
4041        default:
4042                break;
4043        }
4044
4045        return NULL;
4046}
4047
4048struct irq_remap_ops amd_iommu_irq_ops = {
4049        .prepare                = amd_iommu_prepare,
4050        .enable                 = amd_iommu_enable,
4051        .disable                = amd_iommu_disable,
4052        .reenable               = amd_iommu_reenable,
4053        .enable_faulting        = amd_iommu_enable_faulting,
4054        .get_ir_irq_domain      = get_ir_irq_domain,
4055        .get_irq_domain         = get_irq_domain,
4056};
4057
4058static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4059                                       struct irq_cfg *irq_cfg,
4060                                       struct irq_alloc_info *info,
4061                                       int devid, int index, int sub_handle)
4062{
4063        struct irq_2_irte *irte_info = &data->irq_2_irte;
4064        struct msi_msg *msg = &data->msi_entry;
4065        struct IO_APIC_route_entry *entry;
4066        struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4067
4068        if (!iommu)
4069                return;
4070
4071        data->irq_2_irte.devid = devid;
4072        data->irq_2_irte.index = index + sub_handle;
4073        iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4074                                 apic->irq_dest_mode, irq_cfg->vector,
4075                                 irq_cfg->dest_apicid, devid);
4076
4077        switch (info->type) {
4078        case X86_IRQ_ALLOC_TYPE_IOAPIC:
4079                /* Setup IOAPIC entry */
4080                entry = info->ioapic_entry;
4081                info->ioapic_entry = NULL;
4082                memset(entry, 0, sizeof(*entry));
4083                entry->vector        = index;
4084                entry->mask          = 0;
4085                entry->trigger       = info->ioapic_trigger;
4086                entry->polarity      = info->ioapic_polarity;
4087                /* Mask level triggered irqs. */
4088                if (info->ioapic_trigger)
4089                        entry->mask = 1;
4090                break;
4091
4092        case X86_IRQ_ALLOC_TYPE_HPET:
4093        case X86_IRQ_ALLOC_TYPE_MSI:
4094        case X86_IRQ_ALLOC_TYPE_MSIX:
4095                msg->address_hi = MSI_ADDR_BASE_HI;
4096                msg->address_lo = MSI_ADDR_BASE_LO;
4097                msg->data = irte_info->index;
4098                break;
4099
4100        default:
4101                BUG_ON(1);
4102                break;
4103        }
4104}
4105
4106struct amd_irte_ops irte_32_ops = {
4107        .prepare = irte_prepare,
4108        .activate = irte_activate,
4109        .deactivate = irte_deactivate,
4110        .set_affinity = irte_set_affinity,
4111        .set_allocated = irte_set_allocated,
4112        .is_allocated = irte_is_allocated,
4113        .clear_allocated = irte_clear_allocated,
4114};
4115
4116struct amd_irte_ops irte_128_ops = {
4117        .prepare = irte_ga_prepare,
4118        .activate = irte_ga_activate,
4119        .deactivate = irte_ga_deactivate,
4120        .set_affinity = irte_ga_set_affinity,
4121        .set_allocated = irte_ga_set_allocated,
4122        .is_allocated = irte_ga_is_allocated,
4123        .clear_allocated = irte_ga_clear_allocated,
4124};
4125
4126static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4127                               unsigned int nr_irqs, void *arg)
4128{
4129        struct irq_alloc_info *info = arg;
4130        struct irq_data *irq_data;
4131        struct amd_ir_data *data = NULL;
4132        struct irq_cfg *cfg;
4133        int i, ret, devid;
4134        int index;
4135
4136        if (!info)
4137                return -EINVAL;
4138        if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4139            info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4140                return -EINVAL;
4141
4142        /*
4143         * With IRQ remapping enabled, don't need contiguous CPU vectors
4144         * to support multiple MSI interrupts.
4145         */
4146        if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4147                info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4148
4149        devid = get_devid(info);
4150        if (devid < 0)
4151                return -EINVAL;
4152
4153        ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4154        if (ret < 0)
4155                return ret;
4156
4157        if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4158                struct irq_remap_table *table;
4159                struct amd_iommu *iommu;
4160
4161                table = alloc_irq_table(devid);
4162                if (table) {
4163                        if (!table->min_index) {
4164                                /*
4165                                 * Keep the first 32 indexes free for IOAPIC
4166                                 * interrupts.
4167                                 */
4168                                table->min_index = 32;
4169                                iommu = amd_iommu_rlookup_table[devid];
4170                                for (i = 0; i < 32; ++i)
4171                                        iommu->irte_ops->set_allocated(table, i);
4172                        }
4173                        WARN_ON(table->min_index != 32);
4174                        index = info->ioapic_pin;
4175                } else {
4176                        index = -ENOMEM;
4177                }
4178        } else {
4179                bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
4180
4181                index = alloc_irq_index(devid, nr_irqs, align);
4182        }
4183        if (index < 0) {
4184                pr_warn("Failed to allocate IRTE\n");
4185                ret = index;
4186                goto out_free_parent;
4187        }
4188
4189        for (i = 0; i < nr_irqs; i++) {
4190                irq_data = irq_domain_get_irq_data(domain, virq + i);
4191                cfg = irqd_cfg(irq_data);
4192                if (!irq_data || !cfg) {
4193                        ret = -EINVAL;
4194                        goto out_free_data;
4195                }
4196
4197                ret = -ENOMEM;
4198                data = kzalloc(sizeof(*data), GFP_KERNEL);
4199                if (!data)
4200                        goto out_free_data;
4201
4202                if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4203                        data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4204                else
4205                        data->entry = kzalloc(sizeof(struct irte_ga),
4206                                                     GFP_KERNEL);
4207                if (!data->entry) {
4208                        kfree(data);
4209                        goto out_free_data;
4210                }
4211
4212                irq_data->hwirq = (devid << 16) + i;
4213                irq_data->chip_data = data;
4214                irq_data->chip = &amd_ir_chip;
4215                irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4216                irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4217        }
4218
4219        return 0;
4220
4221out_free_data:
4222        for (i--; i >= 0; i--) {
4223                irq_data = irq_domain_get_irq_data(domain, virq + i);
4224                if (irq_data)
4225                        kfree(irq_data->chip_data);
4226        }
4227        for (i = 0; i < nr_irqs; i++)
4228                free_irte(devid, index + i);
4229out_free_parent:
4230        irq_domain_free_irqs_common(domain, virq, nr_irqs);
4231        return ret;
4232}
4233
4234static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4235                               unsigned int nr_irqs)
4236{
4237        struct irq_2_irte *irte_info;
4238        struct irq_data *irq_data;
4239        struct amd_ir_data *data;
4240        int i;
4241
4242        for (i = 0; i < nr_irqs; i++) {
4243                irq_data = irq_domain_get_irq_data(domain, virq  + i);
4244                if (irq_data && irq_data->chip_data) {
4245                        data = irq_data->chip_data;
4246                        irte_info = &data->irq_2_irte;
4247                        free_irte(irte_info->devid, irte_info->index);
4248                        kfree(data->entry);
4249                        kfree(data);
4250                }
4251        }
4252        irq_domain_free_irqs_common(domain, virq, nr_irqs);
4253}
4254
4255static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4256                               struct amd_ir_data *ir_data,
4257                               struct irq_2_irte *irte_info,
4258                               struct irq_cfg *cfg);
4259
4260static int irq_remapping_activate(struct irq_domain *domain,
4261                                  struct irq_data *irq_data, bool reserve)
4262{
4263        struct amd_ir_data *data = irq_data->chip_data;
4264        struct irq_2_irte *irte_info = &data->irq_2_irte;
4265        struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4266        struct irq_cfg *cfg = irqd_cfg(irq_data);
4267
4268        if (!iommu)
4269                return 0;
4270
4271        iommu->irte_ops->activate(data->entry, irte_info->devid,
4272                                  irte_info->index);
4273        amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4274        return 0;
4275}
4276
4277static void irq_remapping_deactivate(struct irq_domain *domain,
4278                                     struct irq_data *irq_data)
4279{
4280        struct amd_ir_data *data = irq_data->chip_data;
4281        struct irq_2_irte *irte_info = &data->irq_2_irte;
4282        struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4283
4284        if (iommu)
4285                iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4286                                            irte_info->index);
4287}
4288
4289static const struct irq_domain_ops amd_ir_domain_ops = {
4290        .alloc = irq_remapping_alloc,
4291        .free = irq_remapping_free,
4292        .activate = irq_remapping_activate,
4293        .deactivate = irq_remapping_deactivate,
4294};
4295
4296static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4297{
4298        struct amd_iommu *iommu;
4299        struct amd_iommu_pi_data *pi_data = vcpu_info;
4300        struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4301        struct amd_ir_data *ir_data = data->chip_data;
4302        struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
4303        struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4304        struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4305
4306        /* Note:
4307         * This device has never been set up for guest mode.
4308         * we should not modify the IRTE
4309         */
4310        if (!dev_data || !dev_data->use_vapic)
4311                return 0;
4312
4313        pi_data->ir_data = ir_data;
4314
4315        /* Note:
4316         * SVM tries to set up for VAPIC mode, but we are in
4317         * legacy mode. So, we force legacy mode instead.
4318         */
4319        if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4320                pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
4321                         __func__);
4322                pi_data->is_guest_mode = false;
4323        }
4324
4325        iommu = amd_iommu_rlookup_table[irte_info->devid];
4326        if (iommu == NULL)
4327                return -EINVAL;
4328
4329        pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4330        if (pi_data->is_guest_mode) {
4331                /* Setting */
4332                irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
4333                irte->hi.fields.vector = vcpu_pi_info->vector;
4334                irte->lo.fields_vapic.ga_log_intr = 1;
4335                irte->lo.fields_vapic.guest_mode = 1;
4336                irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
4337
4338                ir_data->cached_ga_tag = pi_data->ga_tag;
4339        } else {
4340                /* Un-Setting */
4341                struct irq_cfg *cfg = irqd_cfg(data);
4342
4343                irte->hi.val = 0;
4344                irte->lo.val = 0;
4345                irte->hi.fields.vector = cfg->vector;
4346                irte->lo.fields_remap.guest_mode = 0;
4347                irte->lo.fields_remap.destination = cfg->dest_apicid;
4348                irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
4349                irte->lo.fields_remap.dm = apic->irq_dest_mode;
4350
4351                /*
4352                 * This communicates the ga_tag back to the caller
4353                 * so that it can do all the necessary clean up.
4354                 */
4355                ir_data->cached_ga_tag = 0;
4356        }
4357
4358        return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
4359}
4360
4361
4362static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4363                               struct amd_ir_data *ir_data,
4364                               struct irq_2_irte *irte_info,
4365                               struct irq_cfg *cfg)
4366{
4367
4368        /*
4369         * Atomically updates the IRTE with the new destination, vector
4370         * and flushes the interrupt entry cache.
4371         */
4372        iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4373                                      irte_info->index, cfg->vector,
4374                                      cfg->dest_apicid);
4375}
4376
4377static int amd_ir_set_affinity(struct irq_data *data,
4378                               const struct cpumask *mask, bool force)
4379{
4380        struct amd_ir_data *ir_data = data->chip_data;
4381        struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4382        struct irq_cfg *cfg = irqd_cfg(data);
4383        struct irq_data *parent = data->parent_data;
4384        struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4385        int ret;
4386
4387        if (!iommu)
4388                return -ENODEV;
4389
4390        ret = parent->chip->irq_set_affinity(parent, mask, force);
4391        if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4392                return ret;
4393
4394        amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4395        /*
4396         * After this point, all the interrupts will start arriving
4397         * at the new destination. So, time to cleanup the previous
4398         * vector allocation.
4399         */
4400        send_cleanup_vector(cfg);
4401
4402        return IRQ_SET_MASK_OK_DONE;
4403}
4404
4405static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4406{
4407        struct amd_ir_data *ir_data = irq_data->chip_data;
4408
4409        *msg = ir_data->msi_entry;
4410}
4411
4412static struct irq_chip amd_ir_chip = {
4413        .name                   = "AMD-IR",
4414        .irq_ack                = apic_ack_irq,
4415        .irq_set_affinity       = amd_ir_set_affinity,
4416        .irq_set_vcpu_affinity  = amd_ir_set_vcpu_affinity,
4417        .irq_compose_msi_msg    = ir_compose_msi_msg,
4418};
4419
4420int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4421{
4422        struct fwnode_handle *fn;
4423
4424        fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4425        if (!fn)
4426                return -ENOMEM;
4427        iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4428        irq_domain_free_fwnode(fn);
4429        if (!iommu->ir_domain)
4430                return -ENOMEM;
4431
4432        iommu->ir_domain->parent = arch_get_ir_parent_domain();
4433        iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4434                                                             "AMD-IR-MSI",
4435                                                             iommu->index);
4436        return 0;
4437}
4438
4439int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4440{
4441        unsigned long flags;
4442        struct amd_iommu *iommu;
4443        struct irq_remap_table *table;
4444        struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4445        int devid = ir_data->irq_2_irte.devid;
4446        struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4447        struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4448
4449        if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4450            !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4451                return 0;
4452
4453        iommu = amd_iommu_rlookup_table[devid];
4454        if (!iommu)
4455                return -ENODEV;
4456
4457        table = get_irq_table(devid);
4458        if (!table)
4459                return -ENODEV;
4460
4461        raw_spin_lock_irqsave(&table->lock, flags);
4462
4463        if (ref->lo.fields_vapic.guest_mode) {
4464                if (cpu >= 0)
4465                        ref->lo.fields_vapic.destination = cpu;
4466                ref->lo.fields_vapic.is_run = is_run;
4467                barrier();
4468        }
4469
4470        raw_spin_unlock_irqrestore(&table->lock, flags);
4471
4472        iommu_flush_irt(iommu, devid);
4473        iommu_completion_wait(iommu);
4474        return 0;
4475}
4476EXPORT_SYMBOL(amd_iommu_update_ga);
4477#endif
4478